Document Type

Article

Publication Title

Journal of Glaciology

Publication Date

2000

First Page

599

Last Page

610

Issue Number

155

Volume Number

46

Abstract/ Summary

At Engabreen, Norway, an instrumented panel containing a decimetric obstacle was mounted flush With the bed surface beneath 210 m of ice. Simultaneous measurements of normal and shear stresses, ice velocity and temperature were obtained as dirty basal ice flowed past the obstacle. Our measurements were broadly consistent with ice thickness, flow conditions and bedrock topography near the site of the experiment. Ice speed 0.45 m above the bed was about 130 mm d(-1), much less than the surface velocity of 800 mm d(-1) Average normal stress on the panel was 1.0-1.6 MPa, smaller than the expected ice overburden pressure. Normal stress was larger and temperature was lower on the stoss side than on the lee side, in accord with flow dynamics and equilibrium thermodynamics. Annual differences in normal stresses were correlated with changes in sliding speed and ice-flow direction. These temporal variations may have been caused by changes in ice rheology associated with changes in sediment concentration, water content or both. Temperature and normal stress were generally correlated, except when clasts presumably collided with the panel. Temperature gradients in the obstacle indicated that regelation was negligible, consistent with the obstacle size. Melt rate was about 10% of the sliding speed. Despite high sliding speed, no significant ice/bed separation was observed in the lee of the obstacle. Frictional forces between sediment particles in the ice and the panel, estimated from Hallet's (1981) model, indicated that friction accounted for about 5% of the measured bed-parallel force. This value is uncertain, as friction theories are largely untested. Some of these findings agree with sliding theories, others do not.

Citation/Publisher Attribution

Cohen, D, Hooke, RL, Iverson, NR, and Kohler, J, 2000, Sliding of Ice Past an Obstacle at Engabreen, Norway: Journal of Glaciology, v. 46, p. 599-610. Available on publisher's site at: http://www.ingentaconnect.com/content/igsoc/jog/2000/00000046/00000155/art00006

Publisher Statement

© Copyright 2000 by the International Glaciological Society

DOI

10.3189/172756500781832747

Version

publisher's version of the published document

Share