Document Type
Article
Publication Title
Cryosphere Discussions
Rights and Access Note
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. In addition, no permission is required from the rights-holder(s) for educational uses. For other uses, you need to obtain permission from the rights-holder(s).
Publication Date
2011
First Page
885
Last Page
950
Volume Number
5
Abstract/ Summary
This is the first study to measure more than 25 chemical constituents in the surface snow and firn across extensive regions of Antarctica. It is also the first to report total- Cs concentrations. We present major ion, trace element, heavy metal, rare earth element 5 and oxygen isotope data from a series of surface snow samples and shallow firn sections collected along four US ITASE traverses across East and West Antarctica. In each sample we measure dissolved concentrations of Na+, K+, Mg2+, Ca2+, Cl−, NO− 3 , SO2− 4 , and MS− using ion chromatography and total concentrations of Sr, Cd, Cs, Ba, La, Ce, Pr, Pb, Bi, U, As, Al, S, Ca, Ti, V, Cr, Mn, Fe, Co, Na, Mg, Li, and K using 10 inductively coupled plasma sector field mass spectrometry. We also measure 18O by isotope ratio mass spectrometry. The 2002/2003 traverse began at Byrd Surface Camp, West Antarctica, and ended close to South Pole, East Antarctica. The 2003/2004 traverse began at South Pole, passed through AGO4 in central East Antarctica before turning north and finishing at 15 Taylor Dome. The combined 2006/2007 and 2007/2008 traverses started out at Taylor Dome and headed south, passing through the Byrd Glacier drainage basin and ending at South Pole. In this study, we utilize satellite remote sensing measurements of microwave backscatter and grain size to assist in the identification of glaze/dune areas across 20 Antarctica and show how chemical concentrations are higher in these areas, precluding them from containing useful high-resolution chemical climate records. The majority of the non-glaze/dune samples in this study exhibit similar, or lower, concentrations to those from previous studies. Consequently, the results presented here comprise a conservative baseline for Antarctic surface snow chemical concentra25 tions. The elements Cd, Pb, Bi, As, and Li are enriched across Antarctica relative to both ocean and upper crust elemental ratios. Global volcanic outgassing accounts for the majority of the Bi measured in East and West Antarctica and for a significant fraction of the Cd in East Antarctica. Nonetheless, global volcanic outgassing cannot account for the enriched values of Pb or As. Local volcanic outgassing from Mount Erebus may account for a significant fraction of the As and Cd in West Antarctica and for a significant fraction in East Antarctic glaze/dune areas. However, despite potential 5 contributions from local and global volcanic sources, significant concentrations of Pb, Cd, and As remain across much of Antarctica. Most importantly, this study provides a baseline from which changes in the chemistry of the atmosphere over Antarctica can be monitored under expected warming scenarios and continued intensification of industrial activities in the Southern Hemisphere.
Repository Citation
Dixon, D. A.; Mayewski, Paul Andrew; Korotkikh, E.; Sneed, S. B.; Handley, M. J.; Introne, D. S.; and Scambos, T. A., "A spatial framework for assessing current conditions and monitoring future change in the chemistry of the Antarctic atmosphere" (2011). Earth Science Faculty Scholarship. 171.
https://digitalcommons.library.umaine.edu/ers_facpub/171
Citation/Publisher Attribution
The Cryosphere Discuss., 5, 885–950, 2011 www.the-cryosphere-discuss.net/5/885/2011/ doi:10.5194/tcd-5-885-2011 © Author(s) 2011. CC Attribution 3.0 License.
DOI
doi:10.5194/tcd-5-885-2011
Version
other
Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.