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can lead to otosclerosis [39], and the most common feature of otosclerosis is stapes fixation. Although 

we observed ectopic mineralization and bone deposition in the otic capsule of asj mutant mice starting 

from around 6 weeks of age, stapes fixation is absent from Enpp1 mutant mice. Instead, we observed 

white patch on the tympanic membrane, malleus and incus fusion, which are typical symptoms of 

tympanosclerosis. We observed a thickened round window membrane in Enpp1asj/asj mice at 8 weeks of 

age, which may increase the rigidity of the membrane and impede proper cochlear fluid movement and 

hair cell stimulation [40]. Therefore, Enpp1asj mice can serve as a model for studying tympanosclerosis. 

Decreased PPi levels in Enpp1asj/asj mice also lead to otitis media, perhaps the most important factor 

contributing to the hearing loss, but the underlying mechanism of pathology is uncertain.  ENPP1 

deficiency is known to cause elevated serum levels of FGF23 in Enpp1 mutant mice[16], and excess 

FGF23 secreted in the middle ear may trigger mucoperiosteum proliferation, which may contribute to 

the development of otitis media. In support of this possibility, mucoperiosteum proliferation in 

Enpp1asj/asj mice is remarkably enhanced around the regions of the otic capsule that exhibit ectopic 

mineralization. Enpp1asj mice provide a tool to unravel the underlying mechanism of the development of 

otitis media that is associated with abnormal phosphate homeostasis.  

1.5 Summary 

 This is the first report of hearing loss and ear pathology associated with a mutation of the mouse 

Enpp1 gene.  The conductive hearing loss of Enpp1asj mutant mice provides a new animal model for 

studying otitis media and tympanosclerosis related to mineralization defects. It also provides a specific 

model for understanding the hearing loss recently reported to be a clinical feature associated with 

human ENPP1 mutations[17, 18].  
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compared with those of MRL wildtype controls and revealed a single base pair mutation in exon 3 

(c.233G>A) that changes the codon for glycine (GGC) to a codon for aspartic acid (GAC) at amino acid 

position 78 (p.G78D) of the mouse protein (Fig. 2.2). DNA sequence analysis of exon 3 in additional 

mutant and non-mutant mice confirmed this variant to be the recessive Atp6v1b1vtx mutation. The vtx 

missense mutation occurs in the N-terminal domain of ATP6V1B1 (InterPro: IPR004100). 

 

Figure 2.2 Molecular characterization and consequences of the Atp6v1b1vtx mutation 

A. DNA sequence chromatograms illustrating the G>A nucleotide change (indicated by red arrow) caused by the 
vtx mutation. B. DNA sequence of Atp6v1b1 exon 3 with encoded amino acids shown below in blue font. The G 
nucleotide that is altered in the vtx mutation (shown in red) is part of the GGC codon (boldface, boxed) for glycine. 
The G>A nucleotide substitution at coding DNA position 233 (c.233G>A) causes a glycine to aspartic acid amino 
acid change at position 78 of the ATP6V1B1 protein (p.Gly78Asp). C. Schematic diagram of the ATP6V1B1 protein 
showing the regions encoded by exons 1-14 in alternating light and dark purple shades and locations of the three 
functional domains relative to the amino acid numbers shown below. The vtx mutation is in exon 3, which encodes 
part of the N-terminal domain of the protein. 
 

 The early onset, profound hearing impairment of Atp6v1b1vtxvtx mice on the MRL strain 

background (Fig.2.1A) is strikingly different from the previously reported normal auditory phenotype of 

Atp6v1b1-/- knockout mice on a mixed B6/129S1 strain background [49]. To specifically test for MRL 

versus B6 strain background effects on the mutant phenotype, we generated B6.MRL-Atp6v1b1vtx/vtx 



 
 

32 

congenic mice (described in Materials and Methods) and compared their inner ear and kidney 

phenotypes with those of MRL-Atp6v1b1vtx/vtx mice. 

2.3.3 Inner ear morphology and auditory function 

 Paintfills of the membranous labyrinths of inner ears from MRL-Atp6v1b1vtx/vtx mutants and 

controls were examined in day 15 embryos (E15) and in newborn (P1) mice. Already at E15, the 

membranous labyrinth of MRL-Atp6v1b1vtx/vtx embryos appeared dilated compared with inner ears of 

MRL-Atp6v1b1+/vtx littermate controls. The swelling was especially apparent in the endolymphatic sac 

and duct, but also noticeable in the utricle, saccule, and cochlear duct  (Fig. 2.3A). The enlargement of 

the membranous labyrinth in inner ears of MRL-Atp6v1b1vtx/vtx mutant mice became even more 

pronounced at P1 (Fig. 2.3B). Cleared whole-mount preparations of inner ears from newborn MRL-

Atp6v1b1vtx/vtx mice showed an obvious enlargement of the cochlear duct but also showed a conspicuous 

deficiency and dispersion of utricular and saccular otoconia compared with MRL-Atp6v1b1+/vtx littermate 

control mice (Fig. 2.3C). Whole mount preparations of inner ears from B6.MRL- Atp6v1b1vtx/vtx mice 

showed normal morphology (not shown).  

 Cross-sections of plastic-embedded adult (2.5-4.5 months-of-age) cochleae (Fig. 2.4) revealed 

wholesale differences in the arrangement of cochlear fluid spaces in B6.MRL-Atp6v1b1vtx/vtx and MRL-

Atp6v1b1vtx/vtx mutant mice.  In the MRL-Atp6v1b1vtx/vtx mutants, scala media appeared reduced in size in 

the lower basal turn, but expanded elsewhere.  Scala vestibuli was generally expanded at the expense of 

scala tympani.  The spiral limbus was widened laterally and contained few fibrocytes.  Spiral ligament 

and stria vascularis were generally thinner, and strial layer structure was disorganized.  In the ligament, 

type I and III fibrocytes were almost entirely missing behind the stria.  Most noteworthy was an absence 

of the boney turn boundary between the lower cochlear base and lower apical turn.  The boundary 

appeared fused with the osseous spiral lamina of the adjacent cochlear regions (not shown).  Few hair 

cells were in evidence in any of the MRL-Atp6v1b1vtx/vtx mutant cochleae examined.  The abnormal 



 
 

33 

 
Figure 2.3 Paint fills and whole mounts of inner ears from MRL-Atp6v1b1vtx/vtx mutant and control mice 
A. Paint fills of the membranous labyrinths of inner ears from an E15-stage MRL-Atp6v1b1+/vtx (control) embryo 
and two littermate MRL-Atp6v1b1vtx/vtx (mutant) embryos. The endolymphatic sac (es), endolymphatic duct 
(ed), utricle (u), saccule (s), and cochlear duct (cd) appear enlarged in the two mutant inner ears compared 
with the control. B. Paint fills of the membranous labyrinths of inner ears from a newborn (P1) MRL-
Atp6v1b1+/vtx (control) mouse and two MRL-Atp6v1b1vtx/vtx (mutant) littermates. The entire membranous 
labyrinth of the mutant inner ears appears swollen from an excess of endolymph. Other structures labeled in 
the control inner ears of A and B: anterior semicircular canal (asc), posterior semicircular canal (psc), lateral 
semicircular canal (lc), anterior ampulla (aa), posterior ampulla (pa), lateral ampulla (la), common crus (cc). C. 
Cleared, whole-mount preparations of both inner ears from a P1 Atp6v1b1+/vtx newborn mouse (control) and 
two MRL-Atp6v1b1vtx/vtx (mutant) littermates, illuminated from below. Dark-appearing otoconia in the utricle 
(u) and saccule (s) are clearly visible in the control ear, but only a few widely dispersed otoconial crystals are 
seen in the mutant inner ears. The cochlear ducts (cd) of the mutant inner ears are enlarged compared with 
the control. Scale bars for A, B, C: 0.5 mm. 
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Figure 2.4 Cross sections of cochleae from B6.MRL-Atp6v1b1vtx/vtx and MRL-Atp6v1b1vtx/vtx mice 
 
A,B. Whole cochlear profiles from B6.MRL-Atp6v1b1vtx/vtx (A) and MRL-Atp6v1b1vtx/vtx mice (B) imaged at the 
same magnification.  B6.MRL-Atp6v1b1vtx/vtx mutants appear normal while MRL-Atp6v1b1vtx/vtx mutants feature 
greatly reduced scala tympani (compare areas marked with *), missing turn boundary between lower base and 
lower apex (compare areas marked with white arrows), and partial collapse of Reissner’s membrane in the 
lower base (compare black arrows).  C,D. Upper basal turn scala media profiles from different specimens of 
B6.MRL-Atp6v1b1vtx/vtx (C) and MRL-Atp6v1b1vtx/vtx mice (D) imaged at the same magnification.  B6.MRL-
Atp6v1b1vtx/vtx mutants appear normal while MRL-Atp6v1b1vtx/vtx mutants show widened profile, elongated and 
acellular spiral limbus, hair cell loss (see E,F), and lateral wall degeneration (see G). E,F. Enlarged views of organ 
of Corti from C,D show hair cell loss in MRL-Atp6v1b1vtx/vtx mutants (black arrows). G. Enlarged view of MRL-
Atp6v1b1vtx/vtx mutant stria vascularis from D shows thin and disorganized stria and near absence of type I and 
III fibrocytes (white arrow).  Scale bar in A applies to B.  All other scale bars 20 µm.  LB: Lower base; UB: Upper 
base; LA: Lower apex; UA: Upper apex; RWM: Round window membrane; Sp Lim: Spiral Limbus; Sp Lig: Spiral 
ligament; RM: Reissner’s membrane; StV: Stria vascularis; I, II, III, IV:  Fibrocyte types by area; OC: Organ of 
Corti; IP: Inner pillar; OP: Outer pillar; DC: Deiters’ cells; IHC: Inner hair cell; OHC: Outer hair cell. 
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appearance of the lateral wall and absence of hair cells are consistent the complete absence of tone 

responses in these animals. 

    Comparison of the vestibular organs by genotype (Fig. 2.5) indicated little hair cell or neural loss 

in any group.  MRL-Atp6v1b1vtx/vtx mutant cristae were similar to those of the B6.MRL-Atp6v1b1vtx/vtx 

mutants in normal appearance, including the presence of a cupula and complement of dark cells.  The 

appearance of all maculae was likewise similar by genotype with respect to hair cells.  What 

 
 
Figure 2.5 Cross sections of vestibular organs from B6.MRL-Atp6v1b1vtx/vtx and MRL-Atp6v1b1vtx/vtx mice 
 
A,B. Both B6.MRL-Atp6v1b1vtx/vtx (A) and MRL-Atp6v1b1vtx/vtx (B) mutant cristae appeared normal (posterior 
cristae is shown), including presence of cupula, hair cells, and dark cells. C-F. B6.MRL-Atp6v1b1vtx/vtx maculae 
(saccule shown in C) appeared normal.  MRL-Atp6v1b1vtx/vtx mutant maculae (saccule is shown in D-F) showed 
normal complement of hair cells, but few, very large otoconia that tended toward triangular shapes.  
Macrophages (arrows in D) often lined the epithelial surface and surrounded abnormal otoconia.  Scale bar in 
A applies to all panels.  Cup: Cupula; HC: Hair cells; DC: Dark cells; Ot: Otoconia. 
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distinguished MRL-Atp6v1b1vtx/vtx mutant maculae was the frequent presence of macrophages lining the 

epithelium, contrasted with the complete absence of normal otoconia.  Instead, the MRL-Atp6v1b1vtx/vtx 

mutants featured very few, very large otoconia that tended toward triangular shapes.  These also were 

often associated with macrophages.  Based on appearance, it is possible that MRL-Atp6v1b1vtx/vtx mutant 

cristae function normally if K+ levels are normal, since the endocochlear potential (EP) is normally low in 

the vestibular organs.  The maculae, however, may be aberrantly responsive or unresponsive due to the 

lack of normal otoconia, despite little apparent hair cell loss. 

 ABR thresholds of adult mice (2.5 and 4.5 months of age) were compared for 5, 10, 20, 28.3, 40, 

and 56.6 kHz test stimuli (Fig. 2.6A). Thresholds of B6.MRL-Atp6v1b1vtx/vtx congenic strain mice and MRL-

Atp6v1b1+/vtx control mice were similar and in the normal range for most inbred mouse strains. MRL-

Atp6v1b1vtx/vtx mice, however, failed to elicit an ABR even at the maximum test stimulus (100 dB SPL) for 

any of the test frequencies, indicating complete deafness. Likewise, EP measurements were normal in 

 
Figure 2.6 ABR and EP measurements of auditory function in B6.MRL-Atp6v1b1vtx/vtx and MRL-Atp6v1b1vtx/vtx 
mice 
 
A. Average ABR thresholds of MRL-Atp6v1b1vtx/vtx mice (MRL-vtx/vtx; 4 females, 6 males); MRL-Atp6v1b1+/vtx 
mice (MRL-+/vtx; 3 females, 5 males); and B6.MRL-Atp6v1b1vtx/vtx mice (B6.MRL-vtx/vtx; 5 females, 5 males). 
Thresholds were obtained from 5, 10, 20, 28.3, 40, and 56.6 kHz pure tone test frequencies. Thresholds were 
assigned a value of 100 if no ABR was obtained at the maximum test stimulus of 100 db SPL. Mice were tested 
between 2.5 and 4.5 months of age. Bars represent standard errors of the means. B. Enodocochlear potential 
(EP) measurements (mV) of the same mice were obtained immediately after the ABR tests. EP values are 
shown for individual mice. 
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B6.MRL-Atp6v1b1vtx/vtx and MRL-Atp6v1b1+/vtx mice but nearly absent in MRL-Atp6v1b1vtx/vtx mice (Fig. 

2.6B).  These results clearly demonstrate that the MRL strain background has a strong deleterious effect 

on the auditory phenotype of Atp6v1b1vtx/vtx mutant mice. 

2.3.4 Kidney-related phenotype 

 MRL-Atp6v1b1vtx/vtx and B6.MRL-Atp6v1b1vtx/vtx mice were healthy and showed no overt 

symptoms of metabolic acidosis. The previously reported B6(129S1)-Atp6v1b1 knockout mice show 

increased urine pH, decreased calcium excretion, and decreased osmolality (9). We measured these 

characteristics in the MRL-Atp6v1b1vtx/vtx and B6.MRL-Atp6v1b1vtx/vtx mice and compared them with 

wildtype mice from the same genetic background. Similar to results reported for mice with the 

Atp6v1b1 knockout mutation, mice homozygous for the Atp6v1b1vtx mutation on the B6 background had 

a significantly higher urine pH (6.5 ± 0.1 vs 6.2 ± 0.1) compared to wildtype B6 mice (Figure 2.7A). We 

did not observe a difference between wildtype and Atp6v1b1vtx/vtx mutant mice on the MRL background, 

but wildtype MRL mice had an unusually high urine pH (6.5 ± 0.2) compared to several other strains we 

tested: C57BL/6J (6.2 ± 0.1), A/J (6.1 ± 0.1), 129S1/SvImJ (5.8 ± 0.1), and NOD/LtJ (6.0 ± 0.2).  

 Decreased calcium excretion (urinary Ca2+/Cr mg/g ratios) was observed in mice with the 

Atp6v1b1vtx mutation in both genetic backgrounds (Figure 2.7B) although we saw a larger decrease 

(163.3 ± 17.4 vs. 45.9 ± 6.0l, approx. 70%) in the MRL background compared to the B6 background 

(139.2 ± 9.1 vs. 99.0 ± 9.6, approx. 30%). We did not measure a significant effect of the Atp6v1b1vtx 

mutation on osmolality on either background. In addition, we also measured potassium, sodium, and 

chloride concentrations in both blood and urine and did not find any significant differences between 

Atp6v1b1vtx/vtx and wildtype mice on either strain background (Table 2.1). 
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3.4 Discussion 

The wdml mutation carries a missense mutation that changes the amino acid aspartic acid to glycine. 

The aspartic acid altered by the Tbx1wdml missense mutation is evolutionarily highly conserved, and both 

the PolyPhen 2 (http://genetics.bwh.harvard.edu/pph2/) and SIFT (http://sift.jcvi.org/) computer 

programs predict that the p.D212G substitution is probably damaging to protein function. The wdml 

mutation occurs in the T-box domain, which is highly conserved in all members of the T-box family. The 

T-box includes the DNA binding region of the protein but also contains sites of protein interactions. TBX1 

localization is not affected by the Tbx1wdml mutation (Figure 3.5), indicating that the mutant protein is 

stable and properly localized. This hypomorphic nature of the mutation can explain the less severe 

phenotype of Tbx1wdml mutant mice compared to that of Tbx1 knockout mice. The hypomorphic Tbx1wdml 

mutation may affect protein conformation or interactions with co-regulatory proteins that affect 

particular aspects of TBX1 function. 

 
Figure 3.7 Examination of Esrrb, Raldh2, and Dct expression in the Tbx1wdml mice and wild type mice with in 

situ hybridization 

Esrrb, Dct, and Raldh2 expression is detected in the stria vascularis in the wild type mice (A, C, E, G).  Esrrb and 
Raldh2 expression is undetectable in the Tbx1wdml mice (B, D, F), while reduced Dct expression is observed in 
the Tbx1wdml mice (H). Scale bar = 20μm. 
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 In contrast to the undeveloped inner ear of Tbx1 knockout mice, the inner ear of B6-Tbx1wdml 

mutant mice is fully developed but with abnormalities very similar to those of Esrrb-/- [103], Kcne1-/- [80, 

82], and Kcnq1-/- [104] mice; all exhibit reduced endolymph volume and collapsed Reisnner’s membrane 

at early postnatal stages and hearing impairment and vestibular dysfunction at adult age. Potassium 

channel proteins KCNE1 and KCNQ1 are coexpressed in the apical membrane of both marginal cells and 

dark cells, and release K+ to the endolymph [80, 105]. ESRRB, an estrogen-related nuclear receptor, 

controls the expression of multiple ion channel and transporter genes in strial marginal cells and 

vestibular dark cells [103]. Chen and colleagues [103] reported that Kcne1, Kcnq1, and Dct are down 

regulated in Esrrb-/- mice. They proposed that Esrrb is important for cell fate determination, as there is a 

cell fate change of marginal cells toward intermediate cells in Esrrb-/- mice [103]. Our results (Figure 3.7) 

show an absence of Esrrb expression in the stria vascularis of Tbx1wdml mutant mice as early as E16.5, 

indicating that Tbx1 is a direct or indirect upstream regulator of Essrb expression. Previous to this 

discovery, Esrrb was the only gene known to control development of the endolymph-producing 

epithelial cells of the inner ear. 

 Previous studies have not examined TBX1 expression beyond E18.5, Our results show that TBX1 

is expressed in the marginal cells of the stria vascularis and the dark cells of the crista ampullaris in both 

mutant and control mice at P3. Interestingly, expression in these cells disappears between P3 and P15 

(Figure 3.5), suggesting a transient function of TBX1 in the early postnatal stage. The cochlear marginal 

cells and vestibular dark cells are responsible for K+ transport to the endolymph of the inner ear and 

possess many similarities. Consistent with the marginal cell localization of TBX1, there was a lack of 

expression of the marginal cell marker KCNQ1 in Tbx1wdml mutants and reduced expression of 

intermediate and basal cell markers, which are probably secondary effects of the marginal cell defect. 

Together, these data support an important role for Tbx1 in marginal cell maturation and stria vascularis 

development and in the maturation and function of vestibular dark cells. We also found TBX1 expression 
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in the hair cells and supporting cells of the crista ampullaris at both P3 and P15 (Figure 3.5). Our TBX1 

protein localization results agree with results deduced from reporter gene β-gal activity in Tbx1+/lacZ 

mice, where expression also was detected during late development of the ear (E18.5) in marginal cells of 

the stria vascularis and in hair cells and adjacent nonsensory dark cells of the crista ampullaris [106].  

Lineage analysis of the late otocyst stage of mouse inner ears indicates that vestibular hair cells and 

supporting cells in the posterior crista are clonally related [107]. In addition, the lineage-tracing data 

raise the possibility that nonsensory epithelial cells bordering the crista may be clonally related to the 

vestibular sensory epithelium. These results may be related to our finding that TBX1 is expressed in 

sensory hair cells and supporting cells and also in the adjacent nonsensory dark cells of the crista in P3 

mice, followed by a loss of the nonsensory dark cell expression by P15 (Figure 3.5). 

 Paintfills of the membranous labyrinths of E14.5 inner ears of B6-Tbx1wdml/wdml mice revealed 

nonresorption of the fusion plate of the posterior semicircular canal, a vestibular phenotype similar to 

that observed in Foxg1-/- mice [108]. Although Tbx1wdml mutant mice have a normal looking cochlea, 

Foxg1-/- mutant mice have a shortened cochlea, possibly because Foxg1 acts upstream of the Tbx1 gene. 

At the beginning of semicircular canal formation, fusion plates are formed through attachment of 

apposing lateral and medial epithelial extrusions of the dorsal otic vesicle. Epithelial cells at the fusion 

plate intercalate to form a single sheet and disappear through a process of resorption, either through 

apoptosis or retraction of the cells to the remaining canal pouch epithelium at the outer rim, to form the 

fluid-filled canal.  Bone morphogenetic protein 4 (BMP4) marks the incipient posterior crista by E11.5, 

followed shortly thereafter by BMP4 delineation of the anterior and lateral cristae, which may share a 

common origin as evidenced by the single BMP4-positive area in the anterior portion of the otocyst that 

is later seen as two distinct domains[109]. The crista has been hypothesized to induce the formation of 

the associated semicircular canal structure [108]. Reduced function of TBX1 in the posterior crista of 

Tbx1vtx mutants, therefore, may possibly be the underlying cause for the incomplete formation of the 
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posterior canal and ampulla during otic development.  

 To elucidate the molecular mechanisms underlying the Tbx1wdml mutant phenotype, we 

performed RNA-seq with inner ears from mutant and control E16.5 embryos, the age at which stria 

vascularis development begins. We identified a number of genes that are expressed in the stria 

vascularis and are involved in stria development and function (Table 3.2). The RNA-seq results showed 

down regulation of Esrrb, which has a very similar expression pattern in the inner ear as Tbx1. Our in situ 

RNA hybridization results also showed a down regulation of Esrrb  (Figure 3.7), supporting the reliability 

of the RNA-Seq data. We observed drastic reductions in Kcne1 and Kcne2 expression, which is not 

surprising because KCNE1 and KCNQ1 form a potassium channel complex and are important for K+ 

secretion into the inner ear endolymph. Bsnd and Dct, markers for stria vascularis basal cell and 

intermediate cells, respectively, are also down regulated in the Tbx1wdml mutant mice as is Dlx3, a 

member of the distaless homeobox family of transcription factors, which are known to play important 

roles in the developing vestibular system of the inner ear [110]. Surprisingly more genes were up 

regulated than down regulated by the Tbx1wdml mutation, suggesting that TBX1 inhibits expression of 

more genes than it enhances in the E16.5 inner ear. 

 We hypothesize that Tbx1 is important for marginal cell fate determination. Esrrb is down 

regulated in Tbx1wdml mutant mice, as shown from our in situ RNA hybridization and RNA-seq results, 

and therefore acts as a direct or indirect downstream target of Tbx1. Chen and colleagues showed a 

change of marginal cell fate toward intermediate cell in Esrrb-/- mice [103]. If Tbx1 regulates Esrrb 

expression and ESRRB regulates marginal cell fate determination, we can predict that marginal cell 

differentiation cannot be achieved in the Tbx1wdml mutant mice, leading to failed marginal cell 

maturation and interdigitation and subsequent failure of stria vascularis development. Another possible 

but less likely explanation for the undeveloped stria vascularis of mutant mice is that Tbx1 is required for 

cell proliferation and survival rather than cell fate determination.  
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 TBX1 has been shown to regulate retinoic acid (RA) metabolic genes during cochlear 

morphogenesis [111], and Aldh1a2 (Raldh2), which encodes the RA-synthesizing enzyme retinaldehyde 

dehydrogenase 2, was found to be expressed in the stria vascularis, Reissner’s membrane and dark cells 

of the inner ear [112-114]. Our in situ RNA hybridization analysis showed that Raldh2 expression is down 

regulated in in the stria vascularis of Tbx1wdml mutant mice (Figure 3.7), consistent with previous studies 

of RALDH2 localization, and suggesting that RA may be specifically synthesized in this part of the cochlea 

[112]. RA secreted by the marginal cells may be required for vascularization in the stria vascularis and 

establishment of the inner ear blood-labyrinth barrier, as supported by a study showing that RA 

contributes to blood–brain barrier maturation [115]. Radial glial cells in fetal human brain tissue express 

high levels of Raldh2 and tightly associate with the developing brain vasculature that expresses the RA 

receptor β during embryogenesis [116]. Raldh2 expression may play a similar role in stria vascularis 

vasculature maturation. 

 Studies of prostate cancer patients and animal models have identified associations between 

Tbx1 and Raldh2 [117]. They showed that methylation of Tbx1 regulates the RA signaling pathway 

through downregulation of Raldh2. Raldh2 null mice are embryonic lethal [118], and a hypomorphic 

Raldh2 mutation caused decreased RA synthesis and a DiGorge syndrome-like phenotype in the mice 

[119]. Expression of Raldh2 (Aldh1a2) was reported to be down regulated in mice with an Esrrb loss of 

function mutation [103]. It is proposed that ESRRB heterodimerizes or directly cooperates with RAR at 

direct repeat hormone response element (HRE) motifs, facilitating stable binding events before and/or 

after RA signaling [120]. 

 Our RNA-seq data showed downregulation of Dlx3 in Tbx1wdml mutant E16.5 embryos. Dlx3 is 

expressed in the dorsal region of the otic vesicle at E12.5, and its expression was lost in the developing 

semicircular canals of mesodermal Tbx1 loss of function mutant mice [110]. A recent report using an 

oral squamous cell carcinoma line treated with all-trans retinoic acid suggests that Dlx3 is negatively 
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regulated by RA [121]. Collectively, these data suggest that Tbx1 may interact with the RA signaling 

pathway to regulate semicircular canal formation and stria vascularis maturation. 

3.5 Summary 

 Tbx1 not only has a global effect on inner ear development evidenced by failed inner ear 

morphogenesis at the otocyst stage in the Tbx1 homozygous knockout mice, but also plays possible 

specific roles for semicircular canal and stria vascularis development as suggested by Tbx1 expression in 

the marginal cells of the stria vascularis and the dark cells of the crista ampullaris at later embryo stages. 

As no inner ear is formed in germline or conditional Tbx1 knockout mice, Tbx1wdml mice provide the first 

model that allow us to study Tbx1 function during semicircular canal and stria vascularis development. 

The stria vascularis phenotype of the Tbx1wdml mice at postnatal stages makes it a good model to 

examine the molecular network that regulates stria vascularis development and maturation. Various 

hearing disorders in human patients are associated with stria vascularis dysfunction; for example, 

mutation in the KCNQ1 gene cause long QT syndrome, SESAME Syndrome is associated with mutations 

in the human JCNJ10 gene, and Bartter syndrome is associated with mutations in the BSND gene. 

Investigation of the Tbx1wdml mutation will provide us more knowledge of the molecular network that 

regulates stria vascularis development and function and opens a new avenue for developing therapeutic 

approaches to treat hearing disorders associated with its dysfunction.  

3.6 Future directions 

 Posterior semicircular canal malformation is observed in the E14.5 mutant inner ear; however, it 

is unclear whether it is due to stopped or delayed development. To answer that question, two more 

ages of the Tbx1wdml inner ear will be observed by paintfill analysis: E16.5 and P0. To further investigate 

the undeveloped stria vascularis observed in the Tbx1wdml mice, we will apply transmission electron 

microscope (TEM) to observe the microstructure of the cell layers within the mutant stria vascularis. 

Failed development of the mutant stria vascularis is very likely because undifferentiated marginal cells 
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are not able to interdigitate with intermediate cells and the vasculature network. We hypothesize that 

interactions of TBX1 with other proteins that are important for inner ear development are disrupted by 

the wdml mutation. We therefore propose to use an unbiased approach (yeast two hybridization) to 

screen for proteins that interact with TBX1 in E16.5 inner ears. We will localize the identified protein in 

the inner ear if no data is available, and confirm TBX1 interaction with these candidate proteins using 

co-immunoprecipitation or pull down assay. Lastly, we will detect whether the protein interactions 

between TBX1 and the candidate proteins are disrupted by the wdml mutation.  
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CHAPTER 4 THESIS SUMMARY 

Three new mouse mutations: Enpp1asj, Atp6v1b1vtx, and Tbx1wdml, are reported in this 

dissertation. All three mutations lead to severe hearing loss/deafness in the mutant mice, but are due to 

different underlying pathologies.  

Chapter 1: The Enpp1asj mutation causes middle ear inflammation that is associated with 

abnormal mineralization and calcification in the asj mutant mice. Inflammation causes 

transdifferentiation of ciliary epithelial cells into goblet cells, which leads to excessive mucus secretion in 

the middle ear cavity. Reduction of ciliary epithelial cells impair the clearance function of the ciliary 

epithelia. Both factors combined lead to accumulation of mucus in the middle ear cavity that causes 

progressive conductive hearing loss in the asj mutant mice. Another factor that contributes to the 

conductive hearing loss in the asj mice is tympanosclerosis, a subtype of otosclerosis, which is a 

common middle ear condition characterized by abnormal bone remodeling in the middle ear. 

Calcification of middle ear soft tissues, such as tympanic membrane, and mineralization of middle ear 

ossicles, are observed in patients with tympanoslerosis in addition to abnormal middle ear bone 

remodeling.  

Chapter 2: The Atp6v1b1vtx mutation leads to an enlargement of the endolymphatic duct and sac 

of the inner ear, which results in drastically reduced endolymphatic potential (EP), deafness and 

vestibular dysfunction in homozygous mutant mice. The vtx mutation arose on the MRL-MpJ 

background, which has a strong deleterious effect on its auditory phenotype, as opposed to a previously 

reported Atp6v1b1 KO mouse on a B6 background that has normal hearing. MRL-Atp6v1b1vtx mutant 

mice provide a new genetic model for some clinical cases of nonsyndromic deafness with enlarged 

vestibular aqueducts. We attempted to map the loci that contribute to hearing loss phenotype in the 

MRL-vtx mice, and found that the modifier effects on hearing loss are derived from multiple loci rather 

than a single locus with large effect. Genome-wide linkage analysis revealed a region on chromosome 13 
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that contains over 400 genes. Two candidate genes, Slc9a3 and Slc12a7, were picked based on their 

expression pattern in the inner ear and the association with inner ear ion homeostasis. We did not 

detect either DNA sequence or mRNA expression differences in these genes between MRL and B6 mice, 

indicating that they are not likely the modifiers. Besides the large candidate gene pool, complete 

sequence of the MRL strain is not available, making the effort to narrow down the candidate region and 

identify the modifiers more challenging.  

Chapter 3: The Tbx1wdml mutation leads to semicircular canal malformation and undeveloped 

stria vascularis in the inner ears of mutant mice, which contribute to the circling and deafness 

phenotype of these mice. In contrast to Atp6v1b1vtx mice (Chapter 2), which have dramatically increased 

endolymph volume, Tbx1wdml mice have greatly reduced endolymph volume, due to lack of stria 

vascularis function. Initial efforts showed that the wdml mutation does not affect the stability and 

localization of TBX1 protein in the mouse inner ear, and that TBX1 is only expressed in the stria 

vascularis and vestibular dark cells at the early postnatal stage. Reduced expression of the orphan 

nuclear receptor Esrrb in the Tbx1wdml mutant mice suggest that Tbx1 is an upstream regulator of the 

gene network that regulates stria vascularis development.  

We used a forward genetics approach to identify these new mouse mutations that affect ear 

development and function. This approach relies on the abundant mutant mouse resources available 

from the Jackson Laboratory. Besides the three genes reported in this dissertation, other genes such as 

Clic5, Tmhs, and Duox2, were identified using this strategy. These new mouse mutations were identified 

either by their vestibular phenotype, which is usually associated with hearing loss (though there are 

exceptions), or by hearing screen with auditory brainstem response measurement. Causative mutations 

were identified by linkage association analysis with either intercross or backcross mice.  

One of the advantages of the forward genetics approach is that it can identify new alleles that 

can reveal a particular protein's role in a specific process in a way that deletion of the protein cannot. 



 
 

74 

Hypomorphic alleles that affect certain aspects of protein function or alter protein structure can lead to 

less severe phenotypes than KO alleles and therefore allow us to study specific functions of these genes. 

Take the Tbx1wdml mutation as an example. The association of TBX1 with human DiGeorge syndrome 

drove the creation of Tbx1 KO and conditional KO mice. However, these mice could only tell us that 

TBX1 is crucial for inner ear morphogenesis as the inner ear does not develop past the E10 otocyst stage 

in these mutant mice. Does TBX1 have other functions during inner ear development? This question 

cannot be addressed with the KO mutant mice because they do not have a fully developed inner ear. 

Furthermore, studies showed that TBX1 is expressed in the stria vascularis and vestibular dark cells 

during late embryo stage, suggesting potential involvement of TBX1 in the development and/or function 

of these structures. The wdml point mutation in the Tbx1 gene causes circling behavior and deafness in 

the mutant mice. Inner ears of Tbx1wdml mutant mice fully develop but show pathologies in the stria 

vascularis and vestibule that correspond to their expression patterns. This mutation allows us to study 

Tbx1 function during inner ear development and identify proteins that interact with TBX1 and regulate 

the genetic network that regulates inner ear development.  

Another advantage of the forward genetics approach is that it allows us to investigate strain 

background effects on the mutant phenotype.. Most engineered mutations are on the B6 background, 

which limits discovery of genetic background effects on mutant phenotypes. For example, mutations in 

the ATP6V1B1 gene were reported in human patients with distal renal tubular acidosis with hearing loss, 

but a mouse KO of  Atp6v1b1 on the B6 background did not exhibit any renal or auditory deficits. The vtx 

mutation in the Atp6v1b1 gene on a MRL background, in contrast, recapitulates the hearing loss 

phenotype observed in patients with distal renal tubular acidosis, indicating that the MRL background 

has a profound effect on the auditory phenotype associated with Atp6v1b1 mutation in mice, and helps 

to explain the phenotype variability associated with human ATP6V1B1 mutations.  
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In summary, the three mutations reported here provide valuable models to study common 

middle ear condition (otitis media), sensorineural hearing loss associated with enlarged vestibular 

aqueduct, and hearing loss associated with human DiGeorge syndrome. These missense mutations 

identified with a forward genetics approach suggest that despite of the emerging of new technique like 

CRISPR, it is still a valuable method to identify new genes that cause hearing loss phenotype. Previous 

studies predicted that hundreds of genes related to inner ear development are waiting to be discovered, 

and these discoveries can be aided by the forward genetics approach. These mouse models are also 

valuable tools for testing gene therapies. For example, the same amino acid change was reported in 

human patients as was discovered in the Tbx1wdml mice. This missense mutation provides an easy target 

for gene therapy and will be very informative for future clinical trials. Another good model is the 

Atp6v1b1vtx mice and its modifier genes, which can provide new insight into genetic background effects 

underlying the phenotypic variability in human patients and the underlying mechanisms and pave a new 

avenue for therapeutic approaches.  
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