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Traditional physics simulators use mathematical models to represent a realistic

environment. Natural processes, however, are difficult to mimic accurately. We

present a simulator that has the capability to alter its model based on actual physical

measurements.

The simulator runs as a server to which remote clients can connect and assume

control of entities within the virtual environment. The simulator then sends position

updates to clients according to its model. Clients have the option of then correcting

the data in these updates, sending feedback to the server. The server adjusts its

model to accord with the corrections, allowing for a more realistic model.

Our simulator is general, allowing the user a wide range of customization. With

its flexible system of virtual object representation, users can create their own ar-

bitrarily rich virtual environments that include rigid bodies, magnetic fields, and

radio waves. The system is designed to be extensible, which also allows the user to

customize how the simulator processes its model. Default algorithms for calculating



a time step and detecting collisions are provided, but are can easily be replaced by

a user’s own implementation.
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Chapter 1

INTRODUCTION

In physics simulation, mathematical models are used to represent a virtual en-

vironment. Any future state of the environment is completely determined from

applying mathematical transformations to some previous state. Often, simulations

are used to predict what would happen in real-life scenarios. In the physical world,

the future states of environments cannot always be cleanly predicted, as various

types of noise affect simple predictions. For this reason, it is essential to create a

noise model in order to produce realistic simulations.

Our simulator brings the physical environment more directly into the virtual

environment’s state. Rather than using mathematics to model noise, our simulator

allows physical agents to connect to it and provide actual data from measurements

taken in the physical realm. As an example, consider a virtual environment with

a virtual agent V . This agent has a physical counterpart P that has connected to

the simulator and can use sensors to locate itself within the physical environment.

The simulator will use its model to predict the next future state. Assume that it

decides that V should move forward 1 m. It will alter its virtual model accordingly

and send a message to P informing it of this change. Let us assume that P then

attempts to move forward 1 m, but encounters some uneven terrain which causes

its movement to be slightly irregular. Instead of moving ahead 1 m, its sensors tell

it that it moved ahead 0.97 m. P sends this information back to the simulator, and

the simulator then “corrects” itself by replaying the state such that V will end up

having moved forward 0.97 m as well.

Though the original intent for the project was to be used as a simulator for

autonomous underwater vehicles (AUVs), it grew into a general physics simulator
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over the course of the implementation. It simulates a 3D environment in which

objects can interact. Objects within the world are called entities, and their definition

is very general, so as to admit a variety of possible object representations. Entities

can model such diverse things as rigid bodies, radio waves, AUVs, and magnetic

fields. The standard type of entity that is typically most applicable is called the world

object. World objects are implemented as rigid bodies, and so contain algorithms

for modeling rigid-body dynamics. Each world object has a position, orientation,

volume, mass, linear momentum and angular momentum, and a number of forces

that act on it. As rigid bodies, each world object can also collide with and bounce

off of other world objects.

Once a virtual environment has been created using these components, the user

has several options to interact with the simulator. It can be run as a standalone

program, where the user supplies each object’s behavior ahead of time and lets the

simulation play out. It can also be run in a distributed manner with the simulator

acting as a server to which remote hosts, or clients, can connect. The network inter-

face is general, not programming language-specific, and its communication medium

is human-readable, which yields an easy-to-understand and flexible means of com-

munication. This is achieved by encoding all messages between server and client in

AUVSML, an XML-based language that we have developed for the simulator. This

architecture is what allows physical agents to easily communicate with the server.

A flexible and language-agnostic network interface is one area in which one of our

major goals, extensibility, is apparent.1 We sought to create a tool that allows the

user a wide range of customization. Rather than producing a simulator suited for

a specific task, we have attempted to produce a simulator that can be configured,

or for more advanced use cases, extended, for whatever task the user needs. We

1See Chapter 3 for a discussion of extensibility.
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chose to implement the simulator in the Java programming language, which runs

on the Java Virtual Machine (JVM). Because it runs on the JVM, the user also has

the option of seamlessly extending the simulator with other JVM languages such as

Jython or Clojure.2

This theme of extensibility permeates the simulator’s architecture. The criti-

cal algorithms that determine how the simulator calculates the next state of the

world are written to general interfaces, the underlying implementations of which

can be substituted for any alternative implementation that the user desires. The

representation of entities is similarly defined using interfaces, allowing the creation

of new and complex types that can either provide alternate implementations, new

implementations, or combinations of existing implementations as definitions. New

AUVSML messages can be easily introduced into the system, giving the user full

discretion as to how much or how little control a remote host has over the virtual

world. This also permits any new functionality that the user introduces to be easily

used remotely by defining new AUVSML messages.

Another place where extensibility is evident is in the implementation of the

Corrective Feedback System (CFS). The CFS is that part of the software that accepts

data from physical sensors, which is called feedback, and decides how to process

them using feedback processors. There are many different ways to use CFS, and

so the system’s design allows for this by permitting alternative implementations.

One implementation that is discussed in this thesis gives clients an interval of time

during which to send feedback messages regarding movement.3 After it gathers these

messages, it compares them with its virtual models, rewinds time in the virtual world

to before the state change, and alters the forces acting on each world object such that

2This depends on the language, but for most popular ones, extending Java code is typically
seamless.

3See Section 7.2.
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when time is moved forward again, each world object will end up in the same position

as its physical counterpart. Many other possibilities exist, as CFS allows users to

define their own physical feedback data types and their own feedback processors.

Given the nature of extensibility, this project is ripe for future work. Custom

clients, simulation rules, entities, feedback processors, and communication protocols

can all be easily created given the architecture of the software. Given its distributed

nature, it is easy to build complementary software. For instance, visualization tools,

which provide representations of the simulated world that are easier for humans to

perceive and understand, can easily interoperate with the simulator. This is achieved

by having the tool connect to the simulator as a client. It sends a command to

the server indicating that it wants to receive updates on every entity within the

world. All data necessary to construct a visual model, including entity positions

and orientations, is then sent to the visualization tool.

The project has evolved greatly over the course of its life cycle. Several parts

of the system have undergone reimplementations both small- and large-scale. The

approaches that are currently used as well as some that have been scrapped are

documented here. In addition, there are several areas in which the software could

be improved or expanded upon. Ultimately, we have arrived at a system that fulfills

the project’s goals and is ripe for both use and extension.

4



Chapter 2

RELATED WORK

This project was created to address a need for extensible simulation software that

integrated well with robots for the Maine Software Agents and Artificial Intelligence

Laboratory (MaineSAIL).1 It ties together many known solutions to various prob-

lems of simulation, such as time step advancement and collision detection, within

an extensible architecture. As a result, existing work was adapted to fit within the

architecture that provided a useful solution to MaineSAIL’s needs. This chapter

gives a summary of related work that has contributed the most to the development

of our simulator.

2.1 AUV Simulation

An outstanding example of autonomous underwater vehicle (AUV) simulation

is the work of Donald Brutzman (Brutzman, 1994). Brutzman’s work tackles many

of the real-world difficulties associated with AUV deployment.

The primary difficulty facing AUV developers is a challenging physical

environment: an operating AUV is inaccessible, remote, and unattended.

It is subjected to extremes of pressure, temperature, corrosion. Com-

munications are intermittent or nonexistent. Sonar sensing is physically

slower and very much different from vision. Vehicle deployment, oper-

ation and recovery are time-consuming and expensive. Vehicle physical

dynamic control is very challenging. There are six spatial degrees of free-

dom (three dimensions each for position and rotation), not all physical

control issues are solved, and there may be an unpredictable influence by

1http://mainesail.umcs.maine.edu/
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ocean currents. Propulsion is costly, slow and limited. A typical vehicle

only has a few hours endurance. (Brutzman, 1994)

While Brutzman’s work seeks to solve these issues in regards to simulation, our

model abstracts many of these issues away, yielding a more general platform.

One area in which our implementation is an improvement over Brutzman’s work

is the representation of rigid body orientation. Brutzman’s model uses six spatial

degrees of freedom to represent a rigid body’s posture: x, y, and z encode position

along the x-, y-, and z-axes, respectively, and φ, θ, and ψ encode orientation about

the x-, y-, and z-axes, respectively, which are referred to as Euler angles (Brutzman,

1994).

Quaternions, which are an extension of complex numbers, can be used instead to

represent orientation. They have several advantages over Euler angles; for instance,

over time, updating the orientation will produce numerical error that would cause

a graphical skewing effect (Witkin & Baraff, 1997). Quaternions overcome this

problem, as discussed in Section 5.2.

Brutzman’s work was published in 1994, and so utilized the technology of that

time. Though our project has many of the same features, we had the opportunity

to implement them with the modern and more widespread technologies available in

2012. This stands out the most in regard to networking.

Two kinds of messages are used in Brutzman’s architecture: telemetry vectors,

which encode all vehicle state variables, and free-format commands, which begin

with a keyword identifying the type of command and continue with type-specific

command data. Both are represented as strings and can be passed between various

parts of the system. The use of strings ensures that all communication is readable

by humans, making debugging easier (Brutzman, 1994).

6



Our network communications system is very similar in design to Brutzman’s

approach. We use strings to pass data between the server and any remote clients, and

each message has a type that defines type-specific data, not unlike the free-format

commands in Brutzman’s system. Our strings are formatted in AUVSML, which

is based on XML, a now-ubiquitous standard for representing structured and semi-

structured data that was originally proposed in 1996, two years after Brutzman’s

publication (Bray & Sperberg-McQueen, 1996).

2.2 Rigid-body Dynamics

The physics algorithms which model all aspects of rigid-body dynamics in our

simulator were adapted from Witkin and Baraff’s lecture notes (1997). The notes

detail an approach to modeling rigid-body dynamics in a simulation. The first set

of notes cover how objects are represented. Position, orientation, linear momentum,

and angular momentum are used to describe an object. Ordinary differential equa-

tions (ODEs) are used to advance from one state to the next. The notes provide

complete mathematical descriptions of these methods, and even provide snippets of

a pseudo-implementation in C. The challenge in utilizing these materials was find-

ing a way to adapt the structure of rigid-body computations to the structure of the

simulator’s software. For instance, where the notes simply show how to express time

step advancement as an ODE, our task was to model the ODE as a Java object that

interacted both with our existing design for world objects and with a third-party

library (described in Section 2.3) that provided ODE solvers.

The second set of notes covers collision detection and response. The treatment

remains general by discussing how to detect collisions between polygons with any

number of vertices. Since our system approximates world objects as spheres, most
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of this did not apply.2 One concept from these notes that was the most useful to us

was the equation that calculated the impulse caused by a collision. The equation

provides the basis for the behavior of our rigid bodies that allows them to bounce

off of other rigid bodies, and takes linear and rotational changes in movement into

account.

2.3 Open Source Tools

Though most of the rigid-body dynamics calculations were straightforward to im-

plement, some parts required special algorithms. The Open Source Physics (OSP)

library3 provides many such tools, including ODE solvers, which are utilized by our

simulator during time step advancement. Using the accompanying manual (Chris-

tian, 2007), we learned not only how to best use the library, but also about some core

physics concepts that its software models. Initially, the library was used for more

core tasks than it was at the end of the project; some of the functionality it provided

has since been replaced by our own implementations. For example, we wrote our

own class to represent quaternions for rotation. Currently, the only part of the core

system that is leveraged with OSP is the fourth-order Runge-Kutta ODE solver,

though future work could see this reimplemented so as to remove the dependency

on OSP.

Our default visualization tool, however, benefits heavily from OSP. OSP provides

an intuitive 3D graphical display to which 3D objects, such as spheres and boxes,

can be added. The user can interact with the window with the mouse cursor to

rotate the graph and zoom in or out. The user can also choose between perspective

and orthogonal views using the provided menus. This made it much easier to get

2Note that although we approximate world objects as spheres, the system is written generally
such that many differently-shaped volumes may be used. The default implementation, however,
provides only spheres and basic boxes.

3http://www.opensourcephysics.org/
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a visualization up and running without having to spend time and effort developing

3D graphics software.

Another open source library that the simulator uses is the Apache Commons

Math library.4 Though we represent orientation as quaternions, it is useful to convert

the quaternions into Euler angle rotation matrices when rotating vectors. For matrix

representation and matrix operations, our simulator defers to the Apache Commons

matrix implementation.

2.4 Good Software Development Practices

As mentioned in Section 2.2, one of the challenges we faced was ensuring that

the rigid-body dynamics code worked in a manner consistent with our architecture.

Designing the architecture itself was also a great challenge, and underwent revi-

sions both major and minor several times over the course of the project. This was

necessary to cleanly support new features of the simulator.

Informing these designs were good software engineering practices that we have

developed over time. With regard to how these designs best worked with the Java

programming language, the book Effective Java was used often (Bloch, 2008). Ef-

fective Java details many techniques and patterns that have been discovered over

time to be the best practices in most situations. For example, the builder pattern

(Bloch, 2008, p. 11), which provides an intuitive way for users of a class to build

an object with many parameters, was used in our Simulator and World classes,

which represent the simulator and the virtual world, respectively.

4http://commons.apache.org/math/
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Chapter 3

PROBLEMS AND PROJECT GOALS

Building a simulator gives rise to many interesting problems. When designing

solutions to these problems, having a set of general guidelines helped tremendously.

We present several issues on which we focused, including advancing an adaptive

time step, dealing with object collisions, and how to incorporate feedback data from

remote clients. We also discuss our primary design goal of extensibility, which will

allow users of the software to craft simulations to their specifications.

3.1 Advancing the Time Step

Computer simulation requires representing continuous time as discrete chunks

referred to as time steps. We consider a number of snapshots that capture the

instantaneous state of the simulated environment; a time step represents the interval

between successive snapshots. For example, simulating all events from t = 0 s to

t = 1 s might involve only simulating the state at t = 0 s, jumping ahead to t = .2

s, and then to t = .4 s, t = .6 s, t = .8 s, and t = 1 s. The length of the time

step between each snapshot is called the time step delta (∆t). To run a simulation

through an interval of n seconds with a fixed ∆t, the simulator processes n
∆t

time

steps.

There are a number of issues that arise with this approach, since we are approx-

imating what is happening between each snapshot. If ∆t is large, we may end up

not simulating an event that would have occurred. For our purposes, we typically

consider an event to be a collision between two objects. For example, say that the

current time is t, an event will occur at t + tε, and ∆t > tε. Since we are only

examining the state at times t and t + ∆t, we will miss the moment at which the
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event occurs. Since the event does not occur, any future events that depended on

it will now be different. If ∆t is small, however, we may end up spending a lot

of processing time on unnecessary computation, since we may be processing many

time steps during which no events occur. Compounding this is the fact that despite

even a very small time step delta, we may still miss the precise moment in which an

event occurs. A compromise must be struck between the two. A large time step will

be sufficient in some situations, whereas in others, smaller time steps are necessary.

Using adaptive time steps allows the simulation to predict how big ∆t should be

based on the current state of the simulation. We would like to use a fixed ∆t as

a default, but decrease it when we suspect that an event will occur at some time

tE such that t < tE < t + ∆t. Here, we would set ∆t = tE − t so that time is

advanced to tE and we can process the event. How to choose the adaptive time step

will require making predictions as to when the next event will occur. We must also

be accurate in choosing the next time step delta so that we can properly model the

effects of a collision.

3.2 Collision Detection and Response

In a simulation, virtual objects are, at some level, represented by where they are

located and how much space they take up in the world. These are just numbers;

there is initially no notion of what happens if two objects overlap. To simulate

collisions between objects as in physical reality requires algorithms that perform

collision detection and collision response.

A collision detection algorithm will analyze two objects and determine whether

or not they overlap. Because a time step advancement from time t to time t + ∆t

could miss an overlap that occurs at time t+ tε where tε < ∆t, we also need a means

of finding tε.
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A collision response algorithm operates on objects that have collided and deter-

mines how to change their state. A typical collision response behavior is to simply

make each object bounce off of the other, as in an elastic collision. We should be able

to define any response behavior. For instance, we might want to simulate a mine

object that explodes whenever another object collides with it. Collision responses

should operate per-object. In our example, the unwitting object would simply per-

form its normal bounce-off response calculations, even though it hit a mine. The

mine would be solely responsible for producing an explosion and a shockwave. The

shockwave, being an object itself, would then have its collision response damage the

world object.

3.3 Processing Physical Feedback

Traditionally, simulators simulate an environment and are in complete control

of that environment. How objects move, how interactions between objects and the

environment occur, and how the environment changes are all determined by the

simulator’s calculations. Although computers can create strikingly realistic worlds

and compute incredibly useful data that have real-world applications in this way,

there are some drawbacks to this approach.

Movement within the physical world is never exact and, especially with imprecise

tools, is carried out with a moderate degree of noise. For example, if a robot is

instructed to move 10 m forward, it may actually end up moving 9.98 m or 10.002

m forward. This can occur for a number of reasons. In an outside environment,

factors such as terrain and weather must be taken into account. For a roving robot,

small pebbles could disrupt the precision of its movement. In an inside, controlled

environment, many of these factors are eliminated. Noise can still creep in due to,

for instance, how well the motors are working and how precise the robot can execute
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a turn. All of these factors should be accounted for in a realistic simulation by its

choice of noise model.

Modeling environmental noise mathematically, though it may be reasonably ac-

curate in certain situations, cannot always take into account all sources of noise in

the real world. Rather than simulating it, the simulator should take actual data

from the physical world and incorporate it into its virtual world. The simulator will

no longer be completely responsible for determining the state of the virtual world.

The user should also be in control of how the physical data alters the virtual world,

as this capability would allow numerous useful possibilities. For instance, one might

use the data to simply “correct” the virtual objects’ positions, or one could create an

algorithm that would build a dynamic mathematical model as a function of actual

data from the environment.

3.4 Server/Client Communication

The simulator should act as a server to which clients may connect. Each client

will be able to send commands to manipulate objects within the simulation as well

as gather data from the virtual world. Some clients will simply control one of the

virtual agents within the simulation; others may register to receive notifications of

all in-world events, which can be used to create a visualization; still others may have

the ability to alter important attributes of the simulator itself while it is running.

To allow for clients to send physical data back to the server, some messages

will be classified as feedback. Feedback messages will have the ability to alter the

simulation.

The simulator’s network interface should be easy to access and manipulate from

any programming environment. It should be easy to write a client in any language.
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3.5 Extensible Software

Many challenges must be dealt with when creating a physics simulator. How to

choose a time step, how to detect collisions, and how to handle physical feedback

are a few examples. Each has several practical solutions, and no one solution is

strictly better than another in all situations; trade-offs typically exist. Choosing the

proper solution for a given situation depends on many factors. For this reason, the

simulator should not lock the user into any particular solutions. It should provide

default solutions, but also provide the framework for allowing the user to create and

easily integrate his/her own solutions.

Though the code may be designed to be easily extended, this does not necessarily

mean that it is easy to understand. If a user cannot understand how a system

works, then its extensibility is hampered, despite how well it may be designed in a

technical sense. This can be alleviated with good documentation. Unfortunately,

there are a number of interesting and useful academic software tools in existence

that have a paucity of good documentation. The AUV simulator project should be

well-documented for future use by third parties.
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Chapter 4

SYSTEM DESIGN

The system was designed from the top down as three major components, each

with its own responsibilities. These components are the virtual world (sometimes

referred to as the environment), the network server, and the simulator. Figure 4.1

shows how these components interact.

The world maintains the current state of the simulated environment, which in-

cludes the current world time and the state of all entities in the world. Since most of

the interesting topics revolve around world objects, which are rigid bodies, we will

often talk mostly about world objects rather than entities. The world is also charged

with handling collision detection. The network server is the interface between the

system and the outside world. Remote clients connect to and communicate with the

server. A client could be a visualization tool, a robot with sensors and a program

that dictates how it should communicate, or even a human sitting at a terminal

entering commands and responding to server messages. The server is responsible

for parsing messages received from clients and passing commands to other parts of

the system for execution. It is also responsible for sending updates to the clients

regarding the state of the world, such as when world objects move. The simulator

ties the world and the server together and is charged with handling the behavior of

how the Corrective Feedback System (CFS) is integrated with the world.

4.1 The Virtual World

The virtual world maintains the state of the simulated environment. It has two

major concerns: maintaining the state of each world object and deciding how these

states will change when the time step is advanced.
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Figure 4.1. A diagram of how the three major parts of the system interact. Depicted
is a world with three world objects and a network server with three connected clients.

Each world object’s state is compromised of its mass, its volume, a set of all

of the forces that act upon it, and its movement state, which encapsulates the

object’s position, orientation, linear momentum, and angular momentum.1 Forces

can operate on any point within the volume of the object. Depending on this point,

the force could induce a change in linear momentum (which will alter its position)

and/or a change in angular momentum (which will alter its orientation).

Forces are represented as vectors and are classified as either world-relative or

body-relative. World-relative vectors are given in coordinates relative to the world.

This allows easy modeling of forces such as gravity, which push on the object irre-

spective of its orientation. Body-relative vectors are given in coordinates relative to

the current orientation of the object. This allows easy modeling of forces such as the

thrust of engines, whose world-relative direction changes along with the orientation

of the object.

1We chose to store momenta rather than velocities for reasons given in Section 5.2.
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4.2 Network Server

The network server is in charge of accepting and maintaining connections with

remote clients. Messages of different types will be sent to and received from the

clients. Clients typically send command messages, or commands, which are routed

to a particular part of system for interpretation and execution. The type of a

message is distinguished by which part of the system is meant to receive it. The

following is a list of message types.

• Client commands involve the server/client connection, such as disconnecting.

• World object commands alter the state of a world object.

• Simulator commands alter the state of the simulator (such as pausing and

resuming the simulation).

• Feedback messages contain physical feedback data that the simulator can use

to alter the world.

The server can send messages back to the clients. These are typically updates

regarding the state of the world. Clients can register for particular updates; for

instance, a client can register to only receive updates about a certain world object.

The server is multithreaded to easily allow multiple concurrent connections. It

shields the rest of the system from concurrency concerns by abstracting away all the

details of multithreading.

All of the server’s incoming and outgoing data is formatted in a language we cre-

ated for this project, the AUV Simulator Markup Language (AUVSML). AUVSML

is an XML-based language that encodes messages in a human-readable format. We

describe AUVSML in more detail in Section 7.1. The server is responsible for per-

forming all encoding and decoding for AUVSML data.
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The following chapters provide more details about the world and the network

server. Chapter 5 discusses the intricacies of the physics engine, Chapter 6 explains

how objects are represented in the world, and Chapter 7 covers client/server commu-

nication and the Corrective Feedback System (CFS), which allows physical feedback

to be incorporated into the simulation.
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Chapter 5

PHYSICS ENGINE

The world is responsible for keeping track of world objects and maintaining

the state of the environment. As such, it contains all necessary logic for simulating

physics and representing objects within the world. This chapter discusses the physics

engine, which implements a simulation of rigid-body dynamics, and the algorithms

used to project the world’s state forward.

5.1 Time Step Advancement and Collision Detection

As discussed in Chapter 3, choosing an adaptive time step depends heavily on

collision detection in our model. The algorithms we propose in this section can be

used together to create a conservative model of the world. That is, it is designed

never to miss any collisions, which can sometimes put it at odds with other concerns,

such as efficiency.1 Our process is composed of four steps.

1. Choose a preliminary time step. Choose a new time step delta, DT , based

on the current state of the world that is small enough such that it shouldn’t,

on average, miss any collisions. This will be a preliminary value that will most

likely be refined in the following steps.

2. Partition the world into collision sets. Partition the world into collision

sets, or sets that contain objects that are close enough to one another, relative

to all other objects, that they may collide between the current time t and

t + DT . This partitioning is done with the intent of reducing the amount of

collision checks that we must perform.

1We discuss these concerns further in Section 5.1.4 and Chapter 8.
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3. Find the earliest collision. For each collision set s ∈ S, where S is the set

of all collision sets, find the time ts of the earliest collision between members

of the set. Choose the smallest of these times tS = min
s∈S
{ts}. If no collisions

occur at all, let tS = DT .

4. Advance the time step. Let ∆t = tS and advance the world time by ∆t.

Figure 5.1. (a) An example of missing a collision; ∆t = 1. (b) By reducing the time
step to ∆t = 0.5, we see that the objects actually collided at one point.

Time must be advanced by a ∆t that is chosen adaptively at each snapshot

to ensure that collisions between objects are not missed. Consider the following

example involving two objects A and B, which is illustrated in Figure 5.1. Let

SA(t) and SB(t) give the positions of A and B at time t, respectively, and let vA

and vB give the velocity vectors, relative to the world, of A and B, respectively

(their velocities are constant). Assume that SA(t0) = 〈−1, 0〉, SB(t0) = 〈0,−1〉,

and that vA = 〈2, 0〉 and vB = 〈0, 2〉. If we are to assume an advancement by unit

time, that is, ∆t = 1, then we have SA(t + ∆t) = 〈1, 0〉 and SB(t + ∆t) = 〈0, 1〉.

From these results, we can find no collision. If ∆t = .5, however, then we have

SA(t+ ∆t) = 〈0, 0〉 and SB(t+ ∆t) = 〈0, 0〉, which is clearly a collision.
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Our basic strategy for time step advancement is as follows. Let DT be a fixed

time step delta. To calculate ∆t given the state of the world at time tW , we use the

following formula.

∆t(tW ) =

 tC − tW , If a collision will occur at time tC ,

DT, otherwise

This will then rely on finding tC given a state of the world at time tW .

Finding tC accurately is not a trivial problem. The problem can be defined as

follows. Given two objects A and B, their position functions SA(t) and SB(t), and

their radii RA and RB, find the earliest time tC such that |SA(tC) − SB(tC)| =

RA +RB. Because our model includes the orientation of objects and multiple body

force vectors that change every time the orientation changes, an analytical solution

is impractical. We therefore proceed by approximating where the collision will occur.

5.1.1 Choosing an Adaptive Time Step

In the example above, objects A and B’s paths crossed one another, but the

time step was too big to capture any moments in which they overlapped. One way

to address this problem is to alter the time step such that each object cannot move

a distance larger than its own radius.2

The idea for this preliminary step is to ensure that objects do not go far enough

in the given time step so as to miss any collisions. If the time step is reduced such

that each object will not move a distance greater than its radius, then it is far less

likely that we will miss collisions. (Note that for a world in which the difference in

size between objects is very large, we may still miss some collisions.)

The problem is defined formally as follows. Assume the current time is t. Given a

set U of n objects, find a time t+ tR such that (∀obj ∈ U)(|Sobj(t+ tR)−Sobj(t)| ≤

2The idea for this approach came from a personal communication with Professor James Fas-
took.
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Robj), where Sobj(t) gives the position of object obj at time t and Robj gives the

radius of obj.

We will approximate t + tR with the following algorithm, which we will refer

to as a radius-distance restricter, as it restricts the amount of distance objects can

travel based on their radii.

1: function RadiusDistanceRestricter(WorldObjects,DT )

2: tR ← DT

3: for all object ∈ WorldObjects do

4: repeat

5: oldPos← object.getPosition()

6: newPos← object.projectNewPosition(tR)

7: distance← |newPos− oldPos|

8: if distance > object.radius then

9: tR ← tR/2

10: end if

11: until distance ≤ object.radius

12: end for

13: return tR

14: end function

We proceed with a theoretical runtime analysis. The outer loop iterates over

each world object, contributing Θ(n) to the runtime, where n is the number of

world objects. The inner loop then executes, but for convenience, we will first

examine the runtime of its contents. The call to getPosition() runs in constant

time, as this information is already stored as part of object’s state. The call

to projectNewPosition() depends on how the physics engine implements rigid-

body movement. As we discuss in Section 5.2, an object’s new position is ultimately
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determined by the fourth-order Runge-Kutta ODE solver, which is a constant time

calculation. The distance calculation in Line 7 is a constant time operation as well.

Next, we test to see whether the distance traveled by the object is greater than its

radius. If not, the inner loop terminates, leaving us with a Θ(1) runtime for this

iteration of the outer loop.

In the best case, this would hold for all world objects. Thus, the algorithm

has a lower bound of Ω(n). If the distance traveled by the object is greater than

its radius, however, then the inner loop is repeated. How many times this loop is

repeated depends upon both the distance traveled by the object within the time

step (which is dependent on how fast it is moving) and its radius. Note, however,

that the time step is adjusted for all future iterations as well. That means that if

two objects were moving distances greater than their radii, the iteration for the first

object may reduce the time step enough so that the second object no longer moves

a distance greater than its radius when its iteration is processed.

For this reason, the worst case would be hard to achieve. In the worst case, we

can imagine the first object moving far enough to trigger the time step reduction

several times. The second object would then have to be moving much farther away

such that this time step reduction would still not be sufficient. The third object

would have to be even farther, and so forth. This worst case could be described as

contributing a O(n · m) runtime complexity, where m is the maximum number of

time step reductions required for an iteration.

5.1.2 Partitioning the World into Collision Sets

Naïve collision detection is a Θ(n2) algorithm: given n objects, each object

would have to be checked against at most n − 1 other objects. We can prune

unnecessary computations, however, by only checking for collisions between objects

that are relatively close to one another. This is done by partitioning the world
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into collision sets. We define a collision set as a set of objects from the world that

are reasonably close to one another. For example, if there are 5 objects in a 2D

world with coordinates (2, 1), (2, 3), (47,−14), (48,−12), and (49,−11), a good

partitioning algorithm might place the first two into a collision set and the last

three into a collision set. Given an object A that belongs to a collision set S, we

can run collision checks between A and ∀s ∈ S rather than between A and all other

objects in the world. Note that it is possible for an object to belong to more than

one collision set.

The area considered to be taken up by each world object when partitioning

occurs is a concern. Let us first define the validity of a partitioning of collision

sets. Let S be a full set of collision sets, or the set of all collision sets after a

partitioning operation. That is, for all obj ∈ WO, where WO is the set of all

world objects, obj exists in some set that is a member of S. Formally, we have that

(∀obj ∈ WO)(∃C ∈ S)(∃member ∈ C)(obj = member). A full set of collision sets

S is valid if and only if for each collision c that occurs within the interval (t, t+ ∆t),

the two objects colliding—call them obj1 and obj2—exist in the same collision set

C ∈ S. Formally, we have that

valid(S)⇔

(∀obj1, obj2 ∈ WO)(obj1 6= obj2 ∧ collides(obj1, obj2, t, t+ ∆t)⇒

(∃C ∈ S)(obj1, obj2 ∈ C)),

(5.1)

where collides(o1, o2, t1, t2) is a predicate that returns true when the areas taken up

by objects o1 and o2 overlap at some point in the interval (t1, t2).

If we were to consider only the area taken up by world objects at any given time t,

the collision sets are only valid for time t and not necessarily valid at any time t′ 6= t.

Because we are interested in detecting collisions over the interval (t, t + ∆t) rather

than at an instantaneous moment, this will not suffice. We must then partition
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based on the area taken up by world objects over the interval (t, t+ ∆t). We use a

simple method to achieve this.

Given an interval (t, t+ ∆t), we construct a bounding sphere Bi
(t,t+∆t) for object

i that encompasses the area taken up by the object’s bounding sphere at times t

and t + ∆t. For small ∆t, Bi encompasses all space taken up by the object at all

points during the interval (t, t + ∆t), as well as some extra space that the object

never occupies. The larger ∆t is, the more empty space Bi will encompass. An

example of a situation in which a large ∆t would yield an inaccurate Bi is shown

in Figure 5.2. Since our simulation will be using small ∆t, and the radius-distance

restricter may make ∆t smaller still, this approximation of the occupied area will

suffice.

Figure 5.2. If the object travels along a path depicted by the arrow from t to t+∆t,
the bounding sphere B will not encompass all space taken up by the object at all
points during the interval. For small ∆t and objects that don’t move incredibly fast,
this situation will most likely not occur.

We use the octree algorithm to partition the world into collision sets (Ganovelli

et al., 2000). An octree works as follows. Each node of the tree will encompass

a cube of space and will contain whatever objects happen to be within that cube

over the given interval. Figure 5.3 illustrates this with a quadtree, a 2D equivalent

of an octree that is easier to depict. Assume that the world is contained within a
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Figure 5.3. A diagram of a quadtree, the 2D equivalent of an octree, with N = 2.
The tree is shown above, and the world is shown below (a) before any splitting,
(b) after the first split, and (c) after the second split. The color of each world
representation matches the color in the tree. (a) The algorithm begins with all five
objects in the same collision set. (b) The set is split once, yielding a set with 1, 3, 4
and one with 2, 5. (c) The 2, 5 set requires no further splitting, and so is retained
through the second split. 1, 4 are placed in a set, but 4 is also contained in its own
set. 3 also gets placed in its own set.

cube volume. Let D be the maximum depth of the tree and let N be the maximum

number of objects per node (these will be chosen by the user depending on what

values are best for his/her simulation). The root node encompasses the entire world,

and so contains all objects. At the beginning of the algorithm, the current node C

is the root node. The algorithm proceeds as follows.

1: leaves← [rootNode] . To start, rootNode is the only leaf

2: d← 0

3: while d ≤ D do

4: d← d+ 1

5: newLeaves← []

6: for all leaf ∈ leaves do
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7: if leaf.numOfObjects > N then

8: newLeaves← newLeaves+ Split(leaf)

9: else

10: newLeaves← newLeaves+ leaf

11: end if

12: end for

13: leaves← newLeaves

14: end while

Let n be the number of objects in this node. If n ≤ N , then no further work is

done. If n > N , then the current node is split. This is done by dividing the cube

into 8 cubes of equal size. For each of these cubes, a child node of the current node

is created.

Split() is defined as follows.

1: function Split(leaf)

2: newLeaves← Divide leaf ’s area into 8 cubic areas of equal size

3: for all newLeaf ∈ newLeaves do

4: for all object ∈ leaf.objects() do

5: if newLeaf ’s area overlaps with object’s then

6: newLeaf.addObject(object)

7: end if

8: end for

9: end for

10: return newLeaves

11: end function

It is important to point out that an object can exist in multiple collision sets.

There are several cases in which this might occur, but perhaps the simplest to

27



imagine is the case in which an object is located at the center point of the world.

This center point will become a corner for each of the eight subcubes that are created

by Split(), and so an object in the center will thus exist partly in each of those

subcubes. To ensure that it misses no collisions between objects in any of those

cubes (imagine the case in which there are eight objects, each completely contained

in one of the subcubes, all heading for the center), that object will be a member of

all eight collision sets.

Since there might be multiple objects at the center, this could become a problem

for how many times Split() is run. Imagine the case of N + 1 objects located at

the center. Since each of the eight subcubes contains N + 1 > N objects, Split() is

called on each. Since the objects are contained in the center, the split does nothing

but “shrink” the subcubes about the center, and we are still left with eight collision

sets each with N + 1 objects. To avoid an infinite loop, the depth of the tree,

restricted by D, is also used as a stopping condition. Thus, the algorithm would

continue to perform these splits until the tree had a depth of D, at which point it

would stop. Though we are left with an unhelpful result, we must consider that this

is a rare case.

We will analyze the complexity of our octree implementation beginning with

Split(). Split() begins by dividing the area of leaf into 8 cubic areas of equal

size. This amounts to a constant number of arithmetic operations which runs in

Θ(1) time. Line 3 begins a loop over this 8-element array, multiplying the cost of

the loop’s contents by Θ(1). Line 4 iterates over all objects contained within leaf,

which will contribute at most a factor of Θ(n) to the loop’s contents, where n is

the number of all objects in the world. The if statement’s test and possible call to

addObject() each run in constant time. Therefore, the overall time complexity of

Split() is Θ(n).
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In the octree algorithm proper, we will begin our analysis with the inner loop.

This loop iterates over all leaves in the tree, of which there can be at most n, where n

is the number of objects, since we may have a node for each object. This contributes

O(n) to the runtime. The test within will execute if the number of objects in the

current node exceeds N . By conservatively assuming that it does, Split() will be

called, contributing O(n). This yields a total of O(n2) for the inner loop. Proceeding

to the outer loop, we see that it iterates D times. Since D is a constant, the outer

loop contributes O(1). Overall, the worst case yields O(n2).

In the best case, objects would be positioned such that at most one object is

contained in each node. For instance, in keeping with the quadtree example shown

in Figure 5.3, we would have four objects positioned so that after the first split, each

node contains only one object, or sixteen objects such that the same case occurs

after two split iterations (five splits total). Extending this to octrees, eight objects

would require only one split, sixty-four would require only two split iterations (nine

splits total), and so forth. This runtime can be summarized as O(n · 2(log8 n)),

where the n factor is the runtime of Split() and the 2(log8 n) factor is a loose

upper bound on the number of splits required. We can drop the constants, yielding

O(n · log n).

An average case analysis here would be quite complex, since many complex

factors such as object positions and velocities are involved. We will defer instead to

the empirical analysis in Chapter 8.

5.1.3 Finding the Earliest Collision

With the set of all world objects divided into smaller sets, collision detection’s

normal O(n2) complexity is mitigated by a decrease in the constant factor. Each

collision set is scanned to see if any collisions actually occur given the time step

delta. This process proceeds as follows.
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1. Using the bounding spheres from above, check whether any of the bounding

spheres in any of the collision sets overlap.

2. For each overlap of objects i and j, use bisection to approximate the earliest

time tij at which the two objects collide.

3. Select the earliest collision time t = min
i,j∈WO

tij, whereWO is the set of all world

objects, and where tij =∞ if i and j do not collide.

Bisection is a method of numerically approximating the inputs of a function

that yield a particular output. If two bounding spheres overlap, we proceed with

bisection. The process begins by dividing the interval (t, t + ∆t) into n + 1 time

indices. That is, we consider the instantaneous times t, t+ ( 1
n
)∆t, t+ ( 2

n
)∆t, ..., t+

(n−1
n

)∆t, t + ∆t. In order from earliest to latest, we check each index tk to see if

overlap(obji, objj, tk) is true. If none return true, then we assume that no collision

will occur over the interval, and that the bounding sphere overlap simply happened

over extra space within the spheres. If the objects overlap at a time tm, then we set

tmin ← tm−1 and tmax ← tm, where tm−1 is the time of the previous snapshot.

1: function Bisection( obj1, obj2, tmin, tmax )

2: if Bisection has iterated past the maximum number of iterations then

3: return tmax

4: end if

5: tmid ← (tmin + tmax)/2

6: if overlap(obj1, obj2, tmid) = true then

7: return Bisection(obj1, obj2, tmin, tmid)

8: else

9: return Bisection(obj1, obj2, tmid, tmax)

10: end if
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11: end function

Since the only stopping condition for Bisection() is surpassing a fixed number

of iterations, and since all operations run in constant time, Bisection() runs in Θ(1)

time. Note, however, that Bisection() must be executed for each pair of objects

that collide and possibly some pairs that almost collide. The overall runtime, then,

would be O(p), where p is the number of pairs considered.

In the project’s earlier stages, an analytical approach was used to determine

whether two objects collided. It operated as follows. Let obj1 and obj2 be two objects

within the same collision set that might collide, and let Si(t) give the position of

obji at time t as a vector. Then d(t) = |S1(t)−S2(t)| gives the distance between the

objects at time t. We find the minimums of d(t) using its first and second derivatives,

and check to see whether any minimum d(tm) is such that d(tm) ≤ (r1 + r2), where

ri is the radius of obji. If so, a collision between the two objects will occur during

the given interval.

Though the math was complex, the solution worked. In order to account for

orientation and rotational effects, which were added later, the position equation

would have to model the effect of body-relative forces as the orientation changed

over the interval of consideration. Since this would add more complexity to an ana-

lytical approach that was already complex, it was scrapped in favor of the numerical

approach.

5.1.4 Advancing the Time Step

At this point, either a collision occurs at time tc where t < tc < t + ∆t, or

no collision occurs during the interval (t, t + ∆t). The new time step is then δt =

min{tc, t + ∆t} − t. Given δt, the world can advance the simulation. It does this

by informing all world objects of the change in time. If collisions occur, it will first

tell all world objects that are involved in collisions that a collision has occurred and
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will pass each colliding world object some description of the world object it collided

with.

Note that these algorithms were chosen to create a conservative simulation. The

radius-distance restricter will stop objects from moving too far, and the collision

finder will reduce the time step delta whenever a collision is imminent. An advantage

of this approach is that it is far less likely to miss any collisions or end up with objects

that overlap. A disadvantage is that it can result in real-time performance costs, as

more snapshots must be processed whenever collisions are imminent. These effects

are analyzed in Chapter 8.

Though this may work well when precision is key to a simulation, it may not be

ideal for all circumstances. A design goal of the system was to allow critical pieces of

processing to be swapped out for alternate implementations. Because of this, all of

the above algorithms can be swapped out for user-written implementations. Thus,

if a user wishes to do collision detection that allows overlap, they might remove the

radius-distance restricter and alter the earliest collision finder. If the user knows

that he/she will never have more than a small number of objects in the simulation,

he/she may choose to remove the octree partitioner and just use a naïve Θ(n2)

collision detection algorithm.

Overall, the algorithms roughly contribute O(n), O(n · log n), and O(p) for run-

times. Taken together, if we assume that the number of collision pairs cannot

exceed k · n where k is some constant factor, then we have a total upper bound of

O(n · log n). In Chapter 8, we examine the actual runtime of these algorithms and

how they compare with our theoretical estimates.
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5.2 Rigid-body Dynamics

Each world object contains logic necessary to simulate a three-dimensional rigid

body that can interact with other world objects. Most of the concepts used in im-

plementing the rigid-body dynamics were given in Witkin and Baraff’s SIGGRAPH

lecture notes (Witkin & Baraff, 1997). A summary follows.

Each world object’s physical state is defined by its position, its orientation,

its linear momentum, its angular momentum, its mass, and its collection of force

vectors. Position is described by three points 〈x, y, z〉. Orientation is described using

quaternions, rather than Euler angles, which will be justified below. Quaternions are

members of R4 and can be thought of as an extension of complex numbers. Where a

complex number is described by a+bi, a quaternion has three imaginary components:

a+ bi+ cj+dk. We can alternatively remove the i, j, k for convenience and think of

the quaternion as a vector of four values 〈a, b, c, d〉. Linear momentum, p, is given

by p = mv, where m is mass and v is velocity. p is described by components as

〈px, py, pz〉. Angular momentum, L, is given by L = Iω, where I is the inertia tensor

and ω is a vector representing the object’s axis of rotation. The inertia tensor is a

matrix that represents the scaling factor between angular momentum and angular

velocity (Witkin & Baraff, 1997). Each type of volume (such as sphere and box) has

its own inertia tensor, and can be computed ahead of time and stored as a constant

for each object. L is described by components as 〈Lx, Ly, Lz〉.

Our algorithms work with linear momentum and angular momentum, which are

derived quantities, rather than the simpler linear velocity and angular velocity, for

reasons argued in Witkin and Baraff’s notes:

The only reason that one even bothers with the angular momentum of

a rigid body is that it lets you write simpler equations than you would

get if you stuck with angular velocity. . . . Angular momentum ends up
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simplifying equations because it is conserved in nature, while angular

velocity is not: if you have a body floating through space with no torque

acting on it, the body’s angular momentum is constant. This is not true

for a body’s angular velocity though: even if the angular momentum of a

body is constant, the body’s angular velocity may not be! Consequently,

a body’s angular velocity can vary even when no force acts on the body.

Because of this, it ends up being simpler to choose angular momentum

as a state variable over angular velocity. (Witkin & Baraff, 1997)

Linear momentum is then chosen over linear velocity to maintain consistency

with the choice of angular momentum over angular velocity (Witkin & Baraff, 1997).

To represent orientation, quaternions provide several advantages over Euler an-

gles. Because quaternion calculations do not involve trigonometric functions, they

are very efficient (Gould et al., 2007). Interpolation between one orientation and

another is much easier to do using quaternions (Shoemake, 1985). Most impor-

tantly for our purposes, quaternions are much less susceptible to the numerical drift

encountered when performing calculations using Euler angle matrices (Witkin &

Baraff, 1997).

The orientation of a body can be represented by an axis of rotation ω and an

angle of rotation θ about the axis. To represent this with a quaternion, let ω be

given by 〈v1, v2, v3〉. We construct the quaternion as 〈cos θ
2
, v1 sin θ

2
, v2 sin θ

2
, v3 sin θ

2
〉

(Gould et al., 2007). To combine two orientations, we need only multiply the two

quaternion representations. Given two quaternions that represent orientation Q1

and Q2, Q2Q1 represents the composite rotation of Q1 followed by Q2 (Witkin &

Baraff, 1997).

A world object will hold two collections of force vectors that act upon it: a

set of world-relative vectors FW and a set of body-relative vectors FB. These are
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Position
dS(t)

dt
= P (t)/m

Orientation
dq(t)

dt
=

1

2
[0, ω(t)]q(t)

Linear Momentum
dP (t)

dt
= F(t)

Angular Momentum
dL(t)

dt
= τ(t)

Table 5.1. The ODE for rigid body movement (Witkin & Baraff, 1997).

summed to find the world-relative resultant force vector FW =
∑
f∈FW

f and the body-

relative resultant force vector FB =
∑
f∈FB

f at each snapshot. F is the resultant force

vector, which is given by F = FW+QFB, where Q is the matrix representation of the

orientation quaternion. What this means is that FB is transformed to world-relative

coordinates by the world object’s orientation and then summed with FW.

The world object updates its state by representing its physical state as an or-

dinary differential equation (ODE) and using an ODE solver to calculate its new

state. Only the position, orientation, linear momentum, and angular momentum

are updated with the ODE solver. The mass m remains constant, and the force

vectors are updated by external events (either collisions with other surfaces or in-

tervention from a client’s command). The ODE is shown in Table 5.1, where τ(t)

is the resultant torque vector at time t.

The orientation portion of the ODE deserves some explanation. The change in

orientation, dq(t)
dt

, involves multiplying the current orientation q(t) by [0, ω(t)]. The

latter expression is shorthand for the quaternion 〈0, ωx(t), ωy(t), ωz(t)〉 (Witkin &

Baraff, 1997).

One of the most popular ODE solvers, fourth-order Runge-Kutta, or RK4, is

used to solve the ODE, which is known to be very accurate and well-behaved for a
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wide range of problems (Neumann, 2004). The algorithm works by evaluating the

ODE at several points along the interval (t, t + ∆t) and taking a weighted average

of these values. Contrast this method with the more basic Euler solver. Consider

that, disregarding rotational effects for the moment, position can be defined as

S(t + ∆t) = S(t) + vt + 1
2
at2. The Euler solver would solve this equation, using

the velocity at time t as a constant for the vt term. Since acceleration will change

the velocity over the interval, however, it misses the effect that the non-constant

velocity contributes. RK4 is able to account for this change in velocity, yielding a

much more accurate result.
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Chapter 6

WORLD OBJECT REPRESENTATION

The system and tools by which objects within the world can be created are very

important in simulation design. If the system is not versatile enough, only simple

world objects can be created. If the system is too free-form and not well-defined,

it may be difficult for the user to build objects correctly. Because this is a difficult

trade-off, we went through three major versions of the world object representation

system. Our first attempt left the user with very few options for creating objects

that weren’t rigid bodies. Our second attempt was incredibly versatile, but lacked

structure and added a lot of overhead in object creation and processing. Our final

attempt settles on a middle ground. By combining structure with versatility, we

arrived at an architecture that promotes both ease-of-use and customization.

6.1 Rigid-body Architecture

Our early prototype code based the system around the WorldObject type,

which, at the time, was our rigid body representation. Over time, as more and

more of the system was built, each part began to rely more heavily on this as the

basic type for all entities contained within the world. Unfortunately, this meant

that non-rigid body entities, such as magnetic fields and radio waves, would have

difficulty being represented.

There were two options to consider in regard to incorporating these types of

entities. The first would be to try and represent them through the WorldObject

type, perhaps by overriding the default rigid body behavior and providing each

entity’s own mechanisms. We considered this poor design. If an entity isn’t a rigid

body, why should it have anything to do with a rigid body type?
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The other option would be to create types more general than WorldObject,

usurping WorldObject’s place as the basic entity type within the system. Un-

fortunately, this would mean having to change a lot of code that depended on the

WorldObject type. Ultimately, however, it would be the preferable solution, as a

lot of the code that depended on WorldObject didn’t use the rigid body-specific

mechanisms.

We began by creating a small hierarchy1 with the Entity type as its root.

Entity was incredibly general, and defined only that an object had some unique

identification number. All other properties and behaviors would be given in sub-

types. The Collidable subtype, for instance, could represent objects that could

collide with other objects in the world, and the more specific RigidBody type rep-

resented objects that could not only collide with other objects, but bounce off of

them.

When we were making this major shift in the simulator’s architecture, we won-

dered if there weren’t an even better, more flexible solution to representing entities.

This lead us to implement the next major shift in the object representational system.

6.2 Entity/Component Architecture

In keeping with our design goal of extensibility, we decided to make the ob-

ject representational system as flexible as possible to give the user the ability to

create arbitrarily-rich virtual worlds. This second version of our world object ar-

chitecture was heavily influenced by the entity/component system, an approach to

object representation used often in video game engines (Kirmse, 2004). It is similar

to the Strategy design pattern (Gamma et al., 1994), which allows Java objects to

dynamically acquire behaviors.2

1Of Java interfaces.
2Much like languages with first-class functions can do trivially.
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Figure 6.1. A depiction of an entity with several components. The RadioRe-
ceiverComponent is being added at runtime.

The system is built out of components, which contain some set of related data

and behaviors, and entities, which contain an arbitrary number of components.

(For the remainder of this section, the term “entity” will not refer to the top-level

Entity interface that we have already discussed.) Each component type has a

name, and an entity can contain at most one instance of any given component

type (see Figure 6.1). Some components are simple, such as the IdComponent,

which just stores a unique identifier, or the PositionComponent, which stores

a position within the world. Others are more complex and incorporate a variety

of data and behaviors, such as the RigidBodyComponent, which stores position

and orientation state, a collection of forces, and behaviors that determine collision

detection and response, among other things (see Section 5.2).

By combining components, entities could acquire new and varied behaviors, even

at runtime. To add cohesion between components, components were given the ability

to depend upon other components. For instance, instead of having RigidBody-

Component contain position data, it could depend upon the entity also having

a PositionComponent to which it would refer when it needed to read or write

position state data. By separating the position state from RigidBodyCompo-
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nent, other components that depended upon the entity’s position could also access

it. Since at most one component of any given type would be allowed per entity,

components could refer to dependency components by name without ambiguity.

To add to user-friendliness, we made components themselves entities; that is,

components could contain components, allowing tree-like structures to be built.

The rationale for this design was as follows. Given the argument above, it would

be beneficial to split off as many pieces of state and behavior from complex com-

ponents as possible. That is, RigidBodyComponent should depend upon a Po-

sitionComponent, an OrientationComponent, a CollisionResponseCom-

ponent, and so forth, rather than define them itself, so as to allow other components

to access them. Unfortunately, this would introduce a large amount of overhead

when creating objects. Instead of simply creating an entity with a RigidBody-

Component, a user would first have to add all of the building-block components

listed above.

By allowing components to contain components, we were able to achieve both

the building-block structure of complex components as well as user-friendliness. As

an example, RigidBodyComponent would contain the smaller components listed

above. If a component added to the entity later needed to reference the Position-

Component, the access request would first go to RigidBodyComponent, which

would then forward it to its contained PositionComponent. The logical effect

would be the same as if the smaller components had been added manually.

The entity/component architecture as a whole allowed for a flexible system of

describing objects that exist within the world. For instance, a user could create

an object with rigid-body dynamics by simply adding RigidBodyComponent. A

user could create an object with position and the ability to collide with other objects,

but without rigid-body dynamics that allow the object to move, by adding only

PositionComponent and ColliderComponent. This would define a volume
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that collides with objects, but does not perform any collision response. Such an

object could be used to create an unmovable wall or ground floor within the world.

A user could create a radio wave object that is comprised of PositionComponent,

ColliderComponent, and CollisionResponseComponent. The radio wave

would begin at some position and expand outward, carrying a message with it. When

it collided with another entity, the collision response component would attempt to

retrieve that entity’s radio receiver component, if it had one. If so, it could then

invoke a method on the receiver, sending it the contents of its message. Thus, an

object has been created that requires collision detection and response, but does not

act like a rigid body.

6.3 Type-hierarchy Architecture

Although the benefits in regard to representation were numerous, the entity/-

component architecture actually proved to be a hassle to work with. Because Java

is strongly- and statically-typed, the mechanisms to retrieve arbitrary component

types had to circumvent Java’s typing safeguards. In practice, this ends up creat-

ing a lot of code, even on simple calls. We decided to pull back and confine the

entity/component architecture to a smaller part of the system. Our new scheme

restored the original generalized type hierarchy described at the end of Section 6.1,

but added the flexibility in those parts of object representation in which it made

more sense.

In particular, types that represented AUVs would need to provide a facility that

allowed various capabilities to be added. For instance, one AUV might need a

magnetic sensor, a thermometer, and a radio receiver, while another might need a

radio receiver and a radio transmitter. Each of these capabilities would have its own
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data and behaviors, and the set of capabilities would vary from one AUV instance

to the next. This was a perfect fit for the entity/component system.

Figure 6.2. The current object representational system. Green types are interfaces
and purple types are concrete. Arrows point from more specific types to more
general types.

Our current architecture can be summarized as follows, and is illustrated in Fig-

ure 6.2. The top-level type is Entity, which is as defined in Section 6.1 (again,

not to be confused with the “entity” in “entity/component system”). Collidable

extends Entity and represents any entity which might collide with something.

Collision detection algorithms work with Collidables, but Collidables are not

necessarily associated with a collision response. Field also extends Entity and

represents anything that permeates the entire world and can be evaluated at any

point. This would be used to model magnetic fields or water currents. The Rigid-

Body type represents rigid bodies as described in Chapter 5.
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The WorldObject type is then redefined simply to be a RigidBody that has

a container for components. Thus, anything from simple objects such as pebbles

to complex objects such as AUVs with arrays of sensors can be modeled using

WorldObject and optionally adding any necessary components.
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Chapter 7

NETWORKING AND THE CORRECTIVE FEEDBACK SYSTEM

The network server is responsible for communication with remote clients. This

chapter discusses its more interesting functions. AUVSML is used as the medium

through which communication is done, providing a flexible and easily-extensible

language. We also discuss the Corrective Feedback System, which allows remote

clients to send feedback data to the simulator such that it may correct its own

representation of the world.

7.1 Client/Server Communication

All communication between client and server is encoded in AUVSML, a language

we created. Mechanisms were written to easily transform Java objects into AUVSML

(serialization) and to transform AUVSML into Java objects (deserialization). Any

object that represents a piece of data that will either be sent to or received from

a client implements the interface Message, which requires that the implementing

class provide the toAUVSML() serialization method and the fromAUVSML()

deserialization method.

7.1.1 AUVSML

AUVSML is a simple XML-based language that describes data sent back and

forth between server and client. An example is shown below, where >>> indi-

cates what the client sends. For a summary of AUVSML messages, please refer to

Appendix A.
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Listing 7.1. Client/server conversation example

>>> <auvsml><get-world-object-list-command /></auvsml>

<auvsml>

<world-object-list-response>

<world-object id="1" type="WorldObject" name="Bob" />

<world-object id="2" type="WorldObject" name="Carl" />

<world-object id="3" type="WorldObject" name="Tank" />

<world-object id="4" type="Agent" name="myAgent" />

</world-object-list-response>

</auvsml>

>>> <auvsml><get-propulsor-list-request agent-id="4" /></auvsml>

<auvsml>

<propulsor-list-response agent-id="4">

<propulsor name="Aft Thruster" />

<propulsor name="Forward Thruster" />

<propulsor name="Ventral Thruster" />

</propulsor-list-response>

</auvsml>

The JDOM library1 was used to aid in the manipulation of XML. JDOM trans-

forms XML text into a tree of Java objects that represents its logical structure. It

also provides functionality to easily transform such a tree into its textual represen-

tation.

AUVSML is very flexible in what can be represented. Although the simulator de-

fines several useful commands itself, the user can easily add his/her own commands.

1http://www.jdom.org/
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To do this, the user must define a Message type (discussed in Section 7.1.2). This

will hold all of the data that is to be communicated.

As an example, say the user wanted to create a new message type that instructed

an AUV to shut down some of its propulsors. The user could define something like

the following.

Listing 7.2. Propulsor shutdown example

<auvsml>

<shut-down-propulsors id="4">

<propulsor name="Aft Thruster" />

<propulsor name="Forward Thruster" />

</shut-down-propulsors>

</auvsml>

The user might define the semantics of this message to mean “Shut down the aft

and forward thrusters on the AUV with an ID of 4.” So long as the user defines

the Message type and provides methods to translate between this data object and

the AUVSML string representation, it can be used just like the built-in AUVSML

message types.

AUVSML messages contain data, but can also be associated with code. Messages

that do this implement one of the Command interfaces, which provide execute()

methods that define the semantics of the command. The AUVSML data is loaded

into a new instance of a concrete Command class and can be passed around the

system until it reaches the section for which it is intended. SimulatorCommands,

for instance, should be executed by the simulator, and typically involve things like

pausing and resuming the simulation. WorldCommands, on the other hand, deal

with the world, and may be used for querying how many world objects there are.

Each concrete Command class overrides execute() to provide its own behavior.
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execute() is passed necessary data, such as the Simulator object or the World

object, which it can then manipulate.

7.1.2 Serialization and Deserialization

(Note: Although this section touches on some implementation details, it is im-

portant to discuss these to understand some underlying issues.)

Serialization describes the process of transforming a piece of data accessible

within the programming language (in this case, a Java object) into some persistent

form external to the language, such as plain text. Deserialization is the converse; it is

the process of transforming a persistent piece of data into a language-accessible form.

In the context of the system, all language-accessible data that must be serialized

is represented as an object of type Message. All messages can be serialized into

their AUVSML representations by invoking the toAUVSML() method, and can be

deserialized from an AUVSML string by invoking the fromAUVSML() method.

Though the logic behind toAUVSML() is straightforward, processing fro-

mAUVSML() is somewhat complex. This is due to the fact that we have a string

that needs to be transformed into an object of some concrete implementation of

Message, the type of which is unknown to us. We solve this issue by providing

a mechanism to inspect the name of the AUVSML element, such as shut-down-

propulsors above, and using Java’s reflection facilities2 to retrieve the appropriate

concrete implementation.

The process of transforming an AUVSML string s into its corresponding instance

msg proceeds as follows.

1. Using JDOM, transform s into an object tree tree.

2. Inspect the root tag of tree. Let auvsmlName be the name of this tag.

2Discussed in Chapter 9.
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3. Find the concrete class c corresponding to auvsmlName using a lookup table

mapping names to classes.

4. Reflectively invoke c.fromAUVSML(s) to generate a new instance of c with

the data stored in tree.

Most of the complexity involved in this process is due to the choice of Java as

the implementation language. This is discussed in more detail in Chapter 9.

7.2 Corrective Feedback System

The Corrective Feedback System (CFS) allows clients to send back physical data

at each snapshot to be incorporated into the simulation. CFS is customizable; a

user running the simulator could choose to ignore all feedback, wait for feedback

only from certain clients, wait for feedback only for a given amount of time, or the

user could write his/her own behavior. All behaviors operate within the simulator’s

advanceTimestep() method.

If feedback is ignored, the simulator advances the time step by simply calling

world’s advanceTimestep() method. One of the provided behaviors, Simple-

FixedTimeFeedbackTimestepper, will wait a fixed amount of time for feedback

to be received before proceeding. It is implemented by advancing the time step on

a copy of the world and using that data to inform clients that feedback can be sent.

Let W be the current state of the world, and let WP , a projected state of W ,

be such that WP = W . Initially, the projected state is just a copy of the W ’s

state, but we then invoke WP ← advanceT imestep(WP ) to advance the state of

the projected world, leaving W untouched. At this point, WP 6= W . The state

of WP is sent to all clients with a marker that indicates that this state is only

projected and not the actual state that the world has moved into. Each client then

uses this data to perform whatever actions it would normally take. For instance,
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if some client C is a mobile robot and WP contains data that indicates that C’s

virtual counterpart moved, C would then move in the physical world. Each client

may then send feedback. The simulator allows feedback to be received and waits

for some specified amount of time. After this interval has elapsed, the simulator

processes any feedback that requires processing before the time step is advanced in

W . W ← advanceT imestep(W ) is then called, which informs all clients of the actual

state change. The simulator then processes any feedback that requires processing

after the time step has advanced.

Feedback messages contain data that can be used to alter the state of the sim-

ulation. The methods that actually perform these alterations are called feedback

processors. Feedback processing is divided into two categories: processing that is

done before the time step is advanced and processing that is done after. An example

of pre-advancement processing would be a processor that performed vector adjust-

ment. Consider a world object WO and its physical counterpart, client C. WO

has several force vectors acting on it that determine its movement. Let V be the

set of these vectors and VR, the resultant vector, be the sum of all vectors v ∈ V.

Let S(t) be a function that gives WO’s position at time t and Q(t) be a function

that gives C’s physical position at time t. Assume S(k) = 〈x, y, z〉. The simulation

advances by a time step delta ∆t and informs C that S(k + ∆t) = 〈x + 10, y, z〉.

Assume that C moves awkwardly, resulting in Q(k + ∆t) = 〈x + 9, y, z〉. C sends

a feedback message containing Q(k + ∆t) to the simulator. The vector adjustment

processor would then examine the difference between S(k + ∆t) and Q(k + ∆t)

and would attempt to find a new set of vectors V′ such that V′R =
∑
v∈V′

v and

advancePosition(S(k),V′R) ≈ Q(k+ ∆t). V′ can then be used when advancing the

time step of W .
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An example of post-advancement processing would be a simple direct alteration

processor. Let WO, C, S(t), and Q(t) be given as they were above. If S(k+ ∆t) =

〈x+ 10, y, z〉 and Q(k+ ∆t) = 〈x+ 9, y, z〉, then a direct alteration processor would

set WO state as S(k + ∆t)← Q(k + ∆t).

Though the direct alteration processor ensures that the virtual object will have

exactly the same position as its physical counterpart, it bypasses the world’s collision

detection routines since it runs after the world’s time step advancement. That would

mean that if the path to the physical position encountered a collision that the path to

the virtual position did not encounter, the direct alteration processor would miss the

collision. Since the vector adjustment processor runs before the world advances its

time step, the corrections will be subject to the collision detection routines, avoiding

this problem. Since the vector adjustment could be inaccurate, however, we cannot

be certain that the virtual object will end up at the exact physical position.

The type of feedback processor used can be specified within each feedback mes-

sage, although the simulator also has the ability to disregard this and use whatever

processor it wishes. It should also be noted that the separation of processors into

pre- and post-time step advancement categories can also be user-defined. That is,

one could write a simulator that introduces other categories, or that even allows

the feedback data to be incorporated in some other way unrelated to when the time

step is advanced.
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Chapter 8

RESULTS

We ran several experiments with the system to demonstrate its core abilities and

evaluate how well it performed. The first of those described here tests the CFS by

comparing both a simulation with and a simulation without a client sending feed-

back. In the second, we evaluate the runtime performance of the default algorithms

by running a simulation with a large number of colliding rigid bodies. Finally, we

make observations regarding the difference between simulations that run on one

machine and those that are run in a distributed environment.

8.1 CFS Demonstration

The purpose of the Corrective Feedback System is to allow remote clients to send

physical data to the simulator in order to correct the virtual world’s notion of what

the state of reality is. To provide a basic test of CFS, we created a simple client

that acts like a physical client sending feedback messages. Note that for this test,

an actual physical client was not used. From the simulator’s perspective, all clients

are alike, so using a software client that sends feedback data as a physical client

would elicits the same behavior. After every few position updates it receives from

the simulator, it alters the position slightly and sends this new position back to the

simulator as feedback. This is meant to simulate a minor “hiccup” in the physical

agent’s movement.

To compare this scenario with what would happen in a situation in which no

remote client was present, we ran two simulations. Simulation A created one world

object which was controlled by the simulator itself. It followed a simple movement

pattern that was easy to identify (explained below). Simulation B contained the
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same world object, but added a remote client that sent feedback messages as de-

scribed above.

The world object in both simulations would alternate between moving right and

left on the Y-axis. When traveling to the right, if it moved past a certain point on

the Y-axis, a force pushing it to the left would be applied until it returned to some

position before that point. The opposite would happen on the other side: after

moving too far to the left, a force pushing it to the right would be applied until it

returned closer to the center. By observing the normal behavior in Simulator A, we

saw that the object would go farther in both directions over time.

Simulation B performed as expected. The movement pattern of the world object

was much the same as in Simulation A, but its movement was also jerky. Every few

steps, it would jump a tiny increment forward or back due to the corrections that

were being sent by the remote client.

We added a third simulation, Simulation C, to demonstrate what would happen if

the remote client simply disregarded the simulator’s updates and reported feedback

based on its own model of its movement. The remote client keeps track of a position

S independent of the position given by the simulator and a constant velocity v.

Each time the simulator sends it an update, the client calculates S← S + v∆t and

sends this value as feedback.

The result is that Simulation C’s world object moves almost exactly as the remote

client dictates. The only discrepancies are minor; there are times when the world

object’s movement stops for a small interval. This is most likely due the server and

client being slightly out-of-synch in some situations.1

1The tests in this section run the server and all of the clients from the same machine, but
from different threads. This achieves the same logical effect as if the clients were run on separate
machines, but allows the user to run the test from one machine and one program. Only so many
threads may be active at any given instant, however. Thus, thread context switching may be
responsible for some of these inaccuracies.

52



Figure 8.1. A comparison of the three objects’ positions.

Figure 8.1 plots each object’s position along the y-axis over time. Object A’s

position varies smoothly, while Object B’s position is a distorted version of Object

A’s path. Object C’s path shows the client taking over, and is plotted alongside

Object C’s actual position. Note that the virtual Object C progresses more slowly

than the actual Object C. This is due to the fact that there is no guarantee of when

the feedback will reach the simulator. A future improvement would be to extend

CFS to allow tight synchronization with the client. This would entail waiting for

each feedback message to be processed for the current snapshot before moving the

simulator on to the next. Currently, the system processes feedback whenever it

arrives.

This illustrates the flexibility of CFS, as client control can be minimal or ex-

treme. The part of the system that handles how and when feedback messages are

gathered is written to an interface, much like the time stepping and collision detec-

tion algorithms discussed in Chapter 5. Another implementation for this interface
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could provide better synchronization between client and server, which would result

in simulations like Simulation C progressing more smoothly.

8.2 Runtime Performance of Default Algorithms

Where the previous test removed consideration for collisions by creating only one

world object, the next series of tests exercised the collision detection and adaptive

time stepping algorithms exclusively. To analyze how well our default algorithms

performed, we ran several simulations with varying numbers of objects and counted

how many primitive operations each algorithm executed.

Figure 8.2. A 3× 3× 3 cube formation with 27 world objects.

As described in Chapter 5, each time step advancement the world executes con-

sists mainly of three steps: a preliminary shortening of the time step, partitioning

the world into collision sets, and finding the time of the earliest collision. For these

tests, each of those default implementations were instrumented to count the primi-

tive operations that each executed during one cycle of the simulation.
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This was done manually by adding a counter variable. Operations such as as-

signment and those that performed arithmetic would increment the counter by 1.

Calls to functions that processed lists would increment the counter by n, where n

was the size of the list. This counter data was then collected over the course of 100

time step advancements for each simulation.

Figure 8.3. A simulation with 100 world objects (some are outside of the shown
viewing volume).

10 simulations were run, with the first containing 10 world objects, the second

containing 20, and so forth, with the last containing 100. The world objects were of

uniform size and shape, and were placed into a cube formation at the beginning of
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a simulation. For instance, if there were 27 objects, then they would be placed into

a 3 × 3 × 3 cube formation (see Figure 8.2). They were placed such that adjacent

objects had a distance of 5d between them, where d is the diameter of the object.

Over the course of the simulation, the world would constantly apply forces to each

object that would direct it toward some target point. Each object had a different

target, but they were all close enough together so that many collisions would end up

occurring. Originally, objects were all directed at the same target, but this lead to

a very predictable behavior of the entire cube collapsing into itself and expanding

repeatedly. As Figure 8.3 shows, using different targets for each leads to more

unpredictable behavior. By choosing targets that the objects will continually try to

navigate to, we prevent them from spreading out infinitely after any initial collisions.

Figure 8.4. Actual runtime for the radius-distance restricter time stepping algo-
rithm. Regression line data is shown in the orange-shaded box.

The runtime for the default preliminary adaptive time stepper, which ensures

that no object moves more than its own radius per time step and is referred to as the

radius-distance restricter, is plotted in Figure 8.4. The graph shows a clear linear
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Figure 8.5. Actual runtime for the octree partitioning algorithm.

trend, which suggests that it runs in O(n) time, where n is the number of objects.

A regression line, shown in orange, fits the data with R2 = 0.999991.

The runtime for the octree partitioner is shown in Figure 8.5. Here too, a linear

trend is evident, suggesting a O(n) runtime. A regression line fits the data with

R2 = 0.999567.

The runtime for the algorithm that finds the time of earliest collision is plotted in

Figure 8.6. The trend appears somewhat polynomial, with a slight change between

n = 70 and n = 80. From the graph, we hypothesized that this algorithm ran

in O(n2) time. To verify this, we performed a curve fit analysis. A 2nd-order

polynomial curve was fit to the data with R2 = 0.991847.

It should be mentioned that this differs from the results of our theoretical anal-

ysis of this algorithm in Chapter 5, where we stated that the runtime is Θ(1) per

invocation. While this is true, we must also consider how many invocations are per-

formed per time step. Since this algorithm must be executed on each colliding pair

(and some pairs that almost collide), the number of collisions that occur within the
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Figure 8.6. Actual runtime for the earliest collision finding algorithm.

given interval must be taken into account. Much more complex techniques would be

necessary to pin down a reasonable theoretical bound, since the number of collisions

per interval is difficult to estimate. Because such analyses are beyond the scope of

this thesis, we will defer to the empirical results.

We also ran a test to see how these algorithms performed in real time. In

particular, we asked “Do these algorithms cause the simulator’s world time to elapse

more slowly than real time?” We ran the same setup as before: ten simulations, the

first with 10 objects, the second with 20, and so forth. Each simulation would run

until two minutes of world time had elapsed. The real time that it took was then

measured. The results are shown in Figure 8.7.

We can see that as the number of objects increase, the amount of real time it

takes to run two minutes of simulated time also increases. The increase appears

polynomial, so we applied a curve fit analysis. The 2nd-order polynomial appears

to fit well, with the exception of the beginning of the curve. Because of this, we

also applied a 3rd-order polynomial, which fits the data at the beginning well. Note,
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Figure 8.7. The real time it took to run each simulation.

however, that the x3 coefficient for the curve, 9.91985×10−5, is very small, suggesting

that the 3rd-order term isn’t significant.

This behavior is to be expected, since a simulation with more objects is more

likely to encounter a greater number of collisions. The algorithm for finding the

earliest collision was designed to slow the simulation down when a collision is im-

minent, thus yielding progressively slower runtimes as the number of objects and

collisions increases. It is also important to note that although slowdown is experi-

enced, it isn’t until around 100 objects exist in the simulator that the elapsed real

time is actually close to the elapsed world time. For less objects, the simulator is

able to run faster than real time, despite the collision finder algorithm’s intentional

slowdown.

8.3 Comparison of Distributed and Non-distributed Simulators

After testing the default algorithms and the CFS, we tested one other major

component to the system. The network interface allows remote clients to connect
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Figure 8.8. Distributed vs. non-distributed simulators. Each line tracks the distance
from the target position for the same object for a different simulation.

and interact with the simulator by sending commands and receiving updates. Be-

cause our simulator does not yet provide solutions for tight synchronization with

clients, simulators running in distributed mode will have different resulting states,

even when the simulation is set up the same way for each. An example of tight syn-

chronization would be to have the simulator and physical clients advance in lock-step

with one another. For instance, the simulator would advance to time t + ∆t, send

movement data to the physical clients, and wait for their feedback before advancing

the time step again. Currently, the simulator runs without waiting for feedback,

processing it whenever it comes in from the network.

For these tests, we set up the world as follows. For each of four simulations,

five world objects are placed, their positions chosen arbitrarily ahead of time. The

position chosen for each object is the same for each simulation. The first test runs
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a non-distributed simulator; that is, the objects are controlled within the simulator

itself, and no remote clients are connected. Each object has forces applied to it,

much like with the objects in the previous section, that eventually move it toward

a target point. This target point is chosen to be the same for all five objects, so

collisions occur often.2 For this simulation, each run produces the same results.

The remaining three simulators all have the same setup. Five remote clients

connect, each one assuming control of one of the world objects. The commands to

move toward the target point come from these clients, rather than from within the

simulator. Due to the non-deterministic timings inherent in thread scheduling and

network traffic, each simulation generates different results. The results of all four

are plotted in Figure 8.8, with the y-axis representing the distance from the target

point. The difference between each is clear.

Although it may not be an issue for some simulations, others may require the

precision that a synchronized connection between server and client can provide.

Fortunately, because of the extensible nature of the system, an implementation of

the interface that controls network message flow could be easily extended to allow

tight synchronization.

2Because the objects are not placed uniformly, the behavior of the objects over the course of
the simulation seems unpredictable. Compare this with the setup of the previous section’s tests,
in which the objects were placed uniformly, but the targets were different for each object.
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Chapter 9

FUTURE WORK & CONCLUSION

The highly-extensible and distributed nature of the simulator provides numerous

possibilities for future work. By extending it, alternative algorithms can be used

to create more efficient implementations of the simulator’s core logic. Tools can be

developed that connect to the simulator as clients, gathering data to generate visual

and statistical analyses. Yet more can be done by modifying those parts of the sim-

ulator’s software that are fixed. We discuss some improvements with the AUVSML

library and the core algorithms used by the simulator, explore some interesting pos-

sible uses of the Corrective Feedback System, and end with a discussion on how

reimplementing some parts of the simulator with other languages might provide an

improvement in readability and flexibility over the current Java implementation.

9.1 An Improved AUVSML Library

AUVSML is handled cleanly by the library provided by the simulator. Each

Message type has toAUVSML() and fromAUVSML() methods to easily trans-

late between data objects and their corresponding AUVSML representations. Un-

fortunately, though each Message is easy to use, the process of defining a new

Message type is somewhat tedious. This is due to the fact that the serialization

code is done by hand; there is no automated tool that does it and the creator of the

class must write it him/herself. Even for simple data structures, such as a list of val-

ues, this can produce about twenty lines of code for serialization and deserialization

routines.

To mitigate the possibility of bugs in the manual serialization process, we use unit

tests, which are programs that each test some small part of the system independent
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of most or all other parts. We write a unit test for each Message type that creates

a Message object, serializes it into an AUVSML string, and then deserializes that

string back into an object. If the first and second objects are equal, then we can be

reasonably certain that the serialization code works.1

Since we are defining each particular Message type ourselves, we must also

define equality for each type. In Java, this is done by providing an implementation

for the equals() method. According to good Java programming practices, any

class that defines equals() should also define the hashCode() method (Bloch,

2008). The reasoning behind this has to do with the fact that hashCode() is used

to test equality in some situations rather than equals(), and so the two methods

should always agree on what is equal and what isn’t.

Ultimately, this means that for any Message subclass, anywhere from 30 to 250

lines of code might be required. For a device that is ultimately a language-agnostic

remote procedure call, this is overweight. Future work could improve on this by

abstracting away all boilerplate code, allowing the creator of the Message to focus

only on what the Message’s data and behaviors are.

There are several approaches that could achieve this objective. One would be to

use an automated XML serialization tool. Several are available for Java, including

Simple2 and XStream.3 During the course of the project, we evaluated these tools

and found them unsuitable for the exact XML structuring style we wanted. Further

research into these tools, however, might be beneficial, and certainly our style might

evolve over time to accommodate these libraries better. Another approach would

be to represent AUVSML messages not as classes and objects, but rather as simple

1For improved confidence in these tests, multiple instances of the type, each with different
values, can be put through the test rather than just one.

2http://simple.sourceforge.net/
3http://xstream.codehaus.org/
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associative arrays. For messages that define behaviors, however, this may not be

tenable without resorting to reflection.4

9.2 Alternative Algorithms

The simulator is designed for extension, and many parts that perform critical

computations, such as calculating the next time step delta, are written using inter-

faces. Thus, multiple implementations can be written that extend the interfaces,

allowing the user to program his/her own solutions. Most users, however, may wish

to run customized simulations without having to write custom code. The system al-

ready provides default implementations of all necessary interfaces, but other built-in

implementations should be available.

Future work could see development of a variety of alternative algorithm imple-

mentations. For example, in Chapter 5, an analytical method for detecting collisions

was discussed. Although one that took rotational effects into account might be un-

tenable, a user might be interested in using it for simulations in which the rotational

effects are not a concern. The current numerical approach ensures that world objects

do not move a distance greater than their radii in a time step. This is largely to

prevent objects going so fast that the time step delta misses a collision. In some sim-

ulations, however, the creator can know that objects won’t go past a certain speed.

In these situations, a less restrictive time step predictor could be implemented. By

providing several alternative implementations, the user will be able to pick those

that suit his/her simulation best, without having to write the code.

4Since there would be no class for methods which define the behaviors to live in.
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9.3 Complementary Software

The simulator was designed to be used with other pieces of software in a language-

agnostic way. Though the simulator is implemented in Java, programs written in any

language should be able to communicate with it easily using AUVSML. Thus, many

possibilities exist for software tools that complement the simulator. One avenue of

development is writing visualization tools. A crude visualization tool was written in

Java for the simulator project using the Open Source Physics library. Its purpose

was to provide visual confirmation of how certain physics algorithms operated, so

an advanced graphical display was unnecessary. Other, richer visualization options

are possible, however.

A more graphically-advanced visualization program using the Unity game au-

thoring tool5 is being developed in MaineSAIL.6 The software starts a relay host that

serves as a translator between Unity’s network interface and AUVSML. Unity has

no Java component, making the project a successful proof-of-concept of language-

independent interoperability with the simulator.

Another useful tool would be an administrator interface. Currently, a simulation

is set up by configuring several world objects and adding them to the world. From

that point on, when running as a server, the only way to interact with the objects

is to send commands through the network interface. An administrative tool would

connect to the server as a client and register itself as a listener for all events. It

would provide the ability to not only manipulate objects, but to manipulate the

world and simulator as well. For instance, it could allow the user to pause and

resume the simulation, add or remove objects, and disconnect other clients from

the server. Some of these commands are already available to connected clients, but

the AUVSML messages have to be typed out by hand. A client that provides a

5http://unity3d.com/
6By Michael Brady Butler, an undergraduate student.
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graphical user interface with an integrated visualization would enable users an easy

and intuitive way to interact with their simulations.

Another option would be to use the CFS in tandem with another simulator to

ensure algorithm correctness.7 The simulator S1 would run a server, to which some

other, more mature simulation software, S2, would connect as a client. S2 would

register itself as a listener for all events, creating a mirror image of S1’s environment

within itself. At each snapshot, S1 would calculate a set of new object positions P1

with its physics engine and send the results to S2. S2 could calculate a set of new

object positions P2 with its own physics engine. S2 would then send corrections to

S1 as feedback messages. S1 could make use of this in any number of ways. For

instance, it could simply gather statistics on how well it performs, or it could use

artificial intelligence techniques to train its own physics engine on-the-fly from S2’s

corrections.

9.4 A Simulator that Learns How Better to Simulate

The above application can be extended to use reality itself, rather than a better

simulator, to improve its accuracy. Computer simulation can be a very useful tool

in studying physical systems with the advantage of having very fine control over the

virtual environment in ways that might not be possible to recreate in reality. Being

a virtual environment, however, it cannot perfectly replace the state and workings

of an actual physical system; it can only provide an approximation. Certainly, very

good approximations can be incredibly useful. A primary focus of this project was

to mitigate virtual inaccuracies by accepting physical data into the model. The

methods so far described for using the framework that we have developed, however,

7Thanks to M. B. Butler for this idea.
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have been very basic. The framework is very general, and so admits many powerful

possibilities.

One such possibility is the development of a simulator that uses the physical

environment as a performance measure to learn how to improve its models. Let

us express the simulator’s model of the environment as a state transition function

M(SVt ,∆t) that maps a virtual state at time t SVt and a time step delta ∆t to a

new virtual state M(SVt ,∆t) → SVt+∆t. Let the physical environment, as perceived

through sensors, be represented by a function P (t) that maps a time t to a perceived

state P (t) → SPt . Let us also define an operation “−” on states as such: If Si and

Sj are states, then Si−Sj represents a quantitative “difference” between the states,

where difference is loosely defined and dependent on the situation. In general,

if Si − Sj = 0, then Si and Sj represent the same state. If Si − Sj is a small

value, then the states are close approximations of one another. If Si − Sj is a large

value, then the states are not alike. The objective will be to pick M such that

M(SVt ,∆t) − P (t + ∆t) < ε, where ε is some small value representing tolerance of

inaccuracy.

Given this problem description, machine learning algorithms can be applied to

find M . One interesting approach would be to use genetic algorithms for this task.

Genetic algorithms begin with a set of n randomly-generated states, where each state

is encoded as a string. Typically, strings of bits are used. Each state is then rated

by a fitness function, which yields higher values for states that are closer to some

goal state. States will be weighted according to their fitness and chosen randomly

for reproduction. Each reproducing pair of strings will be spliced together to form

a child string, and an optional mutation may be applied by flipping one of the

child’s bits. The states represented by the new strings are added to the set of states,

replacing the states of lowest fitness. The intent is that the good qualities of highly-
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ranked states will combine in the child states, and over time, future generations will

yield better and better solutions. (Russell & Norvig, 2010, p. 126)

The simulator software could be easily modified to support learning using genetic

algorithms. Using a few minor adjustments to the current architecture, the simulator

could run n virtual worlds in parallel. Each world would have its own physics model

Mi, which would have a binary string representation. We would start by producing

n binary strings that encode the current physics model, with each string permuted

slightly. We would run each model for one time step, producing Mi(S
V
t ,∆t). By

taking the difference of this value and P (t+ ∆t), we have a fitness function. Those

Mi with the highest fitness values would be selected for reproduction, producing

new states. The process is repeated until an Mi is found such that its value is less

than ε, as defined above.

In this way, we can create a simulator that uses the physical environment to

teach itself how to better simulate that particular environment. Over time, the

models produced by the genetic algorithm may yield more realistic representations

of state transitions than those produced by humans.

9.5 Alternative Language Implementation

Some of the difficulties that the improvements above seek to address stem from

how those parts of the system were implemented in Java. The Java programming

language was chosen for implementing the simulator for a number of reasons. One

important reason was familiarity with the language and its capabilities; there was

no need to invest time into learning and using Java. Many useful libraries are avail-

able for Java, including the standard library, which provided us with tools to write

networking code without concerning ourselves with low-level details, and the Open

Source Physics library, which was utilized for simple visualization tools and some
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mathematics algorithms. Java’s static and strong typing provided advantages with

type checking, and its interface language construct was useful in cleanly describing

the interfaces through which objects could interact.

There were several areas, however, that became somewhat awkward to implement

using Java. In particular, we discuss how another language choice might benefit the

implementation of the AUVSML serialization process and the entity/component

architecture. Because Java was chosen, we have the option of implementing these

pieces of the simulator in other languages that run on the Java Virtual Machine,

leaving the remaining Java implementation intact.

9.5.1 AUVSML Deserialization

The issues encountered dealt mostly with Java’s type system. One example of

this is the AUVSML deserializer. Each AUVSML message can be stored in memory

as a Message object, where the specific type of object is determined by the first

part of the message’s contents. For instance, a message that encodes a change in

the state of an object’s movement is represented as an object of type Movement-

StateChangeMessage. When incoming messages are processed, the system must

figure out the appropriate type of object in which to store the data. As described

in Chapter 7, this is a somewhat elaborate process in Java, and involves storing a

hard-coded lookup table of Message types and using reflection (described next) to

create a new object.

These difficulties stem from the fact that Java’s reflection facilities are cumber-

some to use. Reflection is the functionality of a language that allows programmatic

access to runtime information (Oracle, 1995b). In the context of Java, type defini-

tions, or classes, are composed of variables and functions (called methods) and are

uniquely named. The name of the class and the names of the variables and methods

are only available to the runtime through the use of reflection. In the context of our
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problem, the class name of a particular Message type is required for deserializa-

tion. The process involved is riddled with boilerplate code that adds a lot of bulk.

It should also be noted that in general, use of reflection can reduce performance

(Oracle, 1995b).

This is not as large of an issue in other languages. In Python, for instance,

reflection is handled in a more streamlined way. The names of a class, its variables,

and its methods are typically available to every object by means of an easy asso-

ciative array lookup. Calling a method reflectively, such as the one to create a new

object of the given type, is done in the same way as one would do non-reflectively,

with the exception that the method must first be retrieved from the associative

array. This is due to the fact that methods and functions are first-class objects

in Python, meaning that they can be stored in variables. In Java, this can only

be achieved by first acquiring a Method object that represents the method to be

used. The Method.invoke() method must then be called to actually call the rep-

resented method. This process requires close to 20 lines of code due to the fact that

most reflective calls could each potentially throw several types of exceptions, each

of which must be caught. A dynamic language like Python, where access to runtime

information is the rule rather than the exception, would better suit a problem like

this.

9.5.2 Entity/Component Architecture

The original entity/component architecture, which may be revisited in future

work, had similar issues due to its dynamic nature. This discussion will first require

a brief explanation of Java’s inheritance system.

In Java, classes can form a hierarchy by extending, or subclassing, other classes,

where the subclasses provide more specific behavior than the superclasses. For

instance, an Animal class may be subclassed by Fish, which adds the ability to
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swim and the property of having fins. Fish can then be subclassed by Catfish,

which adds bottom-feeding behavior and the property of having long barbels. This

concept is called inheritance. Java only allows single inheritance, which means that

each class must have no more than one superclass. For instance, we cannot define a

FlyingFish by having it subclass both Fish and a Bird class.

Figure 9.1. A visual representation of components that use inheritance. Each com-
ponent type derives from the BaseComponent superclass by extending it, pre-
venting those components from extending other classes.

Java does allow classes to implement multiple interfaces, however. In Java,

the interface construct defines what types of methods a class can have without

actually implementing them. Each class that uses the interface will provide its

own implementation. So if Fish and Bird were interfaces, rather than classes,

FlyingFish could implement the methods declared by Fish and Bird and would

be considered not only of type FlyingFish, but also of type Fish and of type Bird.

With this in mind, we consider the design of the entity/component architecture.

Each component needed to be of some common type, Component, so that a col-

lection of components could be stored easily. In the original design, Components

could contain other Components. So each Component would need to implement

logic for adding, removing, and retrieving child Components. On top of this, spe-
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Figure 9.2. A visual representation of components that use composition. Each
component type implements the Component interface, but assumes the default
component behaviors by containing an instance of BaseComponent (composition
is represented here with a blue dashed line).

cific Component types, such as PositionComponent and RigidBody, would

provide their own specific behaviors.

We needed a way to make all Components derive from some base type without

duplicating all of the logic for managing the containers. Using inheritance would

mean creating a base type that implemented all container logic and having each

component subclass that type. This achieves our objective, but with a few caveats.

For one, making deep copies of the data within the base type can be tricky. We

also have the issue that components will no longer be able to inherit from any other

class, since they will be inheriting from the base type already.

An alternative approach would be to use composition, which combines objects as

building blocks to derive behaviors. A visual representation of both approaches is

shown in Figures 9.1 and 9.2. Here, we would create a class BaseComponent that

provided the container logic implementation, and a Component interface that de-
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scribed all of the methods that each component should have. Each component would

implement Component and contain a BaseComponent object. All methods that

dealt with the container would simply be relayed to the BaseComponent object.

This achieves our objective in a way that is more flexible. Components are no longer

prohibited from extending other classes, and copying is easier to accomplish.

The drawback of the composition approach is its verbosity. In order to forward

methods to the BaseComponent object, each method must be defined in the com-

ponent and an explicit call to BaseComponent must be made. This adds a lot

of bulk to the code, as even very basic components will have to define around ten

methods. Complicating this is the fact that due to some technical details of forward-

ing method calls, some of the arguments passed to the BaseComponent methods

must be slightly altered first. This raises the possibility of human error when cre-

ating new components, as it is not always easy to spot the difference between a

standard call and an altered call when reading through ten method definitions.

Before the original system was redesigned, we ultimately decided to use the

inheritance approach. The trade-off came down to implementation flexibility versus

user-friendliness for implementers of new Components. We ranked the latter as

more important, and reasoned that there probably wouldn’t be many situations

in which a Component must inherit from some other class. In the case that it

does, however, the Component isn’t constrained to extending BaseComponent

anyway, and could technically use a composition approach on a per-Component

basis. That is, extending BaseComponent is a convention, not a requirement.

Better solutions exist. Other languages provide facilities that handle these prob-

lems in a cleaner way. The Lisp and Python languages, for instance, each support

multiple inheritance. Another candidate is Scala, which supports traits. Traits act

much like interfaces do in Java. Where interfaces only provide method declarations

and are prohibited from containing any implemented methods, traits are allowed to
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provide implementations. This construct would be the ideal way to mix in BaseC-

omponent’s functionality to each Component class. It is not the same mechanism

as inheritance, and so does not prohibit the class from extending other classes, and

it doesn’t require a slew of delegate methods to forward method calls to a contained

instance.

9.5.3 The Java Virtual Machine

Although it appears that other languages might be better suited to some prob-

lems than Java, the Java implementation would not necessarily have to be scrapped

completely in future projects. Java programs are compiled to byte code that runs

on the Java Virtual Machine (JVM) (Oracle, 1995a). Many other languages exist

which also compile to JVM byte code, and can easily interoperate with Java pro-

grams. These include Scala, mentioned above, and Jython, an implementation of

the Python language.

Because these languages can easily interoperate with Java and other JVM lan-

guages, parts of the simulator could be rewritten in whatever language makes the

most sense for the problem being solved. For instance, Jython could be used to

perform AUVSML deserialization, while Scala could be used to implement the en-

tity/component architecture.

9.6 Conclusion

The simulator, originally conceived of to incorporate MaineSAIL’s robots in

simulations of underwater environments, has grown extensively over the course of

the project. Over time, it grew to include a complete 3D rigid body dynamics

physics engine, a clean network interface, and an interactive visualization tool.

The simulator is currently capable of not only incorporating robots, but clients

of any type. Not just underwater environments, but any 3D environment can be
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modeled. AUVs can be built from arbitrarily complex components within a system

that allows unlimited opportunities for virtual object creation.

Though there is much room for improvement, the project has produced an ex-

tensible, well-documented, and capable simulator. The core architecture has gone

through many changes, but the end result provides many advantages over previ-

ous stages of design. Future work can see not only future improvement, but future

extensions to the software.
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APPENDIX

SUMMARY OF AUVSML MESSAGES

AUV Simulator Markup Language, or AUVSML, is used in all communication be-

tween server and client. We present a summary of all AUVSML messages currently

used with the simulator. Note that when referencing a particular element type, we

will refer to the counterpart Java data object’s name. For instance, instead of refer-

ring to <pause-simulator-command>, we will write PauseSimulatorCom-

mand. This is to maintain coherence with the rest of this thesis, which typically

uses the data object names.

A.1 Simulator Commands

Clients register to listen to events generated by world objects by sending a Lis-

tenerRegistrationRequestCommand to the simulator. It contains a list of

which world objects to listen to and which events to listen to for each world object.

To listen to all events, the type *ALL* is given. To unregister, the register field

is set to 0.

<auvsml>

<listener-registration-request-command

register="1">

<world-object id="52">

<listener type="*ALL*" />

</world-object>

<world-object id="47">

<listener type="*ALL*" />

</world-object>

</listener-registration-request-command>

</auvsml>
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<auvsml>

<pause-simulator-command />

</auvsml>

<auvsml>

<resume-simulator-command />

</auvsml>

<auvsml>

<shutdown-simulator-command />

</auvsml>

The simulator can be paused, resumed, and shut down remotely using Paus-

eSimulatorCommand, ResumeSimulatorCommand, and ShutdownSimu-

latorCommand, respectively.

A.2 World Object Messages

World object commands operate directly on world objects. These include the

ApplyDirectForceCommand and the RemoveForceCommand. ApplyDi-

rectForceCommand applies a force onto an object such that no torque is induced.

RemoveForceCommand removes a force by name.

<auvsml>

<apply-direct-force-command

world-object-id="47" name="Gravity" orientation="WORLD">

<force-vector x="0.0" y="0.0" z="-9.8" />

</apply-direct-force-command>

</auvsml>

<auvsml>
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<remove-force-command world-object-id="47"

force-name="Engine Thrust" />

</auvsml>

<auvsml>

<entity-added-message timestamp="1.2" entity-id="47" />

</auvsml>

<auvsml>

<world-object-added-message timestamp="24.7"

entity-id="47">

<position x="14.0" y="-89.0" z="22.0" />

</world-object-added-message>

</auvsml>

The server will send an EntityAddedMessage when an entity has been added

to the system. If that entity is also a world object, it will send a WorldObjec-

tAddedMessage, which includes the world object’s position.

A.3 Movement-related Messages

The server notifies clients that a world object has moved with a MovementStat-

eChangeMessage. It tells the client which object moved, when the movement

occurred, and whether it was an actual state update or a projected update (see

Chapter 7 for details). It also gives the object’s position, its orientation as a matrix,

its linear momentum and its angular momentum.

<auvsml>

<movement-state-change-message

timestamp="7.8" world-object-id="46" is-projected-state="0">

<position x="1.0" y="2.0" z="3.0" />

<orientation xx="1.0" xy="0.0" xz="0.0"
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yx="0.0" yy="1.0" yz="0.0"

zx="0.0" zy="0.0" zz="1.0" />

<linear-momentum x="3.0" y="4.0" z="3.0" />

<angular-momentum x="0.0" y="0.0" z="0.0" />

</movement-state-change-message>

</auvsml>

<auvsml>

<timestep-advanced-notification

timestamp="54.6" state-type="ACTUAL" />

</auvsml>

<auvsml>

<different-position-feedback-message

world-object-id="47" timestamp="5.6"

handler-name="DirectPositionChangeFeedbackHandler">

<virtual-position x="1.0" y="2.0" z="3.0" />

<actual-position x="0.98" y="2.1" z="3.4" />

<old-position x="1.0" y="2.0" z="2.0" />

</different-position-feedback-message>

</auvsml>

The server sends a TimestepAdvancedNotification whenever it has finished

processing a timestep. This is useful for visualization tools to determine when

to draw the updated object positions that have been extracted from a series of

MovementStateChangeMessages.

A client will send a DifferentPositionFeedbackMessage when it senses

that its physical position differs from its counterpart world object’s virtual position

in the simulator. It provides the object’s ID, the time at which the correction should

occur, and the name of the feedback processor, or handler, that should handle the
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message (although the simulator can override this). It also provides the virtual

position, the actual position, and its position at the previous snapshot. This is

provided in case the feedback processor needs to work with the difference in positions

between the current and previous snapshots.

A.4 Queries and Responses

The server can be queried about the state of the world and its world objects. A

client can send a GetWorldObjectListCommand to receive a list of all world

objects currently residing in the world. The server will respond with a WorldOb-

jectListResponse, which contains a list of the ID, type, and name of all world

objects.1

<auvsml>

<get-world-object-list-command />

</auvsml>

<auvsml>

<world-object-list-response>

<world-object id="47" type="WorldObject" name="Juggernaut" />

<world-object id="88" type="WorldObject" name="Rock" />

<world-object id="107" type="WorldObject" name="AUV-1701" />

</world-object-list-response>

</auvsml>

<auvsml>

<get-propulsor-list-request agent-id="47" />

</auvsml>

1Originally, the type field would contain either WorldObject or Agent, with Agents being
the only type of object that a client could take control of. Later, the system was redesigned such
that WorldObjects also had this functionality, and Agents were removed from the system.
Currently, the type field only contains WorldObject, though there is no reason that different
types may be added in the future.
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<auvsml>

<propulsor-list-response agent-id="47">

<propulsor name="Rudder" />

<propulsor name="Aft Thruster" />

<propulsor name="Port Engine" />

<propulsor name="Starboard Engine" />

</propulsor-list-response>

</auvsml>

World objects may have any number of propulsors attached to them, which

represent propulsion devices such as engines. The client can send a GetPropul-

sorListRequest to retrieve a list of propulsors for a given world object. The

server will respond with a PropulsorListResponse, which contains a list of all

of the propulsor names.2

2Note that agent-id is similarly a relic. Originally, only Agents could have propulsors.
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