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The partition function has long enchanted the minds of great mathematicians,

dating from Euler’s attempts at calculating the value of this function in the 1700’s, to

Hardy and Ramanujan’s asymptotic approach in the early twentieth century, through

to Rademacher’s representation as an explicit infinite series mid-century. This thesis

will explore the historical attempts at grasping the behavior of this function, with

particular attention paid to Euler’s Pentagonal Number Theorem and Rademacher’s

Infinite Sum. We will then explore two reformulations due to Ono et al., with sample

calculations from the recent algebraic reformulation, announced January, 2011.
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Chapter 1

INTRODUCTION

A partition of a non-negative integer n is any non-decreasing sequence of integers

which sum to n; the partition function, p(n), counts the number of partitions of an

integer. The partition function has long enchanted the minds of great mathematicians,

dating from Euler’s attempts at calculating the value of this function in the 1700’s, to

Hardy and Ramanujan’s asymptotic approach in the early twentieth century, through

to Rademacher’s representation as an explicit infinite series mid-century.

In the next chapter, we will explore more definitions and examples relating to

the partition function, as well as some of the historical methods used to computer

the number of partitions. This will include recursive formulas, formulas based on

partitions having a specific largest value for each term, and the asymptotic formula.

The third chapter will examine Rademacher’s explicit representation of the par-

tition function as an infinite series, including a closer look at the reformulation of

Ak(n), a key inner sum from his definition of the partition function. There will also

be several examples of computations of Ak(n).

The fourth chapter focuses on Ono and Bringmann’s reformulation of the partition

function, which is the main result discussed in this thesis. This reformulation takes

the explicit representation of p(n) as an infinite series to a finite, closed sum relating

to a Poincaré series. This is historically significant in the field of partition theory, as

it is the first instance of a finite sum for p(n).

1



Finally, in the fifth chapter we will discuss a further reformulation of p(n) due to

Ono and Bruinier; this additional reformulation allows an expansion of the Poincaré

series, providing a computable estimate of p(n) in terms of algebraic numbers. Based

on this expansion and certain quadratic forms, the details of two examples of com-

puting p(n) will be included.

2



Chapter 2

AN INTRODUCTION TO PARTITION THEORY

It has been a long-standing problem of interest in number theory to consider the

number of partitions of an integer. First we consider the distinction between ordered

and unordered partitions; after handling the simpler case, we will overview some

historical methods used to compute p(n), including Euler’s recursion, the Pentagonal

Number Theorem, and Hardy and Ramanujan’s asymptotic formula. Some special

cases will be considered, such as restricting the largest part, and outlines of derivations

will be given, particularly relating to formal power series.

2.1 Ordered and Unordered Partitions

Definition A partition of a non-negative integer n is any non-decreasing sequence

of positive integers which sum to n.

Example

n = 4 =



4

2 + 2

1 + 1 + 2

1 + 3

1 + 1 + 1 + 1

(2.1)

Definition The partition function of n, denoted p(n), counts the number of partitions

of n (such as p(4) = 5). In particular, p(n) counts the unordered partitions of n.

3



Note that p(n) grows rapidly and irregularly, so this value is difficult to compute for

large n.

Definition By removing the restriction to non-decreasing sequences from the defini-

tion of partitions, we arrive at the ordered partitions.

Notation We will denote the number of ordered partitions of n by p̃(n).

Example

n = 4 =



4

2 + 2

1 + 1 + 2

1 + 2 + 1

2 + 1 + 1

1 + 1 + 1 + 1

3 + 1

1 + 3

(2.2)

Remark As demonstrated in Table (2.1), for each n, the ordered paritions are ob-

tained by:

(i) adding 1 to the last term of each of the partitions of n− 1 and

(ii) appending 1 to the end of each of the partitions of n− 1.

4



n Ordered Partitions p̃(n)

1 1 1

2 2 2

1 + 1

3 3 4

1 + 2

2 + 1

1 + 1 + 1

4 4 8

1 + 3

2 + 2

1 + 1 + 2

3 + 1

1 + 2 + 1

2 + 1 + 1

1 + 1 + 1 + 1

Table 2.1. Ordered Partitions of n

Claim 2.1.1. p̃(n) = 2n−1.

Proof. We have already shown that p̃(1) = 1 = 21−1; now assume for n = 1, ..., k − 1

that p̃(k − 1) = 2k−2.

Then for n = k, (i) gives us p̃(k−1) terms and (ii) gives us an additional p̃(k−1)

terms, so p̃(k) = p̃(k−1)+ p̃(k−1) = 2 · p̃(k−1) = 2 ·2k−2 = 2k−1, hence p̃(n) = 2n−1.

5



Note that there will be no duplications by creating partitions in this manner, for

suppose for a contradiction that two partitions of k obtained in this manner are

identical. In particular, the last term of each of these two partitions will be equal to

some j 6= 0; subtracting 1 from this term, we are left with two identical partitions of

k−1. Now we know that one partition of k−1 will go to two different partitions of k

via (i) and (ii), but we are reversing only (ii) with our process. This is a contradiction,

as there are no identical partitions of k−1, hence no duplications arise in our method

of creating new partitions.

There is also a combinatorial proof of Claim (2.1.1).

Proof. The ordered partitions of n into k parts may be written as x1+x2+...+xk = n,

where x1, x2, ..., xk ≥ 1 are all integers. Then the number of ordered partitions of n

into k parts is

p̃k(n) =

(
n− 1

k − 1

)

and hence the number of ordered partitions of n is

p̃(n) =
n∑
k=0

(
n− 1

k − 1

)

=
n−1∑
k=0

(
n− 1

k

)

= 2n−1.

6



2.2 Historical Methods of Computing p(n)

2.2.1 Euler’s Recursion

Definition Euler derived a recursive formula for the number of partitions of n, where

each part does not exceed k, denoted pk(n).

(Euler’s Recursion) pk(n) = pk−1(n) + pk(n− k), pk(0) = 1 (2.3)

He derived this directly from the following formal identity:

1

(1− x)(1− x2)...(1− xk)
=
∞∑
n=0

pk(n)xn, pk(0) = 1 (2.4)

Equation (2.4) is rooted in formal power series (see Appendix A), by taking a

product of k geometric power series. See Rademacher [12] and the proof outline

below for further discussion.

Proof. (sketch of ideas for (2.4))

Taking a product of geometric series, we may write

1

(1− x)(1− x2)...(1− xk)
=

∞∑
ν1=0

∞∑
ν2=0

...

∞∑
νk=0

xν1+2ν2+...+kνk , νi ∈ Z for all i

= 1 +
∞∑
n=1

( ∑
ν1,ν2,...,νk≥0

ν1+2ν2+...+kνk=n

1
)
xn

= 1 +
∞∑
n=1

pk(n)xn

7



We see that ∑
ν1,ν2,...,νk≥0

ν1+2ν2+...+kνk=n

1 = pk(n)

as the sum is over 1 + ...+ 1︸ ︷︷ ︸
ν1

+ 2 + ...+ 2︸ ︷︷ ︸
ν2

+...+ k + ...+ k︸ ︷︷ ︸
νk

= n, hence k is the largest

part of n.

Remark In (2.4), letting k tend to infinity gives us the unlimited partitions, or the

case of p(n), the number of partitions of n.

Proof. (Derivation of Euler’s Recursion (2.3))

We now have

1∏k−1
m=1(1− xm)

= (1− xk)
∞∑
n=0

pk(n)xn (from (2.4))

hence
∞∑
n=0

pk−1(n)xn = (1− xk)
∞∑
n=0

pk(n)xn.

Taking only the terms containing xn, we obtain from the left hand side

pk−1(n)xn

and from the right hand side

(1−xk)pk(n)xn+(1−xk)pk(n−k)xn−k = pk(n)xn−pk(n)xn+k+pk(n−k)xn−k−pk(n−k)xn

8



and finally, taking just the coefficients of xn, we obtain

pk(n) = pk−1(n) + pk(n− k).

Example Again using n = 4 and, in this case, k = 4 (so we will obtain the count of

all partitions of 4), we see by repeated applications of (2.3):

p4(4) = p3(4) + p4(0)

= p2(4) + p3(1) + p4(0)

= p1(4) + p2(2) + p3(1) + p4(0)

= p1(4) + p1(2) + p2(1) + p3(1) + p4(0)

= 1 + 1 + 1 + 1 + 1

= 5

as we calculated previously by force.

It is important to note that the number of terms will grow quickly for large n.

Example (An exact formula for p2(n))

From (2.4) we may expand the left hand side into partial fractions; for k = 2, this

is

1

(1− x)(1− x2)
=

1/2

(1− x)2
+

1/4

1− x
+

1/4

1 + x
.

9



Note that 1
(1−x)2

is the derivative of 1
1−x , so

1

1− x
= 1 + x+ x2 + x3 + ... =

∞∑
n=10

xn

1

(1− x)2
= 1 + 2x+ 3x2 + ... =

∞∑
n=0

(n+ 1)xn.

We have geometric series with terms alternating in the 1/4
1+x

term but not in the

1/4
1−x term, hence the odd powers will cancel and we will be left with two copies of each

even term. Hence,

1

(1− x)(1− x2)
=

1

2

∞∑
n=0

(n+ 1)xn +
1

2

∞∑
m=0

x2m.

We can then see that

p2(n) =
1

2
(n+ 1) + a =


1
2
(n+ 1) + 0 when n is odd

1
2
(n+ 1) + 1

2
when n is even

hence

1

2
n+

1

2
+ a =


1
2
n+ 1

2
when n is odd

1
2
n+ 1 when n is even

and finally

p2(n) = bn
2
c+ 1.

10



Example (An exact formula for p3(n))

A similar method as with k = 2 may be used for the case of k = 3. We see, by

partial fraction decomposition, that

1

(1− x)(1− x2)(1− x3)
=

1
6

(1− x)3
+

1
4

(1− x)2
+

17
72

1− x
+

1
8

1 + x
+

1
9

1− x
ρ

+
1
9

1− x
ρ̄

(2.5)

where ρ3 − 1 = 0, ρ 6= 1 and ρ̄ is the complex conjugate of ρ.

We can rearrange this into a sum of power series, recalling some basic facts, such

as

1

1− x
= 1 + x+ x2 + x3 + ...

1

1 + x
= 1− x+ x2 − x3 +−...

1

(1− x)2
= 1 + 2x+ 3x2 + 4x3 + ... =

∞∑
n=0

(n+ 1)xn

1

(1− x)3
= 2 + 6x+ 12x2 + ... =

∞∑
n=0

(
n+ 2

2

)
xn

(Generally, 1
(1−x)k

=
∑∞

n=0

(
n+k−1
k−1

)
xn; the coefficient here represents the number of

non-negative solutions to y1 + y2 + ...+ yk = n.)

11



Combining these facts, we arrive at

1

(1− x)(1− x2)(1− x3)
=

1

6

∞∑
n=0

(
n+ 2

2

)
xn +

1

4

∞∑
n=0

(n+ 1)xn

+
17

72

∞∑
k=0

xk +
1

8

∞∑
k=0

(−x)k

+
1

9

∞∑
k=0

(
x

ρ
)k +

1

9

∞∑
k=0

(
x

ρ̄
)k

=
1

6

∞∑
n=0

(
n+ 2

2

)
xn +

1

4

∞∑
n=0

(n+ 1)xn

+
17

72

∞∑
k=0

xk +
1

8

∞∑
k=0

(−x)k

+
1

9
(
∞∑
k=0

(ρ̄k + ρk)xk)

as ρ = 1
ρ̄
. We also use the fact that

ρ̄k + ρk =


2 when k = 3j, j ∈ Z

−1 elsewhere

Then letting the last three terms be named as below

T :=
17

72

∞∑
k=0

xk +
1

8

∞∑
k=0

(−x)k +
1

9
(
∞∑
k=0

(ρ̄k + ρk)xk)

12



we see

T =
17

72

∞∑
j=0

x3j +
1

8

∞∑
j=0

(−1)jx3j +
2

9

∞∑
j=0

x3j

+
17

72

∞∑
j=0

x3j+1 − 1

8

∞∑
j=0

(−1)jx3j+1 − 1

9

∞∑
j=0

x3j+1

+
17

72

∞∑
j=0

x3j+2 +
1

8

∞∑
j=0

(−1)jx3j+21
1

9

∞∑
j=0

x3j+2

Gathering terms for cases of j odd and j even, we then see that

T = (
17

72
+

2

9
− 1

8
)
∞∑
j=0

x3j +
2

8

∑
j even

x3j

+ (
17

72
− 1

9
− 1

8
)
∑
j even

x3j+1 + (
17

72
− 1

9
+

1

8
)
∑
j odd

x3j+1

+ (
17

72
− 1

9
+

1

8
)
∑
j even

x3j+2 + (
17

72
− 1

9
− 1

8
)
∑
j odd

x3j+2

=
1

3

∞∑
j=0

x3j +
1

4

∑
j even

x3j +
1

4

∑
j odd

x3j+1 +
1

4

∑
j even

x3j+2

=
1

3

∞∑
m=0

x3m +
1

4

∞∑
m=0

x2m

This last equality is obtained by reindexing. Finally, we arrive at

1

(1− x)(1− x2)(1− x3)
=

1

6

∞∑
n=0

(
n+ 2

2

)
xn +

1

4

∞∑
n=0

(n+ 1)xn

+
1

3

∞∑
m=0

x3m +
1

4

∞∑
m=0

x2m

=
∞∑
n=0

p3(n)xn

13



Taking k = 3, we have the coefficient p3(n) = 1
6

(
n+2

2

)
+ 1

4
(n+ 1) + a with

a =



1
3

+ 1
4

when n ≡ 0 mod 6

0 when n ≡ 1 or 5 mod 6

1
4

when n ≡ 2 or 4 mod 6

1
3

when n ≡ 3 mod 6

With some rearrangement, we get

p3(n) =



n(n+6)
12

+ 1 when n ≡ 0 mod 6

n(n+6)
12

+ 8
12

when n ≡ 2 or 4 mod 6

n(n+6)
12

+ 9
12

when n ≡ 3 mod 6

n(n+6)
12

when n ≡ 1 or 5 mod 6

and finally

p3(n) = bn(n+ 6)

12
c+ 1

Example (Extending p3(n) to case k = 4)

Combining

p3(n) = bn(n+ 6)

12
c+ 1

and

pk(n) = pk−1(n) + pk(n− k) , pk(0) = 1

14



we may obtain

p4(n) = p3(n) + p4(n− 4)

= p3(n) + p3(n− 4) + p4(n− 8)

= p3(n) + p3(n− 4) + p3(n− 8) + p4(n− 12)

=
∑
k≤n

4

p3(n− 4k).

Example Let n = 4. Then we have

p4(4) =
∑
k≤1

(b(4− 4k)(4− 4k + 6)

12
c+ 1)

= b4(4 + 6)

12
c+ 1 + b(4− 4)(4− 4 + 6)

12
c+ 1

= 3 + 2

= 5.

2.2.2 Pentagonal Number Theorem

Definition the pentagonal numbers are

ωλ =
λ(3λ− 1)

2
, λ = 0,±1,±2, ...

15



Example

ω0 = 0

ω1 = 1

ω−1 = 2

ω2 = 5

ω−2 = 7

ω3 = 12

Figure 2.1. Pentagonal Numbers

This has a geometric interpretation, where 1, 5, 12, ... (corresponding to the

positive valued lambdas) are the vertices of each set of nested pentagons. As one can

see in Figure (2.1), 1 comes from the vertices in A, 5 comes from the vertices in B, 12

comes from counting each vertex in C once, and so on. These are commonly known

as the pentagonal numbers. Our definition of the pentagonal numbers includes the

generalized pentagonal numbers, 0, 2, 7, ... (corresponding to the non-positive valued

lambdas). These are the interior vertices of the nested pentagons. Again from Figure

(2.1), we retrieve no values from A as there is no interior, 0 from B, 2 from C, 7 from

D, and so on.

16



Theorem 2.2.1. (Pentagonal Number Theorem)

∞∏
m=1

(1− xm) =
∞∑

λ=−∞

(−1)λx
λ(3λ−1)

2

Proof.

∞∏
m=1

(1− xm) =(1− x)(1− x2)(1− x3)...

=1− x− (1− x)x2 − (1− x)(1− x2)x3 − (1− x)(1− x2)(1− x3)x4 − ...

Here, the equality in the second line is obtainedby distributing with a shift, meaning

the first term is distributed to the second, then the product of the first two terms is

distributed to the third, and so on. Next, we will distribute the term (1 − x), and

obtain:

=1− x− x2 − (1− x2)x3 − (1− x2)(1− x3)x4 − (1− x2)(1− x3)(1− x4)x5

− ...+ x3 + (1− x3)x4 + (1− x2)(1− x3)x5 + ...

=1− x− x2 − x3 + x5 − (1− x2)x4 + (1− x2)x7 − (1− x2)(1− x3)x5

+ (1− x2)(1− x3)x9 − ...+ x3 + (1− x2)x4 + (1− x2)(1− x3)x5 + ...

17



The equality in the second line is obtained by distrubting the term (1− xm−1). Can-

celling terms, we then see:

=1− x− x2 + x5 + (1− x2)x7 + (1− x2)(1− x3)x9 + ...

=1− x− x2 + x5 + x7 + (1− x3)x9 + ...− x9 − (1− x3)x11 − ...

where the second equality is obtained by distributing (1−x2). Finally, by distributing

(1− x3) and then making appropriate cancellations, we obtain:

=1− x− x2 + x5 + x7 + x9 − x12 +−...− x9 − x11 + x14 −+...

=1− x− x2 + x5 + x7 +−x12 −+...

We may continue this process inductively; let P :=
∏∞

m=1(1 − xm), and assume

we have

P =
k∑

λ=−k+1

(−1)λxωλ + (−1)kxωk+k{(1− xk) + (1− xk)(1− xk+1)xk

+ (1− xk)(1− xk+1)(1− xk+2)x2k + ...}

=
k∑

λ=−k+1

(−1)λxωλ + (−1)kxωk+k{1− xk + (1− xk+1)xk − (1− xk+1)x2k

+ (1− xk+1)(1− xk+2)x2k − (1− xk+1)(1− xk+2)x3k + ...}

=
k∑

λ=−k+1

(−1)λxωλ + (−1)kxωk+k{1 + (1− xk+1)xk + (1− xk+1)(1− xk+2)x2k+

...− xk − (1− xk+1)x2k − (1− xk+1)(1− xk+2)x3k − ...}

18



The above equality is obtained by rearrangement of terms. Next, we expand to obtain:

=
k∑

λ=−k+1

(−1)λxωλ + (−1)kxωk+k{1 + xk − x2k+1 + (1− xk+1)x2k − x3k+2+

x4k+2 + ...− xk − (1− xk+1)x2k − (1− xk+1)(1− xk+2)x3k − ...}

Finally, by cancelling and distributing to the first three terms, we obtain:

=
k∑

λ=−k+1

(−1)λxωλ + (−1)kxωk+k + (−1)k+1xωk+3k+1 + (−1)k+1xωk+4k+2·

{1 + (1− xk+1)xk+1 + (1− xk+1)(1− xk+2)x2k+2 + ...}

Recalling ωλ = λ(3λ−1)
2

, we see that

ωk + k =
k(3k − 1)

2
+ k =

3k2 − k + 2k

2
=

3k2 + k

2

=
k(3k + 1)

2
=
−k(−3k − 1)

2
= −ωk

and

ωk + 3k + 1 =
k(3k − 1)

2
+ 3k + 1 =

3k2 − k + 6k + 2

2
=

3k2 + 5k + 2

2

=
(3k + 2)(k + 1)

2
=

(k + 1)(3(k + 1)− 1)

2
= ωk+1

19



Continuing from above, and using these identities, we get

P =
k∑

λ=−k+1

(−1)λxωλ + (−1)−kxω−k + (−1)k+1xωk+1 + (−1)k+1xωk+1+k+1{1 + ...}

=
k+1∑
λ=−k

(−1)λxωλ + (−1)k+1xωk+1+k+1{1 + (1− xk+1)

+ (1− xk+1)(1− xk+2)x2k...}

By formal power series theory (see Appendix A), we may reduce (modxωk+1) and

get

P =
∞∑

λ=−∞

(−1)λxωλ(modxωk+1).

Combining the Pentagonal Number Theorem (2.2.1) with equation (2.4) we get, by

comparing coefficients, another recursive formula

p(n) =
∑

0<ωλ≤n

(−1)λ−1p(n− ωλ), p(0) = 1 (2.6)

Remark It has previously been shown that the number of terms in the right hand

side is approximately (2
3
)
√

6n.

Example

p(0) = 1 by definition

20



Example

p(1) = (−1)1−1p(1− ω1)

= p(1− 1) = p(0) = 1

Example

p(2) = (−1)1−1p(2− ω1) + (−1)−1−1p(2− ω−1)

= p(2− 1) + p(2− 2) = p(1) + p(0) = 1 + 1 = 2

Example

p(3) = (−1)1−1p(3− ω1) + (−1)−1−1p(3− ω−1)

= p(3− 1) + p(3− 2) = p(2) + p(1) = 2 + 1 = 3

Example

p(4) = (−1)1−1p(4− ω1) + (−1)−1−1p(4− ω−1)

= p(4− 1) + p(4− 2) = p(3) + p(2) = 3 + 2 = 5
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Example

p(5) = (−1)1−1p(5− ω1) + (−1)−1−1p(5− ω−1) + (−1)2−1p(5− ω2)

= p(5− 1) + p(5− 2)− p(5− 5) = p(4) + p(3)− p(0) = 5 + 3− 1 = 7

Example

p(6) = (−1)1−1p(6− ω1) + (−1)−1−1p(6− ω−1) + (−1)2−1p(6− ω2)

= p(6− 1) + p(6− 2)− p(6− 5) = p(5) + p(4)− p(1) = 7 + 5− 1 = 11

Example

p(7) = (−1)1−1p(7− ω1) + (−1)−1−1p(7− ω−1)

+ (−1)2−1p(7− ω2) + (−1)−2−1p(7− ω−2)

= p(7− 1) + p(7− 2)− p(7− 5) + p(7− 7)

= p(6) + p(5)− p(2)− p(0) = 11 + 7− 2− 1 = 15

2.2.3 Asymptotic Formula

In 1918, Hardy and Ramanujan derived the asymptotic formula

p(n) ∼ 1

4n
√

3
eπ
√

2n
3
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with upper bound of the error

O(e
5π( 23 )

1
2 (n− 1

24 )
1
2

8 )

There is an effective version of this bound due to Lehmer [8], where given a specific

n one may compute the bound, and hence use this asymptotic formula for calculating

an estimate of p(n).

As n tends to infinity, the ratio of p(n) over the right hand side will approach 1.

Example For n = 200,

p(200)

1
4·200

√
3
eπ
√

2·200
3

=
3972999029388

1
800
√

3
eπ
√

400
3

≈ .968965

Remark There was much historical significance in this result, as Hardy and Raman-

juan developed the circle method of proof specifically for this asymptotic formula;

they represented p(n) as an integral over the unit circle and computed the integral

by dividing the unit circle into segments, computing some exactly and approximating

others, giving us the error term.
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Chapter 3

AN EXPLICIT REPRESENTATION OF p(n)

We will explore a reformulation of Ak(n), used in the definition of the partition

function p(n), which will lead to a more usable form of p(n). We will also compare

computations of this inner sum using methods due to Rademacher and Whiteman.

3.1 Rademacher’s Representation

An improvement on the asymptotic formula, due to Rademacher, was given in

1937:

p(n) = 2π(24n− 1)
−3
4

∞∑
k=1

Ak(n)

k
I 3

2
(
π
√

24n− 1

6k
) (3.1)

where Ak(n) is a Kloosterman-type sum,

Ak(n) =
∑

h mod k
(h,k)=1

e
−2πinh

k
+πis(h,k), (3.2)

s(h, k) a Dedekind sum,

s(h, k) =
k−1∑
µ=1

(
µ

k
− bµ

k
c − 1

2
)(
hµ

k
− bhµ

k
c − 1

2
),

and I 3
2
(ε) is a modified Bessel function of the first kind, with ε = π

√
24n−1
6k

,

I 3
2
(ε) =

∞∑
n=0

( ε
2
)2n+ 3

2

n!Γ(3
2

+ n+ 1)
.
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This is a solution to the modified Bessel equation

ε2
d2y

dε2
+ ε

dy

dε
+ (ε2 − (

3

2
)2)y = 0.

This was an improvement upon the asymptotic formula as it provided an explicit

formula, though it is still difficult to calculate. Below we provide an outline of the

reformulation of Ak(n), to arrive at a new form. See Rademacher [12] for further

details of the proof of the formula for p(n).

Theorem 3.1.1. (Rademacher’s reformulation of Ak(n))

If n is a positive integer, then

p(n) = 2π(24n− 1)−
3
4

∞∑
k=1

Ak(n)

k
I 3

2
(
π
√

24n− 1

6k
) (3.1)

Furthermore, Ak(n) (3.2) is equal to

Ak(n) =
1

2

√
k

12

∑
x(mod24k)

x2≡−24n+1(mod24k)

(−1){
x
6
}e(

x

12k
) (3.3)

In the sum, x runs through the residue classes modulo 24k, and {α} denotes the

integer nearest to α, rounding up if α is a half-integer.

Proof. (of (3.3))

Let us assume the following formulae due to Rademacher [12]:
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Ψ(t, α) =
e−πα

2t

√
t

Ψ(
1

t
,−ıαt), where Ψ(t, α) =

∞∑
n=−∞

e−π(n+α)2t (R.36.2)

ωhk = eπıs(h,k) (R.118.42)

Ak(n) =
∑

h mod k
(h,k)=1

ωhke
−2πıhn

k (R.120.5)

f(e
2πıh
k
−2πz
k ) = e

πıh
12k
− πz

12k η(
h

k
+
ız

k
)−1, f(x) :=

∞∏
m=1

(1− xm)−1 (R.118.1)

f(e
2πıh
k
−2πz
k ) = e

πıh
12k
− πz

12k ε(a, b, c, d)−1
√
zη(

h′

k
+

ı

zk
)−1 (R.118.3)

ε(a, b, c, d) = eπı(
h−h′
12k

)−πıs(h,k) (R.118.4)

We take hh′ ≡ −1(modk) and note that (h, k) = 1, and we also take the definition of

η(τ) = e
πıτ
12

∏∞
n=1(1− e2πınτ ) as Dedekind’s Eta Function.

Now, combining (R.118.1) and (R.118.3), we have

e
πıh
12k
− πz

12k η(
h

k
+
ız

k
)−1 = e

πıh
12k
− πz

12k ε(a, b, c, d)−1
√
zη(

h′

k
+

ı

zk
)−1

η(
h′

k
+

ı

zk
) =
√
zη(

h

k
+
ız

k
)e

πıh−πz−πıh+πz
12k e−πı(

h−h′
12k

)+πıs(h,k) (3.4)

=
√
zη(

h

k
+
ız

k
)e( πı

h−h′ )(h
′−h)eπıs(h,k)

= ωhke
( πı
h−h′ )(h

′−h)√zη(
h

k
+
ız

k
) (3.5)

The rearrangement in line (3.4) is found by application of (R.118.4), and the final

equality in line (3.5) is found by application of (R.118.42).
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Combining the definition of η(τ) and Euler’s Pentagonal Number Theorem (2.2.1),

we see

η(τ) = e
πıτ
12

∞∏
1

(1− e2πımτ ) (from (R.65.2))

= e
πıτ
12

∞∑
λ=−∞

(−1)λeπıλ(3λ−1)τ

=
∞∑

λ=−∞

(−1)λe3πı(λ− 1
6

)2τ

This last equality comes from the fact that

λ(3λ− 1) +
1

12
= 3(λ2 − 1

3
λ+

1

36
) = 3(λ− 1

6
)2

Letting τ = h
k

+ ız
k

, λ = 2kq + j and Re(z) > 0, we get

η(
h

k
+
ız

k
) =

2k−1∑
j=0

(−1)je
3πıh
k

(j− 1
6

)2
∞∑

q=−∞

e−
3πz
k

(2kq+j− 1
6

)2 (3.6)

From (R.36.2), we see

∞∑
n=−∞

e−π(n+α)2t = Ψ(t, α) =
e−πα

2t

√
t

Ψ(
1

t
,−ıαt)

and taking t = 12kz and α = 1
2k

(j − 1
6
) in (3.6) and the above, we see that

η(
h

k
+
ız

k
) =

1

2
√

3kz

2k−1∑
j=0

(−1)je
3πıh
k

(j− 1
6

)2
∞∑

m=−∞

e
−πm2

12kz
+πım

k
(j− 1

6
) (3.7)
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Applying (3.7) to the right hand side of (3.5), and (3.6) to the left hand side, and

making appropriate cancellations, we may compare the coefficients for the first power

of e
−π
12kz to see

1 = ωhk
1

2
√

3k

2k−1∑
j=0

(−1)je
πıh
k
j(3j−1)(e

πı
k

(j− 1
6

) + e
−πı
k

(j− 1
6

))

which, rearranging, gives us our final form of ωhk:

ωhk =
1

2
√

3k

∑
j(mod2k)

(−1)je
−πıh
k

j(3j−1)(e
πı
k

(j− 1
6

) + e
−πı
k

(j− 1
6

)) (3.8)

We will now apply (3.8) to our definition of Ak(n), where we let
∑′

h(modk) denote∑
h mod k
(h,k)=1

:

Ak(n) =
′∑

h(modk)

ωhke
−2πıhn

k

=
1

2
√

3k

( ′∑
h(modk)

e
−2πıhn

k

∑
j(mod2k)

(−1)je−
πıh
k
j(3j−1)+πı

k
(j− 1

6
)

+
′∑

h(modk)

e−
2πıhn
k

∑
j(mod2k)

(−1)je−
πıh
k
j(3j−1)−πı

k
(j− 1

6
)
)

=
1

2
√

3k

(
e
−πı
6k

∑
j(mod2k)

(−1)je
πıj
k

′∑
h(modk)

e
−2πıh
k

(n+
j(3j−1)

2
)

+ e
πı
6k

∑
j(mod2k)

(−1)je
−πıj
k

′∑
h(modk)

e
−2πıh
k

(n+
j(3j−1)

2
)
)

=

√
k

2
√

3

(
e
−πı
6k

∑
j(mod2k)

j(3j−1)
2
≡−n(modk)

(−1)je
πıj
k + e

πı
6k

∑
j(mod2k)

j(3j−1)
2
≡−n(modk)

(−1)je−
πıj
k

)

(3.9)
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The first equality is found by distribution, the second by rearrangement, and the

last equality follows from the observation that the term of the inner sum is equal to

one for each h. The third equality also gives us a congruence condition, namely

1

2
j(3j − 1) ≡ −n(modk).

If the congruence fails to hold, then the sum over h vanishes.

Next, we note that

e
πıj
k
− πı

6k + e−(πıj
k
− πı

6k
) = eπı(

j
k
− 1

6k
) + e−πı(

j
k
− 1

6k
)

= 2cos((
j

k
− 1

6k
)π)

= 2cos(
(6j − 1)π

6k
),

so we finally have

Ak(n) =

√
k

3

∑
j(mod2k)

j(3j−1)
2
≡−n(modk)

(−1)jcos(
(6j − 1)π

6k
).

We may further rewrite Ak(n). First, note the following equivalences:

1

2
j(3j − 1) ≡ −n(modk)

12j(3j − 1) ≡ −24n(mod24k)

36j2 − 12j + 1 ≡ −24n+ 1(mod24k), and finally,

(6j − 1)2 ≡ −24n+ 1(mod24k)
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Now let ν = −24n+ 1. Then in (3.9) we have

Ak(n) =
1

2

√
k

3

( ∑
j(mod2k)

(6j−1)2≡ν(mod24k)

(−1)je
πı
6k

(6j−1) +
∑

j(mod2k)
(6j+1)2≡ν(mod24k)

(−1)je
πı
6k

(6j+1)
)

The first term is immediate; for the second term, we must use the substitution

2k − j in the place of j; note that this may be done as (−1)j = (−1)j+2k, so we have

not changed parity. Thus, for the second term, we have:

e
πı
6k
−πıj

k = e
πı
6k

(1−6j)

= e
πı
6k

(1−6(2k−j)) (applying our substitution)

= e
πı
6k

(6j+1)e−2πı

= e
πı
6k

(6j+1)

Noting that, as j runs through the integers mod2k, 6j runs through the integers

mod12k, we may also write

Ak(n) =
1

2

√
k

3

∑
6j±1(mod12k)

(6j±1)2≡ν(mod24k)

(−1)je
πı
6k

(6j±1)

Next let l = 6j ± 1 with (l, 6) = 1. Then j = l∓1
6

= { l
6
}, as j ∈ Z. Observe also

that
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(−1){
l+12k

6
}e

πı(l+12k)
6k = (−1){

l
6
}+{2k}e

πıl
6k e

πı12k
6k

= (−1){
l
6
}e

πıl
6k

hence ∑
l(mod12k)

l2≡ν(mod24k)

(−1){
l
6
}e

πıl
6k =

1

2

∑
l(mod24k)

l2≡ν(mod24k)

(−1){
l
6
}e

πıl
6k

so we may finally write our final form of Ak(n):

Ak(n) =
1

4

√
k

3

∑
l(mod24k)

l2≡ν(mod24k)

(−1){
l
6
}e

πıl
6k

3.2 Calculations of Ak(n)

3.2.1 Formulas for Calculating Ak(n)

Here we will compare the values obtained for Ak(1) by using Rademacher’s formula

(3.3) and the equations found in Whiteman’s paper [14], for specific values of k.

From Rademacher’s formula (3.3)

Ak(n) =
1

2

√
k

12

∑
x(mod24k)

x2≡−24n+1(mod24k)

(−1){
x
6
}e(

x

12k
)
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we will define

A∗k(n) :=
∑

x(mod24k)
x2≡−24n+1(mod24k)

(−1){
x
6
}e(

x

12k
)

We have also, due to Whiteman [14], the following (where
(
a
b

)
denotes the Jacobi

symbol for a, b ∈ Z):

For k = pα, α ≥ 1, p > 3 prime, and ν = 1− 24n,

Ak(n) =



0 ν a non-residue of k

2
(

3
k

)
k

1
2 cos(4πm

k
) ν ≡ (24m)2(modk)

0 ν ≡ 0(modp), α > 1

(
3
k

)
k

1
2 ν ≡ 0(modp), α = 1

(3.10)

For k = 3β, β ≥ 1,

Ak(n) = 2(−1)β+1
(m

3

)
(
k

3
)
1
2 sin(

4πm

3k
) (3.11)

for m ∈ (Z) such that (8m)2 ≡ 1− 24n(mod3k)

For k = 2λ, λ ≥ 0,

Ak(n) = (−1)λ
(
−1

m

)
k

1
2 sin(

4πm

8k
) (3.12)

for m ∈ (Z) such that (3m)2 ≡ 1− 24n(mod8k).
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3.2.2 Examples

Example We have by Rademacher, for k = 1, we have x = 1, 5, 7, 11, 13, 17, 19, 23

satisfying x2 ≡ 1(mod24). Then

A∗1(1) =
∑

x(mod24)
x2≡1(mod24)

(−1){
x
6
}eπı(

x
6

) = 2e
−πı
6 + 2e

πı
6 − 2e

−5πı
6 − 2e

5πı
6 = 4

√
3

So

A1(1) =
1

4

√
1

3
(4
√

3) = 1

And by Whiteman’s equation (3.12), we have λ = 0 and (3m)2 ≡ −23mod8⇒ m = 3,

hence

A1(1) = (−1)0

(
−1

3

)
(1)

1
2 sin(

12π

8
) = (−1)sin(

3π

2
) = (−1)(−1) = 1

Example We have by Rademacher, for k = 2, x = 5, 11, 13, 19, 29, 35, 37, 43 satisfy-

ing x2 ≡ 25(mod48). Then

A∗2(1) =
∑

x(mod48)
x2≡25(mod48)

(−1){
x
6
}eπı(

x
12

) = −2e
−5πı
12 − 2e

5πı
12 + 2e

−11πı
12 + 2e

11πı
12 = −2

√
6

So

A2(1) =
1

4

√
2

3
(−2
√

6) = −1.
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By Whiteman’s equation (3.12), we have λ = 1 and (3m)2 ≡ −23(mod16)⇒ m =

1, so

A2(1) = (−1)1

(
−1

1

)
2

1
2 sin(

4π

16
) = (−1)(−1)0

√
2

1√
2

= −1

Example We have by Rademacher, for k = 3, x = 7, 11, 25, 29, 43, 47, 61, 65 satisfy-

ing x2 ≡ 49(mod72). Then

A∗3(1) =
∑

x(mod72)
x2≡49(mod72)

(−1){
x
6
}eπı(

x
18

) = −2e
−7πı
18 − 2e

7πı
18 + 2e

−11πı
18 + 2e

11πı
18 = −8sin(

π

9
)

So

A3(1) =
1

4

√
3

3
(−8sin(

π

9
)) = −2sin(

π

9
)

By Whiteman’s equation (3.11), we have β = 1 and (8m)2 ≡ 4(mod9)⇒ m = 2, so

A3(1) = 2(−1)2

(
2

3

)
(
3

3
)
1
2 sin(

8π

9
) = 2(2(mod3))sin(

8π

9
) = −2sin(

π

9
)

Example For the case of k = 5, there are no solutions to the congruence x2 ≡

97(mod120) since there are no solutions to x2 ≡ 97 ≡ 2(mod5), hence A5(1) = 0 by

Rademacher. Similarly by equation (3.10) of Whiteman, as 97 is a non-residue of 5,

A5(1) = 0.

Example For the case of k = 7, there are no solutions to the congruence x2 ≡

145(mod168) since there are no solutions to x2 ≡ 145 ≡ 5(mod7), hence A7(1) = 0

by Rademacher. Similarly by equation (3.10) of Whiteman, as 145 is a non-residue

of 7, A7(1) = 0.
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Example For the case of k = 11, there are no solutions to the congruence x2 ≡

241(mod264) since there are no solutions to x2 ≡ 241 ≡ 5(mod11), hence A11(1) = 0

by Rademacher. Similarly by equation (3.10) of Whiteman, as 241 is a non-residue

of 11, A11(1) = 0.

Example We have by Rademacher, for k = 13, x = 17, 35, 43, 61, 95, 113, 121, 139,

173, 191, 199, 217, 251, 269, 277, 295 satisfying x2 ≡ 289(mod312). Then

A∗13(1) =
∑

x(mod312)
x2≡289(mod312)

(−1){
x
6
}eπı(

x
78

)

=− 2e
−17πı

78 − 2e
17πı
78 + 2e

−35πı
78 + 2e

35πı
78 − 2e

−43πı
78 − 2e

43πı
78 + 2e

−61πı
78 + 2e

61πı
78

=8sin(
2π

39
)− 8cos(

17π

78
)

So

A13(1) =

√
13

3
(2sin(

2π

39
)− 2cos(

17π

78
))

By Whiteman’s equation (3.10), we have α = 1, k = 13, n = 1, and ν = −23, along

with (24m)2 ≡ 3(mod13)⇒ m = 1, so

A13(1) = 2

(
3

13

)
13

1
2 cos(

44π

13
) = 2

√
13(36(mod13))cos(

44π

13
) = 2

√
13cos(

44π

13
)

It is easy to check on a computer system, such as Mathematica, that these two are

equivalent.

Example For the case of k = 17, there are no solutions to the congruence x2 ≡

385(mod408) since there are no solutions to x2 ≡ 385 ≡ 11(mod17), hence A17(1) = 0
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by Rademacher. Similarly by equation (3.10) of Whiteman, as 385 is a non-residue

of 17, A17(1) = 0.

Example For the case of k = 19, there are no solutions to the congruence x2 ≡

433(mod456) since there are no solutions to x2 ≡ 433 ≡ 15(mod19), hence A19(1) = 0

by Rademacher. Similarly by equation (3.10) of Whiteman, as 433 is a non-residue

of 19, A19(1) = 0.

Example We have by Rademacher, for k = 23, x = 23, 115, 161, 253, 299, 391, 437, 529

satisfying x2 ≡ 529(mod552). Then

A∗23(1) =
∑

x(mod552)
x2≡529(mod552)

(−1){
x
6
}eπı(

x
138

) = 2e
−πı
6 + 2e

πı
6 − 2e

−5πı
6 − 2e

5πı
6 = 4

√
3

So

A23(1) =
1

4

√
23

3
(4
√

3) =
√

23

By Whiteman’s equation (3.10), we have α = 1, k = 23, n = 1, and ν = −23 ≡

0(mod23), so

A23(1) =

(
3

23

)
23

1
2 = (311(mod23))

√
23 =

√
23

Example We have by Rademacher, for k = 29, x = 37, 79, 95, 137, 211, 253, 269, 311,

385, 427, 443, 485, 559, 601, 617, 659 satisfying x2 ≡ 673(mod696). Then
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A∗29(1) =
∑

x(mod696)
x2≡673(mod696)

(−1){
x
6
}eπı(

x
174

)

=2e
−37πı
174 + 2e

37πı
6=174 − 2e

−79πı
174 − 2e

79πı
174 + 2e

−95πı
174 + 2e

95πı
174 − 2e

−137πı
174 − 2e

137πı
174

=8cos(
37π

174
)− 8sin(

4π

87
)

So

A29(1) =

√
29

3
(2cos(

37π

174
)− 2sin(

4π

87
))

By Whiteman’s equation (3.10), we have α = 1, k = 29, n = 1, and ν = −23, along

with (24m)2 ≡ 6(mod29)⇒ m = 10, so

A29(1) = 2

(
3

29

)
29

1
2 cos(

40π

29
) = 2

√
29(314(mod29))cos(

40π

29
) = −2

√
29cos(

40π

29
)

It is easy to check that these are equivalent using a program such as Mathematica.

Example We have by Rademacher, for k = 31, x = 47, 77, 109, 139, 233, 263, 295, 325,

419, 449, 481, 511, 605, 635, 667, 696 satisfying x2 ≡ 721(mod744). Then

A∗31(1) =
∑

x(mod744)
x2≡721(mod744)

(−1){
x
6
}eπı(

x
186

)

=2e
−47πı
186 + 2e47 πı

186 − 2e
−77πı
186 − 2e

77πı
186 + 2e

−109πı
186 + 2e

109πı
186 − 2e

−139πı
186 − 2e139 πı

186

=8sin(
23π

93
)− 8sin(

8π

93
)

So

A31(1) =

√
31

3
(2sin(

23π

93
)− 2sin(

8π

93
))
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By Whiteman’s equation (3.10), we have α = 1, k = 31, n = 1, and ν = −23, along

with (24m)2 ≡ 8(mod31)⇒ m = 20, so

A31(1) = 2

(
3

31

)√
31cos(

80π

31
) = 2

√
31(315(mod31))cos(

80π

31
) = −2

√
31cos(

80π

31
)

It is easy to check that these two are equivalent using a program such as Mathematica.
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Chapter 4

ARITHMETIC REFORMULATION OF p(n)

In this chapter we will explore the process used in the arithmetic reformulation

of p(n) from an infinite sum into a finite sum, which will be useful for more practical

comutational purposes.

4.1 Definitions

Before reformulating, we will take note of the following definitions and notation.

Notation We let {x} denote the nearest integer to x.

Notation We let e(x) denote e2πıx.

Notation We let
(
r
s

)
denote the Jacobi symbol for r, s ∈ Z.

Definition LetQ(p)
d denote the set of positive definite integral binary quadratic forms

of discriminant −d = b2 − 4ac, with d > 0 and where 6|a.

Definition Let Q(x, y) := ax2 + bxy+ cy2 ∈ Q(p)
d . We denote Q(x, y) = [a, b, c](x, y).

For every such Q, there is a unique complex number τQ in the upper half plane such

that Q(τQ, 1) = 0. We call this τQ a complex multiplication point, or CM point.

Definition We will let Γ0(6) be the group of matrices of the form

M =

α β

γ δ

 , 6|γ, det(M) = 1, α, β, γ, δ ∈ Z
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Definition The subgroup Γ∞ ⊂ Γ0(6) is the set of matrices of the form

±

1 n

0 1

 , n ∈ Z

Definition Let M ∈ Γ0(6) and Q ∈ Q(p)
d . We define the right group action of Γ0(6)

on Q(p)
d by

Q ◦M := [a, b, c](αx+ βy, γx+ δy) =: [a′, b′, c′]

Remark SL2(Z) acts on the upper-half plane by

a b

c d

 · z =
az + b

cz + d
, z ∈ upper-half plane ,

a b

c d

 ∈ SL2(Z)

It is easily verified that this is a group action, namely (for A,B ∈ SL2(Z)),

A(Bz) = (AB)z

Iz = z where I is the identity matrix

For example, the fact that Az belongs to the upper-half plane is a consequence of

Claim (4.2.1) below.

Definition ΓτQ is the isotropy subgroup fixing the CM point τQ.

Definition We define χ12([a, b, c]) :=
(

12
b

)
.
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4.2 Proofs of Useful Claims

Here we will prove some preliminary claims that will be of use in reformulating

p(n).

Claim 4.2.1. The group Γ0(6) keeps the CM point τ in the upper half plane.

Proof. We assume Im(τ) > 0. Then

Im(
ατ + β

γτ + δ
) =

Im(ατ + β)(γτ + δ)

|γτ + δ|2

=
Im(ατ + β)(γτ + δ)

|γτ + δ|2

=
Im(αγττ + αδτ + βγτ + βδ)

|γτ + δ|2

Note that as α, β, γ, δ ∈ Z, we have Im(αγττ) = 0 and Im(βδ) = 0. Then in the

numerator we are left with

Im(αδτ + βγτ) = Im(αδτ − βγτ)

= αδIm(τ)− βγIm(τ)

= (αδ − βγ)Im(τ)

= Im(τ), (as αδ − βγ = 1).

Hence Im(ατ+β
γτ+δ

) = Im(τ)
|γτ+δ|2 > 0.

Claim 4.2.2. The action of Γ0(6) on Q(x, y) = [a, b, c](x, y) preserves the residue

class of b(mod12), i.e. b ≡ b′(mod12) in Q ◦ M := [a, b, c](αx + βy, γx + δy) :=

[a′, b′, c′].
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Proof. Recall that 6|a, 6|γ, and that Q = ax2 + bxy + cy2 as defined. Then

Q ◦M = a(αx+ βy)2 + b(αx+ βy)(γx+ δy) + c(γx+ δy)2

= (aα2 + bαγ + cγ2)x2 + (2aαβ + bαδ + bβγ + 2cγδ)xy + (aβ2 + bβδ + cδ2)y2

so then we see

b′ = 2aαβ + bαδ + bβγ + 2cγδ

≡ b(αδ + βγ)(mod12)

≡ b(1 + 2βγ)(mod12) (note: αδ − βγ = 1)

= b(mod12)

Claim 4.2.3. Let Q(x, y) = ax2 + bxy + cy2. Then the imaginary part of the CM

point is preserved under the action of M ∈ Γ∞.

Proof. Let τQ be the CM point for Q(x, y). Then Q(x, 1) = ax2 + bx+ c = 0 gives us

τQ = −b+
√
b2−4ac

2a
, thus Im(τQ) =

√
b2−4ac

2a
. Note that γ = 0 in Γ∞, hence

Q ◦M = [a, b, c](αx+ βy, γx+ δy)

= (aα2)x2 + (2aαβ + bαδ)xy + (aβ2 + bβδ + cδ2)y2.
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We let τQM be the CM point of Q ◦M , so it is the upper half plane solution to

Q ◦M(x, 1) = (aα2)x2 + (2aαβ)x+ (aβ2 + bβδ + cδ2) = 0.

We then see that

τQM =
−(2aαβ + bαδ) +

√
−d

2(aα2)

where

−d = (2aαβ + bαδ)2 − 4(aα2)(aβ2 + bβδ + cδ2)

Then −d reduces to b2(αδ)2− 4ac(αδ)2 = b2− 4ac as det(M) = 1 in Γ∞. Further,

the denominator reduces to 2aα2 = 2a as α = ±1, hence α2 = 1.

Thus we have Im(τQM) =
√
b2−4ac

2a
= Im(τQ) as desired.

Claim 4.2.4. The coefficient b of the integral binary quadratic form Q(x, y) = 6kx2 +

bxy+cy2 with discriminant −24n+1 satisfies the congruence b2 ≡ −24n+1(mod24k).

Proof. We know−24n+1 = b2−4ac, hence b2 = −24n+1+4(6k)(c) = −24n+1+24kc,

which is equivalent to b2 ≡ −24n+ 1(mod24k).

Claim 4.2.5. The group Γ∞ preserves b2 ≡ −24n+ 1(mod24k) for Q(x, y) = 6kx2 +

bxy + cy2 .
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Proof. Assume Q(x, y) = 6kx2 + bxy + cy2 with b2 ≡ −24n + 1(mod24k), and let

M ∈ Γ∞. Then

Q ◦M = [6k, b, c](αx+ βy, δy)

= 6k(αx+ βy)2 + b(αx+ βy)(δy) + c(δy)2

= (6kα2)x2 + (6k(2αβ) + bαδ)xy + (6kβ2 + bβδ + cδ)y2.

Consider b′ = 12kαβ + bαδ. Then

(b′)2 = 24k(6kα2β2) + 24k(bα2βδ) + b2(α2δ2)

≡ b2(α2δ2)(mod24k)

≡ b2(mod24k)

≡ −24n+ 1(mod24k).

Claim 4.2.6. The group Γ∞ does not preserve b(mod24k) but does identify the con-

gruence classes b, b+ 12k(mod24k).

Proof. As above, let M ∈ Γ∞. Then the middle coefficient of Q ◦M is b′ = 12kαβ +

bαδ. Recall that α = δ = ±1 as αδ = 1 in Γ∞, hence b′ = ±12kβ + b.

Then if 2|β, we have b′ ≡ b(mod24k).
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If 2 6 |β, then β is odd and we may write β = 2l + 1, l ∈ Z. Then

±12k(2l + 1) + b = ±(24kl + 12k) + b

≡ ±12k + b(mod24k) 6≡ b(mod24k).

Claim 4.2.7. Given l ∈ Z where (l, 6) = 1,
(

3
l

)
= (−1){

l
6
}.

Proof. Given (−1){
l
6
}, (l, 6) = 1, we have Table (4.1),

l 1 5 7 11

{ l
6
} 0 1 1 2

(−1){
l
6
} 1 −1 −1 1

Table 4.1. −1{
l
6
} for given values of l

Then since

(−1){
l+12
6
} = (−1){

l
6
}+{ 12

6
}

= (−1){
l
6
}(−1)2

= (−1){
l
6
}

it is clear from Table (4.1) that (−1){
l
6
} is periodic, with period 12.
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Now note that by quadratic reciprocity,

(
3

l

)
=

(
l

3

)
(−1)

l−1
2

3−1
2

=

(
l

3

)
(−1)

l−1
2 =

(
l

3

)
(
−1

l
)

Taking in this case (l, 6) = 1, we have Table (4.2).

l 1 5 7 11(
l
3

)
1 −1 1 −1(−1

l

)
1 1 −1 −1(

3
l

)
1 −1 −1 1

Table 4.2. Legendre values for l

Since

(
3

l + 12

)
=

(
l + 12

3

)
(−1)( 3−1

2
)(

(l+12)−1
2

) (where l = 4k + 1, k ∈ Z since (l, 6) = 1)

=

(
l + 12

3

)
(−1)2k

=

(
l

3

)
(since l + 12 ≡ l(mod3))

=

(
3

l

)
(−1)( 3−1

2
)( l−1

2
)

=

(
3

l

)
(−1)2k (again by l = 4k + 1, k ∈ Z)

=

(
3

l

)

we see that
(

3
l

)
has period 12, hence for (l, 6) = 1, we have (−1){

l
6
} =

(
3
l

)
.
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Remark We may thus write, from (3.3),

Ak(n) =
1

4

√
k

3

∑
l(mod24k)

l2≡v(mod24k)

(−1){
l
6
}e

πil
6k

=
1

4

√
k

3

∑
l(mod24k)

l2≡v(mod24k)

(
3

l

)
e
πil
6k .

Claim 4.2.8. χ12(Q) is fixed under Γ0(6).

Proof. Let M ∈ Γ0(6), and Q(x, y) = ax2 + bxy + cy2. Then

Q◦M(x, y) = (aα2 +bαγ+cγ2)x2 +(2aαβ+b(γβ+δα)+2cγδ)xy+(aβ2 +bβδ+cδ2)y2

so, recalling a = 6k and γ = 6l for k, l ∈ Z, along with αδ − βγ = 1, we have

b′ = 2aαβ + b(γβ + δα) + 2cγδ

= 2(6k)αβ + b(1 + 2β(6l)) + 2c(6l)δ

= 12(kαβ + clδ) + b+ 12blδ

= 12(kαβ + clδ + blβ) + b

= b+ 12q, q = kαβ + clδblβ ∈ Z.

Now, since b′ = b+ 12q and as we have shown above that χ12(Q) = (−1){
b
6
}, and

the latter is of period 12, it follows that χ12(Q ◦M) = (−1){
b′
6
} = (−1){

b
6
}, and is

thus fixed under the action of Γ0(6).
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Lemma 4.2.9. We parametrize the solutions of b2−24kc = −24n+ 1 (for k, b, c ∈ Z

and k, c > 0) by the tuples (b, c, k). Then there is a one-to-one mapping between the

tuples (b, c, k) and points

z ∈
⋃

Q∈Q(p)
24n−1/Γ0(6)

{AτQ : A ∈ Γ0(6)/ΓτQ} =: A.

Proof. We define a map Φ(b, c, k) = τQ where Q = 6kx2 + bxy + cy2. Observe that

the discriminant of Q is b2 − 24kc = −24n+ 1, so Q ∈ Q(p)
24n−1, hence τQ ∈ A.

Now, given z ∈ A, there is a Q ∈ Q(p)
24n−1 and A ∈ Γ0(6) such that z = AτQ,

by the definition of A. We have previously shown AτQ is in the upper half plane by

Claim (4.2.1) and have AτQ = τQ◦A−1 = τQ′ from linear algebra, where Q ◦ A−1 =

Q′ = 6kx2 + bxy + cy2 for some b, c, k ∈ Z, and without loss of generality, k, c > 0.

We define Φ−1(τQ′) = (b, c, k). Then

Φ ◦ Φ−1(AτQ) = Φ ◦ Φ−1(τQ′) = Φ(b, c, k) = τQ′ = AτQ

and

Φ−1 ◦ Φ(b, c, k) = Φ−1(τQ) = (b, c, k).

Hence Φ is a bijective mapping from (b, c, k) to A as desired.

4.3 Arithmetic Reformulation

Proposition 4.3.1. (Proposition 4.2 from [11])

If k and n are positive integers, then we have

Ak(n) =

√
k

3

∑
Q∈Q(p)

24n−1/Γ0(6)

χ12(Q)

#ΓτQ

∑
A∈Γ∞\Γ0(6)

Im(AτQ)=
√
24n−1
12k

e(−Re(AτQ)).
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Proof. Recall our earlier definition of Ak(n), due to Rademacher:

Ak(n) =
1

4

√
k

3

∑
x(mod24k)

x2≡(−24n+1)(mod24k)

(−1){
x
6
}e(

x

12k
) (3.1)

We have previously shown in (4.2.3) that Im(AτQ) =
√
−b2+4ac

2a
=
√

24n−1
12k

, and

in (4.2.7) that χ12(Q) =
(

12
b

)
=
(

3
b

) (
2
b

)2
=
(

3
b

)
= (−1){

x
6
}. We have −Re(AτQ) =

−( −b
12k

) = b
12k

immediately from (4.2.2).

Note that by taking A ∈ Γ∞\Γ0(6), we are only considering those matrices that

preserve both the imaginary part of our CM point and b(mod24k), thus fixing τQ

#ΓτQ times. However, #ΓτQ (the stabilizer for τQ) also includes ±I for b, and also

considers b + 12k with ±I for b + 12k as well. Hence we are dividing by an extra

factor of four, since ±I ∈ Γ∞ (which we are modding out by).

Remark This is called the arithmetic reformulation as we are removing the congru-

ence conditions, and instead considering group actions.

Definition Given f(z) a Γ0(6) invariant function, we define the trace Tr(p)(f ;n) to

be

Tr(p)(f ;n) :=
∑

Q∈Q(p)
24n−1/Γ0(6)

χ12(Q)f(τQ)

#ΓτQ
. (4.1)

Observe that this is well-defined as by (4.2.2), we have shown b ≡ b′(mod12).
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Definition We define a Poincaré series P (z) by

P (z) := 4π
∑

A∈Γ∞\Γ0(6)

Im(Az)
1
2 I 3

2
(2πIm(Az))e(−Re(Az)). (4.2)

Remark P (z) is absolutely convergent and holomorphic on the upper half of the

complex plane.

Claim 4.3.2. Let M ∈ Γ0(6). Then P (Mz) = P (z) for all z in the upper half of the

complex plane, meaning P (z) is Γ0(6) invariant.

Proof. Let f(z) = Im(Az)
1
2 I 3

2
(2πIm(Az))e(−Re(Az)). By definition,

P (Mz) = 4π
∑

A∈Γ∞\Γ0(6)

f(A(Mz))

Let A′ = AM , where as A ranges over Γ∞\Γ0(6), so does A′. Then

= 4π
∑

A∈Γ∞\Γ0(6)

f(A′z)

= P (z)

Theorem 4.3.3. (Theorem 1.2 from [11])

If n is a positive integer, then

p(n) =
Tr(p)(P ;n)

24n− 1
.
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In particular, we have that

p(n) ≡ −Tr(p)(P ;n)(mod24)

Proof. If we combine Theorem (3.1) with Proposition (4.3.1), we see that

p(n) =2π(24n− 1)−
3
4

∞∑
k=1

1

k

√
k

3

∑
Q∈Q(p)

24n−1/Γ0(6)

χ12(Q)

#ΓτQ

∑
A∈Γ∞\Γ0(6)

Im(AτQ)=
√
24n−1
12k

e(−Re(AτQ))I 3
2
(
π
√

24n− 1

6k
)

=
2π√

3
(24n− 1)−

3
4

∑
Q∈Q(p)

24n−1/Γ0(6)

χ12(Q)

#ΓτQ

∞∑
k=1

1√
k

∑
A∈Γ∞\Γ0(6)

Im(AτQ)=
√
24n−1
12k

e(−Re(AτQ))I 3
2
(2πIm(AτQ))

Now we let Im(AτQ)
1
2 = (24n−1)

1
4

2
√

3k
, so that we have 1√

k
=

2
√

3Im(AτQ)
1
2

(24n−1)
1
4

. This will

remove our dependence on k, and we may now rewrite

p(n) =
2π√

3
(24n− 1)−

3
4

2
√

3

(24n− 1)
1
4

∑
Q∈Q(p)

24n−1/Γ0(6)

χ12(Q)

#ΓτQ

∑
A∈Γ∞\Γ0(6)

e(−Re(AτQ))I 3
2
(2πIm(AτQ)Im(AτQ)

1
2

=
4π

24n− 1

∑
Q∈Q(p)

24n−1/Γ0(6)

χ12(Q)

#ΓτQ

∑
A∈Γ∞\Γ0(6)

e(−Re(AτQ))I 3
2
(2πIm(AτQ)Im(AτQ)

1
2
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=(24n− 1)−1
∑

Q∈Q(p)
24n−1/Γ0(6)

χ12(Q)

#ΓτQ
P (τQ) (by (4.2))

=(24n− 1)−1Tr(p)(P ;n) (by (4.1))
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Chapter 5

ALGEBRAIC REFORMULATION OF p(n)

Ono and Bruinier further reformulated p(n) ([10]); we will briefly discuss this

algebraic reformulation and use it to compute cases of p(n), but must first discuss

the formulation of the Poincaré Series used in defining p(n). We will also see a brief

discussion of some applications of the partition function.

5.1 Reformulation of the Poincaré Series

We have now shown that

p(n) =
Tr(p)(P ;n)

24n− 1
, T r(p)(P ;n) =

∑
Q∈Q(p)

24n−1

P (τQ)

where

P (z) := 4π
∑

A∈Γ∞\Γ0(6)

Im(Az)
1
2 I 3

2
(2πIm(Az))e(−Re(Az)). (5.1)

Bruinier and Ono reformulated P (z) (see [10]) by letting q = e2πız and taking

Dedekind’s Eta Function

η(z) = q
1
24

∞∏
n=1

(1− qn) (5.2)

and the quasimodular Eisenstein series

E2(z) = 1− 24
∞∑
n=1

∑
d|n

dqn = 1− 24
∞∑
n=1

σ(n)qn (5.3)
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where σ(n) denotes as usual the sum of the divisors of n. Then we define

F (z) :=
1

2

E2(z)− 2E2(2z)− 3E2(3z) + 6E2(6z)

η(z)2η(2z)2η(3z)2η(6z)2
(5.4)

Expanding the numerator of (5.4) and dividing by two, we get:

1

2
(E2(z)− 2E2(2z)− 3E2(3z) + 6E2(6z))

= 1− 12(
∞∑
n=1

σ(n)qn − 2
∞∑
n=1

σ(n)q2n − 3
∞∑
n=1

σ(n)q3n + 6
∞∑
n=1

σ(n)q6n)

Expanding the denominator of (5.4), we get

η(z)2η(2z)2η(3z)2η(6z)2

=(q
1
24

∞∏
n=1

(1− qn))2(q
2
24

∞∏
n=1

(1− q2n))2(q
3
24

∞∏
n=1

(1− q3n))2·

(q
6
24

∞∏
n=1

(1− q6n))2

=q
(
(
∞∑

k=−∞

(−1)kq
k(3k−1)

2 )(
∞∑

k=−∞

(−1)kqk(3k−1))(
∞∑

k=−∞

(−1)kq
3k(3k−1)

2 )·

(
∞∑

k=−∞

(−1)kq3k(3k−1))
)2

where this last equivalence is due to the Pentagonal Number Theorem (2.2.1).

We may then see that

F (z) =
1− 12q − 12q2 − 12q3 − 12q4 − 72q5 − 12q6 − 96q7 − 12q8 − 12q9 − ...
q(1− 2q − 3q2 + 4q3 + 6q4 + 6q5 − 16q6 − 8q7 + 9q8 − 12q9 + ...)
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and hence, by long division,

F (z) =
1

q
− 10− 29q − 104q2 − 273q3 − 760q4 − 1685q5 − 4008q6 − 8334q7 − 17560q8

− 34563q9 − ...− 12082000967090q55 − ...− 2498769400387544200q100 − ...

(5.5)

This was extended to the one hundredth power for computational purposes (see Ap-

pendix B for the full expansion).

Theorem 5.1.1. Given z = x+ ıy, x, y ∈ R, P (z) from equation (5.1) equals

P (z) = −(
1

2πı

d

dz
+

1

2πy
)F (z).

Remark See [4] and [11] for further discussion of the reformulation of P (z).

Now by our expansion of F (z), we see

P (z) = (1− 1

2πy
)
1

q
+

5

πy
+(29+

29

2πy
)q+(208+

52

πy
)q2+(819+

273

2πy
)q3+(3040+

380

πy
)q4+...

We may calculate p(n) using this algebraic reformulation, called thus as it is now

described by taking a finite sum of algebraic numbers. The partition function is still

described as before, but now taking our reformulation of the Poincaré series in

p(n) =
1

24n− 1
Tr(p)(P ;n) =

1

24n− 1

∑
Q∈Q(p)

24n−1

P (τQ)
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This is stated in [10] as follows:

Theorem 5.1.2. Theorem 1.1

If n is a positive integer, then we have that

p(n) =
1

24n− 1
Tr(n).

Moreover, the numbers P (τQ), as Q varies over Q
(p)
24n−1, form a multiset of alge-

braic numbers which is the union of Galois orbits in the discriminant −24 + 1 Hilbert

class field.

This result is a key breakthrough in the field of partitions, as we now have not

only a closed, finite sum, but it is also expressed in terms of algebraic numbers. This

makes it possible to compute p(n) in a finite amount of time.

Remark As p(n) is an integer and P (τQ) algebraic numbers, we may instead consider∑
Q∈Q(p)

24n−1
Re(P (τQ)).

5.2 Finding Γ0(6) Representatives

For each n, we must also find a set of representativesfor Q(p)
24n−1/Γ0(6). Gross et

al. describe a process for this in [6], by obtaining such representatives from a set

of representatives for SL2(Z)-equivalence classes of quadratic forms, with the given

discriminant. These may be found in tables, as in Davenport [5].
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Let {P1, ..., Pl} be a set of representatives for P0
d/SL2(Z), where P0

d represents

the set of primitive positive definite forms of discriminant −d.

We let Aj =

α β

γ δ

 ∈ SL2(Z) for j = 1, ..., l satisfy

 ã 1
2
(b̃− ρ̃)

1
2
(b̃+ ρ̃) c̃


α
γ

 ≡
0

0

 (mod6) (5.6)

Writing ATPjA =

6a 1
2
b

1
2
b c

, let Qj = [6a, b, c].

Then {Q1, ..., Ql} is a set of representatives for for Q(p),0
d /Γ0(6) by [6], where Q(p),0

d

represents the primitive forms; when n = 1, 2, 3, d is squarefree, so Q(p),0
d = Q(p)

d by

equation (1) of Gross et al [6].

5.3 Examples

Example (The case of n = 1)

Let us consider the case of n = 1. We wish to show that p(1) = 1 by the above

methods.

Observe that 24n−1 = 23 for n = 1. From Davenport [5], we have for discriminant

−23 the set of reduced positive definite forms P :

{P1, P2, P3} = {[1, 1, 6], [2, 1, 3], [2,−1, 3]}
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To find the desired

α β

γ δ

 = A ∈ SL2(Z) for P1, we must solve the congruence

(5.6): 1 0

1 6


α
γ

 ≡
0

0

 (mod6)

or  α

α + 6γ

 ≡
0

0

 (mod6).

Now

0

1

 =

α
δ

 is a solution, so we need

β
δ

 such that

0 β

1 δ

 ∈ SL2(Z);

0 −1

1 0

 is such a matrix.

Then

ATP1A =

 0 1

−1 0


1 1

2

1
2

6


0 −1

1 0



=

 6 −1
2

−1
2

1



hence Q̃1 = [6,−1, 1] and we have

Q1 = 6x2 − xy + y2.
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To find the desired

α β

γ δ

 = A ∈ SL2(Z) for P2, we must solve the congruence

(5.6): 2 0

1 3


α
γ

 ≡
0

0

 (mod6)

or  2α

α + 3γ

 ≡
0

0

 (mod6).

Now

3

1

 =

α
δ

 is a solution, so we need

β
δ

 such that

3 β

1 δ

 ∈ SL2(Z);

3 −1

1 0

 is such a matrix.

Then

ATP2A =

 3 1

−1 0


2 1

2

1
2

3


3 −1

1 0



=

 24 −13
2

−13
2

2



hence Q̃2 = [24, 13, 2] and we have

Q2 = 24x2 − 13xy + 2y2.
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To find the desired

α β

γ δ

 = A ∈ SL2(Z) for P3, we must solve the congruence

(5.6):  2 0

−1 3


α
γ

 ≡
0

0

 (mod6)

or  2α

−α + 3γ

 ≡
0

0

 (mod6).

As

3

1

 =

α
δ

 is a solution, so we need

β
δ

 such that

3 β

1 δ

 ∈ SL2(Z);

3 2

1 1

 is such a matrix.

Then

ATP3A =

3 1

2 1


2 1

2

1
2

3


3 2

1 1



=

18 25
2

25
2

9



hence Q̃3 = [18, 25, 9] and we have

Q3 = 18x2 + 25xy + 9y2.
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Thus we have that the Γ0(6) representatives are

Q(p)
−23 = {Q1, Q2, Q3}

= {6x2 − xy + y2, 24x2 − 13xy + 2y2, 18x2 + 25xy + 9y2}

Therefore the complex multiplication points (CM points) are given by:

Q1(x, 1) = 6x2 − x+ 1 = 0 gives x = 1±
√

1−4·6
12

, hence 1
12

+ 1
12

√
−23 = τQ1 .

Q2(x, 1) = 24x2 − 13x+ 2 = 0 gives x =
13±
√

(−13)2−4·24·2
48

, hence 13
48

+ 1
48

√
−23 = τQ2 .

Q3(x, 1) = 18x2 + 25x+ 9 = 0 gives x = −25±
√

252−4·9·18
2·18

, hence −25
36

+ 1
36

√
−23 = τQ3 .

Then we see that

P ( 1
12

+ 1
12

√
−23) ≈ 13.96548628

P (13
48

+ 1
48

√
−23) ≈ 4.53757041− 3.09939725ı

P (−25
36

+ 1
36

√
−23) ≈ 4.51725686 + 3.09789059ı

hence

Re(
∑

Q∈Q(p)
−23

P (τQi)) ≈ 23.0203137

and finally

p(1) =
23.0203137

23
= 1.00088 ≈ 1.

Note that aas we do not know the error term for our expansion of the modular

form F (z), we are unable to verify the accuracy of these approximations. As such,

these examples should be taken as illustrations rather than rigorous proof.
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Example (The case of n = 2)

Let us consider the case of n = 2. We wish to show that p(2) = 2 by the above

methods.

Observe that 24n− 1 = 47 for n = 2, and from [4] the Γ0(6) representatives are

Q(p)
−47 =Q1, Q2, Q3, Q4, Q5

={6x2 + xy + 2y2, 12x2 + xy + y2, 18x2 + 13xy + 3y2,

24x2 + 25xy + 7y2, 36x2 + 49xy + 17y2}

Therefore the CM points are given by:

Q1(x, 1) = 6x2 + x+ 2 = 0 gives x = −1±
√

1−24·2
12

, hence − 1
12

+
√
−47
12

= τQ1 .

Q2(x, 1) = 12x2 + x+ 1 = 0 gives x = −1±
√

1−24
2·12

, hence − 1
24

+
√
−47
24

= τQ2 .

Q3(x, 1) = 18x2 + 13x+ 3 = 0 gives x = −13±
√

132−4·18·3
2·18

, hence −13
36

+
√
−47
36

= τQ3 .

Q4(x, 1) = 24x2 + 25x+ 7 = 0 gives x = −25±
√

252−4·24·7
2·24

, hence −25
48

+
√
−47
48

= τQ4 .

Q5(x, 1) = 36x2 + 49x+ 17 = 0 gives x = −49±
√

492−4·17·36
2·36

, hence −49
72

+
√
−47
72

= τQ5 .

Then we see, by using the expansion of P (z), that

P (− 1
12

+
√
−47
12

) ≈ 26.390682 + 12.376065ı

P (− 1
24

+
√
−47
24

) ≈ 26.390682− 12.376065ı

P (−13
36

+
√
−47
36

) ≈ −.062017987

P (−25
48

+
√
−47
48

) ≈ 20.640327− 12.692206ı

P (−49
72

+
√
−47
72

) ≈ 20.693650 + 12.479125ı
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hence

Re
( ∑
Q∈Q(p)

−47

P (τQi)
)

= Re(94.053323− .213081ı) = 94.053323

and finally

p(2) =
94.053323

47
= 2.00113 ≈ 2.

5.4 Applications

Partitions are used in various fields of physics. In quantum physics, they apply to

the angular momentum of fermions; see Benjamin and Quinn [3] for further details.

Partitions have been used in statistical mechanics to represent the form of crystal

structures, and also in a discussion of the hard hexagon model; see Andrews [2] for

additional details.

Partition theory is also used in group representation theory, with the Young

Tableaux, and the partition function is used in the expression of the number of non-

isomorphic abelian groups. See Kavassalis [7] for further information and sources on

details.

Ono’s new result is particularly interesting in a purely mathematical sense, as

relating the number of partitions of an integer to the trace of certain quadratic roots

was a major breakthrough in relating different mathematical concepts to each other.

Moreover, it is the first time that a definite closed formula has been found for p(n) in

terms of algebraic numbers, thus there is potential for major computational improve-

ment over previous methods (such as approximations or infinite series). This in turn

may lead to the discovery of further uses of the partition function itself.
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Appendix A

FORMAL POWER SERIES

Here we provide an outline of facts from the theory of formal power series, as

discussed in Rademacher [12].

Definition A formal power series is defined to be

A = a0 + a1x+ a2x
2 + ... =

∞∑
n=0

anx
n, an ∈ R

where R is a commutative ring with unit element, and has no zero divisors.

Recall that integral domains are defined to be commutative rings with unit ele-

ment and no zero divisors.

Claim .0.1. Formal power series form a domain, D, with the following actions:

A+B = (a0 + b0) + (a1 + b1)x+ (a2 + b2)x2 + ...(addition)

AB = d0 + d1x+ d2x
2 + ..., dn = a0bn + a1bn−1 + ...+ anb0 (multiplication)

I = 1 + 0x+ 0x2 + ...(unit element)

0 = 0 + 0x+ 0x2 + ...(zero element)

Claim .0.2. Units such as

D = 1 + a1x+ a2x
2 + ...

have unique inverses

D−1 = 1 + b1x+ b2x
2 + ...
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where the bn are found from

(1 + a1x+ a2x
2 + ...)(1 + b1x+ b2x

2 + ...) = 1,

which gives

a1 + b1 = 0, a2 + a1b1 + b2 = 0, a3 + a2b1 + a1b2 + b3 = 0, ...

Note that

(1− x)(1 + b1x+ b2x
2 + ....) = 1 gives us − 1 + b1 = 0, −bn−1 + bn = 0

hence

bn = 1, n = 1, 2, 3, ...

and then we have the identity:

(1− x)(1 + x+ x2 + ...) = 1 or (1− x)−1 = 1 + x+ x2 + .... (7)

We also have D−1
1 D−1

2 = (D1D2)−1 given the leading coefficient of D1, D2 is equal

to one.

Definition We may define an infinite sum of power series

A1 + A2 + A3 + ... = S ∈ D

given that

A1 + A2 + A3 + ... ≡ S(modxN) for all N ∈ N
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Remark Loosely speaking, this says for any N ∈ N there are only finitely many

terms containing xn for n < N .

Definition Similarly, we may define an infinite product

B1B2B3.... = M

given that

B1B2B3... ≡M(modxN) for all N ∈ N

In general, the indeterminate x may be replaced by any polynomial, given the

polynomial has no constant term. This is because, (modxN), we have polynomials

rather than infinite formal power series. When polynomials with no constant term

are substituted in to xn, the degree of each term will be larger than xn, and we may

reduce again (modxN).

Claim .0.3. Given G = 1 + x + x2 + ... and P = (1 + x)(1 + x2)(1 + x4)(1 + x8)...,

we have G = P .

Proof. (idea)

(1− x)P = (1− x)(1 + x)(1 + x2)(1 + x4)(1 + x8)...

= (1− x2)(1 + x2)(1 + x4)(1 + x8)...

= (1− x4)(1 + x4)(1 + x8)...

Then we see that (1 − x)P ≡ 1(modx2k), k ∈ Z≥, hence (1 − x)P = 1 by infinite

products. Since we saw earlier that (1−x)G = 1, it follows that (1−x)P = (1−x)G

and hence P = G.
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Appendix B

EXPANSION OF F (z)

Given equation (5.4)

F (z) :=
1

2

E2(z)− 2E2(2z)− 3E2(3z) + 6E2(6z))

η(z)2η(2z)2η(3z)2η(6z)2

we may rewrite the numerator as

num = 1− 12(
∞∑
n=1

σ(n)qn − 2
∞∑
n=1

σ(n)q2n − 3
∞∑
n=1

σ(n)q3n + 6
∞∑
n=1

σ(n)q6n),

which we may then expand to:

num= 1−12q−12q2−12q3−12q4−72q5−12q6−96q7−12q8−12q9−72q10−144q11−

12q12−168q13−96q14−72q15−12q16−216q17−12q18−240q19−72q20−96q21−144q22−

288q23 − 12q24 − 372q25 − 168q26 − 12q27 − 96q28 − 360q29 − 72q30 − 384q31 − 12q32 −

144q33− 216q34− 576q35− 12q36− 456q37− 240q38− 168q39− 72q40− 504q41− 96q42−

528q43−144q44−72q45−288q46−576q47−12q48−684q49−372q50−216q51−168q52−

648q53− 12q54− 864q55− 96q56− 240q57− 360q58− 720q59− 72q60− 744q61− 384q62−

96q63−12q64−1008q65−144q66−816q67−216q68−288q69−576q70−864q71−12q72−

888q73−456q74−372q75−240q76−1152q77−168q78−960q79−72q80−12q81−504q82−

1008q83 − 96q84 − 1296q85 − 528q86 − 360q87 − 144q88 − 1080q89 − 72q90 − 1344q91 −

288q92−384q93−576q94−1440q95−12q96−1176q97−684q98−144q99−372q100−1224q101
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We may also rewrite the denominator as

denom =

q
(
(
∞∑

k=−∞

(−1)kq
k(3k−1)

2 )(
∞∑

k=−∞

(−1)kqk(3k−1))(
∞∑

k=−∞

(−1)kq
3k(3k−1)

2 )(
∞∑

k=−∞

(−1)kq3k(3k−1))
)2

which we may then expand to:

denom= q(1 − 2q − 3q2 + 4q3 + 6q4 + 6q5 − 16q6 − 8q7 + 9q8 − 12q9 + 12q10 −

12q11 + 38q12 + 32q13−18q14 + 16q15−126q16−18q17 + 20q18 + 24q19 + 48q20−24q21 +

168q22 + 24q23 − 89q24 − 76q25 − 27q26 − 64q27 + 30q28 + 36q29 − 88q30 − 32q31 −

36q32 + 252q33 − 96q34 + 36q35 + 254q36 − 40q37 − 114q38 − 48q39 + 42q40 − 96q41 −

52q42 + 48q43 + 54q44 − 336q45 − 96q46 − 48q47 − 87q48 + 178q49 + 378q50 + 152q51 +

198q52 + 54q53 + 72q54 + 128q55 − 60q56 − 60q57 − 660q58 − 72q59 − 538q60 + 176q61 −

144q62 + 64q63 + 228q64 + 72q65 + 884q66− 504q67− 504q68 + 192q69 + 792q70− 72q71 +

218q72− 508q73 + 267q74 + 80q75− 192q76 + 228q77− 520q78 + 96q79 + 81q80− 84q81−

492q82 +192q83−756q84 +104q85−90q86−96q87 +810q88−108q89−608q90 +672q91 +

264q92+192q93+120q94+96q95+1154q96+174q97+108q98−356q99−618q100−756q101)

Hence by long division, we obtain F (z) up to the one hundredth power:

F (z) = q−1(1 − 10q − 29q2 − 104q3 − 273q4 − 760q5 − 1685q6 − 4008q7 −

8334q8 − 17560q9 − 34563q10 − 68080q11 − 127210q12 − 238008q13 − 428579q14 −

767808q15 − 1339605q16 − 2322136q17 − 3938840q18 − 6641256q19 − 11004164q20 −

18110800q21 − 29396445q22 − 47399776q23 − 75525219q24 − 119602776q25 −

187488685q26 − 292150064q27 − 451293015q28 − 693184192q29 − 1056544104q30 −

1601892720q31− 2412131000q32− 3614038360q33− 5381800272q34− 7976577872q35−

11756874290q36 − 17252498424q37 − 25189071067q38 − 36623872928q39 −
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53003394771q40 − 76408202000q41 − 109677267110q42 − 156852011328q43 −

223429216288q44 − 317156668960q45 − 448544078280q46 − 632270338752q47 −

888181387116q48 − 1243781326488q49 − 1736124840335q50 − 2416187501080q51 −

3352424782032q52 − 4638365241360q53 − 6399176115010q54 − 8804829942696q55 −

12082000967090q56−16536729551296q57−22575800446782q58−30745455057584q59−

41769310564388q60−56614256352720q61−76556876713300q62−103294913638400q63−

139062739596981q64 − 186818663148120q65 − 250443716686960q66 −

335055123586656q67 − 447345291602292q68 − 596103464293232q69 −

792789882544071q70 − 1052398901680000q71 − 1394423876594491q72 −

1844279102053272q73 − 2434909054371082q74 − 3209118949925872q75 −

4222242370939305q76 − 5545941359639264q77 − 7272599701179653q78 −

9521492524088496q79 − 12445975806404298q80 − 16243455726657680q81 −

21167090259308427q82 − 27541822855695888q83 − 35783321104813198q84 −

46423656323060928q85 − 60141788333392025q86 − 77804514688350304q87 −

100515301158310128q88 − 129679298702725536q89 − 167081174675333524q90 −

214987933920656880q91 − 276272380475290780q92 − 354575066653720128q93 −

454499271791079477q94 − 581865065544717184q95 − 744015876274890395q96 −

950215568901119256q97 − 1212128405221148640q98 − 1544437308222115880q99 −

1965592258777124496q100 − 2498769400387544200q101)
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