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The lateral-field excited (LFE) acoustic wave sensor element has been shown to be 

more sensitive to mass, viscous, and electrical loading than the quartz crystal microbalance.  

Despite this, no equivalent circuit exists to model the LFE sensor element under 

simultaneous mechanical and electrical loading by a liquid.  In this work an equivalent circuit 

model of the LFE sensor element loaded with a Newtonian liquid is developed.  This 

equivalent circuit model is the first to model an LFE sensor under liquid loads with lumped 

elements that relate to the piezoelectric crystal and the material properties of the contacting 

liquid. 

The LFE sensor element is examined by solving the coupled-wave equations for the 

thickness-shear mode in the multi-layered LFE sensor structure, resulting in an expression 

for the admittance of the LFE sensor element.  The effects of liquid perturbations to the 

admittance of the LFE sensor element are modeled as discrete circuit elements in an 

equivalent circuit.  The model is verified independently by measuring the sensor response of 



 

LFE sensor elements with a variety of electrode gap separations, (0.5, 1.0, and 2.0 mm), to 

changes in liquid viscosity, permittivity, and conductivity. 

The equivalent circuit model developed is accurate, within ±5%, admittance near the 

resonant frequency for LFE sensor elements in deionized water. The model predicts the 

frequency shift of the LFE sensor element to perturbations in the density, viscosity, 

permittivity, and conductivity of the contacting liquid
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lC′  capacitance, lC , perturbed by a liquid load (F) 

lG′  conductance, lG , perturbed by a liquid load (S) 

lε ′  liquid permittivity, perturbed by a liquid load (F/m) 

lσ ′  liquid conductivity, perturbed by a liquid load (S/m) 

pR  parasitic resistance (Ω) 
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Chapter 1 

INTRODUCTION 

Sensors are prevalent in many areas of society.  They are used in healthcare, 

automobiles, security systems, and environmental protection to name but a small number of 

applications [1, 2].  This dissertation focuses on a novel bulk acoustic wave (BAW) sensor 

element for chemical and biological analytes, the lateral-field excited (LFE) sensor element, 

developed by Dr. Vetelino [3] and his research group at the Laboratory for Surface Science 

and Technology (LASST), University of Maine, Orono, ME.  Specifically, an equivalent 

circuit model is developed for the LFE sensor element on AT-cut quartz, under liquid loads 

that accurately predicts the sensor response due to mechanical and electrical perturbations of 

measured liquids.  

1.1. Background 

BAW devices are a well-established technology and have a long history of use as 

feedback elements in oscillators, electronic filters, and sensors [4].  A BAW device consists 

of a piezoelectric crystal with two exciting electrodes.  Piezoelectricity is the generation of 

bound electrical charges in a material due to strain in that material [5].  This effect is 

bidirectional and an applied electric field causes strain in the material.  Two methods of 

exciting acoustic waves in BAW devices are thickness-field excitation, where the applied 

electric field is directed along the thickness of a piezoelectric plate, and lateral-field 

excitation, where the electric field is directed parallel to the major surfaces of a piezoelectric 

plate [6].  Generally, there are many types of vibrations that can occur in piezoelectric 

crystals including thickness shear, face shear, extension, flexure, to name a few [7].  The 

discussion in this work will be limited to thickness shear vibrations.  There are three 
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thickness modes that occur in BAW resonators, the a, b, and c modes, with each mode 

having perpendicular particle displacements from the others [7, 8].   

One of the more common BAW structures is an AT-cut quartz crystal resonator 

with metal electrodes deposited directly on both major surfaces [7, 9].  This method of 

excitation is thickness-field excitation because the electric field is directed through the 

thickness of the quartz plate.  The AT-cut of quartz is a singly-rotated cut, described relative 

to the crystallographic axes in Figure 1.  This orientation is particularly attractive for quartz 

crystal resonators, since only the thickness shear mode, also referred to as the c mode, is 

excited [8].  Further, the velocity of the c mode does not vary appreciably with temperature 

over a wide range near room temperature [8].  This mode propagates through the thickness 

of the plate and has particle displacements parallel to the major surfaces of the plate [7, 9].  

Quartz crystal resonators are used as the timekeeping element in watches and clocks [10], as 

electronic filters [11], and as physical, chemical, or biological sensors [12].  When operated at 

its resonant frequency, the induced strain in the quartz crystal resonator generates an elastic 

standing wave that propagates through the thickness of the crystal [6, 7].  Conversely, the 

propagated elastic wave generates an electric field that can be measured at the electrodes 

[12].  A more detailed theory of operation for quartz crystal resonators is discussed in 

chapter 2. 
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Figure 1.  Crystal and electrode orientation for LFE sensor element on AT-cut quartz 

The quartz crystal resonator is often used as a gravimetric sensor, where it is called a 

quartz crystal microbalance (QCM) [13, 14] .  The electric field associated with the BAW 

does not penetrate into the sensing medium due to shielding by the sensing electrode on the 

surface.  The QCM is in widespread use as a deposition monitor to measure the amount of 

material deposited in chemical and vacuum deposition systems.  The simplicity of the QCM 

design and the linearity of the sensor response as mass accumulates on the sensing surface 

make the QCM a popular choice for vacuum deposition.  Numerous published studies exist 

on the QCM as a sensing element for chemical and biochemical analytes in gas-, liquid-, and 

solid- phase environments, see for example [4, 12, 15].  The low cost and durability of the 

QCM sensor makes it a good choice for many physical, chemical, and biological sensors.  

However, when operating in liquid-phase environments or with a film that is not 
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mechanically rigid, the QCM exhibits a response that is not linear as mass accumulates on 

the surface. 

Variations of the QCM have been examined and some are still in use such as the 

electrochemical QCM (EQCM) [16] and the QCM with dissipation monitoring (QCM-D) 

[17-20].  Several researchers have investigated probing electrical properties of a medium or 

sensing layer using thickness shear mode resonators by modifying the electrode geometry of 

the QCM.  Josse, et al. [21, 22] modified the size and/or shape of the sensing electrode and 

found the resulting electrodes were effective in detecting conductivity and permittivity 

changes in liquid environments.  In particular they investigated the effect of decreasing the 

size of the sensing electrode (Figure 2a) and used a ring-shaped sensing electrode (Figure 2b) 

to detect electrical properties in liquid environments.  They recognized that resonators with 

these modified electrodes were capacitance sensors.  Measurement of static capacitance 

changes due to perturbations in the liquid environment is made through measurement of the 

anti-resonant frequency.  Thus, these devices combine advantages of a mass-sensitive QCM 

with those of a capacitive sensor. 

 

ds 

 

dcr 

 

dor 

 

 (a) (b) (c) 

Figure 2. Geometries of thickness shear mode resonators with a (a) small sensing 
electrode, (b) ring-shaped sensing electrode, and (c) open ring sensing electrode 

Zhang and Vetelino [23, 24] also examined resonators with small sensing electrodes 

(Figure 2a) and ring-shaped sensing electrodes (Figure 2b) as well as open ring electrodes 
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(Figure 2c).  They performed extensive experiments characterizing these modified electrode 

resonators exposed to liquids while independently changing viscosity, conductivity, and 

permittivity of different solutions.  They found that as the overlap between the sensing 

electrode and the reference electrode was minimized, sensitivity of the thickness shear mode 

resonator to liquid electrical property changes was almost 25 times greater than for the 

standard QCM electrode. 

The thickness shear mode can also be excited in piezoelectric materials by 

application of an electric field parallel to the major crystal surfaces.  This method of 

excitation is known as lateral-field excitation, and was previously called parallel-field 

excitation [6].  With LFE sensor elements the electrodes are commonly positioned on the 

same crystal face and an applied electric field is directed parallel to the face of the crystal.  In 

order to excite only the thickness shear mode in AT-cut quartz, (Figure 3), the electrodes 

must be oriented with the electric field directed along the crystallographic z′  axis, , where 

o90±=ψ , as shown in Figures 1 and 4.  The bare sensing surface allows the LFE sensor 

element to detect both electrical and mechanical property changes in the analyte or sensing 

film. 
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Figure 3. Lateral coupling factors for the a , b , and c  modes in AT-cut quartz for an 
electric field directed along ψ  [25] 

 

 

Figure 4.  Electrode orientation for excitation of thickness shear mode in LFE 
resonator on AT-cut quartz: the shaded regions are the metalized electrodes 
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Lateral-field excitation of piezoelectric crystals has been used since 1941, when 

Atanasoff and Hart [26] determined the elastic parameters of quartz crystals using this 

method. Since then research has been performed on the lateral-field excitation of 

piezoelectric crystals for their use as bulk resonant filters [27-37].  Although Vig and Ballato 

[38, 39] suggested the possibility of LFE devices as sensors, Vetelino et al. [3, 25, 40] were 

the first to use LFE devices as sensors. 

In an LFE sensor element both electrodes are placed on the surface opposite the 

sensing medium while still exciting the thickness shear mode (Figure 4).  In this case, the 

sensing surface of the device is bare and one can either expose it directly to an analyte or 

attach a chemi-selective or bio-selective layer directly on the bare crystal surface.  Recently 

Hempel, et al. [41] have shown that changes in electrical properties of the analyte can cause a 

redistribution of the electric field from the lateral direction to the thickness direction.  This 

redistribution results in a piezoelectric stiffening, which produces a change in the velocity of 

the acoustic wave.  

The primary advantage of the LFE sensor element is the detection of both 

mechanical and electrical property changes at the sensor surface.  It should be noted that the 

ability to detect both mechanical and electrical property changes in an LFE sensor element 

necessitates measurement techniques in which both effects on the sensor element can be 

differentiated.  There may also be measurement environments where electrical effects on the 

sensor element are so large as to mask mechanical effects and vice versa.  Other advantages of 

LFE resonators include the ability to excite multiple modes and reduced stress at the non-

metallized surface [32-35].  The LFE sensing element has a simpler electrode structure than 

the QCM sensor and can be realized in a small portable package.  Like the QCM sensor, the 
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measurable output from an LFE sensing element is a change in its resonant frequency due to 

mechanical and electrical property changes in the sensing film caused by the measurand. 

Although a significant amount of research has been performed on the lateral-field 

excitation of the thickness shear mode in BAW resonant filters [27-37], it has been focused 

on operation in benign and stable environments, such as air.  However, the use of LFE 

resonators as chemical and biological sensors often requires that they be exposed to liquid 

environments.  To date, the theory describing an LFE sensor element operating in a liquid 

environment has not been explored in detail. 

1.2. Approach 

The primary goal of this work is to develop the theory and subsequent experimental 

verification of an LFE sensor element operating in liquid environments.  The thickness shear 

mode in the LFE sensor element will be examined by solving the coupled wave equations, 

subject to the appropriate boundary conditions, in a multi-layered LFE sensor structure.  A 

theoretical expression for the admittance of the LFE sensor element will be derived.  The 

admittance will be examined and circuit elements relating to the material properties of the 

substrate and liquid will be derived.  The circuit elements will then be configured as an 

equivalent circuit for the LFE sensor element operating in liquid environments.  A simplified 

relationship for the admittance at or near the resonant frequency of the LFE sensor element 

will be derived, along with an explicit expression for the change in resonant frequency of the 

LFE device under liquid loading.  The model will be verified by experimental measurements 

of the admittance of the LFE sensor element to changes in viscosity, permittivity, and 

conductivity in the contacting liquid.   



 9

1.3. Organization 

Chapter 1 presents a historical perspective of BAW resonators with a specific focus 

on LFE resonators and sensor elements to date.  Limitations of the current theoretical 

models and the need for developing a model for the LFE sensor element operating in liquid 

environments are discussed.  The introduction closes, qualitatively describing the approach 

used in developing the model for the LFE sensor element. 

In chapter 2, the theory of acoustic waves in non-piezoelectric and piezoelectric 

solids is presented and applied to describe the operation of BAW resonators.  The chapter 

concludes with commonly used models for describing BAW resonators. 

An equivalent circuit model for LFE sensor elements under liquid loads is developed 

in chapter 3.  The chapter begins with a detailed discussion of LFE resonator theory.  The 

theory is extended to LFE resonators perturbed by different mechanical and electrical 

loading conditions at the sensor surface.  An expression for the admittance of LFE sensor 

elements is derived and a theoretical equivalent circuit model for the LFE sensor element is 

presented for the sensor operating under liquid loads.  A simplified admittance equation for 

the LFE sensor element operating at, or near, resonance is given.  Finally, an expression for 

the frequency change of the LFE sensor element due to mechanical and electrical variations 

in the contacting liquids is developed. 

The experimental methods used to measure the LFE sensor elements’ responses to 

different liquid loads are presented in chapter 4.  The equipment used, the solutions 

measured, and the rationale for the choice of liquids is discussed in this chapter. 

The experimental results for the LFE sensor element tests are presented in chapter 5.  

The data are analyzed and the results are discussed.  The summary, conclusions of the 

research, and future research directions are presented in chapter 6. 
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Chapter 2 

BACKGROUND THEORY 

The introductory chapter presented a qualitative discussion of lateral-field excited 

(LFE) resonators, which included a brief historical perspective and the rationale for the 

research.  In this chapter the theory of acoustic waves in non-piezoelectric and piezoelectric 

crystals is discussed.  Next, the theory associated with bulk acoustic wave (BAW) resonators 

is presented, followed by an analysis of the thickness shear mode in AT-cut quartz for 

thickness-field excitation and lateral-field excitation under air loading.  Finally, three 

equivalent circuit models are examined for BAW resonators, the Mason model [42], the 

Martin model [43], and the transmission line model [35, 44].  The Mason model is given for 

thickness-field excited and LFE BAW resonators under air loading.  The Martin model is 

given for thickness-field excited resonators under simultaneous mass and liquid loading and 

is shown to reduce to the air loaded case.  Finally, the transmission line model is examined 

for thickness-field excited resonators under air and liquid loading and LFE sensor elements 

under air loading.  This leads to chapter 3 in which an equivalent circuit model for a liquid-

loaded LFE sensor element is derived and presented. 

2.1. Acoustic Waves in Non-Piezoelectric Crystals 

2.1.1. Mechanical Considerations 

“Acoustics is the study of time-varying deformations, or vibrations, in material media 

[45].”  This simple definition of acoustics is the starting point in developing a mathematical 

description of acoustic waves in solid media.  However, before a mathematical description of 

acoustic waves can be presented, the physical phenomena of strains, S , and traction forces, 

T , more commonly known as stresses, in solids will be discussed. 



 11

When external forces are applied to a solid body, it may undergo a rigid translation 

or rigid rotation, such as when one moves a box from one position to another or rotates the 

box.  However, the box may become deformed and internal forces may result from the 

external forces applied to the box in addition to, or instead of, the rigid translation or rigid 

rotation of the body.  It should be noted that an applied force to a rigid body results in 

material deformation if and only if the particles of the body are displaced with respect to the 

other particles, not if the body undergoes rigid translation or rigid rotation.  The 

deformations of a material can be described by strain, S , a measure of deformation 

representing the relative displacement between particles in the material [46].  Strain is a 

dimensionless quantity, having no units. 

When evaluating acoustic waves in three dimensions, using Cartesian coordinates, 

the strain is represented by a 3 x 3 matrix. 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

333231

232221

131211

SSS
SSS
SSS

S  , (2.1) 

where the subscripts relate the differential particle displacement in the direction of the first 

subscript with respect to the direction of the second subscript, i.e. 12S  is the strain 

component relating the differential particle displacement in the 1x  direction with respect to 

the 2x  direction.  Due to symmetry jiij SS =  where i  and j  are any Cartesian coordinates 

1x , 2x , and 3x .  The result is that S  has a maximum of 6 independent values instead of 9, 

allowing us to write S  as a 1 x 6 matrix, 
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⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

6

5

4

3

2

1

S
S
S
S
S
S

S , (2.2) 

with the index transformations shown in Table 1.  Please note that while equation 2.2 

provides us with a simpler mathematical form, equation 2.1 provides us with more insight as 

to the physical deformations that are occurring in the material. 

Table 1.  Index transformation for elastic wave equations [47] 

I  ij
1 11 
2 22 
3 33 
4 23, 32 
5 13, 31 
6 12, 21 

When a body undergoes a time-varying deformation, internal restoring forces 

develop between neighboring particles.  These internal restoring forces are traction forces, 

T , and are commonly called stresses.  The stresses between neighboring particles act upon a 

surface, and can be represented as a 3 x 3 matrix, 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

333231

232221

131211

TTT
TTT
TTT

T . (2.3) 

The individual components are best described by examining a cube of arbitrary material 

(Figure 5).  Let’s examine the shaded face of the cube in Figure 5, which is one of the two 

surfaces normal to the 3x  axis.  Any internal traction forces acting on this surface can be 

described as the sum of the traction forces acting in the 1x , 2x , and 3x  directions.  The 1x -
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and 2x -directed components of stress on the shaded 3x  face of the cube are the shear 

stresses, 31T  and 32T , whereas the 3x -directed component of stress on the shaded face of the 

cube is the compressional stress, 33T .  Thus, for an arbitrary geometry, the stress component 

ijT  is the j -directed stress acting on an i  surface, where i  and j  correspond to the 

Cartesian coordinates 1x , 2x , and 3x .  From this description it can be seen that the units of 

stress are N/m2.  Due to symmetry jiij TT =  and a simplified form of the matrix T can be 

represented using the transformations given in Table 1 as follows, 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

6

5

4

3

2

1

T
T
T
T
T
T

T .  (2.4) 

 

Figure 5.  Stresses on a surface of a cube of arbitrary material 
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If we imagine that the particles or atoms that make up the solid are connected by 

springs, it is easy to see that, as a particle is displaced, the restoring force will work to bring 

the particle to its initial position.  The relation of the restoring force to this displacement is 

Hooke’s Law, [48, 49] described symbolically by the equation 

[ ] [ ][ ]ScT = , (2.5) 

where [ ]c  is a matrix of elastic stiffness constants.  Since strain is dimensionless, elastic 

stiffness must have the same units as stress, which are N/m2.  Materials that have small 

values of c  are easily deformed whereas materials that have larger values of c  are more 

rigid.  This is the same as for a spring, thus elastic stiffness can be imagined as the 

microscopic spring constant of a material [48].  The elastic stiffness constants form a 6x6 

matrix. 

[ ]

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

666564636261

565554535251

464544434241

363534333231

262524232221

161514131211

cccccc
cccccc
cccccc
cccccc
cccccc
cccccc

c . (2.6) 

The elastic stiffness constants are a material property and, for anisotropic solids, depend on 

the orientation of the solid body.  If the solid is a crystal and the location of the crystalline 

axes are known, then [ ]c  can be easily rotated to the desired crystal orientation using 

transformation matrices. 

Conversely, Hooke’s law can also be used to relate the strain to a known stress, 

[ ] [ ][ ]TsS = , (2.7) 

where [ ]s  is a matrix of elastic compliance constants.  Elastic compliance has units of m2/N 

and is the measure of the deformability of the material.  Thus, materials with large values of 
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[ ]s  are easily deformed while materials that have smaller values of [ ]s  are more rigid.  The 

matrix has the same form as [ ]c , therefore 

[ ]

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

666564636261

565554535251

464544434241

363534333231

262524232221

161514131211

ssssss
ssssss
ssssss
ssssss
ssssss
ssssss

s . (2.8) 

Hooke’s law is an idealized model for relating stress and strain.  However, close 

inspection of equation (2.5) reveals that, under resonant conditions, vibrations in solids 

would persist indefinitely since there is no term for damping the vibrations.  It is similar to 

investigating a mass attached to a spring—if the mass is dropped the mass will oscillate up 

and down as the restoring force of the spring acts on the mass.  Intuitively, we know that 

eventually the magnitude of the oscillations will decrease until the mass stops vibrating on 

the spring.  The same is true for elastic waves in solids with the vibrations of the particles 

being damped over time.  Acoustic losses in many materials at room temperature can be 

adequately described by a viscous damping term [48] and Hooke’s law can be modified as 

follows, 

[ ] [ ][ ] [ ] [ ]S
t

ScT
∂
∂

+= η , (2.9) 

where [ ]η  is the viscosity constant matrix.  Viscosity is a linear relation of the rate of strain 

to stress in the solid and has units of N•s/m2.  Mathematically, it can be seen that, in the 

absence of a source of vibrations, the vibrations will initially have an amplitude related to the 

applied external force, and will decay with a rate depending on the viscosity.  Equation (2.9) 

is the elastic constitutive equation. 
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In addition to the elastic constitutive equation there are the Newtonian stress 

equations of motion [50], 

jiij uT &&ρ=, , (2.10) 

where iijT ,  is the derivative of ijT  with respect to the i  direction, ρ  is the density of the 

material, and ju  is the particle displacement in the j  direction.  The two dots above ju  

denote the second derivative of displacement with respect to time.  Equation (2.10) is in 

Cartesian tensor notation where the equation is summed over the subscript i  for the 1x , 2x , 

and 3x  directions. 

The final equation that is needed to describe elastic waves in solids are the strain-

mechanical displacement relations 

)(
2
1

,, ijjiij uuS += . (2.11) 

2.1.2. Electromagnetic Considerations 

When a solid is exposed to electromagnetic fields and waves the behavior is 

described by the boundary conditions of the solid and Maxwell’s equations which are given 

below in Cartesian tensor notation [50] as follows, 

iiji JDH += &
, , (2.12) 

iji BE &−=, , (2.13) 

0, =iiB , (2.14) 

and 

eiiD ρ=, . (2.15) 
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H  is the magnetic field intensity in units of A/m, D , the electric displacement in units of 

C/m2, J , the current density in units of A/m2, E , the electric field intensity in units of 

V/m, B , the magnetic flux in units of V•s/m2, and eρ , the electric charge density in units of 

C/m3.  The linear electromagnetic constitutive equations [5] are 

jiji ED ε= , (2.16) 

jiji HB μ= , (2.17) 

and 

jiji EJ σ= , (2.18) 

where ε  is the permittivity of the solid in units of F/m, μ , the permeability of the solid in 

units of H/m, and σ , the conductivity of the solid in S/m. 

2.2. Acoustic Waves in Piezoelectric Crystals 

In chapter 1 piezoelectricity was defined as the generation of bound electrical 

charges due to a strain in a material and conversely an applied electric field can result in 

strain in a material [5].  In the previous section the theory of acoustic waves in solids was 

presented while considering both mechanical and electrical effects on the material.  

However, the previous equations described either mechanical effects or electrical effects of 

the material separately.  In piezoelectric solids the coupling of the mechanical and electrical 

equations must be described.  The following equations ignore losses due to crystal viscosity. 

The magnitude of the piezoelectric effect is described by piezoelectric stress 

constants, ijke , which are measured in units of C/m2.  The piezoelectric stress constants 

allow for the coupling of the mechanical and electrical equations through the piezoelectric 

constitutive equations [50], 
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kkijklijklij EeScT −=  (2.19) 

and 

kliklkiki SeED += ε . (2.20) 

Careful examination of the first terms in equations (2.19) and (2.20) reveal that they are 

simply Hooke’s law, equation (2.5), and a linear electromagnetic constitutive relation, 

equation (2.16), without considering the piezoelectric properties of the solid. 

As with Hooke’s law, stress rather than strain can be the independent variable.  The 

piezoelectric constitutive equations are then given as 

kijkklijklij EdTsS +=  (2.21) 

and 

jkijkjiji TdED += ε , (2.22) 

where d  are the piezoelectric strain constants in units of C/N. 

2.2.1. The Quasistatic Approximation 

In the analysis of acoustic waves in piezoelectric solids, it is convenient to use the 

quasistatic approximation.  This approximation is a result of the fact that the generated 

electric field, E , due to strain in a piezoelectric material does not couple to the magnetic 

field, H .  Thus, no electromagnetic energy is carried because of the acoustic wave [51] and 

the electric field is simply the gradient of scalar potential, φ , as follows, 

kkE ,φ−= . (2.23) 

This also means that there is no free charge, (however, there are bound charges due to the 

acoustic wave), in the solid.  This allows for equation (2.15) to be written as 

0, =iiD . (2.24) 
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Finally, the quasistatic approximation results in a generated electric field that is longitudinal.  

This means that the electric potential varies spatially in the direction of the acoustic wave 

propagation. 

2.3. Bulk Acoustic Wave Resonators 

Bulk acoustic wave (BAW) resonators have been used since the early 20th century [4] 

and are used as frequency control devices, electronic filters, and sensors.  There are many 

designs of BAW resonators, but essentially a BAW resonator consists of a plate of 

piezoelectric material with two electrodes.  The electrodes provide the electrical contact both 

for delivering the electrical signal to and receiving the electrical response from the resonator.  

The piezoelectric material undergoes a deformation due to the applied electrical signal and, 

with proper orientation of the piezoelectric plate, an acoustic wave is propagated through 

the bulk of the plate.  This BAW generates bound charges in the piezoelectric plate resulting 

in an electrical response of the plate to the input signal.   

Top Surface

Bottom Surface

Side View

Electrodes

Quartz

h

 

Figure 6.  Geometry of a simple bulk acoustic wave resonator on quartz, not drawn to 
scale. 
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The simplest geometry for a bulk acoustic wave resonator consists of a quartz disc of 

thickness, h , with the major surfaces covered by a metallic electrode (Figure 6).  Applying a 

high frequency electrical signal to the electrodes excites the thickness shear mode in the 

quartz disc. 

The thickness shear mode is an elastic standing wave propagated through the 

thickness, h , of the crystal.  The particle displacement for this mode is perpendicular to the 

propagation direction (Figure 7).  The velocity, sv , of the thickness shear mode is expressed 

as, 

λfvs = , (2.25) 

where f is the frequency and λ , the wavelength of the acoustic wave.  The orientation of 

the crystal, the crystal density, and its mechanical compliance and piezoelectric properties 

determines sv .  The wavelength of the acoustic wave is constrained by the geometry of the 

plate as follows, 

2
λnh =  (2.26) 

where L,5,3,1=n .  The allowed frequencies of operation can be found by solving equation 

(2.26) for λ and substituting into equation (2.25) yielding: 

h
nvf sn

2
)( = , (2.27) 

where )(nf  is the n th harmonic of the thickness shear mode.  Only odd-numbered 

harmonics, (i.e. K5,3,1=n ), can be excited since the even-numbered harmonics have no 

particle displacement at the surface of the quartz disc as opposed to odd-numbered 

harmonics, which have maximum particle displacement at the surfaces of the disc. 
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Figure 7.  The particle displacement profile of the thickness shear mode having 
arbitrary amplitude, A, in a quartz disc (side view) for (left) the fundamental (n = 1) 
and (right) the third (n = 3) harmonic. 

2.3.1. Thickness-Field Excited BAW Resonators 

The most common way of exciting the thickness shear mode in BAW resonators is 

by means of thickness-field excitation.  Thickness-field excited resonators have electrodes on 

both major surfaces of the crystal (Figure 6), thus the applied electric field is directed 

between the electrodes through the thickness of the piezoelectric plate.   

The most popular and well-known BAW sensor platform is the quartz crystal 

microbalance (QCM).  The standard electrode geometry of the QCM sensor is shown in 

Figure 8.  The metalized region on the opposite surface (reference side) is outlined with 

dashed lines.  The tab of the electrode on the sensing side wraps around the edge of the 

crystal to the reference side so that both electrodes can be contacted on the reference side. 
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Figure 8.  The top view (sensing surface) of a standard QCM sensor.  The shaded 
and dotted regions are gold.  The dotted regions indicate the reference (bottom) side 
while the shaded regions indicate the sensing (top) side [52]. 

QCM rate monitors have a slightly different electrode configuration with the sensing 

electrode covering almost the entire surface and no electrode wrap-around [14].  In the 

QCM sensor an electrical signal is delivered to the QCM via two leads that contact the back 

surface or reference surface of the crystal.  The application of a high-frequency electrical 

signal excites the resonant thickness shear mode in the crystal.  The thickness shear mode 

has mechanical displacements in the 3x  direction that are perpendicular to the propagation 

in the 2x  direction and parallel to the crystal surfaces (Figure 7).  When a mechanical change 

(mass, viscosity, or elasticity) occurs on the sensor surface, the resonant frequency of the 

device changes [13, 43, 53].  For the QCM rate monitor, leads are attached to both crystal 

surfaces, also resulting in thickness field excitation. 

Although the QCM rate monitor is the standard for monitoring thin film thicknesses 

in deposition systems, there are disadvantages associated with the QCM sensor platform.  

For some chemical or biological sensing applications, such as antibody attachment, the gold 

electrode on the sensing surface of the QCM necessitates using techniques such as the 

Langmuir–Blodgett method [54] to attach the selective chemical or biological film to the 

sensor surface instead of the silicon-based surface chemistries that are often used in chemical 
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and biological sensing applications.  Further, the electric field associated with the thickness 

shear mode cannot penetrate into the measurand or sensing layer due to the conducting 

electrode on the sensing surface.  Therefore, electrical property changes to the permittivity 

and/or conductivity of the adjacent liquid or chemi- or bioselective film caused by the target 

analyte cannot be detected with the standard QCM sensor. 

Several researchers have investigated probing the electrical properties of a medium 

or sensing layer using thickness shear mode resonators by modifying the electrode geometry 

of the QCM.  Josse, et al. modified the size and/or shape of the sensing electrode and found 

that it was effective in detecting conductivity and permittivity changes in liquid environments 

[21, 22].  In particular, they investigated the effect of decreasing the size of the sensing 

electrode (Figure 2.(a)) and also used a ring-shaped sensing electrode (Figure 2.(b)) to detect 

electrical properties in liquid environments.  They recognized that resonators with these 

modified electrodes were capacitance sensors.  Measurement of the static capacitance 

changes due to changes in the liquid environment is made through measurement of the 

changes in anti-resonant frequency.  Thus, these devices combine the advantages of a mass-

sensitive QCM with a capacitive sensor. 

Zhang and Vetelino also examined the resonators with small sensing electrodes 

(Figure 2.(a)) and ring-shaped sensing electrodes (Figure 2.(b)) as well as an open-ring 

electrode (Figure 2.(c)) [23, 24].  They performed extensive experiments characterizing these 

modified electrode resonators to liquid loads with changing viscosity, conductivity and 

permittivity.  They found that as the overlap between the sensing electrode and the reference 

electrode was minimized, the sensitivity of the thickness shear mode resonator to liquid 

electrical property changes was almost 25 times greater than for the standard QCM 

electrode.  Specifically, the results obtained when the devices were exposed to various 
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concentrations of NaCl in solution showed the decreased size and open-ring sensing 

electrodes to have much higher frequency shifts than the standard QCM. 

Andle, et al. examined a novel thickness shear mode sensor referred to as a 

monolithic piezoelectric sensor [55-57].  This sensor has a circular electrode on the reference 

side of the piezoelectric disc and two semicircular electrodes separated by a gap on the 

sensing surface.  This structure results in a two-pole coupled resonator in which the electrical 

response is determined by the mechanical coupling between the input and output electrodes.  

The two resonant modes of the monolithic piezoelectric sensor were found to be equally 

sensitive to mass loading by thin solid films, yet exhibited different responses to viscous 

liquid loading.  The advantage of this sensor is that a single-frequency oscillator can be 

designed to be sensitive only to bound mass at the sensing surface and not to solution 

effects.  The design of the monolithic piezoelectric sensor must be optimized so that there is 

minimal compressional wave generation. 

2.3.2. Lateral-Field Excitation of BAW Resonators 

The thickness shear mode can also be excited in piezoelectric plates by application of 

an electric field parallel to the crystal surfaces.  This excitation is called lateral-field 

excitation.  In an LFE sensor element both electrodes are placed on the surface opposite the 

sensing medium while still exciting a thickness shear mode (Figure 4).  In this case, the 

sensing surface of the device is bare and one can either expose it directly to a measurand or 

attach a chemi- or bioselective layer directly on the bare crystal surface. The LFE sensing 

platform has a simpler electrode structure than the QCM sensor and can be realized in a 

small portable package.  Like the QCM sensor, the measurable output from an LFE sensing 

platform is a change in its resonant frequency due to mechanical and electrical property 

changes in the sensing film caused by the measurand. 
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Recently Hempel, et al. have shown that changes in the electrical properties of the 

analyte can cause a redistribution of the electric field from the lateral direction to the 

thickness direction [41].  This redistribution results in a piezoelectric stiffening which 

produces a change in the velocity of the acoustic wave.  Thus, the bare quartz sensing 

surface allows the LFE sensor element to detect both electrical and mechanical property 

changes in the analyte or sensing film. 

2.4. Modeling Bulk Acoustic Waves 

The theory of elastic waves in both non-piezoelectric and piezoelectric solids has 

been discussed in section 2.2.  A full coupled-wave analysis of the thickness shear mode in 

piezoelectric crystals is mathematically advanced, requiring knowledge in linear algebra, 

multidimensional calculus, and tensor analysis.  The resulting systems of equations often 

must be solved using numerical methods as the equations can’t always be determined 

analytically and a full 3-dimensional analysis is difficult to solve.  Due to the piezoelectric 

nature of the resonator crystal the particle “displacements and the electrical potential as well 

as their derivatives with respect to time and location are coupled with each other… [58].”  

This can result in large errors of the predicted behavior of the thickness shear mode for 

small errors in the crystal alignment.  For certain crystal and electrode orientations a one-

dimensional analysis may be used to model the thickness shear mode.  In order to use a one-

dimensional analysis for a thickness shear mode resonator, the lateral dimensions of the 

resonator crystal must be much greater than the crystal thickness [59].  The resonator crystal 

is assumed to be infinite in the lateral directions and further, the physical properties of the 

crystal are assumed to be constant in the lateral directions [60]. 
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One may simplify this complicated analysis through the use of models.  In this 

section three models for describing the thickness shear mode in BAW resonators will be 

presented.  The models examined are: 

1. the Mason circuit model; 

2. the Martin circuit model; 

3. a transmission line model. 

All of the models are derived through use of the equations given in sections 2.1. - 2.3. 

applied to the specific electrode geometry and crystal orientation for a particular BAW 

resonator.  Since all of the devices examined for this research were fabricated on AT-cut 

quartz, the following analysis will be applied using this crystal.  A summary of the various 

models and the loads under which an admittance is presented in this section are given in 

Table 2. 

Table 2. The equivalent circuit models for BAW resonators and the loads under 
which the admittance is presented 

model thickness-field excitation lateral-field excitation 
Mason model air load air load 
Martin model liquid load reduced to air 

load 
N/A 

transmission line model air and liquid loads air load 

2.4.1. An Analysis of the Thickness Shear Mode in BAW Resonators 

In order to understand the physical significance of the three models, it is useful to 

present the equations describing the thickness shear mode in AT-cut quartz for both 

thickness-field and lateral-field excited BAW resonators.  For both methods of excitation the 

analysis will end with an expression for the admittance of the thickness shear mode in AT-

cut quartz.  The analysis of thickness-field excited BAW resonators is performed for 

resonators under liquid loading.  The admittance for the thickness-field excited BAW 

resonator is presented for the special case of a resonator under air loading.  The analysis for 
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the LFE BAW resonators is performed only for the case of an air load.  The full analysis of 

the LFE BAW resonator under liquid loading is given in chapter 3. 

2.4.1.1. Thickness-Field Excited BAW Resonator 

A BAW resonator under liquid load has the geometry shown in Figure 9.  The large 

lateral dimensions of the AT-cut quartz disc (25.4 mm in diameter), with respect to the 

crystal thickness, ( h = 0.33 mm) allows one “to treat the crystal as an infinite plate with finite 

thickness [59].”  Because the quartz plate is assumed to be infinite in the 1x  and 3x  

directions (Figure 9), the associated physical properties in these directions are assumed not 

to change. 

 

Figure 9.  Cross-sectional view BAW resonator with infinitesimally thin electrodes at 
02 =x  and hx =2 . 

If it is assumed that the thickness shear mode in AT-cut quartz is a pure shear wave 

when excited by an electric field directed along the 2x  axis, then a one-dimensional model 

provides a good approximation.  The shear stresses for the geometry given in Figure 9 are 
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the stresses in the 1x  and 3x direction acting on the surface normal to 2x , which are defined 

as 21T  and 23T from Figure 5.  Recall from section 2.1. that due to the symmetry of the 

crystal that lkkl SS =  and jiij TT = .  The pure shear stresses are found from equation (2.19) 

and can be expressed as 

2261266226216612661221 2 EeScEeScScTT −=−+==  (2.28) 

and 

2242344224324423443223 2 EeScEeScScTT −=−+== . (2.29) 

It must be noted that when applying the index transformation in Table 1 to the piezoelectric 

stress constants, the transformation is applied to the last two indices, with the first index 

remaining unchanged.  Substituting equations (2.11) and ((2.23)) into equations (2.28) and 

(2.29) yields 

2,262,16612 φeucT +=    (2.30) 

and 

2,242,34432 φeucT += . (2.31) 

However, if one examines the piezoelectric stress constants for AT-quartz (Table 3), it is 

found that 024 =e , meaning that the shear stress, 32T , can not be generated by the electric 

field, 2E , and thus, may be ignored.  The electrical displacement, found by substituting 

equations (2.11) and (2.23) into equation (2.20), is 

2,222,1262 φε−= ueD . (2.32) 

For a pure shear wave in AT-cut quartz there are only displacements along the 1x  axis that 

vary only in the 2x direction (Figure 7), i.e. ( )txfu ,21 = .  Therefore, the equation of motion, 

from equation (2.10) is 
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12,12 uT &&ρ=  (2.33) 

and Maxwell’s equation for electrical displacement, from equation (2.24) is 

02,2 =D . (2.34) 

Table 3.  Non zero material constants for AT-cut quartz [47, 61] 

9
11 1074.86 ×=c  N/m2 9

12 1025.8 ×−=c  N/m2 9
13 1015.27 ×=c  N/m2 

9
14 1066.3 ×−=c  N/m2 9

22 1077.129 ×=c  N/m2 9
23 1042.7 ×−=c  N/m2 

9
24 107.5 ×=c  N/m2 9

33 1083.102 ×=c  N/m2 9
34 1092.9 ×=c  N/m2 

9
44 1061.38 ×=c  N/m2 9

55 1081.68 ×=c  N/m2 9
56 1053.2 ×=c  N/m2 

9
66 10013.29 ×=c  N/m2 171.011 −=e  C/m2 152.012 −=e  C/m2 

0187.013 −=e  C/m2 067.014 =e  C/m2 108.025 =e  C/m2 
0949.026 −=e  C/m2 0761.035 −=e  C/m2 06707.036 =e  C/m2 

12
11 1021.39 −×=ε  C2/Nm2 12

22 10816.39 −×=ε  C2/Nm2 12
23 108678.0 −×=ε  C2/Nm2

12
33 10424.40 −×=ε  C2/Nm2 2649=ρ  kg/m3 

Since the particle displacement and the electric potential have a harmonic time 

dependence,  

tj
ieutu ω=)(  (2.35) 

and 

tj
iet ωφφ =)( , (2.36) 

equations (2.30) and ((2.32)) can be rewritten as 

tjtj eeeucT ωω φ 2,262,16612 +=  (2.37) 

and 

tjtj eeueD ωω φε 2,222,1262 −= . (2.38) 

Substituting equation (2.37) into equation (2.33) and rearranging results in: 

01
2

22,2622,166 =++ ueuc ρωφ . (2.39) 

Similarly, substituting equation (2.38) into equation (2.34) and rearranging yields: 
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22,1
22

26
22, ue

ε
φ = . (2.40) 

Next, equation (2.40) is substituted into equation (2.39), 

01
2

22,166 =+ uuc ρω  (2.41) 

where 66c  is defined as the piezoelectrically stiffened elastic contant [62] as follows, 

22

2
26

6666 ε
ecc += . (2.42) 

Since the thickness shear mode generates a standing wave in the quartz crystal, the 

acoustic wave is moving in both the 2x+  and 2x−  directions.  The shear particle 

displacement is then described by 

tjxjkxjk eeAeAu tt ω)( 22
211

−+=  (2.43) 

where tk  is the wave propagation vector for the thickness-field excited thickness shear 

mode, 

66c
kt

ρω= . (2.44) 

Substituting equation (2.43) into equations (2.39) and (2.40) and integrating both equations 

twice with respect to 2x  gives 

( )[ ] tjxjkxjk
t eAeeAeAcjkT tt ω

326216612
22 +−= − , (2.45) 

( ) tjxjkxjk eAxAeAeAe
tt ω

ε
φ ⎥

⎦

⎤
⎢
⎣

⎡
+++= −

42321
22

26 22 , (2.46) 

and 

tjeAD ωε 3222 −= . (2.47) 
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The liquid in contact with the sensing surface is non-piezoelectric and can be treated 

as infinite in the 2x  direction since the acoustic wave decays in the liquid within several 

wavelengths.  The differential equation in the liquid is 

01
2

22,1 =+ uuc ll ρω , (2.48) 

where lc  and lρ  are the shear modulus and density of the liquid [60].  The shear modulus 

for a semi-infinite Newtonian liquid is defined [60] as follows, 

llc ωη= , (2.49) 

where lη  is the bulk viscosity of the liquid.  The solution of equation (2.48) in the liquid then 

takes the form 

2
1

xjklBeu = , (2.50) 

where lk  is the propagation vector in the liquid. 

The boundary conditions for the thickness-field excited BAW resonator are [43, 60]: 

1. the particle displacement is continuous at the boundary between the 

resonator and the contacting liquid, ( ))()( 11
+− = huhu , 

2. the shear stress is continuous at the boundary between the resonator and the 

contacting liquid, ( ))()( 1212
+− = hThT , 

3. the shear stress at the free surface of the resonator disappears, ( )0)0(12 =T , 

4. the electrical potential is the same as the applied potential at the sensing 

surface, ( )tjeh ωφφ 0)( ±=  and 

5. the electrical potential is the same as the applied potential at the reference 

surface, ( )tje ωφφ 0)0( m= . 
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This analysis of the thickness shear mode in an AT-cut quartz BAW resonator results 

in five unknowns: 1A , 2A , 3A , 4A , and B .  The five boundary conditions listed above 

provide one with the equations necessary to solve for the unknowns.  Standard linear algebra 

methods can be used to solve this system of equations.  The impedance for a liquid-loaded 

thickness-field excited BAW resonator can be shown to be the following [60], 

( )
( )

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−

−⎟
⎠
⎞

⎜
⎝
⎛

−=
hk

c
Zj

c
Zjhk

hk
ce

Cj
Z

t
L

Lt

t cot1

2
tan

2
11

66

666622
2
26

0

ρ

ρε
ω

, (2.51) 

where LZ  is the impedance of the liquid load, defined [60] as follows, 

( )
2

1 ll
L jZ ηωρ

+= . (2.52) 

2.4.1.2. Lateral-Field Excited BAW Resonator 

The analysis of LFE BAW resonators is presented for the case of a resonator under 

air loading.  The treatment for lateral-field excited BAW resonators is similar to that given 

for thickness-field excited BAW resonators.  The primary difference is that the electrodes are 

positioned such that the electric field is directed along the 3x  axis (Figure 10).  The approach 

used here to find the admittance of LFE resonators was first reported by Yamada and 

Niizeki [63]. 

Two assumptions are made to ensure that only laterally-directed electric fields are 

considered.  The first is that the thickness of the plate is small when compared with the 

other dimensions.  The second is that the applied electric field is strictly parallel to the major 

faces of the plate throughout the crystal plate.  Since the applied electric field is assumed to 
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be only laterally oriented, the fringing fields, which occur due to the small dimensions of the 

quartz plate, are neglected. 

Quartz

w

d

h

x
3

x
2

x
1

 

Figure 10.  A lateral-field excited BAW resonator with the origin of the coordinate 
system centered on the bottom surface of the plate 

The mechanical boundary condition is that the two major faces of the plate are 

traction free, 

02 =jT  at hx ,02 = . (2.53) 

The electrical boundary condition is that the electric displacement must be continuous at the 

major faces of the plate, 

202 )( outED ε=  at hx ,02 = , (2.54) 

where ( )2outE  is the external electric field in the 2x  direction.  Because of the second 

assumption where the electric field components are strictly parallel to the major faces of the 

plate, .0)( 2 =outE   Thus, 

02 =D  at hx ,02 = . (2.55) 
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From the two initial assumptions on page 32 all of the basic quantities except φ  

should be independent of 3x  and 1x .  The electric potential, φ , depends on 2x  and 3x .  The 

basic equations, (2.10)-(2.24) for a vibrating plate can now be simplified, 

jj uT &&ρ=2,2 , (2.56) 

02,2 =D , (2.57) 

3322222,222 EeEeucT jjkjkj −−= , (2.58) 

3232222,222 EEueD kk εε ++= , (2.59) 

and 

3332232,323 EEueD kk εε ++= . (2.60) 

From equations (2.55) and (2.57), 

02 =D  (2.61) 

for any value of 1x  or 2x .  Substituting equation (2.61) into (2.59), 

3
22

23
2,

22

22
2 EueE k

k

ε
ε

ε
−−= . (2.62) 

This new expression for 2E  can then be substituted into equations (2.58) and (2.60), yielding 

322
22

23
322,2 EeeucT jjkjkj ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−=
ε
ε , (2.63) 

and 

3332,
22

2322
323 EueeD k

k
k ε

ε
ε

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=  (2.64) 

where 

22

2222
22 ε

kj
jkjk

ee
cc +=  (2.65) 
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and 

22

2
23

3333 ε
εεε −= . (2.66) 

Since the index, 2, is fixed in equations (2.53)-(2.63), equations (2.56) and (2.63) can 

be written in matrix notation as follows, 

,2, uT &&ρ=  (2.67) 

32,][ Ecjk euT −= . (2.68) 

The components of these vectors are defined [63] as  

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

23

22

21

T
T
T

T , 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝
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1

u
u
u
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⎠

⎞

⎜
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⎝

⎛

−
−
−

=

2223223323

2223222322

2223221321

/
/
/

εε
εε
εε

ee
ee
ee

e . (2.69) 

The boundary condition given by equation (2.53) may be rewritten using matrix notation and 

is given: 

0T =  at hx ,02 =  (2.70) 

where 0  is the zero vector. 

Since ][ jkc  is a real and symmetric matrix, it can be diagonalized by an orthogonal 

matrix [64], ][β  as follows, 

][]][[][ )(
jk

j
jk

T cc δββ =  (2.71) 

where 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
)3(

3
)2(

3
)1(

3

)3(
2

)2(
2

)1(
2

)3(
1

)2(
1

)1(
1

][
βββ
βββ
βββ

β  (2.72) 

and ][ )(
jk

jc δ  is a diagonal matrix.  [ ]Tβ  is the transpose matrix of [ ]β , which satisfies the 

relation 



 36

[ ] [ ] [ ][ ] [ ]jk
TT δββββ == , (2.73)   

 and jkδ  are the elements of the identity matrix defined as 

 
kj
kj

jk ≠
=

=
,0
,1

δ . (2.74)  

Multiplying both sides of equation (2.71) by [ ]β  and substituting (2.73) yields 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

==

)3(

)2(

)1(

)3(
3

)2(
3

)1(
3

)3(
2

)2(
2

)1(
2

)3(
1

)2(
1

)1(
1

)(

00
00
00

]][[]][[]][[]][[

c
c

c

ccc jk
j

jkjk
T

βββ
βββ
βββ

δβββββ

. (2.75) 

Since the matrix ][ )(
jk

jc δ  contains only nonzero values on the diagonal equation (2.75) can 

be rewritten as an eigenequation as follows, 

)()()(][ iii
jk cc ββ = , (2.76) 

where 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

=
)(

3

)(
2

)(
1

)(

i

i

i

i

β
β
β

β   (2.77) 

is the eigenvector of ][ jkc  and )(ic  is the eigenvalue for each of the acoustic modes, where 

cbai ,,= .  Physically, the eigenvalues, )(ic , are related to the longitudinal mode, ( ai = ), the 

fast shear mode, ( bi = ), and the thickness shear mode, ( ci = ) [35].  The longitudinal mode 

has the eigenvalue, )(ac , with the largest root and, thus the greatest acoustic wave velocity, 

av , and the eigenvector, )(aβ , has its largest component in the 2x  direction.  The fast shear 

mode has the eigenvalue, )(bc , with the median root and, thus the median acoustic wave 

velocity, av , and the eigenvector, )(bβ , has its largest component in the 1x  direction.  The 
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thickness shear mode has the eigenvalue, )(cc , with the smallest root and, thus the smallest 

acoustic wave velocity, av , and the eigenvector, )(cβ , has its largest component in the 3x  

direction.  These results are summarized in Table 4. 

Table 4.  The relationship between the acoustic modes and the eigenvalues for an 
LFE resonator on AT-cut quartz 

mode eigenvalue ( )(ic ) eigenvector ( )(iβ ) 
longitudinal mode (a) the largest root the largest component is in 

the 2x  direction 
fast shear mode (b) the median root the largest component is in 

the 1x  direction 
thickness shear mode (c) the smallest root the largest component is in 

the 3x  direction 

It is convenient to transform the vectors given in equation (2.69) as follows, 

[ ]
[ ]
[ ] 0

0

0

,
,

ee
uu
TT

β

β

β

=

=

=

 (2.78) 

The transformed vectors in equation (2.78) are used along with equations (2.71) and (2.73) to 

rewrite equations (2.67), (2.68), and (2.70), as 

00
2, uT &&ρ= , (2.79) 

[ ] [ ][ ] [ ] [ ] [ ] 3
00

2,
)(

3
00

2,
0 EcEc jk

iT
jk

T eueuT −=−= δββββ , (2.80) 

and 

00 =T  at hx ,02 = . (2.81) 

Substituting equation (2.80) into equation (2.79) yields 

[ ] 020
2,3

00
22,

)( uueu ρωρδ −==− &&Ec jk
i . (2.82) 

The applied electric field, 3E , is parallel to the quartz plate and thus, uniform along 

the 3x  axis, but may vary along the 2x  axis since the mechanical displacement changes along 
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this axis.  The electrodes are on the faces normal to the 3x  axis, therefore the potential 

difference between the electrodes does not vary along the 2x  axis.  If the potential difference 

between the electrodes is 0φ  then using equation ((2.23)) and taking the derivative of both 

sides with respect to 2x  yields 

032,02,3 =−= φE . (2.83) 

Substituting equation (2.83) into equation (2.82) results in 

[ ] 020
22,

)( uu ρωδ −=jk
ic . (2.84) 

Since the c mode is the only mode that is piezoelectrically coupled to 3E  (Figure 3), equation 

(2.84) can be simplified as follows, 

)(02)(0
22,

)( cccc uu ρω−= . (2.85) 

The standing wave solution to equation (2.85) is 

( ) ( )2
)(

2
)()(0 cossin xkBxkA c

lc
c

lc
c +=u ,  (2.86) 

where cA  and cB are constants and 
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lk is the propagation constant, expressed as 
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Taking the derivative of equation (2.86) with respect to 2x  yields 
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Substituting equation (2.88) into equation (2.80) yields 
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Substituting equation (2.89) into the boundary conditions given in equation (2.81) results in 
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Solving equations (2.90) and for cA  and cB  results in 
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Substituting equation (2.92) into equation (2.88) makes 
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The electric displacement, 3D , between the electrodes can be found by substituting equation 

(2.69) and then into equation (2.64) results in the following, 

3333 ED ε+•= ue . (2.94) 

Substituting equation (2.78) into equation (2.95) for the c mode yields 
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where )(c
mk  is the lateral coupling factor to the c mode, defined as 
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The total charge on the electrode is given as [65] 

∫Α −=
Α= dDQ

ax33 , (2.98) 

where 21dxdxdA = is the differential area of the electrode.  Substituting equation (2.96) into 

equation (2.98) yields 



 40

( ) ( ) ( ) ( )( )( )
( ) ( ) ( ) ( )( )( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( )( )⎟⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−+=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞⎜

⎝
⎛ −+=

++=

++=

∫
∫

1cos2tansin1

cos2tansin

sin2tancos1

sin2tancos1

)()()(
)(

2)(

333

02
)()(

02
)(

)(

2)(

02333

0 22
)()(

2
)(2)(

333

212
)()(

2
)(2)(

333

hkhkhk
hk

kEdh

xkhkxk
k
kxEd

dxxkhkxkkEd

dxdxxkhkxkkEQ

c
l

c
l

c
lc

l

c
m

hc
l

c
l

hc
lc

l

c
mh

h c
l

c
l

c
l

c
m

A

c
l

c
l

c
l

c
m

ε

ε

ε

ε

. (2.99) 

Recall, from equation (2.26), that the thickness of the crystal, 2λnh =  where n  is an 

odd integer, thus 

πnhk c
l =)( . (2.100) 

Substituting equation (2.100) into (2.99) results in the following 
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Remembering that the thickness shear mode has a time dependence tje ω , the current 

between the electrodes is calculated to be 

Qj
t
QI ω=
∂
∂

= . (2.102) 

The applied voltage between the electrodes is 

wEV 3= . (2.103) 

 The admittance of the LFE resonator can be found by substituting equation (2.101) into 

equation (2.102) and dividing by equation (2.103) as follows, 

( ) ( )
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+=

2
2tan1 )(

)(

2)(33

hk
hkk

w
dhj

V
IY c

c

l

lc
m

εω
. (2.104) 

The static capacitance for the LFE resonator is 
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allowing equation (2.104)to be rewritten as 
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Comparison of equation (2.106) to equation (2.51) reveals similarities between the 

impedance of thickness-field excited BAW resonators and the admittance of lateral-field 

excited BAW resonators.  This duality between the impedance of thickness-field excited 

resonators and the admittance of LFE resonators is due to the differences of the electrode 

geometries to excite the thickness shear mode [6]. 

2.4.2. Mason Circuit Model 

One of the earliest lumped circuit element models is the Mason model, (Figure 11), 

after Warren Mason, one of the pioneers in crystal acoustics [42].  The term lumped means 

that the circuit elements have constant impedance, both magnitude and phase, over the 

length of the element.  The lumped elements are derived from the physical characteristics of 

the piezoelectric crystal.   

Some advantages of the Mason model are that it is an accurate wideband 

representation of a BAW resonator and is capable of modeling layered BAW resonator 

structures.  Disadvantages of the Mason model are that it is “cumbersome to work with 

[42]” and the impedance of layered structures, including mass and liquid layers, is 

transcendental.  Since the impedance of a liquid-loaded BAW resonator using the Mason 

model is transcendental, we will examine only the air-loaded case. 
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2.4.2.1. Thickness-Field Excited BAW Resonator 

The Mason model for a thickness-field excited BAW resonator is shown in Figure 

11.  Examination of Figure 11 reveals that there are two acoustic ports and one electrical 

port, and that the relations between the input force, 1F , the output force, 2F , and the 

voltage across the electrodes, V , can be obtained by use of this model.  One should also 

note that this model contains the physically unrealizable static capacitance 0C− .  The 

acoustic impedance, cZ , of the crystal for a given propagation direction is defined in terms 

of stress, T , and particle velocity, v , as follows [66], 

vTZc −= , (2.107) 

where 

t
uv
∂
∂

= . (2.108) 

The negative sign in the characteristic impedance of the crystal accounts for the fact that T  

and v  are 180˚ out of phase [66].  When evaluating the acoustic impedance, only the term 

corresponding to the wave travelling in the 2x+ direction in equation (2.45) needs to be 

considered.  The wave travelling in the 2x−  direction can be ignored as the acoustic 

impedance is for a given propagation direction.  The term containing the electrical 

components of the thickness shear mode can also be neglected as the acoustic impedance is 

only a function of the mechanical properties of the crystal.  The acoustic impedance for the 

thickness shear mode in AT-cut quartz is found using by substituting equation ((2.44)) into 

equation (2.45) and substituting equation (2.43) into equation (2.108), 
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However, the Mason model is characterized as a function of the applied force rather than 

stress.  Knowing that the relationship between stress and force is 

FAT = , (2.110) 

where A is the surface area the force is acting on.  The characteristic impedance of 

the medium can then be expressed as a function of force as follows, 

66cAZc ρ= . (2.111) 



 44

 

Figure 11.  A three-port Mason model for a thickness-field excited BAW resonator 
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The transformer in the Mason model is the means by which the electrical energy is 

converted to acoustic energy, or vice versa.  The turns ratio in the transformer determines 

the acoustic current due to the conversion of electrical energy to acoustic energy by the 

piezoelectric effect.  The term tN , (Figure 11), is obtained directly from equation (2.40), 

which describes the scalar potential in terms of the particle displacement, and is defined as 

[42] 

22

26

ε
eNt = . (2.112) 

The acoustic current is )( 210 vvCNt − , where 1v  and 2v  are the input and output 

particle velocities, respectively.  The static capacitance, 0C , is due to the geometric 

configuration of the electrodes on the AT-cut quartz plate (Figure 9) and is given as 

h
AC 22

0
ε

=  , (2.113) 

where A  is the surface area of the electrodes. 

Physically, the BAW resonator in Figure 9 is a one-port device.  If we assume that 

the major surfaces of the resonator are stress free then both acoustic ports are shorted.  This 

reduces the Mason model to a one-port model, which can be characterized by the input 

impedance, inZ  of the resonator.  The closed-form expression for inZ  is [42] 
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where 2
mk  is the electro-mechanical coupling constant 
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Substituting equation (2.115) into equation (2.114) reveals that it is similar to equation (2.51).  

Since this model accounts only for the air loaded case, the sensing surface is stress free and 

0=LZ , making equation (2.51) identical to equation (2.114).  A detailed derivation of the 

impedance expression for the Mason model is presented in Appendix B. 

2.4.2.2. Lateral-Field Excited BAW Resonator 

The Mason model for an LFE BAW resonator is shown in Figure 12 [6].  The turns 

ratio, lN , for the lateral-field excited BAW resonator is 

33

36

ε
eNl = . (2.116) 

Unlike the Mason model for thickness-field excited BAW resonators the model for LFE 

resonators does not contain the term 0C− .  Thickness-field excitation and lateral-field 

excitation exhibit a duality, thus rather than expressing the LFE resonator in terms of its 

input impedance it will be expressed in terms of its input admittance, inY  [6], 
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where, 

w
dhC 33

0
ε

=  (2.118) 

and 

3366
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εc
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Comparison of equations (2.117) and (2.106) shows that they are similar in form to each 

other with differences in defining the propagation constant and the coupling constant. 
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Figure 12.  A three-port Mason model for a lateral-field excited BAW resonator 
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2.4.3. Martin Circuit Model 

One solution to the disadvantages of the Mason model is to examine the impedance 

of the BAW resonator at or near resonance.  A lumped circuit element model has been 

described for quartz crystal resonators under mass and viscous loading [43].  The QCM is 

modeled by using the one-dimensional thickness shear mode equations, (equations(2.30) – 

(2.50)), and applying the boundary conditions given on page 31.  The impedance of the 

QCM under simultaneous mass and liquid loading is then derived [43] and expressed as 
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where Λ  is a complex factor containing the influence of liquid and mass loading at the 

QCM surface and is defined as [43] 
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and lρ  and lη  are the density and viscosity, respectively, of the liquid load and mρ  is the 

density of the mass load. 

If the sensing surface of the QCM is exposed to air, then the term 0=Λ  and the 

impedance in equation (2.120) becomes 
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Comparison of equations (2.114) and (2.122) reveals that the impedances of an unloaded 

QCM are the same for both models. 
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The impedance for the QCM derived in [43] is next approximated for operation at or 

near the resonant frequency.  Lumped circuit elements are then derived that are related to 

the material properties of the mass and viscous loads at the sensing surface and the crystal.  

The parasitic capacitance, pC , is experimentally determined and accounts for the parasitic 

effects of the electrical interface to the QCM.  The static capacitance, 0C , is a function of 

the electrode geometry and crystal thickness, and does not influence the resonant conditions 

of the quartz crystal resonator but is dominant when the conditions are far from resonance.  

The circuit elements, 1C , 1L , and 1R , model the unperturbed quartz crystal.  The inductor, 

2L  and resistor, 2R , model the behavior of the QCM due to viscous loading.  The inductor, 

3L , models the admittance of the QCM due to mass loading in the motional arm of the 

circuit (Figure 13).  This model predicts the same behavior as given by the Kanazawa 

equation [14] with ρη∝
Δ

0f
f where ρ  is the density and η  is the viscosity of the material 

at the surface of the resonator. 
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Figure 13.  Equivalent circuit under mass and liquid loading including parasitic 
capacitance Cp. 



 51

The static capacitance is the same as for the Mason model and given by equation 

(2.113).  The other circuit element values for the Martin model [43] are 
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If one removed the liquid and mass layer from the sensing surface of the QCM, then 

both lη  and mρ  are zero, as are equations (2.126)-(2.128).  This reduces the circuit in Figure 

13 to that shown in Figure 14.  The equivalent circuit in Figure 14 is known as the 

Butterworth-Van Dyke circuit.   
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Figure 14.  Butterworth-Van Dyke equivalent circuit for resonator 

When using the LFE resonator as a sensor under liquid loads, the Martin model is 

insufficient to describe or predict the modifications to the input admittance, inY , due to 

electrical or mechanical changes at the sensor surface.  Until now, no model exists for a 

liquid-loaded LFE BAW resonator similar to the Martin model.  The derivation of such a 

model is the purpose of this work and is presented in chapter 3. 

2.4.4. Transmission Line Model 

The final model that will be examined is the electric transmission line model.  The 

transmission line starts with a three-port model for the piezoelectric crystal itself with two 

acoustic ports and an electric port.  The acoustic input and output ports represent the two 

major surfaces of the crystal while the electric port represents the exciting electrodes.  As 
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layers are added to the resonator they are modeled as a series of two-port transmission lines, 

unless the layer is piezoelectric, then it is represented as a three-port transmission line. 

The advantages of the transmission line analog are: 

• multiple layers on the sensor surface can be easily modeled regardless of the film 

properties or layer thickness; 

• the model is accurate for the entire operating spectrum of the resonator; 

• loading effects of the electrodes and standing acoustic waves in the substrate are 

considered; and 

• it can be implemented and integrated in a complete electrical system. 

The major limitation of the transmission line model is that it describes the total 

system characteristics.  Thus, the transmission line model provides no understanding of what 

perturbations at the sensing surface of the resonator are due to, i.e. mass accumulation, 

physical property changes, electrical property changes, etc. 

2.4.4.1. Thickness-Field Excited BAW Resonator 

The most common transmission line model for thickness-field excited BAW 

resonators is referred to as the KLM model after Krimholtz, Leedom, and Matthaei who 

first described it in [44].  This model is ideal for sensors that have multiple film layers, such 

as the layers used in thin film bulk acoustic wave resonators.  The KLM model for a BAW 

resonator with an acoustic load on one side of the plate can be represented by the equivalent 

circuit shown in Figure 15.  The elements are [60] 
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with 0C  given by equation (2.113).  The admittance for the BAW resonator is then 

expressed as [60] 
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where LZ  is the load impedance and can account for any number of coatings or layers, (see 

full analysis in Appendix B).  For a liquid loaded sensor the load impedance is [60] 
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where clZ  is the acoustic impedance of the liquid load and is expressed as [60] 

llcl cZ ρ= . (2.133) 

 

Figure 15.  A transmission line model for a thickness-field excited BAW resonator 
with an acoustic load on one side 

If we examine the impedance given in equation (2.131) and model the resonator with 
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which is precisely the expression for the impedance of a thickness-field excited resonator as 

given in equation (2.114). 

2.4.4.2. Lateral-Field Excited BAW Resonator 

A transmission line model for an LFE resonator with two stress free surfaces has 

been described by Ballato, et al. [35] and is shown in Figure 16.  The static capacitance, 0C , 

for the circuit is given by equation (2.105), the turns ratio of the transformer, lxN , is 

expressed as 
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and the characteristic admittance, )(c
cY , is defined as 
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Analyzing the transmission line, (see Appendix B), one can find the admittance of an LFE 

BAW resonator, air loaded on both major surfaces, as follows, 
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Figure 16.  A transmission line model for an LFE BAW resonator with an acoustic 
load on one side 

The admittance derived using the transmission line analysis in equation (2.137) is 

identical to that given in equation (2.106) using the coupled wave equations and similar to 

the admittance found using the Mason model in equation (2.114).  Thus, all three models 

yield the same results for an LFE BAW resonator exposed to air on both major surfaces. 

2/h  2/h  

2:1 lxN  

0C

A 

 

B 

C 

 

D

E 

 

F

G 

 

H 

quartz; )(c
cY  



 57

Chapter 3 

EQUIVALENT CIRCUIT FOR A LATERAL-FIELD EXCITED SENSOR 

ELEMENT 

In chapter 2, the theory for elastic waves in solids, for both nonpiezoelectric and 

piezoelectric crystals was presented.  This was followed by the theory of operation for bulk 

acoustic wave (BAW) resonators.  The analytic theory for thickness-field excited resonators 

exposed to liquid on one side and lateral-field excited (LFE) resonators in air was presented.  

The Mason model for both thickness-field excited and LFE resonators in air was discussed.  

This was followed by a description of the Martin model for thickness-field excited 

resonators under simultaneous mass and liquid loading, which was reduced to the air loaded 

case.  The chapter concluded with the theory for the KLM transmission line model for 

thickness-field excited resonators under liquid loading and LFE resonators under air loading.  

This chapter focuses on the derivation of the equivalent circuit model used for a liquid-

loaded lateral-field excited (LFE) sensor element.  Chapter 4 will contain the experimental 

methods used to obtain the supporting data to verify the accuracy and precision of the 

equivalent circuit model developed in this chapter. 

3.1.  Setting up the Analysis 

The geometry of the liquid-loaded LFE sensor element is shown in Figure 17.  The 

shaded regions are the metal electrodes, which are on the reference surface, leaving the 

sensing surface free of metal electrodes.  The electrodes are assumed to be perfect 

conductors and have an infinitesimal thickness.  The rotated material constants used in this 

analysis are for AT-cut quartz (Table 3), although the analysis can be extended to any 

piezoelectric material and orientation. 
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Figure 17.  LFE sensor element geometry — the electrodes are shaded and on the 
reference side only. 

3.2.  Analysis of a Vibrating Lateral-Field Excited AT-Cut Quartz Sensor Element  

under Liquid Load 

3.2.1. Equations for a Vibrating Quartz Plate 

The following equations for a vibrating AT-cut quartz plate are derived using the 

same method as Mindlin [67].  While the fundamental equations were presented in chapter 2, 

they are simplified in this section for the crystal symmetry of AT-cut quartz.  Further 

simplification of the equations is possible if we consider only simple 1x -thickness-shear 

modes in the AT-cut quartz plate.  Thus, in the quartz plate, hx ≤≤ 20 , 

),( 211 txuu =  (3.1) 

and 

032 == uu . (3.2) 
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Since only the displacements, 1u , are nonzero we can rewrite equation (2.11) for 

shear strain as 

2,12112 2
1 uSS ==  (3.3) 

and 

3,13113 2
1 uSS == . (3.4) 

However, from equation (3.1) we see that 1u  is not a function of 3x , thus only the strain 

components that must be considered are 12S  and 21S . 

Rewriting equation (2.19) for simple 1x -thickness-shear modes in AT-cut quartz 

(Table 3), and applying the transformations in Table 1, yields 
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2 EeEeEeSc
EeEeEeScScTT

−−−=
−−−+==

. (3.5) 

It must be noted that the piezoelectric stress constant 16e  is zero in AT-cut quartz (Table 3).  

Thus, the shear stress, 12T , is coupled to the electric field components 2E  and 3E  but not 

the electric field component 1E .  This allows us to disregard the term containing the electric 

field component 1E , thus, 

01 =E . (3.6) 

Substituting equations (3.3) and (3.4) into equation (3.5) results in 

3362262,16612 EeEeucT −−= . (3.7)  

The acoustic energy in an LFE sensor element was found by Pinkham, et al. to have a 

Gaussian distribution in both the 1x  and 3x  directions under the electrodes (Figure 18)[68]. 

Thus, the plate can be approximated as infinite in the 1x  and 3x  directions, the electric field 
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components 2E  and 3E  will vary only in the 2x  direction.  The electric field components 

may now be written 

),( 222 txEE =  (3.8) 

and 

),( 233 txEE = . (3.9) 

 

Figure 18.  Acoustic energy of an LFE sensor element under the electrodes in the 1x  

and 3x  directions 

Evaluating equation (2.20) for simple 1x -thickness-shear modes in AT-cut quartz 

and again applying the transformations in Table 1 and the material constants in Table 3 

yields 

01 =D , (3.10) 

3232221226323222212612262 2 EESeEESeSeD εεεε ++=+++= , (3.11) 

and 
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3332231236333223213612363 2 EESeEESeSeD εεεε ++=+++= . (3.12) 

Substituting equation (3.3) into equations (3.10) and (3.12) results in 

3232222,1262 EEueD εε ++= , (3.13) 

and 

3332232,1363 EEueD εε ++= .  (3.14) 

It is informative to look more closely at the physics of the propagating wave in the 

crystal [69].  The assumption is that the electrode configuration shown in Figure 17 results in 

a driving electric field, 3E , in the crystal.  It will further be assumed that the driving electric 

field is uniform through the thickness of the crystal.  The result is that the LFE sensor 

element can be treated as an AT-cut quartz plate with the electrodes on the side of the plate 

(Figure 19). 

E

k

H

D H k
B E k

�

�

,

,

x1

x2

x3  

Figure 19.  Propagation of a plane harmonic electromagnetic wave in quartz – the 
shaded region is the LFE electrode. 

Maxwell’s equations in differential form are 

DH &=×∇  (3.15) 

and 
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BE &−=×∇ . (3.16) 

Expanding the curl in equations (3.15) and (3.16) yields 

( )kjikji ˆˆˆˆˆˆ
321

2

1

1

2

1
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3

1

3

2

2

3 DDD
x
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x
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x
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x
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x
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x
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⎠
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⎛
∂
∂

−
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∂
∂

−
∂
∂
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⎞
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⎛
∂
∂

−
∂
∂ ω  (3.17) 

and 

( )kjikji ˆˆˆˆˆˆ
321

2

1

1

2

1

3

3

1

3

2

2

3 BBB
x
E

x
E

x
E

x
E

x
E

x
E

++−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
∂
∂

ω . (3.18) 

Equating  the î , ĵ , and k̂  components for D  and H  in equation (3.17) and for B and E in 

equation (3.18) reveals that HD ⊥  and EB ⊥ , e.g. in equation (3.17), 

i
jk D

x
H

x
H ω=

∂
∂

−
∂
∂

32

, (3.19) 

for arbitrary components i , j , and k .  Furthermore, since quartz is nonmagnetic, HB 0μ=  

and therefore, H  is parallel to B . 

Considering plane harmonic waves with the form ( )xk•−tje ω , where k  is the 

propagation vector, the spatial derivatives in equations (3.17)and (3.18) can be evaluated, 

( ) ( ) ( ) ( )kjikji ˆˆˆˆˆˆ
321211213313223 DDDHkHkHkHkHkHk ++=−+−+− ω  (3.20) 

and 

( ) ( ) ( ) ( )kjikji ˆˆˆˆˆˆ
321211213313223 BBBEkEkEkEkEkEk ++−=−+−+− ω . (3.21) 

The left-hand side of equations (3.20) and (3.21) are seen to be the negative curl of k  and 

H  and k  and E , respectively.  Equations (3.20) and (3.21) are then rewritten as 

DHk ω−=×  (3.22) 

and 

BEk ω=× . (3.23) 
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Equations (3.22)-(3.23) show that kD ⊥  and kB ⊥ .  Given that the propagation of the 

thickness-shear mode, k , is in the 2x  direction and the driving electric field is in the 3x  

direction, then, from equation (3.23), H  must be oriented in the 1x  direction.  Thus, from 

equations (3.10), ( 01 =D ), and (3.22), D  has only an 3x  component in the crystal and 

02 =D . 

Equation (3.13) becomes 

03232222,126 =++ EEue εε , (3.24) 

Solving equation (3.24) for 2E  yields 

3
22

23
2,1

22

26
2 EueE

ε
ε

ε
−−= . (3.25) 

Substituting equation (3.25) into equations (3.7) and  (3.14) results in 

3362,16612 EeucT −=  (3.26) 

and 

3332,1363 EueD ε+= , (3.27) 

where 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

3622

2623
3636 1

e
eee

ε
ε  (3.28) 

and 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

3322

2
23

3333 1
εε

εεε . (3.29) 

Rewriting equation (3.16) for the quasistatic approximation results in  

0=×∇ E . (3.30) 
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Noting that the acoustic wave is propagating in the 2x  direction and 01 =E , equation (3.30) 

becomes 

02,3 =E . (3.31) 

Substituting equation (3.26) into equation (2.33), performing the indicated 

differentiation, and substituting equation (3.31) into the resulting equation yields 

01
2

22,166 =+ uuc ρω . (3.32) 

The standing wave solution for equation (3.32) is 

( ) tjxkjxkj eeLeLu ω22
211

−+= , (3.33) 

where 1L  and 2L  are amplitude constants found by applying the appropriate boundary 

conditions and 

66c
k ρω=  (3.34) 

and is defined as the LFE propagation constant. 

3.2.2. Boundary Conditions 

3.2.2.1. Mechanical Boundary Conditions 

The first boundary condition from chapter 2.4. is that the particle displacement is 

continuous at the boundary between the quartz and the contacting liquid, ( ))()( 11
+− = huhu .  

The particle displacement in the quartz crystal is determined from equation (3.33).  The 

particle displacement in an isotropic, Newtonian liquid can be found by substituting 

equation (2.11) into (2.9), yielding 

2,12,112 vuT ll ηη == & , (3.35) 
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where lη  is the bulk viscosity of the liquid, tuv ∂∂= , and the elastic stiffness, c , of a 

Newtonian liquid is zero [60].  The stress equation of motion for the shear stress is, from 

equation (2.10), 

12,12 uT l &&ρ= , (3.36) 

where lρ  is the bulk density of the liquid.  Taking the derivative of equation (3.35) with 

respect to 2x  and substituting into (3.36), yields 

122,1 uv ll &&ρη = . (3.37) 

Equation (3.37) is the Navier-Stokes equation for one-dimensional plane-parallel flow [43], 

rewritten as follows, 

112
2

1
2

uv
x
v

lll &&& ρρη ==
∂
∂ , (3.38) 

where and, respectively.  The solution to equation (3.38) at the sensor/liquid interface is [70] 

tjhx eeLv ωγ )(
31

2 −−=  (3.39) 

where 3L  is an amplitude constant determined by applying the appropriate boundary 

conditions and γ  is a complex decay constant for the liquid velocity field.  We can see only 

the root containing the positive real part satisfies the condition that 01 →v  as ∞→2x  [43].  

Substituting equation (3.39) into equation (3.38) results in 

)1(
2

j
l

l +=
η
ωργ . (3.40) 

The particle displacement in the liquid at the solid/liquid interface is obtained by integrating 

equation (3.39) with respect to time and satisfying the condition that 01 →u  as ∞→2x  

tjhx eeLju ωγ

ω
)(3

1
2 −−−= . (3.41) 
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Equating equations (3.33) and (3.41) at hx =2 , the first boundary condition is 

ω
3

21
LjeLeL hkjhkj −=+ − . (3.42) 

Rearranging equation (3.42) yields 

03
21 =++ −

ω
LjeLeL hkjhkj . (3.43) 

The second boundary condition is that the shear stress, ( )1221 TT = , at the 

solid/liquid interface is continuous, ( ))()( 1212
+− = hThT .  The shear stress on the solid side of 

the interface, )(12
−hT , is found by substituting equation (3.33) into equation (3.26) 

( )( ) tjhkjhkj eEeeLeLckjhT ω
336216612 )( −−= −− . (3.44) 

In fluid dynamics, shear stress in fluids, 12T , is defined [71] to be 

2

1
12 x

vT l ∂
∂

=η . (3.45) 

The shear stress, ( )+hT12 , exerted on the sensing surface by the liquid is obtained by 

substituting equation (3.39) into equation (3.45) and evaluating the derivative at hx =2 , 

resulting in 

( ) tj
l eLhT ωγη 312 −=+ . (3.46) 

Equating the shear stresses in the liquid, (equation (3.46)), and solid, (equation (3.44)) at the 

boundary hx =2 , yields 

( ) 33632166 EeLeLeLckj l
hkjhkj =+− − γη . (3.47) 

The third boundary condition is that the shear stress at the reference surface, ( )012T , 

is zero.  Substituting equation (3.33) into equation (3.26) and evaluating at 02 =x  results in 

( ) 3362166 EeLLckj =− . (3.48) 
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The three mechanical boundary conditions, equations (3.43), (3.47), and (3.48) can be 

arranged in matrix form as follows, 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
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⎣

⎡
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⎥
⎥
⎥
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⎢
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⎦
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⎢
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−
− −

−
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3

2

1

6666

6666

0

0 Ee
Ee

L
L
L

ckjckj
eckjeckj

jee

l
hkjhkj

hkjhkj

γη
ω

. (3.49) 

Solving for 1L , 2L , and 3L  yields 

( )
( ) ( ) 3

66

66

66

36
1

1 E
eeckee

ecke
ck
ejL

hkjhkjhkjhkj
l

hkjhkj
l

−−

−−

−++
−+

−=
γωη

γωη , (3.50) 

( )
( ) ( ) 3

66

66

66

36
2

1 E
eeckee

ecke
ck
ejL

hkjhkjhkjhkj
l

hkjhkj
l

−− −++
−+−

−=
γωη

γωη , (3.51) 

and 

( ) ( ) 3
66

363
2 E

eeckee
eeeL

hkjhkjhkjhkj
l

hkjhkj

−−

−

−++
−+

=
γωη

ω . (3.52) 

3.2.2.2. Electrical Boundary Conditions 

In evaluating lateral-field excited BAW resonators with both electrodes on the 

reference surface, (Figure 17), it is assumed that the driving electrical field, 3E , is parallel to 

the major surfaces of the AT-cut quartz plate [6, 27-29, 32-35, 61].  Thus, for analyzing the 

electrical boundary conditions it is assumed that the effective geometry of the LFE sensor 

element in Figure 17 is two electrodes on the side of the plate, separated by the gap width, 

w  (Figure 20).  It is assumed that the driving electric field, 3E , is constant in the 2x  

direction and that the thickness of the plate is small compared with the other dimensions.  

The assumptions that the driving electric field is parallel to the major surfaces of the plate 

and that the thickness of the plate is small are contradictory.  This is because fringing electric 
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fields will arise if the thickness of the crystal is small [63].  However, this provides us with a 

first-order approximation for the admittance of the LFE sensor element. 

Quartz

w

Sensing Surface

d

h

x
3

x
2

x
1

 

Figure 20.  Configuration of LFE resonator for analysis of equivalent circuit with 
shaded regions representing a virtual electrode through the thickness of the quartz 
disc.  The origin of the coordinate system is centered on the bottom surface of the 
quartz plate. 

Close examination of the equations characterizing the LFE thickness-shear mode 

reveals that in addition to the applied electric field, 3E , there is also an electric field 

component in the thickness direction, 2E , (equation (3.25)).  Using the quasistatic 

approximation and substituting equation ((2.23)) into equation (3.25), yields 

2,1
22

26
3,

22

23
2, ue

ε
φ

ε
εφ =+ . (3.53) 

Thus, the scalar potential, φ , is clearly a function of both 2x  and 3x .  Additionally, the 

quasistatic approximation results in an irrotational electric field as given in equation (3.31).  
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Qualitatively, this means that the applied electric field, 3E , is constant in the 3x direction and 

does not vary along the 2x  axis, validating our earlier assumption regarding the driving 

electric field being parallel to the major plate surfaces.  Thus, we may express 3E  as a 

function of time only, where 

tjeEE ω
03 = . (3.54) 

In order to solve the partial differential equation (3.53), a solution for the scalar 

potential is assumed.  Since the thickness shear mode is an acoustic standing wave that is 

piezoelectrically coupled to the applied electric field the solution for the scalar potential must 

contain a sinusoidal term, proportional to the particle displacement, 1u .  Furthermore, the 

scalar potential is a function of both 2x  and 3x , yet must satisfy equation (3.31).  Given 

these constraints the scalar potential is expressed as 

35241
22

26 xLxLue
++=

ε
φ , (3.55) 

where 4L  and 5L  are constants of integration.  Substituting equation (3.54) into equation 

((2.23)) yields 

tjeE ωφ 03, = . (3.56) 

Taking the derivative of equation (3.55) with respect to 3x  and substituting into equation 

(3.56), one obtains 

tjeEL ω
05 = . (3.57) 

Next, substituting equation (3.57) into equation (3.55) and then into equation (3.53) yields 

2,1
22

26
0

22

23
42,1

22

26 ueeELue tj

εε
ε

ε
ω =++ . (3.58) 

Equation (3.58) is rearranged to solve for 4L  as follows, 
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tjeEL ω

ε
ε

0
22

23
4 −= . (3.59) 

Substituting equations (3.57) and (3.59) into equation (3.55) gives the scalar potential as 

3020
22

23
1

22

26 xeExeEue tjtj ωω

ε
ε

ε
φ +−= . (3.60) 

The fourth boundary condition is that the scalar potential at the liquid/air interface 

vanishes.  This boundary condition holds as long as the liquid layer thickness, h′ , is greater 

than the decay length of the potential.  Mathematically, this boundary condition is expressed 

( ) 0=′+ hhφ .   

In order to evaluate the fourth boundary condition, further information about 

electric charges in the liquid is necessary.  When the sensing surface of the LFE sensor is 

loaded with an electrolyte solution, the electric field of the thickness shear mode interacts 

with ions and dipoles in solution [72, 73].  This interaction results in the reorientation of ions 

and dipoles in solution and determines the electric potential in the liquid. 

In general, the electric potential at a point in an electrolyte solution can be found 

using Poisson’s equation, 

lel επρφ 42 =∇ , (3.61) 

where eρ  is the net electric charge density and lε  is the permittivity of the solution.  Using 

the approach of Josse, et al. [73], Poisson’s equation can be modified using the Debye-

Hückel theory [74] such that 

ll φκφ 22 =∇ , (3.62) 

where κ1  is commonly referred to as the ion atmosphere radius. 

The Debye-Hückel theory accounts for the strength and long range of the coulombic 

interactions between ions in solution [75].  Poisson’s equation assumes that the electric 
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charge is uniformly distributed in the solution.  However, due to the attraction between 

opposite charges, anions are surrounded by a sphere of cations, and cations are surrounded 

by a sphere of anions.  When averaged over time, more oppositely charged ions pass by a 

given ion than like charged ions.  This results in a spherical ionic atmosphere, with a radius 

κ1 , of oppositely charged ions around the central ion, that is equal in magnitude but 

opposite in charge [75]. 

For the geometry shown in Figure 20 the potential in the solution will only vary from 

a distance normal to the charge at a point on the sensor surface [74].  Thus, the solution to 

equation (3.62) is 

2)( x
l eh κφφ −= . (3.63) 

A linear approximation for the exponential decay in equation (3.63) specific to the thickness-

shear mode in an AT-cut quartz plate [73] is  

221 φφφ += xl , (3.64) 

where 1φ  and 2φ  will be determined by applying the boundary conditions for the LFE 

sensor element. 

When the ions in solution reorient with the time-varying electric field, an electric 

double layer occurs in the solution, where there is a layer of charge localized at the surface of 

the LFE sensor element and a second diffuse layer of charge extending into the bulk of the 

solution.  The thickness of the double layer is κ1 , which is on the order of μm [74].  In the 

absence of electric charge, it is assumed that the surface potential decays into the liquid with 

an attenuation factor of 2
2 x

e λ
π

−
.  Thus, the decay length of the surface potential into the 

liquid is πλ 2/ , which is about 0.1 mm for LFE sensor elements operating at ~5 MHz.  

Since the thickness of the double layer is much less than the decay length of the surface 
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potential in the absence of electrical charge, the redistribution of charge in the double layer 

blocks the electric field from penetrating the bulk liquid [72, 73]. 

However, if the radial frequency, ω , of the LFE sensor element exceeds the 

dielectric relaxation frequency of the solution, rω  , then the electric charge at the interface 

can not redistribute quickly enough and the electric field penetrates into the bulk of the 

liquid.  The redistribution of ions in solution occurs at rω  and is mathematically defined as 

[72, 73] 

23εε
σω
+

=
l

l
r , (3.65) 

where lσ  and lε are the bulk conductivity and bulk permittivity, respectively, of the solution 

and 23ε  is from the permittivity, [ ]ε , of the AT-quartz (Table 3).  Thus, when rωω > , the 

electric field will interact with the bulk electrical properties of the liquid with a decay length 

of πλ 2/ . 

Evaluating equation (3.64) for the fourth boundary condition, which states that the 

surface potential vanishes at the air/liquid interface, results in 

( ) 021 =+′+ φφ hh . (3.66) 

Next, solving for 2φ  

( )hh ′+−= 12 φφ . (3.67) 

Substituting equation (3.67) into (3.64) gives us 

( )hhxl ′−−= 21φφ . (3.68) 

The fifth boundary condition is the continuity of potential at the liquid/quartz 

interface, ( ) ( )hhl φφ = .  When operating an LFE resonator in air, the assumption is that the 

electric field normal to the 1x - 3x  plane, 2E , does not extend beyond the boundaries of the 
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crystal because the electric displacement normal to the surface, 2D , is zero.  Mindlin [67] 

and Lee [61] have shown that in air there is a small amount of electromagnetic radiation 

outside of the crystal.  However, when the LFE sensor element is exposed to an electrolyte 

solution, the electric field, 2E , interacts both with any ions in solution and capacitively 

couples with the dielectric liquid.  This coupling of the thickness-shear mode with the liquid 

results in a surface charge at the interface and a potential that varies in both the 2x  and 3x  

directions [72], since 2E  and 3E  for the thickness shear mode are finite. 

Expressions have been derived for both the electric potential in the quartz substrate, 

(equation (3.60)), and in the liquid, (equation (3.68)).  Since the surface potential decays only 

in the 2x  direction, we are only concerned with the electric displacement normal to the 

quartz/liquid interface, 2D , and can ignore the 3x  term in equation (3.60).  The fifth 

boundary condition is written by substituting equation (3.33) into (3.60), substituting the 

resulting equation into (3.68) and evaluating at hx =2 , as follows 

( ) heEeeLeLeh tjtjhkjhkj ωω

ε
ε

ε
φ 0

22

23
21

22

26
1 −+=′− − . (3.69) 

Solving for 1φ  results in 

( ) tjhkjhkj ehEeLeLe
h

ω

ε
ε

ε
φ ⎥

⎦

⎤
⎢
⎣

⎡
−+

′
−

= −
0

22

23
21

22

26
1

1 . (3.70) 

The sixth boundary condition is ( )( ) ( ) s
l hDhD ρ=− 22 , where sρ  is the surface 

charge density on the quartz/liquid interface.  Already knowing that 02 =D  in the quartz 

crystal, the boundary condition becomes ( ) ( ) s
l hD ρ=+

2 . 
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In the liquid the electrical displacement, )(
2
lD , is [73] 

2

*)(
2 x

D l
l

l

δ
φε ∂

−= , (3.71) 

where  

l
l

l j
ε

ω
σε +=* . (3.72) 

Substituting equation (3.70) into equation (3.68) and then substituting equation (3.68) into 

(3.71) yields 

( ) s
tjhkjhkjll ehEeLeLe

h
D ρ

ε
ε

ε
ε ω =⎥

⎦

⎤
⎢
⎣

⎡
−+

′
′

= −
0

22

23
21

22

26)(
2 . (3.73) 

3.2.2.3. Summary of Boundary Conditions 

Six boundary conditions have been applied to solve for the thickness shear mode in 

an LFE sensor element.  Three of the boundary conditions are applied to the mechanical 

properties of the system and three of the boundary conditions are applied to the electrical 

properties of the system.  The six unknowns that were solved as a result of the boundary 

conditions are, 1L , 2L , 3L , 1φ , 2φ , and sρ . 

3.2.3. Admittance of the LFE Sensor Element 

Admittance, Y , is simply the ratio of current, I , to the voltage, V .  Thus, the first 

step in determining the admittance of the LFE sensor element is to calculate the current 

between the plates (Figure 20).  The surface charge on the electrode of a thickness-field 

excited resonator is [65] 

∫Α −=
Α= dDQ

wx 231
3

, (3.74) 
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where Α  is the surface area of the electrode in the 1x - 2x  plane (Figure 20).  Substituting 

equations (3.33) and (3.54) into equation (3.27), one obtains 

( ) tjxkjxkj eEeLeL
x

eD ωε ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++

∂
∂

= −
03321

2
363

22 . (3.75) 

Substituting equation (3.75) into (3.74) yields an expression for 1Q  

( )

( ) ( )( )[ ] tjhkjhkj

hhxkjhxkjtj

h xkjxkjtj

ehEeLeLed

xEeLeLede

dxEeLeL
x

edeQ

ω

ω

ω

ε

ε

ε

0332136

02033020136

0 203321
2
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+−+−=

⎟
⎠
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⎜
⎝
⎛ +⎟

⎠
⎞⎜

⎝
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⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++

∂
∂

=

−

−

−∫

, (3.76) 

where d  is the width of the electrode (Figure 20). 

Now an expression for the current in the quartz plate can be found by taking the 

derivative of equation (3.76) with respect to time, 

( ) ( )( )[ ] tjhkjhkj ehEeLeLedj
t

QI ωεω 0332136
1

1 11 +−+−=
∂
∂

= − . (3.77) 

The interaction of the LFE thickness-shear mode with the contacting liquid will 

result in both conduction current due to the drift of ions in the solution and a displacement 

current due to the dipolar response of the solution.  Finding the total charge on the sensing 

surface from equation (3.73) 
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and 
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The two currents are shown in Figure 21.  Qualitatively, one can see that the total 

current between the electrodes is the parallel combination of the current in the quartz plate, 

1I , and the current in the liquid, 2I .  The applied voltage, V , between the plates is weE tjω
0 , 

thus VIIY )( 21 +=  and 

( ) ( )( )
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ε

ε

ω

ψψ

ψψ , (3.80) 

where 

hk=ψ . (3.81) 

 

Figure 21.  The total current between the electrodes is the parallel combination of the 
current in the quartz plate, 1I , and the current in the contacting liquid, 2I  

3.3.  Equivalent circuit model 

Examination of equation (3.80) reveals that the admittance of the liquid-loaded LFE 

sensor element contains six terms.  The admittance is expressed as the sum of the six terms 

where 

∑
=

=
6

1i
iYY  (3.82) 
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Substituting equations (3.50) and (3.51) into equation (3.80) the admittance terms 1Y - 6Y  can 

be expressed by 

( ) ( )
( ) ( ) ⎥⎦
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and 
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*

6 ε
εεω

h
dhjY l

′
−= . (3.88) 

Now it is useful to introduce two piezoelectric coupling terms 2K  and 2K , where 

6633

2
362

c
eK

ε
=  (3.89) 

and 

6623

36262

c
eeK

ε
= . (3.90) 

The term 2K  is the coupling factor of the thickness-shear mode to the applied electric field, 

3E , (see appendix A), and the term 2K  is defined as the coupling factor of the thickness-

shear mode to the induced electric field, 2E .  Energy losses in the quartz caused by the 
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quartz viscosity, η , are introduced to the LFE sensor element admittance through a complex 

quartz elasticity term, 66c  [59], where 

( )ξjcc += 16666 , (3.91) 

and 

66c
ωηξ = . (3.92) 

This energy storage term in the quartz elasticity results in changes to the variables ψ , 2K , 

and 2K .  Thus, new complex variables are introduced 

ξ
ψψ
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=′
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2
2 , (3.93) 

ξj
KK
+

=′
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2
2 , (3.94) 

and 

ξj
KK
+

=′
1

2
2 . (3.95) 

Close examination of the admittance term 3Y  reveals that it is simply the capacitance 

between the virtual electrodes along the 3x -axis.  Thus the static capacitance, 0C , is defined 

as  

w
dhC 33

0
ε

= . (3.96) 

When equations (3.93) and (3.94) are substituted into equations (3.83)-(3.85), and the three 

terms are combined, the admittance is 
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Using Euler’s equation, dividing the numerator and denominator of equation (3.97) by 

66ckj , and using trigonometric relations the admittance may be rewritten 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+′

⎟
⎠
⎞

⎜
⎝
⎛ ′

+

′
′

+=
1cot

2
tan2

1

66

66
2

0

ψγωη

ψγωη

ψ
ω

ckj

ckjKCjY
l

l

a . (3.98) 

Note that the properties of the liquid influencing the admittance of the LFE sensor element 

are contained in a single complex factor.  This factor is defined [43] as 

( )j
c
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2 66ρ
ωρη . (3.99) 

Now the admittance aY , in simplified form, is 
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where it can be seen that aY  is the static capacitance in parallel with a complex admittance 

αY , where αα ZY 1= .  The equivalent circuit for aY  is shown in Figure 22. 
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Figure 22.  Equivalent circuit for admittance Ya 

Examination of equation (3.88) is simplified if we expand the complex permittivity 

lε ′  using equation (3.72).  Doing so reveals that the admittance 6Y  is a resistance, 3R , in 

parallel with a capacitance, 2C  
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h
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2 ε

εε . (3.103) 

Inspection of the circuit parameters 3R  and 2C  reveal that they contain the quartz 

permittivity ratio, 2223 εε .  This ratio relates the thickness-directed electric field 2E  to the 

applied electric field 3E  in equation (3.23).  Thus, the circuit parameters 3R  and 2C  
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represent the interaction of the thickness-directed electric field 2E with the conductivity and 

permittivity of the contacting liquid at the sensing surface.  The negative sign on the 

admittance 6Y  indicates that the current is flowing in the opposite direction of this branch 

with reference to the other branches of the equivalent circuit. 

Substituting equations (3.93) and (3.95) into equations (3.86)-(3.88) and adding yields 
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The admittance is simplified using Euler’s equations, some trigonometric identities and 

substitution of equation (3.99) 

( )
⎥
⎦

⎤
⎢
⎣

⎡
−

+′Λ
′

′
′

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+= 1

1cot
2tan1 2

2
3 ψ

ψ
ψ

ω KCj
R

Yb . (3.105) 

The impedance, bZ , can be found by separating the real and imaginary components 

of equation (3.105), and taking the inverse of the resulting terms as follows, 

( ) ( )bb
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where 
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jZ . (3.108) 

The entire equivalent circuit for the LFE sensor element is shown in Figure 23 with 

block elements.  This configuration is more complex than the standard Butterworth-Van 

Dyke equivalent circuit in that there are six parallel branches as opposed to two.  



 82

Z� Z� Z�C0 C2
R2

 

Figure 23.  Equivalent circuit of LFE sensor element under liquid load.  The arrows 
indicate the direction of electrical current through each branch. 

When the LFE sensor element is at resonance, the magnitude of the admittance, Y , 

of the LFE sensor element is at its maximum value.  The admittance, Y , is the sum of aY , 

(equation (3.100)), and bY , (equation (3.105)).  Since both aY  and bY  have the term 

( )2tanψ ′  in the numerator, resonance will occur when ψ′  is about πn , where 

L,5,3,1=n .  The trigonometric functions in equations (3.100) and (3.105) are expanded 

about the poles as [6, 43] 

( )
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ψψ
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′
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n
 (3.109) 

and 

( ) 22
2cot
ψπ

ψψ
′−

′−
≈′

n
. (3.110) 

The impedances αZ , βZ , and γZ  are approximated by substituting equations (3.109) and 

(3.110) into equations (3.100), (3.107), and (3.108) and ignoring any terms above the first 

order of the small quantities Λ  and ( ) 22 ψπ ′−n  
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The maximum electrical admittance occurs at the series resonance of the LFE sensor 

element, where the phase shift ψ  across the LFE sensor element is πn .  Knowing that ψ  is 

proportional to ω , the frequency-dependent form of ψ  is 
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where sω  is the radial frequency at series resonance of the unperturbed LFE sensor element.  

Substituting equation (3.114) into equation (3.93) returns the phase shift ψ ′  for a lossy 

QCM near resonance 
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The final step to developing an equivalent circuit for an LFE sensor element under 

liquid load is to substitute equation (3.115) into equations (3.111)-(3.113).  When performing 

this substitution the expression ( ) 211 ξj+  is approximately 1 due to the small quantity ξ .  

Recall that the factor Λ  is complex and is here rewritten ir jΛ−Λ  where ir Λ=Λ  and 

given in equation (3.99).  Equations (3.111)-(3.113) are thus approximated to be 
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Equations (3.116)-(3.118) are rewritten 
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The lumped circuit elements are thus defined for the equivalent circuit in Figure 24, 

where 
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Figure 24.  Equivalent circuit with lumped circuit elements for an LFE sensor 
element under liquid loading.  The arrows indicate the direction of electrical current 
flow through each branch. 
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A careful examination of the equivalent circuit in Figure 24 and equations (3.122)-

(3.134) reveals some similarities with the equivalent circuit for a QCM under liquid and mass 

loading proposed by Martin, et al. [43].  The physical significance of the lumped circuit 

elements with regard to the mechanical and electrical property changes of the loading liquid 

is contained in the equivalent circuit. 

Examination of the two leftmost branches of the equivalent circuit model for the 

LFE sensor element (Figure 24) reveals similarity to the model developed by Martin, et al. 

[43].  Indeed, equations (3.96) and (3.122)-(3.126) bear a striking similarity to equations 25 in 

[43].  The primary differences between the leftmost branches of the circuit model developed 

here and that in [43] are the LFE coupling constant, 2K , the static capacitance, 0C , and the 

motional resistance, 1R .  Intuitively, it makes sense that the coupling constant and static 

capacitance are different, in that for the LFE sensor element the thickness shear mode of the 

resonator is due to an applied electric field, 3E , directed laterally along the piezoelectric 

plate, rather than 2E , directed through the thickness of the piezoelectric plate.  The only 

difference in the motional resistance, 1R , between the model developed in this work and 

that in [43] is that their motional resistance includes a factor 
2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

sω
ω

.  However, as was noted 

in [43] the error in the admittance magnitude introduced in their model by letting sωω =  is 

less than 0.25% over a 1% bandwidth.  Thus, the motional resistances are very nearly the 

same.  The circuit model for the LFE sensor does not contain an inductance for energy 

storage losses caused by mass loading at the surface, as the LFE sensor element does not 

have electrodes on the sensing surface, and thus, no mass loading. 
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The rest of the lumped circuit elements for the equivalent circuit model (Figure 24) 

are due to the coupling of the thickness shear mode to the induced electric field, 2E .  The 

physical significance of 3R  and 2C  were discussed earlier in this chapter.  The inductances in 

the fourth branch of the circuit represent energy storage losses due to the viscosity of the 

quartz, 3L , and the viscoelastic properties of the contacting liquid, 4L , caused by the 

interaction of the induced electric field, 2E , with conducting ions in the contacting solution.  

The resistance in the fourth branch of the circuit is complex relating losses due to 

conductivity in the contacting liquid, changes in the coupling constant, 2K  , as the 

frequency moves from the unperturbed resonance frequency, sf , and losses due to 

viscoelastic properties of the contacting liquid. 

Interestingly, the rightmost branch of the model can be thought of as the motional 

branch caused by the coupling of the induced electric field to the thickness shear mode.  

Close examination of equations (3.130)-(3.134) to equations (3.122)-(3.126) reveals that they 

have similar form with the circuit elements in the rightmost branch containing the coupling 

term 2K  and the elements in the second branch from the left containing the coupling term 

2K . 

The equivalent circuit in Figure 24 is modeled using the electrode configuration in 

Figure 20.  However, the electrodes are on the reference face of the quartz plate as shown in 

Figure 17.  Thus, the driving electric field, penetrates into the contacting liquid as shown in 

Figure 25.  This interaction of the thickness shear mode with the contacting liquid leads to 

two additional elements in the equivalent circuit branch, 2Z .  The elements are a 

capacitance, lC , and a resistance, lR , expressed as follows, 
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w
dh

C effl
l

ε
= , (3.135) 

dh
wR
effl

l σ
= , (3.136) 

The variable effh  is the effective penetration depth of the electric field into the bulk liquid.  

This effective depth arises because the electrodes are physically on the reference surface 

(Figure 17) of the LFE sensor element and not on the sides of the quartz plate (Figure 20) as 

was approximated in the model.  The modified equivalent circuit incorporating lC  and lR  is 

given in Figure 26. 
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Figure 25.  An LFE sensor element showing the interaction of the driving electric 
field, E, with contacting liquid 
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Figure 26.  Equivalent circuit including the elements Cl and Rl, for an LFE sensor 
element under liquid loading.  The arrows indicate the direction of electrical current 
flow through each branch. 
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An expression for the admittance of the LFE sensor element at or near resonance 

can be obtained from the circuit in Figure 27.  This circuit is simply the two leftmost 

branches of the circuit given in Figure 26.  The admittance of this simplified equivalent 

circuit (Figure 27) very closely approximates the admittance of the of the more complex 

circuit model (Figure 26), as shown in Figure 28.  The admittance of the circuit shown in 

Figure 27 is the sum of the admittances of the two branches and is expressed as 

( ) ( )
l

l

Cj
R

Cj
LLjRR

CjY

ωω
ω

ω

+
+++++

+=

1
11

1

1
2121

0 . (3.137) 
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Figure 27.  Simplified equivalent circuit model for the LFE sensor element 
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Figure 28.  Admittance for the equivalent circuits in Figure 26 (solid line) and Figure 
27 (dashed line) 
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It is clear that the equivalent circuit model for the LFE sensor element presented in 

this chapter has similarities with the existing model for the QCM under simultaneous mass 

and liquid loading.  Indeed, if one electrically shielded the LFE sensor element from the 

contacting liquid, the resulting equivalent circuit would be reduced to the circuit in Figure 27 

without the parallel combination of lC  and lR . 

3.3.1. Change in Resonant Frequency 

One method of characterizing the response of an LFE sensor element is to measure 

the change in series resonant frequency, sf , due to perturbations of the liquid at the sensing 

surface.  When examining the change in series resonant frequency it is useful to consider 

changes to the kinematic viscosity (density-viscosity product), permittivity, and conductivity 

of the liquid separately. 

The admittance of the equivalent circuit shown in Figure 27 and given by equation 

(3.137) is simplified as follows, 

mZ
CjY 1

0 += ω , (3.138) 

where mZ  is the impedance of the equivalent circuit’s motional branch and expressed as 

l
l

m

Cj
R

Cj
LjRZ

ωω
ω

+
+++= 1

11

1

, (3.139) 

and the resistance and inductance are combined into single terms, defined as  

21 RRR += , (3.140) 

and 

21 LLL += . (3.141) 
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3.3.1.1. Frequency Changes due to Liquid Kinematic Viscosity 

Examination of equations (3.96), (3.122), (3.135) and (3.136), reveal that neither 1C , 

lC , nor lR  are affected by changes in the kinematic viscosity of the liquid.  Thus, it is 

convenient to treat the parallel combination of lC  and lR  as a single capacitance, lC′ , with 

complex permittivity, defined as 

l
ll Rj

CC
ω
1* += . (3.142)  

Substitution of equation (3.142) into (3.139) yields 

 
Cj

LjRZm ω
ω 1

++= , (3.143)  

where 

l

l

CC
CCC

′+
=

1

*
1 . (3.144)  

Resonance occurs at the frequency where mZ  is at its minimum value.  The 

minimum of mZ  is where the derivative of equation (3.143) with respect to ω  is equal to 

zero, as follows 

011
2 =−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++

∂
∂

=
∂
∂

Cj
jL

Cj
LjRZm

ωω
ω

ωω
. (3.145)  

Solving equation (3.145) for ω , yields 

LCs
1

=ω . (3.146) 

Equivalently, 

LC
fs π2

1
= . (3.147) 
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The change in resonant frequency is defined to be 

0
sss fff −′=Δ , (3.148) 

where the primed quantities are perturbed by changes to the liquid from deionized water and 

0
sf  is the series resonant frequency of the LFE sensor element in deionized water.  The 

capacitance, C , is the series combination of 1C  and *
lC  and thus, does not vary with 

changes to the kinematic viscosity of the liquid.  Substituting equation (3.147) into (3.148) 

yields 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

′
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

′
=−

′
=Δ 11

2
1

2
1

2
1

L
Lf

L
L

LCLCCL
f ss πππ

. (3.149) 

An examination of equations (3.96) and (3.122)-(3.136) reveals that only the inductance, 2L , 

is affected by the kinematic viscosity of the contacting liquid.   

Changes to the inductance, L , are defined as 

LLL −′=Δ . (3.150) 

Solving equation (3.150) for L  and substituting into equation (3.149) yields 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

′
Δ

−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

′
Δ−′

=Δ 111 00

L
Lf

L
LLff sss . (3.151) 

The term under the radical in equation (3.151) can be estimated by taking the first two terms 

of the binomial series [76] as follows, 

L
Lf

L
Lff s

ss ′
Δ

−=⎟
⎠
⎞

⎜
⎝
⎛ −

′
Δ

−=Δ
2

1
2
11

0
0 . (3.152) 

Substituting equations (3.141) and (3.150) into (3.152) returns the expression 

.
22 21

22
0

21

2121
0

LL
LLf

LL
LLLLff ss

s ′+
−′

−=
′+
−−′+

−=Δ  (3.153) 
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Again, since only small changes to the kinematic viscosity of the contacting liquid are 

considered, 21 LL >> , and equation (3.153) can be approximated as follows, 

1

22
0

2 L
LLff s

s
−′

−=Δ . (3.154) 

Since relative frequency shifts are considered, and the unperturbed inductance, 2L , is the 

reference value, we can arbitrarily let 02 =L .  Simplifying equation (3.154) in this way and 

substituting equation (3.125) results in the expression  

( )
ρ
ηρ

66

2/30

cn
ff lls

s
ΔΔ

−=Δ . (3.155) 

Equation (3.155) reveals that the LFE sensor element exhibits a similar frequency 

shift to changes in kinematic viscosity as predicted by Kanazawa and Gordon in [14] and 

Martin, et al. in [43].  Specifically, the frequency shift, sfΔ  varies proportionally to both 

ll ηρ ΔΔ  and ( ) 2/30
sf . 

3.3.1.2. Frequency Changes due to Liquid Permittivity 

The impedance of the motional branch, mZ , can be expressed in its simplest form as 

follows, 

mmm jXRZ += , (3.156) 

where mR  and mX  are the resistance and reactance, respectively, of the motional branch of 

the equivalent circuit.  Resonance is entirely determined by the motional branch and occurs 

at the frequency for which the magnitude of the impedance is at its minimum or when the 

reactance disappears [6]. 
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The impedance of the motional branch is given by equation (3.139) and can be 

rewritten as follows, 

ll
m CjGC

jLjRZ
ωω

ω
+

+−+=
1

1

, (3.157) 

where  

l
l R

G 1
= . (3.158) 

Equation (3.157) is rewritten by multiplying the last term by its complex conjugate, yielding 
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−
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ω
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. (3.159) 

The reactance of the motional branch, mX , from equations (3.156) and (3.159) is 

222
1

1

ll

l
m CG

Cj
C

LX
ω
ω

ω
ω

+
−−= . (3.160) 

At resonance, the reactance of the motional branch, mX , is zero.  Thus, equation 

(3.160) is rewritten 

01
222

1

=
+

−−
ll

l

CG
Cj

C
L

ω
ω

ω
ω . (3.161) 

Multiplying both sides of equation (3.161) by ( )222
1 ωω ll CGC + , yields 

( ) 022
1

22
1

42
1 =−−−+ lllll GCCCLGCLCC ωω . (3.162) 

Equation (3.162) is further modified by dividing both sides by LCC l
2

1 , as follows 

024
2

1

2
2

2
1

1
22

14 =−+=−
−−

+ cb
LCC

G
LCC

CCCLGC

l

l

l

lll ωωωω , (3.163) 
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where 

LCC
CCCLGCb

l

lll
2

1

1
22

1 −−
=  (3.164) 

and 

LCC
Gc

l

l
2

1

2

−= . (3.165) 

One can solve for 2ω  in equation (3.163) using the quadratic equation as follows 

2
42

2 cbb −±−
=ω . (3.166) 

The resonant radial frequency, sω , is found by taking the square root of equation (3.166), 

where 

21
2

2
4

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −±−
±=

cbb
sω . (3.167) 

Since the resonant radial frequency must be both real and positive, equation (3.167) is 

rewritten as follows 

21
2

2
4

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −+−
=

cbb
sω . (3.168) 

The resonant frequency, sf , is then expressed as 

( )cbbcbbfs 4
22

1
2

4
2
1 2

21
2

−+−=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −+−
=

ππ
. (3.169) 

When investigating the resonant frequency change, sfΔ , due to liquid permittivity 

changes, only the changes in the capacitance, lC , are considered as the other circuit elements 

do not vary with liquid permittivity.  In other words, the values for the circuit elements 2L , 
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2R , and lR  are fixed for their value in deionized water. Primed quantities indicate the 

perturbed value due to the liquid, while unprimed values are for deionized water, as in 

section 3.3.1.1.  The change in resonant frequency is expressed as follows 

( ) ( ) ⎟
⎠
⎞

⎜
⎝
⎛ −+−−−′+′−=−=Δ

21
2

21
20 44

22
1 cbbcbbfff sss π

, (3.170) 

where the variables with the subscript di  are the reference values in deionized water.  The 

relative frequency shift can be found using equation (3.170) as follows 

( ) ( )
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. (3.171) 

For the range of liquid permittivity examined, the value ( ) 14 22 <bc , thus the terms 

under the radical in equation (3.171) can be approximated using the first two terms of a 

binomial series as follows, 
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Further, the variable b  is approximated as follows, 

LCLC
b

l

11

1

−−≈ , (3.173) 

because LCLCCG lll ′+<<′ 11 1
22  for the range of permittivities examined. 

The resonant frequency can be found by substituting equations (3.165) and (3.173) 

into (3.172), which yields 
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After some algebraic manipulation, equation (3.174) is rearranged and expressed in terms of 

the equivalent circuit elements as follows, 
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The frequency shift due to liquid permittivity changes in terms of the quartz 

constants and liquid properties is obtained by substituting equations (3.122)-(3.136) into 

equation (3.175) as follows 
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where 

wdhR eff= . (3.177) 

If one were to examine the case of a purely dielectric liquid, then the term containing 

lσ  in equation (3.176) can be neglected, due to the assumption that 0→lσ .  The variable 

A  is introduced, where it is defined as follows, 

( )2
0

28
πn

CKA = . (3.178) 
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An expression for the normalized frequency shift in dielectric liquids is found by substituting 

equation (3.178) into (3.176) and multiplying the numerator and denominator of the 

resulting equation by dhw eff , as follows 
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( ) AdhAw
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f
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leffl
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εε
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++′
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Δ
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2

0 . (3.179) 

3.3.1.3. Frequency Changes due to Liquid Conductivity 

The expression for the change in frequency due to liquid conductivity is, from 

equation (3.171), 
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The variable b  is approximated as follows, 

LCC
Gb

l

l

1
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2 1
−

′
≈ , (3.181) 

because LCCGLC lll 1
22 11 −′<<  for the range of conductivities investigated. 

When calculating the change in frequency, only the circuit element, lR , varies with 

liquid conductivity.  The notation is that primed quantites are the values that are perturbed 

due to the contacting liquid, whereas unprimed quantities are unvaried from the deionized 

water values.  Thus, substituting equations (3.165) and (3.181) into (3.180), yields 
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The frequency change due to liquid conductivity changes in terms of the quartz constants 

and liquid properties is found by substituting equations (3.122)-(3.136) into (3.182), as 

follows 
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Looking at the case of a conductive liquid, it is assumed that εωσ >>  [77].  

Equation (3.183) can then be written as follows, 
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Introducing the variable B , which is defined as follows, 
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An expression for the normalized frequency shift of an LFE sensor element in 

conductive loads is obtained by substituting equation (3.185) into (3.184) as follows, 
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3.3.1.4. Frequency Changes due to an Arbitrary Liquid 

The frequency change due to an arbitrary liquid with varying kinematic viscosity, 

permittivity, and conductivity is then the sum of equations (3.154), (3.175), and (3.182).  

These equations are in terms of the equivalent circuit elements.  To obtain the general 

frequency change in terms of the liquid properties, one would simply need to find the sum 

of equations (3.155), (3.176), and (3.183) as follows, 
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(3.187) 

An expression for the frequency change can also be obtained for the special case of a 

purely dielectric liquid by finding the sum of equations (3.155) and (3.179) as follows, 
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The frequency change can also be found for the special case of a conductive liquid 

by finding the sum of equations (3.155) and (3.186) as follows, 
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In the next chapter, I will present the experimental methods used to test the LFE 

sensor under liquid loads. 
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Chapter 4 

EXPERIMENTAL METHODS 

Chapter 3 contains the derivation of the equivalent circuit model for a lateral-field 

excited (LFE) sensor under liquid load.  In this chapter the procedure for fabricating the 

LFE sensor elements is presented.  The procedure is followed by a discussion of the 

methods for characterizing the LFE sensor elements to changes in the physical properties of 

liquids.  In the next chapter I will present the theoretical and experimental results of LFE 

sensors under various liquid loads.  This is followed by a discussion of the results and a 

comparison of the theoretical and experimental data. 

4.1.  Lateral-Field Excited Sensors 

The LFE sensors were fabricated on AT-cut quartz discs with a diameter of 25.4 mm 

and thickness of 0.33 mm.  The discs are plano-plano, (each of the major surfaces are flat), 

and optically polished.  There are two sources for the quartz discs, the first is Sawyer 

Technical Materials, LLC, Eastlake, OH and the second is Lap-Tech Inc., Bowmanville, ON, 

Canada.   

The electrodes were deposited on AT-cut quartz substrates at the Laboratory for 

Surface Science and Technology (LASST), at the University of Maine, Orono, ME.  A 50-nm 

adhesion layer of chromium was deposited on one major surface of the quartz disc in a 

vacuum deposition chamber using radio frequency magnetron sputtering.    The chromium 

layer is required because the lattice spacing between chromium and quartz is closer than that 

of quartz and gold.  A 250-nm layer of gold is sputtered onto the chromium.  If gold were to 

be deposited directly on the quartz substrate, the gold would delaminate from the surface. 
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The electrodes were patterned on the surface using standard photolithographic 

techniques (Figure 29).  The first step of the photolithographic process is to apply 

photoresist to the gold-coated surface of the quartz disc.  Photoresist is a liquid polymer that 

is sensitive to ultraviolet light.  The photoresist is a physical barrier to the removal of the 

gold in the region of the electrodes.  A photomask, a clear overlay with an opaque electrode 

pattern, is aligned in the proper position on a Quintal mask aligner.  The mask aligner has a 

vacuum chuck bringing the photomask into physical contact with the quartz wafer.  The 

photoresist is exposed to ultraviolet light where the photomask has no pattern.  The 

photoresist that was exposed to the ultraviolet is removed in developer solution.  The gold 

film in the regions not protected by the photoresist is then removed using a chemical 

etchant.  The final step in the photolithography process is the removal of the photoresist 

from the electrodes. 

 

Figure 29.  The photolithography process [78] 

4.2.  Lateral-Field Excited Sensor Element Characterization 

The first step in preparing the LFE sensor elements is cleaning.  The cleaning 

process removes any chemical residue that may still be on the sensor elements from the 
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electrode deposition process.  Up to four sensor elements are placed in a Teflon® holder 

designed for this purpose.  The cleaning procedure is as follows: 

• Immerse the sensor elements in acetone for about ten minutes. 

• Remove the sensor elements from the acetone and immerse in isopropyl 

alcohol for about ten minutes. 

• Remove the sensor elements from the isopropyl alcohol and immerse in 

deionized water for about ten minutes. 

• Remove the sensor elements from the deionized water. 

• Remove the LFE sensor elements from the deionized water and the holder. 

• Dry the sensor elements individually with pressurized nitrogen.  Nitrogen is 

used rather than compressed air, as compressed air can oxidize the gold 

electrodes. 

• Place the sensor elements, bare side up, in a Boekel UV Clean for 20 

minutes.  The ultraviolet light removes any organic residue that is on the 

sensing surface of the LFE sensor elements from the prior cleaning steps. 

Each LFE sensor element is placed in a holder prior to testing.  The two purposes of 

the device holder are, first, to make an electrical contact between the LFE sensor element 

and the measurement instrumentation, and second, to prevent the liquid from contacting the 

sensor element anywhere but on the sensing surface.  If the liquid were to contact the 

reference surface, the electrical measurements would be compromised as the liquid may have 

a finite conductivity.  Additionally, many solutions, especially the sodium chloride solutions 

used in these experiments, are highly corrosive and will damage the electrical contacts in the 

holder.  The holder is then connected, by coaxial cable, to a Hewlett-Packard HP4795a 

network analyzer.  A network analyzer is an instrument that measures high frequency 
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electrical networks, (up to 500 MHz for the HP4795a).  The network analyzer was set to 

record 801 points for every sweep to obtain the best resolution of the device admittance.  

The network analyzer has the capabilities of converting the measured signal to the equivalent 

admittance for the LFE sensor element.  The admittance of each sensor element was 

recorded in air before it was exposed to liquid. 

The admittance of the LFE sensor element under liquid-loading was measured by 

lowering the holder containing the sensor element in a 400-ml beaker of the solution to be 

measured so that the sensor element was completely immersed.  The admittance of the 

sensor element was measured on the network analyzer.  Once the measured admittance was 

stable, with a frequency variation in peak admittance of no more than ± 2 Hz, the 

admittance was saved. 

Three different solutions were chosen to characterize the LFE sensor elements to 

physical property changes of liquids.  The three physical properties of the solutions that are 

being varied are viscosity, permittivity, and conductivity.  Viscosity is a mechanical property 

and is defined as the resistance of a liquid to flow.  Thus, molasses is an example of a liquid 

with a high viscosity as it has a high resistance to flow, whereas water at 20°C is an example 

of a liquid with a low viscosity as it flows easily.  Permittivity is an electrical property and is 

the ability of a material to store a charge.  Liquids with a higher permittivity will store an 

electrical charge with a smaller electric field.  Conductivity is also an electrical property and is 

the ability of a material to conduct electrical current.  Liquids with high conductivity will 

conduct electricity more readily than liquids, such as deionized water, that have very low 

conductivity. 

The solutions were chosen so that varying the concentration of the solution changes 

one of the physical properties with minimal changes to the other two physical properties.  
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The solution chosen to measure the LFE sensor elements’ responses to changes in liquid 

viscosity is glycerol.  Glycerol solutions have been used in other studies to examine the 

frequency responses of acoustic wave sensors to changes in liquid viscosity.  For the 

experiments presented here, the glycerol concentration was varied from 0% to 20% glycerol 

by weight.  The solution chosen to measure the LFEs’ behavior to changes in liquid 

permittivity is isopropyl alcohol.  The concentration of the isopropyl alcohol solution was 

varied from 0% to 100% by weight.  In order to measure the LFE sensor elements’ 

responses to changes in conductivity a sodium chloride solution was chosen.  The 

concentration of sodium chloride was varied from 0% to 0.15% by weight. 

The data was exported to MATLAB, a mathematics software package.  The data was 

plotted and several features of the LFE sensor elements’ admittances were characterized as 

the physical properties of the solutions were varied.  The features of the admittance that 

were characterized are: 

• resonant frequency 

• antiresonant frequency 

• the magnitude of the admittance at the resonant frequency 

• the magnitude of the admittance at the antiresonant frequency 

• the phase of the admittance at the resonant frequency 

• the phase of the admittance at the antiresonant frequency 

• the frequency difference between the antiresonant and resonant frequency 

The fact that the admittance of the LFE sensor elements is a complex value, 

containing both a real part and imaginary part, both the magnitude and phase at the resonant 

and antiresonant frequencies must be evaluated to fully characterize the admittances of the 

LFE sensor elements. 
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Chapter 5 

RESULTS AND DISCUSSION 

In chapter 3 a model for the liquid-loaded lateral-field excited (LFE) sensor element 

was derived.  This was followed, in chapter 4, by the experimental methods used in 

measuring the response of the LFE sensor element to liquid loads with different mechanical 

and electrical properties.  What follows in this chapter is an analysis of the theoretical model 

for the LFE sensor element.  This analysis will examine the response of the model to 

changes in the kinematic viscosity, electrical conductivity, and permittivity of the contacting 

liquid.  The conclusions of the research and directions for future work are presented in 

chapter 6.  

5.1.  Experimentally Determined Parameters for LFE Sensor Elements 

The equivalent circuit model for the LFE sensor element considered the device 

response due only to changes in the crystal and the contacting liquid.  Practically, the LFE 

sensor element is measured in a holder.  The holder is not electrically isolated from the 

sensor and has a parasitic capacitance, pC , and a parasitic resistance, pR  due to electrical 

interactions between the holder, the LFE sensor element, and the measurement system.  The 

values  for pC  and pR  were experimentally determined (Table 5) and depends not only on 

the holder but on the electrode configuration of the LFE sensor element.  The equivalent 

circuit model modified with the parasitic elements is shown in Figure 30. 
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Table 5.  Experimentally determined parameters for LFE sensor elements 

electrode 
gap (mm) 

f0 (MHz) Cp (pF) Rp (Ω) C0 (pF) R1 (Ω) heff (mm) 

0.5 4.966811 6.7 145 5.0 650 0.86
1.0 4.964884 5.8 145 5.1 650 1.55 
2.0 4.964891 4.6 175 5.0 750 3.36 
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Figure 30.  Equivalent circuit for LFE sensor element incorporating the electrical 
influence of the sensor holder 
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The circuit in Figure 30 contains all the circuit elements derived from the analysis in 

chapter 3.  However, the equivalent circuit can be estimated using the simplified circuit, 

which is inside the dashed square of Figure 30.  The admittance curves near resonance for 

both circuits under deionized water loading are shown in Figure 28.  The resonant and 

antiresonant frequencies between the two models differ by no more than 0.02% for the full 

range of liquid loads tested.  The error in the peak magnitude of the admittance between the 

two models is greater, reaching about 4.4% for the most conductive liquids tested.  

However, this is, well within the experimental error, which is estimated to be greater than 

5%.  The simplified circuit model provides ease of analysis without greatly sacrificing 

accuracy. 

Following the approach used by Martin, et al. [43] the series resonant frequency, sf , 

and static capacitance, 0C , were experimentally determined for each device (Table 5).  The 

static capacitance is dependent only on the electrode configuration and the thickness of the 

quartz plate, thus finding 0C  experimentally does not impact the model with regard to 

perturbations in the contacting liquid. 

The effective penetration depth, effh , was also determined experimentally.  The 

effective penetration depth, effh , is proportional to the electrode gap width, w .  

5.2.  Admittance in Deionized Water 

The plots of the theoretical admittance obtained with the lumped element equivalent 

circuit model were compared to measured data for LFE sensor elements in deionized water 

(Figure 31 - Figure 33).  The plots show very good agreement between the measured and 

model data, with the model having about a 5% error compared with the experimental data.  
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The one feature of the measured data that does not occur in the model data is the ripple that 

occurs out of the resonance band on the high frequency side.  This ripple may be due to 

another acoustic mode or the thickness shear mode reflected at the edge of the plate.   
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Figure 31.  Theoretical and measured admittance for an LFE sensor element with a 
0.5-mm electrode gap under a deionized water load 
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Figure 32.  Theoretical and measured admittance for an LFE sensor element with a 
1.0-mm electrode gap under a deionized water load 
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Figure 33.  Theoretical and measured admittance for an LFE sensor element with a 
2.0-mm electrode gap under a deionized water load 
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5.3.  LFE Sensor Element Response to Kinematic Viscosity 

The data, both measured and from the model, for the LFE sensors exposed to the 

full range of glycerol solutions are given in Appendix D.  The data for the frequency shift, 

normalized to the series resonant frequency in deionized water as a function of kinematic 

viscosity are given in Figure 34 - Figure 36.  In all cases the magnitude of the frequency shift 

predicted by the model, (the squares in figures 33 – 35), is less than was measured (the 

diamonds in figures 33 -35).  However, if the frequency shift due to the permittivity is 

neglected, the model, (the triangles in figures 33 – 35) matches the measured frequency shift 

within the experimental error.  The primary sources of experimental error for these data are 

the resolution of the network analyzer (± 25 ppm), the temperature variations in the 

laboratory (±5 ˚C), and errors in the concentration of the solutions (±0.5 %). 

The normalized frequency shift was calculated to be ±5 ppm using the generalized 

frequency-temperature curves in [79].  The error also considered possible misalignment of 

the AT-cut quartz plate to be ±8’. 
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Figure 34.  Normalized frequency shift of an LFE sensor element with a 0.5-mm 
electrode gap as a function of kinematic viscosity 
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Figure 35.  Normalized frequency shift of an LFE sensor element with a 1.0-mm 
electrode gap as a function of kinematic viscosity 
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Figure 36.  Normalized frequency shift of an LFE sensor element with a 2.0-mm 
electrode gap as a function of kinematic viscosity 

The magnitude of the peak admittance for LFE sensor elements with different 

electrode gaps, normalized to the value in deionized water, is shown in Figure 37 - Figure 39.  

The decrease in the peak admittance due to kinematic viscosity predicted by the model 

follows the same trends as the measured data.  However, the model consistently predicts a 

smaller change in peak admittance than was found in the measured data. 
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Figure 37. Normalized peak admittance of an LFE sensor element with a 0.5-mm 
electrode gap as a function of kinematic viscosity 
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Figure 38.  Normalized peak admittance of an LFE sensor element with a 1.0-mm 
electrode gap as a function of kinematic viscosity 
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Figure 39. Normalized peak admittance of an LFE sensor element with a 2.0-mm 
electrode gap as a function of kinematic viscosity 

The phase of the admittance of the LFE sensor element at its resonant frequency as 

a function of kinematic viscosity is shown in Figure 40 - Figure 42.  The phase predicted by 

the model is within the experimental error of the measured data.
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Figure 40.  Phase at resonance of an LFE sensor element with a 0.5-mm electrode 
gap as a function of kinematic viscosity 
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Figure 41.  Phase at resonance of an LFE sensor element with a 1.0-mm electrode 
gap as a function of kinematic viscosity 
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Figure 42.  Phase at resonance of an LFE sensor element with a 2.0-mm electrode 
gap as a function of kinematic viscosity 

Overall, the model predicts the admittance trends of the LFE sensor elements due to 

changes in the kinematic viscosity of the liquid load.  The precision of the model is affected 

by several factors, including the material properties of the quartz and liquid load as well as 

the influence of temperature on the quartz and liquid load. 

5.4.  LFE Sensor Element Response to Relative Permittivity 

 The data for the frequency shift, normalized to the series resonant frequency in 

deionized water as a function of relative permittivity are given in Figure 43 - Figure 45.  The 

curves show that the model predicts, within experimental error, the frequency shift due to 

liquid permittivity changes at the surface of the LFE sensor element.  The primary sources 

of experimental error for these data are the resolution of the network analyzer (± 25 ppm), 
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the temperature variations in the laboratory (±5 ˚C), and errors in the concentration of the 

solutions (±0.5 %). 

 

Figure 43. Normalized frequency shift of an LFE sensor element with a 0.5-mm 
electrode gap as a function of isopropyl alcohol concentration 
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Figure 44.  Normalized frequency shift of an LFE sensor element with a 1.0-mm 
electrode gap as a function of isopropyl alcohol concentration 
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Figure 45.  Normalized frequency shift of an LFE sensor element with a 2.0-mm 
electrode gap as a function of isopropyl alcohol concentration 

The magnitude of the peak admittance for LFE sensor elements with different 

electrode gaps, normalized to the value in deionized water, is shown in Figure 46 - Figure 48.  

The decrease in the peak admittance due to relative permittivity predicted by the model is 

much less than was found in the measured data. 
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Figure 46. Normalized peak admittance of an LFE sensor element with a 0.5-mm 
electrode gap as a function of relative permittivity 
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Figure 47. Normalized peak admittance of an LFE sensor element with a 1.0-mm 
electrode gap as a function of relative permittivity 
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Figure 48. Normalized peak admittance of an LFE sensor element with a 2.0-mm 
electrode gap as a function of relative permittivity 

The phase of the admittance of the LFE sensor element at its resonant frequency as 

a function of relative permittivity is shown in Figure 49 - Figure 51.  The phase at resonance 

predicted by the model is much less than was determined experimentally. 
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Figure 49.  Phase at resonance of an LFE sensor element with a 0.5-mm electrode 
gap as a function of relative permittivity 
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Figure 50.  Phase at resonance of an LFE sensor element with a 1.0-mm electrode 
gap as a function of relative permittivity 
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Figure 51.  Phase at resonance of an LFE sensor element with a 2.0-mm electrode 
gap as a function of relative permittivity 

The model gives a prediction, within experimental error, of the frequency shift due 

to loading by a dielectric liquid.  However, the magnitude and phase of the admittance at the 

resonant frequency predicted by the model differs substantially from the measured data on 

the devices.  There are two reasons that are believed to be the cause of the error. 

The first reason is that the model was developed under the assumption that the 

driving electric field, 3E , is uniform between the electrodes, which were modeled on the 

sides of the quartz plate.  However, the LFE sensor element has electrodes mounted on the 

reference surface of the quartz plate.  This will, in practice, lead to a driving electric field that 

has electric field components, 2E  and 3E , both in the quartz plate and in the region below 

the quartz plate.  While the static capacitance, 0C , was experimentally determined, the 
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assumptions about the quartz plate, while sufficient for determing the admittance of the 

LFE sensor element in a static environment, such as deionized water, lead to errors in the 

model when exposed to a dielectric load.  One option is to calculate 0C  using elliptic 

integrals [80]. 

The second error may be due to changes in the parasitic capacitance of the holder 

due to the dielectric load.  If one examines Figure 49 - Figure 51, it can be noted that even 

for small permittvity changes from deionized water, the phase of the admittance is almost 

purely capacitive.  This leads to the conclusion that the admittance at resonance is strongly 

influenced by an interaction between the LFE sensor element holder and the contacting 

liquid. 

5.5.  LFE Sensor Element Response to Conductivity 

 The data for the frequency shift, normalized to the series resonant frequency in 

deionized water as a function of liquid conductivity are given in Figure 52 - Figure 54.  The 

curves show that the the frequency shift predicted by the model due to liquid conductivity 

changes at the surface of the LFE sensor element converges to the measured values for the 

solutions having higher conductivity.    The primary sources of experimental error for these 

data are the resolution of the network analyzer (± 25 ppm), the temperature variations in the 

laboratory (±5 ˚C), and errors in the concentration of the solutions (±5 μg/ml). 
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Figure 52.  Normalized frequency shift of an LFE sensor element with a 0.5-mm 
electrode gap as a function of sodium chloride concentration 
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Figure 53.  Normalized frequency shift of an LFE sensor element with a 1.0-mm 
electrode gap as a function of sodium chloride concentration 



 141

 

Figure 54.  Normalized frequency shift of an LFE sensor element with a 2.0-mm 
electrode gap as a function of sodium chloride concentration 

The magnitude of the peak admittance for LFE sensor elements with different 

electrode gaps, normalized to the value in deionized water, is shown in Figure 55 - Figure 57.  

The trend of the peak admittance due to liquid conductivity predicted by the model is similar 

to that of the measured data.  However, the peak admittance predicted by the model does 

not reliably agree with the measured data. 
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Figure 55. Normalized peak admittance of an LFE sensor element with a 0.5-mm 
electrode gap as a function of conductivity 
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Figure 56. Normalized peak admittance of an LFE sensor element with a 1.0-mm 
electrode gap as a function of conductivity 
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Figure 57. Normalized peak admittance of an LFE sensor element with a 2.0-mm 
electrode gap as a function of conductivity 

The phase of the admittance of the LFE sensor element at its resonant frequency as 

a function of liquid conductivity is shown in Figure 58 - Figure 60.  The phase of the LFE 

sensor element at resonance predicted by the model is substantially greater than the 

measured data. 
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Figure 58.  Phase at resonance of an LFE sensor element with a 0.5-mm electrode 
gap as a function of conductivity 
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Figure 59.  Phase at resonance of an LFE sensor element with a 1.0-mm electrode 
gap as a function of conductivity 
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Figure 60.  Phase at resonance of an LFE sensor element with a 2.0-mm electrode 
gap as a function of conductivity 

The model gives a prediction, within experimental error, of the frequency shift due 

to loading by a conductive liquid.  However, the magnitude and phase of the admittance at 

the resonant frequency predicted by the model differs substantially from the measured data 

on the devices.  The errors are believed to be due to the driving electric field having 

perpendicular components in addition to the lateral components and to the parasitics of the 

holder.  The frequency change data also leads to the conclusion that the effective 

penetration, effh ,  into the liquid is a function of conductivity. 

5.6.  Discussion 

The model developed here predicts, within experimental error, the frequency shift 

due to changes in kinematic viscosity, permittivity, and conductivity of the contacting liquid.  
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However, frequency change is only one parameter of the admittance at or near resonance 

that changes due to changes in the contacting liquid.  Some of the other parameters that can 

be examined are: 

• the magnitude of the admittance at the resonant frequency 

• antiresonant frequency 

• the magnitude of the admittance at the antiresonant frequency 

• the phase of the admittance at the resonant frequency 

• the phase of the admittance at the antiresonant frequency 

• the frequency difference between the antiresonant and resonant frequency. 

The measured and model data for these parameters are given in Appendix D. 

It is useful to examine the influence of viscoelastic and dielectric effects on the 

frequency of the LFE sensor element separately for liquids that exhibit changes in both.  The 

glycerol and isopropanol solutions used in these experiments vary in density, viscosity, and 

permittivity for the ranges used.  The influence of kinematic viscosity and permittivity are 

separated out for an LFE sensor element with an electrode gap of 0.5 mm and is shown in 

Figure 61 and Figure 62.  The plot in Figure 61 shows that the normalized frequency shift of 

the LFE sensor is the sum of the normalized frequency shift due to kinematic viscosity and 

permittivity, within 40 ppm of experimental error.  When the LFE sensor element is exposed 

to a dielectric liquid, (Figure 62), with small changes in kinematic viscosity, the normalized 

frequency shift of the sensor element is better predicted by treating the liquid as a purely 

dielectric liquid.  Examining the curves in Figure 62 the normalized frequency shift due to 

permittivity changes in the liquid has an average deviation from experimental error of 70 

ppm.  The normalized frequency shift due to the sum of permittivity and kinematic viscosity 

in the liquid has an average deviation from experimental error of 151 ppm.  This leads to the 
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conclusion that the dielectric effects of the liquid on the LFE sensor element dominate the 

frequency response.  The plots for the devices having electrode gaps of 1.0 mm and 2.0 mm 

exhibited similar behavior. 

 

Figure 61.  Normalized frequency shift of an LFE sensor element with a 0.5-mm 
electrode gap as a function of kinematic viscosity with the frequency shift due to 
kinematic viscosity and permittivity separated 
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Figure 62.  Normalized frequency shift of an LFE sensor element with a 0.5-mm 
electrode gap as a function of relative permittivity with the frequency shift due to 
kinematic viscosity and permittivity separated 

The model is less successful at predicting the peak magnitude of the admittance.  

This is most likely due to modeling the electrodes on the side faces of the crystal, rather than 

where they exist physically, on the reference surface of the quartz disc.  The model follows 

similar trends to the measured data for changes in kinematic viscosity, permittivity, and 

conductivity.  There are considerable discrepancies of the peak magnitude due to electrical 

property changes.  The errors in the model due to electrode geometry will be most evident in 

the response of the model to liquid permittivity.  This is because the static capacitance, 0C , 

is more complex for the electrodes on the reference face, than for the geometry assumed in 

the model.  The static capacitance can be more accurately modeled using elliptic integrals for 

the electrodes on the reference surface of the LFE sensor element [80].    
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The use of electrodes on the edge of the plate, rather than on the reference surface 

to calculate the impedance is, most likely, the primary source of error in the equivalent 

circuit model.  The placement of the electrodes on the edge of the plate, allowed for the 

assumption that the driving electric field, 3E , does not vary in the 3x  direction.  In reality, 

the driving electric field contains a lateral component, 3E , and a perpendicular component, 

2E  and the electric field will not uniform between the electrodes.  In developing the 

expression for the admittance of the LFE sensor element it was assumed that the driving 

electric field was contained entirely within the quartz plate.  With the electrodes on the 

reference surface of the quartz plate, there will be an electric field in the air between the two 

electrodes.  The strength of the electric field in the air will decrease as the gap width 

increases. 

It is also interesting to note that the value for the effective penetration of the electric 

field associated with the thickness shear mode, effh , decreases as the liquid conductivity 

increases.  The values for effh  for the sodium chloride solutions are given in Table 6.  The 

effective penetration depth is roughly proportional to the electrode gap.  The change in effh  

is due to the fact that as the conductivity increases, so does the relaxation frequency.  As the 

relaxation frequency approaches the series resonant frequency of the LFE sensor element, 

electric field probes the bulk liquid less efficiently due to the realignment of the charges in 

the double layer at the sensor surface. 
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Table 6.  Effective penetration of the electric field in sodium chloride solutions 

electrode gap (mm) heff (mm) 

0.5 0.146 

1.0 0.340 

2.0 0.537 

The analysis used to develop the equivalent circuit model is for the thickness shear 

mode in AT-cut quartz.  Quartz is a piezoelectric crystal with symmetry class, trigonal 32 

[81].  The equivalent circuit will apply to any crystal with symmetry class, trigonal 32, 3m, and 

m3 , for the thickness shear mode.  The circuit itself can be used for crystals of any 

orientation.  However, the expressions for the circuit elements will be different for crystals 

with different symmetry classes.  The same analysis that was used in this work can be applied 

to crystals with other symmetry classes to derive expressions for the circuit elements. 

 Overall, the model presents a good first-order approximation of the admittance in 

deionized water, while also predicting the frequency shift due to changes in liquid kinematic 

viscosity, permittivity, and conductivity at the surface of the LFE sensor element.  

The major weakness of the model presented here is the lack of an analytical 

determination of the effective penetration depth of the electric field into the liquid.  The 

values for effh  were determined empirically from the data collected.  More work can be done 

to find an analytic expression for effh  and how it varies as a function of the liquid 

conductivity. 
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Chapter 6 

SUMMARY, CONCLUSIONS, AND FUTURE WORK 

6.1.  Summary 

An equivalent circuit model for a lateral-field excited (LFE) sensor element under 

liquid loads has been developed to describe the admittance of the sensor element at or near 

resonance.   Expressions for the admittance at or near resonance and the frequency shift of 

the LFE sensor element due to changes in kinematic viscosity, permittivity, and conductivity 

have been developed. 

This work has presented the background on bulk acoustic wave (BAW) sensors and 

LFE resonators and sensors.  The theory on elastic waves in non-piezoelectric and 

piezoelectric solids has been discussed.  Qualitative and analytic descriptions of BAW 

resonators were presented.  Three models for BAW resonators were discussed, the Mason 

model, the Martic model, and the transmission line model for both thickness- and lateral-

field excitation.  The LFE models were all presented for the air-loaded case.  The thickness-

field excited resonators were all presented for the air-loaded case and the Martin model and 

the transmission line model were also discussed under liquid loading. 

An analysis of the LFE sensor element under liquid loading was presented.  Six 

boundary conditions, three mechanical and three electrical, were applied to the analysis.  

From this an expression for the admittance of the LFE sensor element was derived.  The 

analysis was approximated for operation at or near the resonant frequency of the LFE 

sensor element.  An equivalent circuit model was extracted from the admittance.  

Expressions for the frequency shift of the LFE sensor element due to changes in the 

kinematic viscosity, permittivity, and conductivity have been derived. 
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The experimental methods for fabricating, cleaning, and testing the LFE sensor 

elements was discussed.  Finally, the data generated from the equivalent circuit model was 

compared with measured data under liquid loads with varying kinematic viscosity, 

permittivity, and conductivity. 

6.2.  Conclusions 

An equivalent circuit model has been developed that reproduces the admittance of 

an LFE sensor element under deionized water load within ±5%.  An expression for the 

admittance based on the model at or near resonance has been derived.  Additionally, 

expressions for the frequency shift of an LFE sensor element due to simultaneous viscous, 

dielectric and conductive loading has been developed. 

The equivalent circuit model predicts the frequency shift, within experimental error 

due to changes in kinematic viscosity, permittivity, and conductivity of a liquid at the sensor 

surface.  Additionally, the model predicts the trend of the peak admittance of the LFE 

sensor element due to liquid loading. 

The advantages of the model are: 

• a simple equivalent circuit similar to the Martin and Butterworth-Van Dyke 

equivalent circuits 

• accurate, (±5% from measured), prediction of the admittance at or near 

resonance for the LFE sensor element under deionized water loads 

• prediction of the frequency shift due to changes in kinematic viscosity, 

permittivity, and conductivity within experimental error 

The primary limitations of the model are: 
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• the expressions for the frequency shift due to liquid permittivity and 

conductivity changes are complex 

• the model does not precisely give the peak admittance of the LFE sensor 

element under liquid loads 

• the effective penetration of the electric field associated with the thickness 

shear mode is not analytically determined 

6.3.  Future Work 

While the equivalent circuit model presented in this work is the first analytic 

approach to modeling the LFE sensor element under liquid loads, there are significant 

limitations that require additional work. 

The first suggested direction for future research is to apply the analysis to electrodes 

on the reference face of the LFE sensor element.  While the model provides a good 

approximation of the measured data, there are errors that are most likely due to modeling 

the electrodes on the side faces of the resonator.  This is most apparent in the discrepancies 

between measured and model data for the peak admittance under dielectric loading.  The 

analysis may result in a complex circuit that is cumbersome, but may provide insight to the 

existing circuit and suggest modifications to the existing circuit elements. 

The second suggested direction is to describe, more thoroughly, the electrical 

interaction between the electric field associated with the thickness shear mode and the 

double layer at the surface of the LFE sensor element.  The purpose of this work is to obtain 

an expression for the effective penetration depth, effh . 

The third suggested direction is to apply the analytic equations in section 3.2. to a 

finite element analysis using commercially available software packages, such as COMSOL, or 
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a user-developed finite element analysis routine.  The complexity of the system, may be 

more efficiently modeled using the equations presented here in finite element analysis, rather 

than an equivalent circuit, which has inherent limitations if it is to be easily implemented. 

The final suggested direction is to perform the analysis for other crystals with 

different symmetry classes.  The analysis used here can be applied to other crystals and 

expressions for the circuit elements derived based in this analysis. 
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Appendix A 

PIEZOELECTRIC COUPLING FACTOR FOR LATERAL-FIELD EXCITED 

ACOUSTIC MODES IN AT-CUT QUARTZ 

This appendix contains the method for finding the piezoelectric coupling factor, 

)(i
mk , of lateral-field excited (LFE) acoustic modes in quartz.  The steps follow those detailed 

by Ballato, et al. in [35].  

Step 1.  Rotate coordinates ( )ψθφ ,,  

The material constants for quartz, ijklc , kije , and ijε , must be transformed from the 

crystallographic to plate coordinates.  When calculating the coupling coefficients in quartz it 

is unnecessary to consider the viscosity, η , due to it being small.  For AT-cut quartz 

o00.0=φ  and o25.35=θ . 

Step 2.  Stiffen elastic constants 

Once the material constants have been rotated, the piezoelectrically stiffened elastic 

constant, 22 jkc , can be calculated as follows, 

22

2222
2222 ε

kj
jkjk

ee
cc += . (A.1) 

Step 3.  Solve eigenvalue problem 

In order to solve the eigenvalue problem, it is necessary to solve the following 

eigenequation, 

)()()(][ iii
jk cc ββ = , (A.2) 
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where )(iβ  is the eigenvector of ][ jkc , defined in equation (2.77) and )(ic  is the eigenvalue 

for each of the acoustic modes, where cbai ,,= . 

Step 4.  Order roots and eigenvectors 

The acoustic modes are the longitudinal, a , the fast shear, b , and the slow shear, c , 

modes.  The roots are ordered as described in Table A.1, where iX  are the plate 

coordinates. 

Table A.1.  The relationship between the acoustic modes and the eigenvalues for an 
LFE resonator on quartz 

mode eigenvalue ( )(ic ) eigenvector ( )(iβ ) 
longitudinal mode (a) 

2=i  
the largest root the largest component is 

along 2X  
fast shear mode (b) 

3=i  
the median root the largest component is 

along 3X  
thickness shear mode (c) 

1=i  
the smallest root the largest component is 

along 1X  

Step 5.  Transform je22  and je12  to normal coordinates 

The transformation of the piezoelectric stress constants is done using equation 

(2.78), yielding 

j
p

jp ee 22
)(0

22 β= , (A.3) 

and 

k
q

kq ee 12
)(0

12 β= . (A.4) 
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Step 6.  Modify the lateral 0e  values 

This step is similar to the transformation using equation (2.69) and is modified as 

follows, 

0
22

22

120
12

0
12 qqq ee

ε
ε

−=e . (A.5) 

Step 7.  Modify the lateral permittivity 

The equation used for this modification is similar to equation (3.29), yielding 

22

2
12

1111 ε
εεε −= . (A.6) 

Step 8.  Determine piezoelectric coupling factors  

The lateral-field excited coupling factor is 

( ) ( )
11

)(

20
122)(

εi
ii

m c
ek = . (A.7) 

Inspection of equation (A.7) reveals that it is similar in form to equation (2.97).  Once the 

piezoelectric coupling factors have been calculated for each of the acoustic modes, they can 

be plotted as a function of the direction of the applied electric field, (Figure 3). 
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Appendix B 

BULK ACOUSTIC WAVE RESONATOR MODELS 

B.1. Mason Circuit Model 

B.1.1. Thickness-Field Excitation 

The Mason model for a thickness-field excited BAW resonator is shown in Figure 

11.  Expressions for the forces, 1F  and 2F , can be found by examination of Figure 11 as 

follows, 

( ) ( ) ( )

( ) ( ) ( ) cd
t

c

t
tc

cd
t

c
tc

Vv
hk

Zjv
hk

hkZj

Vvv
hk

ZjvhkZjF

++⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

+−−=

21

2111

sinsin
12tan

sin
2tan

 (B.1) 

and 

( ) ( ) ( )

( ) ( ) ( ) cd
t

tc
t

c

cd
t

c
tc

Vv
hk

hkZj
hk

Zj

Vvv
hk

ZjvhkZjF

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−−=

+−−−=

2

2122

sin
12tan

sin

sin
2tan

. (B.2) 

The voltage, cdV , is expressed as 

0CNVV tabcd = . (B.3) 

The voltage, abV , is from inspection of Figure 11 

0

1

Cj
IVVab ω

+= , (B.4) 

where 1I  is the current through the transformer, which can be expressed as follows, 

VCjII 01 ω−= . (B.5) 

Substituting equation (B.5) into (B.4) yields 



 161

000

0

Cj
IV

Cj
IV

Cj
VCjIVVab ωωω

ω
=−+=

−
+= . (B.6) 

An expression for cdV  is obtained by substituting equation (B.6) into (B.3) as follows, 

I
j
NV t

cd ω
=  .  (B.7) 

Using the following trigonometric identity 

( ) ( ) ( )2tan
sin

1
tan

1 hk
hkhk t

tt

−=  (B.8) 

and substituting equation (B.7) into (B.1) and (B.2) yields expressions for 1F  and 2F , 

( ) ( ) I
j
N

hkj
v

hkj
vZF t

tt
c ω

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

sintan
21

1  (B.9) 

and 

( ) ( ) I
j
N

hkj
v

hkj
vZF t

tt
c ω

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

tansin
21

2 . (B.10) 

Since both surfaces are stress free,  

021 == FF . (B.11) 

Thus, both mechanical ports of the model are “short-circuited”. 

The final equation that is neccessary to calculate the impedance of the Mason model 

is an expression for the voltage.  First, an expression for the electric field, 2E , is found by 

substituting equation (2.23) into (2.32) and rearranging as follows, 

2,1
22

26

22

2
2 ueDE

εε
−= . (B.12) 

Next, the voltage is found by integrating 2E  through the thickness of the quartz, yielding 

( ) ( )( )011
22

26

22

2
0 22 uhuehDdxEV
h

−−== ∫ εε
. (B.13) 
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From Maxwell’s equations the current density, 2J , through the crystal is given by the 

expression 

2
2

2 Dj
t

DJ ω=
∂
∂

= , (B.14) 

and thus, 

ADjAJI 22 ω== , (B.15) 

where A  is the cross-sectional area of the quartz resonator.  Finally, solving for 2D   in 

equation (B.15) and substituting into (B.13) while substituting equations (2.112), (2.109), and 

the relation tuv ∂∂=  into (B.13) yields 

( )12
0

vv
j
N

Cj
IV t −+=

ωω
. (B.16) 

Using the same approach as Rosenbaum [42], equations (B.9) and (B.10) are 

simplified as follows, 

( ) ( ) 0
sintan

=+− cy
hkj

Zx
hkj

Z

t

c

t

c  (B.17) 

and 

( ) ( ) 0
tansin

=+− cy
hkj

Zx
hkj

Z
t

c

t

c , (B.18) 

where 

I
vx 1= , (B.19) 

I
vy 2= , (B.20) 

and 
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ωj
Nc t= . (B.21) 

Subtracting equation (B.18) from (B.17) yields 

( ) ( ) ( ) ( ) 0
sintansintan

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
− y

hkj
Z

hkj
Zx

hkj
Z

hkj
Z

t

c

t

c

t

c

t

c , (B.22) 

where it is clear that 

yx −= . (B.23) 

Substituting equation (B.23) into (B.17) yields 

( ) ( ) ( ) ( ) 0
sintansintan

=+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=++ cx

hkj
Z

hkj
Zcx

hkj
Zx

hkj
Z

t

c

t

c

t

c

t

c . (B.24) 

Using the trigonometric identity 

( ) ( ) ( )hkhkhk ttt sin
1

tan
1

2tan
1

+=  (B.25) 

and solving for x  in equation (B.24) results in the following expression, 

( )2tan hk
jZ

cx t
c

−
= . (B.26) 

The impedance of the resonator can be expressed by dividing equation (B.16) by I   

and substituting equations (B.19), (B.20), and (B.23) as follows, 

( ) x
j
N

Cj
yx

j
N

CjI
VZ tt

ωωωω
211

00

+=−+== . (B.27) 

Substituting equations (B.21) and (B.26) into (B.27) yields 

( ) ( )2tan212tan21
2

2

00

hk
Zj

N
Cj

hk
Z

cN
Cj

Z t
c

t
t

c

t

ωωωω
−=−= . (B.28) 



 164

The final expression for the impedance is found by substituting equations (2.44), 

(2.111), (2.113), and (2.115) into (B.28) as follows, 

( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

2
2tan11 2

0 hk
hkk

Cj
Z

t

t
mω

. (B.29)  

B.1.2. Lateral-Field Excitation 

The Mason model for a lateral-field excited BAW resonator is shown in Figure 12.  

Similar to the process that was used for the case of thickness-field excited resonators, 

expressions for the forces, 1F  and 2F , can be found by inspection of Figure 12 as follows, 

( ) ( ) ( )

( ) ( ) ( ) cd
l

c

l
lc

cd
l

c
lc

Vv
hk

Zjv
hk

hkZj

Vvv
hkj

ZvhkZjF

++⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

+−+=

21

2111

sinsin
12tan

sin
2tan

 (B.30) 

and 

( ) ( ) ( )

( ) ( ) ( ) cd
l

lc
l

c

cd
l

c
lc

Vv
hk

hkZjv
hk

Zj

Vvv
hkj

ZvhkZjF

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−−=

+−−−=

21

2122

sin
12tan

sin

sin
2tan

. (B.31) 

The voltage, cdV , is expressed as 

0CNVV labcd = . (B.32) 

The voltage, abV , is, from inspection of Figure 12 

VVab = . (B.33) 

An expression for cdV  is obtained by substituting equations (2.116), (2.118), and (B.33) into 

(B.32), as follows 

V
w

dheVcd
36= . (B.34) 
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Using the trigonometric identity in equation (B.8) and substituting equation (B.34) into 

(B.30) and (B.31) yields 

( ) ( ) V
w

dhe
hkj

v
hkj

vZF
tt

c
3621

1 sintan
+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=  (B.35) 

and 

( ) ( ) V
w

dhe
hkj

v
hkj

vZF
tt

c
3621

2 tansin
+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= . (B.36) 

An expression for the current, I , is necessary to calculate the admittance for the 

Mason model.  If the current is assumed to vary harmonically in time, tje ω , then 

Qj
t
QI ω=
∂
∂

= , (B.37) 

where Q  is the charge between the electrodes.  Assuming the current, I , is uniform along 

the 1x  direction (Figure 10), the current is expressed by substituting equation (3.74) into 

(B.37) as follows 

20 3dxDdjI
h

∫= ω . (B.38) 

Substituting equation (2.20) into (B.38) yields 

20
2

1
36333 dx

x
ueEdjI

h

∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+= εω . (B.39) 

The applied electric field is assumed to be uniform, thus 

w
VE =3 . (B.40) 

Substituting equation (B.40) into (B.39) yields 

( ) ( )( )01136
33

0 2
2

1
360 2

33 uhudej
w

Vhdjdx
x
udejdx

w
VdjI

hh
−+=

∂
∂

+= ∫∫ ωεωωεω . (B.41) 
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The final expression for the current, I , is obtained by substituting equation (2.118) into 

(B.41) and recognizing the vuj =ω as follows, 

( )12360 vvdeVCjI −+= ω . (B.42) 

The admittance for the Mason model is calculated by dividing equation (B.42) by V  

as follows, 

⎟
⎠
⎞

⎜
⎝
⎛ −+==

V
v

V
vdeCj

V
IY 12

360ω . (B.43) 

Next, substituting equation (B.11) into (B.35) and (B.36) are divided by V, yields, 

( ) ( ) cy
hkj

Zx
hkj

Z
t

c

t

c −=−
sintan

 (B.44) 

and 

( ) ( ) cy
hkj

Zx
hkj

Z
t

c

t

c −=−
tansin

, (B.45) 

where 

V
vx 1= , (B.46) 

V
vy 2= , (B.47) 

and 

w
dhec 36= . (B.48) 

Subtracting equation (B.45) from (B.44) yields 

( ) ( ) ( ) ( ) 0
sintansintan

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
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Zx

hkj
Z
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Z
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t

c

t

c

t

c . (B.49) 

Inspection of equation (B.49) reveals that 
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yx −= . (B.50) 

Susbstituting equation (B.50) into (B.44) results in 

( ) ( ) cx
hkj

Z
hkj

Z

t

c

t

c −=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

sintan
. (B.51) 

Solving equation (B.51) for x  and substituting equation (B.25) yields 

⎟
⎠
⎞

⎜
⎝
⎛−

=
2

tan hk
Zj
cx t

c

. (B.52) 

The final form of x  is obtained by substituting equation (B.48) into (B.52) as follows 

⎟
⎠
⎞

⎜
⎝
⎛=

2
tan36 hk

Zjw
dhex t

c

. (B.53) 

Finally, the admittance can be found by substituting equations (B.50) and (B.53) into (B.43) 

as follows 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛+=⎟

⎠
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⎛−=

2
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2
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0

2
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2

0

2
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2

0
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ZwC
hedCjhk

Zjw
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c

t

c ω
ωω . (B.54) 

Substituting equations (2.111) and (2.118) into (B.54) yields 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛+=

2
tan21

6633

2
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0
hk
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eCjY t

ρωε
ω . (B.55) 

The final form of the admittance for the Mason model applied to a lateral-field excited BAW 

is found by substituting equations (2.44) and (2.119) into (B.55) as follows 

( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

2/
2/tan1 2

0 hk
hkKCjY

t

t
lω . (B.56) 
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B.2. Transmission Line Model 

B.2.1. Thickness-Field Excitation 

The impedance at AB, ABZ , is found, by examining Figure 15, to be 

CD
tx

txAB Z
N

jX
Cj

Z 2
0

11
++=

ω
. (B.57) 

The reactance, txX , and the turns ratio, txN , are defined by equations (2.129) and (2.130), 

respectively. 

The reactance term can be rearranged by substituting equations (2.109), (2.113), and 

(2.115) into (2.130) as follows, 

( )hk
hc

k
C

X t
m

tx sin1

66

2

0 ρωω
= . (B.58) 

Substituting equation (2.44) into (B.58), yields 

( )hk
hk

k
C

X t
t

m
tx sin1 2

0ω
= . (B.59) 

Thus, 

( ) ( ) ( )hk
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m
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−
===

ωωω
. (B.60) 

The turns ratio, txN , can be expressed by substituting equations (2.44), (2.109), 

(2.113), and (2.115) into (2.129) and rearranged for the form given in equation (B.1), such 

that 

( ) CDt
ct

m
CD

tx

Zhk
hZk
k

C
Z

N
2sin411 2

2

0
2 ω

= . (B.61) 
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The impedance at CD is the parallel combination of the impedance looking to the 

left of the transmission line, lZ , and the impedance looking to the right of the transmission 

line, rZ , where 

rl

rl
CD ZZ

ZZZ
+

= . (B.62) 

The impedance, lZ , is  

⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛=

2
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2
tanh hkjZhjkZZ t

c
t

cl . (B.63) 

Expressing the liquid load with a single impedance term, LZ , the impedance, rZ , is 

( )
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( )2tan

2tan
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Substituting equations (B.63) and (B.64) into equation (B.62) yields 

( ) ( )( )
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An expression for the impedance, ABZ , is obtained by substituting equation (B.65) 

into (B.61) and substituting the resulting equation and (B.60) into equation (B.1), yielding 
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The term in parenthesis of equation (B.66) is rewritten as follows, 
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The numerator of equation (B.67) is next separated into its real and imaginary components.  

First the real part of the numerator is, after much algebraic manipulation, 

( ) ( )( ) ( ) ( )
( ) ( ) ( ) ( )( ) ( )2tan42tan2sin2sin2tan2

2tan2sin42tan2sin
22

22

hkZhkhkhkhkZ
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=+=

+
. (B.68) 

The imaginary part of the numerator is  

( )( ) ( )( ) ( )( ) ( )
( )2tan4

2tan2sin42tan1sin 22

hkZ
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−=
−−−

. (B.69) 

The impedance for the transmission line model is further modified by substituting equations 

(B.68) and (B.69) into (B.67), which is then inserted into (B.66), yielding 

( ) ( )
( )( ) ( )⎟

⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

−
+=

2tan22tan1
2tan42tan411

2

22

0 hkZhkjZ
hkZjhkZ

hk
k

Cj
Z

tctL

tLtc

t

m
AB ω

. (B.70) 

Dividing the numerator and denominator of equation (B.70) by ( )2ktan2 thZc  

results in the final form of the admittance, ABZ , as follows 
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B.2.2. Lateral-Field Excitation 

The admittance of the LFE resonator in air is found by inspection of the circuit in 

Figure 16 and is expressed as 

CDlxAB YNCjY 2
0 += ω , (B.72) 

where 0C  is the static capacitance, defined in equation (2.105), and lxN  is the transformer 

turns ratio, defined in equation (2.135), for the LFE resonator.  Substituting equation (2.135) 

into (B.72) yields 
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where ( )cc  is the eigenvalue of the thickness shear mode and ( )c
mk  is the lateral coupling 

factor, defined in equation (2.97) for the LFE resonator. 

The admittance at CD  can be found by first recognizing that the model is 

considered to be air loaded at both surfaces, 

rl YY = . (B.74) 

Thus, the admittance, CDY , is expressed as follows 

lrlCD YYYY 2=+= . (B.75) 

The admittance, lY , is [26] 
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Substituting equation (2.136) into (B.76) and the resulting expression into (B.75), yields 
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The admittance can be found by substituting equation (B.77) into (B.73) as follows 
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The final expression for the admittance is obtained by substituting equation (2.87) into 

equation (B.78) as follows 
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Appendix C 

MATERIAL PROPERTIES OF LIQUIDS 

Table C.1.  Material properties of glycerol solutions [82, 83] 

% glycerol by 
volume ρ (kg/m3) η (kg/s*m) εr σ (S/m)

0 998.2 0.001002 79.2 5.56E-06
2 1000.3 0.001057 77.5 5.58E-06
4 1009.7 0.001133 75.9 5.60E-06
6 1010.7 0.001214 74.3 5.62E-06
8 1015.9 0.001300 72.8 5.64E-06

10 1021.1 0.001391 71.3 5.66E-06
12 1026.3 0.001488 69.9 5.68E-06
14 1031.5 0.001590 68.5 5.70E-06
16 1036.7 0.001698 67.2 5.72E-06
18 1041.9 0.001812 65.9 5.74E-06
20 1056.1 0.001988 64.7 5.76E-06  

Table C.2.  Material properties of isopropyl alcohol solutions [82, 84, 85] 

% isopropyl alcohol 
by volume

ρ (kg/m^3) η (kg/s*m) εr σ (S/m)

0 998.2 0.001002 79.2 5.56E-06
10 985.9 0.000943 77.7 5.56E-06
20 968.3 0.001587 68.2 5.56E-06
30 949.9 0.001959 59.5 5.56E-06
40 930.6 0.002262 51.6 5.56E-06
50 910.4 0.002483 44.5 5.56E-06
60 889.2 0.002648 38.0 5.56E-06
70 866.9 0.002792 32.3 5.56E-06
80 843.5 0.002940 27.1 5.56E-06
90 818.8 0.003113 22.6 5.56E-06

100 784.8 0.003417 18.3 5.56E-06  
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Table C.3.  Material properties of sodium chloride solutions [82, 86] 

% sodium chloride 
by mass ρ (kg/m3) η (kg/(m*s)) εr σ (S/m)

0.0077 998.4 0.001000 79.9 0.02589
0.01 998.4 0.001000 79.9 0.02956

0.012 998.4 0.001000 79.9 0.03276
0.016 998.4 0.001000 79.9 0.03914
0.02 998.4 0.001001 79.9 0.04553

0.023 998.5 0.001001 79.9 0.05032
0.0277 998.5 0.001001 79.9 0.05782

0.032 998.5 0.001001 79.9 0.06468
0.036 998.6 0.001001 79.9 0.07107
0.04 998.6 0.001001 79.9 0.07746  
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Appendix D 

MEASURED AND THEORETICAL DATA FOR LIQUID-LOADED LATERAL 

FIELD EXCITED SENSOR ELEMENTS 

Table D.1.  Measured data for LFE sensor elements with a 0.5-mm electrode gap 
under glycerol solution loads 

% 
Glycerol fmax (Hz) Δf/f0 (ppm) |Ymax| (S)

Phase(Ymax) 
(degrees) fmin (Hz) |Ymin| (S)

Phase(Ymin) 
(degrees)

fmin-fmax 

(Hz)

0 4966875 0 0.0009993 81.00848 4970875 0.0001800 87.01247 4000

2 4966750 -25 0.0009333 38.79191 4970875 0.0001658 36.16166 4125

4 4966500 -76 0.0008316 43.71858 4970750 0.0001870 43.60579 4250

6 4966500 -76 0.0008161 44.65299 4970750 0.0001885 43.57077 4250

8 4966625 -50 0.0008300 41.04924 4970875 0.0001814 39.82089 4250

10 4966500 -76 0.0008584 42.28613 4970875 0.0001857 40.52129 4375

12 4966375 -101 0.0008147 45.62357 4970875 0.0001988 43.51174 4500

14 4966375 -101 0.0008415 44.48505 4970875 0.0001991 42.33946 4500

16 4966500 -76 0.0007825 44.79383 4971000 0.0001700 41.73351 4500

18 4966500 -76 0.0007773 44.33924 4971125 0.0001747 43.92573 4625

20 4966000 -176 0.0008033 42.05938 4970500 0.0001552 38.58411 4500  

Table D.2.  Model data for LFE sensor elements with a 0.5-mm electrode gap under 
glycerol solution loads 

% 
Glycerol fmax (Hz) Δf/f0 (ppm) |Ymax| (S)

Phase(Ymax) 
(degrees) fmin (Hz) |Ymin| (S)

Phase(Ymin) 
(degrees)

fmin-fmax 

(Hz)

0 4966875 0 0.0009694 42.8942 4971484 0.0001472 42.0054 4609

2 4966875 0 0.0009599 43.0549 4971516 0.0001484 42.5162 4641

4 4966859 -3 0.0009468 43.4310 4971531 0.0001502 42.8315 4672

6 4966844 -6 0.0009344 43.8136 4971563 0.0001520 43.5107 4719

8 4966813 -13 0.0009218 44.5725 4971578 0.0001538 43.8339 4766

10 4966797 -16 0.0009094 44.8823 4971594 0.0001556 44.1673 4797

12 4966781 -19 0.0008972 45.1684 4971625 0.0001575 44.8651 4844

14 4966750 -25 0.0008852 45.8234 4971641 0.0001594 45.2131 4891

16 4966734 -28 0.0008734 46.0607 4971672 0.0001613 45.9090 4938

18 4966703 -35 0.0008618 46.6468 4971688 0.0001632 46.2737 4984

20 4966656 -44 0.0008458 47.2285 4971703 0.0001659 46.9347 5047  
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Table D.3.  Measured data for LFE sensor elements with a 0.5-mm electrode gap 
under isopropyl alcohol solution loads 

% Isopropyl 
Alcohol fmax (Hz) Δf/f0 (ppm) |Ymax| (S)

Phase(Ymax) 
(degrees) fmin (Hz) |Ymin| (S)

Phase(Ymin) 
(degrees)

fmin-fmax 

(Hz)

0 4966875 0 0.0009993 81.0085 4970875 0.0001800 87.0125 4000

10 4966875 0 0.0009199 81.8370 4971125 0.0001991 86.9651 4250

20 4966875 0 0.0008293 82.6338 4971125 0.0002119 86.8609 4250

30 4966875 0 0.0007172 83.7700 4971375 0.0002063 87.0666 4500

40 4967000 25 0.0006496 84.5269 4971500 0.0002141 87.0616 4500

50 4967500 126 0.0005693 85.2401 4971875 0.0002201 87.0771 4375

60 4968000 227 0.0005043 85.8242 4972750 0.0002167 87.3389 4750

70 4967625 151 0.0004650 86.5770 4971875 0.0002475 87.4344 4250

80 4969500 529 0.0003814 86.8968 4973625 0.0002054 87.6371 4125

90 4969875 604 0.0003575 67.2273 4973875 0.0002145 65.5116 4000

100 4970500 730 0.0003386 66.9946 4974250 0.0002125 67.2310 3750  

Table D.4.  Model data for LFE sensor elements with a 0.5-mm electrode gap under 
isopropyl alcohol solution loads 

% Isopropyl 
Alcohol fmax (Hz) Δf/f0 (ppm) |Ymax| (S)

Phase(Ymax) 
(degrees) fmin (Hz) |Ymin| (S)

Phase(Ymin) 
(degrees)

fmin-fmax 

(Hz)

0 4966875 0 0.0009694 42.8942 4971484 0.0001472 42.0054 4609

10 4966938 13 0.0009830 42.4763 4971516 0.0001454 41.4129 4578

20 4966813 -13 0.0008979 45.2337 4971656 0.0001574 44.6755 4844

30 4966875 0 0.0008679 46.5998 4971875 0.0001621 46.1611 5000

40 4967031 31 0.0008491 47.4208 4972125 0.0001652 46.7470 5094

50 4967281 82 0.0008382 47.9870 4972453 0.0001670 47.2642 5172

60 4967641 154 0.0008317 48.1476 4972859 0.0001678 47.6043 5219

70 4968109 249 0.0008269 48.1960 4973359 0.0001684 47.8240 5250

80 4968703 368 0.0008224 48.2387 4973969 0.0001689 47.8272 5266

90 4969453 519 0.0008173 48.3464 4974750 0.0001697 48.1187 5297

100 4970516 733 0.0008084 48.4302 4975844 0.0001712 48.4675 5328  
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Table D.5.  Measured data for LFE sensor elements with a 0.5-mm electrode gap 
under sodium chloride solution loads 

% NaCl fmax (Hz) Δf/f0 (ppm) |Ymax| (S)
Phase(Ymax) 
(degrees) fmin (Hz) |Ymin| (S)

Phase(Ymin) 
(degrees)

fmin-fmax 

(Hz)

0 4966875 0 0.0009993 81.0085 4970875 0.0001800 87.0125 4000

0.0077 4963375 -705 0.0006006 44.0706 4970500 0.0001497 41.1015 7125

0.01 4962875 -805 0.0005878 47.1937 4970625 0.0001793 44.0853 7750

0.012 4962375 -906 0.0006100 44.3998 4970500 0.0001803 44.3076 8125

0.016 4961125 -1158 0.0006262 45.8611 4970125 0.0001871 43.2895 9000

0.02 4960750 -1233 0.0006822 43.0024 4969750 0.0001860 39.6747 9000

0.023 4960125 -1359 0.0006989 38.2450 4969750 0.0001610 38.0868 9625

0.0277 4960375 -1309 0.0007976 39.6342 4969375 0.0002213 37.7291 9000

0.032 4960375 -1309 0.0008617 36.1800 4969125 0.0002434 34.3738 8750

0.036 4959375 -1510 0.0009022 34.0013 4969000 0.0001697 33.3248 9625

0.04 4959500 -1485 0.0011743 27.8304 4969125 0.0004301 24.1188 9625  

Table D.6.  Model data for LFE sensor elements with a 0.5-mm electrode gap under 
sodium chloride solution loads 

% NaCl fmax (Hz) Δf/f0 (ppm) |Ymax| (S)
Phase(Ymax) 
(degrees) fmin (Hz) |Ymin| (S)

Phase(Ymin) 
(degrees)

fmin-fmax 

(Hz)

0 4966875 0 0.0009694 42.8942 4971484 0.0001472 42.0054 4609

0.0077 4959094 -1567 0.0005036 71.0565 4970375 0.0002674 71.0603 11281

0.01 4958719 -1642 0.0005069 70.6728 4969781 0.0002657 70.7070 11063

0.012 4958469 -1692 0.0005108 70.3015 4969313 0.0002637 70.3117 10844

0.016 4958172 -1752 0.0005202 69.3353 4968500 0.0002591 69.3357 10328

0.02 4958031 -1781 0.0005308 68.2512 4967844 0.0002540 68.2603 9813

0.023 4957984 -1790 0.0005392 67.4215 4967438 0.0002502 67.4356 9453

0.0277 4957953 -1796 0.0005523 66.2184 4966922 0.0002445 66.1825 8969

0.032 4957969 -1793 0.0005643 65.1141 4966547 0.0002395 65.0845 8578

0.036 4958000 -1787 0.0005751 64.1242 4966266 0.0002351 64.1465 8266

0.04 4958031 -1781 0.0005856 63.2357 4966016 0.0002311 63.1593 7984  
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Table D.7.  Measured data for LFE sensor elements with a 1.0-mm electrode gap 
under glycerol solution loads 

% 
Glycerol fmax (Hz) Δf/f0 (ppm) |Ymax| (S)

Phase(Ymax) 
(degrees) fmin (Hz) |Ymin| (S)

Phase(Ymin) 
(degrees)

fmin-fmax 

(Hz)

0 4965125 0 0.0009955 80.8271 4969250 0.0001584 87.0690 4125

2 4965125 0 0.0009098 37.4766 4969375 0.0001472 34.9902 4250

4 4964875 -50 0.0008632 39.9100 4969125 0.0001541 38.6048 4250

6 4964875 -50 0.0008364 41.0778 4969250 0.0001570 41.3294 4375

8 4964875 -50 0.0007661 42.8415 4969375 0.0001518 41.5340 4500

10 4964625 -101 0.0007807 46.2011 4969500 0.0001756 43.2747 4875

12 4964750 -76 0.0007920 44.9995 4969500 0.0001831 43.6688 4750

14 4964625 -101 0.0007535 46.8990 4969500 0.0001833 45.3275 4875

16 4964500 -126 0.0007565 45.2656 4969375 0.0001622 43.2308 4875

18 4964750 -76 0.0007202 46.1023 4969500 0.0001630 42.6790 4750

20 4964625 -101 0.0007152 47.8430 4969500 0.0001551 43.6297 4875  

Table D.8.  Model data for LFE sensor elements with a 1.0-mm electrode gap under 
glycerol solution loads 

% 
Glycerol fmax (Hz) Δf/f0 (ppm) |Ymax| (S)

Phase(Ymax) 
(degrees) fmin (Hz) |Ymin| (S)

Phase(Ymin) 
(degrees)

fmin-fmax 

(Hz)

0 4965125 0 0.000961 41.2385 4970016 0.000129 39.7521 4891

2 4965125 0 0.000952 41.5173 4970047 0.00013 40.1772 4922

4 4965125 0 0.000938 41.5603 4970078 0.000131 40.8046 4953

6 4965109 -3 0.000926 42.0624 4970094 0.000133 41.0125 4984

8 4965094 -6 0.000913 42.5158 4970125 0.000134 41.6379 5031

10 4965078 -9 0.0009 42.9443 4970156 0.000136 42.2586 5078

12 4965063 -13 0.000888 43.3430 4970172 0.000138 42.5183 5109

14 4965047 -16 0.000876 43.7207 4970203 0.00014 43.1441 5156

16 4965016 -22 0.000864 44.4472 4970234 0.000141 43.7744 5219

18 4965000 -25 0.000852 44.7655 4970250 0.000143 44.0643 5250

20 4964953 -35 0.000835 45.4515 4970281 0.000146 44.9908 5328  
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Table D.9.  Measured data for LFE sensor elements with a 1.0-mm electrode gap 
under isopropyl alcohol solution loads 

% 
Isopropanol fmax (Hz) Δf/f0 (ppm) |Ymax| (S)

Phase(Ymax) 
(degrees) fmin (Hz) |Ymin| (S)

Phase(Ymin) 
(degrees)

fmin-fmax 

(Hz)

0 4965125 0 0.0009955 80.8271 4969250 0.0001584 87.0690 4125

10 4964750 -76 0.0010210 80.5176 4969250 0.0001410 87.2979 4500

20 4964750 -76 0.0008808 81.8740 4969250 0.0001520 87.2265 4500

30 4965250 25 0.0006767 84.0549 4969875 0.0001923 87.1455 4625

40 4965500 76 0.0006318 84.3717 4969875 0.0001901 87.1405 4375

50 4965750 126 0.0005325 85.2402 4970250 0.0001783 87.3686 4500

60 4965875 151 0.0004942 85.5891 4969875 0.0001696 87.3526 4000

70 4967125 403 0.0004006 86.6241 4971125 0.0001825 87.5299 4000

80 4967875 554 0.0003646 86.8957 4971875 0.0001889 87.6254 4000

90 4968000 579 0.0003384 65.8117 4972125 0.0001857 63.3576 4125

100 4969000 780 0.0003172 66.3608 4972625 0.0001951 65.3684 3625  

Table D.10.  Model data for LFE sensor elements with a 1.0-mm electrode gap under 
isopropyl alcohol solution loads 

% 
Isopropanol fmax (Hz) Δf/f0 (ppm) |Ymax| (S)

Phase(Ymax) 
(degrees) fmin (Hz) |Ymin| (S)

Phase(Ymin) 
(degrees)

fmin-fmax 

(Hz)

0 4965125 0 0.0009614 41.2385 4970016 0.0001285 39.7521 4891

10 4965188 13 0.0009747 40.9303 4970063 0.0001269 39.4692 4875

20 4965094 -6 0.0008883 43.5378 4970219 0.0001378 42.5685 5125

30 4965203 16 0.0008571 44.5320 4970453 0.0001421 43.7873 5250

40 4965391 53 0.0008372 45.5058 4970750 0.0001450 44.6249 5359

50 4965703 116 0.0008256 45.7107 4971125 0.0001466 45.2243 5422

60 4966125 201 0.0008187 45.7191 4971578 0.0001474 45.4502 5453

70 4966656 308 0.0008137 45.8664 4972141 0.0001479 45.6179 5484

80 4967328 444 0.0008090 46.0031 4972828 0.0001484 45.5562 5500

90 4968188 617 0.0008038 45.9941 4973719 0.0001491 45.9948 5531

100 4969391 859 0.0007947 46.1853 4974953 0.0001505 46.2743 5563  
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Table D.11.  Measured data for LFE sensor elements with a 1.0-mm electrode gap 
under sodium chloride solution loads 

% NaCl fmax (Hz) Δf/f0 (ppm) |Ymax| (S)
Phase(Ymax) 
(degrees) fmin (Hz) |Ymin| (S)

Phase(Ymin) 
(degrees)

fmin-fmax 

(Hz)

0 4965125 0 0.0009955 80.8271 4969250 0.0001584 87.0690 4125

0.0077 4962000 -629 0.0005919 39.9086 4968875 0.0001334 38.5077 6875

0.01 4961375 -755 0.0005781 44.2441 4969000 0.0001603 42.0684 7625

0.012 4960375 -957 0.0005845 43.6082 4968875 0.0001620 41.7330 8500

0.016 4958750 -1284 0.0010928 35.2511 4968375 0.0006786 34.5150 9625

0.02 4959000 -1234 0.0006528 41.8224 4968250 0.0001724 36.7957 9250

0.023 4959125 -1208 0.0007104 38.6981 4968000 0.0001830 37.8555 8875

0.0277 4958875 -1259 0.0007761 36.5337 4967750 0.0002088 34.3707 8875

0.032 4958625 -1309 0.0007736 37.0943 4967750 0.0001737 34.1644 9125

0.036 4958625 -1309 0.0009621 31.2304 4967375 0.0002799 28.2289 8750

0.04 4958625 -1309 0.0008940 32.8051 4967500 0.0001619 29.1705 8875  

Table D.12.  Model data for LFE sensor elements with a 1.0-mm electrode gap under 
sodium chloride solution loads 

% NaCl fmax (Hz) Δf/f0 (ppm) |Ymax| (S)
Phase(Ymax) 
(degrees) fmin (Hz) |Ymin| (S)

Phase(Ymin) 
(degrees)

fmin-fmax 

(Hz)

0 4965125 0 0.0009614 41.2385 4970016 0.0001285 39.7521 4891

0.0077 4958375 -1359 0.0004977 68.0421 4968922 0.0002347 68.0655 10547

0.01 4958031 -1429 0.0005013 67.6761 4968391 0.0002330 67.6272 10359

0.012 4957828 -1470 0.0005056 67.1882 4967984 0.0002311 67.2068 10156

0.016 4957563 -1523 0.0005160 66.1365 4967281 0.0002265 66.1656 9719

0.02 4957422 -1551 0.0005277 65.0333 4966703 0.0002216 64.9624 9281

0.023 4957375 -1561 0.0005368 64.1616 4966359 0.0002180 64.1264 8984

0.0277 4957359 -1564 0.0005510 62.7785 4965906 0.0002125 62.7526 8547

0.032 4957359 -1564 0.0005639 61.6825 4965594 0.0002078 61.6766 8234

0.036 4957391 -1558 0.0005755 60.5923 4965344 0.0002038 60.6451 7953

0.04 4957406 -1555 0.0005866 59.7439 4965141 0.0002000 59.7221 7734  
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Table D.13.  Measured data for LFE sensor elements with a 2.0-mm electrode gap 
under glycerol solution loads 

% 
Glycerol fmax (Hz) Δf/f0 (ppm) |Ymax| (S)

Phase(Yma
x) (degrees) fmin (Hz) |Ymin| (S)

Phase(Ymin
) (degrees)

fmin-fmax 
(Hz)

0 4965000 0 0.0008850 81.6481 4969875 0.0001450 87.2723 4875

2 4965000 0 0.0008628 36.6934 4969625 0.0001430 37.4982 4625

4 4964625 -76 0.0007758 42.6707 4969375 0.0001550 43.5740 4750

6 4964750 -50 0.0007632 40.8405 4969375 0.0001516 42.8886 4625

8 4964750 -50 0.0007136 41.5198 4969500 0.0001355 44.7729 4750

10 4964500 -101 0.0007414 44.4646 4969375 0.0001635 42.7620 4875

12 4964500 -101 0.0007161 45.1472 4969500 0.0001661 44.0768 5000

14 4964500 -101 0.0007324 45.6634 4969500 0.0001687 44.7923 5000

16 4964625 -76 0.0006873 44.4678 4969500 0.0001421 43.1280 4875

18 4964625 -76 0.0006770 45.0432 4969625 0.0001484 45.6623 5000

20 4964625 -76 0.0006903 45.6110 4969750 0.0001482 45.2232 5125  

Table D.14.  Model data for LFE sensor elements with a 2.0-mm electrode gap under 
glycerol solution loads 

% 
Glycerol fmax (Hz) Δf/f0 (ppm) |Ymax| (S)

Phase(Ymax) 
(degrees) fmin (Hz) |Ymin| (S)

Phase(Ymin) 
(degrees)

fmin-fmax 

(Hz)

0 4965000 0 0.0008684 39.7466 4970328 0.00011 39.0945 5328

2 4965000 0 0.0008602 39.9165 4970344 0.000111 39.1725 5344

4 4964984 -3 0.0008488 40.2973 4970375 0.000112 39.8393 5391

6 4964969 -6 0.0008380 40.6844 4970391 0.000113 40.1043 5422

8 4964953 -9 0.0008270 41.0298 4970406 0.000115 40.4002 5453

10 4964922 -16 0.0008161 41.7573 4970438 0.0001160 41.0648 5516

12 4964906 -19 0.0008053 42.0491 4970453 0.000117 41.3806 5547

14 4964891 -22 0.0007947 42.3255 4970484 0.000119 42.0460 5594

16 4964859 -28 0.0007842 42.9484 4970500 0.00012 42.3824 5641

18 4964844 -31 0.0007739 43.1770 4970516 0.000122 42.7276 5672

20 4964797 -41 0.0007596 43.7724 4970547 0.000124 43.6867 5750  
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Table D.15.  Measured data for LFE sensor elements with a 2.0-mm electrode gap 
under isopropyl alcohol solution loads 

% 
Isopropanol fmax (Hz) Δf/f0 (ppm) |Ymax| (S)

Phase(Ymax) 
(degrees) fmin (Hz) |Ymin| (S)

Phase(Ymin) 
(degrees)

fmin-fmax 

(Hz)

0 4965000 0 0.0008850 81.6481 4969875 0.0001450 87.2723 4875

10 4964875 -25 0.0008181 82.6564 4969625 0.0001741 87.1293 4750

20 4965000 0 0.0007256 83.3536 4969625 0.0001777 87.1449 4625

30 4965000 0 0.0006354 84.3007 4969625 0.0001772 87.1912 4625

40 4965375 76 0.0005745 84.7497 4969875 0.0001795 87.2336 4500

50 4965750 151 0.0004898 85.6744 4970875 0.0001886 87.4405 5125

60 4965875 176 0.0004626 85.7693 4970250 0.0001695 87.4145 4375

70 4966875 378 0.0003803 86.6380 4971125 0.0001689 87.6212 4250

80 4967625 529 0.0003452 86.9215 4971750 0.0001661 87.7172 4125

90 4968250 655 0.0003195 63.4445 4972125 0.0001735 63.6127 3875

100 4968750 755 0.0003059 64.8671 4972375 0.0001712 63.3388 3625  

Table D.16.  Model data for LFE sensor elements with a 2.0-mm electrode gap under 
isopropyl alcohol solution loads 

% 
Isopropanol fmax (Hz) Δf/f0 (ppm) |Ymax| (S)

Phase(Ymax) 
(degrees) fmin (Hz) |Ymin| (S)

Phase(Ymin) 
(degrees)

fmin-fmax 

(Hz)

0 4965000 0 0.0008684 39.7466 4970328 0.00011 39.0945 5328

10 4965063 13 0.0008804 39.3468 4970359 0.000109 38.4898 5297

20 4964938 -13 0.0008060 42.1288 4970500 0.000117 41.5086 5563

30 4965016 3 0.0007796 43.2054 4970703 0.000121 42.4860 5688

40 4965172 35 0.0007629 44.1457 4970969 0.000123 43.2174 5797

50 4965438 88 0.0007533 44.5324 4971313 0.000124 43.8467 5875

60 4965813 164 0.0007475 44.5643 4971719 0.000125 43.9620 5906

70 4966297 261 0.0007432 44.5378 4972234 0.000125 44.2181 5938

80 4966906 384 0.0007392 44.5692 4972859 0.000126 44.2000 5953

90 4967672 538 0.0007346 44.7458 4973656 0.000126 44.4055 5984

100 4968750 755 0.0007265 45.0513 4974781 0.000128 44.8143 6031  
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Table D.17.  Measured data for LFE sensor elements with a 2.0-mm electrode gap 
under sodium chloride solution loads 

% NaCl fmax (Hz) Δf/f0 (ppm) |Ymax| (S)
Phase(Ymax) 
(degrees) fmin (Hz) |Ymin| (S)

Phase(Ymin) 
(degrees)

fmin-fmax 

(Hz)

0 4965000 0 0.0008850 81.6481 4969875 0.0001450 87.2723 4875

0.0077 4962375 -529 0.0005193 44.4124 4969500 0.0001364 43.9771 7125

0.01 4960750 -856 0.0005198 46.8252 4969250 0.0001470 45.6266 8500

0.012 4960250 -957 0.0005374 43.7442 4969000 0.0001487 43.0920 8750

0.016 4959625 -1083 0.0005760 42.2497 4968500 0.0001588 38.7471 8875

0.02 4958875 -1234 0.0006293 40.5545 4968625 0.0001577 39.5771 9750

0.023 4958875 -1234 0.0006698 38.4550 4968375 0.0001716 38.4559 9500

0.0277 4958000 -1410 0.0007251 35.2612 4967750 0.0001590 33.2511 9750

0.032 4958250 -1360 0.0008000 35.0509 4967500 0.0002213 35.4381 9250

0.036 4958125 -1385 0.0008625 33.6453 4967250 0.0002027 30.2812 9125

0.04 4957250 -1561 0.0008704 32.0718 4967250 0.0001741 32.0777 10000  

Table D.18.  Model data for LFE sensor elements with a 2.0-mm electrode gap under 
sodium chloride solution loads 

% NaCl fmax (Hz) Δf/f0 (ppm) |Ymax| (S)
Phase(Ymax) 
(degrees) fmin (Hz) |Ymin| (S)

Phase(Ymin) 
(degrees)

fmin-fmax 

(Hz)

0 4965000 0 0.0009107 41.5271 4967250 0.0001264 39.3114 2250

0.0077 4956578 -1696 0.0004279 69.3531 4968984 0.0002112 69.3632 12406

0.01 4956156 -1781 0.0004310 68.9719 4968344 0.0002097 68.9942 12188

0.012 4955891 -1835 0.0004346 68.5357 4967828 0.0002080 68.5392 11938

0.016 4955563 -1901 0.0004435 67.4846 4966953 0.0002039 67.4953 11391

0.02 4955406 -1932 0.0004536 66.3016 4966234 0.0001995 66.2858 10828

0.023 4955344 -1945 0.0004614 65.4433 4965797 0.0001962 65.3930 10453

0.0277 4955328 -1948 0.0004738 64.0230 4965250 0.0001911 64.0805 9922

0.032 4955328 -1948 0.0004851 62.9058 4964844 0.0001868 62.8803 9516

0.036 4955359 -1942 0.0004953 61.8391 4964531 0.0001831 61.8046 9172

0.04 4955406 -1932 0.0005052 60.7755 4964281 0.0001796 60.8636 8875  
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