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 Exfoliated graphite nanoplatelets (xGnP)-filled polymer composites have 

demonstrated superior electrical, mechanical, physical and thermal properties and are 

becoming a major focus for both academic and industrial research and development 

(R&D) activities. The main objective of this study was to characterize the influence of 

xGnP particle diameter, filler loading and the addition of coupling agents on the 

mechanical, rheological and thermal properties of xGnP-filled impact modified 

polypropylene (IMPP) composites. IMPP is currently being used at the AEWC Advanced 

Structures and Composites Center in polymer impregnated (pre-preg) fiber reinforced 

polymer (FRP) tapes consisting of an IMPP matrix polymer and E-glass continuous 

fibers. These tapes are layered and pressed into blast protection panels currently being 

used by the U.S. military. This research aims to implement nanotechnology and unique 

experimental methodology to increase modulus and strength of neat IMPP while either 



 

conserving or improving the uniquely tailored impact properties of the existing IMPP 

used. 

 

 The nanoparticles used in this research were xGnP with three different sizes: 

xGnP
5
 has an average thickness of 10 nm, and an average platelet diameter of 5 μm, 

whereas xGnP
15

 and xGnP
25

 have the same thickness but average diameters are 15 and 25 

μm, respectively. The coupling agent used in this study was polypropylene-graft-maleic 

anhydride (PP-g-MA). 

 

 Mechanical characterization of the composites was completed via American 

Society for Testing and Materials (ASTM) testing standards for flexure, tension and Izod 

impact. Test results show that nanocomposites with smaller xGnP diameter exhibited 

better flexural, tensile and impact properties for both neat and composites containing 

coupling agent. For composites containing a coupling agent, tensile and flexural modulus 

and strength increased with the addition of xGnP. In the case of neat composites, both 

tensile and flexural modulus and strength decreased at higher filler loading levels. 

Increasing xGnP loading resulted in reduction of elongation at break for both neat and 

composites containing coupling agent. Similarly, unnotched and notched impact strengths 

as well as fracture initiation resistance were dramatically deteriorated with the 

introduction of xGnP. Explanation for this brittle behavior in a nanoplatelet-filled IMPP 

is presented throughout this thesis using scanning electron microscopy (SEM), 

transmission electron microscopy (TEM), and melt flow index testing. 

 



 

 The thermal behavior of the composites was investigated using differential 

scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The DSC results 

indicated that the addition of xGnP slightly increased the melting temperature (Tm) and 

increased the crystallization temperature (Tc) of IMPP by 2 to 3 °C which is attributed to 

the heterogeneous nucleation of the xGnP. The TGA results indicated that the 

degradation temperature of IMPP is lowered with the addition of PP-g-MA, indicative of 

the poor thermal stability of PP-g-MA. However, the thermal stability of the composites 

increases with xGnP loading because of the high thermal stability of the xGnP and the 

hypothesized “tortuosity effect” that the graphite nanoplatelets was inhibiting diffusion of 

oxygen and volatile products throughout the composites during thermal decomposition.
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Chapter 1 

 

BACKGROUND/MOTIVATION 

 

1.1. Background 

 

 A vast array of inorganic and organic microparticles such as mineral and glass 

fillers, carbon black and wood flour have been used as fillers in thermoplastic composites 

to improve stiffness, decrease density, improve long-term mechanical performance and 

reduce costs (Chen and Gardner 2008). Over the past two decades the rising cost of 

engineering thermoplastics have invigorated the research and development community to 

find alternatives via incorporating nanoscale fillers into less expensive commodity 

thermoplastics to target specific electrical, mechanical, and thermal properties 

(Houphouet-Boigny 2007; Maniar 2004). The resulting composites are known as polymer 

nanocomposites (PNCs). 

 

1.1.1. Definition of Polymer Nanocomposite 

  

 The term PNC as used in this thesis is defined as a multiphase polymer-based 

material where at least one phase exhibits one, two or three dimensions below 100 nm. 

 

 



2 

 

1.1.2.  Advantages of Nanoparticles 

  

 PNCs are one component of the broad field of nanotechnology research and show 

significantly improved mechanical and thermal properties at far lower reinforcement 

volume fractions when compared to conventional micro and macro composites (Giannelis 

1996; Hussain et al. 2006; Pavlidou and Papaspyrides 2008). The high reinforcement 

efficiency of some nanoparticles is credited to their high aspect ratio (Hussain et al. 

2006). However, it is thought that the need for far lower reinforcement volume fractions 

stems from the fact that dramatic changes in physical properties of reinforcing particles 

occur as they depart from microscale classification and approach the nanoscale realm. 

The specific interfacial area of nanoparticles can reach upwards of hundreds of m
2
/g, 

resulting in high surface area-to-volume ratios. This phenomenon results in relatively 

high interphase content in nanocomposites (Houphouet-Boigny 2007; Sharma et al. 

2002). Many important chemical and physical interactions are governed by surface 

properties. Therefore a nanocomposite can exhibit significantly different properties even 

at low filler contents when compared to traditional micro and macro composites (Luo and 

Daniel 2002). 

 

 There is a broad range of nanoparticles that are now commercially available. 

These include cellulose, clays, carbon, metals, silica, titania, zirconia and the list 

continues to grow. The potential polymer/nanoparticle combinations and targetable 

properties are seemingly endless (Vaia et al. 2007). Common particle morphologies and 

their corresponding surface area-to-volume ratios (Hussain et al. 2006) are depicted in 
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Figure 1.1. From this figure we can see that the surface area-to-volume ratios are 

inversely proportional to the particle radius for spheres, rods, tubes and whiskers. 

Similarly, the surface area-to-volume ratio for a plate-like layered structure is inversely 

proportional to the platelet thickness. According to Hussain et al., the second terms for 

rods and layered structures (2/l and 4/l) are commonly ignored because the first terms (2/r 

and 2/t) predominately control. 

 

 

Figure 1.1 Common particle morphologies and corresponding surface area-to-volume 

ratios. (Reproduced from Hussain et al. 2006). 

 

 Figure 1.2 illustrates the exponential increase of surface area-to-volume ratio for 

layered structures with decreasing platelet thickness. Recognizing this behavior is 

important because the exfoliated graphite nanoplatelets used throughout this research 

exhibit an average platelet thickness equal to 10 nm. Therefore we can see that for a 

traditional microscale platelet with thickness equal to 100 nm (0.1 μm), the surface area-
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to-volume ratio is equal to 0.021. Meanwhile, for a nanoplatelet exhibiting a thickness of 

just 10 nm, the surface area-to-volume ratio is nearly an order of magnitude larger and is 

equal to 0.201. 

 

 

Figure 1.2 Surface area-to-volume ratio vs. platelet thickness for layered exfoliated 

graphite. 

 

 With the advantage of nanoplatelet’s high surface area-to-volume ratio as well as 

high aspect ratio, the development of advanced thermoplastic PNCs remains promising. 

However, there are significant challenges involved with developing nanocomposite 

formulations and material-specific fabrication processes. The major challenges associated 

with polymer nanocomposites are highlighted in the following section. 
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1.1.3. Challenges in Polymer Nanocomposites 

  

 There are many challenges associated with the development and optimization of 

PNCs. The most prevalent throughout PNC literature are discussed in this section. This 

includes the uniform dispersion of nanoparticles, the control of nanoparticle orientation, 

cost effectiveness and health and safety concerns. 

 

1.1.3.1. Nanoparticle Dispersion 

  

 The uniform dispersion of nanoparticles is the first major hurdle scientists face 

when producing a nanocomposite. Van der Waals forces and differences in 

polymer/nanoparticle surface energies often cause nanoparticles to have greater affinity 

towards each other compared to the polymer matrix they are being introduced into. This 

high affinity between nanoparticles leads to the problem of agglomeration (Thostenson et 

al. 2005). An illustrative figure to describe the various degrees of dispersion is provided 

in nearly all nanocomposite literature involving a polymer reinforced with layered 

structured nanoparticles. Figure 1.3 is provided to illustrate the three commonly 

considered descriptors of dispersion quality.  

 



6 

 

 

Figure 1.3 Illustration of three commonly considered terms to describe dispersion quality. 

   

 The first level of dispersion considered is phase-separated. In this case, the 

polymer chains are unable to penetrate between the individual graphene sheets 

(reinforcement phase). In the phase-separated state, the composite may be characterized 

as a microcomposite because the effective particle sizes can be greater than 100 nm. The 

reinforcement efficiency of the layered graphite will not be maximized and therefore the 

mechanical properties will increase only slightly or deteriorate all together. The second 

level of dispersion considered is a composite exhibiting intercalated morphology. In this 

case, the polymer chains are able to penetrate between the individual graphene sheets 

(reinforcement phase). In the intercalated state, the composite may be characterized as a 

nanocomposite because the effective particle sizes are below 100 nm. The reinforcement 

efficiency of the layered graphite is improved compared to a phase-separated 

microcomposite. The third level of dispersion considered is a fully exfoliated composite. 
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In this case, the polymer chains are able to penetrate between the individual graphene 

sheets (reinforcement phase) and completely disperse the individual graphene sheets in a 

continuous polymer matrix. In the exfoliated state, the composite may be characterized as 

a nanocomposite and the reinforcement efficiency of the layered graphite is maximized 

(Luo and Daniel 2003; Hussain et al. 2006; Houphouet-Boigny 2007; Thostenson et al. 

2005). 

  

 The exfoliation of layered structured nanoparticles such as clays and graphite is 

imperative to maximize their reinforcing efficiency. It has been demonstrated that the 

magnitude of inherent stress concentrations decreases as the thickness at the tip of 

graphite agglomerates decreases (Thostenson et al. 2005; Sharma et al. 2002). 

Improvement in degree of exfoliation results in smaller thickness of effective particles. 

Therefore an improved degree of exfoliation results in larger surface area-to-volume 

ratios, lower stress concentrations and subsequently higher performance mechanical 

properties. Appropriate composite formulations (polymer, coupling agent and 

nanomaterial) and processing methods must be implemented to achieve dispersion of the 

individual layers of nanoplatelets such that effective reinforcing particles achieve 

thicknesses below 100 nm. 

 

1.1.3.2. Nanoparticle Orientation 

 

 Control of nanoparticle orientation in a polymer medium is extremely difficult 

because of the small size of nanoparticles (Thostenson et al. 2005; Vaia et al. 2007; 
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Wang and Stein 2008; Okamoto et al. 2001). Often times beyond maximizing the 

dispersion of nanoparticles, the orientation of the nanoparticles is essentially uncontrolled 

resulting in nanocomposites exhibiting isotropy. This is undesirable when our goal is to 

target specific electrical, mechanical, and thermal properties and create spatially 

engineered, designed and tailored materials (Vaia et al. 2007). 

 

 Randomly oriented and aligned nanoplatelets in a polymer medium are shown in 

Figure 1.4. Both images illustrate an exfoliated (well dispersed) nanocomposite. 

However, the image on the left (randomly oriented) represents the typical morphology of 

layered structure nanoparticle-reinforced polymers. This morphology has been described 

as a “house of cards structure” by researchers at the Toyota Technology Institute 

(Okamoto et al. 2001). Rather than tailoring the nanocomposite for mechanical loading in 

a specific principle material direction, the nanoplatelets are providing mediocre 

reinforcement in many different planes. According to Vaia et al., this random 

arrangement of nanoparticles will not provide optimized electrical, thermal or optical 

performance as nanocomposite applications extend beyond commodity thermoplastics 

and enter high-technology components (Vaia et al. 2007). The image on the right 

(aligned) represents an ideal, controlled morphology of a layered structure nanoparticle-

reinforced polymer. In this image, individual reinforcing sheets can be seen well-aligned 

in one principal material direction. In this case, the nanoplatelet reinforcing efficiency is 

maximized for mechanical loading in this specific principal material direction. Similarly, 

the efficiency of a networked structure is maximized for electrical conductance 

applications in the alignment direction. 
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Figure 1.4 Illustration of randomly oriented and controlled alignment of graphite platelets 

in a polymer medium. 

 

 Controlling the morphology of PNCs will become imperative as nanocomposites 

become more prevalent in high performance applications. As researchers gain further 

insight into the manipulation of PNC morphology, new processing methods will 

undoubtedly arise. It is suspected that the technology to develop a scalable method of 

preferred alignment of nanoparticles will dramatically accelerate the implementation of 

nanocomposites in both commercial and national defense applications. 

 

1.1.3.3. Cost Effectiveness 

 

 There are two critical issues in the development of commercially viable 

nanocomposites. The first critical issue is the development of high volume and high rate 

fabrication. The second critical issue is the cost of the nano-reinforcement itself. 
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 High volume and high rate fabrication methods will be paramount for the future 

of nanocomposites in commercial and national defense applications. Similar to the birth 

of traditional fiber-reinforced polymers (FRPs), highly engineered and efficient 

processing will successfully transition PNCs into industrial applications (Thostenson et 

al. 2005; Savage 2004). 

 

 Perhaps the most critical challenge in producing commercially viable 

nanocomposites is the cost of the nano-reinforcement material itself. The most frequently 

studied nanoscale fillers for polymer resins are nanoclays and carbon nanotubes (CNTs) 

(Kim et al. 2010; Sherman 2004; Kalaitzidou 2006). While CNTs have outstanding 

thermal, electrical and mechanical properties, they are very expensive (250-500 $/lb), 

which is one of the most serious drawbacks in developing CNT-filled PNCs. The high 

cost can be linked to low yield and low production and purification rates commonly 

associated with all of the current CNT preparation processes (Sherman 2007; Kim and 

Drzal 2009a; Kumar et al. 2010). However, nanoclay-filled PNCs have already made it to 

commercial applications in the field of lightweight plastics for automobiles. The trend of 

PNC research is often traced back to 1987 with the work done by researchers from 

Toyota, Fukushima and Inagaki (Patel et al. 2005). According to Sherman, some of the 

latest applications include the cargo bed of the 2005 GM Hummer H2 SUT. The vehicle 

bed uses approximately seven pounds of molded-in-color nanocomposite parts for its 

center bridge, sail panel, and box-rail protector. The nanocomposite used was Basell’s 

Profax CX-284 reactor TPO with nanoclay. The reason nanoclay-filled PNCs have made 
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it to industrial applications is certainly due to their outstanding balance between desirable 

mechanical properties and low cost (2.25-3.25 $/lb) (Sherman 2004). 

 

1.1.3.4. Health and Safety Concerns 

 

 As nanotechnology’s materials and applications continue to grow, more concerns 

arise about the potential health and environmental implications of exposure to production 

and use of nanocomposites. 

 

 According to Roco, success of nanotechnology will not be defined by only good 

R&D in academic and industrial environments. Instead, true success of nanotechnology 

will be a coordination of successful product development with a clear understanding of 

the societal implications. Advancements in electronic, medical and structural 

technologies and economies are key factors driving nanotechnology research. However, 

the negative consequences of nanotechnology, mainly health and safety concerns, are 

also being vigorously researched (Roco 2003). 

 

 Powell and Kanarek explain the very properties that make nanoparticles 

advantageous, as discussed above, also come into play when recognizing the health risks 

associated with nanoparticles. That is, because of nanoparticles high surface area-to-

volume ratios a large percentage of atoms are on their surface. This allows the atoms to 

more readily react with adjacent atoms and substances including tissues in the body, and 

travel easily throughout the body and environmental barriers, such as traditional personal 
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protective equipment (PPE) (Powell and Kanarek 2006a). Brouwer equates the potential 

dangers of multi-wall carbon nanotubes (MWCNTs) to the long-term detrimental effects 

the human race as seen from mass exposure to chrystile asbestos. Figure 1.5 shows TEM 

images of a chrystile asbestos fiber and a typical MWCNT. The similarities between the 

two fibers morphologies are undeniable. But the question still remains whether the 

toxicity of MWCNTs to the human respiratory system is the same as asbestos (Brouwer 

2009). 

 

 

Figure 1.5 TEM images showing the similarity between morphology of a chrystile 

asbestos fiber (left) and a MWCNT (right). (Images from Brouwer 2009) 

 

 The majority of research conducted regarding the toxicological issues involved 

with nanomaterials all reports the same current status: there are currently gaps in data 

which do not allow scientists to make decisive conclusions on the health and safety 

concerns involved with nanomaterials of all elemental make-up and morphology. Until 

the necessary research is funded and completed, current personnel working with 

nanomaterials should take available safety precautions (Powell and Kanarek 2006b; 

Hutchison 2008; Albrecht et al. 2006; Brouwer 2009). For example, exposure to powder 
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forms of nanoparticles should be accompanied by appropriate respiratory protection such 

as a respirator with nano-grade filters as well as epidermal (skin) protection such as latex 

gloves. Future understanding gained in the health and safety concerns of nanomaterials 

will produce a consensus on and implementation of strict universal procedures to manage 

the exposure and risk involved with all nanomaterials. 

 

1.2. Overview of the Project 

 

 This section is included to provide justification for the materials chosen for this 

study, introduce the motivation of the project and the state the objectives this thesis aims 

to address. 

 

1.2.1. Why IMPP and xGnP? 

 

 The increasing cost of engineering thermoplastics is leading researchers to 

allocate time and resources towards finding alternatives. Commodity thermoplastics are 

inexpensive, easy to process and well understood, but have lower performance 

mechanical properties when compared to engineering thermoplastics. It has been shown 

that we can improve strength and stiffness of commodity thermoplastics by reinforcing 

them with nanomaterials. Ultimately we would like to increase the performance of the 

neat commodity thermoplastic such that it performs equally or better than commercially 

available engineering thermoplastics at a lower cost. 
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 Impact modified polypropylene (IMPP) is currently being used at the AEWC 

Advanced Structures and Composites Center. Pre-preg FRP tapes consisting of an IMPP 

matrix polymer and E-glass continuous fibers are layered and pressed into blast 

protection panels currently being used by the U.S. military. IMPP was developed to be 

extremely efficient in absorbing energy in high impact loading scenarios. However a 

price is paid with the impact modification. IMPP exhibits a significantly lower modulus 

and strength when compared to neat polypropylene homopolymer (Ahmad et al. 2007; 

Lim et al. 2008), which is the foundation of IMPP. Herein lays a great opportunity to 

utilize nanotechnology to increase modulus and strength while either preserving or 

improving the uniquely tailored impact properties of the existing IMPP used. 

 

 The nanoparticles chosen for this study were exfoliated graphite nanoplatelets 

(xGnP) with three different sizes: xGnP
5
 has an average thickness of 10 nm, and an 

average platelet diameter of 5 µm, whereas xGnP
15

 and xGnP
25

 have the same thickness 

but average diameters are 15 and 25 µm, respectively. Scanning electron micrographs 

provided in Figure 1.6 illustrates the bulk morphology of xGnP
25

. Similarly, Figure 1.7 

and Figure 1.8 illustrate the bulk morphology of xGnP
15

 and xGnP
5
, respectively. It is 

shown clearly that each brand of xGnP exhibits an average particle diameter 

corresponding to the brand name. Furthermore in Figure 1.7 and Figure 1.8 you can see 

clearly that the bulk morphology of xGnP is in fact agglomerates of prepared expanded 

graphite (EG) which consists of in some case thousands of individual graphene sheets or 

graphite nanoplatelets. The stacks of individual graphene sheets readily exfoliate when 
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introduced under the proper conditions and upon the introduction of mechanical shearing 

during the melt compounding process. 

 

 

Figure 1.6 Scanning electron micrograph of xGnP
25

 showing bulk morphology and 

average platelet diameter of 25 μm. 
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Figure 1.7 Scanning electron micrograph of xGnP
15

 showing bulk morphology, average 

platelet diameter of 15 μm (top and bottom left) and a stacked structure (bottom right). 
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Figure 1.8 Scanning electron micrograph of xGnP
5
 showing bulk morphology, average 

platelet diameter of 15 μm (top and bottom left) and a layered structure (bottom right). 

 

 Previous work with nanoclay-filled IMPP has been completed at the AEWC. The 

impact properties were found to remain intact while the stiffness and strength of IMPP 

was improved slightly. Table 1.1 provides a comparison of common fillers for polymer 

composites. It can be easily inferred that the xGnP combine unique properties (high 

aspect ratio, high surface area, high modulus) exhibited by SWCNTs at a considerably 

lower cost. Although the cost of xGnP is still extremely high compared to clays and 

carbon black, there is a potential for significant mechanical and thermal enhancement of 

IMPP at comparably lower filler content. Aside from compressive, flexural and tensile 
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improvement, there are proposed theoretical mechanism which could cause high aspect 

ratio nanomaterials to improve impact and fracture properties of PNCs. Crack branching, 

bridging and pinning are amongst these mechanisms (Lesser 2009; Jiang and Drzal 

2010). 

 

Table 1.1 Geometrical, physical, mechanical and cost characteristics of common fillers. 

Material 

Length 

(μm) 

Diameter 

(μm) 

Thickness 

(μm) 

Aspect 

Ratio 

Surface area 

(m2/g) 

Density 

(g/cm3) 

Modulus 

(GPa) 

Cost 

($/lb) 

xGnP5 --- 5 a <0.01 a b ~500 a 60-150 a 2 b ~1,000 a 159 

xGnP15 --- 15 a <0.01 a b ~1,500 a b 60-150 a 2 b ~1,000 a 159 

xGnP25 --- 25 a <0.01 a b ~2,500 a 60-150 a 2 b ~1,000 a 159 

PAN CF 175 b 7.2 b --- ~24 b 16 b 1.81 b 531c 5-6 b 

VGCF 50-100 b 0.15 b --- 300-700 b 25 b 2 b 680-1,000 e 40-50 b 

CB 0.4-0.5 b 0.4-0.5 b --- 1 b 1,400 b 1.8 b --- 12 b 

Clays --- 10-20 b 0.05 b 300 b >750 f 2.85 b 170 f 2.25-3.25 d 

SWCNT 3-30 h ~0.001 h --- 3,000-30,000 h ~1,100 h 1.3-1.4 c ~1,000 c 250-500 g 

a
 Values obtained from XG Sciences Inc.

 

b
 Values obtained from Kalaitzidou et al. 2007d 

c
 Values obtained from Wikipedia 

d
 Values obtained from Sherman 2004 

e
 Values obtained from Jacobsen 1995 

f
 Values obtained from Southern Clay Products Inc. 

g
 Values obtained from Sherman 2007 

h
 Values obtained from Cheap Tubes Inc. 

 

 

1.2.2. Project Motivation 

  

 Both industrial and national defense applications demand materials exhibiting 

high specific strength and modulus, which can allow decreased material usage and 

subsequently decreased weight of structures. Graphene-filled polymers are becoming a 
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highly researched topic in the field of PNCs. The main advantages of graphene are high 

modulus (~1TPa), high aspect ratio, layered structure, high thermal stability and electrical 

conductivity. With this wide range of mechanical, physical and thermal properties, 

graphene is being focused on to create multifunctional nanocomposites. xGnP is expected 

to provide sufficient reinforcement and toughening while improving the thermal stability 

of neat IMPP because of the high modulus, high aspect ratio and high thermal stability of 

graphene. 

 

1.2.3. Objectives 

  

 The main objective of this research is to produce well-dispersed nanocomposites 

which exhibit high specific strength and modulus, high energy absorption capabilities and 

high thermal stability using melt blending followed by injection molding. Specific 

research objectives are summarized as shown below. 

 Fabricate xGnP-filled IMPP nanocomposites via melt compounding and 

injection molding. 

 Characterize the effect of particle diameter, filler loading and the addition 

of coupling agents on the mechanical, rheological and thermal properties 

of xGnP-filled IMPP nanocomposites. 

 Utilize electron microscopy techniques as well as traditional mechanics 

models to draw conclusions regarding degree of xGnP dispersion within 

the matrix IMPP. 
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 Correlate mechanical results with rheological behavior to gain insight into 

optimizing nanocomposite formulations. 

 

1.3. Structure of Thesis 

 

 In this thesis, the fabrication methods of thermoplastic nanocomposites are 

described. The effects of xGnP particle diameter, filler loading and the addition of 

coupling agent on the performance of xGnP-filled IMPP nanocomposites are 

investigated. Specifically, this thesis focuses on the effect of these variables on 

mechanical, rheological and thermal properties that are important in thermoplastic 

characterization. The thesis is separated into three papers. The first paper investigates the 

flexural and tensile behaviors of xGnP-filled IMPP nanocomposites. The second paper 

investigates the impact properties of xGnP-filled IMPP nanocomposites and correlates 

these impact properties with the rheological behavior of the nanocomposites. Finally the 

third paper explains the implications on thermal performance when creating xGnP-filled 

IMPP nanocomposites. 

 

1.3.1. Mechanical and Rheological Properties of xGnP-Filled IMPP 

 

 In chapter 2 the effects of xGnP particle diameter, filler loading and coupling 

agents on the flexural and tensile properties of IMPP are investigated. The flexural 

modulus and strength were studied using ASTM D 790-07 which is the standard test 

method for determining flexural properties of unreinforced and reinforced plastics. 
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Similarly, the tensile modulus, strength and elongation at break were studied using 

ASTM D 638-03 which is the standard test method for determining tensile properties of 

plastics. In chapter 3 the effects of xGnP particle diameter, filler loading and coupling 

agents on the impact properties and rheological behavior of IMPP is investigated. The 

unnotched and notched impact strengths as well as fracture initiation resistance were 

studied using ASTM D 256-06 which is the standard test method for determining the Izod 

impact properties of plastics. The melt flow index was studied using ASTM D 1238-04c 

which is the standard test method for determining the melt flow rates of thermoplastics. 

Both scanning electron microscopy (SEM) and transmission electron microscopy (TEM) 

were used throughout chapters 2 and 3 where morphological characterization was 

imperative to understanding the quality of dispersion and the failure mechanisms 

occurring in the composites. 

 

1.3.2. Thermal Properties of xGnP-Filled IMPP 

  

 In chapter 4 the effects of xGnP particle diameter, filler loading and coupling 

agents on the thermal properties of IMPP are investigated. The melting temperature, 

crystallization temperature, heat of fusion and degree of crystallinity were studied by 

means of differential scanning calorimetry (DSC). The peak degradation temperature, 

weight loss at peak degradation temperature and residual mass after 600 °C was 

determined using thermogravimetric analysis (TGA). 
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1.4. Economic Feasibility of xGnP-Filled IMPP 

 

 To justify the commercialization of new composite materials with high 

performance nano fillers, the development efforts must improve working properties and 

extend the base polymer’s range of applications all in a cost efficient manner. 

Incorporating low loading levels of nanoscale reinforcing fillers into polymer matrices is 

a promising approach to achieve these goals. 

 

 The cost of different blends of xGnP-filled IMPP pellets can be calculated 

according to Equation 1.1 (Rowell 1998). 

 

      
               

 
 Equation 1.1 

 

Where PCT is the percentage of commodity thermoplastic in the composite by weight, X 

is the cost of the commodity thermoplastic in dollars per pound, PG is the percentage of 

graphene in the composite by weight, Y is the cost of the graphene filler in dollars per 

pound, PCA is the percentage of coupling agent in the composite by weight, Z is the cost 

of the coupling agent in dollars per pound, C is the cost of compounding the composite in 

dollars per pound, and E is the efficiency of the composite fabrication process. 

 

 Table 1.2 shows the resulting nanocomposite costs in dollars per pound for 

different loading levels of xGnP-filled IMPP nanocomposites manufactured using a 

composite fabrication process with an efficiency (E) equal to 1 and a process which cost 



23 

 

0.20 $/lb of composite material compounded (C). From this table and the conclusions 

developed throughout this thesis it is suspected that there is a potential for low filler 

loading level (<0.5 wt. %) xGnP-filled IMPP. 

 

Table 1.2 Costs of neat materials and different loading levels (wt. %) of xGnP-filled 

IMPP. 

Material Cost ($/lb) 

      

IMPP   1.10   

PP-g-MA   2.25   

xGnP   159   

IMPP_PP-g-MA_xGnP_0.01%   1.32   

IMPP_PP-g-MA_xGnP_0.05%   1.38   

IMPP_PP-g-MA_xGnP_0.10%   1.46   

IMPP_PP-g-MA_xGnP_0.50%   2.09   

IMPP_PP-g-MA_xGnP_1.00%   2.88   

IMPP_PP-g-MA_xGnP_2.00%   4.47   

IMPP_PP-g-MA_xGnP_4.00%   7.64   

IMPP_PP-g-MA_xGnP_6.00%   10.81   

IMPP_PP-g-MA_xGnP_8.00%   13.98   
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Chapter 2 

 

FLEXURAL AND TENSILE PROPERTIES OF  

XGNP-FILLED IMPP NANOCOMPOSITES 

 

2.1. Chapter Summary 

 

xGnP-filled IMPP composites were prepared at 2, 4, 6, and 8 wt. % xGnP with 

and without the addition of a coupling agent and manufactured using melt mixing 

followed by injection molding. The coupling agent used in this study was polypropylene-

graft-maleic anhydride (PP-g-MA). The nanoparticles used were xGnP with three 

different sizes: xGnP5 has an average thickness of 10 nm, and an average platelet 

diameter of 5 µm, whereas xGnP15 and xGnP25 have the same thickness but average 

diameters are 15 and 25 µm, respectively. Test results show that nanocomposites with 

smaller xGnP diameter exhibited better flexural and tensile properties for both neat and 

compatibilized composites. For composites containing a coupling agent, tensile and 

flexural modulus and strength increased with the addition of xGnP. In the case of neat 

composites, both tensile and flexural modulus and strength decreased at higher filler 

loading levels. Increasing xGnP loading resulted in reduction of elongation at break for 

both neat and composites containing coupling agent. Explanation of this brittle behavior 

in a nanoplatelet filled IMPP is presented using scanning electron microscopy and 

transmission electron microscopy. 
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2.2. Introduction 

 

Polymer nanocomposites (PNCs) are continuing to be of great interest in the 

thermoplastics industry. Nano-reinforcing fillers can be divided into three categories 

based on particle morphologies as illustrated in Figure 2.1. The first category is made up 

of spherical particles exhibiting three dimensions on the nanoscale. A few examples of 

these are gold, titanium oxide and silica dioxide particles. The second category consists 

of rods, tubes and whiskers having two dimensions on the nanoscale. Some examples of 

these are gold and silver nano rods, multi-wall and single-wall carbon nanotubes and 

cellulose nanowhiskers. Finally the third category contains layered structural fillers 

exhibiting one dimension on the nanoscale. Typical fillers from this category used for 

mechanical enhancement are exfoliated graphite nanoplatelets, mica and nanoclays (Kim 

et al. 2010a). Incorporating nanoscale fillers into polymer matrices can be a simple and 

economical process to enhance the properties of the neat matrix material (Ahmad et al. 

2007). In fact, dramatic improvements in mechanical and thermal properties have been 

documented with as little as 2 to 6 weight percentage of nanoparticles introduced into 

thermoplastic matrices via melt compounding. Currently, the most commonly used nano 

reinforcement phase is layered silicate nanoclays and carbon nanotubes (CNTs) (Sherman 

2004). 
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Figure 2.1 Three categories of nano-reinforcing fillers based on particle geometry. 

 

Recently there has been increasing interest in the use of exfoliated graphite 

nanoplatelets (xGnP) as a multifunctional reinforcement phase for PNCs. These graphitic 

nanoplatelets, derived from expanded graphite (EG), combine the low-cost and stacked or 

layered structures of nanoclays with a unique plethora of properties usually exhibited by 

CNTs including electrical conductivity, and superior mechanical, physical, and thermal 

properties. (Kim et al. 2010a-b; Kalaitzidou et al. 2007a-d; Stankovich et al. 2006; Kim 

and Drzal 2009a-b; Chen et al. 2001; Park et al. 2007; Miloago et al. 2005; Jiang and 

Drzal 2010) Unfortunately, similar to nanoclay dispersions, in the absence of a coupling 

agent the stacks of nano-thin graphite sheets do not readily exfoliate when incorporated 

into thermoplastic matrices. Rather than exfoliating into individual graphene sheet 

reinforcements, the stacks of xGnP tend to remain agglomerated, exhibiting an 

intercalated dispersion (Ratnayake et al. 2009). 

 

 Polypropylene (PP) is among the most commonly used thermoplastics in the 

world with a vast range of applications in the automobile and construction industries 

(Teng et. al 2008). PP is non polar and does not interact with chemically inert graphite. 
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Therefore, producing graphite-reinforced PP nanocomposites is very difficult because of 

the lack of affinity between the two constituents. This issue can be overcome by adding a 

coupling agent such as propylene-graft-maleic anhydride (PP-g-MA) (Gopakumar and 

Page 2004; Spoljaric et al. 2009). According to a study by Page et al., XRD and SEM 

results indicate that the functionalization of PP by addition of PP-g-MA leads to an 

excellent dispersion of graphite, and improvement in flexural properties of the material 

(Page and Gopakumar 2006). 

 

The objective of this study was to investigate the influence of (1) particle 

diameter, (2) filler loading, and (3) coupling agent, on the flexural and tensile mechanical 

properties of xGnP filled IMPP composites. The ultimate goal is to enhance the stiffness, 

strength and overall toughness of IMPP using xGnP. All compounded materials were 

manufactured using melt mixing followed by injection molding and were prepared at 2, 

4, 6, and 8 wt. % xGnP. The weight ratio of filler-to-coupling agent was held constant at 

2:1 throughout this study. Mechanical characterization was accomplished via flexural and 

tensile tests. Morphological characterization was conducted by means of scanning 

electron microscopy (SEM) and transmission electron microscopy (TEM). 
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2.3. Experimental Procedures 

 

2.3.1. Materials 

 

The IMPP was supplied as polymer pellets by Polystrand Inc., USA. The IMPP 

had a density of 0.900 g/cm
3
 and melt flow index of 35 g/10 min. The xGnP fillers were 

supplied by XG Sciences Inc., USA. Three xGnP fillers in powder form were used as the 

reinforcement with different particle diameters 5, 15, and 25 μm. Average platelet 

thickness ranges from about 5 to 15 nanometers. This translates into an average particle 

surface area ranging from about 60 to 150 m
2
/g. The bulk density of all three xGnP fillers 

is reported to be 0.18-0.25 g/cm
3
. Two different PP-g-MA were used as coupling agents, 

labeled for this study as SA9100 and WL9100, provided by Sigma-Aldrich Co., USA and 

West Lake Chemical Co., USA, respectively. Both coupling agents had a density of 0.934 

g/cm
3
, molecular weight of 9,100 by GPC, and acid number of 45-47. SA9100 and 

WL9100 coupling agents differed in that their maleic anhydride content was 8-10% and 

<0.7%, respectively. Materials used in this study are summarized in Table 2.1. 
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Table 2.1 Summary of materials used in current study. 

Material/Supplier Label 

Density 

(g/cm
3
) 

MA 

Content 

(%) 

Mw Acid # 

      

Impact Modified Polypropylene/ 

Polystrand Inc. IMPP 0.900 
--- --- --- 

      

Exfoliate Graphite Nanoplatelets 5μ/ 

XG Sciences Inc. xGnP
5 

2 
--- --- --- 

      

Exfoliate Graphite Nanoplatelets 15μ/ 

XG Sciences Inc. xGnP
15 

2 
--- --- --- 

      

Exfoliate Graphite Nanoplatelets 25μ/ 

XG Sciences Inc. xGnP
25

 2 
--- --- --- 

      

Polypropylene-g-Maleic Anhydride/ 

Sigma-Aldrich Co. SA9100 0.934 8-10 9100 47 

      

Polypropylene-g-Maleic Anhydride/ 

West Lake Chemical Co. WL9100 0.934 < 0.7 9100 45 

      

 

2.3.2. Sample Preparation 

 

The matrix polymer IMPP was mixed with the xGnP fillers. The compounding 

was carried out with a Brabender Prep-mixer® equipped with a mixing bowl. The basic 

processing parameters used in this study are summarized in Table 2.2. The temperature 

was set to 180 °C and mixing speed was set at 60 rpm. All composite formulations were 

prepared in 150 g batches and all constituents were added to the mixer simultaneously. 

Mixing was done for 20 minutes; this was an optimum processing time as determined 

from preliminary experiments.  
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Table 2.2 Basic operating parameters of the Brabender rheomixer. 

Batch Size 

(g) 

Temperature 

(°C) 
RPM 

Compounding Time 

(min) 

    

150 180 60 20 

    

 

All composite compounds were then granulated using a lab scale grinder. The 

ground particles were then injection molded into ASTM test samples using a barrel 

temperature of 246 °C and injection pressure of 2,500 psi. The designated labels and 

compositions of all compounded materials with and without the addition of a coupling 

agent are shown in Table 2.3 and Table 2.4, respectively. 

 

Table 2.3 Designated labels and compositions of xGnP-filled neat composites. 

 
Content Per Batch (g) 

Study Label IMPP SA9100 WL9100 xGnP
5 

xGnP
15 

xGnP
25 

IMPP_xGnP
5
_2% 147 --- --- 3 --- --- 

IMPP_xGnP
5
_4% 144 --- --- 6 --- --- 

IMPP_xGnP
5
_6% 141 --- --- 9 --- --- 

IMPP_xGnP
5
_8% 138 --- --- 12 --- --- 

IMPP_xGnP
15

_2% 147 --- --- --- 3 --- 

IMPP_xGnP
15

_4% 144 --- --- --- 6 --- 

IMPP_xGnP
15

_6% 141 --- --- --- 9 --- 

IMPP_xGnP
15

_8% 138 --- --- --- 12 --- 

IMPP_xGnP
25

_2% 147 --- --- --- --- 3 

IMPP_xGnP
25

_4% 144 --- --- --- --- 6 

IMPP_xGnP
25

_6% 141 --- --- --- --- 9 

IMPP_xGnP
25

_8% 138 --- --- --- --- 12 
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Table 2.4 Designated labels and compositions of xGnP-filled composites with the 

addition of coupling agents. 

 
Content Per Batch (g) 

Study Label IMPP SA9100 WL9100 xGnP
5 

xGnP
15 

xGnP
25 

IMPP_SA9100_xGnP
5
_2% 145.5 1.5 --- 3 --- --- 

IMPP_SA9100_xGnP
5
_4% 141 3 --- 6 --- --- 

IMPP_SA9100_xGnP
5
_6% 136.5 4.5 --- 9 --- --- 

IMPP_SA9100_xGnP
5
_8% 132 6 --- 12 --- --- 

IMPP_SA9100_xGnP
15

_2% 145.5 1.5 --- --- 3 --- 

IMPP_SA9100_xGnP
15

_4% 141 3 --- --- 6 --- 

IMPP_SA9100_xGnP
15

_6% 136.5 4.5 --- --- 9 --- 

IMPP_SA9100_xGnP
15

_8% 132 6 --- --- 12 --- 

IMPP_SA9100_xGnP
25

_2% 145.5 1.5 --- --- --- 3 

IMPP_SA9100_xGnP
25

_4% 141 3 --- --- --- 6 

IMPP_SA9100_xGnP
25

_6% 136.5 4.5 --- --- --- 9 

IMPP_SA9100_xGnP
25

_8% 132 6 --- --- --- 12 

       

IMPP_WL9100_xGnP
5
_2% 145.5 --- 1.5 3 --- --- 

IMPP_WL9100_xGnP
5
_4% 141 --- 3 6 --- --- 

IMPP_WL9100_xGnP
5
_6% 136.5 --- 4.5 9 --- --- 

IMPP_WL9100_xGnP
5
_8% 132 --- 6 12 --- --- 

IMPP_WL9100_xGnP
15

_2% 145.5 --- 1.5 --- 3 --- 

IMPP_WL9100_xGnP
15

_4% 141 --- 3 --- 6 --- 

IMPP_WL9100_xGnP
15

_6% 136.5 --- 4.5 --- 9 --- 

IMPP_WL9100_xGnP
15

_8% 132 --- 6 --- 12 --- 

IMPP_WL9100_xGnP
25

_2% 145.5 --- 1.5 --- --- 3 

IMPP_WL9100_xGnP
25

_4% 141 --- 3 --- --- 6 

IMPP_WL9100_xGnP
25

_6% 136.5 --- 4.5 --- --- 9 

IMPP_WL9100_xGnP
25

_8% 132 --- 6 --- --- 12 
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2.3.3. Mechanical Characterization 

 

Tensile tests were conducted according to the American Society of Testing and 

Materials (ASTM) standard D 638-03, ”Standard Test Method for Tensile Properties of 

Plastics”. The tensile behaviors of composites were measured using an Instron 8801 with 

a 5 kN load cell. All the tension tests were conducted at a rate of 5.08 mm/min. An 

extensometer was used for elongation determinations. Tensile modulus of the polymer 

composites was determined from the slope of the linear portion of the stress-strain curve. 

Tensile strength was calculated from the maximum load of the load-displacement curve 

divided by the specimen original cross-sectional area. Elongation at break was also 

reported. At least five samples were tested for each composition and the results are 

presented as an average for tested samples. 

 

 Flexural tests were conducted according to ASTM D 790-07, “Standard Test 

Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical 

Insulating Materials”, Procedure A. This test consisted of a three-point loading system 

introducing mid-span loading using an Instron 8801 with a 225 N load cell. The support 

span was 52.8 mm, resulting in a span-to-depth ratio of 16 (±1). All flexural tests were 

conducted at a rate of 1.27 mm/min. Flexural modulus of the polymer composites was 

determined using Equation 2.1 and inputting the slope of the linear portion of the load-

deflection curve for the variable m. Flexural strength was calculated using Equation 2.2 

and inputting the maximum load of the load-displacement curve for the variable P. The 

other variables in the equation are L, b and d, which is the span, width and depth of the 
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beam specimen, respectively. At least five samples were tested for each composition and 

the results are presented as an average for tested samples. 

 

    
   

    
 Equation 2.1 

  

    
   

    
 Equation 2.2 

 

2.3.4. Morphological Characterization 

 

Studies regarding the microscopic morphology of the tensile fracture surfaces of 

the composites were carried out using an AMR 1000 (AMRay Co.) scanning electron 

microscope. Images were taken at 10 kV with 1200 X, 6200 X and 13000 X SEM 

micrograph magnifications. All samples were sputter coated with gold before the 

microscopic observations were obtained.  

 

The nanoscale morphology of the PNCs was completed using a Phillips CM10 

transmission electron microscope. Images were taken at magnifications of 130 kX, 245 

kX and 450 kX. Sectioning of thermoplastics is a difficult task because of their inherently 

soft characteristics. In the absence of low temperature ultra-cryotome technology, a 

method for obtaining ultrathin sections was necessary. Thin slivers of our composites 

were shaved and embedded in an epoxy matrix to aid in sectioning the soft plastic. The 

embedded sample was then sectioned using a Leica EM UC6 ultra-microtome equipped 
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with a diamond knife. Specimens were sectioned with thickness on the order of 50-75 

nm. 

 

2.3.5. Statistical Analysis 

 

The flexural modulus, flexural strength, tensile modulus, tensile strength and 

elongation at break were compared using a one-way analysis of variance followed by 

Tukey-Kramer Honestly Significant Differences (HSD) test at a confidence value equal 

to 0.05 with JMP statistical analysis program (JMP 9). 

 

2.4. Results and Discussion 

 

2.4.1. Flexural Properties 

 

The flexural behavior of all compounded composites was characterized via the 

flexural testing methods describe in Section 2.3.3.  Neat IMPP was determined to have 

flexural modulus and flexural strength equal to 1.1 GPa and 33.7 MPa, respectively. 

 

Normalized flexural modulus results for neat and xGnP
5
-filled composites with 

coupling agent as a function of filler loading level up to 8% are presented in Figure 2.2. 

Similar plots are provided for neat and xGnP
15

 and xGnP
25

-filled composites with 

coupling agent in Figure 2.3 and Figure 2.4, respectively. In general, flexural modulus 
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was found to increase with decreasing xGnP particle diameter and increased filler loading 

for both neat and xGnP-filled composites containing coupling agent. However, flexural 

modulus increased with filler loading much more efficiently at higher loading levels for 

composites containing coupling agent. In general, the optimum formulation to improve 

flexural modulus for filler loading levels 2, 4, 6 and 8 wt. % is IMPP_WL9100 _ xGnP
15

 

composites. The resulting improvement from neat IMPP is 16, 24, 35 and 50%, 

respectively. 

 

 

Figure 2.2 Normalized flexural modulus experimental results for xGnP
5
-filled 

composites. 
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Figure 2.3 Normalized flexural modulus experimental results for xGnP
15

-filled 

composites. 

 

 

 

Figure 2.4 Normalized flexural modulus experimental results for xGnP
25

-filled 

composites. 
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Normalized flexural strength results for neat and xGnP
5
-filled composites with 

coupling agent as a function of filler loading level up to 8% are presented in Figure 2.5. 

Similar plots are provided for neat and xGnP
15

 and xGnP
25

-filled composites with 

coupling agent in Figure 2.6 and Figure 2.7, respectively. Flexural strength was found to 

increase with decreasing xGnP particle diameter for all filler loading values of both neat 

and xGnP-filled composites containing coupling agent. Flexural strength increases with 

filler loading for all xGnP-filled composites containing coupling agent. However, flexural 

strength decreased with increased filler loading for neat composites. The optimum 

formulation to improve flexural strength for filler loading levels 2, 4, 6 and 8 wt. % is 

IMPP_WL9100 _ xGnP
5
 composites. The resulting improvement from neat IMPP is 4, 8, 

12 and 9%, respectively. 

 

 

Figure 2.5 Normalized flexural strength experimental results for xGnP
5
-filled composites. 
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Figure 2.6 Normalized flexural strength experimental results for xGnP
15

-filled 

composites. 

 

 

 

Figure 2.7 Normalized flexural strength experimental results for xGnP
25

-filled 

composites. 
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Research performed by Kalaitzidou et al. showed much greater improvement in 

flexural modulus compared to results shown here. Using xGnP
1
 in polypropylene 

homopolymer, they obtained flexural modulus improvement of ~900% at a loading of 20 

vol% (~6 wt. %) (Kalaitzidou et al. 2007 c,d). Such a large improvement may be 

attributed to the five-fold decrease in xGnP particle diameter. The importance of the 

dispersion of the reinforcing filler was also a highlight of this article. Kalaitzidou found 

that xGnP
15

 was susceptible to agglomeration and fiber buckling or rollup. On the 

contrary, when xGnP
1
 was incorporated into the polypropylene matrix, although some 

agglomerations were present, they appear in much smaller effective particle sizes 

(Kalaitzidou et al. 2007 a,b,d). These findings are very similar to this study's 

morphological findings presented below in Section 2.4.2.  

  

This study proved feasibility of improving flexural modulus and strength of IMPP 

using xGnP as a nano reinforcement phase and PP-g-MA as a coupling agent. However, 

it is suspected that incorporation of xGnP with an average particle diameter smaller than 

5 μm would inevitably lead to largely increased improvements in flexural properties. 

Table 2.5 shows a summary of flexural mechanical properties and statistical significance 

of all compounded materials. 
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Table 2.5 Summary of flexural mechanical properties and statistical significance (Tukey-

Kramer HSD comparison at α = 0.05) of all compounded materials. 

 Flexural Properties 

Study Label 

Modulus 

(GPa) 

Strength 

(MPa) 

Neat IMPP LMN 1.08 (0.06) JKLMNO 33.7 (1.0) 
IMPP_xGnP5_2% FGH 1.31 (0.04) GHIJKL 34.3 (1.4) 

IMPP_xGnP5_4% F 1.33 (0.03) EF 35.3 (0.7) 

IMPP_xGnP5_6% F 1.32 (0.04) EFG 35.0 (0.5) 

IMPP_xGnP5_8% GHI 1.26 (0.02) MNO 33.3 (0.4) 

IMPP_SA9100_xGnP5_2% IJ 1.21 (0.02) FGHIJK 34.6 (0.5) 

IMPP_SA9100_xGnP5_4% FG 1.32 (0.01) EF 35.3 (0.3) 

IMPP_SA9100_xGnP5_6% D 1.44 (0.02) BC 36.6 (0.2) 

IMPP_SA9100_xGnP5_8% B 1.54 (0.01) AB 37.4 (0.3) 

IMPP_WL9100_xGnP5_2% IJ 1.21 (0.02) EFG 35.0 (0.3) 

IMPP_WL9100_xGnP5_4% EF 1.36 (0.02) CD 36.4 (0.5) 

IMPP_WL9100_xGnP5_6% BC 1.52 (0.02) A 37.9 (0.4) 

IMPP_WL9100_xGnP5_8% B 1.53 (0.03) BC 36.9 (0.8) 

IMPP_xGnP15_2% IJ 1.20 (0.01) NO 33.2 (0.3) 

IMPP_xGnP15_4% HI 1.25 (0.01) NO 33.3 (0.3) 

IMPP_xGnP15_6% FG 1.25 (0.04) LMNO 32.4 (0.6) 

IMPP_xGnP15_8% FG 1.32 (0.02) LMNO 33.5 (0.3) 

IMPP_SA9100_xGnP15_2% IJ 1.21 (0.02) GHIJKLM 34.3 (0.4) 

IMPP_SA9100_xGnP15_4% F 1.34 (0.02) EFGH 34.9 (0.3) 

IMPP_SA9100_xGnP15_6% DE 1.42 (0.01) EFGHI 34.9 (0.2) 

IMPP_SA9100_xGnP15_8% B 1.55 (0.04) DE 35.6 (0.7) 

IMPP_WL9100_xGnP15_2% I 1.24 (0.01) EFGH 34.9 (0.2) 

IMPP_WL9100_xGnP15_4% F 1.34 (0.01) EFGHI 34.8 (0.2) 

IMPP_WL9100_xGnP15_6% CD 1.46 (0.04) EF 35.3 (0.6) 

IMPP_WL9100_xGnP15_8% A 1.61 (0.03) BC 36.8 (0.4) 

IMPP_xGnP25_2% JK 1.15 (0.08) KLMNO 33.7 (1.0) 

IMPP_xGnP25_4% KL 1.13 (0.05) P 31.5 (0.5) 

IMPP_xGnP25_6% FGH 1.31 (0.02) O 33.2 (0.5) 

IMPP_xGnP25_8% O 1.00 (0.03) P 31.7 (1.0) 

IMPP_SA9100_xGnP25_2% NO 1.03 (0.01) JKLMNO 33.8 (0.3) 

IMPP_SA9100_xGnP25_4% LMN 1.08 (0.01) IJKLMNO 33.9 (0.3) 

IMPP_SA9100_xGnP25_6% KLM 1.12 (0.01) GHIJKLMN 34.2 (0.4) 

IMPP_SA9100_xGnP25_8% JK 1.16 (0.01) EFGHIJ 34.7 (0.4) 

IMPP_WL9100_xGnP25_2% MNO 1.06 (0.03) HIJKLMNO 34.0 (0.9) 

IMPP_WL9100_xGnP25_4% LMN 1.07 (0.01) NO 33.3 (0.4) 

IMPP_WL9100_xGnP25_6% JK 1.17 (0.13) LMNO 33.5 (0.8) 

IMPP_WL9100_xGnP25_8% B 1.54 (0.04) FGHIJK 34.5 (0.5) 

Parenthesis indicates standard deviation.  

Presence of the same letter indicates no statistical difference. 
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2.4.2. Tensile Properties 

 

The tensile behavior of all compounded materials were characterized via the 

tensile testing methods describe in Section 2.3.3.  Neat IMPP was determined to have 

tensile modulus, tensile strength and elongation at break equal to 1.29 GPa, 21.3 MPa and 

33.8%, respectively. 

 

 Normalized tensile modulus results for neat and xGnP
5
-filled composites with 

coupling agent as a function of filler loading level up to 8% are presented in Figure 2.8. 

Similar plots are provided for neat and xGnP
15

 and xGnP
25

-filled composites with 

coupling agent in Figure 2.9 and Figure 2.10, respectively. Tensile modulus was found to 

increase with decreasing xGnP particle diameter for all filler loading values of both neat 

and xGnP-filled composites containing coupling agent. Tensile modulus remains 

statistically unchanged with increased filler loading for neat xGnP-filled composites. 

However, tensile modulus consistently increases with increased filler loading for all 

SA9100 and WL9100 coupled xGnP filled composites. In general, the optimum 

formulation to improve tensile modulus for filler loading levels 2, 4, 6 and 8 wt. % is 

IMPP_WL9100 _ xGnP
5
 composites. The resulting improvement from neat IMPP is 6, 

18, 24 and 31%, respectively.  
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Figure 2.8 Normalized tensile modulus experimental results for xGnP
5
-filled composites. 

 

 

 

Figure 2.9 Normalized tensile modulus experimental results for xGnP
15

-filled 

composites. 
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Figure 2.10 Normalized tensile modulus experimental results for xGnP
25

-filled 

composites. 

 

Test results show that PP-g-MA is extremely beneficial to dispersion, particularly 

at higher filler loading levels. As discussed by Hussain et al., the degree of dispersion is 

one of the most critical aspects of layered nanomaterial reinforcement. In the absence of 

perfect exfoliation the nano reinforcement phase will not provide improved mechanical 

properties. In fact, poorly dispersed nano fillers can greatly deteriorate the mechanical 

properties when compared to the neat polymer matrix (Hussain et al. 2006). As described 

by Thostenson et al., the individual graphene platelets have greater affinity to themselves 

compared to the polymer matrix. For this reason, perfect dispersion (exfoliation) of the 

nano particles is very difficult. Furthermore, it has been demonstrated that the magnitude 

of inherent stress concentrations decreases as the thickness at the tip of the graphite 

agglomerates decreases (Thostenson et al. 2005). Improvement in degree of exfoliation 
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results in smaller thickness of graphite effective particles. Therefore an improved degree 

of exfoliation results in lower stress concentrations and subsequently higher performance 

mechanical properties. TEM investigations are necessary to draw further conclusions 

regarding the influence of PP-g-MA coupling agent on the degree of dispersion within 

our composites. 

 

TEM images are shown in Figure 2.11 and illustrate the obvious improvement in 

quality of dispersion in properly compatibilized composites. In Figure 2.11 a and b 

individual platelets can be seen and their individual thickness of 10 nm is confirmed. 

However, the individual platelets are present in stacks ranging from 50 to 200 nm in 

thickness. This nanoscale morphology is described as intercalated dispersion at best. 

Figure 2.11 c and d show with the addition of WL9100 coupling agent, individual 

platelets are visible at 10 nm thick, and polymer is also seen penetrating much of the 

gallery spacing among platelets resulting in stacks of only two or three platelets. This 

nanoscale morphology can be described as a partially exfoliated dispersion. 
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Figure 2.11 Transmission electron micrographs of (a & b) IMPP_xGnP
5
_2% and (c & d) 

IMPP_WL9100_xGnP
5
_2%. 

 

The Halpin-Tsai equation was introduced to predict the tensile longitudinal 

modulus of unidirectional fiber-reinforced composites. The Halpin-Tsai prediction of 

tensile modulus was calculated using Equation 2.3 through Equation 2.5 as shown: 

 

     

        

       
 Equation 2.3 

   

  

  
    

  

  
    

 Equation 2.4 

   
 

  
 Equation 2.5 
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Where the parameter Em is the neat IMPP Young's modulus, Ef is the elastic modulus of 

the fiber reinforcement phase, and Vf is the fiber volume fraction. The variable ξ shown 

here is an adaptation for the case of platelet shaped fillers and is a function of the filler's 

aspect ratio, a. Assumptions of the Halpin-Tsai equation include perfect exfoliation to 

attain the aspect ratio input into Equation 2.5, as well as perfect contact between filler 

and matrix (Kalaitzidou et al. 2007c).  

 

 For the case of xGnP
5
, variables Ef and a were taken as 1 TPa and 500, 

respectively. The predicted tensile modulus of various composites can then be plotted as 

a function of fiber volume fraction. Figure 2.12, Figure 2.13 and Figure 2.14 illustrate a 

comparison of Halpin-Tsai prediction of tensile modulus and experimental results fit to 

2nd-order polynomials for neat and compatibilized xGnP
5
-filled composites. Figure 2.12 

depicts a very poor agreement between the Halpin-Tsai prediction and experimental 

results for neat xGnP
5
-filled composites. On the contrary, both Figure 2.13 and Figure 

2.14 show rather good agreement between the Halpin-Tsai prediction and experimental 

results for both SA9100 and WL9100 coupled xGnP
5
-filled composites. The 2nd-order 

polynomial fit to the experimental data exhibited correlation coefficients, R
2
, for 

composites containing coupling agent greater than 0.975. Coupled composites show 

excellent agreement with the modeled prediction, particularly at higher filler loading 

levels when compared with neat composites. 
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Figure 2.12 Comparison of Halpin-Tsai prediction of tensile modulus with experimental 

results for neat xGnP
5
-filled composites. 

 

 

Figure 2.13 Comparison of Halpin-Tsai prediction of tensile modulus with experimental 

results for SA9100 coupled xGnP
5
-filled composites. 
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Figure 2.14 Comparison of Halpin-Tsai prediction of tensile modulus with experimental 

results for WL9100 coupled xGnP
5
-filled composites. 

 

The Halpin-Tsai model slightly over-predicts the composite tensile modulus. This 

is similar to other findings in the literature, where over-predictions of modulus using 

Halpin-Tsai equation are attributed to the theoretical aspect ratio that was input into the 
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calculated based on perfect exfoliation. Instead of perfectly exfoliated 10 nm thick 

individual graphene sheets aligned in the injection mold flow direction, the effective 

particle thickness could be at least an order of magnitude larger and no longer in a planar 

geometric shape (Ahmad et al. 2007; Kalaitzidou et al. 2007a-d; Kim H. et al. 2010). 

Evidence of this phenomenon occurring in this study is shown in Figure 2.15 and is 

indicated by the red arrow. Analogous to slenderness in a structural column, the xGnP
25
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folding and roll-up during the intensive shear mixing induced during melt compounding. 

The other source of deviation from the Halpin-Tsai prediction is attributed to the 

assumption of perfect contact between the filler and the matrix. 

 

 

Figure 2.15 Transmission electron micrograph of IMPP_SA9100_xGnP
25

_4% showing 

evidence of platelet buckling. 

 

Normalized tensile strength results for neat and xGnP
5
-filled composites with 

coupling agent as a function of filler loading level up to 8% are presented in Figure 2.16. 

Similar plots are provided for neat and xGnP
15

 and xGnP
25

-filled composites with 

coupling agent in Figure 2.17 and Figure 2.18, respectively. Tensile strength was found 

to increase with decreasing xGnP particle diameter for all filler loading values of both 

neat and xGnP-filled composites containing coupling agent. Tensile strength decreased 

with increased filler loading for all neat xGnP-filled composites. However, tensile 
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strength is statistically higher than neat IMPP at all filler loading level for WL9100 

coupled xGnP
5
-filled composites. In general, the optimum formulation to improve tensile 

strength for filler loading levels 2, 4, 6 and 8 wt. % is IMPP_WL9100 _ xGnP
5
 

composites. The resulting improvement from neat IMPP is 12, 6, 5 and 5%, respectively. 

 

 

Figure 2.16 Normalized tensile strength experimental results for xGnP
5
-filled composites. 
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Figure 2.17 Normalized tensile strength experimental results for xGnP
15

-filled 

composites. 

 

 

 

Figure 2.18 Normalized tensile strength experimental results for xGnP
25

-filled 

composites. 
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Normalized elongation at break results for neat and xGnP
5
-filled composites with 

coupling agent as a function of filler loading level up to 8% are presented in Figure 2.19. 

Similar plots are provided for neat and xGnP
15

 and xGnP
25

-filled composites with 

coupling agent in Figure 2.20 and Figure 2.21, respectively. In general, elongation at 

break increased with decreasing xGnP particle diameter for all filler loading values of 

both neat and xGnP-filled composites containing coupling agent. However, elongation at 

break decreased with increased filler loading for all neat and xGnP-filled composites 

containing coupling agent. It is important to note that the addition of coupling agent 

caused lower elongation at break and therefore a more brittle behaving composite. The 

optimum formulation to obtain the least degradation of elongation at break for filler 

loading levels 2, 4, 6 and 8 wt. % is IMPP_ xGnP
5
 composites. The resulting degradation 

when compared to neat IMPP is 13, 29, 44 and 41%, respectively. 

 

 

Figure 2.19 Normalized elongation at break experimental results for xGnP
5
-filled 

composites. 
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Figure 2.20 Normalized elongation at break experimental results for xGnP
15

-filled 

composites. 

 

 

 

Figure 2.21 Normalized elongation at break experimental results for xGnP
25

-filled 

composites. 
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According to Ahmad et al., nearly any filled polymer will show an increase in 

modulus and strength while concurrently producing a more brittle behaving composite 

(Ahmad et al. 2007). The xGnP is an extremely rigid particle. Therefore, nearly all 

elongation of the specimen during the tensile test will occur in the matrix. When there is 

good adhesion between the filler and the matrix, a significant decrease in elongation at 

break can be expected even at small filler loading levels. In the case of poor adhesion, the 

decrease in elongation at break is expected to be more gradual (Oksman and Clemons 

1998). This study's composites containing coupling agent have been proven to exhibit 

improved dispersion and are expected to exhibit improved adhesion at the particle/matrix 

interface as proposed in the previously discussed Halpin-Tsai comparison plots. Poor 

particle/matrix adhesion can be seen in SEM images of tensile fracture surfaces where no 

polymer is found to be attached to or coating embedded fillers. This phenomenon is seen 

here as shown in Figure 2.22 and is indicated by the red arrow where the tensile fracture 

surface of IMPP_xGnP
25

_4% clearly indicates poor adhesion between the filler and the 

matrix in the absence of PP-g-MA. Thus the decrease in elongation at break for this neat 

composite and the comparably larger decrease in elongation at break for similar 

composites containing coupling agent is explained and justified. 
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Figure 2.22 Scanning electron micrographs illustrating poor particle/matrix adhesion in 

tensile fracture surface of IMPP_xGnP
25

_4% at (a) 1200x, (b) 6200x and (c) 13000x 

magnification. 

 

Figure 2.23 is provided to illustrate the change in microscopic morphology of the 

tensile fracture surface with increased filler loading. In Figure 2.23a the neat IMPP is 

seen to exhibit a fracture surface consisting of many elongated ligaments of polymer, 

indicating a considerably ductile failure. Figure 2.23 b and c shows neat xGnP
25

-filled 

composites at 2% and 4% filler loading, respectively. At 2% filler loading a decrease is 

seen in the amount of elongated polymer present on the fracture surface as well as a 

cavity, indicated by the red arrow, where an agglomeration of xGnP
25

 platelets have 

pulled-out. At 4% filler loading we can see a further decrease in the density of elongated 

polymer on the fracture surface as well as an agglomeration of xGnP
25

 platelets, indicated 
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by the red arrow, which again illustrate poor adhesion in the absence of PP-g-MA. 

Finally, in Figure 2.23d at 6% filler loading there is essentially no presence of elongated 

ligaments of polymer. Instead there is very smooth fracture surface, indicative of a 

considerably brittle failure. 

 

 

Figure 2.23 Scanning electron micrographs illustrating progressively brittle failure 

surfaces in tensile fracture surfaces of (a) Neat IMPP, (b) IMPP_xGnP
25

_2%, (c) 

IMPP_xGnP
25

_4% and (d) IMPP_xGnP
25

_6%. 

 

This study proved the feasibility of improving tensile modulus and strength of 

IMPP using xGnP as a nano reinforcement phase and PP-g-MA as a coupling agent. The 

benefit of both SA9100 and WL9100 can be attributed to improved dispersion and 

particle/matrix interaction. However, it is suspected that upon mechanical loading 
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residual agglomerated stacks of nanoplatelets act as very stiff inclusions. These stiff 

inclusions redirect stress concentrations from the elastomeric impact modification 

(toughening) phase of the IMPP to the much larger and stiffer effective graphite particles. 

In addition, these agglomerated stacks provide non ideal transfer of stresses between 

matrix and filler, therefore resulting in early failure or low values of elongation at break 

compared to the very tough IMPP. Table 2.6 shows a summary of tensile mechanical 

properties and statistical significance of all compounded materials. 
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Table 2.6 Summary of tensile mechanical properties and statistical significance (Tukey-

Kramer HSD comparison at α = 0.05) of all compounded materials. 

 Tensile Properties 

Study Label 

Elastic Modulus 

(GPa) 

Strength 

(MPa) 

Elongation at break 

(%) 

    

Neat IMPP LMNOPQR 1.29 (0.04) HIJKLMNO 21.3 (0.3) A 33.8 (5.4) 

IMPP_xGnP5_2% HIJKLMN 1.38 (0.06) CDE 22.1 (0.3) AB 29.4 (10.5) 

IMPP_xGnP5_4% LMNOPQ 1.32 (0.13) EFGHIJ 21.7 (0.3) BC 24.0 (10.4) 

IMPP_xGnP5_6% GHIJKL 1.40 (0.05) HIJKLM 21.5 (0.2) CDEFG 19.0 (3.4) 

IMPP_xGnP5_8% GHIJKL 1.40 (0.04) IJKLMN 21.3 (0.2) CDE 20.0 (5.8) 

IMPP_SA9100_xGnP5_2% KLMNOP 1.33 (0.04) DEFGHI 21.8 (0.3) EFGHIJKL 13.8 (4.3) 

IMPP_SA9100_xGnP5_4% EFGHI 1.48 (0.04) CDEFGH 21.9 (0.2) FGHIJKLMNO 12.9 (3.2) 

IMPP_SA9100_xGnP5_6% CDE 1.57 (0.08) EFGHI 21.8 (0.2) JKLMNOP 7.8 (1.6) 

IMPP_SA9100_xGnP5_8% A 1.73 (0.04) CDEFGH 21.9 (0.3) MNOP 6.6 (1.3) 

IMPP_WL9100_xGnP5_2% JKLMNOP 1.37 (0.04) A 23.9 (0.3) CD 21.9 (5.8) 

IMPP_WL9100_xGnP5_4% DEF 1.52 (0.07) B 22.7 (0.2) IJKLMNOP 10.7 (3.3) 

IMPP_WL9100_xGnP5_6% BCDE 1.59 (0.05) BC 22.3 (0.5) KLMNOP 7.5 (2.0) 

IMPP_WL9100_xGnP5_8% AB 1.68 (0.05) BCD 22.3 (0.3) JKLMNOP 7.9 (1.1) 

IMPP_xGnP15_2% KLMNOP 1.36 (0.06) LMNOP 21.0 (0.3) CDEF 18.4 (4.4) 

IMPP_xGnP15_4% GHIJKL 1.39 (0.05) TU 20.3 (0.3) EFGHIJK 12.0 (4.3) 

IMPP_xGnP15_6% LMNOPQ 1.31 (0.22) MNOPQ 21.0 (0.3) EFGHIJKLM 13.4 (3.6) 

IMPP_xGnP15_8% GHIJKLM 1.39 (0.07) V 19.4 (0.2) HIJKLMNOP 10.5 (1.3) 

IMPP_SA9100_xGnP15_2% KLMNOP 1.33 (0.03) FGHIJKL 21.0 (0.3) DEFGHI 15.3 (2.9) 

IMPP_SA9100_xGnP15_4% EFGHIJ 1.48 (0.03) QRST 20.3 (0.3) LMNOP 7.3 (1.3) 

IMPP_SA9100_xGnP15_6% EFGH 1.49 (0.06) STU 21.0 (0.3) LMNOP 7.1 (1.0) 

IMPP_SA9100_xGnP15_8% ABCD 1.62 (0.07) QRST 19.4 (0.2) OP 6.0 (0.9) 

IMPP_WL9100_xGnP15_2% KLMNOP 1.30 (0.02) KLMNOP 21.2 (0.3) EFGHIJ 14.6 (3.5) 

IMPP_WL9100_xGnP15_4% EFG 1.50 (0.04) JKLMNOP 21.2 (0.3) KLMNOP 7.7 (0.9) 

IMPP_WL9100_xGnP15_6% DE 1.56 (0.03) OPQR 20.8 (0.3) KLMNOP 7.6 (1.0) 

IMPP_WL9100_xGnP15_8% ABC 1.68 (0.09) NOPQ 20.9 (0.3) P 5.1 (0.4) 

IMPP_xGnP25_2% MNOPQR 1.27 (0.05) CDEF 22.1 (0.3) CDEFGH 18.0 (5.1) 

IMPP_xGnP25_4% LMNOPQR 1.28 (0.06) GHIJKL 21.5 (0.6) DEFGHI 16.1 (3.2) 

IMPP_xGnP25_6% PQR 1.25 (0.05) RST 20.4 (0.1) HIJKLMNOP 11.8 (1.2) 

IMPP_xGnP25_8% QR 1.21 (0.03) UV 19.8 (0.2) GHIJKLMNO 12.7 (2.3) 

IMPP_SA9100_xGnP25_2% R 1.17 (0.03) FGHIJKL 21.6 (0.2) CDE 20.3 (8.4) 

IMPP_SA9100_xGnP25_4% OPQR 1.26 (0.04) PQRS 20.7 (0.4) FGHIJKLMNO 12.8 (3.1) 

IMPP_SA9100_xGnP25_6% LMNOPQ 1.30 (0.04) LMNOP 21.1 (0.3) IJKLMNOP 9.9 (1.5) 

IMPP_SA9100_xGnP25_8% KLMNOP 1.34 (0.05) PQRS 20.7 (0.5) NOP 6.4 (1.0) 

IMPP_WL9100_xGnP25_2% KLMNOP 1.33 (0.07) B 22.8 (0.3) DEFGHI 16.1 (3.2) 

IMPP_WL9100_xGnP25_4% IJKLMNO 1.38 (0.02) CDEFG 22.0 (0.2) IJKLMNOP 9.4 (1.9) 

IMPP_WL9100_xGnP25_6% FGHIJK 1.44 (0.08) EFGHIJK 21.6 (0.2) MNOP 6.8 (0.5) 

IMPP_WL9100_xGnP25_8% GHIJKLM 1.39 (0.04) NOPQR 20.8 (0.3) OP 5.9 (0.6) 

Parenthesis indicates standard deviation.  

Presence of the same letter indicates no statistical difference. 
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2.5. Conclusions 

 

Both xGnP-filled IMPP composites with and without the addition of coupling 

agent were prepared via melt compounding followed by injection molding. Mechanical 

and morphological characterization yielded conclusions in understanding the influence of 

(1) particle diameter, (2) filler loading, and (3) coupling agent, on the flexural and tensile 

properties of xGnP-filled IMPP composites. 

 

 The smallest diameter filler investigated in this study (5μm) performed the best in 

terms of flexural and tensile mechanical properties of xGnP-filled IMPP composites. It is 

suspected that incorporation of xGnP with an average particle diameter smaller than 5 μm 

would result in largely increased improvements in flexural and tensile properties. Tensile 

and flexural moduli and strengths both increased with xGnP filler loading for 

compatibilized composites. Elongation at break was greatly deteriorated with as little as 2 

wt. % xGnP with and without coupling agent. The addition of coupling agent has been 

proven to dramatically enhance dispersion within xGnP-filled IMPP composites. 

Enhanced dispersion has been proven indirectly via mechanical testing and Halpin-Tsai 

modeling comparisons as well as directly via TEM imaging. However, the addition of 

coupling agent amplifies the degradation of elongation at break because of the improved 

adhesion between the filler and the matrix. 

 

 

 



65 

 

2.6. References 

 

Ahmad S.H., Rasid R., Surip S.N., Anuar H., Czigany T., Abdul Razak S.B. “Mechanical 

and Fracture Toughness Behavior of TPNR Nanocomposites.” Journal of Composite 

Materials, 41(17) (2007): 2147-2159. 

 

Chen G.H., Wu D.J., Weng W.G., Yan W.L. “Preparation of Polymer/Graphite 

Conducting Nanocomposite by Intercalation Polymerization.” Journal of Applied 

Polymer Science, 82 (2001): 2506-2513. 

 

Gopakumar T.G. & Page D.J.Y.S. “Polypropylene/Graphite Nanocomposites by Thermo-

Kinetic Mixing.” Polymer Engineering & Science, 44 (6) (2004): 1162-1169. 

 

Hussain F., Hojjati M., Okamoto M., Gorga R. E. “Review article: Polymer-matrix 

Nanocomposites, Processing, Manufacturing, and Application: An Overview.” Journal of 

Composite Materials, 40(17) (2006): 1511-1575. 

 

Jiang X. & Drzal L. T. “Multifunctional High Density Polyethylene Nanocomposites 

Produced by Incorporation of Exfoliated Graphite nanoplatelets 1: Morphology and 

Mechanical Properties.” Polymer Composites, (2010): 1091-1098. 

 



66 

 

Kalaitzidou K., Fukushima H., Drzal L.T. “A new compounding method for exfoliated 

graphite-polypropylene nanocomposites with enhanced flexural properties and lower 

percolation threshold.” Composites Science and Technology, 67 (2007a): 2045-2051. 

 

Kalaitzidou K., Fukushima H., Drzal L. T. “Multifunctional polypropylene composites 

produced by incorporation of exfoliated graphite nanoplatelets.” Carbon, 45 (2007b): 

1446-1452. 

 

Kalaitzidou K., Fukushima H., Miyagawa H., Drzal L. T. “Flexural and Tensile Moduli 

of Polypropylene Nanocomposites and Comparison of Experimental Data to Halpin-Tsai 

and Tandon-Weng Models.” Polymer Engineering and Science, 47 (2007c): 1796-1803. 

 

Kalaitzidou K., Fukushima H., Drzal L. T. “Mechanical properties and morphological 

characterization of exfoliated graphite-polypropylene nanocomposites.” Composites: 

Part A, 38 (2007d): 1675-1682. 

 

Kim S. & Drzal L. T. “High latent heat storage and high thermal conductive phase 

change materials using exfoliated graphite nanoplatelets.” Solar Energy Materials & 

Solar Cells, 93 (2009a): 136-142. 

 

Kim S., Do I., Drzal L. T. “Multifunctional xGnP/LLDPE Nanocomposites Prepared by 

Solution Compounding Using Various Screw Rotating Systems.” Macromolecular 

Materials and Engineering, 294 (2009b): 196-205. 



67 

 

Kim S., Do I., Drzal L.T. “Thermal Stability and Dynamic Mechanical Behavior of 

Exfoliated Graphite Nanoplatelets-LLDPE Nanocomposites.” Polymer Composites, 31(5) 

(2010a): 755-761. 

 

Kim S., Seo J., Drzal L. T. “Improvement of electric conductivity of LLDPE based 

nanocomposite by paraffin coating on exfoliated graphite nanoplatelets.” Composites: 

Part A, 41 (2010b): 581-587. 

 

Kim H., Abdala A. A., Macosko C. W. “Graphene/Polymer Nanocomposites.” 

Macromolecules, 43(16) (2010): 6515-6530. 

 

Miloaga D. G., Hosein H.A. A., Misra M., Drzal L. T. “Nucleating Effect of Expanded 

Graphite Nanoplatelets on Poly(Hydroxybutyrate).” Composite Materials & Structures 

Center, Michigan State University 2005. 

 

Oksman K. & Clemons C. “Mechanical Properties and Morphology of Impact Modified 

Polypropylene-Wood Flour Composites.” Journal of Applied Polymer Science, 67 

(1998): 1503-1513. 

 

Page D.J.Y.S. & Gopakumar T.G. “Properties and Crystallization of Maleated 

Polypropylene/Graphite Flake Nanocomposites.” Polymer Journal, 38 (9) (2006): 920-

929. 



68 

 

Park H.M., Kalaitzidou K., Fukushima H., Drzal L. T. “Exfoliated Graphite Nanoplatelet 

(xGnP) /Polypropylene Nanocomposites.” Composite Materials & Structures Center, 

Michigan State University 2007. 

 

Ratnayake U.N., Haworth B., Hourston D.J. “Preparation of Polypropylene-Clay 

Nanocomposites by the Co-Intercalation of Modified Polypropylene and Short-Chain 

Amide Molecules.” Journal of Applied Polymer Science, 112 (2009): 320-334. 

 

Sherman, Lilli Manolis. “Chasing Nanocomposites.” Plastics Technology, 50(11) (2004): 

56-61. 

 

Spoljaric S., Genovese A. & Shank R.A. “Polypropylene–microcrystalline cellulose 

composites with enhanced compatibility and properties.” Composites Part A: Applied 

Science and Manufacturing, 40 (6-7) (2009): 791-799. 

 

Stankovich S., Dikin D.A., Dommett G.H.B., Kohlhaas K.M, Zimney E.J., Stach E.A., 

Piner R.D., Nguyen S.T., Ruof R.S. “Graphene-based composite materials.” Nature, 442 

(2006): 282-286. 

 

Teng C.-C., Ma C.-C. M., Huang Y.W., Yuen S.M., Weng C.-C., Chen C.-H, Su S.F. 

“Effect of MWCNT content on rheological and dynamic mechanical properties of 

multiwalled carbon nanotube/polypropylene composites.” Composites: Part A, 39 (2008): 

1869-1875. 



69 

 

Thostenson E. T., Li C., Chou T.W. “Nanocomposites in context.” Composites Science 

and Technology, 65 (2005): 491-516. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



70 

 

Chapter 3 

 

IMPACT PROPERTIES AND RHEOLOGICAL BEHAVIOR OF  

XGNP-FILLED IMPP NANOCOMPOSITES 

 

3.1. Chapter Summary 

 

xGnP-filled IMPP composites were prepared at 2, 4, 6, and 8 wt. % xGnP with 

and without the addition of a coupling agent and manufactured using melt mixing 

followed by injection molding. The coupling agent used in this study was polypropylene-

graft-maleic anhydride (PP-g-MA). The nanoparticles used were xGnP with three 

different sizes: xGnP
5
 has an average thickness of 10 nm, and an average platelet 

diameter of 5 µm, whereas xGnP
15

 and xGnP
25

 have the same thickness but average 

diameters are 15 and 25 µm, respectively. Test results show that nanocomposites with 

smaller xGnP diameter exhibited better impact properties for both neat and 

compatibilized composites. However, unnotched and notched impact strengths as well as 

fracture initiation resistance were dramatically deteriorated with the introduction of 

xGnP. Explanation of this brittle behavior in a nanoplatelet filled IMPP is presented using 

melt flow index and transmission electron microscopy. 
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3.2. Introduction 

 

Polypropylene (PP) is among the most commonly used thermoplastics in the 

world with applications ranging from automobiles to construction to household 

appliances (Teng et. al 2008). This is because of its desirable balance between ease of 

processing, low cost, and mechanical properties (Park et. al 2007; Ratnayake et al. 2009). 

For this reason, PP is also referred to as a commodity thermoplastic. Typical commodity 

thermoplastics are inexpensive and well understood, but have lower performance 

mechanical properties when compared to engineering thermoplastics. Impact 

modification of commodity plastics with poor impact properties, such as PP, is typical 

practice for thermoplastic producing companies. The resulting thermoplastic is known as 

impact modified polypropylene (IMPP).   

 

 Although the specific impact modification processes are proprietary, we can 

deduce the nature of the modification of our IMPP by reviewing the literature. The most 

effective impact modifiers for PP are ethylene/propylene copolymers (EPM) or 

ethylene/propylene/diene terpolymer (EPDM). Essentially an elastomeric phase, typically 

consisting of small (0.1-1μm) spherical rubber particles, is melt blended with a neat PP 

homopolymer (Oksman and Clemons 1998; Lim et al. 2008). Upon loading, stress 

concentrations develop between the PP homopolymer and the elastomeric phase. These 

stress concentrations lead to a number of accepted conventional toughening mechanisms 

which have the potential to increase energy absorption by an order of magnitude. Three 

commonly considered mechanisms are illustrated in Figure 3.1. The first toughening 
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mechanism is the occurrence of plasticized nucleation sites surrounding the particles 

inducing inelastic void growth of the polymer matrix. The second toughening mechanism 

is a localized shear yielding or shear crazing of the polymer matrix. The third 

conventional toughening mechanism is the cavitation of the rubber particles in the 

elastomeric phase (Lesser 2009). All three of these mechanisms enhance energy 

dissipation density and therefore result in improved polymer impact properties. The 

introduction of an elastomeric phase improves the impact strength however 

simultaneously reduces the elastic modulus and strength of the neat polymer (Ahmad et 

al. 2007; Lim et al. 2008). 

 

 

Figure 3.1 Conventional toughening mechanisms: inelastic void growth, localized shear 

yielding or shear crazing, and cavitation of the rubber particles. (Reproduced from Lesser 

2009) 

 

The objective of this study was to investigate the influence of (1) particle 

diameter, (2) filler loading, and (3) coupling agent, on the impact properties and melt 

flow behavior of xGnP-filled IMPP composites. The ultimate goal is to preserve or 

improve the polymer's uniquely tailored energy absorption capabilities. All compounded 
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materials were manufactured using melt mixing followed by injection molding and were 

prepared at 2, 4, 6, and 8 wt. % xGnP. The weight ratio of filler-to-coupling agent was 

held constant at 2:1 throughout this study. Characterization of impact properties was 

completed via Izod impact tests. Morphological characterization was conducted by means 

of transmission electron microscopy (TEM). Finally, melt flow behavior characterization 

was completed using melt flow index (MFI) testing. 

 

3.3. Experimental Procedures 

 

3.3.1. Materials 

 

The IMPP was supplied as polymer pellets by Polystrand Inc., USA. The IMPP 

had a density of 0.900 g/cm
3
 and melt flow index of 35 g/10 min. The xGnP fillers were 

supplied by XG Sciences Inc., USA. Three xGnP fillers in powder form were used as the 

reinforcement with different particle diameters 5, 15, and 25 μm. Average platelet 

thickness ranges from about 5 to 15 nanometers. This translates into an average particle 

surface area ranging from about 60 to 150 m
2
/g. The bulk density of all three xGnP fillers 

is reported to be 0.18-0.25 g/cm
3
. Two different PP-g-MA were used as coupling agents, 

labeled for this study as SA9100 and WL9100, provided by Sigma-Aldrich Co., USA and 

West Lake Chemical Co., USA, respectively. Both coupling agents had a density of 0.934 

g/cm
3
, molecular weight of 9,100 by GPC, and acid number of 45-47. SA9100 and 

WL9100 coupling agents differed in that their maleic anhydride content was 8-10% and 

<0.7%, respectively. Materials used in this study are summarized in Table 3.1. 
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Table 3.1 Summary of materials used in current study. 

Material/Supplier Label 

Density 

(g/cm
3
) 

MA 

Content 

(%) 

Mw Acid # 

      

Impact Modified Polypropylene/ 

Polystrand Inc. IMPP 0.900 
--- --- --- 

      

Exfoliate Graphite Nanoplatelets 5μ/ 

XG Sciences Inc. xGnP
5 

2 
--- --- --- 

      

Exfoliate Graphite Nanoplatelets 15μ/ 

XG Sciences Inc. xGnP
15 

2 
--- --- --- 

      

Exfoliate Graphite Nanoplatelets 25μ/ 

XG Sciences Inc. xGnP
25

 2 
--- --- --- 

      

Polypropylene-g-Maleic Anhydride/ 

Sigma-Aldrich Co. SA9100 0.934 8-10 9100 47 

      

Polypropylene-g-Maleic Anhydride/ 

West Lake Chemical Co. WL9100 0.934 < 0.7 9100 45 

      

 

3.3.2. Sample Preparation 

 

The matrix polymer IMPP was mixed with the xGnP fillers. The compounding 

was carried out with a Brabender Prep-mixer® equipped with a mixing bowl. The basic 

processing parameters used in this study are summarized in Table 3.2. The temperature 

was set to 180 °C and mixing speed was set at 60 rpm. All composite formulations were 

prepared in 150 g batches and all constituents were added to the mixer simultaneously. 

Mixing was done for 20 minutes; this was an optimum processing time as determined 

from preliminary experiments. 
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Table 3.2 Basic operating parameters of the Brabender rheomixer. 

Batch Size 

(g) 

Temperature 

(°C) 
RPM 

Compounding Time 

(min) 

    

150 180 60 20 

    

 

 All composite compounds were then granulated using a lab scale grinder. The 

ground particles were then injection molded into ASTM test samples using a barrel 

temperature of 246°C and injection pressure of 2,500 psi. The designated labels and 

compositions of all neat and compatibilized compounded materials are shown in Table 

3.3 and Table 3.4, respectively. 

 

Table 3.3 Designated labels and compositions of xGnP filled neat composites. 

 
Content Per Batch (g) 

Study Label IMPP SA9100 WL9100 xGnP
5 

xGnP
15 

xGnP
25 

IMPP_xGnP
5
_2% 147 --- --- 3 --- --- 

IMPP_xGnP
5
_4% 144 --- --- 6 --- --- 

IMPP_xGnP
5
_6% 141 --- --- 9 --- --- 

IMPP_xGnP
5
_8% 138 --- --- 12 --- --- 

IMPP_xGnP
15

_2% 147 --- --- --- 3 --- 

IMPP_xGnP
15

_4% 144 --- --- --- 6 --- 

IMPP_xGnP
15

_6% 141 --- --- --- 9 --- 

IMPP_xGnP
15

_8% 138 --- --- --- 12 --- 

IMPP_xGnP
25

_2% 147 --- --- --- --- 3 

IMPP_xGnP
25

_4% 144 --- --- --- --- 6 

IMPP_xGnP
25

_6% 141 --- --- --- --- 9 

IMPP_xGnP
25

_8% 138 --- --- --- --- 12 
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Table 3.4 Designated labels and compositions of xGnP filled compatibilized composites. 

 
Content Per Batch (g) 

Study Label IMPP SA9100 WL9100 xGnP
5 

xGnP
15 

xGnP
25 

IMPP_SA9100_xGnP
5
_2% 145.5 1.5 --- 3 --- --- 

IMPP_SA9100_xGnP
5
_4% 141 3 --- 6 --- --- 

IMPP_SA9100_xGnP
5
_6% 136.5 4.5 --- 9 --- --- 

IMPP_SA9100_xGnP
5
_8% 132 6 --- 12 --- --- 

IMPP_SA9100_xGnP
15

_2% 145.5 1.5 --- --- 3 --- 

IMPP_SA9100_xGnP
15

_4% 141 3 --- --- 6 --- 

IMPP_SA9100_xGnP
15

_6% 136.5 4.5 --- --- 9 --- 

IMPP_SA9100_xGnP
15

_8% 132 6 --- --- 12 --- 

IMPP_SA9100_xGnP
25

_2% 145.5 1.5 --- --- --- 3 

IMPP_SA9100_xGnP
25

_4% 141 3 --- --- --- 6 

IMPP_SA9100_xGnP
25

_6% 136.5 4.5 --- --- --- 9 

IMPP_SA9100_xGnP
25

_8% 132 6 --- --- --- 12 

       

IMPP_WL9100_xGnP
5
_2% 145.5 --- 1.5 3 --- --- 

IMPP_WL9100_xGnP
5
_4% 141 --- 3 6 --- --- 

IMPP_WL9100_xGnP
5
_6% 136.5 --- 4.5 9 --- --- 

IMPP_WL9100_xGnP
5
_8% 132 --- 6 12 --- --- 

IMPP_WL9100_xGnP
15

_2% 145.5 --- 1.5 --- 3 --- 

IMPP_WL9100_xGnP
15

_4% 141 --- 3 --- 6 --- 

IMPP_WL9100_xGnP
15

_6% 136.5 --- 4.5 --- 9 --- 

IMPP_WL9100_xGnP
15

_8% 132 --- 6 --- 12 --- 

IMPP_WL9100_xGnP
25

_2% 145.5 --- 1.5 --- --- 3 

IMPP_WL9100_xGnP
25

_4% 141 --- 3 --- --- 6 

IMPP_WL9100_xGnP
25

_6% 136.5 --- 4.5 --- --- 9 

IMPP_WL9100_xGnP
25

_8% 132 --- 6 --- --- 12 
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3.3.3. Mechanical Characterization 

 

 Impact tests were conducted according to ASTM D 256-06, “Standard Test 

Methods for Determining the Izod Pendulum Impact Resistance of Plastics”. The notches 

were added using a NotchVIS machine manufactured by Ceast. The samples were tested 

on a Resil 50 B impact test machine, manufactured by Ceast. The sample was clamped in 

the bottom of the test fixture and the hammer was then released from a controlled height 

at 150°. A 7.5 J and 2.75 J hammer was used to impact unnotched and notched samples, 

respectively. Ten samples were tested for each composition and the results are presented 

as an average for tested samples. All breaks must be completed breaks to count as a data 

point. Both unnotched and notched impact strength were calculated as impact energy less 

windage (drag) all divided by the width of specimen less the depth of the notch. Fracture 

initiation resistance was calculated via Equation 3.1 as shown: 

 

            Equation 3.1 

 

Where unnotched impact strength (IUN) represents the energy required to initiate and 

propagate a crack and notched impact strength (IN) represents the energy required to 

propagate a crack. Hence, fracture initiation resistance (FIR) represents a characteristic 

property of the material which defines the energy required for crack initiation and is 

equal to the difference between unnotched and notched impact strength. 
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3.3.4. Morphological Characterization 

 

TEM images were obtained using a Phillips CM10 transmission electron 

microscope. Images were taken at magnifications of 130 kX, 245 kX and 450 kX. 

Sectioning of thermoplastics is a difficult task because of their inherently soft 

characteristics. In the absence of low temperature ultra-cryotome technology, a method 

for obtaining ultrathin sections was necessary. Thin slivers of our composites were 

shaved and embedded in an epoxy matrix to aid in sectioning the soft plastic. The 

embedded sample was then sectioned using a Leica EM UC6 ultra-microtome equipped 

with a diamond knife. Specimens were sectioned with thickness on the order of 50-75 

nm. 

 

3.3.5. Melt Flow Characterization 

 

Melt flow index (MFI) testing was conducted according to ASTM D 1238-06, 

“Standard Test Methods for Melt Flow Rates of Thermoplastics by Extrusion 

Plastometer”. The samples were tested using a laboratory melt flow tester (indexer), 

manufactured by Dynisco. Per Section 8.2 of the standard the polypropylene-based 

composites were tested with procedural conditions, melt temperature and weight, equal to 

230°C and 2.16 kg, respectively. The computerized programming capability of the melt 

flow indexer was implemented to assure accurate melt time and cut time equal to 30 

seconds and 15 seconds, respectively. The MFI of an individual sample is calculated as 

the weight of material extruded divided by the cut time and is traditionally presented in 
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units of grams per 10 minutes at a specified temperature and weight applied (g/10min @ 

230°C/2.16 kg). Three sample runs were completed for each composition. MFI of all 

compounded materials was reported as an average for tested samples. 

 

3.3.6. Statistical Analysis 

 

The unnotched, notched and FIR impact strengths were compared using a one-

way analysis of variance followed by Tukey-Kramer Honestly Significant Differences 

(HSD) test at a confidence value equal to 0.05 with JMP statistical analysis program 

(JMP 9). 

 

3.4. Results and Discussion 

 

3.4.1. Impact Properties 

 

The impact properties of all compounded composites was characterized via the 

impact testing methods described in Section 3.3.3.  Neat IMPP was determined to have 

unnotched impact strength, notched impact strength and fracture initiation resistance 

equal to 445, 85 and 360 J/m, respectively. 

 

 The impact testing of all compounded materials was performed via unnotched and 

notched Izod impact testing at room temperature. There are some inherent problems often 
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considered in characterizing impact capacity of structural materials using this test 

method. The first problem is the fact that the specimen is a relatively short thick beam 

when compared to typical structural engineering components. Secondly, the Izod impact 

test is a rapid, destructive test which does not directly replicate low velocity impact 

events that may occur on many structures while in service. However, the Izod impact test 

is an appropriate method to rank the impact resistance of a population of composite 

materials (Cantwell and Morton 1991). 

 

 Normalized unnotched impact strength results for neat and xGnP
5
-filled 

composites with coupling agent as a function of filler loading level up to 8% are 

presented in Figure 3.2. Similar plots are provided for neat and xGnP
15

 and xGnP
25

-filled 

composites with coupling agent in Figure 3.3 and Figure 3.4, respectively. Unnotched 

impact strength was found to increase with decreasing xGnP particle diameter for all 

filler loading values of both neat and xGnP-filled composites containing coupling agent. 

However, unnotched impact strength decreased dramatically with increased filler loading 

for all neat and xGnP-filled composites containing coupling agent. In nearly all cases, the 

addition of coupling agent caused lower unnotched impact strength and therefore a more 

brittle behaving composite. It is suspected that the reason for this is analogous to the 

explanation of the same phenomena seen in tensile testing (elongation at break) 

discussions. That is, when there is improved adhesion between the filler and the matrix 

(compatibilized), significant decrease in elongation at break (brittle behavior) can be 

expected even at small filler loading levels. In the case of poor adhesion (neat 

composite), the decrease in elongation at break (brittle behavior) is expected to be more 
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gradual (Oksman and Clemons 1998). The optimum formulation to obtain the least 

degradation of unnotched impact strength for filler loading levels 2, 4, 6 and 8 wt. % is 

IMPP_ xGnP
5
 composites. The resulting degradation when compared to neat IMPP is 54, 

65, 70 and 77%, respectively. 

 

 

Figure 3.2 Normalized unnotched impact strength experimental results for xGnP
5
 filled 

composites. 
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Figure 3.3 Normalized unnotched impact strength experimental results for xGnP
15

 filled 

composites. 

 

 

 

Figure 3.4 Normalized unnotched impact strength experimental results for xGnP
25

 filled 

composites. 
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Normalized notched impact strength results for neat and xGnP
5
-filled composites 

with coupling agent as a function of filler loading level up to 8% are presented in Figure 

3.5. Similar plots are provided for neat and xGnP
15

 and xGnP
25

-filled composites with 

coupling agent in Figure 3.6 and Figure 3.7, respectively. Notched impact strength was 

found to increase with decreasing xGnP particle diameter for all filler loading values of 

both neat and xGnP-filled composites containing coupling agent. Notched impact 

strength decreased with increased filler loading for all neat and xGnP-filled composites 

containing coupling agent. The addition of coupling agent caused lower notched impact 

strength for all xGnP
15

 and xGnP
25

-filled composites. Interestingly, the addition of 

coupling agent resulted in higher notched impact strength for xGnP
5
-filled composites at 

all filler loading levels below 8 wt. %. The optimum formulation to obtain the least 

degradation of notched impact strength for filler loading levels 2, 4, 6 and 8 wt. % is 

IMPP_ WL9100_xGnP
5
 composites. The resulting degradation when compared to neat 

IMPP is 44, 51, 57 and 77%, respectively. 
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Figure 3.5 Normalized notched impact strength experimental results for xGnP
5
 filled 

composites. 

 

 

 

Figure 3.6 Normalized notched impact strength experimental results for xGnP
15

 filled 

composites. 
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Figure 3.7 Normalized notched impact strength experimental results for xGnP
25

 filled 

composites. 

 

Similar degradation of notched impact strength has been published in recent 

years. Ahmad et al. investigated nano clay particles incorporated into thermoplastic 

natural rubbers. Nearly 50% degradation of notched impact strength was observed with 

the addition of 2 wt. % filler in direct melt compounded composites (Ahmad et. al 2007). 

Other researchers found degradation of notched impact properties to occur above 5 wt. % 

filler loading for montmorillonite-filled polypropylene homopolymer reaching nearly 

50% degradation at 7 wt. % filler loading (Zhang et al. 2000). Kalaitzidou et al. have 

shown xGnP
15

 and xGnP
1
-filled polypropylene to exhibit significant enhancement (100% 

for xGnP
1
) of notched impact strength at very low filler loading levels (~3 Vol. %). 

However, after this point for both fillers further increase of filler loading results in 

decreasing notched impact strength (Kalaitzidou et al. 2007d). 
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 It has been shown that much lower xGnP content is required to greatly improve 

impact properties of polypropylene homopolymer. Yet, literature has not shown extreme 

deterioration of impact strength with the addition of any size particle diameter xGnP. 

With ~2 wt. % xGnP
15

 impact strength was shown to increase slightly from the neat 

polypropylene homopolymer and with the same filler loading for xGnP
1
 impact strength 

was shown to increase significantly (Kalaitzidou et al. 2007d). Therefore some 

mechanism must be proposed to justify the massive degradation (71%) seen in this study 

for our IMPP_xGnP
15

_2% composite.  

 

 The TEM image shown in Figure 3.8 is provided to illustrate evidence of the 

elastomeric phase consisting of small (~100 nm) spherical rubber particles, indicated by 

the red arrow, as predicted by the literature review. Upon impact loading, whether 

unnotched or notched, the presence of these rubber particles is expected to induce any or 

all of the three conventional toughening mechanisms illustrated in Figure 3.1, resulting in 

much higher impact properties when compared to polypropylene homopolymer. 

 

 

Figure 3.8 Transmission electron micrograph with arrow indicating evidence of 

elastomeric impact modification phase. 
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 It is proposed that the graphitic nanoplatelets are acting as very stiff inclusions 

that redirect stress concentrations away from the elastomeric impact modification 

(toughening) phase. This will not allow the conventional toughening mechanisms to 

occur. It is expected that stress concentrations instead occur around the xGnP because of 

the much higher mismatch of modulus between graphite and neat PP. The proposed 

failure mechanism is detailed in the following steps: (1) stress concentrations occur 

surrounding the graphite platelets, (2) rapid delamination of the matrix from the filler 

ensues because of the lack of affinity (poor adhesion) between PP and xGnP and (3) 

catastrophic crack propagation can occur with little energy applied. A conceptual 

illustration of this proposed theory and subsequent failure mechanism is shown in Figure 

3.9. 

 

 

Figure 3.9 Conceptual illustration of proposed failure mechanism in xGnP filled IMPP. 

 

The addition of xGnP has proven catastrophic to the notched and even more so to 

the unnotched impact strength of the neat IMPP, consequently deteriorating FIR of all 

xGnP-filled IMPP composites. For these reasons xGnP has been proven not feasible at 
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filler loading levels 2, 4, 6 and 8 wt. % for use as a reinforcement phase in IMPP 

composites. Further investigations will be necessary in regards to very low loading levels. 

In the following section correlation between melt flow index and impact properties will 

be examined to gain an educated starting point for future xGnP-filled IMPP composites. 

Table 3.5 shows a summary of impact properties and statistical significance of all 

compounded materials. 
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Table 3.5 Summary of impact mechanical properties and statistical significance (Tukey-

Kramer HSD comparison at α = 0.05) of all compounded materials. 

 Impact Properties 

Study Label 

Izod Unnotched 

(J/m) 

Izod Notched 

(J/m) 

FIR 

(J/m) 

Neat IMPP A 445.4 (121.8) A 48.7 (10.9) A 396.7 (123.5) 

IMPP_xGnP5_2% B 202.7 (23.4) DEF 18.5 (1.5) B 184.2 (23.2) 

IMPP_xGnP5_4% BCD 155.4 (40.3) EFGH 16.1 (1.8) BCDE 139.2 (39.9) 

IMPP_xGnP5_6% CDE 132.5 (15.1) GHIJKLM 13.7 (1.8) CDEF 118.7 (15.5) 

IMPP_xGnP5_8% EFGHIJK 103.4 (23.5) FGHI 15.6 (1.2) FGHIJKLM 87.8 (23.3) 

IMPP_SA9100_xGnP5_2% BC 169.0 (33.1) DE 20.0 (1.4) BCD 149.1 (33.6) 

IMPP_SA9100_xGnP5_4% CDE 130.7 (25.9) EFG 17.1 (1.0)  CDEFG 113.6 (26.0) 

IMPP_SA9100_xGnP5_6% EFGHIJKL 97.1 (16.9) FGH 16.1 (1.9) FGHIJKLM 81.0 (17.0) 

IMPP_SA9100_xGnP5_8% EFGHIJKL 86.6 (9.3) JKLMNOPQ 11.6 (0.8) FGHIJKLM 74.9 (9.5) 

IMPP_WL9100_xGnP5_2% B 183.2 (26.7) B 27.5 (2.3) BC 155.7 (26.5) 

IMPP_WL9100_xGnP5_4% CDE 130.9 (43.4) BC 24.0 (1.3) DEFGHI 106.8 (43.3) 

IMPP_WL9100_xGnP5_6% DEFG 119.6 (43.2) CD 21.0 (2.2) EFGHIJK 98.6 (42.9) 

IMPP_WL9100_xGnP5_8% FGHIJKL 81.6 (10.5) KLMNOPQR 11.2 (1.5) GHIJKLM 70.4 (10.5) 

IMPP_xGnP15_2% DEFGHIJ 108.1 (11.6) GHIJKL 13.9 (1.4) EFGHIJKL 94.2 (11.4) 

IMPP_xGnP15_4% EFGHIJKL 91.0 (5.5) HIJKLMNO 13.0 (0.8) FGHIJKLM 78.0 (5.5) 

IMPP_xGnP15_6% EFGHIJKL 91.3 (13.1) GHIJKLMN 13.5 (1.7) FGHIJKLM 77.8 (12.8) 

IMPP_xGnP15_8% EFGHIJKL 88.9 (9.54) GHIJKLM 13.9 (1.2) FGHIJKLM 75.0 (9.8) 

IMPP_SA9100_xGnP15_2% DEFGH 114.3 (13.6) HIJKLMNOP 12.6 (1.0) DEFGHIJ 101.7 (13.6) 

IMPP_SA9100_xGnP15_4% FGHIJKL 81.7 (4.8) IJKLMNOPQ 12.2 (0.9) GHIJKLM 69.6 (4.5) 

IMPP_SA9100_xGnP15_6% HIJKL 70.8 (7.9) LMNOPQRS 10.4 (0.5) IJKLM 60.4 (8.0) 

IMPP_SA9100_xGnP15_8% IJKL 64.8 (7.8 OPQRS 9.3 (1.3) JKLM 55.5 (8.0) 

IMPP_WL9100_xGnP15_2% DEFGHI 110.0 (17.6) IJKLMNOPQ 12.2 (2.0) EFGHIJK 97.8 (17.8) 

IMPP_WL9100_xGnP15_4% EFGHIJKL 94.0 (9.0) JKLMNOPQR 11.3 (0.8) FGHIJKLM 82.6 (9.7) 

IMPP_WL9100_xGnP15_6% HIJKL 68.9 (4.7) NOPQRS 9.7 (1.2) IJKLM 59.1 (4.3) 

IMPP_WL9100_xGnP15_8% IJKL 62.5 (6.0) RS 7.5 (1.2) JKLM 55.0 (6.9) 

IMPP_xGnP25_2% DEFGHIJ 108.8 (15.0) FGHIJ 15.2 (1.0) EFGHIJKL 93.6 (15.3) 

IMPP_xGnP25_4% EFGHIJKL 91.9 (18.5) HIJKLMNOPQ 12.4 (1.4) FGHIJKLM 79.5 (18.4) 

IMPP_xGnP25_6% FGHIJKL 81.1 (11.4) OPQRS 9.5 (0.6) FGHIJKLM 71.6 (11.1) 

IMPP_xGnP25_8% EFGHIJKL 85.7 (6.8) MNOPQRS 10.0 (0.6) FGHIJKLM 75.7 (6.6) 

IMPP_SA9100_xGnP25_2% CDEF 123.9 (17.6) FGHIJK 14.9 (1.1) CDEFGH 108.9 (18.2) 

IMPP_SA9100_xGnP25_4% GHIJKL 74.7 (9.7) LMNOPQRS 10.8 (0.9) HIJKLM 63.8 (9.8) 

IMPP_SA9100_xGnP25_6% HIJKL 71.3 (10.1) OPQRS 9.7 (0.7) HIJKLM 61.7 (9.9) 

IMPP_SA9100_xGnP25_8% JKL 61.9 (17.8) QRS 8.6 (1.6) KLM 53.3 (17.2) 

IMPP_WL9100_xGnP25_2% EFGHIJKL 89.5 (12.4) HIJKLMNOPQ 12.4 (1.0) FGHIJKLM 77.1 (12.8) 

IMPP_WL9100_xGnP25_4% IJKL 65.3 (10.6) LMNOPQRS 10.6 (1.1) JKLM 54.7 (10.7) 

IMPP_WL9100_xGnP25_6% KL 57.3 (6.1) PQRS 9.1 (1.0) LM 48.3 (6.3) 

IMPP_WL9100_xGnP25_8% L 50.8 (8.2) S 7.2 (0.7) M 43.5 (8.0) 

Parenthesis indicates standard deviation.  

Presence of the same letter indicates no statistical difference. 
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3.4.2. Melt Flow Behavior 

 

The melt flow behavior of all compounded composites was characterized via the 

melt flow characterization methods described in Section 3.3.5. Neat IMPP was 

determined to have melt flow index (MFI) equal to 35.4 g/10min @ 230 °C/ 2.16kg. 

 

 MFI is an extremely useful technique for the plastics processing industry to 

determine flow behavior of thermoplastics in the melt form, due to its ease of 

measurement and repeatability (Teng et al. 2008). MFI results for neat and xGnP
5
-filled 

composites with coupling agent as a function of filler loading level up to 8% are 

presented in Figure 3.10. Similar plots are provided for neat and xGnP
15

 and xGnP
25

-

filled composites with coupling agent in Figure 3.11 and Figure 3.12, respectively. In 

general, MFI was found to increase with decreasing xGnP particle diameter for both neat 

and xGnP-filled composites containing coupling agent. However, MFI decreased with 

increased filler loading for all neat and xGnP-filled composites containing coupling 

agent. In nearly all cases, the addition of coupling agent caused increased MFI. This 

behavior is typical of reported results throughout the relevant filled polymer literature 

discussed below. 
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Figure 3.10 Melt flow index experimental results for xGnP
5
 filled composites. 

 

 

 

Figure 3.11 Melt flow index experimental results for xGnP
15

 filled composites. 
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Figure 3.12 Melt flow index experimental results for xGnP
25

 filled composites. 

 

Teng et al. studied multi-wall carbon nanotubes-filled polypropylene composites. 

They reported an increase of MFI at low filler loading levels and decrease of MFI for 

continued addition of MWCNTs. In fact, at least a 94% decrease in MFI occurred for all 

grades of polypropylene investigated when filler loading was 10 parts per hundred parts 

(phr) of PP resin. Sources were presented justifying this behavior in similar studies for 

porous carbon-based fillers (Teng et al. 2008). Bera and Kale investigated polypropylene 

filled with rice husk, both neat and compatibilized. Decrease in MFI for increased filler 

loading was reported (Bera and Kale 2008). According to Ratnayake et al., the addition 

of maleic anhydride to polypropylene results in significant increase in MFI compared to 

the neat polymer. It is suggested that the maleic anhydride promotes flow of the polymer 

melt by inducing wall slip at the flow boundary of the polymer chains under constant 

applied shear stress. With the addition of 2 wt. % nano clay to the polypropylene/maleic 

anhydride blends, MFI was decreased 37% (Ratnayake et al. 2009). 
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 It is well understood that MFI is dependent upon molecular properties such as 

molecular weight and structure of a polymer system. High MFI polymers have low 

molecular weight and vice versa (Balasuriya et al. 2001; Lu et al. 2006; Teng et al. 2008). 

Work performed by Lu et al. showed high molecular weight HDPE to result in much 

improved impact energy absorption capabilities when compared to lower molecular 

weight HDPE. Lu et al. reported that previous research has found impact strength to be 

proportional to the molecular weight and therefore attempted to correlate MFI with 

impact strength experimental results (Lu et al. 2006). The same approach was taken in 

this study and lead to opposite, but much more intriguing results. In Figure 3.13 

experimental melt flow index results for the well dispersed IMPP_WL9100_xGnP
5
 

composites were plotted versus filler loading level. A logarithmic trend line resulted in 

the best correlation coefficient (R
2
 = 0.972) for the data.  

 

 

Figure 3.13 Correlation of melt flow index with filler loading for IMPP_WL9100_xGnP
5
 

composites. 
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 Figure 3.14 has been provided to illustrate the correlation of experimentally 

determined impact properties with melt flow index for IMPP_WL9100_xGnP
5
 

composites. Recall in the study performed by Lu et al., impact properties increased with 

molecular weight of polyethylene. Dissimilarly, all impact properties from this study 

were shown to increase with MFI and therefore decrease with increased molecular 

weight. Linear trend lines resulted in the best correlation coefficients equal to 0.999, 

0.998 and 0.838 for the unnotched, FIR, and notched impact strength data, respectively. 

This proved the correlation of impact properties with MFI was extremely linear. 

 

 

Figure 3.14 Correlation of impact properties with melt flow index for 

IMPP_WL9100_xGnP
5
 composites. 
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The above discussed trends and the respective equations were then implemented 

to back calculate an educated starting point for filler loading levels in future xGnP-filled 

IMPP nanocomposite studies. Using the correlations presented above calculations 

indicate that it was necessary for filler content to be below 0.044% and 0.315% to 

improve unnotched and notched impact strengths, respectively. Michigan State 

researchers found large increases of notched impact strength in xGnP-filled 

polypropylene homopolymer composites at 3 vol. % (~1.1 wt. %) filler loading 

(Kalaitzidou et al. 2007d). We know that the magnitude of inherent stress concentrations 

decreases as the thickness at the tip of the graphite agglomerates decreases (Thostenson 

et al. 2005). It can be imagined that lower volumes of well dispersed filler could result in 

inherent stress concentrations low enough in magnitude such that the conventional 

toughening mechanisms presented in Figure 3.1 could still be induced. Simultaneously, 

energy absorbing mechanisms such as crack bridging and crack branching (redirection of 

crack as a result of the presence of a filler) may further enhance the impact properties of 

IMPP (Lesser 2009; Jiang and Drzal 2010). Table 3.6 shows a summary of melt flow 

behavior of all compounded composites. 
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Table 3.6 Summary of melt flow behavior for all compounded materials. 

 Melt Flow Behavior 

Study Label 

MFI 

(g/10min @ 230°C/2.16kg ) 

Neat IMPP  35.4 (0.1)  

IMPP_xGnP5_2%  33.2 (0.0)  

IMPP_xGnP5_4%  30.2 (0.0)  

IMPP_xGnP5_6%  27.9 (0.0)  

IMPP_xGnP5_8%  26.1 (0.0)  

IMPP_SA9100_xGnP5_2%  37.7 (0.1)  

IMPP_SA9100_xGnP5_4%  42.6 (0.1)  

IMPP_SA9100_xGnP5_6%  34.7 (0.0)  

IMPP_SA9100_xGnP5_8%  34.2 (0.1)  

IMPP_WL9100_xGnP5_2%  42.8 (0.1)  

IMPP_WL9100_xGnP5_4%  38.2 (0.0)  

IMPP_WL9100_xGnP5_6%  37.2 (0.1)  

IMPP_WL9100_xGnP5_8%  34.4 (0.1)  

IMPP_xGnP15_2%  33.9 (0.1)  

IMPP_xGnP15_4%  30.1 (0.0)  

IMPP_xGnP15_6%  27.0 (0.0)  

IMPP_xGnP15_8%  19.5 (0.0)  

IMPP_SA9100_xGnP15_2%  37.3 (0.0)  

IMPP_SA9100_xGnP15_4%  31.6 (0.0)  

IMPP_SA9100_xGnP15_6%  28.8 (0.0)  

IMPP_SA9100_xGnP15_8%  26.6 (0.2)  

IMPP_WL9100_xGnP15_2%  36.6 (0.0)  

IMPP_WL9100_xGnP15_4%  31.2 (0.0)  

IMPP_WL9100_xGnP15_6%  28.9 (0.1)  

IMPP_WL9100_xGnP15_8%  24.4 (0.0)  

IMPP_xGnP25_2%  36.6 (0.0)  

IMPP_xGnP25_4%  28.7 (0.0)  

IMPP_xGnP25_6%  24.5 (0.0)  

IMPP_xGnP25_8%  19.5 (0.0)  

IMPP_SA9100_xGnP25_2%  39.2 (0.1)  

IMPP_SA9100_xGnP25_4%  32.5 (0.1)  

IMPP_SA9100_xGnP25_6%  28.3 (0.0)  

IMPP_SA9100_xGnP25_8%  23.3 (0.0)  

IMPP_WL9100_xGnP25_2%  36.2 (0.1)  

IMPP_WL9100_xGnP25_4%  30.4 (0.0)  

IMPP_WL9100_xGnP25_6%  25.3 (0.0)  

IMPP_WL9100_xGnP25_8%  20.6 (0.0)  

Parenthesis indicates standard deviation. 
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3.5. Conclusions 

 

Both neat and xGnP-filled IMPP composites containing coupling agents were 

prepared via melt compounding followed by injection molding. Mechanical, 

morphological and melt flow characterization yielded conclusions in understanding the 

influence of (1) particle diameter, (2) filler loading, and (3) coupling agent, on the impact 

properties of xGnP-filled IMPP composites. 

 

 The smallest diameter filler investigated in this study (5μm) performed the best in 

terms of impact properties of xGnP-filled IMPP composites. Impact properties were 

greatly deteriorated with as little as 2 wt. % xGnP with and without coupling agent. The 

addition of coupling agent amplifies the degradation of impact properties because of the 

improved adhesion between the filler and the matrix. A correlation study to determine a 

relationship between impact properties and MFI was explored. Impact properties were 

shown to increase with MFI linearly. Experimental MFI results for the well dispersed 

IMPP_WL9100_xGnP
5
 composites were plotted versus filler loading level, resulting in a 

logarithmic trend with a high correlation coefficient. Using these relationships it was 

determined necessary for filler content to be below 0.044 and 0.315 wt. % to improve 

unnotched and notched impact strengths, respectively. Future work will need to be 

completed to determine the filler loading domain for which these correlated relationships 

remain valid. 

 



98 

 

3.6. References 

 

Ahmad S.H., Rasid R., Surip S.N., Anuar H., Czigany T., Abdul Razak S.B. “Mechanical 

and Fracture Toughness Behavior of TPNR Nanocomposites.” Journal of Composite 

Materials, 41(17) (2007): 2147-2159. 

 

Balasuriya P.W., Ye L., Mai Y.-W. “Mechanical properties of wood flake-polyethylene 

composites. Part I: effects of processing methods and matrix melt flow behaviour.” 

Composites: Part A, 32 (2001): 619-629. 

 

Bera J. and Kale D. D. “Properties of Polypropylene Filled with Chemically Treated Rice 

Husk.” Journal of Applied Polymer Science, 82 (2001): 2506-2513. 

 

Cantwell W.J. and Morton J. “The impact resistance of composite material - a review.” 

Composites, 22(5) (1991): 347-362. 

 

Jiang X. & Drzal L. T. “Multifunctional High Density Polyethylene Nanocomposites 

Produced by Incorporation of Exfoliated Graphite nanoplatelets 1: Morphology and 

Mechanical Properties.” Polymer Composites, (2010): 1091-1098. 

 

Kalaitzidou K., Fukushima H., Drzal L. T. “Mechanical properties and morphological 

characterization of exfoliated graphite-polypropylene nanocomposites.” Composites: 

Part A, 38 (2007d): 1675-1682. 



99 

 

Lesser A.J. “Fundamentals in Toughening.” Proceedings of NSF Summer Institute on 

Nanomechanics, Nanomaterials, and Micro/Nanomanufacturing, University of 

Massachusetts Lowell (2009). 

 

Lim J.W., Hassan A., Rahmat A.R., Wahit M.U. “Phase Morphology and Mechanical 

Properties of Rubber-Toughened Polypropylene Nanocomposites: Effect of Elastomer 

Polarity.” Polymer-Plastics Technology and Engineering, 47 (2008): 411-419. 

 

Lu J.Z., Wu Q., Negulescu I. I., Chen Y. “The Influences of Fiber Feature and Polymer 

Melt Index on Mechanical Properties of Sugarcane Fiber/Polymer Composites.” Journal 

of Applied Polymer Science, 102 (2006): 5607-5619. 

 

Oksman K. and Clemons C. “Mechanical Properties and Morphology of Impact Modified 

Polypropylene-Wood Flour Composites.” Journal of Applied Polymer Science, 67 

(1998): 1503-1513. 

 

Park H.M., Kalaitzidou K., Fukushima H., Drzal L. T. “Exfoliated Graphite Nanoplatelet 

(xGnP) /Polypropylene Nanocomposites.” Composite Materials & Structures Center, 

Michigan State University (2007). 

 

Ratnayake U.N., Haworth B., Hourston D.J. “Preparation of Polypropylene-Clay 

Nanocomposites by the Co-Intercalation of Modified Polypropylene and Short-Chain 

Amide Molecules.” Journal of Applied Polymer Science, 112 (2009): 320-334. 



100 

 

Teng C.-C., Ma C.-C. M., Huang Y.W., Yuen S.M., Weng C.-C., Chen C.-H, Su S.F. 

“Effect of MWCNT content on rheological and dynamic mechanical properties of 

multiwalled carbon nanotube/polypropylene composites.” Composites: Part A, 39 (2008): 

1869-1875. 

 

Thostenson E. T., Li C., Chou T.W. “Nanocomposites in context.” Composites Science 

and Technology, 65 (2005): 491-516. 

 

Zhang Q., Fu Q., Jiang L., Lei Y. “Preparation and properties of polypropylene 

montmorillonite layered nanocomposites.” Polymer International, 49 (2000): 1561-1564. 

 

 

 

 

 

 

 

 

 

 

 

 

 



101 

 

Chapter 4 

 

THERMAL PROPERTIES OF XGNP-FILLED IMPP 

NANOCOMPOSITES 

 

4.1. Chapter Summary 

 

 The objective of this research is to investigate the effect of particle diameter, filler 

loading and coupling agent on the thermal behavior of impact modified polypropylene 

(IMPP) nanocomposites. xGnP-filled IMPP composites were manufactured via melt 

mixing with and without the addition of polypropylene-graft-maleic anhydride (PP-g-

MA). The thermal behavior of the nanocomposites was investigated using differential 

scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The DSC results 

indicated that the addition of xGnP slightly increased the melting temperature (Tm) and 

increased the crystallization temperature (Tc) of IMPP by 2 to 3 °C which is attributed to 

the heterogeneous nucleation of the xGnP. The TGA results indicated that the 

degradation temperature of IMPP shifts to a lower temperature with the addition of PP-g-

MA, indicative of the poor thermal stability of PP-g-MA. However, the thermal stability 

of the composites increases with xGnP loading because of the high thermal stability of 

the xGnP and the hypothesized “tortuosity effect” that the graphite nanoplatelets was 

inhibiting diffusion of oxygen and volatile products throughout the composites during 

thermal decomposition. 
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4.2. Introduction 

 

 Over the past several decades, there has been great interest by both academia and 

industry in the development of new composite materials with high performance nano 

fillers. The goal of any new composite material development effort is to improve working 

properties and extend their range of applications (Giannelis 1996; Hussain et al. 2006; 

Paul and Robeson 2008). Incorporating nanoscale reinforcing fillers into polymer 

matrices is among the most promising approaches to achieve those goals. The resulting 

composites are known as polymer nanocomposites (PNCs). PNCs are one component of 

the broad field of nanotechnology research and show significantly improved mechanical 

and thermal properties at far lower reinforcement volume fractions when compared to 

conventional micro and macro composites (Giannelis 1996; Hussain et al. 2006; Pavlidou 

and Papaspyrides 2008). 

 

 The most frequently studied layered structural fillers for polymer resins are 

silicate or smectite nanoclays in platelet form because of their availability, low cost and 

reasonably well understood intercalation chemistry. Recently, the most commonly 

studied fibrous material is carbon nanotubes (CNTs) (Kim et al. 2010; Sherman 2004; 

Kalaitzidou 2006). Nanoclay reinforced PNCs do not possess electrical conductivity, 

photonic and dielectric properties. Therefore, there has been greatly increased interest in 

using other materials such as CNTs and graphite for multifunctional PNCs because of 

their superior thermal and electrical properties as well as their excellent mechanical 

properties (Kim et al. 2010; Kalaitzidou 2006; Chen et al. 2001; Fukushima 2003). While 
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CNTs have outstanding thermal, electrical and mechanical properties, they are very 

expensive (250-500 $/lb), which is one of the most serious drawbacks in developing 

CNT-filled PNCs. The high cost can be linked to low yield and low production and 

purification rates commonly associated with all of the current CNT preparation processes 

(Sherman 2007; Kim and Drzal 2009a; Kumar et al. 2010). Similar to the structure of 

layered silicates, naturally abundant graphite is composed of one-atom-thick sheets of 

carbon. The carbon atoms are covalently bonded in a hexagonal arrangement within the 

individual sheet and these layers are bonded to each other by much weaker van der Waals 

forces (Kim et al. 2009b; Pan et al. 2000). As shown by Drzal et al., xGnP, which 

combines the layered structure and lower cost of clays with the superior thermal, 

mechanical and electrical properties of CNTs, can be an effective alternative to both 

CNTs and nanoclays by providing competitive functionality (Kim et al. 2010; Kim and 

Drzal 2009a; Kim et al. 2009b). Application of graphite in PNCs is a relatively new 

research field. Although there is growing publication activity in recent years, the number 

of reports (journal papers, patents and theses) is still modest when compared to those 

regarding nanoclays and CNTs. 

 

 A wide range of polymer resins, both thermoplastic and thermoset, have been 

investigated as matrices for PNCs (Giannelis 1996; Paul and Robeson 2008; Pavlidou and 

Papaspyrides 2008; Kalaitzidou 2006). Thermoplastic nanocomposites have received 

considerable interest in recent years due to their promise of improved performance in 

engineering and packaging applications (Gopakumar and Page 2004; Spoljaric et al. 

2009). Polypropylene (PP) is among the most widely used thermoplastics because of its 
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low density, low production costs, design flexibility and recyclability (Spoljaric et al. 

2009). PP is non polar and does not interact with chemically inert graphite. Therefore, 

producing graphite-reinforced PP nanocomposites is very difficult because of the lack of 

affinity between the two constituents. This issue can be overcome by adding a coupling 

agent such as propylene-graft-maleic anhydride (PP-g-MA) (Gopakumar and Page 2004; 

Spoljaric et al. 2009). According to a study by Page et al., XRD and SEM results indicate 

that the functionalization of PP by addition of PP-g-MA leads to an excellent dispersion 

of graphite, and improvement in flexural properties and impact strength of the material 

(Page and Gopakumar 2006). TEM images from this research previously provided in 

Chapter 2 directly illustrated improved dispersion using PP-g-MA. However, there is a 

lack of information related to the effect of coupling agents on thermal properties of 

graphite/PP composites in the literature. 

 

 The objective of this study was to investigate the influence of (1) particle 

diameter, (2) filler loading, and (3) coupling agent, on the thermal properties of xGnP-

filled IMPP composites. All compounded materials were manufactured via melt mixing 

and were prepared over a filler loading levels ranging from 0 to 8 wt. % xGnP. The 

weight ratio of filler-to-coupling agent was held constant at 2:1 throughout this study. 

Thermal characterization was accomplished via differential scanning calorimetry (DSC) 

and thermogravimetric analysis (TGA). 
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4.3. Experimental Procedures 

 

4.3.1. Materials 

 

The IMPP was supplied as polymer pellets by Polystrand Inc., USA. The IMPP 

had a density of 0.900 g/cm
3
 and melt flow index of 35 g/10 min. The xGnP fillers were 

supplied by XG Sciences Inc., USA. Three xGnP fillers in powder form were used as the 

reinforcement with different particle diameters 5, 15, and 25 μm. Average platelet 

thickness ranges from about 5 to 15 nanometers. This translates into an average particle 

surface area ranging from about 60 to 150 m
2
/g. The bulk density of all three xGnP fillers 

is reported to be 0.18-0.25 g/cm
3
. Two different PP-g-MA were used as coupling agents, 

labeled for this study as SA9100 and WL9100, provided by Sigma-Aldrich Co., USA and 

West Lake Chemical Co., USA, respectively. Both coupling agents had a density of 0.934 

g/cm
3
, molecular weight of 9,100 by GPC, and acid number of 45-47. SA9100 and 

WL9100 coupling agents differed in that their maleic anhydride content was 8-10% and 

<0.7%, respectively. Materials used in this study are summarized in Table 4.1. 
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Table 4.1 Summary of materials used in current study. 

Material/Supplier Label 

Density 

(g/cm
3
) 

MA 

Content 

(%) 

Mw Acid # 

      

Impact Modified Polypropylene/ 

Polystrand Inc. IMPP 0.900 
--- --- --- 

      

Exfoliate Graphite Nanoplatelets 5μ/ 

XG Sciences Inc. xGnP
5 

2 
--- --- --- 

      

Exfoliate Graphite Nanoplatelets 15μ/ 

XG Sciences Inc. xGnP
15 

2 
--- --- --- 

      

Exfoliate Graphite Nanoplatelets 25μ/ 

XG Sciences Inc. xGnP
25

 2 
--- --- --- 

      

Polypropylene-g-Maleic Anhydride/ 

Sigma-Aldrich Co. SA9100 0.934 8-10 9100 47 

      

Polypropylene-g-Maleic Anhydride/ 

West Lake Chemical Co. WL9100 0.934 < 0.7 9100 45 

      

 

 

4.3.2. Sample Preparation 

 

The matrix polymer IMPP was mixed with the xGnP fillers. The compounding 

was carried out with a Brabender Prep-mixer® equipped with a mixing bowl. The basic 

processing parameters used in this study are summarized in Table 4.2. The temperature 

was set to 180 °C and mixing speed was set at 60 rpm. All composite formulations were 

prepared in 150 g batches and all constituents were added to the mixer simultaneously. 

Mixing was done for 20 minutes; this was an optimum processing time as determined 

from preliminary experiments. 
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Table 4.2 Basic operating parameters of the Brabender rheomixer. 

Batch Size 

(g) 

Temperature 

(°C) 
RPM 

Compounding Time 

(min) 

    

150 180 60 20 

    

 

 

 All composite compounds were then granulated using a lab scale grinder. The 

designated labels and compositions of  neat IMPP, neat coupling agents, IMPP/PP-g-MA 

blends and coupled compatibilized xGnP-filled materials are shown in Table 4.3. 

 

Table 4.3 Designated labels and compositions of neat IMPP, neat coupling agents, 

IMPP/PP-g-MA blends and coupled xGnP-filled IMPP compounded materials discussed. 

 Content Per Batch (g) 

Study Label IMPP SA9100 WL9100 xGnP
5 

xGnP
15 

xGnP
25 

IMPP 150 --- --- --- --- --- 

SA9100 --- 150 --- --- --- --- 

WL9100 150 --- --- --- --- --- 

IMPP_SA9100_2% 147 3 --- --- --- --- 

IMPP_WL9100_2% 147 --- 3 --- --- --- 

IMPP_xGnP5_4% 144 --- --- 6 --- --- 

IMPP_xGnP15_4% 144 --- --- --- 6 --- 

IMPP_xGnP25_4% 144 --- --- --- --- 6 

IMPP_SA9100_xGnP5_2% 145.5 1.5 --- 3 --- --- 

IMPP_WL9100_xGnP5_2% 145.5 --- 1.5 3 --- --- 

IMPP_WL9100_xGnP5_4% 141 --- 3 6 --- --- 

IMPP_WL9100_xGnP5_6% 136.5 --- 4.5 9 --- --- 

IMPP_WL9100_xGnP5_8% 132 --- 6 12 --- --- 

 



108 

 

4.3.3. Thermal Characterization 

 

DSC analysis was carried out using a Perkin Elmer Instrument Pyris DSC with a 

sample weight of 8 to10 mg. All samples were held at 25 °C for 5 min, heated at a rate of 

10 °C/min to 200 °C, subsequently held for 5 min to erase thermal history, then cooled at 

a rate of 10 °C/min to -50 °C, subsequently held for 5 min and heated again at a rate of 10 

°C/min to 200 °C under a nitrogen atmosphere. Melting temperature (Tm) was determined 

from the second scan. The Tm was taken as the peak temperature of the melting 

endotherm. The specimens` degree of crystallinity (Xc) was calculated according to 

Equation 4.1. 

Xc (%) = (∆Hm x 100) / (∆Hf x ω) Equation 4.1 

 

Where ∆Hm is the heat of fusion of the specimen, ∆Hf is the heat of fusion for 100% 

crystalline PP (∆Hf = 207.1 J/g) and ω is the mass fraction of IMPP in the specimen 

(Wunderlich 1990). At least three randomly picked specimens from ground samples were 

tested for each composition, and the results are presented as an average for tested 

samples. 

 

 TGA measurements were completed using a Mettler Toledo analyzer, model 

TGA/SDTA851, on samples of about 10 mg. Each sample was scanned over a 

temperature range from room temperature to 600 °C at a heating rate of 10 °C/min under 

nitrogen with a flow rate equal to 20 ml/min to avoid sample oxidation. Five randomly 



109 

 

picked specimens from ground samples were used for the TGA measurements, and the 

results are presented as an average for tested samples. 

 

4.4. Results and Discussion 

 

4.4.1. Differential Scanning Calorimetry (DSC) 

  

 The thermal properties of chosen compounded composites were characterized via 

the DSC testing methods described in Section 4.3.3. Experimental values of Tm, Tc, Xc 

and corresponding ΔHm and ∆Hc for all materials discussed in this section are provided in 

Table 4.4. 

Table 4.4 DSC summary of Tm, Tc, ΔHm, ΔHc and Xc for neat IMPP, neat coupling agents, 

IMPP/PP-g-MA blends and xGnP-filled IMPP composites. 

Sample Code Tm (°C) Tc (°C) ΔHm (J/g) ΔHc (J/g) Xc (%) 

IMPP 164.3 (0.7) 122.6 (0.4) 61.0 (4.0) -91.5 (4.6) 29.5 (1.9) 

SA9100 156.0 (0.9) 105.0 (1.9) 62.6 (12.1) -99.7 (14.9) 30.2 (5.9) 

WL9100 154.0 (1.2) 104.0 (1.9) 67.3 (1.2) -109.1 (5.1) 32.5 (0.6) 

IMPP_SA9100_2% 163.2 (0.6) 116.1 (1.3) 54.4 (1.6) -84.1 (0.8) 26.3 (0.8) 

IMPP_WL9100_2% 163.9 (0.6) 116.8 (1.0) 58.2 (6.0) -88.0 (3.4) 28.1 (2.9) 

IMPP_xGnP5_4% 165.5 (0.3) 126.5 (1.4) 56.3 (3.5) -84.2 (0.6) 28.3 (1.7) 

IMPP_xGnP15_4% 165.5 (1.5) 125.8 (2.3) 59.3 (2.5) -86.0 (1.2) 29.8 (1.3) 

IMPP_xGnP25_4% 165.0 (0.2) 126.1 (0.2) 57.1 (2.0) -86.2 (0.5) 28.7 (1.0) 

IMPP_SA9100_xGnP5_4% 164.8 (0.6) 124.6 (0.4) 55.0 (3.5) -87.1 (6.2) 27.7 (1.7) 

IMPP_WL9100_xGnP5_2% 165.9 (0.0) 124.3 (0.2) 61.5 (1.9) -84.0 (2.8) 30.3 (0.9) 

IMPP_WL9100_xGnP5_4% 165.2 (0.5) 124.9 (0.3) 56.7 (2.4) -85.1 (3.3) 28.5 (1.2) 

IMPP_WL9100_xGnP5_6% 165.3 (1.0) 125.1 (0.4) 59.1 (1.9) -81.9 (2.9) 30.3 (1.0) 

IMPP_WL9100_xGnP5_8% 165.2 (0.9) 125.6 (0.3) 55.7 (1.5) -78.7 (1.2) 29.2 (0.8) 

Parenthesis indicates standard deviation. 
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 The effect of xGnP particle sizes (5, 15 and 25 μm) on DSC behavior of 

composites was investigated via a comparison of neat IMPP against three different IMPP 

composites with filler loading equal to 4 wt. % xGnP
5
, xGnP

15
 and xGnP

25
, respectively. 

Figure 4.1 is provided to illustrate non-isothermal crystallization and melting curves of 

neat IMPP as well as 5, 15 and 25 μm xGnP-filled IMPP composites. Experimental 

values of Tm, Tc, ∆Hm, ∆Hc and Xc for these composites are extremely close and what little 

change is seen does not appear to follow any specific trend. From this study, it was 

evident that xGnP particle size does not have a significant effect on the Tm, Tc, Xc ∆Hm 

and ∆Hc of xGnP-filled IMPP composites. 

 

 

Figure 4.1 Effect of particle size on DSC behavior of 96:4 wt./wt. xGnP-filled IMPP 

composites. 
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 The effect of filler loading on DSC behavior of composites was investigated via a 

comparison of neat IMPP against IMPP_WL9100_xGnP
5
 composites with filler loading 

equal to 2, 4, 6 and 8 wt. % xGnP. Figure 4.2 illustrates non-isothermal crystallization 

and melting curves of neat IMPP and IMPP_WL9100_xGnP
5
 composites. This plot 

shows that incorporation of xGnP increases the crystallization temperature (Tc) of IMPP 

by about 2 to 3 °C attributed to the heterogeneous nucleation of xGnP. However, the Tc 

of IMPP changed only slightly with increasing xGnP content. Many other nanoparticles 

(carbon nanoparticles, nano-CaCO3) were also found to have same effect on the 

crystallization of PP homopolymer in the literature (Causin et al. 2007; Reyes-de Vaaben 

et al. 2008; Wang et al. 2010). The melting points of IMPP_WL9100_xGnP
5
 composites 

are all between 165 °C and 166 °C. This shows that the addition of xGnP causes a slight 

increase in the melting temperature of IMPP, which indicates the formation of a more 

perfectly crystalline structure of IMPP (Wang et al. 2010). The degree of crystallinity of 

composites was calculated using the heat of fusion determined from DSC measurements 

(ΔHm) and the one corresponding to a 100% crystalline PP (ΔHf) reported by Wunderlich 

in 1990. Increasing the xGnP content does not result in a significant change in percent 

crystallinity. However, increasing the xGnP content in the IMPP results in smaller ∆Hm 

and ∆Hc values. Similar phenomena were also observed for the addition of other 

nanoparticles in PP homopolymer composites (Wang et al. 2010; Chen et al. 2007). 
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Figure 4.2 Effect of filler loading on DSC behavior of xGnP
5
-filled IMPP composites 

manufactured with the WL9100 coupling agent. 

 

 Two PP-g-MA coupling agents (SA9100 and WL9100) with the same molecular 

weight, similar acid number and different maleic anhydride content were used to modify 

the xGnP-filled IMPP composites. Figure 4.3 is provided to illustrate the non-isothermal 

crystallization and melting curves of neat IMPP, neat coupling agents, IMPP/PP-g-MA 

blends and coupled xGnP
5
-filled IMPP composites at 2 and 4 wt. % xGnP. It is reported 

that PP-g-MA acts as a nucleation agent that can increase crystallization parameters of PP 

homopolymer (Zhang et al. 1996; Revilla-Diaz et al. 2007). Clearly, the experimentally 

determined values of ∆Hm, ∆Hc and Xc of the two coupling agents are higher than neat 

IMPP and IMPP/PP-g-MA blends. However, the Tm and Tc are much lower than neat 

IMPP. Interestingly, Tm and Tc are increased in xGnP-filled IMPP composites 

manufactured with a coupling agent. From these results, it can be concluded that the 
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addition of a coupling agent acts as a nucleation agent and therefore, the Tc of the coupled 

xGnP-filled IMPP composites is increased when compared with neat IMPP. 

 

 

Figure 4.3 Effect of coupling agents on DSC behavior of neat IMPP and xGnP
5
-filled 

IMPP composites. 

 

4.4.2. Thermogravimetric analysis (TGA) 

 

 The degradation behaviors of chosen compounded composites were characterized 

via TGA testing methods described in Section 4.3.3. Experimental values of peak 

degradation temperature, weight loss (%) at peak degradation temperature and residual 

mass after 600 °C for all materials discussed in this section are given in Table 4.5. 
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Table 4.5 Thermogravimetric data for neat IMPP, neat coupling agents, IMPP/PP-g-MA 

blends and xGnP-filled IMPP composites analyzed from ambient temperature to 600 °C. 

Sample Code 
DTGA Temp. 

(°C) 

Weight Loss 

(%) 

Residual Mass  

(%) 

IMPP 459.9 (1.3) 63.0 (3.1) 1.6 (0.1) 

SA9100 458.3 (1.1) 69.8 (1.9) 4.0 (0.4) 

WL9100 453.8 (1.9) 65.3 (2.7) 4.0 (0.6) 

IMPP_SA9100_2% 458.9 (0.8) 74.0 (5.5) 2.3 (0.4) 

IMPP_WL9100_2% 461.1 (0.9) 68.8 (2.4) 2.0 (0.1) 

IMPP_xGnP5_4% 463.7 (0.3) 58.9 (0.8) 5.5 (0.1) 

IMPP_xGnP15_4% 463.9 (0.7) 60.2 (1.2) 5.4 (0.3) 

IMPP_xGnP25_4% 462.5 (0.6) 55.9 (1.0) 5.0 (0.3) 

IMPP_SA9100_xGnP5_4% 464.8 (0.9) 63.8 (3.0) 5.1 (1.4) 

IMPP_WL9100_xGnP5_2% 461.2 (1.0) 60.2 (2.5) 4.3 (0.6) 

IMPP_WL9100_xGnP5_4% 462.6 (0.2) 55.4 (1.2) 6.1 (0.3) 

IMPP_WL9100_xGnP5_6% 467.2 (0.4) 58.1 (1.1) 7.7 (0.3) 

IMPP_WL9100_xGnP5_8% 469.1 (0.1) 58.2 (1.1) 10.0 (0.2) 

 

 

 The effect of xGnP particle sizes (5, 15 and 25 μm) on the degradation behavior 

of composites was investigated via comparison of neat IMPP against three different 

IMPP composites with filler loading equal to 4 wt. % xGnP
5
, xGnP

15
 and xGnP

25
, 

respectively. Figure 4.4 is provided to illustrate the TGA and DTGA curves of neat IMPP 

as well as 5, 15 and 25 μm xGnP-filled composites. All composites degraded in a similar 

manner (single stage), regardless of the particle size used. From this study, it was evident 

that xGnP particle size did not have a significant effect on the degradation behavior of 

xGnP-filled IMPP composites. A similar behavior was reported for wood flour/ethylene 

vinyl acetate composites (Dikobe and Luyt 2006). 
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Figure 4.4 Effect of particle size on the TGA behavior of 96:4 wt./wt. xGnP-filled IMPP 

composites. 

 

 The temperature at 10% weight loss (T10) and the temperature at 50% weight loss 

(T50) for neat IMPP and 5µm, 15µm and 25µm xGnP-filled composites are shown in 

Figure 4.5. Both T10 and T50 values increased with the addition of xGnP. However, there 

was not any significant difference among particle sizes. 
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Figure 4.5 Effect of particle size on the TGA temperatures at 10% and 50% weight loss 

of 96:4 wt./wt. xGnP-filled IMPP composites. 

 

 The effect of filler loading on the degradation behavior of composites was 

investigated via a comparison of neat IMPP against IMPP_WL9100_xGnP
5
 composites 

with filler loading equal to 2, 4, 6 and 8 wt. % xGnP. Figure 4.6 is provided to illustrate 

the TGA and DTGA curves for neat IMPP and IMPP_WL9100_xGnP
5
 composites. The 

degradation temperatures of neat IMPP and composites are very similar. However, the 

onset temperature of rapid thermal degradation was shown to increase with xGnP 

loading. The IMPP exhibited single stage degradation with a peak at 460 °C. The xGnP-

filled IMPP composites also show single stage degradation peak in the range of 461 to 

469 °C. Furthermore, the thermal stability of the composites above 450 °C and the final 

ash content increased slightly as a function of xGnP loading. The final ash content 

consistently increased from around 1.6 % to 10% for the 8 wt. % xGnP addition. TGA 

results show that the thermal stability of the xGnP-filled IMPP composites is improved 
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compared to that of neat IMPP. It is thought that the enhanced thermal stability comes 

from the more thermally stable graphite as well as the tortuosity effect of the graphite 

nanoplatelets hampering the diffusion of oxygen and volatile products throughout the 

composite materials during thermal decomposition (Kim et al. 2010). 

 

 

Figure 4.6 Effect of filler loading on TGA behavior of xGnP
5
-filled IMPP composites 

manufactured with the WL9100 coupling agents. 

 

 Experimental values of T10 and T50 for neat IMPP and IMPP_WL9100_xGnP
5
 

composites are shown in Figure 4.7. Both T10 and T50 increased monotonically from neat 

IMPP to the 8 wt. % xGnP addition. 
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Figure 4.7 Effect of filler loading on TGA temperature at 10% and 50% weight loss of 

IMPP/xGnP
5
 composites manufactured with the WL9100 coupling agent. 

 

 Figure 4.8 is provided to illustrate the TGA and DTGA curves of neat IMPP, neat 

coupling agents, IMPP/PP-g-MA blends and coupled xGnP
5
-filled IMPP composites at 4 

wt. % xGnP. Both neat IMPP and IMPP/PP-g-MA blends show a single stage of 

degradation during the thermal degradation process. Neat IMPP begins to decompose at 

about 400 °C and reaches equilibrium residual mass at temperatures around 480 °C, with 

little residue remaining. The degradation temperature of IMPP shifts to a lower 

temperature in the presence of PP-g-MA, indicative of the poor thermal stability of PP-g-

MA (Shen et al. 2009). 
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Figure 4.8 Effect of coupling agents on the TGA and DTG behavior of neat IMPP and 

xGnP
5
-filled IMPP composites. 

 

 Experimental values of T10 and T50 for IMPP, compatibilizers, IMPP/PP-g-MA 

blends and coupled xGnP
5
-filled composites at 4 wt. % xGnP are shown in Figure 4.9.  

Both T10 and T50 values for the PP-g-MA and IMPP/PP-g-MA blends decreased 

compared to neat IMPP composites. However, coupled xGnP-filled IMPP composites 

show improved T10 and T50 values compared to neat IMPP. 
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Figure 4.9 Effect of coupling agents on TGA temperature at 10% and 50% weight loss of 

neat IMPP and xGnP
5
-filled IMPP composites. 

 

4.5. Conclusions 

 

xGnP-filled IMPP composites were prepared via melt compounding with and 

without the addition of a coupling agent (PP-g-MA). Thermal characterization techniques 

yielded conclusions in understanding the influence of (1) particle diameter, (2) filler 

loading, and (3) coupling agent, on the thermal behavior of xGnP-reinforced IMPP 

composites. 

 

Particle diameter had no significant effect on the melting (Tm) and crystallization 

(Tc) temperatures as well as ΔHm and ΔHc of the composites. The addition of xGnP 
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caused the Tm to increase slightly, indicative of the formation of a more crystalline 

structure of IMPP, and Tc increased 2 to 3 °C, caused by heterogeneous nucleation of the 

xGnP. With increased filler loading Xc did not change significantly, however ΔHm and 

ΔHc of the composites decreased. Experimental results showed that PP-g-MA have much 

lower Tm and Tc and much higher ΔHm, ΔHc, and Xc compared to neat IMPP and 

IMPP/PP-g-MA blends. However, the Tm and Tc increased significantly in xGnP-filled 

IMPP composites made with a coupling agent. Addition of a PP-g-MA was determined to 

act as a nucleating agent in the composites. 

 

 All materials investigated in this study resulted in similar single stage thermal 

degradation behavior. Particle diameter had no significant effect on degradation behavior 

of xGnP-filled IMPP composites and was illustrated adequately with similar T10 and T50 

values for 5, 15 and 25 μm xGnP-filled IMPP composites. The onset temperature of rapid 

degradation, thermal stability of the composites above 450 °C, and residual ash content 

increased at higher filler loading. T10 and T50 values increased monotonically from neat 

IMPP to coupled IMPP with 8 wt. % xGnP. The increase in thermal stability is believed 

to originate from the more thermally stable graphite and the “tortuosity effect” of the 

graphite nanoplatelets, which inhibit the diffusion of oxygen and volatile products 

throughout the composites during thermal decomposition. Interestingly, xGnP-filled 

IMPP composites made with a coupling agent exhibited improved thermal stability 

compared to neat IMPP, while the addition of PP-g-MA in IMPP/PP-g-MA blends 

caused the degradation temperature to decrease compared to neat IMPP. 
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Chapter 5 

 

CONCLUSIONS AND RECOMMENDATIONS 

 

 

5.1. Conclusions 

 

 The main objective of this research was to fabricate well dispersed xGnP-filled 

IMPP nanocomposites via melt compounding followed by injection molding. 

Furthermore, the aim was to characterize the effect of particle diameter, filler loading and 

the addition of coupling agents on the mechanical, rheological and thermal properties of 

xGnP-filled IMPP nanocomposites. The following results were determined over the 

course of this research: 

1) The smallest diameter filler investigated in this study (5μm) performed the best in 

terms of flexural and tensile mechanical properties of xGnP-filled IMPP 

composites. It is suspected that incorporation of xGnP with an average particle 

diameter smaller than 5 μm would result in largely increased improvements in 

flexural and tensile properties.  

 

2) Tensile and flexural moduli and strengths both increased with xGnP filler loading 

for compatibilized composites. Elongation at break was greatly deteriorated with 

as little as 2 wt. % xGnP with and without coupling agent.  
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3) The addition of coupling agent has been proven to dramatically enhance 

dispersion within xGnP filled IMPP composites. Enhanced dispersion has been 

proven indirectly via mechanical testing and Halpin-Tsai modeling comparisons 

as well as directly via TEM imaging. However, the addition of coupling agent 

amplifies the degradation of elongation at break because of the improved 

adhesion between the filler and the matrix. 

 

4) The smallest diameter filler investigated in this study (5μm) performed the best in 

terms of impact properties of xGnP-filled IMPP composites. 

 

5) Impact properties were greatly deteriorated with as little as 2 wt. % xGnP with 

and without coupling agent. 

 

6) The addition of coupling agent, similarly to the elongation at break discussion, 

amplifies the degradation of impact properties because of the improved adhesion 

between the filler and the matrix. 

 

7) A correlation study to determine a relationship between impact properties and 

MFI was explored and showed impact properties to increase with MFI linearly. 

Experimental MFI results for the well dispersed IMPP_WL9100_xGnP
5
 

nanocomposites were plotted versus filler loading level. Using these relationships 

it was determined necessary for filler content to be below 0.044 and 0.315 wt. % 

to improve unnotched and notched impact strengths, respectively. 
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8) Particle diameter had no significant effect on the melting (Tm) and crystallization 

(Tc) temperatures as well as ΔHm and ΔHc of the composites. 

 

9) The addition of xGnP caused the Tm to increase slightly which indicates the 

formation of a more crystalline structure of IMPP, and Tc increased 2 to 3 °C, 

caused by heterogeneous nucleation of the xGnP. With increased filler loading Xc 

did not change significantly, however ΔHm and ΔHc of the composites decreased.  

 

10) The coupling agent (PP-g-MA) had much lower Tm and Tc and much higher ΔHm, 

ΔHc, and Xc compared to neat IMPP and IMPP/PP-g-MA blends. However, the Tm 

and Tc increased significantly in xGnP-filled IMPP composites made with a 

coupling agent. Addition of a PP-g-MA was determined to act as a nucleating 

agent in the composites. 

 

11) All materials investigated in this study resulted in similar single stage thermal 

degradation behavior. Particle diameter had no significant effect on degradation 

behavior of xGnP-filled IMPP composites and was illustrated with similar T10 and 

T50 values for xGnP
5
, xGnP

15
 and xGnP

25
 reinforced composites. 

 

12) The thermal stability of the composites above 450 °C, and residual ash content 

increased at higher filler loading. T10 and T50 values increased monotonically from 

neat IMPP to coupled IMPP with 8 wt. % xGnP. The increase in thermal stability 

is believed to originate from the more thermally stable graphite and the tortuosity 
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effect of the graphite nanoplatelets, which inhibit the diffusion of oxygen and 

volatile products throughout the composites during thermal decomposition. 

 

13) Interestingly, xGnP-filled IMPP composites made with a coupling agent exhibited 

improved thermal stability compared to neat IMPP, while the addition of PP-g-

MA in IMPP/PP-g-MA blends caused the degradation temperature to decrease 

compared to neat IMPP. 

 

5.2. Recommendations for Future Work 

 

 The ductility and energy absorption capabilities of xGnP-filled IMPP were much 

lower than the neat IMPP at the filler loading levels investigated. However, through 

insightful analysis there remains a potential for future work in nano-reinforced IMPP: 

 

1) The filler loading domain must be determined for which the MFI vs. filler loading 

and the impact strength vs. MFI relationships remain valid. xGnP
5
-filled IMPP 

with the addition of WL9100 coupling agent should be fabricated at low filler 

loading levels ranging from 0.01 to 0.5 wt. % and tested for experimental flexural 

and tensile behavior, MFI and impact results. 

 

2) The effect of nanoparticle geometry should be investigated. Nanoscale spheres, 

rods, tubes or whiskers may change the stress concentrations around the filler 



131 

 

inclusions and result in different behavior. Perhaps different particle morphology 

will allow the elastomeric phase present in the IMPP to still induce the three 

conventional toughening mechanisms (inelastic void growth, shear yielding or 

crazing and cavitation of rubber particles). 

 

3) Different compatibilization methods should be investigated. Potential approaches 

are surface modification of xGnP powder as well as modification of the matrix 

polymer (IMPP). 

 

4) Viscoelastic properties and long-term behavior of xGnP-filled IMPP 

nanocomposites should be investigated using dynamic mechanical analysis 

(DMA). 

 

5) Experiments should be conducted to determine the effect of strain rate on the 

performance of PNCs. 

 

6) Electrical conductivity and conversely electrical resistance of xGnP-filled IMPP 

should be investigated. Graphene reinforced polymers are being considered 

throughout R&D efforts as multifunctional composites producing both superior 

mechanical and thermal properties as well as creating a conductive material out of 

what is traditionally an insulator. 
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7) Nano-reinforcement of engineering thermoplastics should be investigated. There 

is a great commercial potential for starting with the superior properties of 

engineering thermoplastics and working to improve these properties using nano 

material fillers. 
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