
The University of Maine
DigitalCommons@UMaine

Electronic Theses and Dissertations Fogler Library

2004

Estimation of Standardized Mortality Ratio in
Geographic Epidemiology
Anna Kettermann

Follow this and additional works at: http://digitalcommons.library.umaine.edu/etd

Part of the Applied Mathematics Commons, Epidemiology Commons, and the Mathematics
Commons

This Open-Access Thesis is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Electronic
Theses and Dissertations by an authorized administrator of DigitalCommons@UMaine.

Recommended Citation
Kettermann, Anna, "Estimation of Standardized Mortality Ratio in Geographic Epidemiology" (2004). Electronic Theses and
Dissertations. 1080.
http://digitalcommons.library.umaine.edu/etd/1080

http://digitalcommons.library.umaine.edu?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F1080&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.library.umaine.edu/etd?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F1080&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.library.umaine.edu/fogler?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F1080&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.library.umaine.edu/etd?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F1080&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/115?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F1080&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/740?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F1080&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F1080&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F1080&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.library.umaine.edu/etd/1080?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F1080&utm_medium=PDF&utm_campaign=PDFCoverPages


ESTIMATION OF STANDARDIZED MORTALITY 

RATIO IN GEOGRAPHIC EPIDEMIOLOGY 

By 

Anna Kettermann 

Diploma, University of Kaiserslautern, Germany, 2001 

A THESIS 

Submitted in Partial Fulfillment of the 

Requirements for the Degree of 

Master of Arts 

(in Mathematics) 

The Graduate School 

The University of Maine 

August, 2004 

Advisory Committee: 

Ramesh Gupta, Professor of Mathematics, Advisor 

Pushpa Gupta, Professor of Mathematics 

Henrik Bresinsky. Professor of Mathematics 



Library Rights Statement 

In presenting this thesis in partial fulfillment of the requirements for an advanced 

degree at The University of Maine, 1 agree that the Library shall make it freely 

available for inspection. I further agree that permission for "fair use" copying of 

this thesis for scholarly purposes may be granted by the Librarian. It is understood 

that any copying or publication of this thesis for financial gain shall not be allowed 

without my written permission. 

Signature: 

Date 



ESTIMATION OF STANDARDIZED MORTALITY 

RATIO IN GEOGRAPHIC EPIDEMIOLOGY 

By Anna Kettermann 

Thesis Advisor: Dr. Ramesh Gupta 

An Abstract of the Thesis Presented 
in Partial Fulfillment of the Requirements for the 

Degree of Master of Arts 
(in Mathematics) 

August, 2004 

The analysis of geographic variation of disease and its representation on a map form 

an important topic of research in epidemiology and in public health in general. 

Identification of spatial heterogeneity of relative risk using morbidity and mortality 

data is required. 

The usual technique of disease atlas generation consists of data collection (observed 

number of disease cases). These data are collected during a continuous period of 

time (5 to 10 years). The second aspect of atlas creation relates to the analysis of 

these data. A traditional measure of the spatial variation is usually taken as a ratio 

of the number of observed disease cases to the number of the expected disease cases 

for the given region. This measure is called the Standardized Mortality (morbidity) 

ratio (SMR). Our interest is to estimate the spatial variation, i.e. to estimate the 

mean and the variance of the SMR. 



In this paper we will focus on the developments that avoid the pitfalls of the 

crude SMR. We will compare the results of nonparametric and parametric 

approaches to the SMR estimation. More specifically, we present a mixture model 

to evaluate the heterogeneity in estimating SMR. Simulation studies are carried out 

and the results are analyzed. 
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Chapter 1 

INTRODUCTION 

An essential problem in the construction of disease maps is the variation of population den­

sity between urban and rural areas. Epidemiological investigation of factors such as climate, 

environmental pollution, and prosperity, which may relate to disease prevalence, must take 

into account the spatial heterogeneity of the population, which is both a denominator for 

any number of cases in a region, and itself an indicator of physical proximity which may be 

a correlate of disease. 

In this paper we are going to investigate spatial heterogeneity in disease map construc­

tion, expanding on the work of Boehning and Sarol, which demonstrated a nonparametric 

approach. They were able to estimate the mean Standard Mortality Ratio (SMR) for dis­

ease maps, as the non-parametric estimators for the mean are unbiased, but found that 

estimation of variance of the SMR becomes difficult, as this estimator does become biased. 

We will here investigate the estimation of variation of the SMR in a fixed model, the map­

ping of hepatitis cases in Berlin, where the distribution of data is already known. Using a 

mixed-model approach, variance of SMR will be estimated by both Maximum Likelihood 

and non-parametric techniques. In order to confirm our results, we have run computer sim­

ulations of the data using S-PLUS routines. One of the chief advantages of the suggested 

approach is that in addition to the parameter estimation it, also gives us an opportunity to 

estimate the confidence interval of the variance of the heterogeneity parameter. 

In the beginning of the first chapter we are going to introduce the basic concepts of 

disease mapping, discuss the methods and analyze the problems of disease map construction. 

In the second chapter we will look at the nonparametric approach to the estimation of 
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the spatial variation. We will study the nonparametric approach in case of the observed 

mortality with a particular distribution (cases of Poisson and Binomial distributions). A 

general nonparametric approach and its application to the given data set (Hepatitis cases 

in Berlin) will be presented in the end of chapter 2. 

In the third chapter, we are going to apply a fixed model to the data. The estimation 

of the spatial variation will be done with the help of the Maximum Likelihood approach. 

We are going to compare the outcomes of nonparametric and parametric calculations. 

A simulation study based on the parametric approach may be found in the chapter four. 

We conclude with some final remarks and recommendations. 

Now, let us come to the main definitions. 

Definition 1 Disease mapping is a method of displaying the spatial distribution of dis­

ease occurrence. It is widely used in geographic epidemiology, especially in creation of disease 

atlases. 

One of the most important uses of disease mapping may be seen in disease surveillance 

and health outcome research. It has become widely accepted that a potentially fruitful way 

lo monitor the disease status of a community is to look at I he health data in time and 

space. The Centers for Disease Control (CDC) defines public surveillance as the ongoing 

systematic collection, analysis and interpretation of the health data essential to the planning, 

implementation and evaluation of public health practice. 

Definition 2 The Standardized Mortality Ratio (SMR) is widely used in epidemiol­

ogy as a measure of disease occurrence. Generally. SMR is defined as the ratio of observed 

mortality to expected mortality for the given region. 

Let us think of a map divided into N regions. A formal definition of SMR for the region 

i is: 

SMRi = %-,i= l,...,N. (1.1) 

Both values in this ratio represent the data for the same region i where: 

Oi represents the number of observed deaths and Et represents the expected number of 

deaths calculated from the reference population. 

According to Boehning (2003), there are two most frequently used methods in disease 

maj) construction: 
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1. A classification is based upon a certain percentile of the empirical. 

SMR-distribution 

2. The classification is based upon the Poisson distribution 

exp((-A£7;)(A£;?)
0') 

Poissonio, | \E,) = — ^ ^ - ^ (1.2) 
Oil 

ot = 0,1,2,... (1.3) 

Conventional methods of atlas comparisons have two problems: 

1. No account is taken of varying population size over the map. Therefore, the 

SMR estimation based only on a few cases is not precise. 

2. There is no common presentation format of the atlases. 

The goal of this project is to find bet ter results for the estimators of the mean and vari­

ance of the Standardized Mortality Ratio by comparing both parametric and nonparametric 

approaches. 
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Chapter 2 

SPATIAL HETEROGENEITY 

AND ITS MEASURES. A 

NONPARAMETRIC 

APPROACH. 

An important aspect of disease mapping is the concept of heterogeneity. For example, 

we have a sampling model with X being a variable of interest. X has density p(x,\), 

where A is a scalar parameter. For a given subpopulation, the densitj' p(x, A) might be a 

good fit, but the value of A is not able to cover the whole population of interest. In this 

case, we have heterogeneous population. The parameter of interest. A, varies from one 

geographical region to another, so it is impossible to verify which subpopulation is generating 

the variation. As the data are drawn from distinct geographical regions, the value of A is 

not able to capture all characteristics of the data. This means that A is not a constant. 

Thus it can be regarded as a random variable with some possibly unknown distribution. 

We are interested in the estimation of the first two moments of this distribution. For these 

we present the following general approach. 

Let 

E{Or | 0 ) = aQ, 
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where 6 is a parameter and a is a real constant and 

where 01,02,03 are real constants. Thus 

A natural estimator of r 2 can be taken as: 

2 

(2.6) 

where S2 is the sample variance of 0\ s. We now apply the above approach to our problem. 

We consider two cases with random variable O, having a) A Poisson distribution; b) A 

Binomial distribution. The goal is to be able to estimate the variance of spatial heterogene­

ity, i.e. the variance of the parameter 6 . 

CASE 1: {Oi has a Poisson distribution). In this case: 
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(2.1) 

(2.2) 

where /i = E(Q) 

Looking at (2.2), a natural estimator of \i can be taken as 

Now, using the formula 

where 

(2-3) 

we have 

(2.4) 

Thus T2 is given by 

(2.5) 



CASE 2: {Oi has a Binomial distribution). In this case: 

2.1 Mixture model approach 

In this approach we treat A as a random variable. The goal is to find the estimator of 

the mean and the variance of the spatial heterogeneity parameter, i.e. the mean and the 

variance of the parameter A. 

2.1.1 Example for the Poisson distribution 

Example 3 We consider a random variable Oi having a Poisson distribution, given as: 

C 

(2.11) 

(2.12) 

where El is a constant. 

(2.9) 

(2.10) 

Assumption: A has a distribution P with density p(A), mean /J. and variance r 2 Since 

Ol ^ 0 (O, represents count data and therefore can not be negative), we use integration on 

the interval [0. +oo) , i.e. f(ol \ XEZ) = J0 °° Poisson(ot)p(\)dX 

First, let us determine the variance and mean of the variable Oi for this particular case. 

Using formula (2.3), we have 

(2.8) 

This gives fi = — and 

(2.7) 



The above results are incorporated into the calculations of the mean and variance of the 

Standardized Mortality Ratio of the region i (SMR4). Thus we have: 

This leads us to the following expression: 

assuming that // is known). 

\Ve now show the following: 

RESULT: 

T J is unbiased for r2 , i.e. E(f ) = T2 

Proof. 

(2.17) 

2.1.2 E x a m p l e for the B inomia l d is tr ibut ion 

Example 4 Now, let us take another example, where Olt . ,0,\ is a random sample from a 

binomial distribution with vmf v(Oi, X) = I )(XEl)°'(l - XE,)^"°-

In this case: 

(2.18) 

(2.16) 

(2.13) 

and 

(2.14) 

(2.15) 

Thus yields the following estimator of r 2 
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Now using the formula (2.3), we get 

and 

This implies: 

(2.20) 

An estimator of p, can. be taken as (i = — ^ , = 1 —, similarly, an estimator of r2is 

(2.23) 

(2.22) 

2.2 A nonparametric way to estimate the variance of the 

heterogeneity distribution P. 

Our goal is to estimate the variation T2 of the heterogeneity parameter. 

Method 1 Boehning in his article in (2003) introduced the following variables: 
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(2.21) 

Example 5 Applying this result to the SMRi estimation gives: 



Wi is an unbiased estimator of r2 can be seen as follows: 

(2.24) 

As was suggested in the paper referenced above, we can now define a function combining 

all W,'s: 

(2.25) 

Different forms of a[s have been suggested in the literature. Since Ta{w) is unbiased, 

in order to evaluate the choice of a[s, we will need to compare the variances of Ta(w) 

corresponding to different choices of a\s. We are interested to find the set of a\s which 

would minimize the variance of Ta(w). 

Case l.(Boehning) 

In this case, Ta{w) has the variance: 

(2.26) 

(2.27) 

(2.28) 

Now Ta{w) has the variance: 

(2.29) 
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RESULT: 

Ta(w) is an unbiased estimator of r2 

Case 2. (Bautista) 



Case 3. 

and the variance of Ta(w) is: 

(2.30) 

;2.31) 

1 

RESULT: 

We now show that Ta(w) with a; = 
1 

yields a best linear unbiased estimator 

(BLUE). 

Proof: 

We need to minimize Var{Ta(w)), i.e. minimize the the variance of the numerator of 

Thus this expression is minimized when aj = 
1 

Finally, we can estimate r 2 in the following way: 

(using at = —, an estimator of r is): 
jv 

(2.32) 
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Resulting in an unbiased estimator since we know that E{Wi) - T2, i.e. E{f2) = r 2 

Method 2. An alternative way of nonparametric estimation of fi and T 2 

For the rest of this section we will be working with nonparametric estimators of the spatial 

heterogeneity which were suggested by Boehning and Sarol (2000). 

A nonparametric estimator of the variance of A could be written as it is shown in (2.33). 

using the fact that SMRi = —̂  and applied to the formula (2.32) to arrive at (2.33). The 
Ei 

essence of the second method is contained in the following: 

(2.33) 

There are two nonparametric estimators presented for fi, the expected value of A. Those 

estimators could later be applied to the expression of the variance (2.33) and bring us to 

1. Simple mean 

2. Pooled mean: 

(2.35) 

RESULT: 

11 

Proof. 

is unbiased and the variance 

(2.34) 



S pooled is also unbiased with the variance Var (fi led) 

Proof. 

Let us now look at three possible ways to estimate the variance of parameter A. Using 

the general formula for the variance (2.33), and inserting ^ simple 
instead of /i,we get: 

Proof, using the fact that 

(2.38) 
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RESULT: 

(2.36) 

(2.37) 

RESULT: 

^simple ls a n unbiased estimator of r 2 

and 

(2.39) 



We shall now show that T^00ied is biased: 

Proof. For this, we will use the following formula: 
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A similar strategy is used for the T2
 led. This is given by 

(2.40) 

(2.41) 

now 



In order to avoid biasedness of f , we adjust this estimation as follows: 

(2.42) 

14 



where 

(2.43) 

A measure of heterogeneity 

We need to test whether the variance of SMR is homogeneous, i.e. check to see if T2 = 0 

(homogeneous case). If T2 = 0, then the expression of the variance of the standardized 

mortality ratio could be calculated as 

^(denominator of PSH) 

Proof. 1) is obvious, using the expression of f given by (2.33) 

2)£'(numerator of PSH) = r2 , already shown 

15 

(2.45) 

If PSH is much larger than zero, that would imply that we have heterogeneity of variance 

If PSH is very close to zero, that means that the spatial heterogeneity is relatively small 

and could possibly be negligible. 

Here are some special features of PSH: 

(2.44) 

In order for us to evaluate the possibility of the spatial variation in the given data set, we 

introduce the proportion of spatial heterogeneity (PSH), which is defined as 



Proof, already shown • 

3) ^(denominator of PSH) = -^ ^=1 — + T
2 

Proof. Ei^JSMRt-rf} = I ^ Var(SM*) = ~ ^ V a r ( | - + r ' ) = 

4) E(PSff) * — L - p 

E X A M P L E (Hepatitis data) 

We are given a data set which represents the number observed and expected cases of 

hepatitis in 23 regions of Berlin. 

Hepatitis data 

Area i Oi E, Area i Oi Ei 
1 29 10.7121 13 25 8.3968 
2 26 17.9929 14 11 15.6438 
3 54 18.1699 15 11 11.8289 
4 30 19.2110 16 2 9.9513 
5 16 21.9611 17 2 10.8313 
6 15 14.6268 18 9 18.3403 
7 6 9.6220 19 2 5.1758 
8 35 17.2671 20 3 10.9543 
9 17 18.8230 21 11 20.0121 

10 7 18.2705 22 5 13.8389 
11 43 32.1823 23 2 12.7996 
12 17 24.5929 

Table 2.1: Observed and Expected Hepatitis Cases in 23 City Regions of Berlin. Source: 
Berlin Census Bureau, 1995. 

First, let's consider a graphical analysis of the data presented in table 2.1. 

Due to the nature of the data, the observed cases of hepatitis are represented only 

by integer values, because we are actually measuring a variable with a binomial outcome 

(sick or healthy) and we record the sick cases as our objective. Oi represents the count 

data. Considering expected values, they can be either integer or noninteger real values, 

since they are taken from the reference population and also could be a result of numerical 

manipulations. Thus, the observed and expected values in this example do indeed have 

different distributions. 
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Dotplot for 0(i) 

Figure 2-1: Dotplot of observed values 

Dotplot for E(i) 

ECO 

Figure 2-2: Dotplot of expected values 
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Looking at the dotplots of both data sets (figure 2-1 and 2-2), we see that the Oi 

(observed data) is primarily concentrated on the interval [2, 18], with the Ex (expected 

data) concentrated on the interval [8,20]. 

50 _ 
« 

40 -

* 
• 

3D _ . « 
* 

20 -

* • • 
10 _ 

0 -
• 

• « • 
• 

10 

EO) 

30 

Figure 2-3: Scatterplot of observed vs expected values 

If we view the data as a set of ordered pairs (figure 2-3). (Each region has two data 

points assigned to it, i.e. observed and expected number of disease cases). We see that data 

is mostly concentrated in the left lower corner, implying that we do not have observations 

with large absolute value. Two of the points can be considered as being outside of the data 

cluster. A better visual data representation can be presented by the graphs of boxplots. 

Looking at the graph of the parallel bcxplots of our data [figure 2-4], we see that the 

observed values have a larger range than expected values. Looking at the height of the box, 

the distance between the third (75th percentile of the data) and the first (25th percentile of 

the data) quantiles is larger than the same points for the expected values. Examining the 

boxplot, it is apparent that in the case of observed values, the box is located in the lower 

part of the data, with the median shifted towards the bottom of the box. This tells us that 

the data is mostly concentrated in the beginning of the scale, i.e. the data is skewed to the 

right. For the expected values, our box is relatively centered in the data and the median 

is slightly shifted towards the top of the box. This tells us that expected value data seems 

to have greater symmetry than the observed data. Additionally, we see that the expected 

18 



1 

- i r 
OO) Ed) 

Figure 2-4: Parallel boxplots 

Variable N Mean Median TrMean StDev SE Mean Minimum Maximum 
O(i) 23 16.00 11.00 14.86 14.11 2.94 2.00 54.00 
E(i) 23 15.70 15.64 15.42 6.00 1.25 5.18 32.18 

Table 2.2: Statistical analysis of the samples 

data also has an outlier. For a better visualization, let us consider the histograms of both 

data sets [figures 2-5 and 2-6] 

Neither histogram contradicts our initial observation about skewness and data distrib­

ution. 

The table (table 2.2) represents the statistical data analysis of both samples of the data 

set. 

A test for homogeneity is based on the statistic: 

,, Sl.m-w (2.46) 

This is a 1-sided test. Using our data, we get x\i = 193.52, using a pooled estimate of \x 

and X22 = 202.92, using a simple estimate of fi. Both values of the test statistic are much 

larger than the table value ( 33.924) which definitely indicates heterogeneity and therefore 

we can imply that r 2 f= 0. 

so — 

to — 

3] — 

m — 

to — 

D — 
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Figure 2-5: A histogram of observed values 

Figure 2-6: A histogram of expected values 
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Applying the nonparametric estimation technique presented above to the given data we 

see how to we estimate the mean and variance of the unknown parameter A. 

Table 2.3: Results of nonparametric estimation 

Analyzing the results, presented in the table 2.3, we could conclude that the numerical 

values of the estimates of the mean and the variance are not significantly affected by the 

choice of the estimator of the mean. That means that the values of the parameters in case 

of simple and pooled mean coming out to be close to each other. A numerical value of 

the PSH in all three cases are close to one. That would implicate a relatively high spatial 

heterogeneity. 
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Chapter 3 

MAXIMUM LIKELIHOOD 

APPROACH. 

In this chapter, we present the estimation of the heterogeneity parameter by the MLE 

method and investigate the performance of the resulting confidence intervals. 

Let us assume that 

22 

(3.4) 

The unconditional mass function of O, is given by 

(3.3) 

where the density has the following form: 

(3.2) 

and 

(3.1) 

with conditional probability mass function 



(3.6) 

This new density resembles the negative binomial density. 

A general negative binomial density with parameters r and p has of the following form: 

where r corresponds to our a and x corresponds to ox. Finally, p = 

Application to our model: 

Since we are interested in the estimation of the variance of the spatial heterogeneity 

parameter A, without loss of generality, let us assume the mean of the Gamma distribution 

(3.6) to be equal to one and the variance to be equal to a, where a is a positive value. This 

implies that 

Then, p(X) = 

and the probability mass function of Oi is given by 

(3.7) 

(3.8) 
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Simplifying a portion of the previous expression, we get: 

(3.9) 

(3.10) 

Applying this expression to our model(3.8) we arrive at 

Our likelihood function will be: 

"o,—1 

(3.11) 

where L is always positive. Taking the natural logarithm of L: 

N 
(3.12) 

Our goal is to estimate the variance a and find its confidence interval. 

Differentiate this expression with respect to a : 

Thus the MLE of a is given by the solution of the following non-linear equation 

24 



Applications of the Newton-Raphson algorithm. Example of hepatitis in 

Berlin (revisited). 

Coming back to the hepatitis data presented in the previous chapter, we assume the 

negative binomial model defined above. We have an equation, 

25 

(3.15) 

Beginning with the setup of the algorithm, initial value of a, setup of the iteration counter 

and setting the tolerance of the algorithm, we consider the algorithm to have converged if 

the (k+l) th iteration result is equal to the kth iteration up to the 5th position after the 

decimal point. To begin, we will set the maximum number of iterations to 45. 

After three iterations we have reached convergence at the desired level, so &MLE =0.483947179095742 

Information Matrix and Parameter Variances 

In order to obtain the variance of d, we compute 

Applying the 0[s and E[s from the hepatitis example, we can estimate parameter a. Since 

our function is differentiable and smooth, we can use the Newton-Raphson method. 

Since the calculations become computationally complex, the best way to overcome this 

problem is to write an S-PLUS routine using the Newton-Raphson method as a way to 

estimate the parameter a. This code is presented in the appendix. In order to have a 

starting value for a, we use the result that we had for the nonparametric case. The basic 

formulas to be used in the algorithm are presented below: 

(3.13) 



So that Var(a) is given by 

Var(a) = 
-E cPjnL 

da* 

(3.16) 

The S-PLUS code for this matrix is presented in the appendix. 

Thus an asymptotic confidence intervals for the variance of A, is given by: 

d ± : s y/var(a). (3.17) 

For the case of a confidence level a = 0.05, we have za = 1.96. Then the expression for 
2 

the confidence interval becomes a ± 1.96y/war(d). 

Hepatitis data revisited 

Using the nonparametric estimate of the parameter a =0.5476439 as a starting value, 

we are getting the following output: 

Iteration 1 0.483072211758264 

Iteration 2 0.483944644900506 

Iteration 3 0.483947179095742 

Let us return to the hepatitis data presented before. We apply the 0[s and E[s from 

the data, so that we can estimate the parameter, a. Since our function is differentiable and 

smooth, we can use the Newton-Raphson method. 

Comparing parametric and nonparametric results: the final results fcr the given data 

set are presented in the table below 

Spooled 0.5476439 

^simple 0.5488984 

Spooled.corrected 0.5437004 

^mixture mode] 0.483947179095742 

Var(a) 0.02589858 

The numerical values of the estimates look relatively close, but the nonparametric pro­

cedures overestimate heterogeneity. 
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CONFIDENCE INTERVAL  

confidence interval for a=(0.1685236 0.7993707 ) 

length of the confidence interval for a= 0.6308471 

27 



Chapter 4 

SIMULATION STUDIES 

In order to evaluate performance of the estimated confidence intervals, we have to simulate 

the data with knowledge of the mean and variance of A in advance. Then, we execute our 

program and see how frequently the estimated confidence interval contains the true value 

of the parameter. We vary three aspects of our data set: 

1. Distribution of the expected values, the ii^s. 

2. Sample size. 

3. The value of the variance parameter a. 

4.1 Data generation 

In order to generate observed values (negative binomial random observations) in S-Plus, we 

do the following: 

• create the set of E[s, say N times, as Ei ~ Poisson(d) 

• generate K samples each of size N 

• assume that the above are the given values of Ets 

• calculate the pi = I —— I (the number of p^s equal the number of E[s). 
\ 1 + pEi J 

We have K sets of £ t s , so that this construction leads us to an NxK matrix of E{s. 

This matrix has sets of £?-s as its columns. 

• get K sets of 0 ; s created as 0% ^ NegativeBin(n,pi) 

28 



• apply our algorithm (Newton -Raphson, information matrix, confidence intervals) to 

each set of £,s and corresponding O^s. Thus get K confidence intervals. 

• check whether the confidence interval covers the true parameter. 

We want to generate K=5000 samples of 

sample size N 10 20 30 40 50 100 

variance o 0.167 0.25 0.5 1 

Keeping in mind that a = a/3 and a > 0 and a has to be an integer, since we have an 

expression of T ( Q ) in the distribution function of our model. 

4.2 Results 

In order to evaluate the performance of our estimation, it is reasonable to measure two 

aspects of the confidence intervals: 

I. Coverage probability 

II. Length of the confidence interval 

The goal is to get a small confidence interval with coverage probability.equal to the 

nominal value. 

Now, let us come to the first aspect. 

In our attempt to simulate the real data, for each of our experimental trials, generate 

5000 samples of E\s and corresponding 0,-s respectively. 

• Start with a relatively small sample size, say 10. 

• Run our program (parameter estimation, confidence interval, etc.) on each pair of £"?s 

and 0 ; s . 

• Take E[s~ Poisson(8), where (9 = 10,20,30,40,50. 

• x-axis of each of the graphs represents the variance. 
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• y-axis shows the scale of the coverage probability. 

• for a better visual evaluation weather the coverage probability of a given parameter 

estimation is acceptable, draw a line y=0.95, which represents the level of coverage 

probability equal to 95%. 

• repeat this experiment using a larger sample size, say 20,30,40.50 and 100. 

• After all experiments were done, plot the values of coverage probability versus the set 

of the values of a, the variance of heterogeneity parameter. 

Let us call the connected values of the coverage probabilities a coverage probability graph. 

• Put the coverage probability graphs of different sample sizes and the same distribution 

of the E^ together. 

• The values on the graph lines represent the sample size. 

The goal is to check if the initial distribution of Et& makes a significant impact on the 

outcome of the experiment (see the figures presented below). 

Observat ions: 

For each of the coverage probability graphs, we could observe: 

1. Coverage probability tends to increase after the starting point, a = 0.167 

2. After the coverage probability line reaches its maximum, it either stays constant or 

slightly goes down. 

3. The coverage probability graph of the sample size 10 could take the values below the 

95% line. The final result shows that the coverage probability of the sample size 100 has 

the best performance. 
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5000 samples Poisson(10) 

0.2 0 4 0.6 

variance 

0.8 1.0 

5000 samples Poisson(20) 

Figure 4-1: A collection of the coverage probability figures corresponding to the 
fixed distribution of the expected values (Poisson(lO) and Poisson(20)) 
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5000 samples Poisson(30) 

Sample size 10 line 1 
Sample size 20 line 2 
Sample size 30 line 3 
Sample size 40 line 4 
Sample size 50 line 5 
Sample size 100 line h 

1.0 0.2 04 0.6 

variance 

0.8 

5000 samples Poisson(40) 
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d 

r sr 
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en -
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Sample size 10 line 1 
Sample size 20 line 2 
Sample size 30 line 3 
Sample size 40 line 4 
Sample size 50 line 5 
Sample size 100 line h 

o 
en -
d I I i i 

0.2 0.4 0.6 0.3 1.0 

Figure 4-2: A collection of the coverage probability figures corresponding to the 
fixed distribution of the expected values (Poisson(30) and Poisson(40)) 

32 



5000 samples Poisson(50) 

Figure 4-3: A collection of the coverage probability figures corresponding to 
fixed distribution of the expected values (Poisson(50)) 
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Conclusion: 

1. The graphs do have an analogous shape independent of the distribution of the ex­

pected values. That would imply that the distribution of E^s does not have an influence 

the outcome. 

2. The values of the coverage probability improve as the sample size is becoming larger. 

3. The comparison between the set of graphs with distinct value of the parameter 8 

shows that the coverage probability becomes higher as the value of 8 is growing. 

4. In most cases, the coverage probability is above the nominal value 0.95. 

Now, let us rearrange our results in the following way: 

• overlay the graphs according to their sample size, i.e. put the graphs with different 

distributions of expected values of the same sample size together. 

• The values on the graph lines represent the distribution parameter of .E^s. 

The goal is to check the effect of the sample size on the outcome of the experiment (see 

the figures below) 
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5000 samples of size 10 

0.2 

5000 samples of size 20 

Figure 4-4: A collection of the coverage probability figures corresponding to 
the fixed sample size (sample sizes 10 and 20) 
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5000 samples of size 30 

0.2 04 0.6 

variance 

1.0 

5000 samples of size 40 

0.2 0.4 0.6 

variance 

0.8 1.0 

Figure 4-5: A collection of the coverage probability figures corresponding to 
the fixed sample size (sample sizes 30 and 40) 
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5000 samples of size 50 

5000 samples of size 100 

t 

Figure 4-6: A collection of the coverage probability figures corresponding to 
the fixed sample size (sample sizes 50 and 100) 
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Observations: 

1. The coverage probability graphs of the samples with distinct distributions of E[s are 

becoming closer as the sample size is growing. 

2. The smallest spread between the coverage probability graphs could be found in case 

of the sample size 100, and the largest spread is in case of the sample size equal to 10. 

Conclusion: 

The coverage probability could be affected by the sample size, but the choice of the 

distribution of 2?,s does not have a major influence on the final outcome. 

The coverage probability for Poisson with mean 20 is below the nominal value of 0.95 

for the small sample size and a small value of a.However, as the value of a increases, and 

the sample size increases, the coverage probability is above the nominal value. 

In most cases, the coverage probability is maximum for the values of a between 0.4 and 

0.6. 

Now, let us have a look at our result from a slightly different angle. Let us take the 

same set of simulation results and rearrange it in the following way: 

• x-axis represent the values of the parameter 8 

• y-axis represent the coverage level 

• Graph a separate figure for each value of the parameter a. 

• In this case, the numbers on the coverage probability graphs represent the sample 

size. 

The goal is to check the effect of the variance of the spatial heterogeneity parameter. 
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5000 samples, a=0.167 

Sample size 10 line 1 
Sample size 20 line 2 
Sample size 30 line 3 
Sample size 40 line 4 
Sample size 50 line 5 
Sample size 100 line h 

* 

=4-

— i -

10 
~ I — 
50 20 30 

poisson 

40 

5000 samples, a=0.25 

Sample size 10 line 1 
Sample size 20 line 2 
Sample size 30 line 3 
Sample size 40 line 4 
Sample size 50 line 5 
Sample size 100 line h 

Figure 4-7: A collection of the coverage probability figures corresponding to the 
fixed variance (a=0.167 and a=0.25) 
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5000 samples, a=0.5 

£ ' " 

Sample size 10 line 1 
Sample size 20 line 2 
Sample size 30 line 3 
Sample size 40 line 4 
Sample size 50 line 5 
Sample size 100 line h 

5000 samples, a=1 

Sample size 10 line 1 
Sample size 20 line 2 
Sample size 30 line 3 
Sample size 40 line 4 
Sample size 50 line 5 
Sample size 100 line h 

I-
I 

Figure 4-8: A collection of the coverage probability figures corresponding to the 
fixed variance (a=0.5 and a=l) 
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Observations: 

1. The spread between the coverage probability graphs gets smaller as the value of the 

variance parameter grows. 

2. From the last set of figures, we could observe that the sets of size 10 have the lowest 

coverage probability and the sets of the sample size 100 are the most acceptable in this 

aspect. 

Conclusion: 

The influence of the sample size on the outcome becomes smaller as the value of a is 

increases. Therefore, we may conclude that the value of the variance of the parameter of 

the variance of the spatial heterogeneity has a significant impact on the final outcome. 

RESULT: 

The analysis of coverage probability graphs shows that the sample size and the variance 

of the parameter of the spatial heterogeneity are significant for the outcome of the exper­

iment. The choice of the distribution of the expected values does not demonstrate such a 

big impact on the outcome. 

For the part II, we do a graphical analysis of the length of the estimated confidence 

intervals. 

• Plot the length of the confidence intervals versus fixed values of 

a = 0.167,0.25, 0.5 and 1. 

• Overlay graphs with equal distribution of E.ts 

• The values on the graph lines represent the sample size 
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Length of the confidence interval for the variance 
5000 Poisson(10) 

Sample size 10 line 1 
Sample size 20 line 2 
Sample size 30 line 3 
Sample size 40 line 4 
Sample size 50 line 5 
Sample size 100 line h 

0.2 0.4 0 6 

variance 

0 8 1.0 

Length of the confidence interval for the variance 
5000 Poisson(20) 

to 
6 

0.2 0.4 0 6 

variance 

1.0 

Figure 4-9: A collection of the confidence interval length figures corresponding 
to the fixed distribution of the expected values (Poisson(lO) and Poisson(20)) 
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Length of the confidence interval for the variance 
5000 Poisson(30) 

CD 

d 

Sample size 10 line 1 
Sample size 20 line 2 
Sample size 30 line 3 
Sample size 40 line 4 
Sample size 50 line 5 
Sample size 100 line h 

0.2 0.4 0.8 1.0 

Length of the confidence interval for the variance 
5000 Poisson(40) 

CO 

d 

Sample size 10 line 1 
Sample size 20 line 2 
Sample size 30 line 3 
Sample size 40 line 4 
Sample size 50 line 5 
Sample size 100 line h 

0.2 0.4 0.6 

variance 

0.8 1.0 

Figure 4-10: A collection of the confidence interval length figures 
corresponding to the fixed distribution of the expected values (Poisson(30) and 
Poisson(40)) 
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Length of the confidence interval for the variance 
5000 Poisson(50) 

Figure 4-11: A collection of the confidence interval length figures 
corresponding to the fixed distribution of the expected values (Poisson(50)) 
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Obse rva t ion : 

The graphs of the length of the confidence intervals have the same pattern independent 

from the value of the parameter 6. 

Conclusion: 

Examining the set of the graphs presented above, we could say that there is no inflience 

of the distribution of £^s. 

The length of the confidence interval is quite large for the the samples of size 10 and 

20 and for small values of a. As the sample size increases, the confidence interval becomes 

narrower. For the Poisson with mean 50 (sample size J? 30), the length of the confidence 

interval converge to the same numerical value. 

Now, let us rearrange our graphs: 

• Plot the lines of the same sample size together, keeping the initial distribution of the 

observed values distinct. 

• Keep the labeling of the parameter of the distribution of £";s on the confidence interval 

length lines. 



Length of the confidence interval for the variance 
5000 samples of size 10 

CO 

ci 

Poisson(10) line 1 
Poisson(20) line 2 
Poisson(30) line 3 
Poisson(40) line 4 
Poisson(50) line 5 

0.2 0.4 0.6 

variance 

0.8 1.0 

Length of the confidence interval for the variance 
5000 samples of size 20 

o 
d 

Poisson(10) line 1 
Poisson(20) line 2 
Poisson(30) line 3 
Poisson(40) line 4 
Poisson(50) line 5 

1 
0.6 

variance 

0.2 0.4 0.8 1.0 

Figure 4-12: A collection of the confidence interval length figures corresponding to 
the fixed sample size (sample sizes 10 and 20) 
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Length of the confidence interval for the variance 
5000 samples of size 30 

02 0.4 0.6 

variance 

0.8 1.0 

Length of the confidence interval for the variance 
5000 samples of size 40  

02 0.4 0.6 

variance 

0.8 1.0 

Figure 4-13: A collection of the confidence interval length figures 
corresponding to the fixed sample size (sample sizes 30 and 40) 
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Length of the confidence interval for the variance 
5000 samples of size 50 

Poisson(10) line 1 
Poisson(20) line 2 
Poisson(30) line 3 
Poisson(40) line 4 
Poisson(50) line 5 

0.2 0.4 0.6 

variance 

0.8 1.0 

Length of the confidence interval for the variance 
5000 samples of size 100 

Poisson(10) line I 
Poisson(20) line 2 
Poisson(30) line 3 
Poisson(40) line 4 
Poisson(50) line 5 

0.2 0.4 0.6 

variance 

08 1.0 

Figure 4-14: A collection of the confidence interval length figures 
corresponding to the fixed sample size (sample sizes 50 and 100) 
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Observation: 

The figures of distinct distributions of .E ŝ are becoming closer as the sample size is 

growing 

Conclusion: 

1. The sample size makes a significant impact on the result of our experiment. 

2. The distribution of Ets does not play the most important role. 

For sample size 20 and 30, the lengths of the confidence intervals are quite large. The 

least value of the length is obtained when sample size is larger or equal to 50 and the value 

of a is close to 1. 
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4.3 Final remarks and recommendations 

We have proposed an alternative method of the estimation of spatial heterogeneity which 

occurs in estimation of the SMR. 

The essence of the method: 

1. Randomization of parameter A 

2. Assumption: A has a unit mean and variance a, a € R+ 

3. The resulting distribution resembles the modified form of the negative binomial 

distribution. 

4. Estimation of the heterogeneity parameter a using maximum likelihood approach. 

5. Derivation of asymptotic confidence intervals for the estimated parameter. 

Conclusion: 

As a result of the simulation studies, we could conclude 

l.The coverage probability becomes higher as the sample size and the Poisson mean are 

increasing 

2. The value of variance a also has an effect on the final outcome, i.e. the coverage 

probability grows as the value of a becomes larger. 

3. In case of the large sample size, the value of the mean of the Poisson distribution and 

the value of a are not significant for the final outcome. 

4. The length of the confidence intervals becomes smaller as the sample size grows. 

5. The algorithm is very sensitive to the initial parameter estimation (in this case 

Newton-Raphson or analogous procedures). 

Due to the fact that the variance has a relatively small numerical value, the confidence 

interval becomes very short and a slight miscalculation in parameter estimation could lead 

us to a low rate of coverage probability. 
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Appendix A 

S-PLUS CODES 

Newton Raphson algorithm 

x<-c(29,26,54,30,16,15,6,35,17,7,43,17,15,11,11,2,2,9,2,3,11,5,2) 

y<-c(10.7121, 17.9929,18.1699, 19.211, 21.9611, 14.6268, 9.622, 17.2671, 18.823, 18.2705, 

32.1823, 24.5929, 8.3968, 15.6438, 11.8289, 9.9513, 10.8313, 18.3403, 5.1758, 10.9543, 20.0121, 

13.8389, 12.7996) 

a<-0.5 

it<-0 

f.over.derivative<-l 

while(abs(f.over.derivative)>0.0001 && (it<-it+l)<100){ 

{ 

{ 

{bottom. calc<-function(x,y){ 

bottorn<-matrix(0,length(x),l) 

for (i in l:length(x)){ 

for (j in l:(x[i]-l)){ 

bottom[i]<-bottom[i]+(j/(l+a*j)) 

} 

} 

bottom} 

sum(bottom.calc(x,y))} 

{ 
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one. plus. a.ei<-(l+a*y) 

lgone.plus.a.ei<-log(one.plus.a.ei) 

summation<-sum(lgone.plus.a.ei) 

result <-((l/a~2)*(summation)) 

result 

final<-( sum(bottom.calc(x,y))+result) 

} 

sum(bottom.calc(x,y)) 

result 

{top<-(x+l/a)*y 

denominators l+a*y 

ratio<-top/denominator 

sum.ratio<-sum(ratio) 

} 

all. together<-final-sum.ratio 

all. together 

{ 

{new.bottom.calc<-function(x,y){ 

bottom<-matrix(0,length(x), l) 

for (i in l:length(x)){ 

for (j in l:(x[i]-l)){ 

bottom[i]<-bottom[i] + ((-l)*((j~2)/((l+a*j)*(l+a*j)))) 

} 

} 

bottom 

} 

sum(new.bottom.calc(x,y))} 

} 

new.one.plus.a.ei<-(l+a*y) 

new.lgone.plus.a.ei<-log(one.plus.a.ei) 

new.summation<-sum(new.lgone.plus.a.ei) 

new.result <-((2/a"3)*(new.summation)) 
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new. result 

new.final<-( sum(new.bottom.calc(x,y))-new.result) 

{new.top<-(x+l/a)*y~2 

new.denominator<-(l+a*y)"2 

new. ratio<-new. top/new. denominator 

new.sum.ratio<-sum(new.ratio) 

} 

{ 

third. term<-y/(l+a*y) 

third. term<-sum(third. term) 

third.term<-2/a~2*third.term 

third, term 

} 

new. all. together<-riew.final+third.term+new. sum. ratio 

new.all.together 

sum(new.bottom.calc(x,y)) 

new.result 

new. final 

f. over.derivative<-all. together/new.all.together 

f.over.derivative } 

a<-(a-f.over.derivative) 

cat(it, a,"\n")}} 

Information matrix and invertted information matrix 

x<-c(29,26,54,30,16,15,6,35,17,7,43,17,15,ll,11,2,2,9,2.3,11,5,2) 

y<-c(10.7121, 17.9929,18.1699, 19.211, 21.9611, 14.6268, 9.622, 17.2671, 18.823, 18.2705, 

32.1823, 24.5929, 8.3968, 15.6438, 11.8289, 9.9513, 10.8313, 18.3403, 5.1758, 10.9543, 20.0121, 

13.8389, 12.7996) 

a<-0.5 

it<-0 

f.over.derivative<-l 

while(abs(f.over.derivative)>0.0001 && (it<-it+l)<100){ 
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{ 

{ 

{bottom.calc<-function(x,y){ 

bottom<-matrix(0.1ength(x),l) 

for (i in l:length(x)){ 

for (j in l:(x[i)-l)){ 

bottom[i]<-bottom[i]+(j/(l+a*j)) 

} 

} 

bottom} 

s\un(bottom.calc(x,y))} 

orie.plus.a.ei<-(l+a*y) 

lgone.plus.a.ei<-log(one.plus.a.ei) 

summation<-sum(lgone.plus.a.ei) 

result <- ( ( l / a" 2)* (summation)) 

result 

final<-( sum(bottom.calc(x,y))+result) 

} 

sum(bottom.calc(x,y)) 

result 

{top<-(x+l/a)*y 

denominator <-1+a*y 

ratio<-top/denominator 

sum .ratioosum(ratio) 

} 
all. together<-final-sum. ratio 

all. together 

{ 

{new.bot torn.calc<-function(x,y){ 

bottom<-matrix(0,length(x), l) 

for (i in l:length(x)){ 
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for (j in l:(x[i]-l)){ 

bottom[i]<-bottom[i]+((-l)*((j-2)/((l+a*j)*(l+a*j)))) 

} 

} 

bottom 

} 

sum(new. bottom. calc(x,y))} 

} 

new.one.plus.a.ei<-(l+a*y) 

new.lgone.plus.a.ei<-log(one.plus.a.ei) 

new.summation<-sum(new.lgone.plus.a.ei) 

new.result <-((2/a~ 3)* (new.summation)) 

new. result 

new.final<-( sum(new.bot torn.calc(x,y))-new.result) 

{new.top<-(x+l/a)*y-2 

new. denominator <-(l+a*y)~ 2 

new.ratio <-new. top/new. denominator 

new.sum.ratio<-sum(new.ratio) 

} 

{ 

third.term<-y/(l+a*y) 

third. term<-sum(third. term) 

third. te rm<-2/a ' 2*third.term 

third.term 

} 

new.all. together <-new.final+third.term+new.sum.ratio 

new. all. together 

sum (new. bot torn. calc(x,y)) 

new.result 

new.final 

f. over. derivative<-all. together/new. all. together 
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f.over.derivative } 

a<-( a-f.over.derivative) 

cat(it, a,"\n")}} 

{ newl. bottom, calc<-function(x,y){ 

bottom<-matrix(0,length('x),l) 

for (i in l:length(x)){ 

for (j in l:(x[i]-l)){ 

bottom[i]<-bottom[i] + ((-l)*((j"2)/((l+a*j)*(l+a*j)))) 

} 

} 

bottom 

} 

sum(newl. bottom. calc(x,y))} 

{newl.Oiie.plus.a.ei<-(l+aYy) 

newl.lgone.plus.a.ei<-log(onfc.pIus.a.ei) 

newl.summation <-sum(newl.lgone.plufi.a.ei) 

newl. re? alt <-((2/a" 3 )*(newl .summation)) 

newl. result 

newl.final<-( sum{newl.bottom.calc(x,y))-newl.result) 

{newl.top<-(x+l/a)*y~2 

newl.denominators ( l+a*y)" 2 

newl. ratio<-newl.top/newl. denominator 

newl. sum. rat io<-sum(ne\vl. ratio) 

} 

{ 

new. third. term<-y/(l+a*y) 

new.third.term<-sum(new. third.term) 

new. third. term<-2/a"2*new. third, term 

new.third.term 

} 

newl. all. together <-newl.final+new. third, term+newl. sum. ratio 
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newl.all.together } 

inibrmation<~newl. all. together 

variance. a< - ( l /newl. all. together) 

{ 

upper, bound. C.I. a. hat <-a+1.96*sqrt(variance.a) 

} 

{ 

lower.bound.C.I.a.hat<-a-1.96*sqrt(variance.a) 

} 

I 

length.a.int<-upper.bound.C.I. a.hat-lower.bound. C.I.a.hat 

corif.interval.a.hat<-matrix(c(lower.bound.C.I.a.hat,upper.bound.C.I.a.hat), ncol 

length, a. int 

information 

variance.a 
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