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Modeling the geographical distributions of wildlife species is important for 

ecology and conservation biology. Spatial autocorrelation in species distributions poses a 

problem for distribution modeling because it invalidates the assumption of independence 

among sample locations. I explored the prevalence and causes of spatial autocorrelation 

in data from the Breeding Bird Survey, covering the conterminous United States, using 

Regression Trees, Conditional Autoregressive Regressions (CAR), and the partitioning of 

variance. I also constructed a simulation model to investigate dispersal as a process 

contributing to spatial autocorrelation, and attempted to verify the connection between 

dispersal and spatial autocorrelation in species' distributions in empirical data, using 

three indirect indices of dispersal. 

All 108 bird species modeled showed strong spatial autocorrelation, which was 

significantly better modeled with CAR models than with traditional regression-based 

distribution models. Not all autocorrelation could be explained by spatial autocorrelation 

in the underlying environmental factors, suggesting another process at work, which I 



hypothesized to be dispersal. In the simulation model, dispersal produced additional 

autocorrelation in the distribution of population abundances. The effect of dispersal on 

autocorrelation was modulated by the potential population growth rate, with low growth 

rates leading to a stronger effect. The effect of dispersal on population sizes was different 

between populations at the periphery and core of a range. Due to their relative isolation, 

peripheral populations received fewer immigrants than populations at the core, causing 

lower population sizes. Dispersal could therefore be an explanation for range structures 

independent of environmental conditions. The verification of dispersal as a partial cause 

of autocorrelation failed. The most plausible cause was the indirectness of the indices 

used to represent dispersal. 

Distribution modelers should generally include space explicitly in their models, 

especially for species with low potential population growth rates. Dispersal has a strong 

potential to shape species distributions and requires more explicit consideration in 

distribution models and conservation plans. To reach this goal, direct research on 

dispersal distances and strength is urgently needed. Disruptions in natural dispersal 

patterns through removal of habitat isolates populations and thus may harm species 

beyond the effects of only direct habitat removal. \- - & 
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INTRODUCTION 

There has been a surge in interest in modeling the distributions of terrestrial 

wildlife over the past decade (Scott et al. 1991a, Scott et al. 1991b, Scott et al. 1993, 

Scott and Csuti 1997, Guisan and Zimmermann 2000, Austin 2002b, DeStefano and 

Haight 2002, Scott et al. 2002). In addition to its traditional ecological use - explaining 

and predicting species' occurrences, abundances and distributions - distribution modeling 

has become one of the most important tools for modern conservation research and 

management (Scott and Csuti 1997). Its recent popularity is due in part to the urgency of 

conservation problems, but can also be attributed to increases in computing power and in 

the availability of remotely sensed data and Geographic Information Systems (Austin 

2002b). Accordingly, new insights into species' distributions and new distribution 

modeling techniques have been developed, particularly at large extents and coarse 

resolutions. 

The strongest impediment to distribution modeling is the failure to include the 

ecology of species in the modeling process (Austin 2002b). Despite the increasing 

attention given to spatial dependencies (autocorrelation) in species occurrences (Cohen 

and Levin 1991, Hanski et al. 1993, Legendre 1993, Augustin et al. 1996, Leathwick 

1998, Koenig 1999, Trenham et al. 2001, Austin 2002b, Austin 2002a, Engen et al. 2002, 

Lichstein et al. 2002, Keitt 2003, Peakall et al. 2003), a thorough ecological 

understanding of such spatial patterns is still in its infancy. However, without a thorough 

understanding of the sources and mechanisms that create such dependencies, adequate 

methods for addressing them remain elusive (Austin 2002b). The goal of this dissertation 

is to investigate the ecological processes causing spatial autocorrelation in species 
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distributions and to thus further the development of distribution modeling techniques that 

better incorporate the ecology of the organisms. 

This dissertation consists of four chapters. In the first chapter, autocorrelation in 

species distributions is investigated and described using empirical data. The function of 

this initial exploratory research is to provide insights into patterns for inductive formation 

of hypotheses on the underlying causes of the patterns. In this chapter I also add 

improvements to established modeling techniques and develop some new techniques for 

spatially explicit distribution modeling. In the second chapter, I used a simulation model 

to quantitatively elaborate the hypothesis from Chapter 1 that spatial autocorrelation is 

partly caused by dispersal. The simulation model also served to investigate how sensitive 

the effect of dispersal was to different parameter values and scenarios. Chapter 2 provides 

a more detailed understanding of how dispersal could cause spatial autocorrelation 

patterns and which parameters it should be sensitive to. The third chapter is an extension 

to the second chapter, in which I ask whether the effects of dispersal on distribution 

patterns are constant over the range of a species or whether the relative isolation of 

populations at the range edge could lead to differences between population densities at 

the core and at the margin of a distribution. Finally, Chapter 4 attempts t^cenfirm the 

connection between dispersal and autocorrelation using empirical data. 

While the principles underlying this research apply broadly to distribution 

modeling, the focus was terrestrial vertebrates; more specifically, my empirical work was 

based on data from the Breeding Bird Survey (BBS)(Sauer et al. 1997). BBS data are 

well suited for my research because they cover many species over a large extent of space 

and time. The environmental conditions used as independent variables came from Very 
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High Resolution Radar (AVHRR) imagery classified into landcovers by Loveland et al. 

(1991) with additions by O'Connor (1996). Working at such a coarse scale made my 

research relevant to the GAP Analysis Program (Scott et al. 1991a, Scott et al. 1991b, 

Scott et al. 1993, Scott and Csuti 1997), which predicts vertebrate distributions by state. 

The coarse scale used had several implications for distribution modeling. On the 

one hand, the determining factors used in such models are more likely to be indirect 

gradients (sensu Austin 2002b, Austin 2002a), because it is impossible to measure direct 

gradients such as food and shelter availability at such a scale. Using indirect gradients 

rather than direct factors translates into a move away from a mechanistic or causal model 

towards a descriptive model (Austin 2002b). On the other hand, models at coarser scales 

have higher predictability than those at finer scales because they integrate over much 

fine-scale variability. Such fine-scale variability often derives from fine-scale processes 

that are beyond our current ecological comprehension or beyond the level of complexity 

that we can effectively incorporate into distribution models. In addition, working at a 

coarse scale shifts the balance between external and internal factors, influencing patterns 

towards internal factors of the model (Goodwin and Fahrig 1998). Finally, by working at 

a large extent, I increased the probability of including the full range of ccfod&ions under 

which a species occurs. This is because the range of conditions sampled in a study 

(assuming an appropriate resolution and sample density) is correlated with the extent and 

determines the accuracy, precision, and generality of the resulting predictions (Austin 

2002a). 

To present a coherent picture of the approach used in this dissertation, and to 

accurately communicate the hypotheses and results, it is important that the reader have a 
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clear understanding of my use of language to describe concepts. Therefore, the following 

subsections introduce and define the core concepts, issues, and expressions used in this 

dissertation, in agreement with the definitions of terms in Scott et al. (1996) and 

Morrison & Hall (2002). 

Scale 

Several authors have lamented the imprecise use of the concept of scale in 

ecology (e.g., Goodchild and Proctor 1997, Huston 2002). Two separate concepts, 

resolution and extent, are encompassed in the term scale. I use the term resolution for the 

amount of detail per area captured, and the term extent for the total area covered. 

Typically, research over a large extent has low resolution and research of high resolution 

covers only a small extent, but this need not be the case. Therefore, I use the more precise 

terms extent and resolution where appropriate. However, when both a large extent and a 

low resolution are described, I still use the expression "coarse scale" and conversely "fine 

scale" for a small extent and high resolution. I do not use the terms "small scale" or 

"large scale," though, because they have opposite meanings in geography and ecology. 

Distribution V>»-

The distribution of a species refers to the locations of its individuals. The concept 

of distribution is dependent on the spatial and temporal scale of its observation and 

description. At the finest resolution and smallest extent, the distribution of a species is a 

snapshot of the location of every individual at a single point in time. At the coarsest scale 

in space and time the distribution can be depicted as a range map that encompasses all 

occurrences of the species over a long period. Clearly, spatial and temporal resolution 
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and extent matter when species' distributions are described and careful attention must be 

paid to match the scales of questions and research (Goodwin and Fahrig 1998, Huston 

2002). 

Distribution modeling 

Distribution modeling is an important research and planning tool in ecology 

(Guisan and Zimmermann 2000) and conservation biology (Scott and Csuti 1997, Austin 

2002b). I define a distribution model as any model that tries to explain or predict species 

occurrences or abundances. To date, distribution modelers have mainly used habitat 

associations to model species occurrences (Scott et al. 2002). To be at a place, an 

organism must either have been born there or have moved there, and equivalently, to 

leave a place it must either die or move away. Traditional distribution models, based on 

habitat associations, capture only the fecundity and survival part of these processes. They 

do not capture the spatial aspects of dispersal, as expressed in distances and resistances 

among patches and influences from neighboring populations. Thus, traditional habitat 

models do not account for patterns in distributions caused by population dynamics that 

are based on dispersal, such as source-sink populations and metapopulations (Pulliam 

1988, Pulliam and Danielson 1991, Dias 1996, Pulliam 1996, Hanski 1998, Haydon and 

Pianka 1999, Hanski 2001, Johst et al. 2002). Consequently, a traditional distribution 

model will assign two patches of habitat with very similar physical characteristics the 

same probability of occupation, even if one patch is in close vicinity to many patches of 

excellent habitat and the other patch is very isolated. 
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Spatial autocorrelation 

On average, the closer together two locations are, the more similar are their 

measures of species abundances or occurrences - a phenomenon called spatial 

autocorrelation (Bj0rnstad et al. 1999, Selmi and Boulinier 2001, Trenham et al. 2001, 

Keitt et al. 2002, Schiegg 2003). Autocorrelation in abiotic and biotic resources has been 

observed for a long time, resulting in Tobler formulating the first law of geography as: " . 

. . everything is related to everything else, but near things are more related than distant 

things." (Tobler 1970: 236) The distribution of a species depending on these resources is 

also spatially autocorrelated (Legendre 1993, Lichstein et al. 2002). However, other 

sources of autocorrelation in species distributions may exist, a topic investigated in this 

dissertation. 

When modeling species distributions, spatial autocorrelation has positive and 

negative consequences. Most authors see only the negative side. For example, spatial 

autocorrelation leads to dependence among samples decaying with distance, which is 

problematic for traditional distribution models, such as correlation and regression models, 

which work under the assumption of independence in the residual errors. Autocorrelated 

data violate this assumption and lead to inflated estimates in degrees of freedom, which 

lead to underestimations of variance and overestimation of significance of effects 

(Student 1914, Legendre and Fortin 1989, Legendre 1993, Dale and Fortin 2002). 

However, spatially explicit models exist that incorporate spatial autocorrelation at low 

cost to model complexity. These models include partialling out the spatial component in 

variation (Borcard et al. 1992, Meot et al. 1998), Legendre's extension of this with 

truncated neighborhood matrices (Legendre and Legendre 1998, Borcard and Legendre 
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2002), kriging (e.g., Legendre and Fortin 1989, van Horssen et al. 2002), autoregressive 

models (e.g., Augustin et al. 1996, e.g., Keitt et al. 2002, Lichstein et al. 2002), modified 

correlograms (Koenig and Knops 1998), and Classification and Regressions Tree 

(CART) models with spatial dependence (Miller and Franklin 2002). The benefit of 

including autocorrelation in a model is not only that assumptions are better met, but also 

that the values of neighbors are incorporated, which ultimately improves the predictive 

power of the model (Costanza and Ruth 2001). In addition, spatial models may improve 

variable selection (Ellner and Seifu 2002, Keitt et al. 2002). Non-spatial models cannot 

account for autocorrelation and thus may incorrectly select variables purely because they 

have a similar autocorrelation as the dependent variable, not because they are good 

predictors in an ecological sense (Lennon 2000, Ellner and Seifu 2002, Keitt et al. 2002). 

Dispersal 

I use dispersal in the sense of Lidicker (1975), which includes every movement 

that constitutes "leaving the home area" and excludes short-term exploratory and "round-

trip" migratory movements. Dispersal can be categorized into natal and adult dispersal, 

with dispersal in most birds falling into the first category (Paradis et al. 1998, Gaston and 

Blackburn 2003). My research is concerned with the combined effect of natal and adult 

dispersal on coarse-scale geographical distributions of wildlife species. 

Among species and even within species, dispersal distances, strategies, and 

motivations differ widely (Stenseth and Lidicker 1992a). These differences are not the 

focus of this thesis. In my investigation the cumulative effect of dispersal within a species 

is of primary interest. 
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CHAPTER 1 

IMPORTANCE OF SPATIAL AUTOCORRELATION IN MODELING BIRD 

DISTRIBUTIONS AT A CONTINENTAL SCALE 

1.1 Abstract 

Spatial autocorrelation in species' distributions has been recognized as causing 

biases in statistics and violating the statistical assumptions of traditional distribution 

modeling techniques such as correlation or regression models that do not account for 

spatial effects. However, it remains unclear whether biases occur at all spatial resolutions 

and extents, and under which conditions spatially explicit modeling techniques are 

superior. The need to model in a spatially explicit way has been contested at large 

extents, where spatial autocorrelation due to animal movement is less likely than at small 

extents. In one case it was shown that the inclusion of all important environmental 

variables at a large extent alleviated all spatial autocorrelation in the distribution of the 

species that is due to environmental autocorrelation. I tested the performance of spatially 

explicit regression models in comparison to traditional non-spatial models of the 

distributions of 108 bird species from the Breeding Bird Survey throughout" the 

conterminous USA. As judged by Akaike's Information Criterion, the spatially-explicit 

conditional autoregressive regression models strongly outperformed traditionally-used 

linear regression models. In addition, partialling out the purely spatial component 

underlying the species' distributions showed that an average of 17% of the explained 

variation could be attributed to purely spatial effects independent of the spatial 

autocorrelation induced by the underlying environmental variables. Therefore, spatially 
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explicit models are expected to yield better predictions especially for mobile species such 

as birds even in coarse-grained models with a large extent. 

1.2 Introduction 

Documenting and understanding the distributions of organisms in space and time 

are central to the fields of biogeography, ecology, and conservation biology. Ecology has 

been defined as the study of the distribution and abundance of organisms (Andrewartha 

and Birch 1954, Krebs 1972, Andrewartha and Birch 1984). In conservation biology, 

knowledge of the actual or potential distribution of a species is indispensable for 

threatened and endangered species management and protected area planning (Scott and 

Csuti 1997). However, at most times the actual locations of individual organisms are 

unknown. The discipline of distribution modeling strives to fill this void by making 

probabilistic statements about the geographic distribution of species (Scott et al. 2002). 

Distribution models that do not include spatial location explicitly assume that 

species' locations are independent in space and time. Such an assumption could be 

violated if a) the conditions defining the niche were autocorrelated; or b) species' 

locations were connected through dispersal or other behaviors that lead to spatial 

patterning such as aggregation or regular spacing. Lichstein et al. (2002) termed the 

former cause of spatial dependence exogenous and the latter endogenous. 

Concerning endogenous sources of spatial patterning, species generally exhibit 

some dispersal, be it as seeds, juveniles or adults. Such dispersal events connect 

populations in space and time and have the potential to create dependence at varying 

spatial and temporal scales (Keitt et al. 2002, Lichstein et al. 2002). Traditional habitat 

models do not account for population dynamics based on dispersal, such as source-sink 
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populations and metapopulations (PuUiam 1988, Pulliam and Danielson 1991, Dias 1996, 

Pulliam 1996, Hanski 1998, Haydon and Pianka 1999, Hanski 2001, Johst et al. 2002). 

Consequently, a traditional model will assign the same probability of occupancy to two 

habitat patches A and B, with similar physical characteristics, even if patch A is 

surrounded by excellent habitat and patch B is completely isolated from other suitable 

habitat. An expected consequence of dispersal among habitat patches is that the average 

similarity among population densities in patches decays with distance - a phenomenon 

called spatial autocorrelation (Bj0rnstad et al. 1999, Selmi and Boulinier 2001, Trenham 

et al. 2001, Keitt et al. 2002, Schiegg 2003). 

In addition, environmental conditions underlying a species' niche are dependent 

in space and time, which exogenously causes spatio-temporal dependence or 

autocorrelation in species' distributions (Legendre 1993). Autocorrelation in abiotic and 

biotic resources has been observed for a long time, resulting in Tobler formulating the 

first law of geography as: " . . . everything is related to everything else, but near things 

are more related than distant things." (Tobler 1970: 236) In following these resources, 

species' distributions are also spatially autocorrelated (Legendre 1993, Lichstein et al. 

2002). twfc. 

If only exogenous autocorrelation was present in a species' distribution, the 

inclusion of all environmental determinants would suffice to create a valid model because 

they would implicitly carry all necessary spatial information (Diniz-Filho et al. 2003). In 

other words, if all autocorrelation in the distribution of a species is caused by 

autocorrelation in the distribution of the important resources and conditions, inclusion of 

these conditions and resources as variables will lead to a complete model and not miss 

10 



spatial information and relationships. If, however, endogenous autocorrelation is present -

for example, due to dispersal, conspecific attraction or other behaviors leading to spatial 

patterning - the inclusion of all relevant environmental and resource determinants will not 

eliminate autocorrelation from residuals of the model and will lead to biases in variance 

and coefficient estimates, as well as model selection (Lennon 2000, Keitt et al. 2002). 

The question remains, however, whether endogenous and exogenous 

autocorrelation in species distributions are of practical consequence to distribution 

modeling. This question is dependent on the temporal and spatial scale of the 

investigation and different authors have come to different conclusions. Typically, 

researchers working at small to medium extents and fine resolution found the explicit 

inclusion of spatial information beneficial or even crucial to their distribution models 

(Augustin et al. 1996, Selmi and Boulinier 2001, Keitt et al. 2002, Lichstein et al. 2002). 

At larger extents (in the order of hundreds of kilometers) Diniz-Filho et al. (2003) found 

the inclusion of environmental variables to be sufficient to eliminate autocorrelation in 

the residuals of a model for species richness of birds. Similarly, Koenig (1998) found 

little evidence for spatio-temporal autocorrelation in the distribution of Californian 

landbirds. %*& 

The study presented here differs from the above studies because it a) covers a 

large extent (the conterminous United States); but b) concerns the distributions of single 

species (in contrast to Diniz-Filho et al. 2003 who modeled species richness); and c) 

deals with spatial autocorrelation only (in contrast to Koenig 1998 who investigated 

spatio-temporal autocorrelation). 
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At small extents, the connection among populations creating spatial 

autocorrelation in population sizes seems to be well established (Augustin et al. 1996, 

Thomson et al. 1996, Lichstein et al. 2002, Peakall et al. 2003). In contrast, at large 

extents, most of the ecological mechanisms suggested for pattern formation at small 

extents are not applicable (e.g., conspecific attraction, colonialism, short distance 

dispersal). The most plausible mechanism that could produce spatial autocorrelation 

above and beyond the autocorrelation in the underlying resources is long distance 

dispersal. 

The success of Diniz-Filho et al. (2003) in capturing spatial autocorrelation in a 

non-spatial model may well be attributable to their dependent variable, species richness. 

In contrast to single species distributions, species richness is a compound measure, which 

is likely to experience smoothing from the overlaying of many individual distributions. 

Spatial processes such as dispersal that could lead to autocorrelation in individual 

species' distributions are averaged across many species when concerning species 

richness. Because they vary from species to species in strength and extent, their pooled 

effect therefore may well have no discernable effect on species richness. Consequently, 

autocorrelation in species richness patterns is more likely to have been caused by 

autocorrelation in the underlying environmental factors, explaining the absence of 

autocorrelation in the residuals of a non-spatial model. 

Spatio-temporal autocorrelation, or synchrony, requires enough exchange 

between populations to synchronize their population dynamics, which is a more stringent 

requirement than enough exchange to influence each other's population size averaged 

over time. While Koenig (1998) found that long distance dispersal was not strong enough 
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to induce synchrony in birds over large extents, it may be strong enough to induce spatial 

autocorrelation in distributions averaged and thus smoothed over time. 

In this paper, I investigated whether spatial effects are relevant to bird distribution 

modeling at a coarse, national scale. Rather than using hypothesis tests to detect presence 

or absence of autocorrelation in model residuals at an arbitrary level, I relied on model 

selection through Akaike's Information Criterion (AIC) to compare the relative efficiency 

of distribution models that include space explicitly with those that do not. In addition, I 

determined the amount of variation in bird distributions that can be attributed to purely 

spatial effects and not to environment or environment-space interactions, following and 

improving upon Borcard et al.'s (1992) method for partitioning sources of variation. 

1.3 Methods 

I compared traditional distribution models, based on environmental and climate 

variables only, to spatially explicit models that also included spatial position and 

neighborhood relationships. 

I used data from the Breeding Bird Survey (BBS) for the conterminous USA from 

1981 to 1990. See Robbins et al. (1986), Sauer et al. (1994), and O'Connor et al. (1996) 

for detailed methods and discussion of the BBS. Bird data for individual species were 

summarized as presence/absence over complete routes each year and then expressed as 

incidences over the ten years for each route. Using incidence instead of abundance has 

the advantage of being less sensitive to detection probabilities while being more closely 

related to abundance than are presence/absence data (Wright 1991, Hanski 1992). 

I transformed incidence values with an arcsine transformation (Freeman and 

Tukey 1950, Zar 1996: 283) to move toward normal distributions. Only the 1189 routes 
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with the highest quality standard and at least 7 years of data were included in the 

analysis. 

The starting points of routes were mapped to Environmental Monitoring and 

Assessment Program (EMAP) hexagons (White et al. 1992), which are 620 km in size 

and approximately 27 km apart from center to center. 

I selected 108 species of breeding birds for the analysis (Appendix). Criteria for 

the selection were good coverage over the conterminous USA (> 150 occupied routes) 

and sensitivity to coarse-scale predictors covered in my dataset (R > 0.5 in initial 

regression tree models). Reasons for exclusion were extreme range shapes, such as long 

and narrow ranges along the border of the study area, or the extremely patchy 

distributions. Such distributions prevent meaningful spatial modeling. 

I used bird ranges from Naturserve (Ridgely 2003) to determine the study area 

and thus the routes to be included in the models for each of the selected species. This step 

was necessary because including the whole study area and all 1,189 routes for all species 

would have meant that the many routes with zero incidences in each species would have 

dominated the models. Such models would have mostly modeled presence absence over 

the study area and not patterns of abundances within the study area. In addition, heavily 

skewed, zero-inflated distributions of incidence values would have led to violations in the 

assumptions of regression analyses and problems with the trend surfaces in the spatial 

models. However, because the Naturserve ranges were conservative and often excluded 

occupied BBS routes, I buffered all ranges by 150 km, a distance that proved to include 

almost all occupied BBS routes. 
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My independent variables stemmed from research by O'Connor et al. (1996). 

They comprised 159 land cover variables from Loveland et al. (1991) derived from 

remotely sensed Advanced Very High Resolution Radar (AVHRR) with an additional 

land cover type "urban." Additional variables were various measures of spatial 

configuration of habitat patches in hexagons (e.g., fractal dimension), climatic variables 

including seasonal temperatures and rainfall, and elevations from a digital elevation 

model. For more details on the land cover variables see O'Connor et al. (1996, 1999). 

In total, there were 207 independent variables, 160 variables summarizing land 

cover information, 12 climate variables (January and July temperatures, precipitation, and 

derived variables such as seasonality), 4 variables from digital elevation models, and 31 

other variables characterizing the land cover in terms of spatial configuration and 

fragmentation indices. Many of the land covers had a localized distribution (i.e., they did 

not occur at most locations) and the average number of effectively available variables at a 

single location was thus much smaller than 207. 

The first step in the modeling process was the generation of regression tree (RT) 

models, which I used as a robust method for variable selection (Breiman 1984, Walker 

and Cocks 1991, De'ath and Fabricius 2000, Austin 2002b). These mod^.s.were also used 

to eliminate species whose environmental determinants were not well captured at a coarse 

scale. RT models were built with the library RPART (Therneau and Atkinson 1997), and 

were pruned to final size using the 1 standard error rule after 25-fold cross-validation 

(Breiman 1984). 

Next the selected variables were included as 3ld degree polynomials in regular 

linear regression models to allow for curvilinearity, which is modeled implicitly by the 
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RT models. To eliminate redundant variables and/or their polynomials, I used backwards 

step-wise model selection by Akaike's Information Criterion (AIC). Polynomial terms of 

lower order were kept in the model with retained higher terms of the same variable even 

if they had not been selected by AIC. 

I built three types of regular linear regression models. The first type contained 

only environmental variables (ENV), the second type contained only the geographic 

coordinates of the hexagons (up to 3rd degree polynomial form) as a trend surface 

(TREND), and the third combined the first two sets of variables in one model 

(ENV.TREND). The last type was the model I used for the secondary variable selection 

by AIC as described above, while the former were hierarchical subsets of the latter. 

Finally, I used conditional autoregressive regressions (CAR) for spatially explicit 

modeling (Cressie 1993, Lichstein et al. 2002). CAR models include information on the 

residuals of neighboring locations and are solved iteratively (see equation 1). Thus they 

capture fine-scale spatial autocorrelation, which is missed by the trend surface models. I 

determined the neighborhood by calculating eight models with neighborhood sizes 

between 50 and 400 km in 50 km steps, and selecting the neighborhood size leading to 

the model with the highest maximum likelihood estimate for each spec i f The influence 

of neighbors was inversely distance weighted with a spherical model (Kaluzny et al. 

1996). I created CAR models with variable selections identical to the TREND model 

(CAR.TREND - only coordinates included) and ENV.TREND model (CAR - coordinates 

and environmental variables included). CAR models follow the equation: 

Y = X(3 + pC(Y - XP) + e (equation 1) 
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Where Y is the vector of dependent variables; X is a matrix of independent 

variables; C is a symmetric neighborhood matrix; (3 and p are coefficients; and £ is a 

matrix of errors with the covariance matrix o2(I - pC)~' , where I is the identity matrix. 

The log-likelihood of all regression models was calculated in S-PLUS through a 

likelihood ratio test, in which model components can be set to zero. The non-spatial 

models had the coefficient p (rho) in front of the neighborhood element set to zero. 

Akaike's Information Criterion (Akaike 1981) was calculated from these log-likelihoods 

and from the number of parameters included in the models (including the intercept and 

the spatial coefficient p where appropriate). The proportion of variance explained by the 

model (FT) was calculated from log-likelihoods according to the formula given by 

Nagelkerke(1991). 

1 partialled out the variation that could be ascribed to the environment, space and 

environment/space interaction according to the method described in Borcard et al. (1992) 

and Legendre and Legendre (1998). My method deviated from theirs in so far as my 

spatial component was not restricted to the coarse-scale effects captured by a trend 

surface, but also included the fine-scale effects captured by the neighborhood matrix in 

the CAR models. V**-

All statistical analyses were done in S-PLUS 6.2 (Insightful 2003) with the 

additional module SPATIAL (Kaluzny et al. 1996) and the add-on libraries RPART and 

MASS (Venables and Ripley 2002)(use of this product does not imply endorsement). 

Hypothesis tests were reported to be significant if the probability of a type I error was 

below 0.05, unless noted otherwise. The number given with ± after statistics is the 

standard error (SE), unless noted otherwise. 
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1.4 Results 

Table 1 shows a comparison among regression trees (RTs), regular linear 

regression models, and spatial regression models. The sample size of included routes 

differed among species depending on how many routes fell within a species' range. The 

average sample size was 717 ± 28.7 routes per species (range: 161-1189). 

Table 1. Comparison among regression tree (RT), regular linear regression models and 
spatial regression models. The values shown are averages of 108 individual models ± 
standard errors. 

Model R2 Variables Parameters* AIC** 
Regression Tree 0.56 ±0.013 4.9 ± 0.30 12.3 ±0.74 n/a 
Regular regression model 

ENV 0.50 ±0.014 4.6 ±0.29 14.3 ± 0.68 158.8 ±9.91 
Regular regression models with trend surface 

TREND 0.40 ±0.017 1.9 ±0.03 7.1 ±0.11 261.8 ± 14.09 
ENV.TREND 0.56 ±0.013 6.5 ±0.29 19.4 ±0.70 69 ± 5.09 

Spatial regression models 
CAR 0.60 ±0.012 6.5 ±0.29 20.4 ± 0.70 0 ± 0 
CAR-TREND 0.49 ±0.015 1.9 ±0.03 8.1 ±0.11 139.4 ± 8.27 

* The number of parameters is the number of splits for RTs and the number of 
coefficients including the intercept for linear regression models. 
** Akaike's Information Criterion (AIC) scaled to the lowest value, which always was 
the CAR model. AIC cannot be calculated for RTs because they are not a likelihood 
based method. 

The environmental variables passed on from the RT models were mostly retained 

during the AIC stepwise selection in the regression models. While 86 models retained all 

variables selected by the RT models, only 17 dropped 1, 4 dropped 2, and 1 dropped 3 

variables. In addition, the median number of splits in the RT models (11, IQR: 7 - 15) 

was only slightly different from the median number of parameters (13, IQR: 8 - 18) in the 

environmental models (ENV), which was surprising given the very different structure and 

complexity selection method of the models. However, the average R (%) of the RT 

models was 6.5 ± 0.7 higher than the average R2 of the ENV models (49.8 ± 1.4). The 
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average R2 of the RT models (56.3 ± 1.3) was almost identical to the R2 of the 

ENV.TREND models (56.2 ± 1.3), which contained a trend surface based on geographic 

coordinates in addition to the environmental variables. Note, however, that the variable 

selection was optimized by the RTs but not by the linear regression models, which had 

only the pre-selected variables to choose from. 

The full spatial regression models (CAR) were a considerable improvement over 

the traditional regression models, including those with environmental predictors only 

(ENV). The CAR models had an on average 10.2 ± 0.4 higher R2, which is a 25.5 ± 

0.02% improvement over the ENV models. However, the CAR models contained more 

parameters than the ENV models (median: 6,1QR: 6 - 7). The more meaningful statistic 

for comparing the goodness of fit between the two kinds of models is Akaike's 

Information Criterion (AIC), which penalizes for the number of parameters fitted in the 

model. The AIC values of the spatially explicit CAR models were, on average, 158.8 ± 

9.912 points lower than those of the ENV models. According to the rule of thumb 

suggested by Burnham and Anderson (2002: 70), when comparing models, a difference 

in AIC of 2 or less lends substantial support to the competing model, a difference of 4-7 

considerably less support and a difference >10 essentially lends no supd^Et-to the inferior 

model. 

The fully spatial CAR models also improved upon the regression models that 

contained a trend surface but not a neighborhood matrix (ENV.TREND). The R2 of CAR 

models was on average 3.8 ± 0.3 higher than that of the ENV.TREND models, and the 

CAR models' AIC was on average 69.02 ± 5.09 points lower than that of the 

ENV.TREND models. 
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At the large extent of the study, using a niche based approach with environmental 

variables only (ENV) did not have more explanatory power than using pure spatial 

interpolation (CAR.TREND). Ecologically this means that the spatial position in the 

range and the incidences at neighboring locations are as important to the incidence value 

of a population as the local environmental conditions. The difference between ENV 

models and CAR.TREND models in R2 was only 0.6 ± 0.9. The CAR.TREND models 

did not contain any environmental predictors and thus were pure spatial interpolations 

with fewer variables (the geographical coordinates) and parameters than the ENV 

models. The lower number of parameters led to a considerably lower average AIC value 

for the CAR.TREND models (AIC ENV - AIC CAR.TREND: 19.42 ± 11.05). 

The average maximum neighborhood distance selected as giving the best model 

out of the 8 tested distances was 195.8 ± 7.2 km for the full CAR models and 244.4 ± 8.9 

km for the CAR.TREND models, which did not contain environmental variables. The 

increase in distance from CAR to CAR.TREND models could be explained by the spatial 

information carried implicitly in the environmental variables, which accounted for a part 

of the spatial autocorrelation in the CAR models but not the CAR.TREND models. 

Table 2 shows the results of applying Borcard et al.'s (1992) par1siti«ning sources 

of variation to the data. This technique yielded estimates of the proportions of variance 

associated with a non-spatial effect of the environmental variables (Environment), with a 

purely spatial patterning in the dependent variable (Space), and with the interaction 

between environment and space (Interaction) due to spatial patterning in the 

environmental variables. In contrast to Borcard et al.'s (1992) original technique, which 
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used trend surfaces only, my results were based on a fully spatial CAR model, which 

captured both coarse- and fine-scale spatial patterns. 

The purely environmental partition and the purely spatial partition were of similar 

size (Table 2: Environment and Space), 18 and 17% of the total variance explained, 

respectively. Approximately 65% of the explained variation in species' distributions, the 

largest part, however, was attributable to the spatial configuration of the environment or, 

as expressed here, the environment/space interaction (Table 2: Interaction). 

Table 2. Partitioning of sources of variation in bird distributions according to Borcard et 
al.'s (1992) method. The four parts describe respectively the variation attributed to a 
purely local environmental effect, the spatial patterning in the dependent variable, the 
interaction between environment and space found in the spatial patterning of 
environmental variables, and the unexplained variation or error in the model. In addition 
to Borcard et al.'s (1992) original method, also shown is a partitioning based on fully 
spatial models (CAR), which captured fine-scale neighborhood effects in addition to the 
coarse-scale spatial effects captured in the original model's trend surfaces. 

Approach 
Borcard et al. 
Full spatial 
Difference 
P-value* 

Environment 
0.160 ±0.009 
0.109 ±0.006 
0.052 ± 0.003 

< 0.0001 

Space 
0.064 ± 0.004 
0.102 ±0.004 
-0.038 ± 0.003 

< 0.0001 

Interaction 
0.337 + 0.017 
0.389 ±0.016 
-0.052 ± 0.003 

< 0.0001 

Error 
0.438 ±0.013 
0.400 ±0.012 
0.038 ± 0.003 

< 0.0001 
* Paired Student's t-test with 107 degrees of freedom. 

Using a CAR model to determine spatial effects resulted in clear shifts in the three 

partitions from Borcard et al.'s original method, which uses trend surfaces only (Table 2). 

The partitions containing spatial elements increased (Space and Interaction) at the cost of 

the size of the environmental part (Environment) and the unexplained part (Error). 

1.5 Discussion 

When modeling species' distributions, incorporating spatial autocorrelation has 

positive and negative consequences. Most authors focus on the negative consequences 

(Student 1914, Legendre and Fortin 1989, Legendre 1993, Dale and Fortin 2002, Keitt et 
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al. 2002). Spatial autocorrelation leads to a dependence among samples that decays with 

distance. Traditional statistical models employed in distribution modeling, such as 

correlations and regressions, work under the assumption of independence in the residuals. 

Autocorrelated data violate this assumption and lead to inflated estimates in degrees of 

freedom, which lead to underestimates of variance and overestimation of the significance 

of effects (Student 1914, Legendre and Fortin 1989, Legendre 1993, Dale and Fortin 

2002, Keitt et al. 2002). 

However, spatially explicit models exist that can incorporate spatial 

autocorrelation with a low cost in terms of increased complexity. These models include 

truncated neighborhood matrices (Borcard and Legendre 2002), kriging (e.g., Legendre 

and Fortin 1989, van Horssen et al. 2002), autoregressive models (e.g., Augustin et al. 

1996, Keitt et al. 2002, Lichstein et al. 2002), modified correlograms (Koenig and Knops 

1998), and CART models with spatial dependence (Miller and Franklin 2002). The 

benefit of including autocorrelation in a model is not only that the statistical assumptions 

are better met, but also that the predictive power of a model is improved by incorporating 

additional information or predictors, such as the values at neighboring locations 

(Costanza and Ruth 2001). In many geostatistical applications, such as %iging, 

neighborhood information is the only predictor in the model, which equates to an 

elaborate form of spatial interpolation. In my study, models based exclusively on spatial 

trend and neighborhood information even outperformed the traditional models that 

included only environmental variables. 

Spatial models may also improve variable selection (Ellner and Seifu 2002, Keitt 

et al. 2002). Non-spatial models cannot account for autocorrelation and thus may 
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incorrectly select variables purely because they have a similar autocorrelation as the 

dependent variable and not because they are good predictors (Lennon 2000, Ellner and 

Seifu 2002, Keitt et al. 2002). 

While autocorrelation at fine scales has been well documented (Legendre 1993, 

Thomson et al. 1996, Lichstein et al. 2002), research at a coarse scale (hundreds to 

thousands of km) is still rare. I was able to demonstrate that spatial autocorrelation in bird 

distributions at such a coarse scale is important, and that spatial models are much better at 

handling spatially dependent data than are traditional habitat-based regression models. 

In contrast to the research on bird species richness by Diniz-Filho et al. (2003), I 

found strong spatial effects in individual bird species' distributions that did not disappear 

with the inclusion of environmental variables. The difference in results may be explained 

by the difference in dependent variables. As a compound measurement, species richness 

may smooth over spatial autocorrelation in individual species' distributions caused by 

dispersal, leaving only environmental autocorrelation. Similarly, my finding of spatial 

autocorrelation effects differs from Koenig's (1998) findings from research on California 

birds. He only found spatio-temporal autocorrelation, or synchrony, in 1 out of 88 

investigated species. However, finding synchrony in species distribution^.isimuch more 

demanding than finding spatial autocorrelation only. Tests of synchrony use individual 

observations of populations in space and time, and must accommodate variance in time as 

well as in space. In contrast, my focus on spatial autocorrelation in data averaged over 10 

years to minimize the effects of temporal variability gave more limited but more robust 

results. 
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The power of advanced spatial modeling techniques was further demonstrated 

using the invaluable method of partialHng out sources of variance, pioneered by Borcard 

et al. (1992). They used trend surface models to capture spatial patterns, which included 

third degree or less polynomial geographic coordinates as variables in a regression 

model. However, with a sensible highest polynomial inclusion of the coordinates in the 

third degree, trend surfaces can capture only long-wave spatial patterns and cannot 

account for short-range autocorrelation (Meot et al. 1998). Incorporating relatively fine-

scale neighborhood effects (here at the scale of tens to hundreds of km) on top of the 

coarse trend surface approaches resulted in a shift in the distribution of variance across 

the three partitions. While the purely environmental, niche-based factors experienced a 

relative loss in explanatory power, the purely spatial and spatial/environmental 

interaction partitions gained in importance. This underscores the importance of 

neighborhood effects in bird distributions. Borcard and Legendre (2002) found similar 

shifts in partitions with an improved spatial approach to their own method. However, 

their method is more complicated than mine and was demonstrated only for one 

dimension (along a transect) in their paper. 

On average, purely environmental effects and purely spatial effects «ach 

accounted for about 18% of the explained variation. In contrast, on average 65% of the 

explained variation in the distributions was explained by space/environment interactions. 

The pure environmental effect has to be understood as the immediate influence of the 

environmental conditions on survival and reproduction of the organism, ignoring any 

types of immigration and emigration, temporal movements, and influences of proximate 

habitats. The purely spatial component of species' distributions would then have to be 
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interpreted as resulting from behaviors leading to dispersal (as defined below) 

independent of environmental conditions. I use dispersal here in the sense of Lidicker 

(1975) including every movement that constitutes leaving the home area for breeding, but 

not short-term exploratory and "round-trip" migratory movements. This inclusive 

definition of dispersal includes a wide range of behaviors such as breeding aggregations, 

natal dispersal, adult dispersal, common-wealth breeding systems, and predator 

avoidance. 

Interpreting the meaning of the space/environment interaction partition is 

difficult. This partition does not directly depend on a model but represents the difference 

in variances explained by the unrelated ENV and CAR.TREND models (Meot et al. 

1998). The most reasonable ecological interpretation of this interaction would be the 

spatial configuration of required habitat elements and matrix. At the coarse scales 

researched in my study, the environment/space interaction could also include an isolation 

effect: an otherwise perfectly suitable patch may be unoccupied because of extreme 

isolation from other habitat. In any case, the large size of this partition drives home the 

point that a non-spatial view of the niche is not sufficient for understanding a species' 

distribution. V -* 

The selection of variables through RT models was a viable alternative to step­

wise selection methods in regression models (Austin 2002b). Without RTs, variable 

selection including interactions and non-linear effects would have likely led to spurious 

results because of the high number of independent variables available compared to the 

number of data points (James and McCulloch 1990). Even if the large number of 

variables had caused the RTs to select a few spurious variables, the likelihood that they 
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would have been retained in the regression models would have been small because the 

functional relationship between dependent and independent variables is very different 

between the two techniques. A pre-selection among independent variables based on 

ecological knowledge would have been highly desirable and should be best practices for 

individual species (Austin 2002b). Here, however, the goal was to build numerous 

models with comparable and reproducible methods for statistical comparison, and manual 

selection was less important. This automated modeling methodology also explains the 

relatively low average IT of 60% among the models. 

The variable selection had an additional caveat. Keitt et al. (2002) and Lennon 

(2000) found that spatial models selected different independent variables than non-spatial 

models, because non-spatial models tend to recover the missing spatial information by 

including environmental variables that happen to have a similar spatial structure. While I 

found that a visual comparison of spatially plotted residuals showed less spatial clustering 

in RT models than in regular regression models, they are not spatially explicit models and 

thus might be subject to the variable selection bias documented by Keitt et al. (2002). 

The demonstrated superiority of spatial models has implications for conservation 

biology and ecology studies. Traditional distribution modeling techniques -underestimate 

the spatial coherence of populations and thus may lead to more fragmented protected area 

designs that overvalue core habitats and undervalue mediocre neighboring habitats or 

matrix. Spatial models paint a more realistic picture of the importance of neighboring 

habitats and populations. 

Future work is needed to identify the causal mechanisms behind autocorrelation 

in species' distributions over large extents. Autocorrelation over large distances is most 
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likely caused by some form of movement or dispersal of the organisms, be it as seeds, 

juveniles, or adults. The hypothesis that coarse-scale autocorrelation is caused by long 

distance dispersal links autocorrelation to other ecological theories based on dispersal 

such as source-sink populations and metapopulations (Pulliam 1988, Pulliam and 

Danielson 1991, Dias 1996, Pulliam 1996, Hanski 1998, Haydon and Pianka 1999, 

Hanski 2001, Johst et al. 2002), occupancy-abundance relationships (Gaston et al. 2000, 

Holt et al. 2002), range structure theory (Kirkpatrick and Barton 1997), the unified 

neutral theory of biodiversity and biogeography (Hubbell 2001), and synchronicity 

among populations (Koenig 1998). The high utility of spatial models for the investigation 

of the link between dispersal and autocorrelation patterns in species' distributions is, in 

my opinion, their most interesting contribution to ecological theory. 

I*wk 
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CHAPTER 2 

THE EFFECTS OF DISPERSAL ON ANIMAL DISTRIBUTIONS: A 

SIMULATION MODEL 

2.1 Abstract 

Compared to population growth regulated by local conditions, dispersal has been 

underappreciated as a central process shaping the spatial distribution of populations. The 

present paper asks: 1) which conditions increase the importance of global recruits 

(dispersers) relative to local recruits in determining population sizes? and 2) how does 

dispersal influence the spatial distribution patterns of abundances among connected 

populations? I approached these questions with a simple, deterministic simulation model 

set on a landscape lattice with cells of varying habitat quality expressed as carrying 

capacities. Each cell contained a population with the basic dynamics of density-regulated 

growth, and was connected to other populations by immigration and emigration that 

decayed in intensity with distance. The degree to which dispersal influenced the 

distribution of population sizes depended most strongly on the absolute amount of 

dispersal, and then on the potential population growth rate. In a species w'itrt a potential 

population growth rate considerably larger than one, the population dynamics were 

dominated by local recruitment, while a rate close to one led to a strong influence of 

dispersal. Dispersal decaying in intensity with distance left close neighbors more alike in 

population size than distant populations, leading to an increase in spatial autocorrelation. 

The additional autocorrelation in the distribution pattern caused by dispersal cannot be 

modeled implicitly through environmental conditions but requires spatially-explicit 
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distribution models. Because species with low potential growth rates are more dependent 

on dispersal, conservation management of these species requires attention to factors 

curtailing dispersal, such as fragmentation and dispersal barriers. 

2.2 Introduction 

Local population dynamics are determined by birth, death, immigration, and 

emigration. A crucial, yet unanswered question is: what is the relative importance of local 

recruitment (birth and death) versus global recruitment (immigration and emigration, or 

dispersal) to population size locally and distribution patterns globally? The significance 

of this question stems from its direct relation to a central goal of ecology. Andrewartha 

and Birch (1954, 1984), and Krebs (1972) defined ecology as the study of the distribution 

and abundance of organisms. Most attempts at explaining the distribution and abundance 

of organisms have focused on the environmental conditions that define the fundamental 

niche and the biotic interactions that define the realized niche (Guisan and Zimmermann 

2000). In terms of population dynamics, such approaches focus solely on the birth and 

death components of local population dynamics. The immigration and emigration, or 

dispersal part of the dynamics equation has received much less attention (Clobert et al. 

2001, Bullock et al. 2002), which might be explained by the difficulty of quantifying 

dispersal in the field (Stenseth and Lidicker 1992b). 

Dispersal connects populations across space and time, influencing persistence, 

size and dynamics of local populations. In a niche model, the predicted local abundance 

of an organism depends exclusively on the local conditions. In a spatially explicit model 

that includes dispersal, the predicted local abundance depends on the local conditions and 

the population sizes and conditions of neighboring sites because these neighboring sites 
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supply immigrants and receive emigrants from the local population. This chapter 

determines the conditions under which neglecting dispersal in distribution models results 

in misleading conclusions. 

The effect of dispersal on the distribution of organisms is at the core of some 

important ecological theories and related research, namely metapopulation ecology 

(Hanski 1999), island biogeography (MacArthur and Wilson 1967), and spatial 

synchrony or spatio-temporal autocorrelation research (Bj0rnstad et al. 1999, Hudson and 

Cattadori 1999, Koenig 1999, Kendall et al. 2000, Ripa 2000, Engen et al. 2002, Koenig 

2002). However, the present study differs fundamentally from these fields of research by 

focusing on a single species, using abundance rather than presence/absence, using a 

spatially explicit approach, and analyzing the long-term effects of dispersal on 

distribution, rather than the resulting dynamic synchrony among populations. 

Using abundance instead of presence/absence for determining the influence of 

dispersal on distribution patterns has decisive advantages. Balmer (2002) found that the 

use of presence/absence data rather than abundances can be misleading in ecological 

pattern analyses: while the absence or presence of a typically rare species does not 

strongly ecologically differentiate a site, the presence or absence of a typ^c^ly abundant 

species weighs more heavily. When analyzing the effects of dispersal on a species' 

distribution, using presence/absence only may capture the dynamics in weak populations, 

which die out and are recolonized frequently, but completely miss effects in strong 

populations that do not die out during simulation runs but change in abundance due to 

dispersal. Also, McGill and Collins (2003) explained several of the most prominent 

macroecological patterns (the positive correlation between range size and abundance, the 

30 



species-area relationship, the decay of species assembly similarity with distance, and the 

species abundance distribution) by overlaying ranges that were randomly distributed in 

space and followed a "peak and tail" abundance pattern with few locations of high 

abundance and many of low abundance. Their work illustrated the superiority of 

abundance over presence/absence data in researching macroecological patterns. 

The model presented here uniquely combines a landscape with a continuous 

distribution of habitat qualities and the simulation of abundance of populations 

distributed across this landscape to answer two specific questions. First, which population 

characteristics increase the importance of global recruits (dispersers) relative to local 

recruits in determining population sizes? Second, how does dispersal influence the spatial 

distribution patterns of abundances among connected populations? 

2.3 Methods 

I used a simulation model to investigate the effects of dispersal on population 

dynamics and abundances in connected populations. The simulation model consisted of 

900 cells in a regular 30 by 30 grid, each containing a population (Figure la). The 900 

populations experienced deterministic density-dependent growth, immigration and 

emigration in discrete time steps. Each population was operating with identical base rates 

in growth and emigration, and differed only in carrying capacity (K). The change in 

population size per time step was modeled with a logistic growth equation (Begon and 

Mortimer 1986) expanded by immigration and emigration: 

AN = N, * (R / (1 + (R - 1) * N, / K) - 1) + I - E; 

where N, = population size at time t, R = potential population growth rate (birth minus 

death rate not adjusted for density dependent effects), K = carrying capacity (maximum 
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number of individuals supported at the location before the growth rate falls to 1), I = 

immigration (number of individuals entering the population), and E = emigration 

(number of individuals leaving the population). 

The potential net growth rate R is the multiplier by which the population would 

grow in each time step if no density dependent effects were present. R combines birth and 

death rates in one value (Begon and Mortimer 1986). The realized net growth rate is R 

divided by (1 + (R - 1) * N, / K), a term that approaches R when the population size N, 

approaches the carrying capacity K. Thus, the realized growth rate equals one when K is 

reached. The values of R covered in the simulation encompass the range of maximum 

possible R-values (1.32 - 5.23) for passeriform and piciform birds in Saether and Bakke 

(2000). These maxima were derived from fecundity values assuming absence of adult or 

juvenile mortality and onset of reproduction within the first time step after birth. 

The carrying capacity (K) symbolized habitat quality analogous to how patch size 

symbolizes habitat quality and environmental conditions in metapopulation models 

(Hanski 2001). The concept of carrying capacity used here did not impose a hard ceiling 

on the population size but only adjusted the realized growth rate to 1 when K was reached 

and below one when the population size was larger than K. Consequently\it*was possible 

that a population persisted at a size larger than K, fed by higher immigration than 

emigration. I chose to model K as a continuous variable because the reduction of the 

landscape into a binary view of habitat and matrix may hamper the understanding of 

demographic processes (Wiegand et al. 1999). K-values were selected at random for 

every cell from a normal distribution with a mean of 0 and a standard deviation of 1. 
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Figure 1. Distribution of population sizes before (a) and after (b) dispersal in a 30 x 30 
matrix. Before dispersal, population size equals the carrying capacity (K) of the patch. K 
is positively autocorrelated in space up to a range of 8 cells. The population growth rate 
R was 1.05 and the dispersal rate in b) was 10% of the population per time step. 

To introduce autocorrelation into the landscape, as is typically found in the 

environment (Legendre and Fortin 1989), I used the function rfsim in S-PLUS (Kaluzny 

et al. 1996:117-119), which calculates a covariance matrix based on a spherical function 

of distance with a range of eight cells. Then the random vector of K-values was 

multiplied with the Cholesky decomposition of this matrix. The resulting distribution of 

K-values over the 30 x 30 matrix was spatially positively autocorrelated up.to a distance 

of 8 with similarities among neighbors decaying with distance according to a spherical 

function. Finally, I took the absolute values of the generated K-values, resulting in a 

distribution with many low carrying capacities and few large ones and multiplied it by 

100 for realistic population sizes (which has no influence on the analytical results). A 

distribution of abundances with most locations having small populations and few 

locations having large populations is to be expected in many organisms (Brown et al. 

1995, McGill and Collins 2003). 
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Emigration (E) was set as a fixed proportion of the population in each time step. 

The emigrants from each population were distributed to the other cells in proportion to 

their distance to the power of -2, leading to a dispersal function that declined rapidly with 

distance. The number of immigrants for a given population in a time step was the sum of 

all emigrants coming from other populations. Note that the approach to modeling 

dispersal in this model is deterministic and allows fractions of individuals. While 

dispersing individuals in a stochastic way would be more realistic, it would average out 

to the same result, given enough runs. Thus it would not add any qualitative insights to 

my model and fell victim to Occam's razor. 

Dispersal comes at a cost, which is determined by the integral of the distance 

traveled multiplied by the local resistance encountered. In the model presented here, 

distance signifies total costs, including resistance, implicitly. Thus, a distance in the 

model signifies the total difficulty for an individual to move between two points, where a 

long geographic distance with low resistance could be equivalent to a short geographic 

distance with high resistance. Note that costs only influenced the distribution of dispersal 

distances among emigrants. No mortality was associated with dispersal. While this 

simplification is unrealistic, systematic dispersal mortality would be equivalent to a lower 

dispersal rate combined with a higher local mortality, which are parameter variations 

covered in my approach. Therefore, my experiments indirectly covered death associated 

with dispersal. 

Other complications not considered in this model were directional bias in 

dispersal towards good habitat (e.g., Schooley and Wiens 2003), differentia] mortality 

associated with movement through different quality habitats (e.g., Amarasekare 1998, 
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Heino and Hanski 2001), and different dispersal strategies (e.g., density-dependent 

dispersal; Johst and Brandl 1997, Amarasekare 1998, Travis et al. 1999). These 

complications have the potential to influence the presented results but are beyond the 

scope of this investigation. 

An important challenge was how to describe and quantify the effect of dispersal 

on distribution patterns in a coherent, simple, and yet powerful way. I used two different 

currencies to describe the observed phenomena. One is based on the change in patterns 

brought about by dispersal. In the absence of dispersal, the carrying capacities (K-values) 

explain the population sizes resulting from the simulation 100% because the simulation 

model is deterministic. Therefore, the change in pattern brought about by dispersal can be 

directly quantified as a disruption in this perfect relationship between K-values and 

population size. I quantified this disruption in the relationship as the R of a linear 

regression of the population sizes on the K-values. This measure can also be seen as an 

indicator of the relative importance of local versus immigrant recruits. In the absence of 

dispersal, all population dynamics are determined by local recruitment and the R is 1.0. 

With the introduction of dispersal, differential immigration overlays local recruitment, 

which is measured in the deviation of the R from one because these efflf.GU are not 

explained in the K-values. 

The second currency I used to assess the effects of dispersal was directly related 

to the spatial attributes of the distribution patterns. The expected effect of dispersal to 

neighboring populations was a correlation in population size among neighboring 

populations that decays with distance. Such a correlation is called positive spatial 

autocorrelation and can be measured with Moran's I (Legendre and Legendre 1998). I 
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used a standardized version of Moran's I (Haining 1990) for cell pairs one to eight cell 

distances apart as a measure of the effect of dispersal on autocorrelation in distributional 

patterns. Note that the underlying K-values were autocorrelated up to a range of eight 

cells as part of the landscape design, and population sizes were correspondingly 

autocorrelated in the absence of dispersal. I therefore measured Moran's I first in the 

absence of dispersal and then with the dispersal being investigated. The difference 

between these two values of Moran's I then gave and index of the impact of dispersal on 

spatial autocorrelation. 

I tested the model for sensitivity to assumptions and approaches by modifying its 

structure, running the model on 100 randomly generated landscapes, and averaging the 

results. The default model was on an autocorrelated landscape as described above. First, I 

ran the model on landscapes without spatial autocorrelation. Second, I tested for edge 

effects by implementing the 30 x 30 matrix as a torus, which means that edges are 

eliminated by connecting them to the opposite edges. While real ranges have edges this 

test was useful for finding out whether the range edges played a part in the observed 

effects or whether similar effects could be observed within the range of a species far 

away from range edges. Third, I investigated the influence of my origina&dispersa] 

function (Type I) on the simulation results by implementing three alternative functions: 

1) uniform dispersal to the nearest eight neighbors only (Type II), 2) uniform dispersal to 

the nearest 15 neighbors only (Type III), and 3) dispersal with a spherical decay in 

intensity up to a maximum distance of 8 cells in distance (Type IV). Finally, I provided 

statistics for correlated and uncorrelated landscapes without dispersal for comparison. 
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Simulations were run up to 600 time steps or until an equilibrium was reached 

determined by a change smaller than 0.01 in the sum of all populations. The analyses 

varying the model parameters R, and the proportion of dispersal were based on a single 

typical random landscape, shown in Figure la. All simulations and statistics were 

programmed in S-PLUS 6.2 (Insightful 2003)(use of this product does not imply 

endorsement). 

2.4 Results 

Introducing dispersal in the population simulation model led to a systematic 

deviation of population sizes from their underlying carrying capacities (K) (Figure 2, 

Figure 3, and Table 3, line 1 and 2). Populations with below average K-values tended to 

exceed K and turned into sinks, while cells with above average K-values realized 

population sizes below K and acted as sources (sensu Pulliam 1988). Thus, dispersal led 

to a reduction in the range and variance of population sizes (Figure 1 and Figure 2). In 

addition, the introduction of dispersal led to an increase in positive spatial autocorrelation 

among population sizes (Figure 4 and Table 3, line 1 and 2). With the default parameter 

values (net potential local growth rate R = 1.05 and proportion of dispersers = 10%), 

Moran's I increased by 0.148 ± 0.005 (SE) when dispersal was introduced, while K-

values lost 16.4 ± 2.0% (SE) of their explanatory power in the distribution of population 

sizes. 

The magnitude of these effects depended on the potential population growth rate 

R and the proportion of dispersers (Figure 3 and Figure 4) but was not strongly 

influenced by the underlying model structure (Table 3). The influence of the potential 

population growth rate R on the changes in distribution patterns under dispersal are 
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shown in Figure 3 and Figure 4. With a dispersal rate of 10%, only low values of R 

allowed for strong influences of immigrants on the deviation of dispersal patterns from 

underlying K-values. When R was 1.3 or above, the 10% dispersal changed distribution 

patterns by less than 1%. However, the increase in autocorrelation was not as dependent 

on low R-values as the deviation in patterns from underlying K-values (Figure 4). 
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Figure 2. Deviation of population size from underlying carrying capacity (K) with and 
without dispersal. Without dispersal population sizes are identical with K-values. With 
dispersal populations with small K-value are larger than expected, while populations with 
large K-value are smaller than expected. The population growth rate R was 1.05 and the 
dispersal rate was 10% of the population per time step. 

Autocorrelation increased by 23% with R = 1.3 and dispersal rate at 10%. Higher 

dispersal rates caused a larger deviation in the distribution of population sizes from the 

pattern of underlying K-values (Figure 3) and delayed the decrease in deviation with 
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higher R-values: The distribution pattern was changed by 6% and autocorrelation was 

increased by 34% with a dispersal rate of 40% and an R of 1.5. 
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Figure 3. Effect of potential population growth rate R on distribution patterns under a 
range of dispersal rates. The regression R2 is the coefficient of determination of a linear 
regression of the vector of 900 populations at equilibrium after dispersal against the 
vector of carrying capacities (K) underlying the populations. This coefficient is an 
expression of how strongly local population sizes are controlled by local carrying 
capacity rather than by immigration and emigration. R is the potential population growth 
rate or the factor by which the population can maximally grow in each time step before 
adjustment for density dependence. 
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Table 3. Comparison of six different model structures. Means ± standard deviations of 
Moran's I and R s are given from runs on 100 randomly generated landscapes (see 
methods) with potential population growth rate R = 1.5, death rate d = 0.45 and dispersal 
rate = 0.1. See the methods section for landscape generation, dispersal types, Moran's I 
and R~ calculations. 

Landscape Type 

Correlated 
Correlated 
Correlated 
Correlated 
Correlated 
Correlated 
Correlated 
Uncorrelated 
Uncorrelated 

Dispersal 

None 
Type I a 

Type IIb 

Type IIIc 

Type IV d 

None 
Type I 
None 

Type I 

Edge 
correction 

No 
No 
No 
No 
No 
Yes 
Yes 
No 
No 

Moran's I 

0.294 
0.443 
0.442 
0.522 
0.548 
0.220 
0.326 
0.071 
0.228 

±0.102 
±0.115 
±0.115 
±0.110 
±0.112 
± 0.090 
±0.103 
± 0.040 
±0.051 

] 

1.000 
0.835 
0.828 
0.783 
0.758 
1.000 
0.884 
1.000 
0.732 

¥~ 
± 0.000 
± 0.020 
± 0.023 
± 0.028 
± 0.030 
± 0.000 
±0.010 
± 0.000 
±0.014 

J Dispersal decays in intensity proportional to 1/distance without a maximum dispersal 
limit; 
b Dispersal is uniform and only to the eight closest neighbors; 
c Dispersal is uniform and only to the 15 closest neighbors; 
d Dispersal decays with distance following a spherical function up to a maximum distance 
of eight cells. 

Tests of the sensitivity of the model to its structure confirmed its adequacy. First, 

the variance in results introduced through the random selection of K-values during 

landscape creation was low (Table 3, line 1 and 2). Very few generated landscapes led to 

extreme results, except when all cells with high K-values were clumped around the edges 

of the matrix. Second, the results were sensitive to the introduction of spatial 

autocorrelation in the landscape. Dispersal led to a lower R in uncorrelated landscapes 

than in correlated landscapes (Table 3, line 2 vs. line 9). However, the total 

autocorrelation in the distribution of population sizes was still higher in correlated 

landscapes than in uncorrelated landscapes after dispersal. Third, edge effects were 

observable in the simulation. When I implemented the 30 x 30 matrix as a torus, the 

observed effects of dispersal on the distribution of abundances slightly diminished (Table 
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3, line 2 vs. 7). However, autocorrelation in the distribution of K-values was also lower in 

the toroidal landscape, indicating that the edge effects were not solely due to dispersal 

anomalies at the edges but also computational differences in the analyses of the dispersal 

patterns. The main effect of the toroidal correction was to reduce outlying population 
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Figure 4. Effect of potential population growth rate R on autocorrelation m distribution 
patterns under a range of dispersal rates. Moran's I is a measure of autocorrelation based 
on all cell pairs with a maximum distance of eight cells. This measure is an expression of 
the similarity among population sizes within an eight cell distance, above and beyond the 
overall similarity among population sizes in the whole range. Note that the lower bottom 
of the graph is at the value of Moran's I for the population size distribution without 
dispersal. R is the potential population growth rate or the factor by which the population 
can maximally grow in each time step before adjustment for density dependence. 

sizes due to edge effects. It did not change the main observed effect of dispersal in 

changing distribution patterns (Figure 5). Fourth, the three alternate dispersal functions 
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(Type II-IV) led to minor quantitative differences in the overall results (Table 3, lines 3-

5), but did not influence the qualitative insights gained, so that a more detailed 

investigation or a more complicated model were not justified. 
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Figure 5. Deviation of population size from underlying carrying capacity (K) without 
dispersal, with dispersal, and with dispersal and toroidal edge correction. Without 
dispersal population sizes are identical with K-values. With dispersal pops rations with 
small K-value are larger than expected, while populations with large K-value are smaller 
than expected. The edge correction reduces the variance in the population sizes, by 
removing outlying population sizes due to edge effects. The population growth rate R 
was 1.05 and the dispersal rate was 10% of the population per time step. 
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2.5 Discussion 

The approach presented here takes a process-based rather than habitat-centered 

view of spatial distributions (Thomas and Kunin 1999) by incorporating immigration and 

emigration into the population dynamics. The core insight of the model is that dispersal is 

less important for shaping the distribution of abundances in species with a large potential 

population growth rate than those with a small potential growth rate. In other words, the 

population dynamics of species that have the potential to grow quickly are dominated by 

local recruitment. Immigrants cannot contribute much to the local abundances of such 

species. Note that my model did not include local extinctions or environmental and 

demographic stochasticity. Both effects would likely increase the importance of migrants 

to overall population distribution because migrants would assume more pivotal roles by 

recolonizing locally extinct populations, by rescuing populations on the brink of 

extinction, and by spreading the risk of extinction by local environmental fluctuations 

(Engen et al. 2002b). 

In contrast, in species with low potential population growth rates, migrants can 

play a very important role in the distribution of abundances. Typical species falling in 

this category have low numbers of offspring and a high parental investment, such as large 

mammals and many large birds. This result is consistent with Sondgerath & Schroder 

(2002), who, with a different goal and methodology, concluded that increasing the 

connectivity of a landscape has a noteworthy effect on spatial spread only when 

reproductive rates are low. 

The results of this model should not be taken as numerical predictions for the 

parameter combinations under which dispersal has ecologically significant effects on 
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distribution patterns because of the necessary omission of some ecological complexities. 

For example, the presented effects may be weakened slightly by introducing dispersal 

mortality into the model, which could decrease the connection among populations. Thus, 

the combinations of growth and dispersal rate would have to be more extreme to come to 

the same effects on distribution patterns as without dispersal mortality. The lesson to be 

learned from this model is of a relative nature: the closer the potential population growth 

rate is to one, the more important are immigrants relative to local recruits and the more 

strongly will dispersal shape distribution patterns and cause additional positive spatial 

autocorrelation. 

Another simplification of the model is the assumption of reaching an equilibrium 

in population dynamics (Pickett et al. 1994, Guisan and Zimmermann 2000). The 

simulation model presented here works on the assumption that an equilibrium is reached 

through logistic growth. I contend that the introduction of stochastic, non-equilibrial 

elements would not have changed the fundamental insights gained by this model and 

would thus have been an unnecessary complication. As long as the system is not 

continuously growing or shrinking, the population dynamics would have averaged out 

over the simulation duration of several hundred time steps and would not^phange the 

fundamental effects of dispersal on spatial distribution patterns posed as the core question 

of this research. 

In contrast to other studies (e.g., Pulliam 2000, Keitt 2003), I did not designate 

source and sink populations a priori. Instead, I specified carrying capacities. A fixed 

percentage of dispersal led to a source-sink structure because the populations in cells with 

high K-values supplied more dispersers and the cells with low K-values accepted more 
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dispersers. Under this scenario the logistic growth function led to higher realized 

population growth rates in the source cells and lower or zero growth in the poorer 

habitats because the population size was closer to or even at or above K in the latter 

populations, although the fundamental potential population growth rates were identical. 

Given the fixed death rate, the cells with positive net immigration then turned into 

functional sinks and the ones with negative net immigration turned into sources. 

The analytical approach presented here differs from the approach taken by several 

other ecological theories that are centered on the effects of dispersal. Island biogeography 

uses dispersal for colonization rates and subsequently to predict biodiversity but does not 

deal with abundances of individual species (MacArthur and Wilson 1967). In addition, it 

requires an unchanging mainland population supplying a constant stream of immigrants, 

which is not a model applicable to many terrestrial situations (Hanski 2001). 

Metapopulation ecology uses dispersal as a connection between populations for 

recolonizations and rescue effects, but does not analyze the spatial consequences of 

dispersal on the distribution of abundances. Such an approach is appropriate for discrete 

habitat patches such as islands or highly fragmented landscapes but is of questionable 

value for continuous landscapes (Hanski 1999; 2001). The analyses of sy%&Mrony in 

population dynamics of neighboring populations brought about by environmental 

synchrony (the Moran effect) or by dispersal investigates the spatio-temporal 

consequences of dispersal but not how these consequences change distributions over 

many generations (Bj0rnstad et al. 1999, Hudson and Cattadori 1999, Koenig 1999, 

Kendall et al. 2000, Ripa 2000, Engen et al. 2002a, Koenig 2002). 
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The results presented here are important for the fields of distribution modeling 

and conservation management. Many authors assert that spatial models are a significant 

advance in distribution modeling and should be used whenever possible and appropriate 

(e.g., Legendre 1993, Augustin et al. 1996, Thomson et al. 1996, Carroll and Pearson 

2000, Lennon 2000, Keitt et al. 2002, Lichstein et al. 2002). However, it is important to 

understand the source of spatial structure in distributions to properly apply spatial models 

(Austin 2002). If the only source of a spatial pattern in the form of positive spatial 

autocorrelation stems from the autocorrelation in the underlying environmental gradients, 

a model including all gradients will implicitly model the spatial structure, and more 

explicit spatial modeling will be an unnecessary complication (Diniz-Filho et al. 2003). 

If, however, another process, such as dispersal, causes spatial patterns, it is important to 

understand under which conditions this process may be influential enough to warrant 

inclusion in a distribution model. My results show that species with low to moderate 

potential population growth rates are most likely to exhibit ecologically significant spatial 

autocorrelation above and beyond the spatial autocorrelation caused by environmental 

gradients. These species are the most likely candidates to require spatially explicit 

models, whether all environmental gradients are included or not. % ** • 

The spatial patterns in the distribution of species and the relative importance of 

dispersal to these patterns are also important to the field of wildlife conservation. Species 

with a high potential population growth rate are less dependent on dispersal than species 

with a low rate. Therefore, conservation efforts for the species with low growth rates will 

likely require more connectivity in the landscape and larger conservation areas than 

efforts for species with high growth rates. 
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CHAPTER 3 

EFFECT OF DISPERSAL AT RANGE EDGES ON 

THE STRUCTURE OF SPECIES' RANGES 

3.1 Abstract 

Range edges are of particular interest to ecology because they hold key insights 

into the limits of the realized niche and associated population dynamics. A recent feature 

of the journal Oikos summarized the state of the art on range edge ecology (Holt and 

Keitt 2005). While the typical question is what causes range edges, another important 

question is how range edges influence the distribution of abundances across a species' 

geographic range when dispersal is present? I used a single species population dynamics 

model on a coupled-lattice to determine the effects of dispersal on peripheral populations 

as compared to populations at the core of the range. In the absence of resource gradients, 

the isolation of populations at the range edge led to significantly lower population sizes in 

the periphery of the range than in the core. Lower population sizes mean higher 

extinction risks and lower adaptability at the range edge, which could inhibit or slow 

range expansions, and thus effectively stabilize range edges. While the proportion of 

emigrants was fixed, the number of immigrants depended on the number, proximity, and 

size of donor populations, which was more favorable at the core of the range than in the 

periphery. The strength of this effect depended on the potential population growth rate 

and the maximum dispersal distance. Lower potential population growth rates led to a 

stronger effect of dispersal resulting in a higher difference in population sizes between 

the two areas. The population dynamics of species with high potential population growth 
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rates are dominated by local recruitment and dispersal has a minor effect. The strongest 

differences in average population sizes between the core and the periphery were observed 

at medium dispersal distances, which was far enough for emigrants to disperse well into 

unsuitable habitat outside of the range but was short enough to avoid a strong direct 

connection between the periphery and the core. The differential effect of dispersal on 

population sizes at the core and periphery of the range in the absence of resource 

gradients means that traditional, habitat-based distribution models result in misleading 

conclusions about the habitat quality in the periphery. Lower population sizes at the 

periphery are also relevant to conservation, because habitat removal not only eliminates 

populations but also creates new edges. Populations bordering these new edges may 

experience declines, due to their increased isolation. 

3.2 Introduction 

Range edges hold a special place in the study of the distribution and abundance of 

species, which is at the core of ecology (Andrewartha and Birch 1954, Krebs 1972, 

Andrewartha and Birch 1984). Designating the transition between occupied and 

unoccupied habitat, range edges are a key for understanding the processes that determine 

the ecological and evolutionary fate of a species (Holt and Keitt 2005). In a recent feature 

of the journal Oikos, several authors explored the state of the knowledge on range edge 

ecology (Case et al. 2005, Fortin et al. 2005, Guo et al. 2005, Holt and Keitt 2005, Holt et 

al. 2005, Parmesan et al. 2005). These authors reviewed important processes influencing 

the patterns and dynamics of range edges, with the central questions being: what causes 

range edges, how are they maintained, and which processes control range edge 

dynamics? Explanations were primarily based on gradients from center to range edge in 
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the factors controlling population dynamics (environmental conditions and species 

interactions), and evolutionary factors concerning the adaptation to conditions in the 

range edges. 

I investigated a process that fits well into the single species theoretical frame 

work of Holt et al. (2005), but was explored neither by them nor by Guo et al. (2005) -

the two papers dealing with single species processes. I turned the original question of 

what causes range edges around and asked: How do range edges affect the abundance 

patterns within the range? The idea was that populations at range edges have fewer 

neighbors and thus are relatively isolated, resulting in lower immigration rates than at the 

range core. 

Under the assumption that new species necessarily evolve in a relatively small 

area, every species starts out having range edges. As species adapt to the conditions in the 

range edges, a key question is, what keeps them from spreading further (Kirkpatrick and 

Barton 1997, Gaston 2003)? Initially, they will spread to all areas they can reach and that 

have good enough conditions to support above zero growth but will not colonize areas in 

which birth plus immigration is smaller than death plus emigration. Over time, though, 

species should adapt to conditions at the range edge, develop higher birt&ajkl/or lower 

death rates under these marginal conditions and colonize adjacent habitats unless they 

represent a "hard" physiological border such as water for terrestrial species. If 

populations in the periphery were systematically disadvantaged by isolation, range edges 

themselves could inhibit spread by furthering extinction events and suppressing 

adaptations and thus help perpetuating themselves. 
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Metapopulation models have investigated the effects of dispersal and isolation on 

population persistence in much detail, but with a focus on extinctions and recolonizations 

of populations rather than on shifts in population sizes over the range (Hanski 1999). My 

approach differs from classical metapopulation models in its explicit treatment of space 

and its investigation of abundance, not incidence. The investigation of abundance rather 

than incidence more directly addresses the question of the effect of range edges on range 

structure, because extinctions and lower genetic variability as source for adaptations are 

secondary consequences of low population size and introduce their own dependencies on 

individual species and situations that confound the question. 

My main goal was to determine whether the relative isolation of populations at 

the periphery of a species' distribution leads to lower abundances there when dispersal is 

present. I did not make typical assumptions about range structures, such as better habitat 

or higher carrying capacities at the center of a range than in the periphery. This approach 

allowed an assessment of the effect of dispersal on population sizes at the edge of a range 

without confounding gradients in environmental conditions. 

3.3 Methods 

I investigated the effects of dispersal on peripheral populations using a 30 x 30 

coupled lattice containing 900 individual populations (Figure 6). I simulated habitat 

quality through carrying capacity (K), analogous to Hanski (2001) using patch size to 

represent habitat quality in metapopulation models. Following Wiegand et al.'s (1999) 

insight that the reduction of habitat quality into the dichotomous categories "suitable" and 

"unsuitable" hampers the understanding of demographic processes, I sampled the K-

values from a continuous normal distribution with mean 0 and standard deviation 1. 
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However, I used the absolute of the randomly drawn values, in effect folding the negative 

part of the distribution onto the positive side. Brown et al. (1995) and McGill and Collins 

(2003) noted that species' ranges typically have relatively few locations with very high 

abundances and many with low abundances, which is also true for the resultant sample 

distribution of the K-values. 

Figure 6. Randomly generated 30 x 30 grid of carrying capacities (K), which are used in 
the logistic growth formulas of the 900 populations - one in each grid cell. The K-values 
are autocorrelated with a spherical decay function up to a range of eight cells. 

It is well documented that environmental conditions are autocorrelated in space 

(Legendre and Fortin 1989). Therefore, I introduced spatial autocorrelation in the 

distribution of K-values using the S-PLUS function rfsim (Kaluzny et al. 1996:117-119). 

This function calculates a covariance matrix based on a spherical function of distance, 

which I assigned a maximum range distance of eight cells. The random vector of K-

values is multiplied with the Cholesky decomposition of this matrix. The resulting 

distribution of K-values over the 30 x 30 matrix is spatially positively autocorrelated up 
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to a distance of eight cells with similarities among neighbors decaying with distance 

according to a spherical function. I also included a test run on an uncorrelated random 

landscape as a null model for comparison. 

Note that my method of generating landscapes did not include a bias for higher Re­

values at the center of the range than in the periphery. Thus, the initial external factors 

were identical for peripheral and central populations, which I confirmed in a t-test on the 

respective K-values. 

Each population was governed by the basic processes of birth, death, immigration 

and emigration. Birth and death rates were combined in a potential population growth 

rate R (Begon and Mortimer 1986), which is one when no growth occurs. The formula 

for population change in each time step (AN) was based on the logistic growth formula in 

Begon and Mortimer (1986), which adjusts the potential population growth rate R by a 

density dependent term: 

AN = N, * (R / (1 + (R - 1) * Nt / K) - 1) + I - E; 

where Nt = population size at time t, R = potential population growth rate (birth minus 

death rate not adjusted for density dependent effects), K = carrying capacity (maximum 

number of individuals supported at the location before the realized grow^i rate falls to 1), 

I = immigration (number of individuals entering the population), and E = emigration 

(number of individuals leaving the population). 

All cells in the model were habitable, within the limits on reproduction given by 

carrying capacities. However, carrying capacities were not absolute caps on the 

population sizes. Rather, they were the point at which the realized population growth rate 
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crossed from positive growth (at population sizes below K) to negative growth (at 

population sizes larger than K). 

A fixed proportion of each population emigrated in each time step (E). This 

proportion was distributed to neighboring cells in reverse relationship to their distance -

the further the distance between populations the lower their exchange of migrants. I 

implemented this dispersal pattern by replacing the distances among cells with a weight 

calculated as 1/distance2 (Figure 7). Then, I added up all weights for each population and 

standardized them so that they added up to the proportion of the population to be 

dispersed. In addition, I truncated this dispersal scheme at different distances for a series 

of experiments simulating different dispersal patterns. 

In the model dispersers leaving the range had 100% mortality. The number of 

immigrants for a given population in a time step was simply the sum of all emigrants 

coming from other populations. Note that this approach is deterministic and allows 

fractions of individuals. While dispersing individuals in a stochastic way would be more 

realistic, it would average out to the same result given enough runs, and thus was omitted 

for the sake of simplicity. Also note that no mortality was associated with dispersal 

within the range. While this simplification is unrealistic, systematic mortality would have 

been equivalent to higher local mortality and a lower dispersal rate (or a different shape 

in the dispersal function), which are parameter variations covered in the tests below. 

For a comparison between range core and periphery I had to define members of 

the two areas. I chose the outer two rows of cells as periphery (n = 224) and a central 16 

x 16 block of cells as core (n = 256). Other designs would have been possible, but I found 
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this to be a good compromise between maximizing the sample size in each category and 

maximizing the distance between the two groups for clear effects. 

Figure 7. Graphical representation of the dispersal kernel of a single population in the 
center of the two graphs. In the left graph the lighter the shade of a cell, the higher the 
percentage of the dispersers from the center going into that cell. The right graph shows a 
cross section through the left graph. The center cell retained 90% of the population while 
10% dispersed to neighboring cells. The proportion of dispersers decreased with 
1/distance2. The maximum dispersal distance was eight cells in each direction from the 
center cell. 

The dependent variable needed to capture the relative effect of dispersal on 

population sizes in the periphery compared to in the core. Simply taking the difference 

between the average population sizes in core and periphery would have expressed the 

absolute population sizes as well as the difference in the two places. A percentage 

difference in population size between the two places was the more meaningful measure 

(from here on called "percent difference"), calculated as: 

100*(Nc-Np)/Np 

where Nc = average central population size and Np = average peripheral population size. 

I tested the sensitivity of the modeling results to several variables and structures 

of the model. Letting all dispersers distribute equally in all directions, be it into better or 
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inferior habitat, or even outside of the range, where they perish immediately, is a neutral 

approach that most closely fits the dispersal of plants. Sentient animals are more likely to 

make better choices. Therefore, I evaluated an alternative dispersal scheme in which all 

dispersers stay in the range, thus eliminating the direct loss of individuals through leaving 

the range and moving into inhospitable habitat. In this alternative scheme, the dispersers 

that would have left the range in the default dispersal scheme were redistributed to 

neighboring populations within the range according to the same distance weighted 

function used in the regular dispersal. This alternative scheme is at the other end of the 

spectrum than the original scheme, and represents an animal that is perfectly able to 

avoid habitat with a K of 0. However, I used the original scheme in most experiments 

because it led to clearer results and thus allowed a better depiction of the sensitivities of 

the model. 

I varied the R-values to simulate a range of different organisms and to determine 

the sensitivity of the observed effects to different combinations of these two population 

dynamics parameters. The values of R covered in the simulation encompass the range of 

maximum possible R-values (1.32 - 5.23) for passeriform and piciform birds in Saether 

and Bakke (2000). These maxima were derived from fecundity values th&assumed both 

absence of adult or juvenile mortality and onset of reproduction within the first time step 

after birth. I also varied the proportion of each population dispersing in each time step to 

simulate different levels of dispersal activity. Finally, I varied the maximum distance of 

dispersal from 1-20 cells to simulate different dispersal strategies. A maximum dispersal 

distance of one means that dispersal is only allowed to the four next neighbors, while a 
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maximum dispersal distance of 20 covers two thirds of the range width, which should 

reasonably cover the existing dispersal distances among animals. 

I omitted some complications in the model that may have influenced the results 

but were beyond the scope of this study. Such complications include a directional bias in 

dispersal towards good habitat, differential mortality associated with movement through 

different quality habitats, and different dispersal strategies (e.g., density-dependent 

dispersal) (Johst and Brandl 1997, Travis et al. 1999). 

Simulations were run up to 600 time steps or until the sum of all populations 

changed by less than 0.01. The analyses varying the model parameters reproductive rate 

R, death rate d, and the proportion of dispersal were based on a single typical random 

landscape shown in Figure 6, because the duration of the calculations prohibited the 

repetition on 100 landscapes. To avoid biases in the selection of this typical landscape I 

randomly pulled a landscape out of the 100 generated landscapes until one was identified 

that was within 1 standard deviation of the average value from the 100 landscapes for 

summary statistics on the difference between core and margin population sizes under 

default parameter settings. Selecting a landscape that lay within 1 SD of all landscapes 

was a reasonable way to avoid the random selection of an atypical outliej&.All simulations 

and statistics were programmed in S-PLUS 6.2 (Insightful 2003)(use of this product does 

not imply endorsement). 

3.4 Results 

All experimental setups and parameter value combinations led to a significantly 

lower average population size at the periphery of the range than the core (Table 4). This 

difference existed in absence of a difference in average carrying capacities between core 
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and periphery (t = -0.187, df = 99, p-value = 0.853). However, the relative difference in 

population sizes between the two range positions depended upon the structure of the 

model and the selected parameters for potential population growth rate (R), proportion of 

dispersal, and maximum dispersal distance. 

Table 4. Difference in average population size between populations in the core (n = 256) 
and periphery (n = 224) of a range over 100 randomly generated landscapes. The average 
carrying capacities of each population in the two areas were not significantly different (p 
> 0.05). The overall average population size was 48.89. Underlying the difference were 
10% dispersal per population per time step and a potential population growth rate (R) of 
1.05. Confidence intervals are based on a 95% probability and the % difference is the 
percentage core populations (Nc) are larger than populations in the periphery (Np ): 100 * 
(Nc - Np) / Np. 

Approach Population size 
Difference Lower limit CI Upper limit CI % Difference 

Standard 28.02 26.04 30.00 86.59 
Stay in range 11.27 9.62 12.92 20.73 
Carrying -3.10 -3.61 2.99 
Capacity (K) 

Under the default values of 10% dispersal per time step and an R-value of 1.05, 

core populations were on average 86.6% (95% CI: 80.5 - 92.7%) larger than peripheral 

populations. Higher rates of dispersal led to larger differences between the average 

population sizes of the two areas (Figure 8) but did not change the relationship between 
I t** 

these differences and R-values. Smaller R-values led to larger differences in population 

sizes, with a sharp increase in differences for R-values smaller than 2. In other words, 

species that were unable to at least double their population size under ideal conditions 

within one time step experienced strong decreases in population sizes at the margins of 

their ranges. These decreases quickly intensified with further declines in potential growth 

rates from two on down. In contrast, species that could at least potentially double their 

population size within one time step experienced a fairly small but still observable and 
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consistent disadvantage in peripheral populations when dispersal was present. When R 

was larger than two, its value did not have a strong influence on the difference in average 

population size between core and periphery. This percentage difference then mostly 

depended on the percent of dispersers in the population, being around 10% for 10% 

dispersal and 20% for 40% dispersal (Figure 8). 
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Figure 8. Connection between potential population growth rate (R), percent dispersal and 
the disadvantage populations in the periphery of a range experience from dispersal. 
Difference is the average percentage by which populations in the core (n = 256) of a 
simulated landscape were larger than populations in the periphery (n = 224), in the 
absence of differences in the average carrying capacities in the two areas. Dispersal is the 
percent of individuals leaving a population in each time step. The potential population 
growth rate is the factor a population can maximally grow by before adjustment to 
density dependence in a logistic growth equation. 
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The maximum dispersal distance showed a non-monotonic relationship to the 

difference in population sizes between core and periphery with a single global maximum 

(Figure 9). The maximum difference was reached at a maximal dispersal distance of 11 

cells. However, the differences were fairly similar among dispersal distances from 7 to 20 

cells and only dropped sharply with dispersal distances below six cells. The gap between 

populations classified as peripheral and core in the experimental setup was also six cells, 

so that dispersal distances below six cells prevented a direct exchange of individuals 

between the two areas. 

The observed effect - reduced population sizes in the periphery - was not only due 

to loss of individuals that left the range and perished. The alternative dispersal scheme, in 

which individuals dispersed exclusively into the range, also led to reduced population 

sizes in the periphery. With the standard parameter values of R = 1.05 and 10% dispersal, 

core populations were on average 20.73% larger than peripheral populations (95% CI: 

17.70 - 23.77%) under the alternative dispersal scheme. 

1,4 
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Figure 9. Influence of maximum dispersal distance (measured in cells) on the 
disadvantage populations in the periphery of a range experience from dispersal. 
Difference is the average percentage by which populations in the core (n = 256) of a 
simulated landscape were larger than populations in the periphery (n = 224), in the 
absence of differences in the average carrying capacities in the two areas. Underlying the 
percent difference were 10% dispersal per population per time step and a potential 
population growth rate (R) of 1.05. 
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3.5 Discussion 

Isolated populations are more likely to experience a net loss of individuals to 

dispersal than well-connected populations because dispersers are more likely to find 

themselves in unfavorable habitats or perish due to longer or more difficult dispersal 

events. In the simulation model presented here, all populations followed the same rules 

with carrying capacities (K-values) randomly sampled from the same distribution and 

identical growth and dispersal rates. However, due to their location, peripheral 

populations were more isolated than populations at the core of the range. As a 

consequence, peripheral populations were on average smaller than core populations in 

absence of any systematic gradients in habitat quality, reproductive rates or other factors 

that could have influenced population sizes and provided an alternative explanation for 

the observed difference. 

Lower population sizes in the periphery may have several consequences for 

population dynamics in the range edge and thus for the range edge itself. The model 

presented here did not include extinctions because fractions of individuals were allowed 

and all K-values were > 0. Had extinctions been part of the model, the lower population 

it* 
size would have led to a higher likelihood of extinction (Holt et al. 2005) and the 

peripheral populations would have been even more isolated. The introduction of an Allee 

effect would have further amplified this consequence of lower population sizes. 

Therefore, the demonstrated effect of lower population sizes in the periphery due to 

dispersal could be intensified in synergism with extinctions and Allee effect, leading to 

more isolation and even lower population sizes in the periphery. In addition, lower 

population sizes bring a reduced genetic variability and thus a reduced adaptability to 

61 



range edge conditions (Holt et al. 2005). All these factors work together to inhibit range 

expansion and promote range contraction. Under the assumption that species typically 

tend to extend their range through adaptations (Kirkpatrick and Barton 1997), factors 

inhibiting such expansion could lead to a higher than expected stability of range edges. 

The effect of lower population sizes due to isolation and dispersal need not be 

limited to range edges. The same model used for range edges here would be similarly 

valid for populations bordering unoccupied areas within the distribution or existing in 

highly fragmented areas. In these cases, scale and resistance of the landscape to the 

organism become important issues. If the unoccupied gap in the range is small relative to 

the dispersal distance of the species and does not represent a barrier to dispersal, 

populations bordering the gap will not be impacted. However, if the unsuitable gap in the 

range is large enough or has a high enough resistance to dispersal, it could act in a similar 

manner as the range edges in the model presented here and thus lead to reduced 

population sizes along the border of the gap. Thus the often observed peak and tail 

pattern in range structures (Brown et al. 1995), which is used as starting point in some 

important macroecological theories and models (McGill and Collins 2003, Guo et al. 

2005), could partly be caused or at least amplified by the spatial arrangembn* of habitats, 

the dispersal behavior of the species and the resistance of the landscape to the species, 

and not solely by gradients in habitat suitability or competition. 

The relation between dispersal distance and distances in the range is also 

important. Very short dispersal distances at a spatial extent similar to distances between 

populations result in low effects of dispersal on population size structure within the 

range. Such short dispersal distances approach the situation of no dispersal, when all 
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populations merely reflect the local carrying capacity. As dispersal distance increases, the 

lowering effects of dispersal on the size of relatively isolated populations in the range 

edge increase up to the point were a maximum effect is reached. The consequent decrease 

in effect with increase in dispersal distance owes to a direct exchange of individuals 

between core and periphery, which leads to an equalization in population sizes. Thus, the 

largest effect of isolation on population sizes can be expected in species with a medium 

dispersal distance that is large enough to reach well into unoccupied areas but not large 

enough to break the isolation effectively. 

Another parameter important to the magnitude in the difference of population 

sizes was the potential population growth rate R. The lower the R-value, the more local 

populations were influenced by dispersal. A high R-value, in contrast, meant that local 

recruitment was strong and dispersers had but a small influence on population sizes. 

Thus, species with a low potential of population growth under ideal conditions are 

expected to suffer more dire consequences from isolation and fragmentation. In addition, 

their populations in the periphery are expected to be relatively weak, inhibiting range 

expansion and furthering range contraction. Examples for species with a low potential for 

population growth are large mammals and long-lived bird species. Howe^rerteven species 

with high R-values showed 10-20% larger core populations (depending on the percent of 

dispersal). 

The determination of R-values from empirical data is problematic. Realized R-

values are necessarily close to 1 - otherwise, the population would be expanding or 

contracting rapidly. However, potential R-vaiues used in the growth equation require 

knowledge on how fast a population could grow under ideal circumstances. A maximum 
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is given through maximum fecundity. For example, a bird that is only able to lay a clutch 

of 2 eggs cannot have an R larger than 2. However, it could have a much smaller R when 

effective population size, proportion of juveniles, natural mortality under ideal conditions 

and similar factors are considered. Therefore, R-values are likely lower than clutch sizes 

may suggest and effects of dispersal on peripheral populations may be considerable. 

A part of the observed effect was due to the model structure selected. The death of 

all individuals that left the range contributed substantially to the lower population sizes in 

the periphery. When individuals were not allowed to leave the range and perish, but 

dispersed exclusively into the range, the difference in average population size between 

periphery and core dropped from 86.6% to 20.7%. These two extremes cover most 

dispersal strategies, from plants that have no control over habitat selection during passive 

dispersal to intelligent animals, which exclusively disperse into habitats with a carrying 

capacity > 0. Most animals are likely to be found somewhere in between these two 

extremes. The more capable a species is in selecting habitat during dispersal, the weaker 

the effect of dispersal on population sizes in the periphery or in fragmented habitats is 

expected to be. 

The most direct and strongest explanations for range structure an^xaflge edges are 

undoubtedly a species' niche and interspecific interactions (Holt and Keitt 2005). The 

effect of dispersal on range structure studied here is neither to be seen as competing with 

these processes nor as an alternative process; rather, it augments existing insights by 

describing an important effect that is independent of suitability gradient or interspecific 

interactions. 
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The results presented here have implications for the modeling of the geospatial 

distributions of species. The population sizes in the periphery were lower than in the core 

in the absence of systematic difference in habitat quality. Traditional distribution models, 

based on habitat associations but not spatial information, would not be able to interpret 

this situation correctly. Based on the lower population sizes, they would associate the 

habitat conditions in the periphery with a lower value than they actually have, distorting 

the actual resource preferences of the analyzed species. Or, alternatively, if the model 

was based on sample locations mostly from the core of the range, the population sizes or 

probability of occurrence would be over-predicted at the periphery of range. A spatially 

explicit model may remedy such a bias. 

Lower population sizes in the periphery imply additional stress on the populations 

and individuals located there. However, when the range becomes fragmented at a 

sensitive spatial scale, similar stresses can occur within the range. The processes 

demonstrated here thus reemphasize the importance of connectivity for the survival of a 

species. In particular, additional habitat fragmentation in the periphery could lead to 

increased population extinction and thus to range contraction. The new periphery after 

range contraction would then again experience population decreases bec^isehof new 

isolation. An important lesson for conservation from this study is that habitat conversion 

not only decreases the total population by the equivalent of lost carrying capacity but also 

by jeopardizing populations at the newly formed edge. These effects are particularly 

important in species with low R-values and medium dispersal distances. 
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CHAPTER 4 

POTENTIAL RELATIONSHIP BETWEEN SPATIAL AUTOCORRELATION IN 

SPECIES DISTRIBUTIONS AND DISPERSAL 

4.1 Abstract 

Spatial autocorrelation in species distributions indicates a lack of independence 

between sample locations and causes problems in distribution modeling. Knowing the 

cause of such spatial autocorrelation is vital to selecting the best suited modeling 

methods. Most autocorrelation in distributions is caused by autocorrelation in the 

underlying environmental conditions. However, it has been hypothesized that dispersal 

can cause additional autocorrelation, necessitating different modeling techniques. In this 

study, I tested the connection between autocorrelation and dispersal at a coarse scale on 

data from 107 species of the Breeding Bird Survey. Because no direct information on the 

dispersal of these species was available, dispersal indices were derived from three 

ecological theories: the deviation from an abundance-occupancy relationship, the spatial 

exponent of Taylor's power law, and density dependence. Spatial autocorrelation was 

captured in conditional autoregressive regression models (CAR) and measured with a 

standardized version of the regression coefficient rho, the extent of the included 

neighborhood, and the additional variance explained in CAR models over traditional 

regression models. No association between these measures of autocorrelation and the 

indices for dispersal was found. I therefore conclude that indirect ecological indices for 

dispersal carry too much noise and too little information for successful analysis. 
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4.2 Introduction 

Dependence between observations across geographic space has long been 

identified as a source of error in statistical analyses (Student 1914). In geography, the 

universal spatial dependence or autocorrelation in measurements of a variable collected at 

different spatial locations has been termed the First Law of Geography (Tobler 1970). 

Ecologists have also recognized the problem for decades (Legendre 1993), but only 

recently has the number of studies addressing spatial autocorrelation proliferated 

(Augustin et al. 1996, Leathwick 1996, Overton 1996, Thomson et al. 1996, Koenig 

1999, Lennon 2000, Koenig 2001, Trenham et al. 2001, Keitt et al. 2002, Lichstein et al. 

2002, Diniz-Filho et al. 2003, Peakall et al. 2003). 

In the field of distribution modeling, spatial autocorrelation has been widely 

identified in species' occurrences and distributions (Legendre 1993) and statistical 

techniques have been developed to address the problem (Dale et al. 2002, Dale and Fortin 

2002, Keitt et al. 2002, Lichstein et al. 2002). However, as Austin (2002b) points out, an 

understanding of the ecological processes that underlie spatial autocorrelation in species 

distributions is a prerequisite to the creation of adequate models. When all 

autocorrelation in a species' distribution is due to autocorrelation in the underlying 

environmental factors, and all factors are included in a distribution model, spatially 

explicit modeling is unnecessary (Austin 2002b). Only when a major environmental 

factor is missed or when ecological processes lead to additional autocorrelation in a 

species' distribution are spatial models necessary. The questions thus become which 

ecological processes could lead to spatial autocorrelation in species distributions, and is 

there any empirical evidence for the effects of such processes? 
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The ecological process most likely to cause spatial autocorrelation in species 

distributions is dispersal in the widest sense (Austin 2002b). I use dispersal in the sense 

of Lidicker (1975), including every movement that constitutes leaving the home area for 

breeding, but not short-term exploratory and "round-trip" migratory movements. The 

exchange of individuals between populations may synchronize population sizes (Paradis 

et al. 1998, Bj0rnstad et al. 1999), an effect that is thought to decay with distance because 

dispersal strength also typically decays with distance. The behavioral motivations for 

dispersal vary widely (Stenseth and Lidicker 1992a). While it would be interesting and 

ultimately important to gain a detailed understanding of such motivations, I considered 

the motivation for dispersal a secondary question in this study and I focused solely on the 

consequences of dispersal. 

Dispersal is difficult to study, particularly at large extents (Stenseth and Lidicker 

1992b). Accordingly, very little information on long-distance dispersal is found in the 

literature. I therefore developed an indirect approach to predict the dispersal activity of 

bird species and compared this dispersal index to autocorrelation found in their 

distributions. Because some of the most prominent ecological fields and theories - for 

example metapopulation dynamics, island biogeography, and studies on papulation 

synchrony - have dispersal at their core, I used such theories to develop indirect 

predictors of dispersal. While such indirect predictors are not well-suited to determining 

unequivocal cause and effect, the use of several unrelated theories and approaches can 

still make a strong case (Levins 1966). 

The goal of this study was to determine whether dispersal was related to spatial 

autocorrelation in species distributions above and beyond what can be explained through 
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spatial autocorrelation in underlying environmental factors. To answer this question, it 

was necessary to find a consistent way to predict dispersal activity and to determine the 

amount of spatial autocorrelation in species distributions that could not be explained by 

autocorrelation in underlying environmental conditions. 

4.3 Methods 

The methods of this study have two distinct components. First, I needed to 

analyze the spatial autocorrelation patterns present in each species' distribution. This 

required finding suitable measures that could characterize both the strength and extent of 

autocorrelation. In addition, these measures needed to differentiate between 

autocorrelation caused by autocorrelation in underlying environmental conditions and 

autocorrelation due to other ecological processes. Second, I needed indices of dispersal 

strength, derived indirectly from ecological or life history characteristics of the species. 

Ideally, these dispersal indices would encompass dispersal strength (or volume) and 

dispersal distance. However, given their indirect nature, they were rather vague, purely 

comparative measures of dispersal without the concreteness of a dispersal kernel or 

strategy. The measures of autocorrelation and indices of dispersal are explained in detail 

below. 

4.3.1. Measures of autocorrelation 

The source of data, the creation of the spatial models, and the partitioning of 

sources of variation were described in detail in Chapter 1. However, the sample size of 

bird species was reduced by one to 107 because of missing data for one species 

(Appendix). I derived three measures for autocorrelation from these models and the 

partitioning of variances according to Borcard et al.'s (1992) method. The first measure 
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was the extent of the neighborhood included in the spatial model (from here on just 

"Extent"), which was optimized during the modeling process. The second measure was 

the variation in distribution identified as purely spatial effect during the partitioning of 

variation following Borcard et al. (1992), from here on called "Space." The third measure 

was a standardized version of p (from here on called "Rho.std"), which was the 

regression coefficient in front of the neighborhood matrix in the conditional 

autoregressive models (CAR). 

Extent is the maximum distance at which a significant autocorrelation effect can 

be measured. Extent does not give any indication of the strength of autocorrelation. Note 

that the way the maximum extent was determined here was not identical to the range of a 

variogram. In general, the optimal extents of neighborhoods were smaller than the range 

in variograms on the same data. However, this issue was not a research focus and was not 

investigated in detail. 

The spatial partition of variation in species distributions (Space) was the R2 of the 

CAR model minus the R of the traditional environmental model. It describes the 

variation explained in the CAR model that is attributable neither to the environmental 

predictors nor to the spatial information implicit in the environmental predictors. Thus, it 

does not necessarily measure spatial autocorrelation per se, but is an indirect index for 

purely spatial variation in the distribution patterns that could not be explained through 

environmental variables. 

The coefficient p indicates the strength of inclusion of the neighborhood matrix in 

the CAR model, and thus indirectly captures both the strength and the extent of spatial 

autocorrelation. However, as in other regression coefficients, p was also dependent on the 
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magnitude of and variation in the dependent and independent variables, and the 

neighborhood matrix. Therefore, I standardized p analogously to the standardization of 

regular regression coefficients (Zar 1996: 420): bi' = bi * Sxi / sY where bi' is the 

standardized regression coefficient of the ith independent variable, bi is the non-

standardized regression coefficient, sxi is the standard deviation of the independent 

variable Xj, and sY is the standard deviation of the dependent variable Y. In the case of 

the coefficient p in CAR regressions, X is not simply a variable but an expression 

describing neighborhood effects: C(Y - XP), where C is the neighborhood matrix, Y is 

the dependent variable, X is a matrix of all independent variables and P is a vector of 

regression coefficients for the independent variables. In practice, I used the observed 

values of the dependent variable Y minus the predictions from the purely environmental 

part of the model Xp minus the residuals E to calculate the spatial signal pC(Y - XP) 

(Kaluzny et al. 1996). Taking the standard deviation of the spatial signal is equal to the bj 

* Sxi part of the standardized coefficient equation because p is a constant multiplier. 

Therefore, I only needed to divide this value by the standard deviation of Y to arrive at 

the standardized coefficient Rho.std. 

A / i 
4.3.2. Independent Variables 

4.3.2.1 Density dependence 

The first index of dispersal activity was based on density dependence. I assumed 

that an increase in density dependence would correlate with an increase in dispersal 

because dispersal was identified as one of the mechanisms through which density 

dependence is attained (Taylor and Taylor 1977). Boone (1991) derived density 

dependence scores for breeding birds of the conterminous United States using Pollard et 

71 



al's (1987) Monte Carlo randomization estimate (from here called "Poll")- In this 

measure, higher values meant less density dependence. Therefore, I expected this 

measure to correlate negatively with my measures of autocorrelation. 

4.3.2.2. Spatio-temporal Population Dynamics 

The second index for dispersal activity used population dynamics characterized 

by Taylor's Power Law. McArdle et al. (1990) used Taylor's power law to characterize 

species according to their spatial and temporal variation in population densities. In 

particular the spatial exponent is relevant to dispersal. This exponent is estimated by the 

equation: s2 = a mb (Taylor 1961), where s is the variance in abundance at all locations in 

a given year, a is a scaling coefficient thought to be related to sampling or computing, m 

is the mean in abundance across all locations in a given year, and b is the spatial 

exponent. The exponent b is determined as the slope of a log-log regression of variance 

vs. mean with individual data points stemming from different years. 

When the mean and variance are independent, the expected spatial exponent is 

two (McArdle et al. 1990). That means that the variance quadruples when the mean 

doubles across sites. If the exponent is larger than two, the variance more than 

quadruples, which means that the high-density sites must be extremely packed and the 

low density sites must stay disproportionately sparsely populated in a good year. In 

contrast, if the exponent is lower than two, the variance across space increases less than 

expected with mean abundance meaning that high-density sites are not very high and low 

density sites are higher than expected. Taylor and Taylor (1977) and Taylor et al. (1983) 

attributed the variation in the power coefficient to aggregation and dispersal. 

Accordingly, an exponent smaller than two suggests a reduction in variance among sites 
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potentially through more dispersal from high-density sites to low-density sites than an 

exponent larger than two. Alternatively, a similar reduction in variance among sites could 

be achieved with other mechanisms of density dependence such as reduced birth or 

increased death rates weakening the connection between the exponent and dispersal. 

Nevertheless, my prediction is that species with a spatial exponent > 2 will have lower 

indicators of autocorrelation than species with a spatial exponent < 2.1 used the spatial 

exponent (from here called "Bspatial") calculated by Oyler (1993) for birds of the United 

States and correlated them with the three measures of autocorrelation using Spearman's 

rank correlation and expecting a negative correlation. 

4.3.2.3. Hanski's deviation from abundance-occupancy relationship 

The third indirect index for dispersal activity was derived according to a 

hypothesis put forward by Hanski et al. (1993). They presented possible explanations for 

the positive abundance-occupancy relationship, which is a widely documented 

macroecological pattern within homogenous taxonomic assemblages (Gaston et al. 2000, 

Holt et al. 2002). One of the explanations was based on metapopulation dynamics and, 

additionally to explaining the relationship, led to the expectation of a deviation from the 

relationship. According to their equations, they expected that species with low dispersal 

activity (i.e., a relatively low percentage of individuals dispersing over a relatively low 

average distance) would be above the predicted abundance-occupancy relationship, while 

those with high dispersal (i.e., a relatively high percentage of individuals dispersing over 

a relatively high average distance) would fall below. I turned the relationship around so 

that abundance was on the x-axis and range size was on the y-axis (Figure 10) because 

high average abundance causing a large range is more plausible than a large range 
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causing high average abundance. In my version, species that failed to achieve large 

ranges despite high average abundances were assumed to be poor dispersers while 

species that had unusually large ranges compared to their average abundances were 

assumed to be very active dispersers (Figure 10). In this theory and layout of the 

relationship, positive residuals signified active dispersers, while negative residuals stood 

for poor dispersers. Therefore, the working hypothesis was that the residuals of a simple 

linear regression between abundance and range size (from here called "Ao.resid") would 

correlate positively with measures of spatial autocorrelation. 

N 
'«) 
CD 

c 
A3 

DC 

Abundance 

Figure 10. Relationship between average abundance and occupancy (here labeled 
distribution). While the main relationship is attributed to niche width, deviations from it 
are caused by rates of dispersal. Adapted from Hanski et al. (1993) 

Incidence values are more robust than abundance measures (O'Connor et al. 1996) 

but are expected to correlate well with abundance (Wright 1991). Therefore, I used 
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incidence values over 10 years rather than abundance in the calculation of Ao.resid. I 

calculated the average incidence values for each species only across sites with non-zero 

incidence values (Gaston et al. 2000). Range size was derived from the Naturserve maps 

(Ridgely 2003), also used in the range determination for the distribution models. 

4.3.3. Confounding variables 

Two variables deserved attention because of their potentially confounding effects 

on the relation between dispersal and autocorrelation. The first one was the number of 

sampling locations. Species with larger ranges also had more sampling locations and thus 

larger sample sizes. Several of the independent and dependent variables described above 

were substantially correlated with sample size. These correlations were taken into 

consideration by using partial correlations, controlling for the sample size. The second 

potentially confounding variable was the potential population growth rate R. I showed in 

Chapter 2 that R influences the relationship between dispersal and spatial autocorrelation 

in species distributions. Here clutch size (hereafter called "Max.clutch") taken from 

Ehrlich et al. (1988) was used as a proxy for R. 

All statistics were programmed in S-PLUS 6.2 (Insightful 2003)(use of this 

product does not imply endorsement). Rather than presenting hypotheses tests on the 

Spearman rank correlations I calculated bootstrap bias-corrected, adjusted 95% 

confidence limits (Efron and Tibshirani 1998) to give the reader an impression of the 

uncertainty in the regression coefficients. The number of bootstrap resamples was 10,000. 
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4.4 Results 

The three measures of autocorrelation only showed partial agreement (Table 5). 

While the standardized regression coefficient for neighborhood inclusion (Rho.std) and 

the pure spatial partition (Space) correlated fairly well (r = 0.513, 95% CI: 0.366 - 0.641), 

the two measures did not correlate meaningfully with the maximum neighborhood extent. 

This result underscores the lack of any systematic relationship between the overall 

strength of autocorrelation and its extent. 

Table 5. Spearman rank correlation coefficient among three different measures of 
autocorrelation. Confidence intervals are bootstrap bias-correct, adjusted 95% probability 
limits. N = 107. 

Variable 1 
Space 
Space 
Extent 

Variable 2 
Extent 
Rho.std 
Rho.std 

r 
0.111 
0.513 
0.124 

Lower CI 
-0.081 
0.366 
-0.086 

Upper CI 
0.297 
0.641 
0.320 

The confounding variables had few effects on the three measures of 

autocorrelation (Table 6). The only moderately strong correlation was between extent and 

the sample size of locations (n). Larger n occur in larger ranges, which can accommodate 

larger neighborhoods. In addition, larger n allowed better models, which were more 

capable of profiting from small effects caused by distant neighbors. Another weak but 

interesting positive correlation existed between the maximum clutch size (Max.clutch) 

and Rho.std. When Max.clutch is seen as an index for potential population growth rate, 

such a correlation was predicted in Chapter 2. 

The three indices for dispersal were only weakly correlated with each other, with 

some of the correlations having the opposite sign than expected (Table 7). I expected 

Ao.resid to correlate positively with dispersal, while Poll and Bspatial were assumed to 
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correlate negatively with dispersal. According to these expectations, Poll and Bspatial 

should have correlated positively, but correlated negatively instead. Poll and Ao.resid 

should have correlated negatively, but did not show any consistent correlation pattern 

within the confidence limits. Bspatial and Ao.resid were expected to correlate negatively. 

While the point estimate for the regression coefficient was consistent with this 

expectation, the direction of the correlation was inconclusive within the confidence 

interval. The abundance-occupancy relationship held up fairly well in the Breeding Bird 

Survey data (R = 0.11, F-statistic = 12.33 on 1 and 105 degrees of freedom, p-value = 

0.0007). 

Table 6. Spearman rank correlation coefficient among three confounding variables and 
three measures of dispersal. Confidence intervals are bootstrap bias-correct, adjusted 95% 
probability limits. N = 107. 

Variable 1 Variable 2 r Lower CI Upper CI 
n Space -0.030 -0.218 0.168 
n Extent 0.376 0.175 0.538 
n Rho.std 0.025 -0.190 0.233 

Max.clutch Space 0.098 -0.097 0.292 
Max.clutch Extent 0.042 -0.161 0.231 
Max.clutch Rho.std 0.210 0.008 0.381 

Table 7. Spearman rank correlation coefficient among three different indices for dispersal 
derived from three different ecological theories. Confidence intervals arejbootstrap bias-
correct, adjusted 95% probability limits. N = 107 

Variable 1 Variable 2 r Lower CI Upper CI 
Poll Bspatial -0.221 -0.378 -0.039 
Poll Ao.resid 0.140 -0.060 0.313 

Bspatial Ao.resid -0.114 -0.292 0.085 

The three indices of dispersal showed some correlations with confounding 

variables (Table 8). All three indices correlated with sample size (n), but only Ao.resid 

correlated strongly. Poll and Bspatial had different signs in front of their correlation 
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coefficients with n, which may partly explain why they unexpectedly correlated 

negatively with each other. Weight and maximum clutch size (Max.clutch) did not show 

strong correlations with the three indices. 

Table 8. Spearman rank correlation coefficient among three confounding variables and 
three measures of dispersal. Confidence intervals are bootstrap bias-correct, adjusted 95% 
probability limits. N = 107. 

Variable 1 
n 
n 
n 

Max.clutch 
Max.clutch 
Max.clutch 

Variable 2 
Poll 

Bspatial 
Ao.resid 

Poll 
Bspatial 
Ao.resid 

r 
0.321 
-0.234 
0.787 
0.009 
0.033 
0.013 

Lower CI 
0.120 
-0.414 
0.688 
-0.178 
-0.158 
-0.185 

Upper CI 
0.490 
-0.033 
0.858 
0.197 
0.228 
0.207 

No meaningful correlations between measures of autocorrelation and indices of 

dispersal were found (Table 9). I found only one moderately strong correlation, which 

was between Extent and Ao.resid. The most likely cause for this positive correlation was, 

however, the positive correlation of both variables with n. Partial correlations controlling 

for n lowered regression coefficient in this relationship but left the other correlation 

coefficients virtually unchanged (Table 10). 

Table 9. Spearman rank correlation coefficient among three measures of ipaUal 
autocorrelation and three indices of dispersal. Confidence intervals are bootstrap bias-
correct, adjusted 95% probability limits. N = 107. 

Variable 1 
Space 
Space 
Space 
Extent 
Extent 
Extent 
Rho.std 
Rho.std 
Rho.std 

Variable 2 
Poll 

Bspatial 
Ao.resid 

Poll 
Bspatial 
Ao.resid 

Poll 
Bspatial 
Ao.resid 

r 
0.048 
0.082 
0.051 
0.107 
-0.144 
0.488 
0.123 
-0.094 
0.075 

Lower CI 
-0.146 
-0.103 
-0.145 
-0.092 
-0.328 
0.319 
-0.083 
-0.271 
-0.128 

Upper CI 
0.227 
0.260 
0.243 
0.296 
0.045 
0.632 
0.303 
0.094 
0.262 
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Table 10. Partial Spearman rank correlation coefficients among three measures of spatial 
autocorrelation and three indices of dispersal. The correlations are controlled in respect to 
sample size n. Confidence intervals are bootstrap bias-correct, adjusted 95% probability 
limits. N = 107. 

Variable 1 
Space 
Space 
Space 
Extent 
Extent 
Extent 
Rho.std 
Rho.std 
Rho.std 

Variable 2 
Poll 

Bspatial 
Ao.resid 

Poll 
Bspatial 
Ao.resid 

Poll 
Bspatial 
Ao.resid 

r 
0.061 
0.077 
0.121 
-0.016 
-0.062 
0.336 
0.121 
-0.091 
0.089 

Lower CI 
-0.146 
-0.116 
-0.072 
-0.195 
-0.248 
0.162 
-0.075 
-0.267 
-0.078 

Upper ( 
0.246 
0.255 
0.314 
0.191 
0.133 
0.504 
0.320 
0.121 
0.254 

4.5 Discussion 

This study was unable to find a connection between autocorrelation and indirect 

indices of dispersal. The absence of correlations prevented conclusions about a possible 

relationship between dispersal and spatial autocorrelation in species distributions above 

and beyond what can be explained through spatial autocorrelation in underlying 

environmental factors. The failure to find the predicted correlations could have had 

multiple causes, which can be broadly assigned to two categories: the hypothesized 

relationship did not exist, or, the relationship existed but the selected methods were 

unsuitable for detecting it. Given that the selected methods were very indirect and that a 

connection between dispersal and spatial autocorrelation was shown in theory in Chapter 

2 and hypothesized by several authors (e.g., Paradis et al. 1998, Bj0rnstad et al. 1999, 

Trenham et al. 2001), I interpret the results predominately as a failure of the methods and 

not as strong evidence for the absence of an effect. 

Despite the failure to find meaningful correlations, there are some lessons to be 

learned from this study. Therefore, I will discuss the methods in detail, and elucidate the 
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parts that were most likely responsible for the failure and the parts that seemed to be 

valuable methodological contributions and offer interesting insights. 

A mismatch in scale between the observed effect and the investigated process can 

prevent meaningful results in ecology (Levin 1992). The data used for deriving the 

autocorrelation measures were of large spatial extent and coarse grain (the North 

American Breeding Bird Survey). Thus, the study was set at a coarse scale. The first two 

indices of dispersal, density dependence (Poll) and the spatial exponent of Taylor's 

power law (Bspatial) were calculated from the same dataset. Therefore, the scale should 

have matched, although sometimes the scale at which a phenomenon can be observed is 

coarser than the scale at which the underlying processes take place (Huston 2002). The 

last index for dispersal, the deviation from an abundance-occupancy relationship, was not 

an unequivocal scale match. Abundance-occupancy relationships have been shown at 

coarse scales that would match the present study (Bock and Ricklefs 1983, Gaston et al. 

1999, Gaston et al. 2000). However, Hanski et al.'s (1993) hypothesis concerning the 

relationship between the residuals from the abundance-occupancy regression and 

dispersal was based on metapopulation dynamics equations, which are typically 

concerned with smaller extents than covered here. At these smaller extend .eonsiderable 

dispersal connects populations. However, overall, a mismatch in scale was likely not a 

major flaw of this study. 

A more obvious weakness of the approach was the indirect nature of the indices 

of dispersal. How well did the selected measures express dispersal? In the case of 

dispersal being responsible for the deviation from the abundance-occupancy relationship 

hypothesized by Hanski et al. (1993), Matter et al. (1993) found some support, while 
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Gaston and Blackburn (2002) failed to support this theory. Also in disagreement with 

Hanski et al.'s (1993) theory, Paradis et al. (1998) found in a study of dispersal that wide­

spread and abundant species exhibited lower dispersal activity than species with small 

ranges and low abundances. In addition, the ranges of many of the bird species 

investigated were only partly in the study area of the conterminous United States. 

Therefore, some of the range sizes entered in the abundance-occupancy relationship were 

considerably smaller than the species' entire range. Hanski et al. (1993) considered this 

point but concluded that partial ranges should also work in this relationship. It remains 

unclear, though, whether the predicted dispersal is dependent on the proportion of range 

included in the relationship. In addition, the relationship between dispersal and spatial 

autocorrelation may be dependent on the specific part of the range included in the study 

area. 

The connection between density-dependence and dispersal has, to my knowledge, 

no direct empirical support. Population regulation dependent on density is a well 

supported and universally documented phenomenon (Murdoch 1994). However, it is 

unclear whether the mechanisms of regulation are mostly local, through birth and death 

rates, or whether dispersal among populations, as in metapopulation dynamics, is mainly 

responsible for density-dependence (Murdoch 1994). Although most models implement 

density-independent dispersal (Amarasekare 2004), organisms typically exhibit density-

dependent dispersal (Sutherland et al. 2002). If dispersal is density-dependent, it is fair to 

assume that dispersal is also at least part of the population density regulation mechanism 

(Taylor and Taylor 1977). Therefore, using density-dependence as a proxy for dispersal 

activity is likely not wrong but may be a weak approach dependent on how important 

81 



local mechanisms of density-dependence are compared to dispersal. For example, 

Rodenhouse et al's (1997) theory of density-dependence through site dependence relies 

on dispersal as the primary mechanism. However, the dispersal exhibited in the context 

of density-dependence may be of relatively short range and thus may be a scale mismatch 

to the observed spatial autocorrelation. In addition, an improvement to Pollard et al's 

(1987) method became available (Link and Hoover 1991) after Boone (1991) used it to 

calculate density dependence indices for North American breeding birds. 

My hypothesis on the negative correlation between the spatial exponent bs in 

Taylor's power law and dispersal agrees with Taylor and Taylor's (1977) view, although 

they called what I defined as dispersal migration. My approach agreed with their concept 

of dispersal as a process generally counteracting aggregation and thus leading to more 

uniformly distributed population sizes (see also Chapter 2). However, Taylor and Taylor 

(1977) also introduced another form of dispersal that leads to more aggregation, which 

they called congregatory migration and which is caused by intraspecific attraction. In 

addition, they note that many behaviors, such as the search for food, mates and shelter, 

antagonistic interactions, and predator avoidance, can lead to movements that obscure the 

effects of dispersal. Other species-specific characteristics that potentially influence bs 

independently of dispersal are the spatial and temporal patterns of relevant environmental 

conditions, and population growth rate. Therefore, while the basic hypothesis was 

probably correct, there are many reasons why the connection could have been weak. 

A final issue that could have caused the lack of meaningful correlations was the 

variability in sample size n among species. Each species had a different range size and 

accordingly a different number of included sample points. While I did consider 
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correlations with n (Table 6 and Table 8) and controlled for n where appropriate (Table 

10), not all problems arising from differences in sample size were obvious or easily 

controlled. Most importantly, sample size influenced the quality of the models and thus 

variable selection, efficiency of models in differentiating between noise and signal, and 

parameter estimates. In brief, the uncertainty encompassed in the models of the different 

species varied because n varied, and this additional variation may well have weakened 

existing correlations between indices of dispersal and measures of autocorrelation. 

In conclusion, the selected indices for dispersal were likely neither inappropriate, 

nor at a wrong scale. The most likely explanation for the absence of results was the 

indirect nature of the ecological indices. The noise in the data overwhelmed the 

information in these approaches, a conclusion supported by the absence of correlation 

among the three indices. Future research needs to be based on direct, empirical dispersal 

information such as used for British birds in Paradis et al. (1998). 

i? - * 
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CONCLUSION 

Chapter 1 of this dissertation revealed strong autocorrelation patterns at the 

national level in bird distributions. While spatial autocorrelation in environmental 

variables accounted for most of the explained variation (65%), 17% of the explained 

variation was due to neighborhood effects and spatial position within the range of the bird 

abundances themselves (from here on called "residual autocorrelation"). In other words, 

the observed bird abundances deviated consistently from the values predicted through 

environmental conditions, depending on the position in the range and the abundances of 

neighboring populations. 

If neighboring populations influence each other's abundances independently of 

environmental conditions, some exchange among the populations must exist. Certainly, 

many different mechanisms, behaviors and motivations may be responsible for such 

exchange, but all explanations have one thing in common: movement of individuals 

through the landscape and therefore dispersal in the broadest sense. 

The preceding results inspired the use of a simulation model (Chapter 2) to 

explore the mechanics and sensitivities of the hypothesized effects of dispersal on 

autocorrelation. I constructed the model such that populations on a regular grid were 

connected by dispersal. In this model, dispersal caused residual autocorrelation in the 

distribution of abundances above and beyond the autocorrelation that was already built 

into the underlying carrying capacities. The effect was dependent on the potential 

population growth rate of the simulated species. A high growth rate led to a dominance of 

local recruitment and a low effect of dispersal. In contrast, a low growth rate led to strong 
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influences of migrants and thus a large increase in autocorrelation in abundances even 

with moderate levels of dispersal. Thus, from an ecological standpoint, species with low 

potential population growth rates are more dependent on neighborhood effects than those 

with high growth rates. These neighborhood effects cause them to deviate from the 

distribution that would be expected if environmental conditions were the only predictors. 

While Chapter 2 covered the spatial effects of neighborhood relationships, the 

simulation modeling of Chapter 3 focused on the position in the range as an explanation 

for residual autocorrelation. I established in Chapter 2 that residual autocorrelation in 

species distributions could be caused by position in the range or neighborhood effects. 

The trend surface used in the spatial models is mostly able to capture long-waved spatial 

patterns, which most closely correspond to "position in the range," while the 

neighborhood matrix included in the spatial regression models captures short-waved 

patterns or "neighborhood effects." It is important to understand that the different 

environmental conditions typically found throughout the range have already been 

accounted for and that only the purely spatial residual effect of the "position in the range" 

is the focus of this research. Therefore, environmental conditions expressed as carrying 

capacities in the simulation model of Chapter 3 were randomly sampled flromthe same 

distribution throughout the range. The resultant abundance structure in the range was 

caused exclusively by dispersal. Populations at the periphery of the range had smaller 

population sizes than those at the core because the isolation of populations at the 

periphery caused them to lose more individuals to emigration than they gained through 

immigration. In contrast, the populations in the core had a neutral dispersal balance. 

Again, the magnitude of this effect was dependent on the potential population growth 
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rate, with a lower rate leading to higher differences in population sizes between the core 

and the periphery than high growth rates. The ecological lesson of Chapter 3 was that the 

typical peak and tail range structure observed in many species need not be caused 

exclusively by environmental conditions or competition, but may also be caused by the 

dispersal and relative isolation of populations at range edges. Thus, position in the range 

could cause deviations from the distribution predicted by environmental conditions only. 

Chapter 4 attempted to verify the connection between residual autocorrelation and 

dispersal in empirical data. Because no dispersal data were available for the modeled bird 

species at the coarse scale of the Breeding Bird Survey (BBS), I used indirect predictions 

of dispersal strength through indices based on metapopulation ecology, Taylor's Power 

Law and density dependence. The empirical verification was unsuccessful, most likely 

because the selected indices carried too much noise and too little information. 

While empirical testing of the link between dispersal and autocorrelation 

remained inconclusive, a solid theoretical and methodological foundation for future 

research on this link and its significance to distribution modeling has been established. 

Building on this foundation will require better information on the dispersal characteristics 

of individual species if the consequences of dispersal to the species' distribution are to be 

fully understood. In addition, further consideration of the behavior and autecology of 

each individual species would allow models to better account for residual variance. In 

particular, different dispersal behaviors may lead to different dispersal kernels and 

dispersal strengths, with very different consequences to distributions of individual 

species. While it may be scientifically more satisfying to establish the underlying core 

relationship or law of a phenomenon first and investigate the deviations from the law 
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later, an earlier control for residual variance may often be necessary in ecology if a weak 

signal is to be extracted from noise. 

t«k 
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Table A.l. List of common and scientific names of the 108 bird species used in this 
dissertation. Names from the 7th edition of the Checklist of North American Birds 
(American Ornithologists' Union 1998). 

Common name Scientific Name 
Little Blue Heron 
Cattle Egret 
Green Heron 
Common Snipe 
Northern Bobwhite 
California Quail 
Black Vulture 
Burrowing Owl 
Yellow-billed Cuckoo 
Black-billed Cuckoo 
Downy Woodpecker 
Yellow-bellied Sapsucker 
Pileated Woodpecker 
Red-headed Woodpecker 
Red-bellied Woodpecker 
Chuck-will's-widow 
Common Nighthawk 
Chimney Swift 
Western Kingbird 
Western Wood-Pewee 
Acadian Flycatcher 
Least Flycatcher 
Blue Jay 
Fish Crow* 
Bobolink 

Yellow-headed Blackbird 
Eastern Meadowlark 
Western Meadowlark 
Orchard Oriole 
Bullock's Oriole 
Brewer's Blackbird 
Common Grackle 
Evening Grosbeak 
Purple Finch 
House Finch 

Egretta caerulea 
Bubulcus ibis 
Butorides virescens 
Gallinago delicata 
Colinus virginianus 
Callipepla californica 
Coragyps atratus 
Athene cunicularia 
Coccyzus americanus 
Coccyzus erythropthalmus 
Picoides pubescens 
Sphyrapicus varius 
Dryocopus pileatus 
Melanerpes erythrocephalus 
Melanerpes carolinus 
Caprimulgus carolinensis 
Chordeiles minor 
Chaetura pelagica 
Tyrannus verticalis 
Contopus sordidulus 
Empidonax virescens 
Empidonax minimus 
Cyanocitta cristata 
Corvus ossifragus 
Dolichonyx oryzivorus 
Xanthocephalus xanthocephalus 
Sturnella magna % - *• 
Sturnella neglecta 
Icterus spurius 
Icterus bullockii 
Euphagus cyanocephalus 
Quiscalus quiscula 
Coccothraustes vespertinus 
Carpodacus purpureus 
Carpodacus mexicanus 

Omitted in Chapter 4. 
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Table A.l. Continued. 

Common name 
American Goldfinch 
Lesser Goldfinch 
Pine Siskin 
Vesper Sparrow 
Savannah Sparrow 
Grasshopper Sparrow 
Lark Sparrow 
White-throated Sparrow 
Chipping Sparrow 
Clay-colored Sparrow 
Field Sparrow 
Song Sparrow 
Swamp Sparrow 
Eastern Towhee 
Northern Cardinal 
Rose-breasted Grosbeak 
Black-headed Grosbeak 
Blue Grosbeak 
Indigo Bunting 
Painted Bunting 
Dickcissel 
Lark Bunting 
Western Tanager 
Scarlet Tanager 
Summer Tanager 
Purple Martin 
Tree Swallow 
Violet-green Swallow 
Northern Rough-winged Swallow 
Cedar Waxwing 
Loggerhead Shrike 
Red-eyed Vireo 
Warbling Vireo 
White-eyed Vireo 
Black-and-white Warbler 
Prothonotary Warbler 
Nashville Warbler 
Orange-crowned Warbler 

Scientific Name 

Carduelis tristis 
Carduelis psaltria 
Carduelis pinus 
Pooecetes gramineus 
Passerculus sandwichensis 
Am.modram.us savannarum 
Chondestes grammacus 
Zonotrichia albicollis 
Spizella passerina 
Spizella pallida 
Spizella pusilla 
Melospiza melodia 
Melospiza georgiana 
Pipilo erythrophthalmus 
Cardinalis cardinalis 
Pheucticus ludovicianus 
Pheucticus inelanocephalus 
Passerina caerulea 
Passerina cyanea 
Passerina ciris 
Spiza americana 
Calamospiza melanocorys 
Piranga ludoviciana 
Piranga olivacea 
Piranga rubra 
Progne subis 
Tachycineta bicolor 
Tachycineta thalassina 
Stelgidopteryx serripeimisT 
Bombycilla cedrorum 
Lanius ludovicianus 
Vireo olivaceus 
Vireo gilvus 
Vireo griseus 
Mniotilta varia 
Protonotaria citrea 
Vermivora ruficapilla 
Vermivora celata 
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Table A.l. Continued. 

Common name 

Yellow Warbler 
Magnolia Warbler 
Chestnut-sided Warbler 
Blackburnian Warbler 
Black-throated Green Warbler 
Pine Warbler 
Prairie Warbler 
Ovenbird 

Mourning Warbler 
MacGillivray's Warbler 
Common Yellowthroat 
Yellow-breasted Chat 
Hooded Warbler 
Canada Warbler 
American Redstart 
Northern Mockingbird 
Gray Catbird 
Brown Thrasher 
Carolina Wren 
Bewick's Wren 
House Wren 
Winter Wren 
Sedge Wren 

White-breasted Nuthatch 
Red-breasted Nuthatch 
Brown-headed Nuthatch 
Tufted Titmouse 
Black-capped Chickadee 
Carolina Chickadee 
Blue-gray Gnatcatcher 
Wood Thrush 
Veery 

Hermit Thrush 
American Robin 
Eastern Bluebird 

Scientific Name 

Dendroica petechia 
Dendroica magnolia 
Dendroica pensylvanica 
Dendroica fusca 
Dendroica virens 
Dendroica pinus 
Dendroica discolor 
Seiurus aurocapilla 
Oporornis Philadelphia 
Oporornis tolmiei 
Geothlypis trichas 
lcteria virens 
Wilsonia citrina 
Wilsonia canadensis 
Setophaga ruticilla 
Mimus polyglottos 
Dumetella carolinensis 
Toxostoma rufum 
Thryothorus ludovicianus 
Thryomanes bewickii 
Troglodytes aedon 
Troglodytes troglodytes 
Cistothorus platensis 
Sitta carolinensis 
Sitta canadensis 
Sitta pusilla 
Baeolophus bicolor 
Poecile atricapillus 4 
Poecile carolinensis 
Polioptila caerulea 
Hylocichla mustelina 
Catharus fuscescens 
Catharus guttatus 
Turdus migratorius 
Sialia sialis 
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