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Sprague Neck Bar is a recurved barrier spit located in Machias Bay, Maine. 

Principle geomorphic features associated with Sprague Neck Bar include bedrock, coastal 

bluffs, till in grounding line (the Pond Ridge Moraine) and washboard moraines, 

mudflats, sand and gravel beaches, and a salt marsh. Sprague Neck Bar is attached to the 

western end of the Pond Ridge Moraine (Sprague Neck) and extends northward toward 

the head of Machias Bay for 845 meters before the system recurves to the southeast for 

232 meters. The recurve system forms a broad tidal flat with evidence for northward and 

eastward migration of the spit. 

The main objectives of the project include: identification of major trends in 

shoreline change based on historic maps and aerial photographs, characterization of the 

main sedimentary environments of Sprague Neck, determination of the mechanisms 

influencing cross-shore and longshore transport, and finally an assessment of the 

relationship between relative sea-level rise and sediment availability and their role in 

barrier evolution was evaluated. Sprague Neck Bar is a mixed sand and gravel barrier 

spit. As with most mixed-sediment barriers the surface sediment fits a bimodal 

distribution, pebbles (-7 to -6 phi) and medium sand (0 to 1 phi). Surface sediment on the 

northward extension is not distributed in alongshore zones. The coarsest sediment is 



Tidal currents reach a greater maximum velocity, approximately 15 c d s ,  along the 

recurve. Ebb and flood tidal currents are nearly equal in magnitude along the northward 

extension of Sprague Neck Bar and the recurve system. The qualitative historical 

analysis, c.a. 1776 to present, revealed no significant long-term change in orientation or 

morphology of Sprague Neck Bar. 

Sprague Neck Bar was examined in context of the stepwise-retreat model 

developed by Boyd et al. (1987), which is often applied to barrier systems in the Gulf of 

Maine. Sprague Neck Bar differs from the model by Boyd et al. (1987) in one aspect: 

Sprague Neck Bar does not have two discrete sediment sources and attachment points. 

The stepwise-retreat model explains barrier evolution in terms of two barrier spits, each 

attached to a local source deposit, separated by a tidal inlet. According to the Boyd et al. 

(1 987) model, barrier evolution involves closure of the tidal inlet, spit breaching, and two 

new sediment sources. Therefore, Sprague Neck Bar is not an obvious example of the 

stepwise-retreat model. 
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INTRODUCTION 

During the last 20,000 I4c yr. B.P. coastal Maine was covered by the Laurentide 

Ice Sheet and experienced two periods of marine transgression as a result of isostatic 

adjustments and rising relative sea-level. The Maine coast is still experiencing a marine 

transgression at a rate of 2-3 mrnlyr. (Belknap et al., 1989). The wide spectrum of coastal 

morphology along the coast of Maine is a result of the diverse effects of glaciation and 

associated sea-level change (Kelley, 1987; Kelley et al., 1989; Belknap et al., 1989). 

Coastal evolution is a cumulative process in which morphological outputs are 

included among the inputs for the next cycle of evolution (Cowell and Thom, 1994). 

Cumulative evolution occurs on all time scales, but is most significant over geologic 

time. Studying coastal morphology within distinct embayments provides usefbl 

information on the main factors influencing a shoreline's geomorphic response and 

evolutionary history. On coastlines experiencing marine transgression, geomorphic 

response is largely influenced by antecedent geology, rising relative sea level, and 

sediment availability (Belknap and Kraft, 1985). 

Sprague Neck (Figure I), located in Machias Bay, consists of bedrock, mixed- 

sediment beaches, a recurved banier spit, coastal bluffs, coarse- and fine-grained flats, 

and grounding line and washboard moraines. The main objectives of this project include: 

1) qualitative analysis of the shoreline change of Sprague Neck Bar ca. 1776 to present, 

based on historic charts, topographic maps, and aerial photographs, 2) identifjring the 

sources supplying sediment to Sprague Neck Bar, 3) determining the mechanisms 

responsible for transporting and eroding sediment, and 4) inferring the evolutionary 



history of Sprague Neck Bar with respect to the stepwise retreat model by Boyd et al. 

(1987). In addition to the principle objectives three supplementary questions are asked: 

1) in the intricate relationship between relative sea-level rise and sediment availability, 

which one is the dominant factor controlling shoreline change in Machias Bay?, 2) how 

does the evolution of Sprague Neck Bar compare with similar barrier systems in eastern 

Maine?, and 3) what does this comparison indicate about shoreline dynamics in the 

eastern Gulf of Maine? 
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Figure 1. Regional Map of Coastal Maine showing the location of Machias 
Bay (modified fiom Walsh, 1988). 



PREVIOUS WORK 

Morphodynamics and Barrier Evolution 

Coastal evolution is a h c t i o n  of morphodynamic processes that occur in 

response to changes in external conditions such as waves, tides, sea-level change, and 

sediment supply. Morphodynamics is defined as the 'mutual adjustment of topography 

and fluid dynamics involving sediment transport' (Cowell and Thom, 1994, p. 33) and 

relies on the 'predictability along certain environmental gradients with behavior varying 

in a deterministic manner' (Carter and Woodroffe, 1994, p. 10). 

Morphodynamic processes h c t i o n  in a feedback loop between topography and 

fluid dynamics (Figure 2). Sediment transport is the coupling mechanism between 

morphodynamic change and fluid dynamics. Positive feedback (or self-organization) is a 

self-forcing behavior that leads to greater instability and a new mode of operation. 

Negative feedback (or self-regulation) stabilizes the system for a given range of 

environmental conditions by acting against fluctuations fiom a morphodynamic steady 

state. Reversals from positive to negative feedback (or vice versa) mark a threshold 

(Cowell and Thom, 1994). Thresholds are intrinsic values of a forcing h c t i o n  that are 

defined by a system's ability to absorb stress, and are reached when changing inputs 

drive variables to limiting values. When a threshold is exceeded, adjustments occur and a 

new set of variables and processes define the system (Carter and Woodroffe, 1994; 

Cowell and Thom, 1994). 

Coarse-grained systems illustrate the ability of coastal systems to control the 

morphodynamic environment as the systems evolve toward stable, organized forms. As a 

gravel-dominated beach moves toward a stable morphodynamic state, wave and current 

3 
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Figure 2. The structure and functions of the morphodynarnic model for the 
coastal system. Boundary conditions refer to spatial and process boundaries for 
the system. Sediment transport is highlighted because it is the link between fluid 
dynamics and morphological change. Dashed arrows indicate input-output 
between the coastal system and environment (after Cowell and Thom, 1994). 



processes move sediment and landforms in longshore and cross-shore directions. 

Movement in both longshore and cross-shore directions allows the system to absorb a 

range of energy inputs. For example, the morphodynamic state of a coarse clastic beach 

characterized by a concave-up form with a break in gradient near the mid- to low-tide 

line will alter as the critical wave height-to-depth and depth-to-wavelength ratios vary. 

The main-detmining factors of barrier evolution in paraglacial and other temperate 

environments are: 1) sediment availability, 2) relative sea-level fluctuations, 3) 

antecedent geology, and 4) wave and tidal climate (Belknap and Kraft, 1985,198 1; 

Hayes, 1975; Kraft et al., 1979; Kraft and John, 1979). 

Sedimentology 

Size and volume of glacial sediment sources influence the size and shape of 

coastal features (Forbes et al., 1995a). The rate of sediment input and proportion of sand 

and gravel affect storage volume, facies characteristics, and overall stability of littoral 

systems (Forbes and Taylor, 1987. The type of onshore or offshore source determines the 

size and amount of available sediment (Forbes et al., 1995a). 

Sediment supplying New England barriers is, either directly or indirectly, from 

inland, updrift, and offshore sources. Inland sources are eroded and transported to the 

coastline by rivers. Large amounts of sediment bypassed the shoreline after deglaciation 

and were stored in submerged paleodeltas. Submerged paleodeltas and drowned glacial 

features comprise the offshore sources (Barnhardt et al., 1997; Belknap et al., 1986). 

Skeletal carbonates are associated with late Quaternary glacigenic deposits found on the 

inner continental shelf of Maine. Carbonate-secreting organisms (barnacles, echinoids, 

mussels) live on the substrate and, with a low input of terrigenous sediments, are the only 

5 



sediments now accumulating on the inner shelf (Barnhardt and Kelley, 1995). The 

onshore glacial equivalents and coastal bluffs comprise the updrift sediment sources that 

have not been previously incorporated into barrier systems (FitzGerald and van Heteren, 

1999). Bluffs are composed of unconsolidated sediment that are subjected to marine and 

subaerial erosion processes (Carter and Guy, 1988; Kelley and Dickson, 2001 ; Smith, 

1 990). 

A range of particle sizes and shapes and the system's organization determines the 

actual degree of transport (Carter and Orford, 1993; Hoekstra et al., 1999). The 

distribution of particle shapes is largely dependent on lithology; size differentiation 

among lithologies is negligible. Nonspherical shapes (blades and plates) are easily 

transported by hydrodynamic shear at lower fluid velocities than spheres and rods 

because of their higher cross-sectional area to volume ratio. When a wave reaches the 

capacity to transport material the flat particles are transported shoreward. As the wave 

reaches the highest point of swash the flat particles are again preferentially moved 

shoreward by sliding. Flat particles remain on the barrier crest because of their resistance 

to being rolled while spherical shapes are transported to the breaker line by rolling and 

tumbling (Brenninkmeyer and Nwankwo, 1987; Rosen and Leach, 1987). 

As coarse particles accumulate, the rules of mass transport apply and group 

imposed controls (e.g., position, bed acceptancelrejection, contact stresses) dominate the 

transport environment. Group-imposed controls may overwhelm transport thresholds and 

lessen transport potential (Bluck, 1967; Carter and Orford, 1991, 1993). On a gravel 

beach, progressive clast selection may stop or slow clast entrainment. Thus, it is possible 

to have a slow transition fiom an unsorted population toward a sorted subpopulation with 
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a narrow range of sizelshape characteristics (Carr, 1969). Sizelshape sorting indicates the 

level of organization (Carter and Orford, 1991). 

For a given barrier system, the input population will be sorted according to 

individual clast characteristics including size, shape, and density. The coarse beach is 

viewed as a surface of probability in which an individual clast has a range of transport 

potential (Figure 3a), including incorporation into the surface facies (Px), 

washoverlejection losses (Pw), entrapment between larger clasts within the matrix (PC), 

acceptance into a subpopulation controlled by either size or shape (Pi), offshore losses 

(Pa), and breakage losses (Pb). As facies and barrier organization evolve the 

probabilities of each entrapment possibility changes, i.e., probability of clast acceptance 

into an imbricate frame increases as the frame increases. As acceptance (Pi) increases the 

probability of remobilization (Pr) decreases (Carter and Orford, 1993, 1991). 

Carter and Orford (1991) attempted to explain the longer-term relationships 

between various entrapment possibilities and time (Figure 3b). With increased 

organization, the probability of entrapment (Pe) and acceptance (Pi) into subpopulations 

increases. Breakage opportunities also increase with greater organization because it is 

more difficult for individual clasts to move downdrift. As the intertidal frame increases, 

by means of entrapment and acceptance, the system becomes more dissipative and the 

probability of washover and offshore losses decrease (Carter and Orford, 1991). 

Transport probabilities vary according to barrier organization into alongshore and cross- 

shore zones (Carter and Orford, 1991). Each zone may be capable of trapping clasts of a 

certain size, shape, or lithology, and therefore, to a certain degree these zones control the 

developing barrier architecture (Moss, 1963; Carr, 1969). 



Pa = unit input/output 
Px = beach facies 
Pw = washoverlejection 
Pe = entrapment matrix 
Pi = acceptance 
Pb = breakage 
Po = offshore 
Pr = remobilization 

Figure 3a. The probabilistic nature of individual sediment grain transport (modified 
from Carter and Orford, 1991). 

1" .. 
time + 

(increasing organization) 

Figure 3 b. Long-term probabilistic opportunities for gravel clasts in a barrier 
system (modified from Carter and Orford, 1991). 



Sediment movement is distinguished as longshore and cross-shore transport (Ostrowski et 

al., 1995). Continual reworking of clasts results in cross- and along-shore facies 

assemblages and, in the absence of "new" sediment, a reduction in the overall potential 

for transport (Carter and Orford, 1993). The direction and magnitude of longshore 

transport are functions of exposure to waves, orientation with respect to waves, and 

offshore slope (Komar, 1974). Longshore transport is fundamental to creating spatial 

changes and in the formation and movement of erosional and accretional features 

(Ostrowski et al., 1995). Quick and Ametepe (1 99 1) proved that for a range of beach 

slopes and sediment sizes, total longshore transport increases with beach slope, though 

only minimally with sediment size. A large offshore flux enhances longshore transport. 

With a continued large offshore movement, and adequate sediment supply, beach slope 

decreases. The decrease in slope causes a reduction in longshore transport. Reduction in 

both beach slope and longshore transport results in a system that conserves sediment. If 

the longshore supply is insufficient, the offshore flux is transported alongshore. The 

beach slope will not decrease under these conditions and the longshore transport will 

remain high, supplied by offshore sediment movement. As the offshore flux continues 

to supply sediment for longshore transport the beach erodes and recedes. Thus, cross- 

shore transport and slope may play a substantial role in controlling the velocity and 

magnitude of longshore transport (Quick and Ametepe, 1991). 

Relative Sea-Level Fluctuations 

Relative sea level (RSL) control is an important factor in the development of 

coarse-grained barriers (Boyd et al., 1987; Carter et al., 1989; Forbes and Syvitski, 1994). 

Direction and rate of RSL change affects long-term evolution of barrier and backbarrier 
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environments (Forbes et al., 1995b) by controlling sediment availability and the timing or 

location of reworking. Eroding bluffs and headlands last longer under slowly, rather than 

rapidly, rising RSL because a longer time period exists for the system to reach 

equilibrium (Forbes and Syvitiski, 1994; McNinch et al., 1999). 

Recycling former backbarrier sediments into the active barrier sediment budget 

allows barriers to keep pace with rising RSL. Recycling operates by exhuming the 

underlying substrate when the shoreface migrates landward (Belknap, 199 1 ; Belknap and 

Kraft, 1981, 1985; Duffy et al., 1989; McNinch et al., 1999; Swift, 1975). If the rate of 

barrier build-up can not keep pace with the rate of RSL rise then overtopping, 

overwashing, or overstepping may occur (Forbes et al., 1991; Orford et al., 1995). 

Orford et al. (1 995) attempted to define the relationship between barrier behavior 

and sea-level rise. In theory, coarse barriers move both horizontally and vertically in 

response to sea-level rise. Orford et al. (1995) postulated that the horizontal movement 

of barrier systems indicates a long-term relationship between RSL and barrier stability. 

Barrier stability is indicated by the height of the barrier crest. As the rate of RSL rise 

increases, the rate of overwash increases, leading to an increase in the landward transport 

of crest sediment to the backbarrier. Therefore, overwash drives the barrier rollover 

processes (Orford et al., 1995). 

If the assumption that a barrier rolls over during retreat is correct, then the 

sediment in the beachface must be raised to the elevation of the crest. If the barrier 

rollover volume, an estimate of the volume under a barrier cross-section, is multiplied by 

barrier height, then a measure of barrier stability to retreat rate can be made (Table 1). A 

barrier with a small rollover volume and low barrier height is the least resistant to change. 

10 



This suggests that barrier dimensions and RSL rise may be of equal importance, and the 

smaller the barrier's rollover volume the faster the retreat regardless of the rate of RSL 

rise (Orford et al., 1995). 

Table 1. Characteristics of sample.grave1 barriers. Barrier height is the vertical 
difference between the gravel crest and the seaward edge of the barrier. Rollover volume 
is an estimate of volume under a sample barrier cross-section. Resistance is the rollover 
volume multiplied by barrier height to provide a measure of barrier stability (Orford et 
al., 1995). Barrier 3 has the greatest resistance to change. 

Barrier Barrier Height Rollover Volume SLR rate Resistance 
(m) (m3) (mwd 

Barrier 1 3.5 130 3.8 455 
Barrier 2 6.5 325 0.9 21 13 
Barrier 3 8.0 340 1.5 2720 

The relationship between wave activity and barrier stability corresponds with the 

explanation by Forbes et al. (1991) that storm surge is largely responsible for higher rates 

of landward migration. Increased storm surge leads to increased overwashing and 

overtopping events, which enhances barrier instability (Orford et al., 1996). The 

relationship between RSL change and barrier stability also indicates that barriers may 

evolve under fluctuating and stable conditions. Gravel-dominated barriers retreat with a 

rise, and at some point, a fall in RSL. Retreat during a fall in RSL can only occur 

through strong wave activity in the absence of an adequate sediment supply. The barrier 

crest eventually fails, and the barrier is translated landward by wave activity (Forbes et 



al., 1991; Orford et al., 1983, 1995). 

Antecedent Geology 

Antecedent geology controls the shape of the coastline by providing the regional 

slope and establishing the initial orientation with respect to wind and waves (Belknap and 

Kraft, 1985; Kelley, 1987). Local bedrock controls deposition and preservation of facies, 

morphodynamics, landward migration of nearshore sediment, reworking, and dispersal 

(Buynevich and FitzGerald, 1999; Evans et al., 1985). Topographic highs can serve as 

attachment points and stop landward migration (Fields et al., 1999). 

Antecedent geology determines the amount of accommodation space available for 

deposition in relation to the rate of sediment supply and RSL fluctuations (Belknap and 

Kraft, 198 1,1985; Cowell and Thom, 1994; FitzGerald and van Heteren, 1999) and 

affects the thickness of barrier lithosomes. Even with the same rate of sediment supply 

variations in accommodation space produces different coastal geometries and 

stratigraphies (Roy et al., 1994); typically thin barrier lithosomes in paleotopographic 

highs and thick in low areas (Belknap and Kraft, 1985; FitzGerald and van Heteren, 

1999). Coastal lithosomes on a topographically varied surface have differential 

preservation with portions of the stratigraphic column better preserved in valleys 

(Belknap and Kraft, 1985, Belknap et al., 1994). 

Transgressive systems interact with antecedent geology to control the evolution 

and preservation of barrier systems. A transgressive system is created when the rate of 

RSL drives a system landward faster than sediment supply builds the barrier seaward 

(Evans et al., 1985). As the system translates landward and builds upward, the units are 

truncated by the shoreline at the ravinement surface. The ravinement surface (Swift, 
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1975) represents the depth of shoreface erosion and controls the location and morphology 

of the coastline (Belknap and Kraft, 1985; Fields et al., 1999). Fluvial and subaerial 

erosion during sea-level lowstand results in a basal unconformity, which represents the 

major hiatus between the leading edge of the Holocene transgression and pre-Holocene 

units. The spatial relationship between the two unconformities determines the degree of 

preservation (Belknap and Kraft, 1 985). 

Wave and Tidal Regime 

Waves are the main entrainment mechanism and tidelwavelwind-driven currents 

transport the sediment on coasts (Davis, 1994; Soulsby, 1991). The vertical range of 

wave action and the frequency of wave attack at a specific intertidal level are a function 

of RSL changes and tidal currents. The level of wave attack influences the sedimentation 

pattern by determining access to source deposits (Forbes and Syvitski, 1994). 

Local reworking by waves and currents under changing RSL and supply 

conditions produces different morphologies (Roy et al., 1994). Waves and currents 

resculpt the topography and change the roughness distribution, which results in a 

redistribution of wave energy along the shore. Spatial and temporal variations in 

roughness and topography affect wave height and direction along the shoreline (Hurne et 

al., 1995). 

Longshore currents are an important mechanism in distributing sediment along 

the beach and nearshore environments. Beach form and nearshore slope are two factors 

in determining a system's morphodynamic response to wave attack (Davis, 1994). While 

a gravel beach with a single slope remains reflective under most conditions, the 

morphodynamic characteristics of slopes with a significant break in gradient, near the 
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low- to mid-tide line, change as the wave height to depth and depth to wavelength ratios 

vary (Carter and Orford, 1993; List and Fanis, 1999). The greater the wave height or 

longer the period, the greater the depth at which a particle can be transported 

(Brenninlaneyer and Nwankwo, 1994). 

Shoreline configuration may have a "memory affect" in which the system returns 

to the pre-storm shape as storm intensity decreases (List and Fanis, 1999). During storm 

events, sediment from the nearshore profile is often deposited in the offshore portion of 

the profile and returned to the nearshore section when the storm ceases. With the transfer 

of sediment from one section of the profile to another the total sediment volume within 

the overall system remains constant (Haines et al., 1999). 

Evolutionary Models 

As the concept of barrier evolution developed, four dominant theories emerged. 

De Beaumont (1 845) first proposed the theory of barrier formation through the upward 

building of offshore bars, later supported by Otvos (1 970). According to this theory 

waves approaching the nearshore environment disturb sea-floor sediments. When the 

waves reach the breaker zone and lose energy, sediment settles out, accumulating as an 

offshore bar. With continued aggradation the barrier eventually encounters sea level and 

sediment accumulates, forming beaches and dunes (Otvos, 1970). Johnson (1 9 19) used 

this theory in a situation of emergence. Gilbert (1 885) advocated an alternative theory of 

spit formation through longshore transport and breaching, also supported by Fisher 

(1 968). The third theory is submergence of antecedent topography such as Pleistocene 

coastal features (Hoyt, 1967). The fourth theory is that barriers formed on the shelf and 

were separated from the site of origin through landward migration, with the origin 
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obscured after migration (Shepard, 1960; Swift, 1975). With increasing field evidence 

Zenkovitch (1967) and Schwartz (1971) advocated the idea of multiple causality. 

Halsey (1 979) combined various aspects of the four dominant theories in the 

nexus model. The nexus model is the linking of new and old topographies, particularly 

inlets occurring over paleovalleys, coupled with differing supply rates (Halsey, 1979). 

This model relies on the rate of RSL rise to overwhelm sediment supply and create a 

transgressive system (Evans et al., 1985). 

The control antecedent geology exerts on sediment dispersal as the shoreline 

transgresses over irregular topography is also illustrated by the stepwise barrier retreat 

model. The six-stage coastal sedimentation model for the eastern shore of Nova Scotia is 

developed around isolated sediment supplies (eroding drumlins) and headland anchor 

points (Boyd et al., 1987; Johnson, 191 9). Along the Nova Scotia coast, each eroding 

drumlin is in a different stage of evolution. The drumlin with the maximum sediment 

available controls the sediment transport pathway. Control of the pathway transporting 

sediment is relinquished when the drumlin is depleted and drowned (Boyd et al., 1987; 

Carter and Woodroffe, 1994). 

The first two stages (Figure 4) explain coastal origin during the early Holocene. 

Stages 3-6 are cyclic for each compartment with the time scale dependent on rate of RSL 

rise and the frequency with which sediment sources are encountered. Barrier building 

begins when the transgressing shoreline encounters sediment sources (Boyd et al., 1987). 

As the erosional front moves across the drumlins, sediment is distributed parallel and 

normal to incoming waves (Carter and Orford, 1988). While a large sediment supply is 

available the barrier progrades seaward. When supply diminishes, the barrier loses 
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Figure 4. The evolutionary model proposed for transgression on the eastern shore of Nova Scotia (modified from Boyd et al., 1987). 



contact with the drumlin and reaches equilibrium with the incident waves (Carter and 

Woodroffe, 1994). RSL rise is again the dominant control and barriers migrate landward. 

Retreat is dominated by overwash and tidal-inlet processes that remove sediment from 

the system and deposit the material in flood-tidal deltas, washover and estuarine 

environments (Boyd et al., 1987; Boyd and Honig, 1992). The development of estuarine 

sediment sequences is dictated by cycles of barrier progradation and destruction (Boyd 

and Honig, 1992). Maximum rates of sedimentation occur during transgression and 

destruction (Boyd et al., 1987). Barrier building may slow or stop the supply of sediment 

to the estuarine environment, creating a fluctuating sediment supply and a sequence of 

stacked estuarine facies. The cyclic pattern of facies indicates that fluctuating 

sedimentation rates are not necessarily the result of RSL oscillations, but may occur 

through variations in physical parameters during a transgression (Boyd and Honig, 1992; 

Duffy et al., 1989). 

Forbes et al. (1995b) emphasize the ability of barrier systems to self-organize 

rather than following a distinct model of set pathways. Coarse-grained barriers exhibit 

self-organization through large-scale morphological evolution and facies differentiation. 

The process of self-organization involves reworking and textural sorting of material 

toward transport minima. This produces a stable configuration in which the barrier 

system is resistant to change under fluctuations in external conditions up to certain limits. 

The stages of self-organization include formation, growth, consolidation, and 

destruction. Progression through the various evolutionary stages depends on external 

conditions (energy and mass input) and the morphodynamic feedback (internal response) 

of the system (Forbes et al., 1995a; Orford et al., 1996). A set of environmental controls 
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exists whose interactions create circumstances that allow gravel barriers to develop, 

organize, and evolve (Orford et al., 1996). External conditions influencing 

morphosedimentary characteristics include sediment supply, antecedent geology, RSL 

fluctuations, and wave climate. These characteristics occur on various scales and vary 

through time. As long as a certain threshold is not exceeded, then self-organization 

continues (Forbes et al., 1995a). During formation, growth, and consolidation, sediment 

supply is the most important control. When the source is depleted, wave climate 

becomes the dominant control with respect to shoreline adjustment. Antecedent 

topography is important at all times, lessening in importance during growth, 

consolidation, and initial destruction. RSL change is not predominant in any particular 

phase. Fluctuations in RSL are most effective during consolidation because of overwash 

and overtopping processes (Orford et al., 1996). 

Barrier Systems on the Northeastern Coast of Maine 

New England experienced several episodes of glaciation, which is responsible for 

the irregular and rocky coast with varied and isolated sediment supplies. The thickness 

and extent of the Laurentide ice sheet and the timing of deglaciation influenced the 

varying sea-level histories in New England (FitzGerald et al., 1994). The bedrock 

headlands that divide the coast into compartments restrict sediment movement. 

Restricted sediment movement creates short, isolated barriers. Barrier spits are common 

on New England coasts as a result of the irregular coastline and the high number of local 

onshore deposits puffy et al., 1989; Kelley, 1987). 

Along the coast of Maine, barrier system morphology (e.g., spits, tombolos, and 

pocket beaches) varies greatly because of bedrock geology and the diverse effects of 
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glaciation. The majority of the northeastern coastline is tide-dominated (Figure 5) and 

sediment-starved, with barrier formation typically restricted to protected embayments 

with glacial sediment sources (Duffy et al., 1989). The eastern, macrotidal coast of 

Maine is the only tide-dominated coast in New England (FitzGerald et al., 1994). 

Composition ranges from fine sand to cobble-size material with mixed-sediment beaches 

common. Mixed-sediment beaches occur where sediment supply is variable in texture. 

Barriers on this type of coastline are typically isolated, anchored to bedrock or glacial 

headlands, backed by fresh- to salt-water lagoons or marshes, low in relief, and 

transgressive (Duffy et al., 1989). Transgressive systems are characterized by washover 

deposits of sand and gravel in the backbarrier area and exposed peat on the beachface 

(FitzGerald et al., 1994; FitzGerald & van Heteren, 1999). 

Jasper Beach - Jasper Beach is a pocket, gravel, barrier system that is 

transgressive in nature. Profiles of Jasper Beach are characterized by a steep beachface 

slope, high berm, and coarse material. The barrier is retreating over lagoon or 

backbarrier marsh sediments exposing peat on the beachface pu f fy  et al., 1989). 

Gehrels et al. (1996) determined the higher high marsh and high marsh have existed since 

at least 4.795 k 0.080 ka. This vertical sequence reflects RSL rise and the resulting 

landward translation of marine environments (Duffy et al., 1989; Gehrels et al., 1996). 

Lubec Embayment - Lubec Embayment (Figure 6) is a coastal re-entrant in 

eastern Maine, adjacent to the international boundary with Canada. Lubec and Quoddy 

Spits are shore-parallel features generated within a low wave-energy environment. Lubec 

Embayment is an embayment sheltered to the west and south by the mainland and West 

Quoddy Head, respectively. Wave generation is fetch-limited for all wave approach 
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directions (Walsh, 1988). In fetch-limited conditions waves cannot attain the maximum 

wave energy for a given wind speed and duration (Komar, 1974). Maximum fetch is 

from the ENE and is approximately 4.5 km at MHW, and minimum fetch is 1.7 km at 

MLW. The predicted maximum wave height during average wind speed conditions is 

0.24 m. In the Lubec Embayment mean tidal range is approximately 5.3 m, exceeding 6 

m on spring tides. The macrotidal environment fosters the development of large tidal 

flats and high velocity bi-directional currents (Walsh, 1988). Walsh (1988) determined 

that tidal current flow within the embayment was ebb dominated, based on current sensor 

data and intertidal morphology. 

Principle geomorphic elements include coarse-grained barrier spits, a backbarrier 

salt marsh, and coarse-grained tidal flats. Landward transfer of sediment from intertidal 

source areas to modern depositional sites occurs by swash bar migration, seaweed 

transport, and ice-rafting. Migration of intertidal swash bars and seaweed transport of 

gravel-sized clasts are the most important transport mechanisms in the Lubec 

Embayment. Walsh (1988) determined that seaweed transport is an effective mechanism 

transporting gravel-sized clasts from the low-mid intertidal source areas to sites of 

modern-day accretion. The net transport is onshore for the mid-high intertidal locations, 

while the low intertidal flat and channels show bi-directional and offshore transport. 

Walsh (1988) suggested clast movement with seaweed is episodic because clasts become 

trapped in gravelly sediments. High-energy events or ice-rafting disperse the clasts and 

allow continued transport (Walsh, 1988). The attachment of seaweed may also enhance 

ice-rafting because of the larger surface area around which ice can form (Dionne, 1965). 

Ice transport is important in marsh sedimentation and largely responsible for the growth 
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of Quoddy Spit (Walsh, 1988). 

Evolution of the Lubec Embayment was rapid through historic time and cyclical 

in nature (Walsh, 1988), fitting the evolutionary model proposed for transgression on the 

eastem shore of Nova Scotia by Boyd and others (1987). From late Pleistocene time to 

present, evolution involved the formation and destruction of two ancestral barriers, 

followed by the growth of the modem Lubec Spit during a period of reformation (Walsh, 

1988). During reformation, sediment depleted from one barrier is relocated landward and 

concentrated in a new barrier (Orford et al., 1996). During late Holocene time, 

evolution was rapid and complex. Retreat can be summarized by three main processes: 

1) spit breaching and destruction, 2) sediment reworking by waves and tides resulting in 

landward translation of the relict spits, and 3) spit regeneration into forms stable under 

contemporary marine conditions (rate of sea-level rise and sediment supply). The growth 

of the Lubec and Quoddy Spits is primarily a result of marine reworking of relict barriers 

in a relatively sheltered environment. Internal sediment recycling and conservation of 

relict barrier sediments, with minimal sediment supplied from outside the embayment, 

led to the development of the modem-day spits. Most or all of the sediment present in 

the earliest mapped barrier in Lubec appears to have been conserved in the present barrier 

systems (Walsh, 1988). 



PHYSICAL SETTING 

Geography 

Machias Bay, the study area, is located in the northern Gulf of Maine and is 

rectangular in shape (Figures 1,7). Sprague Neck divides the bay into two halves. North 

of Sprague Neck lies the mouth of the Machias River, fronted by several smaller islands, 

and Holmes Bay. The southern half of Machias Bay is more open to the Gulf of Maine. 

Cross Island and a group of smaller islands sit at the mouth of Machias Bay. 

Geology 

Bedrock Geology- The Machias area is composed of Silurian and Devonian 

metasedimentary and metavolcanic rocks (Figure 8, Table 2). There is a minor amount of 

intrusive rock that is predominantly gabbro to ultramafic in composition. Two major fault 

systems cut the Machias region. The intersecting fault systems are Paleozoic and 

Mesozoic in age (Osberg et al., 1985). Location and trend of the fault systems control the 

shape of Machias Bay (Kaplan, 1994). 

Quaternary Geology - The Laurentide Ice Sheet (LIS) advanced into Maine 

from Quebec between 30,000 and 24,000 I4c yrs. B.P. (Dorion et al., in press). The LIS 

continued the southward advance until it reached a terminal position in the Gulf of Maine 

between 20,000 and 22,000 I4c yr. B.P. (King, 1996; Bother and Spiker, 1980). The ice 

sheet retreated across the Gulf of Maine at approximately 19,000-15,000 yrs. B.P. in a 

north-northwest direction, depositing laminated marine mud and outwash (Dorion, 1997). 

By 15,300 I4c yrs. B.P. the LIS retreated from the continental shelf (LePage, 1982) with 

the grounding line reaching eastern Maine by 14,000 * 85 I4c yrs. B.P. (Kaplan, 1994, 





Figure 8. Bedrock Geology Map for the Machias Bay region. Faults are: A-Machias 
Bay Fault; B-Starboard Fault; C-Lubec Fault Zone: and D-Fundian Fault (modified 
fiom Osberg et a). 1985). Bedrock units described in Table 2. 
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Table 2. Key to the Bedrock Geology Map in Figure 8. 



The Pond Ridge Moraine formed between 13,8 10 f 55 yrs and 13,660 f 90 yrs 

B.P. at the grounding line in a marine environment (Dorion, 1 997; Kaplan, 1994, 1 999; 

LePage, 1982). Water depth, which varied locally as the grounding line retreated across 

a hummocky topography, was an important factor influencing grounding line dynamics in 

eastern Maine (Kaplan, 1994; LePage, 1982). Kaplan (1 999) suggested that high calving 

rates in deep water of topographically low areas and changes in bed slope caused 

grounding line instability. The grounding line was relatively more stable at topographic 

highs, such as Sprague Neck. 

The Pond Ridge Moraine (Sprague Neck) is the most continuous glacial landform 

in the Machias Bay region. In eastern coastal Maine, ice striae are concentrated in the 

Machias Bay and Lubec Embayment areas. The dominant striae orientation in Machias 

Bay indicates ice movement toward the southeast. In the vicinity of the Pond Ridge 

Moraine there are two sets of ice striae. The youngest striae indicate southward ice flow. 

In contrast, the oldest striae indicate a more southeastward ice flow (Kaplan, 1999; 

LePage, 1982). LePage (1 982) suggested a southeastward ice flow preceded a more 

southward flow in the Machias Bay region, based on differences in the till underlying and 

interbedded with the Pond Ridge Moraine. Kaplan (1999) supported LePage's (1 982) 

conclusion that the Pond Ridge Moraine represents a readvance position of the LIS. The 

next major pinning point was the northern margin of Holmes Bay. Several smaller 

moraines were deposited and mantled with layered gravel deposits. The ice sheet 

continued to retreat in a north-northwest direction depositing washboard moraines 

(LePage, 1982; Stuiver and Borns, 1975). 
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Between 13,500 and 12,500 yrs B.P. the LIS retreated fiom the coast, creating a 

period of submergence (Mickelson and Borns, 1972). At the time of deglaciation in 

eastern Maine, the landscape was depressed by the weight of the ice and RSL at the 

present coastline was approximately 70 m above sea level (Belknap et al., 1987a). 

Marine conditions dominated Machias Bay until 12,000 yrs. B.P. (Davis and Jacobson, 

1985) when the region rebounded and relative sea level reached a lowstand of -60 m 

(Figure 9) at approximately 10,800 14c yr. B.P. (Bamhardt et al., 1995). 

A second period of submergence began in the early Holocene. The rate of 

submergence varied through time (Bamhardt et al., 1995). Thompson (1973) collected 

radiocarbon dates from salt-marsh peats in Addison, Maine and suggested that SL rose at 

a rapid rate of 1 1.5 mm/14c yr. prior to 3000 yrs. ago, slowing to an average rate of 0.3 

mm/I4c yrs. over the last 1,500 yrs. Anderson and Race (1981) and Anderson and Borns 

(1983) supported Thompson's (1973) findings for eastern Maine and calculated a SLR 

rate of 8.9-9.8 cdcentury for western Maine. Anderson et al. (1984, 1989) stated that 

postglacial subsidence affected eastern Maine, resulting in a very rapid SL rise. Based on 

salt marshes in Machiasport, Gehrels and Belknap (1993) proved that no postglacial 

subsidence affected eastern Maine during the late Holocene. 

In contrast to the idea that the rate of SL rise consistently slowed until recently, 

Belknap et al. (1987a) suggested that SL rose at a rate of 1.22 d 1,000 yrs. between 4.2- 

1.5 ka. After 1.5 ka the rate slowed to half the mid-Holocene rate and accelerated to 2-3 

mm/yr. for the last 60-80 yrs (Belknap et al., 1987a). Belknap et al. (1989) revised the 

rate of SL rise for Addison to 1.33 mm/14c yrs. between 4,000 and 1,500 yrs., arguing 

that previous dates were obtained fiom displaced or contaminated salt marsh peat. 
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Figure 9. Late Quaternary relative sea-level curve for coastal Maine (nlodified from 
Barnhardt et al., 1995). Squares are published dates from Belknap et al, 1987a and 
Anderson et al., 1990, open and solid circles are dates from Kelley et al., 1992 (open 
circles between 10 and 5 ka and all solid circles are offshore dates). 



According to Belknap et al. (1989) SL rose 1.44 d i 4 c  yr. between 5,500 and 1,500 

yrs. and slowed to 0.3 d I 4 c  yr. after 1,500 yrs, based on all Maine data. 

The resolution of the SL curve by Belknap et al. (1989) was limited because a 

small number of dates were obtained from nondisplaced basal peats, peats were assumed 

to represent paleo-mean high water based only on plant identification, and elevations 

were estimated from tide predictions. Gehrels et al. (1996) used foraminifera for more 

detailed paleoenvironmental identifications, as well as surveyed levels and tidal range 

modeling, to produce a more sophisticated sea-level curve. These findings support the 

conclusions of Belknap et al. (1989) and Gehrels and Belknap (1993), that no postglacial 

subsidence affected eastern Maine. Maximum SLR rates did not exceed 1.5 mm/yr 

during the middle to late Holocene. Recent rates of SL rise exceed the maximum late 

Holocene rates at Wells and at Machiasport (Gehrels, 2000). Explanations for varying 

rates of RSL change along the Maine coast remain speculative. One explanation for the 

varying rates is continuing isostatic readjustments following deglaciation (Gehrels et al., 

1996). 

Stratigraphy in eastern Maine below the marine limit is characterized as follows. 

Paleozoic bedrock is overlain by lodgment till. Ice-proximal deposits including 

subaqueous outwash and flowtill overlie the lodgment till. On top of the ice-proximal 

units is glacial-marine mud of the Presumpscot Formation. The Presumpscot Formation 

is typically covered by a layer of coarse material that has been reworked by nearshore 

processes during regression (Dorion et al., in press). 

Fine-grained glaciomarine silt and clay, the Presumpscot Formation (Bloom, 

l963), covers the majority of the Machias Bay region (Figure 10, Table 3). Numerous, 
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Figure 10. Surficial Geology Map for the Machias Bay region (modified from 
Thompson and Bonis. 1985). Surficial features described in Table 3. 

SYMBOL FEATURE 

Glaciomarine deposirs Presumpscot Fm. 
silt and clay 

-- 

Till Diamicron 

End Moraine Sand and gravel 
- 

Thin drift Thin layer of sediment 
and bedrock outcrops 

- - 

Thin drift- Thin layer of sediment 
undifferentiated and bedrock outcrops 

Washboard 
Moralnes 

Modern coastal sediments 

11' - 44-44, 

Pond 
w e  
Mwalnr 

'./ 

- 44^34' 
'1 1' 

Table 3. Key to Surficial Geology Map in Figure 10. 



discontinuous deposits in the area are mapped as till, thin drift, and undifferentiated thin 

drift. Flat to depressed topography is filled with marsh, swamp, or bog deposits 

(Thompson and Borns, 1985). Numerous washboard moraines oriented ENE-WSW 

indicate a NNW retreat (Stuiver and Borns, 1975). 

The Pond Ridge Moraine ismapped as a distinct glacial feature in the Machias 

Bay region. The moraine crosses the eastern shore of Machias Bay and extends 

approximately 15 km to the east, where the orientation of the longitudinal axis changes 

fiom east-west to east-northeast (LePage, 1982). LePage (1982), Dorion (1997), and 

Dorion et al. (in press) described the stratigraphy of the Pond Ridge Moraine. Four 

stratigraphic units comprise the moraine: basal till, glacial-marine sediment, till along the 

proximal slopes, and littoral deposits. Dorion et al. (in press) examined the proximal side 

of the Pond Ridge Moraine and found that the glaciomarine mud deposits are, first, 

conformably overlain by glacial-marine mud with interbedded sand, and, which, in turn, 

are overlain by massive to cross-bedded sand and gravelly sand (Dorion et al., in press). 

Coastal Geology - Maine's coastline exhibits variations in morphology and 

nearshore dynamics over a short distance. Bedrock geology, tidal range, morphology, 

and sediment type vary dramatically fiom the southwest to the northeast. A classification 

scheme dividing the coast into distinct categories is based on these variations (Figure 1 1). 

The four compartments are: 1) SW-Arcuate Embayrnent; 2) WC-Indented Shoreline; 3) 

EC-Island-Bay Complex; and 4) NE-Cliffed Shoreline (Belknap et al., 1987; DufQ et al., 

1989; Kelley, 1987). 

Machias Bay falls on the boundary between the Island-Bay Complex and Cliffed 

Shoreline and exhibits characteristics of both compartments ( D u e  et al., 1989; Shipp, 
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1989). Low-grade metasedimentary rocks intruded by granitic plutons, broad estuaries, 

and granitic islands characterize the EC compartment. High wave energy, low sediment 

supply, and the presence of coves produce the coarse-grained pocket beaches found in the 

EC compartment. Well-protected embayrnents composed of metasedimentary and 

volcanic rocks comprise the high-cliffed coast of the NE compartment. The highly 

resistant volcanics produce the cliffed shoreline while the less resistant metasedimentary 

rocks form protected estuaries (Duffy et al., 1989; Kelley, 1987). Machias Bay sits 

largely in the island-bay complex even though the bedrock composition is 

metasedimentary and metavolcanic (Shipp, 1989). 

Shipp (1989) divided Machias Bay into three distinct zones (Figure 12) according 

to intertidal geomorphology. The intertidal estuarine zone (Zone I) consists of mudflats 

and fringing marshes. Zone I extends from the mouth of the Machias River to the head of 

the Machias and East Machias Rivers. Seaward of Zone I is an intertidal zone (Zone 11) 

located in the upper half of Machias Bay. The characteristic environment of Zone II is 

extensive mudflats, and occasional sandflats. South of Sprague Neck to the mouth of 

Machias Bay is Zone 111. Ledges and coarse-grained beaches (i.e., Jasper Beach and 

Davis Beach) characterize the lower half of Machias Bay (Shipp, 1989). 

Wind, Wave, Tide Regime 

The pattern of prevailing winds is related to the distribution of air pressure 

systems. In winter Maine is situated between (Icelandic) low pressure and (North 

America continental) high pressure. This condition results in northwesterly and westerly 

winds. During the spring and early summer the two pressure systems weaken, and the 

wind blows mainly from the southwest. 
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Figure 12. Three zones of Machias Bay based on intertidal geonlorphology (modified 
from Shipp, 1989). 



The Maine coast is susceptible to two types of cyclonic storms: fiequent extratropical 

storms and infrequent hurricanes. The most common extratropical storm is the 

"Northeaster" which tracks east of Cape Cod and Nova Scotia. Northeasters generate 

strong northeast winds and waves. The southwesterly and southeasterly extratropical 

storms are less common and occur when low-pressure systems travel west of New 

England. Hurricanes are rare along the New England coast. By the time hurricanes reach 

New England most of the energy is dissipated (Kelley, 1987; FitzGerald et al., 1994). 

Machias Bay is a well-mixed system that receives a freshwater input of 25 m3/s 

fiom the Machias River and is open to the Gulf of Maine. The tidal prism is significantly 

greater than 25 m3/s (Fefer & Schettig, 1980). The open exposure of Machias Bay results 

in a hydrodynamic regime where waves and tides are codominant (Belknap et al., 198%). 

Shipp (1989) described Machias Bay as the transition boundary between meso- and 

macro- tidal conditions. The semidiumal North Atlantic tide controls tidal forcing in the 

Gulf of Maine. Amplification of tides in the Gulf of MaineIBay of Fundy system is a 

result of basin geometry (Scott and Greenberg, 1983). The mean tide range is 3.8 m, and 

the spring tide range is approximately 4.4 m (NOS, 2000). Times of high and low tide at 

the head of Machias Bay lag behind the mouth by 12-37 minutes (NOS, 2000). 

Batbymetry 

In the upper half of Machias Bay a channel oriented north-south splits at Sprague 

Neck. The main branch is a broad, shallow depression that splits around Hog Island 

(Figure 13). The eastern channel is between Sprague Neck Bar and Hog Island, and the 

western channel leads to the Machias River (Shipp, 1989; Timson, 1976). The Machias 

River follows the narrower and steeper branch, which joins the main channel west of Hog 
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Figure 13. Bathymetry of the inshore Machias Bay area (Shipp, 1989. p. 6-17, 
Figure 6-5). Line A-A' is the location of the seismic profile shown in Figure 15. 
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Island. South of Sprague Neck is a broad, gently sloping submarine plain. At the mouth 

of Machias Bay the bay floor deepens to the inner shelf. 

Sediment Distribution 

The inshore sediment prism is relatively large and highly variable (Figure 14). 

Sandy mud to muddy sand is the dominant sediment texture in Machias Bay. Local 

deposits of sand and gravel exist throughout the bay. Seismic profiles (Figure 15) along 

the main N-S axis of Machias Bay illustrate the dominance of glacial drift (Belknap et al., 

198%; Shipp, 1989). Three distinct moraines separated Machias Bay at different times. 

For each moraine glaciomarine mud and stratified outwash was deposited seaward of the 

grounding line. Major sediment was deposited when the ice stranded at Sprague Neck, 

producing the Pond Ridge Moraine, with the Presumpscot Formation accumulating along 

the margins (Belknap et al., 1987b). 

Numerous coarse-grained deposits exist in Machias Bay in the form of eroding 

moraines located at Sprague Neck, Holmes Bay, and Cross Island Narrows (Shipp, 1989). 

One reason for the thick sediment cover is the connection of the East Machias River to 

the eskerldelta complex. The Machias and East Machias Rivers are part of the 

eskerldelta drainage system and transport Pleistocene deposits to Machias Bay. 

Additional sources for coarse material include the moraines located in Holmes Bay, the 

submerged segment of the Pond Ridge Moraine (Shipp, 1989; Thompson and Borns, 

1985), and subaqueous outwash associated with glacial tunnel fans (Ashley et al., 1991; 

Kaplan, 1994, 1999). The coarse material was not strongly reworked as RSL fell. 

With rising RSL the morainal bluffs were eroded and recycled, supplying coarse-grained 

sediment to Machias Bay (Shipp, 1989). 
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MliCHlAS BAY 

Figure 14. Sediment isopach map of total sediment thickness in Machias Bay, 
based on seismic profile data (Shipp, 1989, p. 6-29. Figure 6- 13). 
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Figure 15. Line drawing of 3.5-kHz seismic profile along the central N-S axis of Machias Bay. x50 vertical exaggeration. 
Location of the profile. A-A'. is shown in Figure 13 (modified from Shipp. 1989). Units are: br=bedrock, mlsg=mudlsandy 
gravel, sg=sandy gravel, s=sand, m=mud. t=till, pglaciomarine sediments (p=ponded. d=draped. m=massive). 



Geomorphic Elements of Sprague Neck 

Sprague Neck is bordered by mixed sand and gravel beaches, gravel beaches, and 

coastal bluffs (Figure 16). The offshore area (on the western and southern sides of 

Sprague Neck) is composed of coarse-grained flats and seaweed-covered coarse-grained 

flats. Sprague Neck Bar is a mixed-sediment barrier spit with a vegetated dune ridge and 

preserved recurved system forming a broad flat. Multiple swash bars are located at the 

end of the recurve. The backbarrier environment is characterized by mudflats and algal 

flats (Timson, 1976). Several minor eroding moraines, oriented east-west, extend fiom 

the western side of Sprague Neck and Sprague Neck Bar. Boulder ramps are associated 

with these moraines. 

Sprague Neck Bar - Sprague Neck Bar (Figure 17) is a drift-aligned, mixed- 

sediment, recurved barrier spit attached to the western end of Sprague Neck. The system 

extends in a northerly direction into the head of Machias Bay. The recurve system is 

oriented in a southeasterly direction, forming a broad flat (Figure 18). Surface sediment 

comprising the preserved recurve system is characterized by gravel and clusters of 

cobble-sized clasts. The dominant plant species colonizing the flat environment are 

Limonium carolinianum (sea lavender) and Salicornia bigelovii (dwarf glasswort). Two 

linear structures (Figures 16, 19), oriented perpendicular to Sprague Neck Bar, extend 

fiom the western side of the barrier spit and are exposed during low tide. These 

structures have been interpreted as barrier spits by Timson (1 976) and as the cores of 

eroded moraines (Kelley, pers. cornrn.). 

Sprague Neck Bar is approximately 1 km in length, varying in width from 45 m at 

flag SB3 to 53 m at flag SB8, to 61 m at flag SBlO (Figure 20). Relief (above MLW) 
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Sprague Neck I $ - - -  

B 1 Mixed-sediment beach F3 Algal flat 
8 2  Coarse-grained beach L Ledge 
8 3  Gravel beach M Moraines 
Br Boulder ramp G Gravel flat 
V Vegetated dune ridge S B  Swaqh bars 
F Mudflat 
F1 Coarse-gralned flat 
F2 Seaweed covered coarse-grained flat 

Figure 16. Coastal environments of Sprague Neck (from Tirnson, 1976). Coastal 
bluffs border Sprague Neck but are too small to depict on this map. 



Figure 17. Air photo of Sprague Neck Bar (Kelley, 1983). 

Backbamer mudflat 

Figure 18. The preserved recurve system, view to the southeast (July, 2000). 



moraines 

Figure 19a. The eroded moraines oriented perpendicular to Sprague Neck Bar 
(November 2000). 

Figure 19b. Photograph of a moraine at low tide (November, 2000). 



Figure 20. Location of the main survey flags (SB 1, SB2, etc.) 



ranges from 4.0 m proximal to the Pond Ridge Moraine (SB3), where overwash occurs, 

to 5.5 m at the spit tip, to 1.8 m on the swash bars. Surface sediment texture grades 

alongshore from pebbles and cobbles proximal to the Pond Ridge Moraine to sand and 

gravel patches between flags SB8 and SB9 (Figure 20). Between flags SB8 and SB9 the 

grading begins to reverse and sediment grades into cobble-sized clasts at flag SB13. 

Grain size on the current recurve is more uniform, consisting predominately of pebble- 

sized clasts. The surface sediment changes to gravel and coarse sand on the swash bars. 

Cross-shore grain size trends typically show a coarse-fine-coarse zonation, with the 

coarsest material located on the lower intertidal zone. Pebbles and cobbles are located on 

the barrier crest and backbarrier (eastern) side of Sprague Neck Bar. 

A diverse plant community colonizes Sprague Neck Bar (Table 4). Grain size 

variation correlates with changes in vegetation. Ammophila breviligulata (American 

beach grass) colonizes the barrier crest where the sediment is predominately fine sand. In 

locations where the sediment is a mixture of sand, pebbles, and cobbles, vegetation 

consists of plant species that are more tolerant of marine exposure such as Lathyrus 

japonicus (beach pea), Artemisia stellerianna (dusty miller), and Rosa rugosa (wrinkled 

rose). 

Mudflats - Mudflats are the predominant coastal environment in Machias Bay 

(Timson, 1976; Shipp, 1989; Smith, 1990). Three potential sources exist to supply the 

modern mud: offshore deposits, the Machias River, and glaciomarine mud bordering the 

shoreline (Smith, 1990). Timson (1976) characterized the backbanier environment of 

Sprague Neck Bar as algal flats, mudflats, and coarse-grained flats. Mudflat and algal 

flat environments are located along the shoreline (Figures 16,2 1). Away from the 
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Table 4. List of Plant Species Col 

enothera biennis 

nizing Sprague Neck Bar. 
Common Name 
Yarrow 
Beach bur 
American beach grass 
Seabeach sandwort 
Dusty miller 

Sea rocket 
Morning-glory 
Beach pea 
Sea lavender 
Evening primrose 
Wrinkled rose 
Common saltwort 
Dwarf glasswort 

Figure 21. The backbarrier mudflat of Sprague Neck Bar 
(August, 2001). 



shoreline the mudflat and algal flat environments grade into a coarse flat. West of 

Sprague Neck Bar the mudflat changes to a coarse-grained flat near the tidal channel 

(Timson, 1976). 

Coastal Bluffs - Minor bluffs extend along Sprague Neck, contributing sediment 

to the coastal systems. The largestbluff at Sprague Neck is Sprague Neck Bluff (Figure 

22), part of the Pond Ridge Moraine. A cobble beach, with abundant large boulders, 

fronts the unvegetated bluff. The lack of vegetation results in active subaerial erosion, 

producing a sandy beach at the bluff toe. The bluff is relatively sheltered from marine 

erosion, except during coastal storms, due to the long distance from the bluff toe to 

MHW (Smith, 1990). 

Pocket Beaches - All pocket beaches derive sediment directly from the eroding 

bluffs along the Pond Ridge Moraine. Several small, mixed-sediment pocket beaches are 

located along the western edge of the Pond Ridge Moraine (Figure 16,23). Pebbles to 

cobble-sized clasts dominate the lower intertidal zone. The upper beachface is 

predominately sand. Outcrops of metasedimentary and metavolcanic rocks separate the 

beaches. Davis Beach (Figure 16,24) is located along the southern margin of Sprague 

Neck. The swash-aligned pocket beach is composed of metasedimentary and 

metavolcanic cobbles and boulders. Davis Beach occupies a less sheltered environment 

than the mixed-sediment beaches on the western side of Sprague Neck. 
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Figure 22. Sprague Neck Bluff and Davis Beach, view to the na 
(August, 1986). 

Figure 23. Pocket beach located on the western side of Sprague Neck, view to the 
north (June, 2000). 



Figure 24. Davis Beach, view to the east (August, 2000). 



METHODS 

Three aspects of Sprague Neck Bar were evaluated to determine its evolution: 1) 

qualitative historical shoreline change, 2) geomorphic elements, and 3) modern 

processes. Analyzing the historical shoreline change involved comparing the shape and 

location of Sprague Neck Bar through the use of aerial photographs, topographic maps, 

and nautical charts. Identifjlng the geomorphic elements and pastlpresent sedimentary 

environments entailed ground penetrating radar (GPR) and sediment grain-size analysis. 

Establishing the modern processes shaping Sprague Neck Bar included analysis of the 

tidal regime and studying the role of algal fronds and ice as a transport mechanism of 

individual clasts. 

Historic Shoreline Analysis 

Historic maps, nautical charts, and aerial photographs were collected from various 

sources (Table 5) and used to qualitatively analyze shoreline change from 1776 to 1991. 

Examination of the air photos revealed little significant change during the time of 

coverage. Therefore, the use of five photos (1 940, 1958, 1966,1979, and 199 1) was 

deemed sufficient. The nautical charts from 1776 and 1886 were not used in the digitized 

overlay analysis because of uncertain mapping accuracy. The photos were scanned into a 

computer and registered in MapInfo using GPS data points located on Sprague Neck. 

Once the images were registered, the maps and air photos were layered and compared. 

Sprague Neck Bar was surveyed with the Sokia Total Station. The base station 

was positioned at a point halfway between the moraine and spit tip. Sprague Neck Bar 

was not surveyed in to benchmarks, thus the survey data points are relative only to each 



Table 5: Historic maps and air photos used in the shoreline change analysis of Sprague 
Neck Bar. (* indicates maps used and shown in text) 

Date Type Approx. Scale Description Source 

chart ---------- Atlantic Neptune Osher Map Library 
navigation chart USM, Portland 

topographic map 
7.5 ' Quadrangle 

Osher Map Library 
USM, Portland 

81811 940* photo 1 :44000 GSM 186 

topographic map Osher Map Library 
USM, Portland 

511958* photo 1:15840 CBT-3-4*, 3-5 Sewall Co., Old Town 

1 11511 966* photo 1 :30000 196-7-5 & 7-6* Sewall Co., Old Town 

11/21/1966 photo ----------- 196-6-3,6-4,6-5 Sewall Co., Old Town 

612611 969* photo ------------ ETR-2- 186,187*, 188 Maine Geological 
Survey 

511979* photo 1 :36000 CCBT-11-5*, 1 1-6 Sewall Co., Old Town 



Table 5 (continued): Historic maps and air photos used in the shoreline change analysis 
of Sprague Bar. (* indicates maps used and shown in text) 

Date Type Approx. Scale Description Source 

1011979 photo ---------- 179-82, 83 Sewall Co., Old Town 

1111991* photo A4752-44-5*, 44-6 Sewall Co. 
Old Town 



other. First, the main transect along the crest was surveyed. The flat environment and 

cross-sections at each main flag (labeled SBl, SB2, etc., Figure 20) were surveyed. 

Elevations were determined for each survey point and incorporated with the GPR 

records. Elevations are relative to MLW, which was approximated fiom tidal 

predictions. 

Ground Penetrating Radar 

Ground penetrating radar (GPR) utilizes electromagnetic (EM) waves to probe the 

subsurface. Records are interpreted based on the knowledge of how EM waves behave in 

various lithologies. The two main characteristics of EM waves are velocity and 

attenuation, which are hnctions of conductivity and relative permittivity. The signal can 

not extend into brackish or salty water (van Heteren et al., 1998). 

The Sensors and Software GPR unit with 200 MHz antennas was used to examine 

Sprague Neck Bar. The GPR unit was programmed to collect data at 0.5-meter intervals 

at a median velocity of 0.100 m/ns, a value halfbay between dry and saturated sand. 

GPR transects were run across the width of Sprague Neck Bar at flags SB 1 -SB 10 and 

along the length of the barrier spit (Figure 20). 

The GPR data was managed in the software package GPR IxeTerra. The raw data 

were converted into profile data. Profiles begin as time sections that can be converted to 

depth or elevation. To create the elevation profiles, the y-axis was first converted fiom 

time into depth by creating a velocity profile (using the median velocity). Depth was 

then converted into elevation by inputting the elevations determined fiom the survey 

data. The record is displayed as distance versus elevation above MLW. 



Sediment Analysis 

Sediment analysis characterizes sediment and provides information on 

depositional mechanisms and environments. For this analysis grain size and grain-size 

parameters were examined. Grain-size parameters include sorting, skewness, and mean. 

Trends in grain size are used to infer direction of sediment dispersal, with grain size 

decreasing away fiom the source. The Udden-Wentworth grain-size scale divides 

sediment into seven class intervals: clay, silt, sand, gravel, pebbles, cobbles, boulders 

(Table 6). The arithmetic scale of phi units is based on the geometric Udden-Wentworth 

scale (a = -logzd, d is diameter) (Tucker, 1991). 

Table 6. Grain-size Scale (Tucker, 199 1). 

phi class interval I 
boulders I 
cobbles I 
pebbles 

-2 
gravel I 

silt 

clay I 
Classification of sedimentary environments was based on: 1 -topographic relief and 

morphology, 2-size distribution of sediment, 3-the influence of waves and tides, and 4- 

flora. Grain size was the principal factor in determining environments. Samples were 

collected from each morphologically and sedimentologically distinct environment. Large 



areas with a similar sediment texture were sampled more than one to ensure a 

representative sample was collected. The mixed-sediment barrier was sampled along the 

main survey transect and several of the cross transects. The long, intermediate, and short 

axes of the pebble- and cobble-sized clasts were measured in the field. Some coarse 

samples were photographed. 0nly;the long and intermediate axes were measured on the 

photographed samples. The intermediate axis was used to determine the representative 

mean grain size. Lab analysis of the fine samples included dry and wet sieving and 

settling tube analysis. Samples with a significant percentage of mud were wet sieved to 

separate sand from the mud fraction. After the samples were desalinized, a dispersing 

agent was added to break up floccules of mud. 

Sand samples with a gravel component were dry sieved at 0.50 phi intervals from -1.5 phi 

to 0 phi. Sediment texture of the sand was determined by running the sample 

(approximately 10-15g) through the settling tube. The settling tube operates on the 

terminal settling velocities of individual particles in water at a constant temperature 

(Stokes Law). The settling rate is a function of particle diameter, particle and fluid 

density, acceleration due to gravity, and fluid viscosity (Selley, 1994). Sediment will 

accumulate on the bottom scale in order of decreasing hydraulic equivalence. The sand- 

fraction grain size distribution is based on the accumulated mass at the bottom of the 

tube. Analyses of the sediment with the rapid sediment analyzer reflects grain shape, 

density, and degree of roundness, which is not obtained with sieving (Komar and Cui, 

1982). The settling tube computer program calculated statistical parameters including 

grain size, sorting, skewness, and kurtosis (Belknap, unpub.). These parameters were 

calculated for coarse samples based on the method of moments. 
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Samples were characterized according to percent mud, sand, gravel, pebbles, and 

cobbles. The percentages were plotted on ternary diagrams based on: 1) percent sand, 

gravel, mud (Folk-Ward classification); 2) percent pebbles, cobbles, sand; and 3) percent 

pebble gravel sand. 

Ice and Algae Transport 

Ice and the attachment of algal fionds to rocks are effective transport mechanisms 

for barrier systems in the Gulf of Maine (Walsh, 1988). Algae adhere to the rock with a 

root-like "holdfast" when the plant begins to grow. Seaweed has air pockets that allow 

the algae to remain erect under water, providing buoyancy to plant and rock. As strong 

currents rush over the rock with the attached algal fkond the buoyancy and hydrodynamic 

drag of the plant allows the rock to be carried with the current. The movement of rocks 

with attached algae is noted by drag marks on the beachface (Carter and Orford, 1991) 

and tidal flat (Walsh, 1988). Ice processes are an important seasonal factor in deposition 

and erosion, typically fkom late December or January to March. The effects of ice 

processes include transport and deposition of sediment incorporated in the ice, protection 

h m  wind and wave erosion, and topographic changes as the ice moves over the 

substrate. The influence of ice and algae on the movement of pebble- and cobble- 

sized clasts was measured during the winter months (November to May). Five groups of 

ten rocks were placed along Sprague Neck Bar (Figure 25,26). Each group contained 

rocks with and without attached algae. The rocks were painted with a fluorescent paint, 

labeled, and covered with a marine durable varnish. GPS points were taken in order to 

determine the distance and direction of transport of each clast. 



t Sprague Neck Bar 

Figure 25. Location diagram for the five groups of clasts in the 
seaweed and ice transport experiment on November 2 1,2001. 

Figure 26. Group #3 in the transport experiment beginning on 
November 2 1,2001. 



3-D Acoustic Current Meters 

The 3D Acoustic Current Meters (3D-ACM) collect current velocity data in three 

dimensions. The instrument measures velocity along four acoustic paths, three 

orthogonal magnetic vectors, and two orthogonal gravity vectors (tilt). From these 

parameters the 3D-ACM calculates velocity relative to the earth. Water flow along the 

four acoustic paths is calculated by using the transmission of sound fiom one transducer 

to another. There are a total of eight acoustic transducers on the sensor head. Water flow 

calculations are based on the acoustic phase shift of sound, i.e., the advance of sound 

travelling in the same direction as the water and the slowing down of sound travelling 

against the flow of water (Falmouth Scientific Instruments, 3D Acoustic Current Meter 

Manual, 2000). 

A fixed platform, consisting of a wooden rod attached to a cement anchor, was 

used to hold the current meters in position. A wooden rod was used to ensure compass 

accuracy. The fixed platform was necessary because of the shallow water. The platform 

also provided a stable base, which eliminated movement of the instrument. Current 

meters were placed in the nearshore environment along the northern extension (3D-ACM 

1601) and recurve (3D-ACM 1600) (Figure 27). The tidal regime was sampled over a 

24-hour period on June 11-12,2001. The instruments were programmed for a delayed 

start on June 11 at 8:00 a.m. Measurements were taken continuously for 59 minutes of 

every hour, and averaged every 15 seconds. Measured parameters include sea 

temperature, N velocity, E velocity, Up velocity, tilt, and direction. The north and east 

velocities were plotted to determine direction and magnitude of the currents. In addition 
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to the vector plots, the horizontal and total scalar speeds were plotted for each current 

meter. The horizontal scalar speed is a function of the east velocity and north velocity, 

providing a measure of the horizontal speed. Total scalar speed is calculated using the 3- 

dimensional velocity. The total scalar speed includes the upward movement of the water, 

and may provide a measure of turbulence. 

Figure 27. Location of the 3D-acoustic current meters on June 11-12,2001. 



RESULTS 

Surface Sediment Distribution 

Coarse sand (S) and pebbles (P) are the dominant surface sediment textures of 

Sprague Neck Bar. Muddy sand (mS) is significant only in the backbarrier environment. 

Surface sediment of Sprague Neck 'Bar fits a polyrnodal distribution. The two most 

abundant class intervals are -5 to -6 phi (16.8%), pebble-sized clasts, and 2 to 1 phi 

(16.5%), medium sand (Figure 28; Table 7). Approximately 48% of the surface sediment 

falls within the range of 0 to -4 phi, very coarse sand to small pebbles. The surface 

sediment of Sprague Neck Bar is well sorted and negatively skewed. Major sedimentary 

facies of Sprague Neck Bar are (Figure 29,30,31): 1) sand (S, gravel <5%, mud < 10% 

by wt.), 2) pebbles and cobbles (PIcP facies, cobbles < SO%), 3) sandy mudlmuddy sand 

(sMlmS facies), 4) sandy gravel and gravelly sand (sG1gS facies, < 50% by wt.), and 5) 

gravel and pebbles (pGIgP facies, gravel < 50). Boundaries between all sedimentary 

facies are gradational in the field. 

The two predominant sediment facies of Sprague Neck Bar are sand (S facies) 

and pebbles and cobbles (PIcP facies) (Figure 31). Sand (S facies) is the most abundant 

sediment texture, accounting for 22% of the surface sediment. The S facies occurs in two 

barrier environments along the northern extension of Sprague Neck Bar: 1) intertidal 

zone and 2) the barrier crest. Sand is an interstitial component at the spit tip and recurve. 

The S facies is found on the mid- to upper intertidal zone on the western side of Sprague 

Neck Bar. On the backbarrier side of the spit, the S facies predominately occurs in the 

lower intertidal zone. The coarsest sand, -0.05 phi, is located on the lower intertidal 



Table 7. Statistical Data for Sadiment Samples obtained h m  Sprague Neck Bar. 

Mean 
-4.61 63 
1.6407 
1 S634 
1 S340 

-0.0462 
-7.035 1 
0.95 18 
1 S283 
1.8365 
1.8409 
1.3%0 
-6.1259 
-5.6243 
-5.8345 
0.6460 
-2.0340 
-5.0401 
-6.1537 
2.3978 
0.4378 
-2.1 186 
-5.9222 
-5.7654 
1.6930 
-7.0921 
-5.6544 
-5.1446 
- 1.9840 
0.4367 
-0.1 899 

Std. Dev. 
0.5280 
0.3859 
0.3226 
0.3763 
0.1020 
1.0485 
0.6 136 
0.9254 
0.4523 
0.5150 
0.3668 
0.4888 
0.5587 
0.7083 
0.63 12 
0.5899 
0.6841 
0.7027 
0.5717 
0.6630 
0.5953 
0.4503 
0.61 77 
0.4181 
0.%27 
0.6489 
0.9540 
03662 
0.5526 
0.2934 

Sorting 
02788 
0.1489 
0.1041 
0.1416 
0.0104 
1.0994 
0.3765 
0.8563 
0.3267 
0.2653 
0.1345 
02389 
0.3121 
0.5016 
0.3984 
0.3546 
0.468 1 
0.4938 
0.3266 
0.4396 
0.3592 
02028 
0.3816 
0.1748 
0.9267 
0.42 1 1 
0.9100 
0.1341 
0.3053 
0.0861 

Skewness 
-02946 
1.3030 
2.2364 
0.8746 
-1.9618 
-0.1372 
1.7155 
1.7276 
1.8620 
0.6472 
2.0534 
0.2863 
0.0767 
-0.ns9 
2.3980 
1 .M27 
0.1484 
0.079 1 
-2.1016 
3.2629 
1.7%7 
12804 
-0.4936 
1 .m 
-0.2143 
-02299 
-0.1000 
-1.1619 
1 s607 
1 A838 



Table 7 (continued). Statistical Data for Sediment Samples obtained from Sprague Neck Bar. 
Mean 

-0.8323 
-4.4689 
-3.2598 
-0.0332 
-1.821 1 
1 .5579 
1.7412 

-4.8 136 
-5.45 14 
-2.0399 
1.4944 
-2.3681 
-5.0120 
1.6836 

-5.5573 
1.7573 
5.4432 
5.2200 

Std. Dev. ( W n g  I Skewness 
0.9494 1 0.9014 1 -1.1070 

O/oS 
56.4 1 

%G 
---- 

YoM ---- 
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GRAIN SIZE - PHI UNITS 

Figure 28. The histogram illustrates the frequency of surface sediment occurring 
in each size interval and represents a consolidated set of samples. The surface 
sediment of Sprague Neck Bar fits a polyrnodal distribution. 

Gravel 

Sand:Mud Ratio 

Figure 29. Surface sediment description of Sprague Neck Bar according to percent sand, 
gravel, and mud. The ternary plot is based on the Folk-Ward Classification. 



Sand:Co bble Ratio Sand:Pebble Ratio 

Figure 30. Ternary plots for sediment samples obtained from Sprague Neck Bar. The plots are a variation of the Folk-Ward 
classification. Sediment categories are described in Table 6: Sand: 4 to - 1 phi. Gravel: - 1 to -2 phi, and Pebble: -2 to -6 phi. 



N 
0 
c -- 

100 
I 

Meters 

Symbol Sedimentary facies Symbol Sedimentary facies 

Predominantly gravel with a minor 
amount of pebbles @G) 

.?O 0 .Oa&a. E] Cobbles and pebbles (cP) Pebbles with a minor amount of 
gravel (gP) 

- - . ~ = o , k . v ~  1 Sandy gravel (sG) 
0 - 0 - - p o d o  

I Muddy sand (mS) 

Bedrock 

Figure 3 1 .  Distribution of the surface sediment facies of Sprague Neck Bar. 
Map depicts approximate mean low water setting. 
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zone. Sediment on the mid- to upper intertidal zone is well sorted and positively skewed 

ranges from 0.65 phi to 1.7 phi, fining toward the crest. Sediment on the barrier crest is 

well sorted, positively skewed, and mean sediment size ranges from 1.8 phi to 2.4 phi, 

medium to fine sand. Fine sand is associated with the colonization of Ammophila 

breviligulata. 

The P facies and cP facies (Figures 3 1) combined account for 32% of the surface 

sediment, each representing 16%. The P facies (Figure 32) describes the lower to mid 

intertidal zone of Sprague Neck Bar. Clast size ranges from -4.5 phi to -5.9 phi, 22.2 mm 

to 60.6 mm. The facies is moderately to well sorted near Sprague Neck, becoming poorly 

sorted and more negatively skewed toward the spit tip. The cP facies occurs on the 

northernmost spit tip, the lower intertidal zone of the recurve, and barrier crest near the 

broad flat and proximal to Sprague Neck (Figure 3 1,33). Mean clast size ranges from 

-5.0 phi to -7.1 phi, 32.9 mm to 136.4 mm. The facies is negatively skewed at the spit 

tip, but positively skewed on the barrier crest closer to Sprague Neck. 

Sandy graveVgravelly sand (sG1gS) in located on the barrier crest near the 

preserved recurve system and interior of the flat (Figure 3 1). Approximately 10% of the 

surface sediment are described by this facies. On the barrier crest, the sGIgS facies forms 

a transitional unit between the S and cP facies. Sandy gravel forms distinct ridges on the 

flat interior. Mean grain size ranges from 1.8 phi to -0.03 phi, medium to coarse sand. 

The sediment is finely skewed and moderately to well sorted. The coarsest sediment 

occurs on the barrier crest. 

Pebbles and gravel @G/gP facies) describe approximately 6% of the surface 

sediment (Figure 3 1,34). The pGIgP facies is significant because the unit is found only 
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Figure 32. Field photograph of the sand (S) facies and the pebbles 
(P) facies (June, 2001). See Figure 31 for sample location. 

Figure 33. Field photograph of the cobbles and pebbles (cP) facies. 
See Figure 3 1 for sample location. 
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Figure 34. Field photographs of the pG/gP facies. See Figure 3 1 
for sample location on Sprague Neck Bar. 



on the current recurve. The gP facies comprises the lower to mid- intertidal zone and 

grades into the pG facies on the barrier crest. Sediment is well sorted and skewness 

varies with sample location. Positively skewed samples tend to occur on the crest, while 

negatively skewed samples are located on the mid- to lower intertidal zone. 

Sandy mud occurs in two morphologically distinct environments: 1) the broad 

flatlsalt marsh and 2) the backbarrier mudflat (Figure 3 1). Mud characterizes the largest 

percentage of the salt marsh, with sand and gravel being locally significant (i.e., gravel 

ridges). Boundaries between the salt marsh and gravel ridges are well defined. A unit of 

muddy sand occurs at the boundary between the barrier spit and mudflat. 

Topography 

Sprague Neck Bar extends 845 m to the north before the barrier spit recurves to 

the southeast for 232 m (Figure 35). Extending northward from the Pond Ridge Moraine, 

for approximately 230 m, Sprague Neck Bar is characterized by steep slopes, narrow 

crest, and an elevation ranging from 4.8 m to 5 m above MLW. A distinct change in 

elevation occurs between 230 m and 280 m in which the elevation increases to 6 m. 

Elevation remains between 5.5 m and 6.1 m for the continued northward extension of 

Sprague Neck Bar. Along the recurve, elevation decreases to less than 3 m on the 

developing spit platform. Beachface slopes are steep in profile, with grades of 

approximately 9- lo%, suggesting relatively reflective conditions. The landward-facing 

slope is less steep with an average relief of 2.3 m. Minimum elevation of the landward- 

facing slope is approximately 1-2 m higher than the minimum elevation of the beachface 

slope. 

The preserved recurve system, forming a broad flat, has a total perimeter of 574.6 
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Figure 35. Topographic profiles for Sprague Neck Bar. 
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m, ranging in elevation from 3.5 m to 4.1 m. Elevation is greatest on the western edge of 

the recurve system, averaging 3.9 m above MLW, and decreases along the northeastern, 

eastern, and southern boundaries. The southern margin of the flat is intertidal and has an 

average elevation of 3.5 m. While the elevation of the flat perimeter is relatively 

constant, the interior of the flat is more variable in elevation. Elevation is lowest in the 

southwestern portion of the broad flat and increases 0.7 m in a northeast direction toward 

the spit tip and current recurve. Average elevation of the recurve system is 

approximately 3.3 m above MLW, and the gravel ridges have an average elevation of 3.7 

m above MLW. Elevation of the gravel ridges increases 0.4 m toward the current 

recurve. Relief varies across the flat, averaging 0.35 m difference between the gravel 

ridges and flat. 

Barrier Stratigraphy 

A reflection-free configuration (Figure 36) was produced for each of the cross- 

sectional and recurved transects. The top three reflectors (the thick alternating black- 

white-black lines) represent the signal travelling through the air and along the surface 

(Figure 36). For 1.1 m below the surface on cross transect SN 3 the reflectors are 

multiples of the surface. Below this depth no signal is returned. 

The GPR line along the northward extension of Sprague Neck Bar revealed a 

structure at 220.5 m to 283.5 m (Figure 37). At approximately 220.5 m a reflector 

located 4.7 m above MLW separates from the reflector above, which represents the 

surface of Sprague Neck Bar. The reflector parallels the surface for 5 m before dipping 

0.1 m away from the surface. A minimum elevation of 4.9 m above MLW is reached at 

259.0 m. At 259.0 m the reflector dips toward the surface. At 283.5 m the reflector 
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Figure 36. Ground penetrating radar record for transect SN3 across the width 
of Sprague Neck Bar. x20 vertical exaggeration. See Figure 20 for location of 
Flag SN3. 
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Figure 37. Ground penetrating radar record for the northward extension of 
Sprague Neck Bar, x18 vertical exaggeration. The GPR record is located 
on the barrier crest 213.5 m from Sprague Neck, between the two moraines. 



reaches an elevation of 4.7 m above MLW. From 283.5 m to the spit tip the reflectors are 

more closely spaced and parallel the surface. 

3-D Acoustic Current Meters 

The current meters, placed along the northward extension (3D-ACM 1601) and 

recurve (3D-ACM 1600) on June 11,2001 at 8:00 a.m., were exposed at low tide. On 

June 1 1, the current meters were submerged at 1 1 :30 a.m. and exposed at 8: 15 p.m. The 

predicted tides for June 11 were at 3:30 p.m. (high tide) and 9:20 p.m. (low tide). The 

predicted high tide for June 12 was at 3:30 a.m., and the predicted low was at 9:45 a.m. 

On June 1 1 the current meters were submerged between 10:30 and 1 1 : 15 p.m. and 

emerged on June 12 at 8: 15 a.m. The 3D-ACM 1600 was submerged before the 3D- 

ACM 1601. Water temperature averaged between 7°C and 12°C (Figures 38,39). 

Temperature varied with water depth and was coldest at high tide 7-9°C. 

3D-ACM 1601-The direction of the flooding tide is from southwest to northeast 

(Figure 40). Magnitudes range between 0-5 c d s ,  with average velocities of 

approximately 3 c d s .  The direction of the flooding tide becomes more east-northeast 

closer to slack high tide. Direction and magnitude varies throughout high tide. The 

ebbing tide is from northeast to southwest. Velocity ranges between 1-9 c d s ,  averaging 

approximately 4-5 c d s .  Currents of this magnitude suggest a very quiet water 

environment. 

The horizontal scalar speed (Figure 41) is variable during high tide, ranging 

between 0- 16 c d s .  Horizontal scalar speeds greater than 15 c d s  occur when the current 

meter is exposed to the air during emergence. Several outliers exist near the time of 
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Figure 38. Water temperature data obtained from the 3D-ACM 1601, along 
the northern extension of Sprague Neck Bar. Predicted high tide on June 11 
was at 3:30 p.m. and 9:20 p.m. Predicted high tide for June 12 was 3:30 
a.m. and 9:45 a.m. 
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Figure 39. Water temperature data obtained from the 3D-ACM 1600, along 
the recurve of Sprague Neck Bar. Predicted high tide on June 1 1 was at 
3:30 p.m. and 9:20 p.m. Predicted high tide for June 12 was 3:30 a.m. and 
9:45 a.m. 
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Figure 40. Direction and magnitude of tidal currents on the western side of Sprague Neck Bar. North is toward the top of 
the plot. Vectors indicate the direction of current flow. The current meter was submerged from (decimal date) 11.5 to 
11.8 and 12.0 to 12.3. 





submergence and emergence with speeds ranging from 52 c d s  to 93 c d s .  Total scalar 

speed (Figure 42) is slightly greater and less variable than the horizontal scalar speed. 

During high tide the total scalar speed ranges between 8-20 c d s .  Horizontal and total 

scalar speeds reach a maximum speed just before slack high tide. 

3D-ACM 1600-Along the current recurve the flooding tidal current is strongest to 

the southeast (Figure 43). The ebbing tidal current is fiom southeast to northwest. Flood 

tidal current velocities are between 3-12 c d s ,  averaging 5 c d s .  Ebb tidal current 

velocities range between 1-24 c d s  and average 14 c d s ,  exhibiting a slight ebb 

dominance. 

During high tide the horizontal scalar speed (Figure 44) ranges between 0-38 

c d s ,  which is slightly greater than the horizontal scalar speed determined for the 

northward extension. Horizontal scalar speed reaches a minimum speed, 0-2 c d s ,  at 

slack high tide and increases in speed during the ebbing tide. Outliers on the plot of 

horizontal scalar speed vary between 80-160 c d s .  Total scalar speed (Figure 45) falls 

between 12-42 c d s .  Total scalar speed and horizontal scalar speed follow a similar 

trend. The total scalar speed reaches maximum velocities during flooding and ebbing 

tides. Outliers exist near times of submergence or emergence of the current meter. 

Speeds for the transient points range between 72- 188 c d s .  

Historic Evolution of Sprague Neck Bar 

Historic Charts and Maps- The earliest chart of Machias Bay and Sprague Neck 

is a 1776 Atlantic Neptune navigation chart, an approximate scale of 1 cm = 235 m 

(Table 5, Figure 46). On this chart only the shape and orientation are discernible due to 
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Figure 42. Total scalar speed calculated for the tidal currents on the western side of Sprague Neck Bar. The current meter was 
submerged between 11.5-1 1.8 and 12.0-12.3. 



Sprague Neck Bar: Current Meter 1600 

Ebb Tide 

-35 1 1 I I 

11.00 12.00 13.00 

DECIMAL DATE: June, 2001 

Figure 43. Direction and magnitude of tidal currents along the current recurve of Sprague Neck Bar. North is 
toward the top of the plot. Vectors indicate the direction of cumnt flow. The current meter was submerged 
from (decimal date) 11.5- 1 1.8 and 12.0-12.3. 
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Figure 44. Horizontal scalar speed for the tidal currents along the current recurve of Sprague Neck Bar. The transient points 
between 80 and 160 c d s  are wave slap events as the current meter is submerging or emerging. The current meter submerged 
between (decimal date) 11.5-1 1.8 and 12.0-12.3. 





Figure 46. Map based on the 1776 Atlantic Neptune Navigation chart obtained 
from the Osher Map Library at the University of Southern Maine. Letters A. B. C. 
D, and E are explained in text. Approxin~ate scale is  1 cm = 235 m. 



the small scale of the chart. Sprague Neck Bar is attached to the western end of the Pond 

Ridge Moraine and extends northward toward the head of Machias Bay before recurving 

to the south-southeast. The broad flat (A in Figure 46), rounded tip (B in Figure 46), and 

progressive narrowing of Sprague Neck Bar to the south are evident in the 1776 chart. A 

distinct bend (C in Figure 46) in the barrier occurs in the southern segment of Sprague 

Neck Bar. Equally prominent is the eroding northern rim of the Pond Ridge Moraine (D 

in Figure 46) and an island (E in Figure 46) fronting Davis Beach. The island fronting 

Davis Beach does not correspond with a modem day geomorphic feature. 

A chart surveyed in 1886 (Table 5, Figure 47) depicts the bathyrnetry of Machias 

Bay and only the principle geomorphic elements are evident. Sprague Neck Bar is 

similar in shape and orientation to the 1776 chart. The broad flat (A), rounded tip (B), 

and progressive narrowing to the south are clearly identified in the 1886 chart. There is 

no land (E in Figure 46) fronting Davis Beach. The 1886 surveyed shoreline is the 

shoreline depicted in all topographic maps. 

Topographic map documentation began in 1918 and is lacking from 191 8 to the 

earliest coverage of air photos (1940). The 191 8 (Figure 48) and 195 1 (Figure 49) 

topographic maps show Sprague Neck Bar as similar in shape and orientation to 

representations in the earlier charts. 

Aerial Photography- Few remarkable changes are noticeable during the period of 

air photo coverage (1940 to 1991). This may be due in part to the small scale of the 

photos, thus preventing observation of minor changes. Sprague Neck Bar had an 

approximate total area equaling 53,245 sq. meters at low tide and an approximate area of 
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Figure 47. Map of Sprague Neck Bar in 1886. The dashed line represents 
the low tide line (LT). Approxinute scale of 1 cm = 154 m. Note the 
similarity in shape and orientation, erosion of Sprague Neck, and the broader 
flat environment to the 1776 chart. Letters A, B. C, and D are described in text. 



Figure 48. Depiction of Sprague Neck Bar in 1918. the earliest topographic 
map showing Sprague Neck. Note the rounded tip (B), broad flat (A). and 
bend (C) of Sprague Neck Bar and the similarity to the chart produced in 
1886. Approximate scale is 1 cm = 450 m. 



Figure 49. Map of Sprague Neck in 195 1 .  Approximate scale is 1 cm = 240 m. Letters 
A. B, and C are described in text. 



15,310 sq. meters at high tide (1991 air photo). The total perimeter for the barrier spit 

from 1940-1 991 ranges from 2,434 m to 2,572 m. The much smaller area in the 1991 air 

photo shows the majority of Sprague Neck Bar is tidally influenced and exposed only 

during low tide. The discrepancy in the total area for the 1940-1979 air photos is a result 

of the photos taken at different tidal elevations, difficulty in accurately locating 

registration points on all air photos, and difficulty in discerning the developing spit 

platform and swash bars on the grayscale photos. Sprague Neck Bar extended farther 

north into the head of Machias Bay and had a broader gravel flat in the 1940 air photo. 

More recent air photos show that the recurve system and new sediment sink is growing in 

a southeasterly direction and the developing spit platform is increasing in size, suggesting 

sediment reworking of the cuspate spit tip and active current recurved spit tip. 

Incoming waves and subsequent refraction around numerous islands, subaqueous 

barriers and ledges, and the rocky headlands of Sprague Neck are visible on the 1966 and 

1979 air photos. Incoming wave crests are oriented parallel to Davis Beach at these 

times. Refraction around Sprague Neck changes the orientation of the waves to a more 

northeasterly direction. The (November) 1991 air photo shows that the wave direction is 

from northwest to southeast, directing wave energy around the spit tip to the south and 

southeast. 

Large- and small-scale geomorphic elements are discernible on the 1991 air 

photo, scale of 1 in. = 500 ft. (Figure 50). Sprague Neck Bar is in the same shape and 

orientation as depicted in the earlier maps and air photos. The broad flat (A in Figure 

50), rounded tip (B in Figure 50), progressive narrowing to the south, and the distinct 



Figure 50. Air photo of Sprague Neck Bar, November 1991. Approximate scale is 
I cm = 60 m. Letters A, B, and C are described in the text. The dashed lines 
indicate the main gravel ridges on the flat. 



bend (C in Figure 50) near the Pond Ridge Moraine are clearly identified. Equally 

prominent on the 1991 air photo are wave refraction around the spit tip and the seven 

gravel ridges comprising the preserved recurve system (see A in Figure 50). 



DISCUSSION 

Tidal Currents 

Tidal currents for most mesotidal channels and inlets along the U.S. Atlantic coast 

are ebb dominated. Ebb domination results in a net sediment transport in the direction of 

the ebbing tide (FitzGerald and N m e d a l ,  1983). Dominance of the ebb tide is a factor 

of the water elevation at maximum ebb and flood tides and channeVinlet efficiency 

during the complete tidal cycle (FitzGerald and Nummedal, 1983). However, FitzGerald 

et al. (1984) found flood-dominated inlets on the mesotidal coast of Maine. A stronger 

current at the inlet throat creates a significant net landward transfer of sediment into the 

backbarrier environment. The steepening of the tidal wave in the embayment and the 

shallow ebb-tidal delta and spit platform causes flood-dominance. 

FitzGerald and Nummedal(1983) described the efficiency of a channel in 

transporting water from the ocean and bay as a relationship between the bay surface area 

(Ab) and inlet cross-sectional volume (&) during the tidal cycle. The &/Ab ratio reaches 

a maximum value at low tide and a minimum value at high tide. The ratio reaches a 

minimum value at high tide because the bay surface area increases during flooding tides. 

During ebbing tides the bay surface area decreases, and the &/Ab ratio increases. 

Therefore, at times of flooding tide the tidal channel is the least eficient, resulting in a 

lag time between high tide at the mouth and head of an embayment. There is less of a lag 

time during ebbing tide because the channel can more efficiently transport water. The 

difference in lag time indicates a greater duration of the flood tide and greater ebb 

velocities, which is often necessary if the flood- and ebb-tidal prisms are to remain 

balanced (FitzGerald and Nurnmedal, 1983). In the head of Machias Bay the times of 

93 



high and low tide lag behind the mouth by 12-37 minutes. 

The lag time in Machias Bay affects the tidal currents near Sprague Neck. 

During the sampling period winds ranged between 0-0.5 d s  from the southwest, with no 

significant wind gusts. Data obtained from the current meters provided limited 

information on the influence of tidal currents on Sprague Neck Bar. Ideally, the tidal 

regime would have been sampled during storm events, winter months, and calm weather 

when the wind approached Sprague Neck from alternate directions. 

Flood tidal currents along the western side of Sprague Neck Bar are to the 

northeast, and ebb tide is to the southwest. Along the active recurve, flood tidal currents 

flow to the southeast, and the ebbing tide is to the northwest. Ebb tidal currents along the 

recurve obtained maximum velocities of 25 c d s ,  which is greater than the maximum 

velocity (9 c d s )  of the ebb tidal currents along the western side of Sprague Neck Bar. 

Flood-tidal current velocities along Sprague Neck Bar ranged between 4-1 2 c d s ,  with 

greater flood current velocities occurring along the modem recurve. Flood-tidal current 

velocities along the recurve, 5-12 c d s ,  are comparable to the flood-tidal current 

velocities FitzGerald et al. (1984) found in flood-dominated systems, 10-20 c d s .  This 

suggests the flood-tidal current at Sprague Neck Bar transports a significant amount of 

mud and finelmedium sand to the backbarrier environment, which accounts for the 

accumulation of mud in the backbarrier and the higher minimum elevation on the 

topographic profiles (Figure 35). The higher minimum elevation of the landward facing 

slope indicates the long-term stability of Sprague Neck Bar. 

During slack high tide, tidal currents along the recurve and western side of 

Sprague Neck Bar are moving at similar horizontal scalar speeds. Horizontal and total 
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scalar speeds during flooding and ebbing tides are greater along the recurve. Transient 

horizontal and total scalar speeds do not occur within one specific time and indicate 

bursts of the tidal current or wave slap during submergence and emergence. Greater total 

scalar speed is a product of higher up velocities, indicating faster and more turbulent flow 

during flooding and ebbing tides along the recurve. The recurve is constricted so higher 

speeds are expected. Under these conditions, waves resuspend more material in the outer 

beach and transport sediment to the backbarrier environment. Overall, tidal currents are 

probably not the dominant sediment transport mechanism, and storm waves may 

dominate. This conjecture was not tested, however. 

Ground Penetrating Radar 

GPR transects provided limited data due to the high saltwater content of Sprague 

Neck Bar. At low tide, the saltwater content was expected to be negligible and have only 

minor affects on the EM signal. However, a significant amount of saltwater is retained 

within the barrier spit. The saltwater within the barrier prevented the EM signal from 

penetrating deeply into the substrate. The attenuated EM signal produced multiples of 

the surface. 

Saltwater retention within Sprague Neck Bar may indicate a finer-grained 

sediment core. Coarse-clastic beaches are typically highly permeable due to an 

openwork beachface surface and the degree of pore space. Carter and Orford (1 993) 

found that the degree of pernleability within coarse systems may be reduced as a result of 

a fine, interstitial component common at all depths. The internal structure of a coarse 

barrier system often exhibits a coarselfine unit stratification, which reduces the 

permeability of the system (Carter and Orford, 1993). 
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The feature located at 220 m along the northward extension of Sprague Neck Bar 

(Figure 37) occurs approximately 1 m below the surface and may be explained by: 1) a 

tidal inlet or 2) a topographic low on the barrier crest. The location of the dipping 

reflector corresponds with the distinct increase in elevation observed on the modem-day 

spit. The shallow nature of the reflector suggests the feature formed within recent 

Holocene time. Historic analysis of Sprague Neck Bar, ca. 1776 to present, shows no 

evidence of a tidal inlet at this location. It is, therefore, likely that this feature represents 

a washover channel on a low, embayed segment of the barrier. 

Algae and Ice Processes 

Fifty clasts were painted and labeled on November 14,2000 to determine the role 

of algae and ice in shaping Sprague Neck Bar. Monitoring the movement of these clasts 

throughout the winter months would have been ideal. However, Sprague Neck Bar was 

not accessible until May 2001. In May 200 1, none of the clasts were located. Abrasion 

by ice and other clasts is not considered great enough to remove paint from the labeled 

rocks. Thus, the clasts were either transported offshore or buried beneath other clasts by 

storm events or ice processes. Their disappearance, at least, indicates that much of the 

sediment, including coarse clasts, is mobile during the winter. 

Barrier Evolution 

Coastal systems are constantly changing over various time scales. Dynamic 

equilibrium is represented by the evolution of landforms over geologic time, whereas 

steady-state equilibrium operates on a shorter time scale. During steady-state equilibrium 

landforms are considered to be in a constant state of equilibrium until a limiting threshold 

is reached. Coastal evolution is a function of accommodation space and sediment supply 
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in relation to relative sea level change. As the rate of relative sea-level rise slows, the 

role of sediment availability dominates. The relationship between the two is difficult to 

observe when both are "small" and act together. 

Walsh (1988) postulated that the rate of sea-level rise controls the evolution of 

coastal morphology within the Lubec Embayment, with increased shoreline dynamics 

related to accelerated rates of relative sea-level rise. Retreat within the embayment has 

been episodic through time as a result of rising relative sea level and fluctuating sediment 

supply (Walsh, 1988). When supply is insufficient to nourish the barrier system during 

transgression, the barrier must either increase the rate of landward migration or be 

overstepped by rising sea level (Swift, 1975). Barrier evolution within the Lubec 

Embayment fi-om 1785 to present has involved the formation and partial destruction of at 

least two ancestral barriers, followed by the development of the modern-day Lubec Spit. 

Similar shoreline dynamics exist along the eastern shore of Nova Scotia, where episodic 

barrier retreat results fi-om isolated sediment supplies (eroding drumlins) and headland 

anchor points (Boyd et al., 1987; Figure 4). The four stages of barrier evolution (barrier 

genesis and progradation, barrier retreat, barrier destruction, barrier reestablishment) are 

similar to the evolutionary history Walsh (1988) inferred for the Lubec Embayment. The 

Lubec Embayment clearly fits the evolutionary model by Boyd et al. (1987). 

Low wave energy, meso- to macro-tidal conditions, and a 2-3 mrnlyr rate of 

relative sea-level rise characterizes Machias Bay and the Lubec Embayment. Tidal range 

within the Lubec Embayment is approximately 2 m greater than the tidal range for 

Machias Bay, with proportionally greater tidal currents. The initial hypothesis for the 

evolutionary history of Sprague Neck Bar was the stepwise retreat model by Boyd et al. 
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(1987), placing the barrier system in the barrier genesis and progradation stage. Sprague 

Neck (the Pond Ridge Moraine) was considered to be the headland anchor point and main 

sediment source. Additional sediment sources for the modern-day barrier system 

included three washboard moraines located along the western side of Sprague Neck and 

Sprague Neck Bar, transgressive retreat of Sprague Neck Bar, and erosion of the now- 

submerged moraines (Shipp, 1989) in the middle of Machias Bay. 

An evolutionary model developed for Sprague Neck Bar must explain five 

unknowns: 1) the longshore changes in grain size, 2) the growth of Sprague Neck Bar 

occurring along the modern recurve, 3) the lack of significant long-term morphological 

change observed in the historical analysis, 4) the deposition of the eroded sediment from 

central Machias Bay, and 5) initial marsh growth and it's subsequent cessation. Two 

hypotheses were formulated to describe the evolution of Sprague Neck Bar: 1) two 

sediment sourceslattachment points, and 2) multiple sediment sources with transport to 

the north and subsequent recurving to the southeast. 

Model one (Figure 5 1) involves two discrete sediment sources, Sprague Neck and 

a large till deposit north of Sprague Neck, that serve as anchor points for barrier 

attachment and growth. Longshore drift transported sediment to the north-northeast from 

Sprague Neck and central Machias Bay, creating a barrier system extending to the north. 

While the barrier spit began growing to the north, the large till deposit was reworked to 

supply sediment to two separate barrier systems, one system extending to the south and 

the second growing to the southeast. A tidal inlet separated the two barrier spits oriented 

north-south. During the early Holocene, the tidal inlet closed. Self-cannibalization near 

Sprague Neck and relative sea-level rise created the distinct bend in Sprague Neck Bar 
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Stage 2 ' :;' R 

Figure 5 1. Evolutionary model of Sprague Neck Bar. This model describes the formation and evolution of Sprague Neck Bar 
in terms of two distinct sediment sources/attachment points and three separate barrier systems. Arrows indicate the direction of 
sediment transport. 



proximal to the Pond Ridge Moraine. 

In model two (Figure 52) the Pond Ridge Moraine is the headland anchor point 

and principle sediment source. Additional sediment sources exist in central Machias Bay, 

forming barrier islands separated by tidal inlets. Waves and tidal currents reworked the 

local deposits and transported material to the north-northeast by longshore drift. 

Longshore sediment transport closed the inlets, forming a single, drift-aligned barrier spit 

extending toward the head of Machias Bay. Sprague Neck Bar recurved to the southeast 

as bathymetric lows were filling with sediment. 

The evolutionary model of Sprague Neck Bar extending to the north and 

recurving to the southeast is most supported by the existing data (Figure 52). Sprague 

Neck (Pond Ridge Moraine) divides Machias Bay in half and serves as the main 

attachment point and principle sediment source for the developing Sprague Neck Bar. 

Flood and ebb tidal current velocities around Sprague Neck Bar are nearly equal in 

magnitude. Fine sediment in the more exposed, open central portion of Machias Bay 

eroded earlier than the Pond Ridge Moraine. Wave and tidal currents transported the 

eroded material to the east-northeast, where the sediment entered an energy well and 

sediment sink. Sprague Neck Bar derived additional sediment, both directly and 

indirectly, from the coastal bluffs bordering the northern and western sides of Sprague 

Neck and eroded moraines and associated boulder ramps. The pocket beaches located 

along the western side of Sprague Neck Bar are not sediment sources per se but are 

residual deposits left from larger, more extensive till deposits. 

Clast size varies along the western side of Sprague Neck Bar (Figure 3 l), with no 

coarsening or fining trend along the northward extension. Surface sediment of Sprague 
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Neck Bar is coarsest at the spit tip. The heterogeneous nature of the surface sediment 

suggests multiple sources, i.e., the linear extensions oriented normal to Sprague Neck and 

Sprague Neck Bar. The source of the sediment comprising the extensions is unclear. 

Several options exist: 1) tombolo-like features, 2) eroded moraines, and 3) sediment 

entrapment behind the rock outcrops in the nearshore environment as the shoreline 

migrated landward. The recurve to the southeast does have a fining trend away from the 

tip of Sprague Neck Bar because the spit tip is the only sediment source for the recurve. 

The trends in grain size distribution along the northward extension are explained 

by the hypothesis of multiple sediment sources. One question remains unanswered: Why 

is the coarsest sediment located at the spit tip? Surface sediment is typically expected to 

fine in the direction of longshore sediment transport. Therefore, with longshore drift to 

the north the tip of Sprague Neck Bar was expected to be composed of the finest 

sediment. However, on coarse-grained systems, the largest clast sizes can be transported 

the greatest distance. The tip of Sprague Neck Bar is directly exposed to winds from the 

north, which are frequent and have the greatest fetch available to Sprague Neck Bar. The 

deep tidal channel (Figure 16) minimizes wave attenuation due to frictional losses. 

A fluctuating sediment supply is not necessarily needed to create a recurved 

barrier spit. Wave refraction and variations in the underlying topography cause Sprague 

Neck Bar to recurve to the southeast. Sprague Neck Bar stops growing to the north when 

a bathymetric low is encountered. While a bathymetric low is being filled, the system 

recurves. During the historic evolution of Sprague Neck Bar, the spit recurved six times. 

The recurves do not extend farther southeast because of transgressive retreat. 

The lack of long-term change observed in the historical analysis for the northward 
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extension of Sprague Neck Bar may be attributed to self-cannibalization and reworking 

of the surface sediment into cross-shore and alongshore zones. Sediment reworking and 

washover processes produced the distinct bend in Sprague Neck Bar proximal to the 

moraine. An overwash channel may be revealed in the GPR transect along the northward 

extension at 220 m north of Sprague Neck. 

Sprague Neck Bar is geomorphically and dynamically different from other banier 

systems in the eastern Gulf of Maine, i.e., the Lubec Embayment. The Lubec 

Embayrnent is a closed system, and banier spits within the embayment have a lower 

ability (than Sprague Neck Bar) to absorb stress. Therefore, relative sea-level rise, 

fluctuations in sediment availability, and accommodation space drive conditions to 

limiting thresholds. Sprague Neck Bar is not as obvious an example of the model by 

Boyd et al. (1987) due to the large evolutionary time-scale, lack of significant observable 

change within historic time, and variations from the model. Sprague Neck Bar differs 

from the Boyd et al. (1 987) model by the number and location of sediment sources. The 

stepwise retreat model describes banier evolution in terms of two discrete point sources 

(drumlins). A barrier spit grows by longshore transport from each sediment source, with 

a tidal inlet separating the two spit systems. Sprague Neck Bar can not be accurately 

explained by the stepwise retreat model and is more easily explained in terms of 

morphodynamics. 



CONCLUSIONS 

Sprague Neck Bar has evolved slowly throughout historic times. The Pond Ridge 

Moraine served as the main sediment source and attachment point. Multiple sediment 

sources located in central Machias Bay contributed sediment to Sprague Neck Bar. Tidal 

currents and longshore transport reworked and transported material from each of these 

sources, forming barrier islands separated by tidal inlets. Longshore drift transported 

sediment to the north-northeast to create a single, drift-aligned barrier system. Sprague 

Neck Bar recurved to the southeast each time a bathymetric low was encountered. A 

bathymetric low acts as a sediment sink that takes a longer period of time to accumulate 

sediment and aggrade above mean low water, thus preventing the barrier system to grow 

northward. While the system is accumulating sediment, wave refiaction transports 

sediment to the southeast. Wave and tidal currents are the principle sediment transport 

mechanisms. Overwash during storm events and ice-rafting are additional mechanisms 

important in transporting the larger clast sizes. Based on observations of attached algae 

and dragmarks on the beachface the attachment of algal fronds to individual clasts does 

play a minor role in sediment transport. 

The model by Boyd et al. (1987) developed for the southern coast of Nova Scotia 

can not explain the evolution of Sprague Neck Bar. The stepwise retreat model explains 

barrier evolution according to two sediment sources and anchor points. Sprague Neck 

Bar consists of one attachment point (Sprague Neck) and multiple sediment sources. 

Sprague Neck Bar has remained stable for three primary reasons: 1) the nature of the 

local, discrete source deposits, 2) sediment reworking, and 3) accommodation space. 



Additional work needs to be done in order to better understand the evolutionary 

history of Sprague Neck Bar. Tidal currents need to be sampled during the winter 

months, various storm events, and again during calm conditions. Barrier stratigraphy 

also needs to be determined. Coring along the crest would determine if the evolutionary 

model proposed for Sprague Neck Bar accurately explains the system and if Sprague 

Neck Bar is composed of a fine sediment core. Coring the backbarrier mudflat would 

reveal if the system has been stable in the current configuration for an extended time 

period. 
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