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Seafloor depressions, called pockmarks, have been known to exist in Penobscot 

Bay, Maine since the mid 1980's (Knebel and Scanlon, 1985). Earlier workers 

(Ostericher, 1965) recognized "channels" on sonoprobe records that are in the sanle area 

as the pockmarks recognized by Knebel and Scanlon (1985). Their origins and pathways 

of evolution are unknown. Much speculation about the sources of pore fluids, levels of 

activity, and evolutionary pathways has occurred since their discovery. 

Two surveys of Belfast Bay, in 1998 and 1989, have shown differences in the 

pockmark field population. Over the course of a decade, 36% of the field's 1998 

population has either been created or destroyed by erosion and infilling. Creation of new 

pockmarks has outnumbered destruction of older pockmarks by 342 to 287 or by about 

16%. This is definitive proof that the field is active. If the field were senescent, the 

destructions would outnumber the creations, creations would not be present, or the field 

population would be reserved from year to year. 

New, high-resolution geophysical equipment was used to track the changes to a 

small area of the seafloor in Belfast Bay from 1998 to 2000. Over the 2-year period, 

significant changes to the seafloor topography occurred. The bottom was covered with 



drag marks from both anchoring and fishing in 1998. The 2000 survey also showed a 

bottom covered with drag marks, but when the two surveys were compared, it was 

apparent that the drag marks on the 2000 survey were not the same as those on the 1998 

survey. In fact, none of the marks from 1998 correlated with the marks from 2000. In 

addition to the changes in drag marks, two new types of small-scale pockmarks were 

identified. Tadpole pockmarks are pockmarks that are located at the terminal end of a 

drag mark. Beaded pockmarks are pockmarks that are arranged along a drag mark, 

resembling a string of pearls. The identification of these features has indicated the 

actions of society, specifically anchoring of large vessels and drag fishing, as possible 

mechanisms for pockmark initiation. 

Recent detailed mapping of other locations in Penobscot Bay have revealed the 

presence of another significant pockmark field located close to the Black Ledges in East 

Penobscot Bay. Unlike the Belfast Bay field, the Black Ledges field is actually a 

conglomeration of six smaller, discrete pockmark fields that occur in isolated Holocene 

sedimentary basins 

Penobscot Bay holds a wealth of information about biogenic-methane sourced 

pockmarks. Areas of the bay hold massive fields, small fields, isolated pockmarks, and 

extremely gas-rich sediments. The combination of all of these environments leads to a 

possible evolutionary model for pockmarks and pockmark fields. All of the locations 

examined in detail within the bay appear to be in infant to mature stages of evolution. 

The old age, death and birth stages do not appear to be represented. Addition of sites 

from other locations in Maine could help to further constrain the model. 
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CHAPTER 1 
INTRODUCTION 

1.1. PURPOSE 

This work was designed to elucidate pockmark processes active in Penobscot 

Bay. Geophysical techniques and geographic information systems technology was used 

in combination to answer the following questions: 1) Is the pockmark field in Belfast Bay 

active? (Chapter 3); 2) Can the activities of society initiate pockmark activity? (Chapter 

4); 4) Pockmarks are present within Penobscot Bay in locations other than Belfast Bay 

(Barnhardt and Kelley, 1995). Are these features similar to those in Belfast? (Chapter 5); 

and 5) What are the stages of evolution in a pockmark field, and what stages are evident 

in Penobscot Bay? (Chapter 6). 

1.2. POCKMARKS: DEFINITION 4 N D  FORMATION 

The release of pressurized fluids from below the seabed results in seafloor 

depressions, or pockmarks. Pockmarks are circular in plan view and semi-circular in 

cross section, with a three-dimensional section resembling one third to one fourth of a 

sphere. Currents and slumping can deform their basic morphology (Rogers, 1999; 

Hovland and Judd, 1988; King and McClean, 1970). They range from less than one 

meter to greater than 700 meters in diameter with depths exceeding 30 meters. Side 

slopes can approach the angle of repose (Hovland and Judd, 1988). All known 

pockmarks were reported from fine-grained sediments occurring in lakes, fjords, 

estuaries, inner and outer continental shelves, and deeper marine basins (Hovland and 

Judd, 1988) 



Fluids such as water (fresh, salt, or brine) and light hydrocarbon gases create 

pockmarks (Hovland and Judd, 1988). Water occurs as seeps and springs on the seafloor 

driven by differences in head and solute concentrations. Hydrocarbon gases such as 

methane (CH4), ethane (C2H6), propane (C3H10), butane (C4H8), and pentane (CsH12) can 

all form from thermal cracking of higher order hydrocarbon chains within the Earth's 

crust. Smaller molecules, such as methane, migrate more easily through overlying strata 

to the seafloor. Methane is also formed by decay of organic matter in anoxic 

environments, which occur in the shallow subsurface within unconsolidated sedimentary 

materials. 

Reports on the composition of pore fluid in Penobscot Bay (Figure 1.1) vary. 

Ussler et al. (1 999) reported fresh groundwater as the pore fluid for pockmark formation. 

More recent investigations with in situ geotechnical sampling devices identified water, 

CH4, and carbon dioxide (C02) (H. A. Christian, unpublished report 2000). Carbon 

dioxide is an expected associated product, created by biological metabolism and 

anaerobic oxidation of CH4. Large zones of acoustic wipeout and gas-enhanced 

reflectors observed on seismic reflection profiles provide additional evidence for gas in 

the shallow subsurface (Yuan et al., 1992) as seen in other bays worldwide (e.g., Schubel, 

1974; Fader 1991; Martens, et al., 1999) (Figure 1.2). The depth to the bubble front 

varies, and was observed as shallow as 1.5 m below the sediment-water interface in the 

study area. 

The mechanisms of gas release and gas transport are not yet identified in 

Penobscot Bay. Theories for release include: 1) catastrophic release of gas on an 

episodic timescale; 2) continuous release of minor amounts of methane; and 3) a 



GULF OF MAINE Kilometers 

- 
Figure 1 . l .  Location of Penobscot Bay within the Gulf of Maine region. The inset map 
shows the location of the Maine coast in the Gulf of Maine. The large box locates 
Penobscot Bay. The two smaller boxes locate the two study areas, Belfast Bay (A) and 
the Black Ledges (B). NH is New Hampshire and NB is New Brunswick, Canada. 
Modified from Kelley, 1987. 

combination of these mechanisms with small, episodic releases on short timescales such 

as tidal cycles or storm frequencies, coupled with slow seepage (Kelley et al., 1994). 

Theories for gas transport include: 1) vertical diffusion through the sediment column; 2) 

lateral migration along zones of increased porosity and permeability (piping); 3) vertical 

migration induced by cyclical loading and unloading of the sediment column due to tides 

and waves; and 4) vertical migration through piping. 

Grain sizes larger than silt allow CH4, in bubble form, to pass through 

interconnected pore spaces and escape without developing pressurized reservoirs. Fine- 

grained sediments trap migrating CH4 and allow pressurized reservoirs to develop and 



Figure 1.2. Seismic Reflection Line PB-00-63, Penobscot Bay. A sample seismic line 
through Penobscot Bay shows the general stratigraphy and acoustic wipeout due to gas- 
charged sediments and associated pockmarks. Data were collected with an ORE 
Geopulse boomer system at 700-2000 Hz. Units are: bedrock (BR), till (T), glaciomarine 
sediments (GM), Holocene mud (M), and natural gas (NG). Time marks are in EST 
(hr:min), DGPS navigation 



possibly create pockmarks. CH4 migrates on the molecular level and in dissolved form 

driven by concentration gradients. Decreased pressure or increased supply causes CH4 

concentrations in solution to become super-saturated resulting in the formation of free 

CH4 gas bubbles in the sediments. Migration of bubble-form CH4 is highly dependant on 

sedimentology, specifically permeability. A pockmark is formed when the buoyancy of 

the reservoir exceeds the pressure from the overlying water and sediment. An event, such 

as an earthquake, may also disturb the sediment and facilitate gas escape (Hovland and 

Judd, 1988). 

There are three theories on how gas-escape pockmarks form in Penobscot Bay. 1) 

The catastrophic model indicates that pockmarks form instantaneously by major eruption 

events (Kelley et al., 1994). The time between major events is long for earthquakes or 

short if due to major storms unusual tides. The pockmark form is maintained through 

slow seepage of methane or current action. A large plume of sediment and pore fluid was 

observed on an EG&G 260 sidescan sonar image collected in 1989 (Kelley et al., 1994) 

suggesting this is a mechanism active in Belfast Bay. 2) In the slow-seep model, 

methane gas release from the subsurface occurs almost continuously (Kelley et al, 1994). 

The bubbling methane loosens sediment, which is transported by tidal and non-tidal 

currents to slowly excavate a pockmark over an extended period of time. 3) The 

combination model allows for both the catastrophic and slow-seep models to form a 

single pockmark over various time scales and methane activity levels (Gontz et al., 

2001b). 

Two additional theories allow pockmark fonnation without gas escape. 1) Paul1 

et al., (1999) suggested ice rafting of seafloor sediments excavates forms similar to 



pockmarks. 2) Hovland and Judd (1988) reported the formation of pockmarks by 

groundwater seepage in fjords. Neither of these mechanisms is considered likely in 

Penobscot Bay. Temperatures at the seafloor and one meter below during December are 

too warm to allow freezing of freshwater (H. A. Christian, unpublished report, 2000). 

The glaciomarine sediments prevent the flow of groundwater in any volume. 

1.3 SIGNIFICANCE OF POCKMARKS 

Pockmarks affect the marine environment in several different ways including: 1) 

the water column is affected by increased turbidity and reduction in density; 2) biologic 

activity may benefit from an easily accessible source of labile carbon, if organisms able 

to exploit this source are present; 3) the sediment column suffers reduced strength from 

the presence of bubbles; and 4) there is a potentially large, but poorly understood, impact 

on the global climate system through the release of greenhouse gases. All of these effects 

are related to the release of pore fluids and sediments into the water column. 

The release of pressurized pore fluids excavates a crater to a depth that is limited 

by the supply of the pore fluid, local sedimentology, and stratigraphy. Pockmark 

excavation resuspends sediment, resulting in increased levels of local turbidity, which 

could affect primary productivity in phytoplankton and benthic algae due to attenuation 

of light. Turbidity can also adversely affect filter-feeding organisms, such as clams and 

mussels, by inhibiting feeding processes. Fine-grained material can clog the filtering 

mechanisms and starve the organism (Garrison, 1996). In addition to increased turbidity, 

methane released into the water column alters the density of the water column. This 



could affect organisms and human activity that hinge on the buoyancy force of the water 

column. 

Specialized communities have adapted to utilize CH4 released from pockmarks 

and seafloor seeps. Bacterial mats formed from a methanogenic species are the basis of 

such communities. Other organisms, like bivalves and crabs, come to feed on the 

bacteria. Evidence for these communities, in the form of high concentrations of bivalve 

shells and white bacteria mats has been observed in pockmarks (Fader, 199 1 ; Hovland 

and Judd, 1988). 

Below the seafloor, CH4 creates hazards by reducing the strength of the sediment 

column. CH4 occurs in three states below the seafloor: dissolved in the pore water, as 

free gas bubbles, and as clathrates (methane hydrates). Although dissolved CH4 can 

occur anywhere in the sediment column, only minor amounts of CH4 can be stored in the 

dissolved state (0.033 ml of CH4 per 1.0 ml of water at 20 OC, 1.0 atm) (Voltaix 

Incorporated, 1996). CH4 dissolved in pore water has no effect on the sediment strength. 

Free gas bubbles of CH4 occur where CH4 production in, or transport to, an area is far 

greater than the amount of CH4 that can be dissolved in the pore water or escape from the 

sediment column. These areas are seen as wipeout curtains or acoustic turbidity on 

seismic reflection profiles (Figure 1.2) (Yuan et al., 1992). Free gas bubbles have the 

potential to greatly reduce the strength of the sediment, creating an unstable seafloor 

susceptible to failure from loading or slope oversteepening (Ellis and McGuinness, 1986; 

Hill et al., 1992). Clathrates require h g h  pressures and low temperatures found only on 

deep continental margins. The temperature and pressure regime are currently not 



favorable for sustaining clathrates in Penobscot Bay and they are not discussed further 

(see Rogers, 1999 for details). 

Once CH4 is released from sediments, it can travel through the water column to 

the atmosphere. Within the water column, chemical oxidation and biological metabolism 

alters CH4 to C02 and water. CH4 that enters the atmosphere has potentially profound 

effects on the global climate system. CH4, like C02, is a greenhouse gas and can induce 

global warming. One molecule of CH4 is as potent as 21 molecules of C02  in trapping 

infrared radiation, thus enhancing the "greenhouse effect." The amount of C& that 

enters the atmosphere from sub-seabed sources is unknown (Lammers et al., 1995). 

Large volunles of CHj are thought to have contributed to events such as the extinction of 

the dinosaurs at the Cretaceous-Tertiary boundary and Tertiary climate warming (Max et 

al., 1999). 

Research has yet to observe definitive signs of enhanced biologic activity in 

Penobscot Bay, but studies indicate that the potential exists (R. Arnold, unpublished 

report, 2001). The volume of CH4 released to the water column and atnlospheric system 

are unquantified. Research is needed to fully understand the dynamic environments and 

climate system present in Penobscot Bay. 

1.4 SITE CHARACTERIZATION: PENOBSCOT BAY 

My work focused on two major areas of Penobscot Bay, Maine: Belfast Bay and 

the Black Ledges (Figurel. I). Belfast Bay, the site of a well-mapped pockmark field 

(Kelley et al., 1994; Rogers, 1999), is a small northwest extension of Penobscot Bay at 



the head of West Penobscot Bay. The Black Ledges is a series of bedrock ledges and 

small islands in East Penobscot Bay. 

Penobscot Bay is the largest embayment on Maine's coast, encompassing nearly 

1720 km2. The bay is located midway between the New Hampshire and Canadian 

borders, aligned nearly due north-south and centered on 68" 55' W. The river drains 

19,464 km2 north of Eddington (120 km from the mouth) within the state of Maine, and 

has a mean peak flow of about 1530 m3/sec during the spring freshet in March. The Bay 

drains an additional 428 krn2 within the state of Maine, but not encompassed in the 

Penobscot River drainage basin. 

Penobscot Bay experiences diurnal tides. The head of tides is located at Veazie, 

approximately 93 km north of the outer edge of the bay, where a hydroelectric dam 

exists. Spring tidal ranges are about 5.1 m at Bangor near the head of tides, 4.4 m at 

Belfast, and 3.6 m at Owl's Head on the outer bay (International Marine, 2000). The 

tidal ranges experienced in Penobscot Bay fall near the boundary between mesotidal and 

macrotidal environments. 

Various rock types and formations dominate the Penobscot Bay area. 

Precambrian to Devonian bedrock is mantled with a blanket of unconsolidated 

Quaternary deposits. The Quaternary section is discussed below. Rocks comprising the 

bedrock are metamorphic and intrusive complexes; sedimentary rocks are absent (Figure 

1.3) (Osberg et al., 1985). Metamorphism heated the original sedimentary and volcanic 

rocks well beyond the temperature-pressure regime for petroleum production (the oil 

window); thus any hydrocarbons that might have been present have been volatized or 

converted to bitumen (Figure 1.4) (Floodgate and Judd, 1992). 



L 
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Figure 1.3. Simplified Bedrock Map of Penobscot Bay Region. Rock units found within 
the Penobscot Bay region include metasedimentary rocks (pink), metavolcanic rocks 
(yellow), and intrusive complexes (blue). Bedrock ages are older than Silurian. Features 
have been omitted from the Blue Hill Bay region for simplicity. Modified from Osberg 
et al., 1985. 
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Figure 1.4. The Oil Window. The form of hydrocarbon found in the subsurface is a 
function of the pressure the hydrocarbon-bearing unit has experienced. Lithologies in the 
Penobscot Bay region traveled through the window to the metagenesis stage prior to 
present exposure near the surface (Floodgate and Judd, 1992). 



The position of islands and channels are governed by the bedrock composition 

and structure. The channels of both East Penobscot Bay and West Penobscot Bay in the 

vicinity of Isleboro Island are fault controlled (Osberg et al., 1985). 

Glaciogenic sediment represents the Quaternary Period. Retreat of the latest 

Wisconsinan ice sheet left its mark through glacially scoured bedrock outcrops mantled 

by unconsolidated sediments (Thompson and Borns, 1985). Generally, bedrock is 

overlain by a thin drape of till, with thickening on the southeast sides of slopes. Till is 

occasionally absent from this section. The Presumpscot Fornlation (Bloom, 1963), a 

glaciomarine mud with occasional sandy beds, overlies till andlor bedrock. Two distinct 

seismic facies are present in the Presumpscot Formation (Belknap et al., 1989; Belknap 

and Shipp, 1991). A lower, regionally extensive unit is found directly over bedrock or till 

and is draped concentrically over the underlying topography. An upper unit occurs filling 

in topographic lows within the draped unit occurs in limited areas. The Holocene- 

Pleistocene unconformity truncates acoustic reflectors of the Presumpscot Formation 

between the shoreline and lowstand of sea level. Holocene sediments, sourced from 

eroding Pleistocene deposits and riverine contribution, cap the section. Natural gas, 

biologically generated CH4, occurs within the unconsolidated section, most often within 

the Holocene sediments and within several meters of the seafloor (Bellcnap and Shipp, 

1991 ; Barnhardt and Kelley, 1995; Rogers, 1999) (Figure 1 S).  

Sea level in the Penobscot Bay region varied 130 m since deglaciation. The 

relative sea-level curve for Maine (Figure 1.6) details the changes (Barnhardt et al., 

1995). Paleodeltas were created seaward of current river mouths along Maine's coast 

during lowstand (Barnhardt, et al., 1997) and transgression (Belknap et al., 



Figure 5. Simplified Quaternary section representative of Penobscot Bay. The units in 
the surficial geology of Penobscot Bay are Bedrock (red) Paleozoic and older; Till 
(purple), Pleistocene; Glacial marine clay, the Presumpscot Formation (blue) with two 
seismic facies, lower draped and upper ponded facies, Pleistocene; Modem muds (gray), 
Holocene; and Natural Gas (green), Holocene 

Time (ka B.P.) 

Figure 1.6. Relative sea-level history for coastal Maine. Sea level has varied greatly due 
to glaciation. Highstands at 140m inland and -70m in Penobscot Bay are recognized 
from paleodeltas and lowstands at -60 m from submerged shoreline features from 
offshore (modified from Barnhardt, et al., 1997). 



2001). During lowstand and transgression (about 10 ka to present), lakes and various 

types of wetlands were probably created on the emergent surface. As sea level rose, 

these features were drowned and potentially buried by sediments. It is these features that 

are hypothesized as the source of organic material for C& genesis (Kelley et al., 2000). 

Current research has revealed a paleodelta within Penobscot Bay (Belknap et al., 

2001). The delta is located in the upper region of East Penobscot Bay at about 30 m 

below present sea level. Radiocarbon dates on life-position Mya arenaria place the 

feature at about 8730 uncorrected radiocarbon years before present (Barnhardt et a]., 

1997). This delta's construction apparently coincides with a slow-down of sea-level rise. 

Preservation of the feature could be due to channel avulsion or a rapidly increased rate of 

sea-level rise around 6-7 ka (Belknap et al., 2001). 

1.4.1 Belfast Bay 

Belfast Bay is a northwest extension of Penobscot Bay at the head of West 

Penobscot Bay. The Passagassawaukeag River flows into Penobscot Bay at the town of 

Belfast, creating a harbor. The major, present-day channel of the Penobscot River flows 

into Belfast Bay from the east and runs through West Penobscot Bay, along the 

northwestern and western shore of Isleboro Island (Figure 1.7). The area is also home to 

a marine-based economy with a major port facility, which provides an opportunity to 

investigate anthropomorphic effects. 



Belfast Bay was well mapped twice within a ten-year time frame (1989 and 

1998). Minor outcrops of till and bedrock occur in the bay at several locations, but 

muddy sediments dominate Belfast Bay (Figure 1.8) (Kelley and Belknap, 1989; 
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Figure 1.7. Location of the Belfast Bay study areas. Belfast Bay is located in the 
northwestern portion of Penobscot Bay (Figure 1.1). The heavily outlined large box 
shows (A) the area of study for Chapter 3 and the small box (B) shows the study area for 
Chapter 4. Coastline and bathymetry were simplified from NOS chart 13302. 



Figure 1.8. Surficial geology of Penobscot Bay. Belfast Bay is located within the upper 
left box and Black Ledges within the lower right box. Gray areas are land, blue is 
muddy, green is gravelly, red is rocky, and yellow is sandy. Modified from Barnhardt et 
a]., 1996 a,b. 



Banlhardt et al., 1996b). Based on Roger's (1999) measured seismic data, the muddy 

Holocene sediments can reach thicknesses of well over 30 m and are gas-charged in 

many places. 

Water depths throughout Belfast Bay vary greatly. Generally, the water is about 

20 m to 25 m deep in the central bay, with depths approaching 70 m in the southem 

portion. Variation in depth is controlled by three factors: 1) flat, scoured, sloping 

seafloor; 2) pockmarks; and 3) till and bedrock outcrops. 

1.4.2 Black Ledges 

The Black Ledges area is located in central East Penobscot Bay (Figure 1.9). The 

area is a collection of islands, ledges and shoals with narrow channels and large areas of 

open water between. This study is centered at 44" 16' N by 68" 49' W and encompasses 

38 krn2. Black Ledges and several small rocky shoals and islands form the northern 

limits of the study area. To the south lies Beach Island and numerous other small islands 

and rocky shoals. To the east lies Little Deer Isle. The western boundary comprises the 

main channel of East Penobscot Bay. This area south of the Black Ledges has not been 

mapped in detail prior to this work, although several reconnaissance lines were collected 

in the area during multiple cruises by University of Maine (UM) and Maine Geological 

Survey (MGS) researchers after 1983. 

Bottom sediments in the Black Ledges area are highly variable (Figure 1.8). 

Surficial geology is composed of muddy or gravelly sediments along with rocky areas, 

representing the lithologic and acoustic units of the described section (Figure 1.5) (Kelley 

and Belknap, 1989; Banlhardt et al. 1996 a,b). Gas-enhanced reflectors are common, 



Figure 1.9. Location of the Black Ledges study area. The Black Ledges area is a series 
of islands and shoals in East Penobscot Bay (Figure 1.1). The heavily outlined box 
details the area of study for Chapter 5. Coastline and bathymetry were simplified from 
NOS chart 13302. 

but large areas of gas-charged sediments are absent. This indicates that methane is 

present in the subsurface, but in concentrations less than those occurring in Belfast Bay. 

Water depths within the Black Ledges area are generally shallower than 25 m. 

The deepest areas occur on the western edge along the main channel of East Penobscot 

Bay, and approach 50 m. Ledges and rocky shoals form shallow areas, several of which 

are aerially exposed during astronomically low tides. 



1.5 PREVIOUS WORK 

King and McLean (1970) first identified pockmarks on the outer continental shelf. 

Since then they have been recognized in various environments worldwide, such as lakes, 

fjords, estuaries (Hovland and Judd, 1988; Fader, 199 1 ; Kelley et a]., 1994), outer 

continental shelf (King and McClean, 1970; Hovland and Judd, 1988), and deep marine 

basins (Hovland and Judd, 1988). The proposed mechanisms for formation are as varied 

as the environments of occurrence and include escape of freshwater (Harrington, 1985; 

Hovland and Judd, 1988), marine mammal feeding traces (Nelson et al., 1987; Hovland 

and Judd, 1988), ice rafting (Paul1 et al., 1999; Ussler et a]., 1999), and earthquakes 

(Field and Jennings, 1987; Hovland and Judd, 1988; Hasiotis et a]., 1996). C& can form 

from biogenic sources (Hovland and Judd, 1988; Kelley et al., 1994; Rogers, 1999; 

Kelley et al., 2000) or deep-seated hydrocarbon deposits (Hovland and Judd, 1988;). Gas 

and fluid migrate based on diffusion and advection, lateral migration along zones of 

increased porosity, pressure differences, and cyclic loading (Wheeler, 1992). 

1.5.1 Pockmark Occurrences 

King and McClean (1 970) used sidescan sonar to recognize circular depressions 

on the Scotian Shelf. They coined the term "pockmark" for circular to subcircular 

depressions on the seafloor. After their initial discovery, other workers recognized 

pockmarks in many locations and environments. Pockmarks are found in freshwater 

environments as well, including Lake Champlain and Lake Superior (Hovland and Judd, 



1988). The majority of pockmark research has focused on continental shelves and deeper 

marine basins where petroleum development is concentrated. 

The Scotian Shelf, North Sea, and Arabian Gulf are all known for their petroleum 

reserves. Pockmarks are found in great abundance in these areas in water depths of about 

200 m to 350 m. The large pockmark fields are in close association with known 

subsurface petroleum reserves and upward migration of light hydrocarbon gases from 

these reservoirs are the likely source of fluids for pockmark formation (King and 

MacLean, 1970; Josenhans et al., 1978; Ellis and McGuinness, 1986; Hovland and Judd, 

1988). 

Ostericher (1 965), lacking sidescan sonar, incorrectly identified pockmarks in 

Penobscot Bay as tidal channels with a subbottom profiler. Knebel and Scanlon (1985) 

and Scanlon and Knebel (1989) used sidescan sonar in the same area and reinterpreted 

Ostericher's tidal channels as pockmarks. Other mid to high-latitude glaciated estuaries 

on the North American east coast, such as Blue Hill Bay, Maine (Kelley et al., 1994), 

Passamquoddy Bay, Maine, USA and New Brunswick, Canada (Fader, 1991) and Halifax 

Harbor, Nova Scotia, Canada (Fader, 199 1) hold large pockmark fields. 

Wherever pockmarks are recognized, fine-grained sediments dominate the 

surficial sediments. Sediments with grain sizes larger than clay and silt have increased 

permeability, and allow the pore fluids to escape, without building up the required 

pressures for pockmark formation. In these environments, sand and mud volcanoes 

develop in place of pockmarks (Hovland and Judd, 1988). 



1.5.2 Mechanisms for Formation 

Two major theories of formation, both involving expulsion of pore fluids, have 

been proposed for the pockmarks of Penobscot Bay including: 1) freshwater seepages and 

ice rafting and 2) expulsion of gases from subsurface pressurized reservoirs. These two 

theories are supplemented with an additional mechanism, feeding traces. 

Nelson et al. (1987) proposed that large depressions on the floor of the Bearing 

Sea are the result of feeding behavior of gray whales. The waters where pockmarks are 

found within Penobscot Bay are shallower than 50 m and in close proximity to land. The 

waters also experience heavy ship traffic. Gray whales are not found in the Gulf of 

Maine and none of the species of whales inhabiting the Gulf of Maine are bottom feeders. 

Paul1 et al. (1999) suggested ice rafting as a mechanism for pockmark fornlation 

(Figure 1.10). Their suggested mechanism is that fresh groundwater would upwell from 

the sediment into the overlying seawater. The seawater would be cold, below the 

freezing point of freshwater. The freshwater would freeze upon mixing with the 

overlying seawater. The ice would break free from the seafloor and cany small amounts 

of sediments away. Over an extended period of time a depression would form over the 

seep. This mechanism has not been directly observed, and is definitely discounted in 

Penobscot Bay for several reasons: 1) seafloor temperatures during winter months are not 

sufficiently cold enough to freeze freshwater, 2) the glaciomarine sediments act as an 

aquaclude and transmit minimal amounts of groundwater, and 3) a total of over 5,500 

pockmarks have been observed in Penobscot Bay, suggesting at least that number of 

freshwater seeps within a limited area. 



Hovland and Judd (1988) present a model for pockmark formation via the 

expulsion of pressurized pore fluids (Figure 1.1 1). Natural gas forms reservoirs in the 

subsurface and become pressurized from addition of natural gas or changes in the 

confining pressure. The pressure of the reservoir exceeds the confining pressure or the 

reservoir is disturbed allowing the reservoir to vent and expel pore fluids. The expulsion 

Figure 1.10. The Paull et al. (1 999) model for pockmark formation. Paull et al. (1 999) 
presented a model for pockmark formation involving upwelling of freshwater into sub- 
fkeezing seawater. Ice would form at the seep and carry sediment away as the ice lifted 
from the seafloor. This action would create a depression at the source of the fkeshwater 
seep. 



Figure 1.1 1. The Hovland and Judd (1 988) model for pockmark fonnation. Hovland and 
Judd (1988) presented a model for pockmark formation 
n driven by expulsion of pressurized pore fluids. A pressurized reservoir develops in the 
subsurface over time. The reservoir either becomes unstable due to disturbances in the 
pressures by changes in the water column elevation, alteration of the thickness sediment, 
or static loading of the sediments overlying the reservoir. Once unstable, the reservoir 
erupts, expelling pore fluid and sediments into the overlying water column. This results 
in the excavation of a pockmark. 

of pore fluids excavates the pockmark form. This is the mechanism hypothesized for 

Penobscot Bay for several reasons including: 1) large concentrations of methane in 

subsurface in close association with pockmarks (Figure 1..2), 2) direct observation of a 

plume emanating from a pockmark on sidescan sonar for Belfast Bay (Kelley et al. 1994), 

3) collection of CH4 from the subsurface (H. A. Christian, unpublished report, 2000), and 

4) observed overpressurization of gas-charged sediments from in situ sampling in Belfast 

Bay and slightly north of the Black Ledges (H. A. Christian, unpublished report, 2000). 



1 S.3 Methane Genesis 

Methane can fornl along two pathways. Themogenic methane involves 

breakdown of longer chained hydrocarbons while biogenic methane is produced through 

biologic activity. 

Long-chained organic molecules, hydrocarbons and kerogens, are broken down, 

or "cracked", into smaller chained hydrocarbons within the Earth's crust. This 

breakdown results from heat and pressure associated with relatively deep burial or plate 

tectonic movements. The types of hydrocarbons present are governed by temperature 

and pressure (Figure 1.4). Increases in heat and pressure crack larger molecules into 

increasingly smaller molecules. The light, volatile component is driven off. The increase 

can remove all smaller chained molecules, leaving only a tany substance. The rocks 

underlying Penobscot Bay have progressed through the zone allowing natural gas 

production, volatizing the hydrocarbons and driving off any gas or oil that could have 

been present. The structure of the Penobscot Bay area, though highly faulted, shows no 

evidence of older rocks emplaced as a thrust over younger, gas-rich rocks. In fact, none 

of the lithologies present in Maine are capable of hosting petroleum products of 

consequence (Osberg et al., 1985). As a result, thermal cracking of hydrocarbons and a 

deep reservoir source are not factors in Penobscot Bay. 

Methane can also form from the decomposition of organic matter. Decay of 

particulate organic matter has several pathways once into the sedimentary column. The 

pathway depends on the availability of preferred electron acceptors: 1) oxygen; 2) nitrate; 

3) metal oxides; 4) sulfate; and 5) methane production. Aerobic decay is the. first 

pathway. It depends on the availability of dissolved oxygen. Typically, the sediment 



column is oxygenated to a depth of a few millimeters. Nitrate reduction depends on the 

availability of nitrate. Nitrate is not available in the overlying water column and is not 

considered to be important. Metal oxides generally refer to the availability of manganese 

oxide (MnO2) and ferric oxide (Fe203). These species are available only where the 

sediment colunm is well mixed by intense bioturbation or physical processes. Sulfate 

reduction is the one of the two primary pathways. It depends on the availability of sulfate 

(SO:?, and yields bicarbonate and hydrogen sulfide. 

CH20 + !4 SO:- + HC03- + !4 H2S (eqn. 1.1) 

Where CH20 is the smallest form of particulate organic matter. When all available 

sulfate is consumed by the reaction, methane production begins. 

CH20 + !4 C02  + % CH4 (eqn. 1.2) 

Once produced, methane migrates vertically through the overlying sediment column. In 

the presence of sulfate, methane is oxidized anaerobically. 

CH4 + ~ 0 4 ~ '  + HCO3- + HS- + H 2 0  (eqn. 1.3) 

In the presence of oxygen, methane is oxidized aerobically. 

C&+ 0 2  + Hz0 + CO2 (eqn. 1.4) 

Thus, as methane migrates fiom a zone of production toward the surface, it passes 

through two zones of methane oxidation (Figure 1.12). 
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Figure 1.12. Zones of organic decay pathways and methane production and consumption 
within the sediment colun~n. The pathway for decay of organic matter is controlled by 
the presence of preferred electron acceptors. Oxidation, the favored pathway, is active 
only in oxidized sediments, or generally the upper few millimeters of the sediment 
column. Below the zone of oxygenation, sulfate reduction becomes the dominant 
pathway. Once sulfate is removed from the sediments, methane production, via chemical 
and biological pathways, becomes dominant. Methane, once produced, migrates 
vertically driven by concentration and density gradients. As methane encounters sulfate 
in the overlying sediments, it is anaeroblically oxidized. Methane regionally depletes 
areas of sulfate allowing further vertical migration of subsequent methane. Methane that 
survives the sulfate zone encounters oxygen in the oxygenated zone and is aerobically 
oxidized. At times of rapid expulsion, i. e., pockmark fornlation, methane is vented 
directly from the reservoir to the water column by removing the overlying sediments. 



1 S.4 GasEluid Migration 

Fluid migration, especially gas, interests the petroleum industry because fluids 

migrate based on local conditions. Understanding the migration leads to understanding 

of where the fluid originated and where it  forms reservoirs. 

Fluids migrate through earth materials driven by gradients or forces, such as 

buoyancy. Migration is restricted by permeability, surface tension, and wetting. In the 

case of gases in bubble phase, surface tension and wetting are more important and will 

fkther restrict migration of the bubble. Proposed mechanisms include diffusion and 

advection, pressure or buoyancy differences, and physical pumping. 

Movement occurs horizontally or vertically through pore spaces or laterally along 

zones of increased permeability and porosity (piping). Diffusion across a concentration 

gradient is the simplest. Ions and molecules move from zones of higher concentration to 

areas of lower concentration and can have both horizontal and vertical components. 

Flow based on pressure and buoyancy is common. Buoyancy forces allow fluids 

to migrate vertically. 

Physical pumping is a bit more complicated. Cyclic loading of sediments 

produces a pumping force that draws fluids toward the surface (Wheeler, 1992). In the 

marine environment, the pumping force is generated by the pressure variations due to 

changes in the elevation of the water column, such as waves, tides, and storm surges. 

The mechanism that creates salt and mud diapirs was suggested to include gas- 

charged sediments. Layers of gas-rich sediments buried under an overlying unit could be 

squeezed and pushed to form diapirs of gas-rich sediments in a regular pattern, similar to 

movement of salt driven by density differences and overlying pressure. The result would 



be the occurrence of pockmarks, domes, and other gas-related features along this regular 

pattern (Hovland and Judd, 1988). 

By far, the most important mechanism in the Penobscot Bay region appears to be 

migration along a zone, or bed, of differing grain size. Evidence is seen on seismic 

reflection record in the form of gas-enhanced or bright reflectors (Figure 1.2). The 

reflector is enhanced by a difference in acoustic impedance resulting from methane, in 

bubble-phase, as well as grain-size changes. These reflectors originate from and are 

upslope of zones of acoustic wipeout. Pockmarks are located above gas-enhanced 

reflectors or they terminate at moats where till, bedrock or glaciomarine sediments crop 

out through Holocene muds. This suggests that enhanced reflectors andlor zones of 

acoustic wipeout are supplying gas for the pockmark process. 



CHAPTER 2 
GENERAL METHODS 

Several different geophysical and geographic information systems (GIs) methods 

were used throughout this study. A general discussion of the equipment and methods is 

included with a brief methods discussion in each chapter. 

2.1. RESEARCH VESSELS 

This project involved six days of shipboard research. The RV Friendship, 

captained by Tony Codega and owned by Maine Maritime Academy, was used 

exclusively. The RV Friendship is a converted 14-meter stern fish trawler. It has a draft 

of two and a half meters and a top speed of nine knots. A three-meter, double A-frame 

was mounted astern. It mounts hydraulic trawl and hydrographic winches. The vessel 

was equipped with differential global positioning satellite (DGPS) location, the Cap'n 

navigation software package, and depth sounder. 

2.2. GEOPHYSICAL METHODS 

Geophysical investigations were carried out with two types of equipment. 

Sidescan sonar was used to image the seafloor surface. Seismic reflection profiling was 

used to examine the stratigraphic relationships and identify areas of gas-rich sediments. 



2.2.1. Sidescan Sonar 

For data collected during this study, an Edgetech DFlOOO digital sidescan sonar 

towfish was used. Archived data, acquired using an EG&G 260 analog sidescan sonar 

system (Rogers, 1999; Kelley et al., 1994) was also used. 

The digital system consisted of two major components, the towfish and the 

topside processing unit. The EdgeTech DF 1000 digital towfish is capable of recording 

data on 100 and 500 kHz. It is equipped with a directional sensor. Optional depth and 

location sensors were not installed. 

The topside processing unit was designed and constructed by Triton-Elics 

International (TE). It consists of a computer with various specialized circuit boards that 

convert the signal from the towfish into an image. The system is build around a 533 

MHz Pentium 111 processor, Windows 2000 operating system, 8x CDRW drive, 8 and 20 

GB capacity hard drives, an LS-120 Super Disk drive, and twin 15-inch monitors. 

The towfish was tethered to the vessel via a Kevlar-jacketed data transmission 

cable and towed about seven meters astern of the vessel and about 3-7 m deep. The 

shallow water and short length of cable out eliminated the need for a winch. The cable 

was routed through a block attached to an A-fi-ame. Two sets of "chinese fingers," 

woven rope cable grips, were used to hold the cable in place. One was placed on the 

cable at the required length of cable out and was the primary way of securing the towfish 

to the vessel. The second "chinese finger" was positioned near the opposite end of the 

cable, close to the point where it attached to the Triton-Elics topside unit. This served as 

a backup should the other "chinese finger" fail and prevented stress on the connection 



with the topside unit. The vessel speed was maintained between 4 and 5.5 knots. Data 

were simultaneously collected on 1OOkHz and 500kHz frequencies (Figure 2.1). 

WATER LINE 
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SONAR 
TOWFISH 

Figure 2.1. Schematic layout for sidescan sonar operations. The sidescan sonar towfish 
is towed behind the vessel, submerged in the water column. The depth below the surface 
depends on the overall water depth and acquisition range. For this study, the tow depth 
was shallow, about 5-7 m. 

Post-processing of digital sidescan sonar data was performed on the TE topside 

unit with Isis Sonar v.4.54 and DelphMap, both designed by TE. Raw data were first 

converted to mosaic files with Isis Sonar and DelphMap. The mosaic file, an image 

referenced to true space, was exported in the geoTIFF format. The geoTIFF image was 

opened in ArcView GIs, designed by ESRI, for spatial analysis and digitizing of features 

(see Section 2.3. GEOGRAPHIC INFORMATION SYSTEMS METHODS) 

2.2.2. Seismic Reflection Profiling 

Two seismic reflection systems were used during this project. Both were surface- 

towed, boomer systems differentiated by the method of data processing. One system, the 

Ocean Research Engineering Incorporated (ORE) GeoPulse, produced an analog output 



while the Applied Acoustics Engineering International (AM) boomer produced a digital 

output coupled to the Triton Elics topside receiver and processing computer. 

The towing geometry was identical for both systems. The hydrophone array was 

towed fiom a boom to the side, enabling it to be towed outside of the wake, about three 

meters outboard of the rail and seven meters astern. The array was floated at or near the 

surface to reduce ringing noise in the record. The catamaran-mounted boomer was towed 

fiom the opposite rail approximately seven meters astern. A line was affixed to each of 

the two floats of the catamaran. This enabled the catamaran to be steered, like a box kite, 

around obstacles such as lobster pot buoys. These lines were tied off to the rail. The 

power cable was attached to the inboard line with duct tape to keep it at the surface and 

limit tangling and fouling with seaweed. The distance astern and outboard of the vessel 

removed the catamaran and hydrophone array from the cavitation zone created by 

vessel's propeller (Figure 2.2).  

CATANARPJI 
TOW LINE - -  POWER CABLE AND TOW LINE 

< RESEARCH VESSEL BOAT W M E  

1.2. Schematic layout for seismic reflection operations, top view. All of the 
seismic gear used during this study was surface-towed. The catamaran-mounted energy 
source and hydrophone were towed fiom opposite sides of the vessel. A boom was used 
to remove the hydrophone fiom the vessel wake to reduce noise in the record. 



2.2.2.1. Ocean Research Engineering Geopulse Analog Seismic System 

The Ocean Research Engineering (ORE) Geopulse System was manufactured by 

ORE, Inc. It is a surface-towed, boomer system consisting of a catamaran-mounted 

boomer plate, an energy source, a hydrophone array, a filter and amplifier unit, and an 

EPC burning stylus analog printer. Data was usually filtered between 700 and 2000 Hz. 

Analog records required no post-processing. Original records were photocopied 

onto 1 1 "x 17" paper. Original records were used to guide interpretations and 

subsequently archived for future use. Interpretations were drawn directly on the 

photocopies. Portions of records were scanned into digital image format and 

interpretations were digitized in Adobe Photoshop v.9. 

Depth and two-way travel time for prominent reflectors were extracted from the 

analog record by direct measurement and assumption of a seismic velocity of 1500 mls. 

Latitude and longitude were recorded for points where depths to prominent reflectors 

were extracted. The exact position was interpolated from time marks on the record and 

navigation log recorded through the Cap'n. An Excel spreadsheet was developed to 

convert latitude and longitude to northings and eastings with the assistance of Blue 

Marble's Geographic Calculator. The northings and eastings were returned to the Excel 

spreadsheet for use in GIs (see Section 2.3. GEOGRAPHIC INFORMATION SYSTEMS 

METHODS). 



2.2.2.2. Applied Acoustics Engineering Digital Seismic System 

Applied Acoustics Engineering, International (AAE), manufactured the Applied 

Acoustics System. It consists of a catamaran-mounted boomer plate, energy source, 

hydrophone array (20 element), and a topside processing unit. 

The energy source is capable of producing 100 - 300 J pulses at intervals longer 

than 100 ms. The source was set to 100 J and fired at 250 ms during all cruises. 

TE manufactured the topside unit, control and post-processing software. It is 

capable of collecting raw field data, as well as performing post-processing tasks in the lab 

and is the same unit used for sidescan sonar acquisition and processing. Details on the 

hardware of the unit were presented in Section 2.2.1. TE has designed the system to be 

capable of collecting sidescan sonar, seismic reflection data and numerous other 

geophysical and oceanographical data sets simultaneously. The acquisition of seismic 

data is accomplished with Delph Seismic v2.4 and post-processing is done via 

SeismicGIs v1 .O. TE designed both software packages. Data were collected across the 

entire frequency spectrum in raw form. Filters and gains were applied in the lab to 

achieve the highest resolution possible and varied for based on water conditions, ship's 

speed, and towing geometry. 

The digital record produced by the Applied Acoustics system required more post- 

processing than the ORE GeoPulse system, but needed a less watchful eye during data 

collection. After data collection, the record was played back through Delph Seismic in 

the lab on the TE computer system. During the playback, filters and gain levels can be 

varied to produce the optimum output. These levels stay with the file, but can be varied 

at anytime in the future. After the gain and filter levels have been set for the file, it is 



played back once again. This time, the file is geoencoded and prepared for SeismicGIS. 

SeismicGIS is a seismic analysis package produced by TE. It is used to map individual 

reflectors and suites of reflectors. Once reflectors are mapped, the reflector can be 

exported to an ASCII text file in the format of x, y, z, where X is northing, Y is easting 

and Z is two-way travel time. The ASCII file is imported into ArcView GIs for spatial 

analysis (see Section 2.3. GEOGRAPHIC INFORMATION SYSTEMS METHODS). Additionally, 

records were printed on an EPC 1086 Multiping printer. Interpretation of the record was 

performed as described in Section 2.2.2.1. Ocean Research Engineering GeoPulse Analog 

Seismic System. 

2.3. GEOGRAPHIC INFORMATION SYSTEMS METHODS 

Geographic information systems (GIs) software was an integral part of this 

\ 
project. Analysis of spatial data, sidescan sonar images, and elevation data relied on 

ArcView v3.2 and ArcInfo v8.0 software, designed by ESRI, Inc. In addition, Blue 

Marble Geographic Calculator v4.2, designed by Blue Marble Co., was used to convert 

coordinate data between geographic and Universal Transverse Mercator (UTM) 

projection systems. 

GIs tasks were accomplished using three separate workstations: 1) Dell GTX 

2x866 MHz processors with 10 and 20 GB hard drives, 256 MB RAM, and an 8x CDRW 

drive; 2) Dell GTX 1.4 GHz processor with 10 and 40 GB hard drives, 256 MB RAM, 

and an 8x CDRW drive; and 3) a Gateway Solo 5 150 laptop 300 MHz processor with a 6 

GB hard drive and 128 MB RAM. All workstations where networked to a base 10 



system and operated under the Windows 2000 environment. ArcView v.3.2 was run on 

all three platforms and ArcInfo v.8.0 on the 2x866 Dell. 

Detailed infonnation for GIs techniques is included in Sections 3.2,4.2, and 5.2. 

The remainder of this section provides a brief overview of the common techniques. 

2.3.1. Analysis of Sidescan Sonar with GIs Techniques 

GIs was used to analyze sidescan sonar images. Seafloor features, such as 

pockmarks, drag marks, and surficial sediment cover were digitized in ArcView from 

GeoTIFF images created in DelphMap. A database was associated with the digitized 

features. Linear features, such as drag marks, contain records including: ID, length, and 

type. Polygon features, such as pockmarks, include records for: ID, area, perimeter, 

radius, depth, field name and cluster name; while surficial sediment cover includes 

records for: ID, unit ID, unit name, and area. 

Surficial geology maps, based on backscatter from sidescan sonar, were created 

for Chapter 5. The sidescan data were transformed as detailed in Section 2.2.1 and 

opened in ArcView. The protocal established by Barnhardt et al. (1998) was followed for 

mapping seafloor units. Their continuum of sixteen units was applied. A GIs map and 

database was produced various spatial analysis were run on the database. 

2.3.2. Analysis of Cruise Data with GIs Techniques 

ArcInfo was used mainly for creation of coverages containing tracklines from 

digitally logged navigation data collected by the Cap'n. ASCII text files fiom the Cap'n 

were converted to a trackline coverage with the ArcInfo "generate" command set. The 



result was an arc coverage containing tracklines attributed with type of gear used, 

navigation points, and trackline name. 

2.3.3. Analysis of Pockmark Change Data with GIs Techniques 

Spatial analysis, for changes to the Belfast Bay pockmark field was accomplished 

utilizing ArcView v3.2 GIs. GIs data, in the form of themes, from 1989 (Kelley et al., 

1994) (Figure 2.3) and 1998 (Rogers, 1999) (Figure 2.4), showing the area of seafloor 

ensonified, pockmarks, and till outcrops for each survey, were overlain. The initial 

overlay showed errors in position, a result of LORAN-C positioning in 1989 and 

Differential GPS (DGPS) in 1998. Seafloor features (e.g., rock and till outcrops) as well 

as pockmark chains were used to align the coverages via rubbersheeting. The 1989 data 

set was rubbersheeted using the Geo Move extension, designed by Spatial-Online for 

ArcView, to fit the 1998 data set. 

After alignment, the first step removed of all pockmarks from the overlay that did 

not occur in both surveyed areas (dat.a gaps). These pockmarks were discarded from the 

data set since they were imaged only once. 

Pockmarks were visually paired, matching one from the 1989 survey with one 

fiom the 1998 survey (Figure 2.5). Visual matching of pockmarks was canied out by 

using proximity to landmarks (e.g., bedrock and till outcrops), uniquely shaped clusters 

and chains, and direction of offset based on ship's track. Paired pockmarks were 

removed fiom the overlay to a temporary coverage, leaving only pockmarks that had 

changed over the 10-year period. A change was defined as new formation or filling. The 



Figure 2.3. The 1989 data set. Original sidescan sonar data was digitized into ArcInfo to 
create a GIs map of the Belfast Bay pockmark field in 1989. Sonar coverage is outlined 
in gray. Survey lines did not sufficiently overlap to create 100% coverage of the area. 
Till outcrops are purple and pockmarks are red circles. The survey grid was laid out 
along LORAN-C dial readings and resulted in a generally southwest-northeast orientation 
of the grid (Kelley et al., 1994). 



Figure 2.4. The 1998 data set. Original sidescan sonar data was digitized into ArcInfo to 
create a GIs map of the Belfast Bay pockmark field in 1998. Sonar coverage is outlined 
in gray. Survey lines overlapped enough to create 100% coverage of the area. Till 
outcrops are purple and pockmarks are red circles. The survey grid was laid out using 
differential global positioning satellite information. The grid is orientated nearly north- 
south (Rogers, 1999). The area within the heavy black box is shown in detail in Figure 
2.5. 



Figure 2.5. Examples of the matching process. Solid blue circles are original 1989 data 
(A'), solid green circles are the corrected 1989 data (A), and solid red circles are the 1998 
data (a). Pockmarks identified with A, A' and a, etc. are the same feature and are 
examples of matches. The cluster of three pockmarks in the lower left potion of the 
figure is an example of a pockmark created during the time interval. Only two occurred 
on the 1989 record and three on the 1998. The entire area had 100% coverage by both 
surveys. The location of the data is shown in Figure 2.4. 



resolution of the original sidescan sonar images and digitizing techniques prevented 

evaluating morphological changes (e.g., size and shape). 

After all matches were identified and removed, only potential changes remained. 

Uncertainty resulted from pockmarks coalescing or potential misinterpretation of the 

original data. Onginal analog records were reinterpreted in these areas. 

2.4. OTHER METHODS 

All location fixes during the new research were taken with differential global 

positioning satellite systems (DGPS). The DGPS system consists of the U. S. 

govenlrnent's constellation of positioning satellites coupled with land-based beacons 

managed by the U. S. Coast Guard. The global positioning satellite (GPS) signal was 

accurate to within 300 m prior turning off of selective availability in 1999. Currently, 

GPS is accurate to within five to ten meters. DGPS is accurate within two to five meters. 

The data collected by Rogers (1 999) also used DGPS, but Kelley et al. (1 994) used 

LORAN-C for data collected in 1989 and 1990. LORAN-C navigation is supported by a 

series of land-based towers broadcasting a signal. Signals from two towers are used to 

determine the position by time delay readings, two or more time delays crossing at a large 

angle provide geographic position. In coastal embayments, the system's signals may 

break down and provide erroneous readings. Nominal geographic accuracy is 100-300m, 

but local experience has shown that repeatability can be in the tens of meters for 

precision. This method is no longer widely used. 

Ship's navigation and survey planning were accomplished using the Cap'n 

Voyager digital navigation software created by Nautical Technologies, Limited. Prior to 



surveys, the course was laid out in the Cap'n and saved to a 3.5" floppy disk. The 

research vessel was also equipped with the Cap'n integrated into the autopilot. The 

software logged DGPS readings directly from the ship's DGPS receiver twice a minute 

and plotted the ship's track on a navigational chart. The log allowed for quick creation of 

trackline maps in a GIs environment. Logs were opened in Microsoft Excel for editing 

and preparation for conversion to UTM via Blue Marble Geographic Calculator and use 

in GIs. 



CHAPTER 3 
CHANGES TO THE BELFAST BAY POCKMARK FIELD 

The Belfast Bay (Figure 3.1) pockmark field was imaged in 1989 and 1998 using 

analog sidescan sonar and mapped with GIs. Kelley et al. (1994) created a baseline map 

of the distribution of pockmarks and investigated the size of the field and pockmarks in 

1989. Nearly nine years later in 1998 Rogers (1 999) remapped the field and correlated 

pockmark occurrence to Holocene sediment thickness and presence of subsurface gas. 

During the years between surveys, questions arose about the level of activity of the 

pockmark field. Kelley et al. (1994) imaged an apparently active pockmark within the 

field, during the 1989 survey. Paul1 et al. (1999) and Ussler et al. (1 999) suggested that 

the field was senescent and a relict feature based on a survey employing a submarine 

methane detector (A. Codega, personal communication, 2000). 

The goal of this chapter is to further investigate the activity of the Belfast Bay 

pockmark field. I hypothesized that the field is active based on observations of Kelley et 

al. (1994) and attempted to validate the hypothesis with an in-depth GIs analysis. 

3.2. DATA SOURCE AND ERRORS 

3.2.1. Data Sources 

This project was completed using the GIs data created by Kelley et al. (1994) in 

1989 and Rogers (1 999) in 1998. Reinterpretation of original sidescan sonar images from 

1989 and 1998 surveys were required to verify change analysis. Additional, new high- 

resolution data were collected in 2000. Data from previous studies (Kelley et al., 1994; 



Figure 3.1. The Belfast Bay study area for change analysis. Belfast Bay is a northwest 
extension of Penobscot Bay (Figure 1.1). The study area for the change analysis is 
shaded in gray and represents the combined sidescan sonar coverage from surveys in 
1989 (Kelley et al., 1994) and 1998 (Rogers, 1999). Coastline and bathyrnetry were 
simplified from NOS chart 13302. 



Rogers, 1999) were not in the same area surveyed as surveyed in 2000. These new data 

are not considered in the analysis. 

3.2.2. Errors 

Error in aligning the coverages resulted from three sources: 1) the data were 

located with different coordinate systems; 2) the layback of the sidescan sonar towfish 

varied on survey lines and entire surveys by an unknown amount; and 3) the survey grids 

were orientated differently. Each of these errors could be accounted for, but often 

operated in chaotic fashion, and individual sources of error were difficult to separate from 

the total error. It was not feasible to attempt to correct the data by means of a single 

algorithm. 

The 1989 data were collected and located using the LORAN-C system while the 

1998 data were collected using the differential global positioning satellite (DGPS) 

system. LORAN-C dial readings can have an error as great as 300 m or higher inshore 

and close to islands, but can be corrected to +I- 50 m with software provided by NOAA. 

The location of Belfast Bay within Penobscot Bay inherently results in LORAN-C errors. 

LORAN-C has been replaced by the more accurate and precise DGPS system. The DGPS 

system is designed around a network of satellites and coastal beacons. The coastal 

beacons provide a correction factor to the satellite data to remove the governrnent- 

induced errors and satellite wobble. The error in positioning has been reduced to two to 

five meters. As a result, the 1998 data set is more accurately located than the 1989 data, 

but there is no way to transform either set of navigation parameters into the other with 

great accuracy. 



Layback is defined as the distance from the DGPS (or LORAN-C) receiver to the 

towfish. The positions recorded during data collection are the position of the receiver on 

the vessel, not the position of the towfish. If the layback is recorded, and notes are made 

during changes to the layback, it is easy to remove fiom the data during initial GIs 

processing. The layback was, for the most part, accounted for during the 1998 survey. 

There are portions of the data were the layback appears to have changed and has not been 

accounted for in the GIs processing. The 1989 data set does not appear to have taken 

layback into account. This difference between the two surveys adds tens of meters of 

error to the attempts to reconcile the 1989 and 1998 navigation. 

Trackline orientation is often dictated by local conditions. In 1989, the survey 

was conducted parallel to LORAN-C dial readings, or southwest to northeast and vice 

versus. The survey in 1998 collected data on a north-south orientated grid. Either of 

these patterns is acceptable. Problems arise when the data are compared. The differing 

trackline orientations result in an error that is amplified by layback. If both surveys had 

been run with the same orientation, the error could easily be removed. The offset of 

trackline direction makes it difficult to determine which line's positioning was altered. 

An additional source of uncertainty arose from interpretation of the analog 

sidescan records. This error was independent of navigation issues and resulted purely 

fiom biased interpretations. Misinterpretations of the original data could result fiom 

several items: 1) water column noise; 2) improper bottom tracking; 3) 

improperlinappropriate gain settings; 4) slant range; 5) grazing angle; and 6) feature size 

and instrument resolution. Unfortunately, the analog record is only as good as the 

operational control at the time of collections; digital data collected since 2000 can be 



reprocessed and filtered to enhance features or remove noise multiple times without 

corrupting the original raw data. 

Water colunm noise results from several situations: I) turbidity; 2) strong 

stratification; and 3) intense mixing. Noise in the water column can obscure the record 

and prevent an accurate image of the bottom. Turbidity is suspended sediments and can 

obscure the bottom from proper imaging with sonar. Strong stratification can create a 

density difference that will create noise on the record from reflection and refraction of 

sonar beams along the interface. Intense mixing can disturb the bottom sediments and 

create turbidity throughout the water column. 

Bottom tracking is dependent on two major factors: water column noise and 

seafloor sediments. Water column noise will obscure the bottom and prevent the first 

return from accurately representing the actual depth below the towfish. This will result in 

a shallower-than-actual image. Soft seafloor sediments can allow the sonar beam to 

penetrate the sediments and return a deeper-than-actual image. Both of these factors will 

return images that are obscured toward the center of the swath. The greater the error in 

bottom tracking, the wider the erroneous return area is on the record. Analog records, 

such as those collected in 1989 and 1998, had one opportunity to properly track the 

bottom. In less than ideal survey conditions, bottom tracking is difficult at best and can 

greatly degrade the center portion of the record. 

Inappropriate gain settings can yield a record that is either too dark or too light to 

resolve features of interest. Strength of return (i. e., darkness on record) is directly 

related to seafloor sediment type. Improper gain settings can hlde subtle features on 

muddy bottoms. 



Grazing angle is the angle that a sonar beam intersects the seafloor. The further 

from the centerline of the towfish, the greater the angle of the beam becomes. The 

greater angles will tend to scatter energy and return weaker signals to the towfish. 

Weaker signals are more difficult to interpret and resolution decreases, thus increasing 

the possibility of a misinterpretation. 

Pockmarks have been reported to range in size from less than one meter to greater 

than 700 m (Hovland and Judd, 1988). Small features (i.e., lobster traps) are resolvable 

on the original data, but the process of mosaicking and interpretation in GIs reduces the 

final resolution. As a result, features below the resolution of the interpretation (about 3 

m) will not be observed. Features significantly larger than the swath width, typically 200 

m for this study, may not be observed, or properly interpreted. 

3.3. RESULTS 

A cursory analysis of both data sets showed the pockmark field had 1888 

pockmarks in 1989 (Figure 3.2) and 2262 pockmarks in 1998 (Figure 3.3). However, the 

area each survey covered was slightly different, with the 1998 survey encompassing a 

greater area. Comparison of the coverage showed that gaps existed in the area covered. 

After data gaps were removed and the data sets reanalyzed, the 1989 coverage contained 

1702 pockmarks and the 1998 coverage contained 1777 pockmarks. After matching 

pockmarks was completed, 342 pockmarks occurred on the 1998 coverage without a 

match on the 1989 coverage (creations) and 287 pockmarks appeared on the 1989 

coverage without a match on the 1998 coverage (destructions) (Table 3.1). 



Table 3.1. 1989 and 1998 Pockmark Coverage Statistics. Table details numbers of 
pockmarks on each coverage and how the total pockmarks mapped where broken down 
into comparable data sets. 
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Figure 3.2. Pockmarks mapped in 1989. A GIs interpretation of the sidescan sonar 
collected in 1989 (Kelley et al., 1994) shows 1888 pockmarks (red) within the Belfast 
Bay area. Gray lines delineate sidescan sonar coverage on each survey trackline. 
Considerable gaps occur between tracklines. Coastline and bathymetry simplified from 
NOAA chart 13302. 



Figure 3.3. Pockmarks mapped in 1998. A GIS interpretation of the sidescan sonar 
collected in 1998 (Rogers, 1999) shows 2262 pockmarks (red) within the Belfast Bay 
area. Grey lines delineate sidescan coverage on each trackline. Unlike data collected in 
1989 (Figure 3.2), trackline overlap and data gaps are rarely present within the main body 
of the pockmark field. Coastline and bathymetry simplified from NOAA chart 13302. 



The unaccounted pockmarks on the 1989 coverage exist in places where pockmarks 

could have coalesced into larger features on the 1998 coverage or could have been in 

areas not covered by both surveys. These pockmarks were removed fiom the analysis. 

A volumetric analysis (see Rogers, 1999 for techniques and Chapter 5, this work 

for further discussion) was performed on the pockmarks added and pockmarks filled. 

The 342 new pockmarks represent 3.4 x 1 o6 m3 of sediment removed from the seafloor 

and the 287 filled pockmarks represent 3.2 x lo6 m3 of muddy sediments added to the 

seafloor. The difference, 0.2 x lo6 m3, represents nearly 6%. Based on potential 

variations in pockmark morphology and inaccuracy in digitizing, this is not a significant 

difference. 

3.4. DISCUSSION 

The resultant coverage (Figure 3.4) details the activity of the Belfast Bay 

Pockmark Field. At first glance, it appears as if the pockmark population in the surveyed 

portion of field has increased by 75 pockmarks. A more detailed analysis of pockmarks, 

which involved matching of pockmarks, over the 10-year period shows that 342 new 

pockmarks were created and 287 pockmarks were destroyed. Over the 10-year period, 

35.4% of the 1998 population of pockmarks was either created or destroyed. These 

numbers do not include the possibility of a pockmark being destroyed and a new 

pockmark forming in a similar location (within about twice the original pockmark's 

radius). In the type of analysis conducted here, these two, unrelated pockmarks would 

appear to be the same pockmark. Seismic reflection evidence does suggest filled 

pockmarks, although they may be difficult to interpret. Seismic reflection data is based 



on acoustic impedance contrast. The pockmarks are formed in Holocene muds and 

would infill with Holocene muds. Seismic reflection data would not show a 
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Figure 3.4. Changes to the Belfast Bay Pockmark Field. After correlation of the 1989 
(Figure 3.2) and 1998 (Figure 3.3) data sets, changes to the field can be determined. A 
near 36% change in the 1998 field population occurred over the nine-year period. A total 
of 342 pockmarks were created since 1989 and 287 pockmarks were destroyed after 
1989. The field shows zones of changes. Areas of new pockmark creation occur in the 
northwest, southeast and central portions, while pockmark destruction dominates in the 
northeast and southwest portions of the field. 



contrast unless a surface of differing density, water content, or grain size occurred on the 

surface of the pockmark before it filled. 

The volumetric analysis shows that more sediment was removed from the seafloor 

6 3 6 3 6 3 than added. (3.4 x 10 m removed, 3.2 x 10 m added). The difference of 0.2 x 10 m 

represents material that has been transported out of the system or stored in the intra- 

pockmark areas. Movement of material out of the system would suggest an overall 

erosive trend in Belfast Bay. If the sediment is stored in intra-pockmark areas, the 

system is only redistributing its resources. Data at this time are unable to resolve the fate 

of the 0.2 x lo6 rn3 of muddy sediment. 

The results of the statistical and graphical analysis demonstrate that the Belfast 

Bay field is active. It is also creating more pockmarks over a 10-year period than are 

destroyed. The field increased its gross population in the area surveyed by 55 

pockmarks, or 3.2%. 

Close examination of the final coverage (Figure 3.4) shows patterns in the activity 

levels throughout the bay such as zones of creation, destruction, or no changes. The 

zones where pockmark creation is greater than pockmark destruction are found in the 

northwestern, southeastern, and central portions of the field. The zones where 

destructions outnumber creations occur in the northeastern and southwestern portions of 

the field. Zones of no changes occur where the pockmarks mapped in 1989 retained their 

form and no new pockmarks were added or older ones deleted. T h s  condition is found in 

the south central portion of the field. 

Paul1 et al. (1999) and Ussler et al. (1999) argued that Belfast Bay is senescent. 

In order for the field to be senescent, no new pockmarks can be created in a given time 



interval. The population would decline through filling and erosion of pockmarks. 

Belfast Bay shows no such trend. In fact, the opposite is true. More pockmarks are being 

created than destroyed. 

The southern portion of the field contains several of the largest pockmarks within 

Belfast Bay. The comparison mapping shows several of these large-scale features 

(greater than 300 m in diameter) have disappeared between surveys. This represents a 

potential problem. It is difficult to believe the filling of features of this size in ten years. 

The few isolated large-scale features in the southern portion might be due to sources of 

possible misinterpretation discussed above. 

The activity level occuning in the Belfast Bay pockmark field is potentially 

significant. More work is needed to determine how long this activity will remain, the 

effect of rising sea level, and how anthropogenic factors will influence the field's 

activity. Additional work is required to detennine or estimate the amount of methane 

present, already released, and amount that can still be generated. 



CHAPTER 4 
ANTHROPOGENIC CHANGES IN BELFAST BAY 

4.1. INTRODUCTION 

Previous researchers have shown pockmarks can be generated by many different 

natural triggers as well as anthropogenic factors. Known natural triggers are earthquakes 

(Field and Jennings, 1987; Soderberg and Floden, 1992; Hasiotis, et al., 1996), waves, 

and storm surges (Hovland and Judd, 1988). Anthropogenic triggers include any activity 

that places a load, either static or dynamic, on the seabed. Ellis and McGuinness (1 986) 

closely examined a pockmarked seabed in the Arabian Gulf associated with a deep 

hydrocarbon deposit. Over the course of their survey, they noticed pockmarks had 

formed in an area where gassy sedimehts were recognized on an earlier survey. The new 

pockmarks were in close proximity to a hydrocarbon production platfom~. They 

attributed the pockmarks to gas and pore-fluid escape due to static loading of the 

seafloor, resulting in compression and dewateringldegassing of the sediments. Ellis and 

McGuinness (1986) suggest that any load, including anchoring or drag fishing, could 

trigger pockmark formation, but fail to provide any examples or proof that this occurs. 

Belfast Bay is home to a large fishing and commercial shipping fleet. Areas of 

the bay are regularly fished for lobsters, scallops, and ground fish. Fishing techniques 

include trapping, diving, and dragging. Trapping and diving have virtually no impact on 

the seabed and will not be considered further. 

Large cargo vessels travel through the bay enroute to Searsport on the northern 

shore of the bay or up the Penobscot River to Bangor. Occasionally, vessels will anchor 

within the bay to await free berths or appropriate tide and sea conditions. The United 



States Coast Guard has designated an oil transfer and anchorage area for these vessels in 

Belfast Bay and it lies within an active section of the pockmark field (Figure 4.1). 

During a drag fishing operation, a vessel drags a net held open by two large D- 

shaped doors across the seabed (an otter trawl). Sidescan sonar images in areas that are 

heavily dragged show deep, parallel furrows in the seafloor sediments fiom the passage 

of these doors. The furrow reworks the upper region of the sediment column, potentially 

altering the pressure regime in the sediment column. 

Anchoring large vessels can leave marks on the seabed similar to drag fishing. 

One or more long, linear h n o w  initiating fiom the same location, spreading fiom the 

initiation point and eventually fading are characteristic of anchoring and often referred to 

as "plumose structures" (Fader, 1988; Fader 1991). Multiple h o w s  from one initiation 

point are a result of changes in tides, wind and current direction, and waves. 

Belknap and Kelley (1999, unpublished proposal) hypothesized that 

anthropogenic actions, such as drag fishing and anchoring, can act as triggering events 

for pockmarks. This project was designed to test these ideas. 

4.2. DATA SOURCES 

A combination of previously collected and newly acquired sidescan sonar records 

were used. The previous data was collected, post-processed, and interpreted by Rogers 

(1999) during 1998. New data was collected during one field day in August 2000 with an 

Edgetech DF 1000 digital sidescan sonar towfish and Triton-Elics topside control and 

processing unit. 
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Figure 4.1. The Belfast Bay study area for anthropogenic forcings. Belfast Bay is a 
northwest extension of Penobscot Bay (Figure 1.1). The study area for the anthropogenic 
forcings is shaded in gray. Polygon A represents data collected in 1998 (Rogers, 1999) 
and polygon B is data acquired during August 2000. Coastlines and bathyrnetry 
simplified from NOS chart 13302. 



Data were collected at 50 m range on 100 and 500 H z  frequencies. The data 

were post-processed with the Triton-Elics unit and mosaicked with a 0.1 m resolution. 

Features from the sidescan sonar images were digitized and analyzed for spatial changes 

with ArcView 3.2. 

4.3. RESULTS 

The August 2000 fieldwork resurveyed an area of 13,725 m2 that was originally 

surveyed by Rogers (1999) in 1998 (Figure 4.2). Three classes of features were mapped 

from the sidescan sonar data sets: pockmarks, anchor drag marks, and other drag marks. 

The August 2000 survey mapped 80 pockmarks, 87 anchor-drag marks, and 197 other 

drag marks (Figure 4.3). The 1998 survey mapped nine pockmarks and 82 other drag 

marks. Anchor drags were not distinguishable from other drags in this data set and have 

been combined into other drag marks (Figure 4.4). 

The 1998 data shows nine pockmarks while 80 occur on the 2000 data set. Of 

those nine, from 1998, only five are matched with comparable pockmarks from 2000. 

Four pockmarks were filled, and 75 pockmarks that where not present in 1998 data were 

mapped. Possible explanations include: 1) the scale of resolvable events; 2) new 

pockmark creation; and 3) pockmark filling. While the ultimate resolution of both types 

of sidescan sonar is similar, the output produced by the digital system is far superior. The 

digital output of equipment used in 2000 is capable of resolving features with a diameter 

of less than one meter. The mosaicked and GIs-interpreted analog output of the 

equipment used in 1998 was capable of resolving features with a diameter of between 
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Figure 4.2. A Portion of the 1998 sidescan sonar mosaic in Belfast Bay. Rogers (1999) 
created a mosaic of sidescan sonar images. The area was resurveyed in 2000 to 
determine changes to the seafloor on a short timescale and determine anthropogenic 
forcings. Location of the image is shown on Figure 4.1, polygon A. 



Figure 4.3. Interpreted sidescan image from 1998. The original sidescan sonar image 
was interpreted in GIs. Pockmarks were digitized in red and drag marks in blue. 
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Figure 4.4. Sidescan sonar image collected in 2000. This image was collected over the 
same area as the 1998 image (Figure 4.2). Location of the image is shown on Figure 4.1, 
polygon B. 
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Figure 4.5. Interpretation of 2000 sidescan sonar image. The image was interpreted in 
GIs. Pockmarks are red and drag marks are blue. The scale prevents showing all drag 
marks on the image. Only the most prominent are displayed. 





Figure 4.7. Interpreted sidescan sonar images. The image on the left is from 1998 and the right from 2000. Red 
represents pockmarks and blue represents drag marks. At A, a pockmark is visible on both images. At B, a 
pockmark is visible on the 1998 image only. At C, a north-south drag mark is visible on 1998 and an east west 
drag mark is visible on the 2000 image. This series shows evidence for change to the seafloor over a two-year 
time period. 



four and five meters and linear features. The discrepancy in populations is attributed 

mainly to the resolution of the equipment, although I do not rule out pockmark creation 

and filling as an alternative to resolution differences. Small (< 5 m) pockmarks occur 

throughout the survey area. In places, these features are crossed by drag marks that were 

present on the 1998 survey. On the 2000 survey, the drag mark is not present and the 

pockmark is present. This suggests a distinctive chain of events: 1) drag mark was 

created; 2) 1998 survey took place; 3) drag mark filled; 4) pockmark created; and 5) 2000 

survey took place. 

Evidence for filled pockmarks exists in the southwestern portion of the survey 

area. Four pockmarks occur on the 1998 record that have no expression on the 2000 

record. The only explanation is the features were filled with sediment in the intervening 

two years (Figure 4.5). 

The filling of such large features over a short period of time can seem unrealistic 

when examining the volumes of material that are transported. Each of those four 

pockmarks are approximately 25 m in diameter and 4.1 m deep. Each pockmark would 

require 18,363 m3 to be completely filled, for a total of 73,452 m3 of muddy sediment. 

Where does this sediment come from? There are three potential sources: 1) sediment 

carried via the Penobscot River fiom areas upstream; 2) local resuspension of sediment 

through wave-seafloor interaction; and 3) the fornlation or maintenance of pockmarks 

elsewhere in the basin. 

Anchor drag marks are defined as any drag mark that terminates in a broad 

bulbous mark, or has a plumose-type structure. Other drag marks are any marks on the 

seafloor that do not qualify as anchor drag marks. These could be the result of tow cables 



from tugs and barges interacting with the seafloor, or any type of drag fishing (e.g., 

quahog, mussel and scallop dragging). 

Pockmarks can be seen in close association with both types of drag marks. A 

single pockmark located at the terminus of a drag mark is called a "tadpole". A series of 

pockmarks located anywhere along a drag mark is called "beaded". Both types of 

associated pockmarks are found in Belfast Bay. 

Beaded pockmarks are chains of pockmarks that form along a visible lineation on 

the seabed (Figure 4.6). Iceberg furrows, scarps, and fissures have been reported as 

source lineations (Hovland and Judd, 1988). The high-resolution data set from Belfast 

Bay suggests that drag marks from fishing and anchoring should be added to source 

lineations. 

Tadpole pockmarks f o m ~  at the end of an anchor or other type of drag marks 

(Figure 4.6). The pockmarks form at the initial or terminal end where the tool is place or 

removed from the seafloor. Pockmarks in the size range of three to five meters have been 

recognized at terminal ends of drag marks. This is too large to be attributed to the pit 

from an anchor. 

As the beaded or tadpole pockmarks increase in size, they destroy the evidence of 

the drag mark that was the point of initiation. Sediment from eruption and reworking by 

waves fills or erodes the drag mark. 

Activities that create drag marks alter the sediment thickness in the creation of the 

drag mark. As the mark is created, sediment is removed from the area where the object 

was drug and redistributed to the sides of the object. Changing the sediment thickness 

alters the pressure regime expressed on the underlying gas pocket. Removal of sediment 



lowers the pressure. As the pressure is lowered, the pocket becomes overpressurized. An 

anchor impacting the seafloor has a similar effect. The rapid loading of the seabed by the 

anchor increases the local pressure, thus allowing more gas to accumulate in the pocket. 

When the anchor is removed, the overlying pressure is rapidly reduced and pockmark 

formation can progress due to the disequilibrium pressure state. A similar mechanism 

has been suggested for North Sea pockmarks that occur only along drag marks created by 

icebergs. 

Figure 4.7 shows a time series of a small portion of seafloor within the study area. 

Two sidescan images from 1989 (A and C) and 2000 (B and D) show how rapidly the 

seafloor in Belfast Bay is changing. The letters A, B and C identify features on the 

seafloor. In all four images, the letters are in the same place. A shows a pockmark that 

remains consistent through the two-year interval while B shows a pockmark that was 

filled during the two-year interval. C shows a roughly north-south orientated drag mark 

on the 1989 image (A and C), but that feature is subdued, only marginally recognizable in 

the 2000 survey. The 2000 data also show a roughly east-west drag mark at C that is not 

present during the 1998 survey. 

It appears, from this initial study, that any activity that interacts with the seafloor 

could initiate pockmark formation. The conditions must be favorable, as they are in 

Belfast Bay, for the activity to induce a pockmark. More research is needed to determine 

what percentage of the Belfast Bay Pockmark Field is the result of anthropogenic 

activities and if this is significant. 



4.4. Drscussro~ 

The seafloor in the area of Belfast Bay is a dynamic environment. The seafloor 

sediments are disturbed by formation of pockmarks and the activities of society. 

Activities like dragging and anchoring appear to have the ability to disturb the 

equilibrium of the seafloor to allow pockmarks to form. The close correlation of small 

(<5 m) pockmarks and drag marks point to a relationship. Features like tadpoles and 

beads demonstrate the relationship between pockmarks and drag marks, and ultimately to 

the processes creating the drag marks. 

At the resolution of the sidescan sonar, it is difficult to determine the difference 

between a gas-escape pockmark and a pit created by an anchor. Anchor pits occur at the 

terminal end of anchor drag marks. This could reduce the number of "pockmarks" in an 

area, but only if those features interpreted as pockmarks occur at the terminal end of an 

anchor drag. This argument does not effect the interpretation of beads. 

The dynamics occurring in Belfast Bay result from a combination of societal and 

pockmark processes. These processes potentially impact the sediment transport and 

benthic habitat of the bay. 

Additional investigations are required to determine the differences between 

anchor pits and pockmarks and the temporal relationship of the creation of the drag and 

the formation of pockmarks. Further research is required to determine what, if any, 

effects the combination of these processes have on the ecology of Belfast Bay. 



CHAPTER 5 
SEAFLOOR MAPPING OF THE BLACK LEDGES AREA 

Belfast Bay is not the only location within Penobscot Bay to host large 

concentrations of pockmarks. Reconnaissance lines from researchers working in 

Penobscot Bay show scattered pockmarks at various locations (Belknap and Kelley, 

unpublished data, 1984). One area, the Black Ledges (Figure 5. I), was chosen for a more 

intensive investigation. 

The Black Ledges area was chosen for several reasons: 1) initial sidescan sonar 

reconnaissance lines showed pockmarks in dense clusters, but did not image the entire 

field; 2) initial seismic reflection profiling lines show pockmarks hosted within a thin 

Holocene sedimentary unit; 3) the area does not experience heavy commercial boat traffic 

or bottom trawling; and 4) the islands in the area provide a sheltered location for 

fieldwork close to a port facility. 

The purposes for studying another pockmark field in Penobscot Bay are to: 1) 

determine if the processes creating the field are the same; 2) determine if the field's 

composition is similar to the Belfast Bay pockmark field; and 3) identify additional 

stages of the evolutionary model (Chapter 6, this work). 

5.2. DATA SOURCES 

The mapping phase of this project involved data collection with high-resolution 

sidescan sonar and two marine seismic systems. Data analysis was conducted with 

ArcView and Archfo GIs software as well as Triton-Elics post processing software for 

sidescan sonar and seismic systems. 
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Figure 5.1. The Black Ledges study area. The Black Ledges are a series of islands and 
ledges located in East Penobscot Bay (Figure 1 .I). The area in gray represents 100% 
sidescan sonar coverage. Boxes A and B (Figures 5.4 and 5. ), and line A-A' (Figure 5.) 
are referred to later in the text. Coastline and bathyrnetry are simplified from NOS chart 
13302. 



Sidescan data were collected over three days in August 2000 and one day in 

January 2001. The sidescan sonar was deployed from the RV Friendship's stem A-frame 

and towed at about five knots. Survey range was maintained at 100 m (200m swath 

width) for the majority of the survey. A few reconnaissance lines were collected at 200 

m range (400 m swath width). Data were recorded digitally in Q-nips format through 

Isis Sonar v. 4.54 for sidescan sonar. Seismic reflection data were collected 

simultaneously with sidescan sonar data on two of the August 2000 and one January 2001 

survey days. The August survey used the Ocean Research Engineering boomer system 

(ORE) while the January survey used the Applied Acoustics Engineering boomer system 

( M E )  and Triton-Elics topside unit. Analog data from the ORE system produced paper 

records and were photocopied for analysis. Digital data from the AAE were recorded in 

XTF format through Delph Seismic for seismic reflection profiling. Raw field data are 

archived to CD-ROM media for use in the lab and subsequently removed from the local 

hard drive. A total of about 5.5 GB of data was collected during the surveys, 

representing approximately 38 km2 of sidescan imagery and approximately 120 km of 

seismic reflection lines (Figure 5.2). 

5.3. RESULTS 

The mapping project collected 38 km2 of sidescan sonar and 120 km of seismic 

reflection data, revealing a complex seafloor around the Black Ledges. A mosaic of the 

field area was created fiom the sidescan data (Figure 5.3). Combining the sidescan 

mosaic with seismic reflection data, the seafloor sediments were characterized (Figure 



Figure 5.2. Seismic reflection data coverage. A total of approximately 120 krn of seismic 
reflection profiling data were collected. The black line indicates the ship's track during 
seismic reflection data collection. Coastline and bathyrnetry are simplified from NOS 
chart 13302. 
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Figure 5.4. Sample of surficial mapping from sidescan sonar images. Sidescan sonar 
images are interpreted based on image color, a proxy for amount of sonic energy 
scattered versus energy reflected. Lighter areas absorb or scatter more energy and are 
interpreted as fine-grained sediments (muddy or muddy gravel). The darker areas are 
gravel or gravelly mud. This image also shows small (-25 m) pockmarks. Location of 
the image is identified in Figure 5.1 as box A. 



Figure 5.5. Seismic line PB0126. A representative seismic profile from the Black 
Ledges shows stratigraphic relationships and typical unit thicknesses within the study 
area. The seismic profile line shows bedrock (B, red), till (T, purple), glaciomarine (GM, 
blue), Holocene mud (M, gray), and natural gas (NG, green). The upper image is 
uninterpreted data and the lower image has been interpreted. Location of original line is 
shown on Figure 5.1 as line A-A'. 



5.4). The protocol and units (Table 5.1) developed by Barnhardt et al. (1996a, b) was 

followed. Twelve of the 16 seafloor sediment classifications were present. Units 

containing sand were not observed. 

Table 5.1. Seafloor classification scheme. A classification for seafloor surficial geology 
was developed by Banlhardt et al. (1 998). Sixteen members representing rock (R), 
gravelly rock (Rg), sandy rock (Rs), muddy rock (Rm), Gravel (G), rocky gravel (Gr), 
sandy gravel (Gs), muddy gravel (Gm), sand (S), rocky sand (Sr), gravelly sand (Gs) 
muddy sand (Sm), mud (M), rocky mud (Mr), gravelly mud (Mg), and sandy mud (Ms) 
was used to interpret sidescan sonar images. 

Seismic reflection profiles revealed a thin (<7 m) Holocene sediment cover in 

discrete muddy basins underlain by glaciomarine sediments, occasional till, and bedrock. 

Till was found to be thickest on the southeastern slopes (Figure 5.5), in agreement with 

Thompson and Bonls (1985). Natural gas was observed within the sediment. It was 

found in one of two fonns: gas-enhanced reflectors and acoustic wipeout. 

Gas-enhanced reflectors typically followed reflectors interpreted as the 

Pleistocene-Holocene unconfonnity and other prominent reflectors within the Holocene 

sediments. These reflectors were found on the flanks of depressions cut into the 

glaciomarine sediments. The enhanced reflector at the unconfornlity could be due to a 

lag deposit, or grain-size changes. This has been discounted in most occurrences due to 

the presence of acoustic wipeout at the base of the depression and enhanced reflectors 

emanating from the zone of wipeout. Also, the enhanced reflector is not found at the 



same elevation throughout the area, as would be expected if it were a lag deposit related 

to transgression. The enhanced reflectors also underlie pockmarks or terminate in moats 

where the Holocene sediments pinch out against a Pleistocene or bedrock outcrop (Figure 

5.5). This suggests the enhanced reflectors are a pathway for the migration of natural gas 

and might be the source of fluid for the overlying pockmarks. 

Acoustic wipeout is typically found within depressions cut into the glaciomarine 

(Figure 5.4 and 5.5). The wipeout is a result of gas, in bubble phase within the 

sediments. Bubbles attenuate the seismic energy at concentrations as low as 2% per 

volume (R. Parrott, personal communication, 2002). The stratigraphic record below the 

bubble fiont is obscured. Acoustic wipeout zones are small and not regionally extensive. 

A spatial analysis was conducted on the surficial units (Figure 5.6, Table 5.2). 

Mud and muddy units clearly dominate the system, accounting for 67.5% of the surveyed 

area. Gravel and gravelly units are secondary accounting for 24.0% of the area. The 

remainder, 8.5%, is rocky. 

The sidescan sonar mosaic shows several discrete muddy basins bounded by 

gravelly and rocky units (Figure 5.3). The muddy basins were found to host large 

numbers of pockmarks (Figure 5.7). In all, seven individual fields were mapped (Figure 

5.8). The fields were named using the phonetic alphabet (Alpha, Bravo, Charlie, Delta, 

Echo, Foxtrot, and Golf). Each field is separated from the others by a break in muddy 

sediments, or in the case of Charlie and Delta, a lack of sidescan coverage. 

The seven fields contain 3,528 pockmarks and cover a total of 9.8 x 1 o6 m2 of 

seafloor. All of the pockmarks encompass an area of 7.5 x lo5 m2, or 7.7% of the 

seafloor. The density of pockmarks for all of the fields combined is 361 pockmarks/km2. 



Table 5.2. Surficial Geology of the Black Ledges Area. The results of the spatial 
analysis utilizing ArcView and ArcInfo GIs are present in tabular form. NP means the 
unit was not observed at the map scale in the Black Ledges area. 

- 
Unit Symbol Area (mL) % of Total 

I I 

Rocky Mud Mr 148,993 1 
Gravelly Mud 

Mg I 2,856,339 7.69 

I 

Sandy Mud Ms 
NP I 

Sand S NP I 
Muddy Sand 

Sm I NP NP 

Gravelly Sand s g NP NP 

Rocky Sand Sr , NP NP 

I I I 

Gravel I G I 6,884,112 1 18.54 

Muddy Gravel Gm 1,655,292 4.46 

Sandy Gravel NP NP 

Rocky Gravel 360,101 0.96 

I 

Rock R 
127870 1 0.03 

I 

Muddy rock I Rm 
17,441 0.05 

I I 

Sandy Rock I Rs NP 
I 

Gravelly Rock Rg 
3y1187558 1 8.39 

I 
Total 

3771267883 1 99.97 





Figure 5.7. Surficial geology map of the Black Ledges Area. The sidescan sonar image was interpreted (as in Figure 5.4). 
The result is a map detailing the surficial sediment type in the area. A classification scheme developed by Barnhardt et al. 
(19%a and b; 1998) was applied. Colors represent primary surficial type, blue is mud dominated, green is gravel 
dominated, and red is rock dominated. The hatch pattern represents secondary surficial unit and are detailed on the map 
legend. Sand was absent at the map scale presented. 
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Figure 5.9. Pockmark field populations. The populations of pockmarks larger than 3 m 
were digitized into a GIs and spatial analyses were performed on each field. The 
populations are displayed by field. 

Alpha Bravo Charlie Delta Foxtrot Echo Golf all fields 

Field Name 
Figure 5.10. Pockmark field area. The GIs data set was used to determine the area of 
each field. Foxtrot is the largest and Echo is the smallest. The final column shows total 
area of pockmarked seafloor. 



Alpha Bravo Charlie Delta Foxtrot Echo Golf All Fields 

Field Name 

Figure 5.1 1. Density of pockmarks by field. Spatial analyses showed the density of 
pockmarks in the Black Ledges area. The smallest field, Echo, has the greatest density, 
nearly 1500 pockmarks per km2. Note that Charlie and Delta are probably contiguous in 
the field, so similar densities would be expected 

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 

Di.w~ete~ (III) 

Figure 5.12. Distribution of pockmark size for all pockmarks at the Black Ledges. 
Spatial analyses determined the distribution of pockmarks by diameter. Classification 
was with 5 m classes. The most fiequent size class was 15 m. Features smaller than 5 m 
do exist, but were below the resolution of the mosaicking processes. 



The maximum pockmark diameter is 75.4 m and the minimum is 3.8 m. The 

minimum diameter is governed by the resolution of the sidescan sonar and the pixel size 

during mosaicking. The mean is 13.7 m (Figures 5.9, 5.10,5.11, 5.12, and Tables 5.3 

and 5.4). 

6 2 Field Alpha contains 332 pockmarks. It encompasses 1.5 x 10 m of seafloor. 

The 332 pockmarks cover 2.2 x l ~ '  m2, or 14.2%. The pockmark density is 216 

pockmarks/km2. The maximum pockmark diameter is 37.2 m and the minimum is 10.2 

m. The mean is 19.7 m (Figure 5.13, Table 5.3 and 5.4). There are two clusters within 

the field. The northern section, deeper than the 37 m isobath, contains elliptical 

pockmarks pigure 5.14). These are the only observed elliptical pockmarks within 

Penobscot Bay. The survey grid did not image the entire field. Field boundaries on the 

north, east and western sides were not imaged. 

Field Bravo contains 627 pockmarks. It encompasses 6.4 x 1 O' m2 and the pockmarks 

cover 5.8 x lo4 m2, or 9.1%. The pockmark density is 983 pockmarks/km2. The 

maximum pockmark diameter is 23.24 m and the minimum is 5.1 m. The mean is 10.4 m 

(Figure 5.15, Table 5.3 and 5.4). 

Field Charlie contains 1438 pockmarks. It contains the largest population of the 

seven fields surveyed. It encompasses 1.7 x 1 o6 m2 and the pockmarks cover 1.6 x 1 o5 

m2, or 9.3%. The pockmark density is 830 pockmarks/km2. The maximum pockmark 

diameter is 30.6 m and the minimum is 3.8 m. The mean is 11.4 m (Figure 5.16, Table 

5.3 and 5.4). 



Figure 5.13. Distribution of pockmarks, by size in field Alpha. Spatial analyses 
determined the distribution of pockmarks by diameter. Classification was with 5 m 
classes. The most frequent size class was 20 m. 

Table 5.3. Pockmark field areas and densities. Spatial analyses performed on the GIs 
database provided a method for calculating pockmark densities within each field. 

I Bravo 637,275 1 627 1 984 1 

Field 

I Golf 832,908 1 84 1 101 1 

Pockmarks Area (mL) 

I A ~ I  Fields j 9,756;5 16 j 
I 

3528 ( 362 1 

Pockmark 
Density (pm/km2) 

Alpha 1 1,535,112 

Charlie ' 1,73 1 ;499 

332 / 216 

1,43 8 
182 
53 

Delta 
Echo 
Foxtrot 

272,135 
36,092 

4,7 1 1,495 812 1 172 

83 1 
669 

1472 

J 



Table 5.4. Diameter statistics for the Black Ledges pockmark fields. The maximum, 
minimum and mean diameters for each field was determined from the GIs database. 

I Bravo 10.4 1 23.2 1 5.1 1 

Field 

I Charlie 
I I I 

11.4 1 30.6 1 3.8 1 

Mean I Diameter Diameter 
Minimum 
Diameter 

Delta 
Echo 
Foxtrot 

Figure 5.14. Elliptical pockmarks of field Alpha. Elliptical pockmarks occur on 
the northern edge of field Alpha. These features are aligned parallel to subparallel to the 
37 m isobath and azimuth 045". Models of currents in Penobscot Bay (Xue and Brooks, 
2000) suggest these features are created by current scour caused by residual currents 
aligned along 045'. 

11.9 
7.9 

17.7 
Golf 
All Fields 

60.2 
75.4 

23.5 
13.7 

20.4 
14.3 

8.0 
3.8 

5.7 
3.8 

75.4 1 4.8 



Figure 5.15. Distribution of pockmarks, by diameter in field Bravo. Spatial analyses 
detennined the distribution of pockmarks by diameter. Classification was with 5 m 
classes. The most frequent size class was 10 m. 
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Figure 5.16. Distribution of pockmarks by diameter in field Charlie. Spatial analyses 
determined the distribution of pockmarks by diameter. Classification was with 5 nl 
classes. The most frequent size class was 15 m. 



Figure 5.17. Distribution of pockmarks by diameter in field Delta. Spatial analyses 
determined the distribution of pockmqks by diameter. Classification was with 5 m 
classes. The most frequent size class was 15 m. 

Field Delta contained 182 pockmarks. It encompasses 2.7 x lo5 m2 and the 

pockmarks cover 2.2 x lo4 m2, or 7.9%. The pockmark density is 668 pockrnarkskm2. 

The maximum pockmark diameter is 20.4 m and the minimum is 5.7 m. The mean is 

11.9 m (Figure 5.17, Table 5.3 and 5.4). A gap in sonar coverage exists between fields 

Charlie and Delta. It is probable that the fields are one continuous feature. 

Field Echo contained 53 pockmarks. It was the smallest field surveyed, 

encompassing 3.6 x 1 o4 m2 and contained the fewest pockmarks. The pockmarks 

covered 2.8 x 10' m2, or 7.7%. This field has the highest pockmark density, 1,468 

pockmarks/km2. The maximum pockmark diameter is 14.3 m and the minimum is 3.8 m. 

The mean was 7.9 m (Figure 5.18, Table 5.3 and 5.4). 

Field Foxtrot contains 8 12 pockmarks. It contains the largest pockmark surveyed in the 

Black Ledges area. The field encompasses 4.7 x lo6 m2 and the pockmarks cover 2.5 x 



lo5 m2, or 5.3% of the seafloor. The pockmark density is 172 pockmarks/km2. The 

maximum pockmark diameter is 75.4 m and the minimum is 4.8 m. The mean was 17.7 

m (Figure 5.19, Table 5.3 and 5.4). 

Field Golf contains 84 pockmarks. It comprises four clusters of pockmarks 

separated by unpockmarked, muddy seafloor. The field encompasses 8.3 x 1 o5 m2 and 

the pockmarks cover 4.4 x 1 o4 m2, or 5.3%. The pockmark density is 100 

pockmarks/km2. The maximum pockmark diameter is 60.2 m and the minimum diameter 

is 8.0 m. The mean was 23.5 m (Figure 5.20, Table 5.3 and 5.4). The survey did not 

image the entire field. The boundaries on the north and southern sides were not imaged. 
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Figure 5.1 8. Distribution of pockmarks by diameter in field Echo. Spatial analyses 
determined the distribution of pockmarks by diameter. Classification was with 5 m 
classes. The most frequent size class was 10 m. 



Figure 5.19. Distribution of pockmarks by diameter in field Foxtrot. Spatial analyses 
determined the distribution of pockmarks by diameter. Classification was with 5 n~ 
classes. The most frequent size class'was 15 m. 

Figure 5.20. Distribution of pockmarks by diameter in field Golf. Spatial analyses 
determined the distribution of pockmarks by diameter. Classification was with 5 m 
classes. Field Golf is polymodal, with greatest populations in classes 15,25, 30 m. 



The elliptical pockmarks observed in field Alpha suggest modification by 

currents. Fader (1991) observed morphologically similar features on the Scotian Shelf 

and attributed the origin to current-modified gas-escape pockmarks. The elliptical 

features in field Alpha all occur deeper than the 37 m isobath and are parallel or sub- 

parallel to the isobath. The long axis of the ellipse trends roughly along an azimuth of 

045". Three-dimensional models of the circulation in Penobscot Bay suggest the near- 

bottom currents in the area are approximately parallel to the axis of the elliptical 

pockmarks with the U1 velocity between 0.0 and 0.2 m/s north, the V1 velocity between 

0.0 and 0.2 rnls east and no Z1 velocity after detiding the data (Xue and Brooks, 2000). 

U1 and V1 are the horizontal components of current velocity with U1 in the north-south 

direction, with positive toward the north, V1 in the east-west direction with positive 

toward the east, and Z1 is vertical component of velocity with positive toward the surface. 

The remainder of the pockmarks are either normal or eyed (Figure 5.7). Eyed 

pockmarks (Fader, 1988; Kelley et al., 1994) have a hard return in the center. This return 

is the result of several possibilities. 1) The pockmark has excavated down to the 

underlying Holocene-Pleistocene unconformity. The glaciomarine sediments and the lag 

deposit thought to form at the unconformity has a higher backscatter than the Holocene 

mud. This has been confirmed to occur with seismic reflection profiling (Figure 5.4 and 

5.5). 2) A lag deposit forms within the pockmark during excavation. As the gas and pore 

water escapes, any particles too large to be removed by the escaping fluid will fall back 

into the pockmark and accumulate in the center of the pockmark. 3) Communities of 

organisms specialized to take advantage of the source of laible carbon from the methane 

inhabit the bases of pockmarks in some areas (Fader, 1 99 1 ; Hovland and Judd, 1 988). 



Submersible dives in the Belfast Bay Pockmark Field did not observe vent communities 

within pockmarks (R. Arnold, unpublished report, 2002) and there is no indication that 

the Black Ledges should be different. 

The width-to-depth ratios of the Black Ledges pockmarks is similar to those of 

the Belfast Bay pockmark field. From a sample of 15 pockmarks with diameters from 25 

m to 70 m that were crossed directly over the center by both sidescan sonar and seismic 

reflection profiling, the widths and depths were plotted. Rogers (1999) reported a power 

function as a relationship for width and depth. His measurement was based on 269 

pockmarks with diamters from 25 m to 250 m in the Belfast Bay area and yielded the 

following relationship: 

Relief = 0.3755(Diameter) 0 7432 eqn. 5.1 

The data collected from the Black Ledges (Figure 5.21) can be expressed by the 

following empirical relationship: 

Relief = 0.1 O(Diameter)-0.23 eqn. 5.2 

The relationships are slightly different. The range of data and size of sample set 

was smaller for the Black Ledges than for Belfast Bay. The relationship has an 3 value 

of 0.622. This is acceptable, considering small sample size and small data range. Rogers' 

(1999) power law (eqn 5.1) was applied to the data set. Linear regression was performed 

on the set. This was expected since the values were determined from an equation. In the 

diameter range of 20 - 80 m, the power law approximates a straight line 

Depth = O.lO(Diameter)+l.55 eqn 5.3 
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Figure 5.21. Pockmark relief versus pockmark diameter. Fourteen direct pockmark 
crossings were plotted to determine the relationship between depth and diameter in the 
Black Ledges pockmark fields. Triangles are depths predicted with the Rogers (1999) 
power law relationship, circles are measured width versus depth in the Black Ledges 
area. 

The slopes of the approximations are identical, but the intercept values vary. Similar 

slopes suggest the features are of the same shape, but of differing portions of the model 

sphere. Rogers (1999) model (intercept = 1.55) suggests a larger portion than data 

presented here (intercept = -0.23) (Figure 5.21). The model differences represent 20 to 

40% in depth approximations, with larger variation for smaller diameters. 

Rogers (1999) calculated the volumes based on am empirical relationship derived 

from multibeam bathyrnetry of the pockmark field. 

V = 116 nh(3 r2+h2) eqn 5.4 



where V is volume, r is the pockmark radius, and h is depth of the pockmark. This 

represents the volume of l/loth of a sphere. The differences in modeled depth between 

Belfast Bay and the Black Ledges suggest the Belfast pockmarks represent a greater 

portion of the sphere than those found in the Black Ledges. Thus, a model for the Black 

Ledges would represent less than 111 oth of a sphere. Three-dimensional data is 

unavailable at this time to produce an accurate representation of the exact section of a 

sphere. 

The the portion of a sphere model lies between the end members of a cone: 

V = 113 m2h eqn 5.5 

and a cylinder: 

v = d h  eqn 5.6 

Given a pockmark with a radius and depth, the 111 oth sphere model yields a volume 1.5 

times that of the cone model and 0.5 times that of the cylinder model (Figure 5.22, Table 

5.5). The cylinder model is unlikely. Soft, unconsolidated, water saturated sediments 

cannot maintain slopes of 90". Without intensive three-dimensional observations, the 

exact shape of the pockmark is unknown, but this appears to be a close approximation. 

The volume of muddy sediments and pore water removed from the Black ledges 

6 3 area by pockmark processes is 2.1 x 1 o6 m3 (by eqn 5.1 and 5.4) or 2.1 x 10 m (by eqn 

5.2 and 5.4). This may seem like a large volume, but when spread out over the entire 

area where pockmarks are present, the blanket would be on the order of 0.21 m thick. A 

change of seafloor elevation of this magnitude would be difficult to measure without the 

highest resolution multibearn bathymetric devices available. 



Table 5.5. Comparison of pockmark volume models. Results fiom three models for 
three-dimensional morphology (eqn 5.4, 5.5, and 5.6) are presented below. Diameters 
range between 2 and 20 m. Depth was calculated fiom eqn 5.2. Graphical results are 
presented in Figure 5.2 1. 
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Figure 5.22. Pockmark model volunle comparisons. The three models for pockmark 
volun~e are presented graphically. The portion of a sphere model (circles) falls between 
the end members of a cone (squares) and a cylinder (triangle). Large errors could arise 
fiom estimating volumes with the portion of a sphere model since the exact three- 
dimensional morphology is unknown at this time. 
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The pockmark process does represent a mechanism for redistribution of sediment 

within system. It could have major implications in areas with contaminated sediments. 

5.4. Drscussro~ 

The seafloor of the Black Ledges is a complex environment. Muddy sediments 

with subordinate gravel dominate surficial units. Rock is sparse, occurring in small 

patchy areas and sand was not observed. The large areas of muddy sediments suggest a 

low current regime at the seafloor in more than half of the area surveyed. 

The muddy areas host large concentrations of pockmarks. Concentrations found 

here are as great as four times higher than in Belfast Bay. Features are smaller than in 

Belfast Bay, with a mean diameter of 13.7 m in the Black Ledges compared to 57 m in 

Belfast. The smaller features allow for the nearly four-fold increase in density. The 

pockmarks are arranged in seven densely populated fields, unlike one field in Belfast 

Bay. Outcrops of till, glaciomarine, or bedrock bound each field. A total of 7.7% of the 

muddy seafloor is covered with pockmarks. 

The presence of elliptical pockmarks in Field Alpha is correlated to the local 

current action. This suggests the pockmark process is no longer active enough to 

maintain the circular and current activity has enhanced the pockmark into an elliptical 

form. 

The muddy basins show acoustic wipeout in the deepest central portions of the 

basins and gas-enhanced reflectors are common. The combination of these two 

observations indicates the presence of gas in bubble form. Direct sampling has identified 

the gas as methane (H. A. Christian, unpublished report, 2000). The close association of 



the pockmarks and the underlying gas features suggests the pockmarks are forming from 

gas escape, as in Belfast Bay. Belfast Bay hosts large areas of acoustic wipeout (Rogers, 

1999). The lack of large-scale acoustic wipeout in the Black Ledges suggests less gas is 

present in the system. 

The features in the Black Ledges area are similar in morphology to those in 

Belfast Bay. The identical slopes of approximation suggest similarity. Rogers (1999) 

showed considerable varibility over his large data set. The Black Ledges set was smaller 

and confined to the smallest diameters measured by Rogers. The features in the Black 

Ledges are also closely spaced and often collalesce. A lowering of the seafloor by 

several meters in pockmarks fields is observed on seismic reflection profiling and could 

contribute to the differences. 



CHAPTER 6 
EVOLUTIONARY MODEL OF SHALLOW-WATER POCKMARKS AND 

POCKMARK FIELDS 

Although pockmarks have been studied in a variety of locations worldwide, most 

research concentrates on their existence or processes of formation. Only Hovland and 

Judd (1 988) devote considerable effort to the life cycles and evolution of pocknlarks. 

Their work is primarily on pockinarks formed from thei-nlogenic gases. 

The poclinlarks observed througho~it Penobscot Bay appear in different locations, 

and have differing morphologies. The conceptual model attempts to link the occurrences 

and morphologies to the proposed life cycles and the processes, which dominate the 

environment of occurrence. In addition, it expands upon the previous work of Kelley et 

al. (2000). 

6.3. SOURCE OF THE MODELS 

A conceptual model was developed from review of previous work and current 

research. Data from previous research in Penobscot Bay (Rogers, 1999; Kelley et al., 

1994; Knebel and Scanlon, 1985) and elsewhere (Hovland and Judd, 1988) was 

compared with the results of the c~lrreilt st~idy (Chapters 3, 4 and 5 ,  this work). The 

differences observed in the pockmarks of Belfast Bay and the Black Ledges required 

explanations. The most effective way to explain the differences observed in Belfast Bay 

and Black Ledges is through differing stages of evolution or differing dominant processes 

(Figure 6.1). 



The model is presented as a flowchart. Kumerical simulations have not been 

applied in this study. 

6.3. EVOLUTIONARY MODEL 

Kelley et al. (2000) proposed a conceptual model for pockmark source fluid in 

Belfast Bay and did not discuss current and future evolution of pocltmarlts. Their model 

was used as the first portion of this conceptual model. 

The model begins with the retreat of the most recent glaciation. The retreating 

kilometer-thick Laurentide Ice Sheet (LIS) caused isostatic changes that greatly affected 

local relative sea level. During deglatiation, local sea level first rose to about 70 m above 

present. Isostactic adjustments tlien lowered sea level to a lowstand about 60 m below 

present at 10.8 kya (Figure 1.6). This lowstand was followed by continuous sea-level rise 

of varying rates to the present. Surfaces were exposed for varying lengths of time. 

During this time, lake and wetland formed in topographic lows. These features remained 

until sea level rose to drown the surfice. The length of time any feature was present 

before drowning is dependent on the elevation below present sea level and the rate of sea- 

level rise. Organic sediments from these drowned lakes and wetlands are proposed to be 

the source of methane for pockmark formation (Kelley et al., 2000). Holocene fine- 

grained sediments accumulated above the organic sediments as sea level rose. Methane 

was produced as a result of anoxic decay of organic-rich material. Methane, trapped 

under fine-grained sediments. accun~ulates and develops pressurized pockets. Pockmarks 

developed as gas escaped to reduce the presslire formed in the shallow subsurface (Figure 

6.2). 
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Figure 6.1. Pockmark and pockmark field conceptual model. A flowchart representing the possible pathways for evoiution resulting 
in observed forms of pockmarks in Pellobscot Bay. Flo~v is top-bottom, with italics boxes as potential sub stages. The model is 
broken down into two major pathways. A) Is the scenarios where gas is not a limiting factor on the evolution of the field. The field is 
actively producing new pockmarks. H) Is the scenario where gas is a limiting factor. Pockmarks are no longer produced and the form 
of the poclunark is dictated by sedimentation rates and current activity. 
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Figure 6.2. Conceptual model for deposition of source material and initial field 
development in Belfast Bay. Kelley et al. (2000) presented a model for the deposition of 
methane-generating material in glaciated New England estuaries. This model was the 
starting point for the conceptual model. After Kelley et al., 2000. 



The evolutionary model expands upon the Kelley et al. (2000) model. The 

evolutionary model picks up where their model stops, the past several thousand years to 

the present, and into possible future trends. 

During the present time, the differences expressed in the pockmarks and 

pockmark fields are a result of a combination of different stages of evolution and 

different dominant processes. The first major step in the evolution is the development of 

a pockmark field. High levels of activity, due to high rates of methane production and 

pressure increases, begin the excavation of pockmarks and the pockmark process exceeds 

the sedimentation rates andlor current scour to allow pocknlarks to develop. Once the 

field has begun to develop and matures, several different paths are available, based on 

local conditions. These are broken down based on the whether or not gas is a limiting 

factor. 

6.3.1. Gas-Nonlimited Scenarios 

When gas is not a limiting factor and the field is active, two major pathways exist: 

1) high pockmark activity and low sedimentation; or 2) high pockmark activity and high 

sedimentation. The effect of current velocity is undetermined at this time. Pockmark 

activity might be frequent enough to mask the current influences by enlarging the 

pockmark and erasing a current overprint. High current velocities would tend to erode 

the Holocene sequence, and eventually expose the Holocene-Pleistocene unconformity. 

Presently, there is no evidence for an eroding Holocene sequence in Belfast Bay. The 



fields in these stages are very active and the seafloor appears to be in a nearly constant 

state of change. 

Extremely active pockmarks and low sedimentation rates remove muddy 

sediments. Pocknlarks coalesce into moats, leaving pillars or mesas of muddy sediment 

that are highly gas charged. Southern Belfast Bay is an example of this stage of 

evolution. 

High pockmark activity and high sedimentation rates form pockmarks, but 

sedimentation fills them in. Pockmarks may be created and filled on a seasonal or longer 

time scale. Eastern Belfast Bay shows this stage of development. Many small 

pockmarks and an area of high rates of change characterize it. The seafloor is resurfaced 

frequently (Chapter 3, this thesis). 

6.3 2.  Gas-Limited Scenarios 

When gas is a limiting factor or the field is senescent, four major pathways exist: 

1) high sedimentation rates and low current activity; 2) low sedimentation rates and high 

current activity; 3) high sedimentation and high current rates; or 4) low sedimentation 

rates and low current velocities. Few if any new pockn~arks are fonned. Processes other 

than gas escape dictate the form of the pockmark. 

During times of high sedimentation rates and low current velocities, pockmarks 

will tend to fill in under a blanket of sediment. What little gas is left in the system is 

insufficient to maintain the pockmark form. Current velocities are low enough to not 

modify the circular nature of the pockmark. This scenario has not been observed in 

Penobscot Bay. 



When sedimentation rates are low and current velocities are high, pockmarks will 

tend to become modified into an elliptical form (Figure 5.13). Currents will erode 

sidewalls of pocltmarks to f o m ~  ellipses aligned parallel to the dominant current 

direction. Pocltmarks will not fill by sedimentation, but could be modified by slumping 

of sidewalls to create irregular inorpl~ologies. Portions of this scenario have been 

recognized in an isolated area of the Black Ledges (Chapter 5, this thesis). 

If sedimentation rates are high and current velocities are high, pockmarks will be 

modified by a combination of processes. The pockmarks can become elliptical and fill at 

the saine time. Evidence in Belfast Bay suggests filling occurs (Chapter 3, this thesis). 

Elliptical pockmarks are found in the Black Ledges (Chapter 5, this thesis), but the 

sediinentation rates are unknown and the current velocities are low (Xue and Brooks, 

2000) 

During times of lolv sedimentation rates and low current velocities, pockmarks 

will tend to be modified by slumping. The lack of gas emissions will not maintain the 

circular form. The high-angle side slopes will seek a more stable position and slump, 

filling the pockinark and creating an irregular morphology. Slumping in pockmarks has 

not been recognized in Penobscot Bay, but is known to occur in muddy sediments in 

other Maine embayments (Belknap et al., 1986; Kelley et al., 1989). 

A11 entire field does not have to be in the saine stage at a given point in time. 

Depending on local conditions, as seen in Belfast Bay, a single field may contain zones in 

different evolutionary stages. The shift between stages may occur, especially between 

the two stages of high pockmark activity and between the four stages of low poclunark 

activity. The shift from high activity to low activity should occur only once, and in one 



direction, unless a new source of gas is tapped. Conversely, the variation could be related 

to the volume of nat~lral gas present and the Holocene sediment thickness. 

6.4. Drscussro~ 

Examination of sidescan sonar records collected previously in Penobscot Bay 

(Rogers, 1999; Kelley et al., 1994) and data collected for this study (Chapters 3, 4 and 5, 

this thesis) shows differences t l~rougho~~t Penobscot Bay. The differences in pockmark 

morpl~ology and field cl~aracteristics are attributed to several items: 1)  the thickness of 

the Holocene sedimentary sequence; 2) exposure to currents; and 3) water depth. 

The Holocene sedimentary thickness appears to control the size of pockmarks by 

limiting the depth to which excavation can occur (Rogers, 1999). Belfast Bay is home to 

the largest known pockn~arl<s in Penobscot Bay. They approach 300 m in diameter and 

35 111 deep. The thickness of the Holocene sediments in this area are 35 in or greater. 

Across Penobscot Ray at the Black Ledges. pockmarks are generally less than 50 m in 

diameter and five meters deep. The Holocene thickness here is no greater than five 

meters. Nearly all of the pockmarks in this area are eyed. signifying that they penetrate 

the entire Holocene sequence and are floored by Pleistocene sediments (Figure 5.4) 

(Chapter 5, this thesis). 

North and west of Green Ledge, in the Black Ledges area, pockmarks are 

elliptical. Just to the south of this area, pockmarks are circular. The pockmarks appear to 

be modified by current actions in the main channel of East Penobscot Bay. Stronger 

currents in deeper water have modified the circular form to an ellipse with a major axis of 

roughly 045' T. 



Nearly all stages of the model are observed in Penobscot Bay. There is some 

confusion about the existence of the stages of gas depletion. The differences observed 

could be attributed to several of the four stages of gas depletion. 

The Belfast Bay field exhibits both of the high pockmark activity stages. The 

southern portion of Belfast Bay and upper portion of West Penobscot Bay are in the high 

pockmark activity, low sedimentation stage. Sidescan sonar images show mesas of mud 

and moats. Relief in the area exceeds 30 m vertically. Several areas are scoured clean of 

mud, down to the Holocene-Pleistocene unconformity. Seismic reflection profiling data 

indicate that large quantities of gas remain in the subsurface. The results from Chapter 3 

of this work show this area of the field is still generating new pockmarks. 

The eastern portion of Belfast Bay is in the high pockmark activity, high 

sedimentation stage. The results from Chapters ; and 3 of this work show large numbers 

of filled and new pockn~arks created over a nine-year period as well as a shorter two-year 

period. Changes to the population of the pockmark field are not the only seafloor feature 

indicating high sedimentation rates. The results of Chapter 4 of this work show that none 

of the drag marks or other seafloor features visible are apparent two years later, 

indicating a complete resurfacing of the seafloor over the period. Erosion of the seafloor 

could also explain the changes over the two-year period, but the lack of modification to 

the pockmarks suggests against it. 

The remainder of Belfast Bay is somewhere in between the two end members of 

the high pockmark activity scale. It is apparent that the high activity stages are a 

continuum and the high sedimentation and low sediinentation phases are extreme end 

members. 



The depleted gas stages of the evolutionary inodel are found in the Black Ledges 

pockmark fields. It is, at times, difficult to determine which processes dominate the 

evolutionary trend of the pockmarks. 

The northern section of field Alpha is in the low sedimentation, high-current- 

velocity stage. The pockmarks within the cluster are elliptical, aligned with a good 

approximation of the current direction in the area. No current meter data are available to 

verify the current direction at this time. 

The rest of the Black Ledges pockmark fields is somewhere within the other three 

stages. Once again, these are discrete end members on a continuum that might not be 

resolvable with the current data. 

This model is a good starting place. It puts the processes affecting the pockmark 

fields into perspective and provides a framework. The frainework will assist in planning 

future research on present day pockmark processes in Pellobscot Bay, as well as other 

nearshore and estuarine occurrences of pockmarks. 



CHAPTER 7 
ITEMIZED CONCLUSIONS 

1. The Belfast Bay pockmark field is active. Results fi-om Chapter 3 (this work) 

conclusively show recent activity in the field. Nearly 36% of the 1999 population 

changed in a 10-year period. These changes consisted of 287 pockmarks filled and 337 

pockmarks created. Evidence for activity of shorter time scales (< 2 years) exists 

(Chapter 4, this thesis). Four pockmarks were filled and nearly the entire area of study 

was resurfaced over a two-year period. 

2. Anthropogenic activities can trigger pockmark formation. Results from Chapter 4 

(this thesis) link pockmarks to drag marks on the seafloor. Tadpole and beaded 

pockmark forms are a direct result of disturbances of the seafloor by drag fishing and 

anchoring. These interactions can only be seen through high-resolution, investigations. 

As the pockmarks progress in development, the influences from anthropogenic activities 

are not evident. The redistribution of sediments from the pockmark process obscures the 

linkage. 

3. Belfast Bay is not the only location within Penobscot Bay to host large 

concentrations of pockmarks. Results from Chapter 5 (this thesis) show large 

concentrations of pockmarks in the Black Ledges area. Initial investigations suggest 

these pockmarks are formed in the same method as those in Belfast Bay, by gas escape. 

This is the fifth area studied along the Maine coast that hosts large concentrations of 

pockmarks. Other locations include: Passamaquoddy Bay (Fader, 1991), Blue Hill Bay, 



Somes Sound (Kelley et al. 1995), and Belfast Bay (Knebel and Scanlon, 1985; Kelley et 

al., 1994; Rogers 1999). Pockmarks appear to be the rule in glaciated, muddy estuaries 

along the Maine coast. 

4. The pockmark process is effective at redisrubting sediments within estuaries. As 

a pockmark forms, muddy sediments are placed into suspension. Evidence exists that 

6 3 shows a total of about 5 x 10 m of muddy sediments and pore water have been 

redistributed in Belfast Bay (Chapter 3, this thesis). This material has been moved within 

a 10-year period. In addition to this sediment in Belfast Bay, the pockmarks in the Black 

6 3 Ledges represent the removal of 2 x 10 m of muddy sediment and pore water (Chapter 

5, this thesis) over the course of the field's development. Whether this sediment remains 

in the pockmarked basin and fills pockmarks, adds to the total thickness as a blanket 

through deposition, or the sediment remains entrained within the water column and is 

carried out of the pockmarked basin is currently unknown. 

5. Pockmarks and pockmark fields appear to follow an evolutionary progression 

based on current environmental conditions. The conceptual model presented in 

Chapter 6 (thls thesis) suggests pockmarks and fields follow an evolutionary progression. 

The state of progression is based on the local conditions, including: currents, 

sedimentation rates, and available methane. This model can be applied to pockmark 

fields to suggest what conditions are governing the evolution of the pockmarks and the 

rates of activity. 



CHAF'TER 8 
SUGGESTIONS FOR FUTURE WORK 

The work presented in this thesis continues research conducted by others at the 

University of Maine and Maine Geological Survey (Kelley et al., 1994; Rogers 1999). 

There are many questions about pockmarks that still remain unanswered. Future work 

should focus in three areas: 1) identifying the source of methane, 2) the process by which 

pockmarks form and evolve, and 3) comparing the features found in Penobscot Bay with 

those in other areas such as Passamaquoddy and Blue Hill bays. 

The source of methane has yet to be identified in Penobscot Bay. Kelley et al. 

(2000) suggest organic-rich sediments from paleo-wetlands and lakes as a potential 

source. Alternatives include organic detritus disseminated throughout the Holocene 

sediment and migration of methane from deeper sources. The stratigraphic position of 

the source material has implications to field evolution and potential for continued and 

future development. 

Several theories have been presented for pockmark formation in Penobscot Bay. 

The exact mechanisms are still being debated. A detailed study involving time-series 

investigations, remote sensing, seafloor instrumentation, and computer simulations is 

needed to determine the mechanisms. 

Penobscot Bay is host to at least eight pockmark fields. Studies conducted in 

other bays along the Gulf of Maine coast have revealed other estuarine pockmark fields. 

A comparative study involving geophysical data collection and direct sampling of 

sediments and pore fluids should be undertaken to determine if these fields are similar 

and controlled by the same processes. 



The suggested future investigations would lead to a greater understanding of 

estuarine pockmarks. Once an understanding of the processes involved is gained, 

applications and impacts on the environment can be investigated. These include, but are 

not limited to biologic productivity and climate change through release of greenhouse 

gases. 
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