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Chapter 1

Introduction

This thesis deals with computational methods that exploit qualitative spatial information for

making inferences about objects in a geographic database. The motivation is to enhance

Geographic Information Systems (GISs), which manage the storage and retrieval of large

data sets, with intelligent mechanisms to deal with complex spatial concepts for data

selection and integration. One purpose of these intelligent mechanisms is to enable intuitive

interaction with the data by capturing and reflecting the user’s perception of the world.

Intuitive interaction entails providing facilities for the representation of qualitative spatial

information and making inferences. Qualitative spatial information is characterized by a

finite set of symbols that specify distinctions among spatial configurations. For example

the symbol set {North, South, East, West} denotes a system of qualitative directions and

the set {near, far} a system of qualitative distances. Inference is the process of combining

facts and rules to deduce new facts. We investigate the inference of qualitative spatial

information from stored base facts. Thus the core problem is to find those spatial relations

that are implied by a particular configuration, from a set of objects and a set of spatial

constraints relating these objects. While spatial inferences may appear trivial to humans,

they are difficult to formalize for implementation in an automated system. This problem is

germane to GISs because spatial reasoning is extremely useful for searching in large

databases containing complex geographic datasets.

In the past, work on spatial data models and spatial relations concentrated on defining

models for representing spatial objects and on defining spatial relations within these
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models. Work on defining spatial relations independent of the data model or underlying

representation usually tackled specific types of relations or their combinations. For

example, considerable work has been done on defining topological relations (Egenhofer

and Franzosa, 1991; Egenhofer and Herring, 1990) and using the formalism for

consistency checking (Smith and Park 1992; Egenhofer and Sharma 1993a), specifying

integrity constraints (Hadzilacos and Tryfona 1992), maintaining a spatial knowledge base

(Hernández 1993), and optimizing queries on topological relations (Clementini et al. 1994;

Papadias et al. 1995). Similar efforts have been undertaken for cardinal directions and

approximate distances (Frank 1995; Hong 1994). These research efforts have concentrated

on specific aspects of spatial reasoning in isolation from each other, partially due to the

lack of a comprehensive spatial reasoning framework.

This thesis concentrates on the use of these formalisms for spatial reasoning. In

particular, it defines a framework within which reasoning across different formalisms can

be integrated such that more precise spatial information is obtained.

1.1 Spatial Reasoning

Since people are particularly skilled in spatial cognition and spatial reasoning, such as

wayfinding, computational models for spatial reasoning are guided by research in the

cognitive sciences and psychology (Mark and Frank 1991; Mark and Freundschuh 1995;

Tversky 1981). Spatial reasoning is the process by which information about objects in

space and their interrelationships is gathered by various means, such as measurement,

observation, or inference, and used to arrive at valid conclusions regarding the objects’

relationships or in determining how to accomplish a certain task. Spatial reasoning is used

in inferring all possible spatial relations between a set of objects using a specified subset of

the relations. Inference of spatial relations, which is the focus of this thesis, is used in

applications such as designing the layout of an office or in navigation. Based on the results

of cognitive science research, we build computational models and formalisms of spatial
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relations that permit the inference of new spatial relations from a specified, but possibly

incomplete, set of spatial relations between objects. In particular, the models utilize

inferences on combined spatial information about topological and directional relations. The

following sections present an overview of cognitive aspects of human spatial reasoning

and their implications for developing formal models of spatial reasoning.

1.1.1 Spatial Cognition

A study of human spatial reasoning abilities helps provide answers to questions like:

Which are the properties of the spatial domain and objects that are preserved in a mental

model? Which properties are discarded? What is the level of abstraction? What is explicit

in the mental representation and what is implicit? How is spatial reasoning accomplished in

the absence of complete information? Answers to these questions determine the level of

detail, the encapsulated properties, the built-in functionality, and the overall organization

of information in computational models for spatial reasoning.

Research in cognitive psychology has examined humans’ mental organization of a

large-scale environment such as a city. Lynch (1960) states that humans’ cognitive maps

organize a large-scale environment using five mental concepts: landmarks, paths, nodes,

districts, and edges. Topological information is encoded in paths and districts while

direction and distance information is represented using landmarks, nodes, and edges.

Other research has studied humans’ use of hierarchies in organizing landmarks in a

cognitive map of their environment (Hirtle and Jonides 1985) and in mental

representations of spatial knowledge (McNamara 1986). Researchers also investigated

whether people use rules of inference and mental models—multiple or unified—for spatial

reasoning, and if they use only categorical representations defining classes of spatial

relations between objects (Byrne and Johnson-Laird 1989). Examples of categorical

representations are connected/disconnected and left/right, whereas coordinate

representations determine a division of space based on some unit or resolution of the
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visual system (Kosslyn et al. 1992). Results of this research indicate that people (1)

organize cognitive maps hierarchically and (2) use deductive reasoning via simple

inferences and non-deductive reasoning via mental imagery.

The research in cognitive issues has implications and utility for Artificial Intelligence

(AI). An essential component of any AI system is a knowledge representation scheme that

highlights the core issues and constraints of a problem and thereby facilitates its solution.

The representation should reflect its intended use and contain information at the

appropriate level of granularity. One possible approach is to develop representation and

manipulation schemes that mimic the methods humans use in similar problem solving

situations. As a result there is considerable interest, in the areas of AI and robotics, in

qualitative reasoning and particularly spatial reasoning. The insights that these fields have

drawn from the cognitive sciences about human spatial reasoning are (Freksa 1991; Freksa

and Röhrig 1993; Hernández 1994; Kuipers 1994):

• The information people store and process is necessarily qualitative, since their

cognitive mechanisms are limited in resolution and capacity. Hence only

comparisons between features are made possible, whereas details such as size,

shape, and location within some grid are disregarded. However topological

information such as inclusion, coincidence, and connectivity is retained fairly

precisely.

• The number of features and distinctions encoded is just sufficient to make the

identification of objects or situations possible within a given context.

• Structural similarities between the represented and representing world are used to

capture the constraints and inherent properties of the domain.
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• People use multiple representations. Two commonly used kinds of representation are

depictional, where the image acts as an analogy of the precept, and propositional, in

which the relations between identified entities are stored as facts.

• Within the context of human spatial reasoning the static data structures that encode

the qualitative information about the represented world can be viewed as data or

information depending on their semantic content. Knowledge can be viewed in terms

of the active processes performed on these data structures. Reconstructing a scene

from its verbal description or performing inferences are examples of such active

processes.

This thesis builds on results from research into human spatial cognition such as:  the

fact that humans use qualitative spatial information; that the interdependence between

different types of spatial relations, for example distances and orientation, is taken into

account in human spatial reasoning; and that humans use rules of inference for qualitative

spatial reasoning.

1.1.2 Qualitative Spatial Information

Incomplete, imprecise, and qualitative spatial information occur frequently when users

want to analyze spatial descriptions. Narrative, as in newspaper articles (Montello 1992),

trip descriptions (Golledge 1995), and emergency reports (Welebny 1993), include

descriptions of geographic space without the required precise description of the objects

involved. Similarly, instructions humans give to guide others through geographic space

contain combinations of spatial descriptions without references to coordinates

(McGranaghan et al. 1987; Golledge 1992). In another domain, biologists collected

herbarium specimens, for which they recorded narrative descriptions of the sites where

each specimen was found (Futch et al. 1992). For such applications, spatial reasoning is

needed in order to allow a GIS to fill the gaps and infer missing information. Automated
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spatial analyses, for instance, about endangered species or the relations to soil types and

climate, are severely hampered by the lack of methods to integrate the individual natural

language descriptions of geographic spaces to infer and compare the spatial relations

among the specimens. In all cases, a presently available commercial GIS would require a

user to identify the location of the object and geocode a complete description of the

object’s geometry, most often in terms of points, lines, and areas and their inter-

relationships.

Qualitative information and reasoning, on the other hand, deals with a small set of

symbols whose semantics may vary depending on the context or scale. For example, the

notion of nearness depends on the person’s task—such as walking, driving, or flying—

and the scale. One would say that Bangor is near Boston when describing its location to

someone in India, which sets the scale implicitly to be the whole of the U.S., but not

when the context is the New England region. Qualitative approaches to information

handling allow users to abstract from the myriad of details by establishing “landmarks”

(Gelsey and McDermott 1990) when “something interesting happens,” therefore, they

allow users to concentrate on a few, but significant events or changes (Egenhofer and Al-

Taha 1992). This working pattern is typical for scientists and relevant for geographic

databases in which scientists record the data of their experiments—frequently time series

observations—with the goal of subsequently extracting the “interesting” stages. By

abstracting details and highlighting significant aspects of a problem, qualitative spatial

information facilitates planning an approach to a solution and in determining what further

information is needed. For many decision processes qualitative information is sufficient;

however, occasionally quantitative measures, dealing with precise numerical values, may

be necessary.

Quantitative information is ideally of arbitrary precision and detail, and independent of

context. For example, depending on the desired precision one could state that downtown
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Orono is 10, 10.4, or 10.438 miles from downtown Bangor. While quantitative

representations allow for very powerful and frequently efficient calculations, they fall

short when users lack some information about the geometry of the objects involved

(Egenhofer and Mark 1995). Quantitative representations always need complete

descriptions of the objects’ geometry, i.e., they cannot handle partial information, and

they have serious problems when geometric information is imprecise. Problems also arise

due to finite-precision computations and the resultant error propagation (Hassan 1995). It

has been recognized that a quantitative approach is an inappropriate representation of

human cognition and spatial reasoning (Kuipers 1978). The remoteness from familiar or

intuitive processes makes Euclidean geometry reasoning systems inappropriate for

applications with a high level of user interaction, since they deal with different concepts—

small set of symbols on an ordinal and nominal scale in a discrete space vs. quantitative

calculations in an infinitely precise, continuous space—which have significantly different

properties. Analytical geometry and Cartesian coordinates have also been found as

inappropriate tools, e.g., for the integrating the biologists’ narrative descriptions of

geographic locations.

Qualitative and quantitative approaches to spatial reasoning are complementary

methods. Quantitative spatial relations include such observations as bearings (150˚ 25'),

distances (4.3 miles), and corresponding values derived from coordinates. Such

quantitative values are in close relationship with some qualitative spatial relations (Hong et

al. 1995). For example, if the azimuth to a point (measured clockwise from due north) is

90˚ then this corresponds to the cardinal direction East. Likewise, if two regions meet

topologically, then the distance between their boundaries is 0. Unlike qualitative,

quantitative spatial relations depend on precise metric information. Thus qualitative

information is concerned with the “what” and quantitative with “how much” as illustrated

in the statements, “parcel A neighbors parcel B” and “parcel A shares a 20.5 meter

boundary with parcel B.”
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This thesis introduces a comprehensive framework for reasoning about qualitative

spatial information within a purely qualitative environment.

1.1.3 Formalisms for Qualitative Spatial Reasoning

Understanding and modeling people’s skills in qualitative spatial reasoning requires a

formal definition of spatial relations. Spatial relations between objects can be classified as

being metrical, directional, or topological relations (Pullar and Egenhofer 1988; Worboys

1992). We identify spatial objects with a distinct identity with the uppercase letters A, B,

C, and their spatial relations by symbols ri, rj, rk etc. The topological relations are denoted

by the symbols ti, tj, tk, and so on. Similarly the directional relations are denoted by the

symbols di, dj, dk etc. The terminology and notation used here are based on those used by

researchers working on relation algebras. In particular, we use the notation preferred by

Tarski (1941) and Maddux (1993).

A relation algebra is a Boolean algebra with an additional binary operation

corresponding to composition, and four distinguished elements: the identity relation, the

universal relation, the empty relation, and the diversity relation (Maddux 1994). A

relation, in a relation algebra on a set U, is an element in a subset of all possible binary

relations UxU on the set U. The four distinguished relations are defined as follows:

1U = x, y : x, y ∈ U{ } universal relation

0U = ∅ empty relation

′1U = x, x : x ∈ U{ } identity relation

′0U = x, y : x, y ∈ U, x ≠ y{ } diversity relation

For example, for the set {disjoint, meet, overlap, coveredBy, inside, covers, contains,

equal}, of binary topological relations between simply connected regions without holes,
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equal is the identity relation, the disjunction of all relations in the set is the universal

relation, and the disjunction of the set of relations minus equal is the diversity relation.

Since a relation algebra is a Boolean algebra, the laws of associativity, distribution,

and De Morgan’s laws hold for the relations. These laws, and the operations of converse

and composition in particular, can be used for spatial inference.

The composition of spatial relations, denoted by ";", is an inference mechanism that

permits the derivation of a spatial relation between two objects A and C based on their

relation with a common object B. The composition of A r1 B with B r2 C ⇒  A r3 C is

denoted by r1 ; r2 ⇒  r3. The composition may result in a set of relations, for example r1 ;

r2 ⇒  {r3, r4, r5}, implying that any one of them can be the relation between objects A and

C. The smaller the set, the more precise the inference result. An empty set indicates a

contradiction, while the set of all relations—that is the universal relation—indicates that no

information can be obtained by the inference. Consistency requirements dictate that the

inferred set of relations between objects A  and C  be the set intersection of the

compositions over common objects. For example, if A r1 B ; B r2 C ⇒  {r3, r4, r5} and A

r1 D ; D r2 C ⇒  {r3, r5, r6} then the set of possible relations between A and C is {r3, r5}.

Such spatial inferences require a definition of the spatial relations involved and the

corresponding composition tables that define the results of each possible composition

among all relations involved. Composition tables have been defined for topological

(Egenhofer 1991) and directional relations and qualitative distances (Frank 1992; Hong et

al. 1995). The formalism for topological relations permits the inference that A is inside C

from the facts (1) A is inside B, and (2) B is inside C. Similarly, knowing that A is North

of B and B is Northeast of C allows the inference that A is North or Northeast of C. The

formalization of the relations and their compositions taken together form the model for

spatial reasoning used in this thesis.
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This thesis defines composition tables for pairs of topological and directional relations,

such as overlap and North. These composition tables enable the construction of a

comprehensive framework for qualitative spatial reasoning that is capable of reasoning

about individual spatial relations of each type, or about combinations of spatial relations of

different types.

1.2 Heterogeneous and Integrated Spatial Reasoning

The mere categorization of spatial relations is a useful tool for organizing different types of

spatial information, developing formalisms, and providing a match with such terms and

prepositions as adjacent, in, and left of used in natural language. In some situations,

however, spatial information of different types must be considered together. In contrast

with topological and directional relations, which have useful individual composition

tables, conclusive reasoning about qualitative distances requires considering information

of the relative orientation of the objects involved (Frank, 1995; Hong, 1994). For

example, if A is near B and B is near C then A could be near C or at a medium distance

from it depending on the orientation of AB and BC . If AB and BC  have opposite

orientations then A is near C, whereas if they have the same orientation then A is at a

medium distance from C. The information on the relative orientation enhances the

information regarding relative distances. Reasoning about such combinations of spatial

relations will be called integrated spatial reasoning when all the relations are used in

conjunction. In the previous example both the distance and orientation information were

used. In such cases the spatial relations between objects are given as tuples, for example A

[near, left] B. Heterogeneous spatial reasoning differs from integrated spatial reasoning in

that combinations of single spatial relations of different types are considered at each step of

the reasoning process. For example, heterogeneous spatial reasoning is used in inferring

that A is North of C  from A North of B and B contains C  since a directional and

topological relation are involved in the inference. Heterogeneous and integrated spatial



11

reasoning enhance the capabilities of an automated spatial reasoning system given the

appropriate composition tables.

1.2.1 Motivation

In a pictorial representation or natural language description of a scene all types of spatial

relations coexist and their coexistence illustrates the artificiality of the categorization of

spatial relations into topological, directional, and metrical relations. Often both topological

and directional information is available about objects in a scene and it is necessary to use a

combination of the two types of information in order to infer new facts that could not be

inferred by considering individual types of relations in isolation. For example, an

appropriate formalism would allow the inference of the facts A disjoint D, and A West of

D from the specified facts A is West of B, B overlap C, and C West of D (Figure 1.1).

A

B

C

D

N

Figure 1.1 An example that requires heterogeneous spatial reasoning.

It is evident by visual inspection that object A, in Figure 1.1, is West of D; however

this fact cannot be inferred using pure symbolic manipulations and composition tables for

topological and direction relations independently. The directional relation between objects

A and C and objects B and D are unknown and hence neither composition (A rd B ; B rd D)

or (A rd C ; C rd D) is feasible. Since the directional relation West implies the topological

relation disjoint, the composition of topological relations suggests itself. The result of a

composition of topological relations, however, is a non-empty set of topological relations

and hence the directional relation between objects A and D would remain unknown. In

order to infer the directional relation the reasoning process must include the deduction that
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since B and C overlap they have some part in common, say C'. Therefore, A is West of

C'  since it is a part of B , and C'  is West  of D , and hence A  is West  of D . A

comprehensive formalism for the composition of combinations of various types of spatial

relations would facilitate this reasoning process.

For an example of a situation where both the topological and directional relation

information must be used in conjunction, consider the scene depicted in Figure 1.2.

Suppose that the spatial relationships A disjoint B, A Northwest B, B disjoint C, and B

Northwest C are specified and the relations between A and C must be inferred.

A

B

CN

Figure 1.2 An example that requires integrated spatial reasoning.

The composition A disjoint B; B disjoint C results in the set of all possibilities, i.e., A

{disjoint, meet, equal, overlap, inside, coveredBy, contain, covers} C, and therefore

provides no topological information. If, however, the topological and directional relations

are considered in conjunction, i.e., (A disjoint  and Northwest B); (B disjoint  and

Northwest  C), it is evident that the result should be A disjoint  and Northwest  C.

The above examples indicate the usefulness of heterogeneous and integrated spatial

reasoning. We present a formal description of various types of spatial reasoning in the

following section.
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1.2.2 Formal Definition of Heterogeneous and Integrated Spatial

Reasoning

A comprehensive automated spatial reasoning system must be able to deal with each type

of relation individually, or with various combinations of relations of different types, or

with tuples of relations that form a composite or integrated spatial relation.

• Homogeneous spatial reasoning involves the derivation of a single type of spatial

relation between objects given two spatial relations of the same type (Equation 1.1a

and 1.1b). For example, inferring A disjoint C given (1) A disjoint B and (2) B

contains C, where disjoint and contains are both topological relations.

ti ; tj  ⇒  {tk} (1.1a)

and

di ; dj ⇒  {dk} (1.1b)

• Heterogeneous spatial reasoning involves the derivation of a spatial relation of either

type given two spatial relations of different types (Equation 1.2a and 1.2b). An

example is the inference of A North C from (1) A inside B and (2) B North C, where

inside is a topological relation and North a directional relation.

ti ; dj ⇒  {tk } (1.2a)

and

ti ; dj ⇒  {dk} (1.2b)

• Mixed spatial reasoning involves the derivation of a spatial relation of one type from

the composition of two spatial relations of a different type. An instance of mixed
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spatial reasoning is the inference of A disjoint C from the facts (1) A North B and (2)

B North C.

di ; dj ⇒  tk (1.3a)

ti ; tj ⇒  td (1.3b)

• Integrated spatial reasoning involves the derivation of each type of spatial relation

given two sets of identical types of spatial relations between objects (Equation 1.4).

The instances of the spatial relations in each set may differ, but both sets will have

the same number and types of spatial relations. An example is inferring A disjoint

and North C from (1) A meet and North B and (2) B meet and North C.

[ti, di] ; [tj, dj ] ⇒  {[tk, dk ]} (1.4)

Any spatial inference mechanism can be used depending on the completeness of the

available information. For the example illustrated in Figure 1.1 some of the topological

and directional relations between the objects concerned is missing and hence the

heterogeneous spatial inference mechanism is required.

The three mechanisms of homogeneous, heterogeneous, and mixed spatial reasoning

will together be considered as a combined spatial inference mechanism that works with

individual spatial relations. Combined and integrated spatial reasoning can be considered

as two categories of spatial reasoning. Each category has its own elements, namely

combined and integrated spatial relations, and its own composition operator defined for

those elements. The interesting question is whether the reasoning power of the two

categories is the same, i.e., whether there exists an isomorphism between the two

categories such that mapping the elements of one category onto another and then

performing a composition gives the same results as first performing a composition and

then mapping elements.
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1.2.3 The Hypothesis

The hypothesis of this work is that both spatial reasoning mechanisms are equivalent. That

is, the set of inferred relations obtained by composing tuples of spatial relations is equal to

the set obtained by combination of homogeneous, mixed, and heterogeneous

compositions. The goal of this thesis is to determine if the hypothesis is valid for all

inferences involving topological and directional spatial relations. This thesis focuses on

topological and directional relations and the combinations of these two types of relations

only.

The validity of the hypothesis implies that a unified approach to spatial reasoning,

which uses one canonical form, is possible and that valid inferences can be drawn using

partial information. For example, only topological or only directional relations need be

used depending on their availability. If that were not the case then inferences such as the

one described above would be impossible. This thesis systematically examines the cases

for which inferences over combinations of relation types give useful results. In addition,

we compare the results of using inferences over tuples and over combinations of relations.

Since this thesis is largely concerned with reasoning about topological and directional

relations all future unqualified usage of the terms heterogeneous, mixed, or integrated

spatial reasoning should be read as referring to the specific case of combining topology

and direction only.

1.2.4 Objective

The overall goal is the construction of a comprehensive formalism of qualitative spatial

relations and their interactions. With this formalism as a basis we build a spatial reasoning

system, tailored for structured geographic spaces, that integrates spatial concepts about

topology, cardinal directions, and qualitative distances.
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The specific goal of this thesis is to design a framework that supports heterogeneous

and integrated spatial reasoning in geographic databases. The framework permits

reasoning about individual types of relations and combinations of two or more types of

relations. A prototype implementation demonstrates the utility and benefits of our

approach, showing that new inferences can be drawn using heterogeneous or integrated

spatial reasoning that are impossible with homogeneous spatial reasoning.

1.2.5 Significance

The significance of this work has three main components. The first is that the formal

approach clearly identifies the different types of qualitative spatial reasoning that can be

performed. This clear identification helps determine which composition tables are required

for a comprehensive qualitative spatial reasoning framework that is capable of handling

different types of spatial relations. The second is that this thesis contributes to Naive

Geography (Egenhofer and Mark 1995) by showing how and when simpler spatial

inference mechanisms can be combined to give results equivalent to those obtained with a

more complex spatial inference mechanism. The third component is the systematic

derivation of composition tables for heterogeneous and integrated spatial reasoning about

topological and directional spatial relations which leads to new insight about models for

directional relations among extended spatial objects.

1.3 Scope of the Thesis

Our investigations focus on large-scale geographic space, which is defined as space that is

beyond the human body and cannot be observed from any single viewpoint (Kuipers

1978; Kuipers and Levitt 1988). Unlike small-scale or table-top space as used in the

context of qualitative kinematics or mechanical parts, geographic space is commonly

subject to incomplete and imprecise information for human spatial reasoning (Egenhofer

and Mark, 1995); therefore, in the absence of more precise geographic information, purely
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qualitative geographic reasoning may be used as a substitute. While these reasoning

processes may provide only approximate, sometimes crude solutions, they are frequently

the only means available to infer new information that may still be sufficient to solve a

particular geographic problem.

The objects of concern in this thesis are limited to simply connected, homogeneously

2-dimensional regions without holes. These objects may be real entities such as lakes or

administrative districts, or temporary constructions such as buffer zones. The objects are

not limited to physical entities and therefore “interesting” spatial relations may occur due to

objects sharing space (Varzi 1993; Casati and Varzi 1994).

1.3.1 The Methods

In order to compare the two inference methods (Equations 1.3 and 1.4) we need additional

composition tables for individual combinations of topological and directional relations,

i.e., ti ; dj  and di ; tj, and for tuples of relations, i.e., [ti, di ] ; [tj, dj ]. These composition

tables are based on the formal definitions of topological and directional relations.

Topological relations are described by the 4-intersection model (Egenhofer and Franzosa

1991), which is based on elementary concepts of boundary and interior in point-set

topology. The values, empty or non-empty, of the four intersections between the

boundary and interior of the objects are used to specify the relations. Directional relations

are described by the projection-based system (Frank 1995), which segments the space

surrounding an object’s minimum bounding rectangle (MBR) into nine zones: the eight

cardinal directions, {North, Northeast, East, Southeast, South, Southwest, West,

Northwest}, and a neutral zone denoting the relation “at the same location” or “same

direction.”

Since the directional relations are defined using interval relations, which determine the

possible relationships between objects, we map topological and directional relations onto
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pairs of interval relations. We use existing composition tables for interval relations (Allen

1983) to determine the composition tables for combinations of topological and directional

relations. The composition of interval pairs results in a set of interval pairs that specifies

the possible relations between the MBRs of the objects. We map this set of possibilities

onto topological and directional relations. After mapping we use pairwise composition of

intervals to determine the composition of combined or individual pairs of topological and

directional relations.

1.3.2 Summary of the Results

The main findings of this thesis are:

• Heterogeneous spatial reasoning about topological and directional relations is useful

when there is a containment relationship between one or more pairs of objects. This

is because the contained object has the same directional relationships with other

objects as the containing object. Hence a topological relation implies a directional

relation.

• Integrated spatial reasoning about topological and directional relations is useful when

the topological relations among objects are either disjoint or meet. In such a situation

the directional relation helps localize the positional relationship and therefore the

inferences result in a smaller set of possibilities than the set obtained using

topological or directional relations in isolation.

• Integrated and combined spatial reasoning give the same set of inferred relations.

Hence integrated spatial reasoning can be used in place of combined spatial reasoning

whenever all the necessary spatial information is available. This is computationally

more efficient since the predetermined and stored composition tables for integrated

spatial relations simplify the inference process.
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1.3.3 Complementary Issues

Although the aim of this thesis is a comprehensive formalism for qualitative spatial

reasoning it excludes certain related issues:

• Modeling and reasoning about the dynamic aspects of spatial relations, that is, the

changes in location or geometry of the objects over time. The scope of this thesis is

reasoning about static spatial relations. Dynamic spatial reasoning requires, at the

very least, a temporal reasoning capability (Egenhofer and Golledge 1996) and

reasoning about motion (Zimmermann and Freksa 1993). Both these aspects of

reasoning are the subject of extensive study by various research groups.

• How humans would map natural language expressions onto a formal model of space

and spatial relations (Mark and Egenhofer 1992). Hence the question of multiple

frames of reference and transformations between these frames is not tackled directly.

Rather we assume a mechanism is in place that transforms all orientation relations to

a fixed extrinsic reference frame (Hernández, 1991). Interpreting natural language

expressions and providing a parametric characterization of various interpretations is

the subject of an ongoing doctoral dissertation (Shariff 1996) and hence excluded

from the scope of this thesis.

• We focus purely on the topology and geometry of the objects and leave the semantics

of the objects (their attributes and non-spatial operations) for future investigations.

The semantics will likely enhance qualitative reasoning capabilities by providing

additional constraints that limit the type or number of spatial relations among objects.

A lake may only contain and not overlap or cover an island, for example. These

constraints can be used after the composition-based inference mechanism to further

reduce the size of the inferred set of spatial relations. The additional constraints
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derived from the semantics of the objects are supplementary to the qualitative spatial

reasoning using the formal definition of qualitative spatial relations.

• This thesis focuses on reasoning about qualitative spatial information and defers the

integration of quantitative information for future work. The integration of quantitative

and qualitative information requires a formal method for dealing with qualitative

spatial information.

• Imprecision or uncertainty about an object’s boundary adds complexity in terms of

the number and nature of spatial relations among objects. For example, a new

topological spatial relation becomes possible in which one crisply defined object can

be contained in the region of uncertainty of another object’s boundary. These

additional relations and the mixing of crisply and non-crisply defined objects add

considerable complexity to the qualitative spatial reasoning mechanism. A discussion

of research questions in formalisms for dealing with geographic objects with

undetermined boundaries can be found in (Burrough and Frank 1996).

These issues are very relevant and are being studied by various research groups, however,

for our purposes they are largely extensions to the core problem of integrated and

heterogeneous spatial reasoning.

1.4 Intended Audience

The intended audience of this thesis constitutes any persons interested in spatial reasoning

in general and the design and development of Geographic Information Systems software

in particular. This includes researchers and practitioners from the fields of geographic and

scientific databases, artificial intelligence, constraint processing, and spatial information

science. It particularly addresses the needs of designers of next-generation spatial

databases, with an emphasis on the semantics of spatial information in spatial constraint

databases.
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1.5 Thesis Organization

The remainder of this thesis is organized into six chapters.

Chapter 2 discusses the requirements, approaches, and methods for spatial reasoning.

A brief statement of the problem and its application is followed by a description of the

requirements that must be met. The following section outlines possible approaches to a

solution and their relationship to the requirements. Next, alternative methods are described

and discussed in the context of a larger framework, which categorizes the core ideas

behind various approaches to the problem of spatial reasoning.

The relation algebras and inference mechanisms for topological, directional, and

qualitative distance relations are the subject of Chapter 3. The inference mechanism for

each relation type is based on a composition table and a means of expressing the relations

as a constraint network. The composition table defines the relations that can exist between

two objects given their relation with a common third object. The constraint network helps

reduce the size of the set of inferred relations by imposing local and global consistency

requirements. These consistency requirements basically ensure that the direct relation

between two objects is the same as the derived relation obtained using compositions over

one or more intermediate objects.

While individual reasoning mechanisms for spatial relations are quite powerful, they

fail to take advantage of additional information obtainable when two or more types of

relations are given. For example, the fact that A meets B loosely constrains the location of

objects. Adding the fact A North of B constrains their location even further. The methods

and results of using combined knowledge of spatial relations are described in Chapter 4.

Chapter 5 extends the formalism developed in the previous chapter to derive the

composition tables for mixed spatial reasoning. These composition tables give: the

topological relations inferred from the composition of directional relations; the directional
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relations inferred from the composition of topological relations; and the qualitative

distances inferred from the composition of topological relations.

Chapter 6 derives composition tables for integrated topological and directional

relations. These composition tables, along with the tables for individual pairs of

topological and directional relations defined in Chapter 4, are used to confirm our

hypothesis. These composition tables constitute a major contribution of this thesis.

Chapter 7 presents a framework for integrated spatial reasoning, which permits a

multi-level approach to the problem. The two primary concepts detailed in this chapter are

that (1) spatial relations can be represented as a knowledge structure and hence can be

organized, related, and constrained and (2) spatial relations are objects in their own right

with properties and interdependencies. Based on these findings we propose a design for a

qualitative spatial reasoner that supports combined and integrated spatial reasoning.

Chapter 8 summarizes the major contributions of this thesis and analyzes their

implication for future work. The primary contribution of this thesis is a framework for

integrated and heterogeneous spatial reasoning that exploits the power of using individual

or combined knowledge of spatial relations between objects. Further work is required in

order to address the issues of integrating quantitative and qualitative constraints, and

reasoning with multiple levels of granularity.
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Chapter 2

Related Work in Qualitative Spatial Reasoning

Spatial reasoning is concerned with solving problems involving entities that occupy space

(Kak 1988). The motivation behind research in spatial reasoning is twofold. The first is

the scientific motivation to gain a better understanding of human performance. The second

is the need to devise formalisms that allow automated systems to tackle spatial reasoning

problems. Examples of applications of automated spatial reasoning include visual object

recognition, intelligent image information systems, wayfinding for robots or autonomous

vehicles, and query processing in geographic databases.

• Visual object recognition involves reasoning about the shapes and possibly textures

of objects and is useful in applications such as automated assembly or testing of

electronic components and circuit boards (Fleck 1990).

• Intelligent image information systems utilize spatial reasoning for query processing

and similarity-based retrieval or matching of images (Chang and Hsu 1992). The

information system stores a symbolic representation of the image, which encodes

knowledge about the objects in the image and the spatial relationships between these

objects. Queries are then processed using the symbolic representation rather than the

actual images by transforming a query into the same symbolic representation and a

pattern match between the symbolic representations of the query and images (Arya et

al. 1994; Faloutsos 1995).
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• Wayfinding or navigation requires spatial reasoning abilities since the autonomous

agent must construct a cognitive map of its environment in order to solve the problem

of getting from one location to another (Kuipers and Levitt, 1988).

• Spatial query processing requires a formal definition of spatial relationships and their

properties in order to enable consistency checking and inferences (Egenhofer 1991).

Consistency checks determine whether a specified query can be satisfied by a

physically realizable configuration of spatial objects. Inferences permit the derivation

of all implied relations from the explicitly stated ones.

This thesis is primarily concerned with spatial reasoning from the point of view of

spatial query processing.

2.1 Approaches in Spatial Reasoning

Any model devised for spatial reasoning must include a representation system that is

particularly suited for dealing with spatial information and a mechanism for making

inferences from this information. Thus the representation should preserve certain

fundamental properties of the spatial domain, while the reasoning system should utilize the

conceptual structure of the spatial relations that result from these properties. The

fundamental properties of the domain are:

Uniqueness: Distinct objects occupy distinct locations in physical space and at any instant

in time an object is at one and only one location. A location is specified by a set of points

in space.

Spatial arrangement: The spatial relationships among objects result from their arrangement

in space. These relationships include topological relations, orientation relations, and

distances. Orientation relations imply a frame of reference, which should be included in

the representation.
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Neighborhood: Under continuous change movement occurs only between neighboring

locations in space and hence change in spatial arrangement has a neighborhood structure.

For example, if two objects are disjoint and either one or both are moved towards each

other then the objects must be adjacent at some point before they can overlap.

The following analysis and review examines various approaches to spatial reasoning

with respect to their utilization of the above properties of the spatial domain.

There are basically two approaches when constructing a model suitable for spatial

reasoning: (1) one may choose to model physical space and the objects within it or (2) one

may model the relationships between the objects (Frank and Mark 1991). These

approaches are analogous to the raster and vector spatial data models. A model of physical

space captures the locations of objects, for example, as a set of coordinates in some

reference grid, and the relationships are computed using this metric information. Models

that encode the relationships between objects often ignore information on the locations of

the objects. The original image or picture is encoded in some symbolic representation,

from which the spatial relationships are derived using a set of transformation or

manipulation rules. Regardless of the approach used, each spatial data model requires a

formal definition of spatial relations that identifies and characterizes the relations

describable within that model.

The following sections provide fairly comprehensive overview of research in

qualitative spatial relations and spatial reasoning. Secion 2.2 presents formalisms for

qualitative sptial relations that have gained acceptance and used in subsequent research

efforts. We present formalisms for topological and directional relations which are the

focus of this thesis and, for the sake of completeness, formalisms for qualitative distances

since it is a core element of spatial reasoning. This thesis uses well-defined formalisms for

individual types of spatial relations in devising a framework for integrated spatial

reasoning and therefore uses the second of two approaches described in the previous
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paragraph. Considerable research effort, however, has been successfully expended in

devising specialized methods for qualitative spatial reasoning using the first approach. In

order, therefore to place the results of this thesis in the appropriate perspective, Section

2.3 is a broad and comprehensive review of research in qualitative spatial reasoning.

2.2 Formalisms for Qualitative Spatial Relations

Various categorizations of qualitative spatial relations are possible based on common

spatial concepts such as proximity, connectivity, adjacency, and containment. We use the

more common classification of spatial relations into topological relations, directional

relations, and distances. Other definitions, and categorization, of spatial relations have

been made based on partial orders (Pullar and Egenhofer 1988; Kainz 1990; Kainz et al.

1993) and set-theoretic concepts (Freeman 1975; Worboys 1992).

Topological spatial relations are those relations that are invariant under continuous

transformations with continuous inverses, such as rotation or scaling. Directional relations

are defined between a reference object and a primary object with respect to a fixed frame of

reference, usually determined by a predefined entity such as the North Pole. While

direction relations are easily defined for points objects, they have many alternate

definitions between extended objects. Qualitative distances refer to the use of such terms

as near, far, or very far for specifying the distance between two objects. The following is

a review and discussion of proposals for the definition of qualitative spatial relations.

2.2.1 Topological Spatial Relations

If the relative orientation and distances between objects are disregarded, there remain some

distinctions in the spatial arrangement that can be identified. The objects may overlap, or

touch, or one may contain the other, or they may be disjoint. These relations can be

defined by topological means, by considering only the two objects involved and their

fundamental geometric properties, namely the set of points in space that they occupy.
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The requirements for the formal definition of these distinctions are twofold. First, the

set of identified relations should cover all possible situations and second, each situation

should correspond to one and only one relation definition. Mutual exclusiveness is

required because it simplifies the process of constructing compound relations from the

primitive ones. The only logical operator required is the OR since the primitive relations

are pairwise distinct. The set of relations disjoint or touch or contain or overlap, however,

does not satisfy both requirements since there is no way to describe the situation where

two objects are equal and no means of distinguishing between containment with some

border points in common and total containment.

A systematic identification and characterization of topological relations is needed in

order to satisfy the requirements of completeness and mutual exclusiveness. The result of

this systematic derivation is a relation algebra (Tarski, 1941), that is, a formal definition of

topological relations that specifies the minimum set of binary relations that are possible

between objects A and B.

The relation algebra for topological relations is based on the concepts of boundary and

interior in point-set topology. The boundary and interior have no points in common and

their union forms the closure of the set A representing that object. The 4-intersection,

which analyzes the intersections of the two objects’ boundaries ( ∂ ) and interiors ( °)

(Egenhofer and Herring 1990; Egenhofer and Franzosa 1991), contains the entries Ø

(empty) or ¬Ø (non-empty) for each of the set intersections ∂A ∩  ∂B, ∂A ∩  B°, A° ∩

∂B, and A° ∩ B°. We illustrate the use of this approach defining the topological relations

for region objects. A region is a non-empty, connected point-set homeomorphic to a unit

disk in ℜ 2 . The same method is applicable to topological relations between any

combination of regions, lines, and points by using the 9-intersection, which includes also

the intersections with the objects’ exteriors (Egenhofer and Herring 1991).
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If we consider arbitrary point-sets then sixteen distinct relations are possible, since

each one of the four intersections can be empty or non-empty, that is, the tuples can range

from (Ø, Ø, Ø, Ø) to (¬Ø, ¬Ø, ¬Ø, ¬Ø). Our interest, however, is in spatial regions

and the definition of spatial regions imposes certain restrictions on the point-sets such that

not all sixteen relations are possible for regions. Since regions are connected and always

have a non-empty boundary and interior, the following condition must hold:

• If the boundary of one object intersects the interior of the other then the two interiors

must also intersect.

This condition rules out seven possibilities. An eighth possibility is excluded by the

requirement that regions have connected boundaries since they are homeomorphic to a 2-

disk. Excluding these eight possibilities results in the set of eight distinct topological

relations illustrated in Figure 2.1.
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Figure 2.1 Examples of the 8 topological relations between regions

in ℜ 2  (Egenhofer and Franzosa 1991).

An alternative approach to the systematic derivation of binary topological relations was

developed by Randall et al. (1992) using Clarke’s (1981) calculus of individuals. Their

Region Connected Calculus (RCC) theory is intended as a model of physical reality that

facilitates qualitative reasoning and simulation of real world entities. The basic philosophy

is that each physical entity occupies a certain area or region in space at any given time.

This region is an atomic unit that cannot be subdivided into an interior and a boundary in

the manner permitted by point-set topology. The contention is that attempting to define
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concepts such as boundaries leads to unnecessary complexities and problems particularly

when modeling relations such as adjacency between physical objects. Using point-set

topology two regions are adjacent if they share some common boundary points. However,

two physical objects, such as a desk and a wall, may be adjacent and not have any points

in common since they are physically distinct entities. The RCC theory is designed for

modeling such situations.

The theory is developed on a calculus of individuals based on connection. The

primitive dyadic relation is “x connects with y,” denoted by C(x, y), which holds when

the regions x and y share a common point. A refinement of the relation C(x, y) gives a set

of eight pairwise disjoint and complete base relations for regions that are the same as the

binary topological relations defined using the 4-intersection method based on point-set

topology.

The RCC set of eight base relations has one subtle, but important difference from the

4-intersection set. The point-set topology based relation meet corresponds to the relation

EC(x, y), that is, x is externally connected with y. The two definitions differ in that meet

implies that the two regions have at least one boundary point in common, while EC

implies that there exists at least one point in space such that no third distinct region can be

placed between x and y. Such a distinction is useful when modeling binary topological

relations in a discrete or raster space (Egenhofer and Sharma 1993b; Winter 1995). The

relation EC(x, y) corresponds to the situation where x and y have pixels that are adjacent,

but none in common.

Abdelmoty and El-Geresy (Abdelmoty 1995; Abdelmoty and El-Geresy 1995)

developed a set-theoretic approach to the definition of topological relationships between

objects of arbitrary dimension and shape. Their method is an extension of the 4-

intersection formalism. The objects and space are decomposed into representative

components and the combinatorial intersection of the components are used to characterize
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the spatial relationships. Unlike the 9-intersection formalism, however, the size of the

intersection is not fixed and varies with the number of components defined for each object.

Also since the nature or characteristics of the components are not predetermined, it is

potential source of confusion when used for pure symbolic reasoning. The ramifications

of this requirement are that additional information must be stored about the shape of each

object in the database and its components.

We simplify the requirements of a qualitative spatial reasoning system and assume that

the 9-intersection formalism adequately defines binary topological relations for the purpose

of this thesis.

2.2.2 Directional Relations

The direction between two objects is defined by the orientation relationship between a line

connecting the objects and a fixed reference line. The components that define an

orientation relation are the point of view, the primary object, and the reference object. The

viewpoint and reference object together establish a reference frame, which helps determine

the orientation of the primary object relative to the reference object. The reference line is

defined by a reference frame and determines the orientation of the objects of interest. The

specified direction is that of the primary object with respect to the reference object. For

example, in the statement “A is North of B”, A is the primary object and B the reference

object. The relation North is one of four primitive cardinal directions that are specified

with respect to a fixed external reference frame determined by a reference meridian and the

equator. The reference frame determining the orientation relations can be established in one

of three ways (Retz-Schmidt 1988):

• Using the intrinsic orientation of the reference object. For example a building or a car has

an intrinsic orientation, which is used implicitly in statements like, “The restrooms are at

the rear of the building.”
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• Imposing an extrinsic orientation. Examples are (1) the use of a reference meridian and

parallel to define compass directions, and (2) defining the vertical axis using gravitation.

• The orientation is imposed by a point of view, usually that of an observer. This is called

a deictic frame of reference, and is defined by the line connecting the point of view and

reference object. Deictic use is often found in route descriptions such as, “If you are at

the Library steps facing the Gym then Boardman is the third building on your right.”

Hernández (1994) carefully and clearly outlined the importance of reference frames

and their use in spatial reasoning. For example, a primary object A is in front of reference

object B if the viewpoint is from B towards A. A different viewpoint might result in the

orientation relation being A left of B or even A behind B. Figure 2.2 shows how a data

structure, called the relative orientation node (ron), can be used to represent the

orientation relation between objects. Each ron corresponds to one object and hence the

leftmost pair represent the fact that A is left of B and B is right of A. A rotation in the

viewing angle is captured by a corresponding rotation of the rons and hence the

rightmost pair of rons represent the fact that A is to the left-back of B and B is to the

right-front of A.
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Figure 2.2 Effect of the viewpoint on the orientation relation (Hernández 1994).
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Given a reference frame, a direction is determined by the location of the two objects

involved. This thesis is concerned only with cardinal directions and hence the observer’s

point of view is not used in the reasoning process.

Cardinal directions can be expressed using numerical values specifying degrees in the

half-open interval [0˚, 360˚) from the zero direction determined by the North-South

meridian, or by using qualitative values or symbols, such as North and South, that have

an associated region of acceptance. The regions of acceptance for qualitative directions can

be projections (also known as half planes) or cone-shaped regions (Frank 1992). Figure

2.3 shows acceptance regions for North-South and East-West using projections.

W E
N

S

Figure 2.3 Definition of North-South and East-West using half-planes (Frank 1992).

Figure 2.4 shows cone-shaped regions defining North, South, East, and West, and a

combination of projections to define NW, NE, SE, and SW. A special characteristic of the

cone-shaped system is that the region of acceptance increases with distance, which makes

it suitable a basis for the definition of directional relations between extended objects

(Peuquet and Ci-Xiang 1987).
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Figure 2.4 Cone-shaped and two half-planes direction systems.

The cone-shaped region definition has the additional benefit of permitting increasingly

finer resolutions of relations, and hence there can be eight, or even sixteen different

qualitative directions. Figure 2.5 illustrates a definition of eight direction relations.

N

S SE

E

NENW

W

SW

Figure 2.5 Cone shaped eight direction system.

Direction relations between extended objects are not as simply or clearly defined as

directions between points. We outline two approaches to their definition, one based on

projections (Frank 1992) and the other on a triangular model (Peuquet and Ci-Xiang

1987).

The projection-based system consists of nine acceptance areas, one for each of the

directions N, E, S, W, NE, SE, SW, and NW, and one neutral zone. The neutral zone

serves as a definition of the concept of “here” or “at the same location as.” The acceptance

areas are delimited by extending the bounding lines of an objects’ MBR and hence the

MBR forms the neutral zone (Figure 2.6).
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Figure 2.6 Projection based system for directions (Frank 1992).

The triangular model (Evans 1968; Haar 1976) uses triangular acceptance areas that

are drawn from the centroid of the reference object towards the second object. Perceptual

prominence is used to determine the reference object (Figure 2.7).

A

B

Figure 2.7 Triangular model for directions (Peuquet and Ci-Xiang 1987).

If the objects are close to each other relative to their sizes, then the vertex of the

triangular area is moved backward and forward such that the rays touch the end points of

the side of the object’s frame facing the second object (Figure 2.8). These definitions are

useful for non-overlapping or non-intertwining objects. If the objects intertwine then the

definition of the directional relation is based on the satisfaction of a compound condition.
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B

Figure 2.8 Triangular model of directions for close objects.

2.2.3 Qualitative Distances

A distance between two points is a measure of the effort required to reach one point from

the other. Thus distances can be specified in numerous ways, for example, as a travel

time, a length measurement, or economic cost. Viewed from the perspective of human

cognition or perception, distance is a measure of expenditure of effort. Hence even a

metric quantity is mapped onto some qualitative indicator or order of magnitude such as

close, very close, far, or very far for human commonsense reasoning. This section

describes the main properties of a distance and proposals for sets of qualitative distance

relations.

The most commonly used distance is defined by Euclidean geometry and Cartesian

coordinates. In a 2-dimensional Cartesian system the distance between two points is given

by:

dAB = xA − xB( )2 + yA − yB( )2
 (2.2)

where (xA, yA) and (xB, yB) are the Cartesian coordinates of points A and B, respectively.

The Euclidean distance is a specific instance of a family of metrics known as the

Minkowski or Lp-metrics (Preparata and Shamos 1985) for an m-dimensional space

(Equation 2.3),
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dp(Pi ,Pj ) = xik − x jk

p

k=1

m
∑



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1/ p

(2.3)

where Pi = (xi1, xi2, …, xim) Pj are points in that space. The case p = 2 gives the

expression for Euclidean distance. Another special case occurs when p = 1. This gives a

distance known as the taxicab or Manhattan distance (Equation 2.4), which is the shortest

path between two points along a path of segments that are parallel to one the of axes.

dAB = xA − xB + yA − yB (2.4)

Lp-metrics satisfy the three conditions, or axioms, that define the concept of distance

in a metric space (Equations 2.4-2.6).

reflexivity: d(P1, P1) = 0 (2.4)

symmetry: d(P1, P2) = d(P2, P1)  (2.5)

triangle inequality: d(P1, P2) + d(P2, P3) ≥ d(P1, P3) (2.6)

In a qualitative framework the commonsense interpretation is: (1) a point is at a zero

distance from itself, e.g., Orono downtown is at Orono downtown; (2) distances are

symmetric, for instance, if the UMaine campus is close to Orono downtown then Orono

downtown is close to the UMaine campus as well; and (3) the distance between two points

is less than or equal to the sum of the distances from A to B via an intermediate point C. In

actuality these commonsense interpretations do not always hold in geographic space. Two

basic reasons are: (1) the notion of distance as a measure of effort and (2) the existence of

anisotropic surfaces. An anisotropic surface is one on which the cost of movement from a

point is different depending on the direction. For example, in a road network it is often

quicker to take a longer route using highways rather than a more direct route involving

minor roads. Similarly a road traveler may opt for a circuitous route around a major city,

rather than a direct one through it during rush hours.
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These implications of the three axioms when considered as a basis for a qualitative

definition of distances, however, are the following:

• There must be a zero element or some means of specifying that an object is at a zero

distance from itself.

• The definition of the level of distinctions, such as very close or close, must ensure

that the proposition Close(A, B) implies and is implied by Close(B, A).

• The triangle inequality requires a careful definition of the qualitative addition or

composition operation in order to prevent inconsistencies.

For example, the propositions Far(A, C), Close(A, B), and Close(B, C) can be

simultaneously true if and only if the addition Close + Close = Far, and are inconsistent if

Close + Close = Close. This aspect of the definition of a system of qualitative distances

will be considered in greater detail in Chapter 4.

Since the number of distinctions made using a qualitative system is very small, each

qualitative distance must correspond to a range of quantitative distances specified by an

interval. The qualitative distances should also be ordered so that comparisons are possible.

Finally the lengths of the interval defining each successive qualitative distance should be

greater than or equal to the length of the previous one.

Two groups have proposed a fairly similar qualitative model for distances that

supports qualitative spatial reasoning (Hernández et al. 1995; Hong et al. 1995). The

essential conception in both proposals is that in accordance with a cognitive view of

distance finer distinctions are made near the reference point and coarser ones further away.

Figure 2.9 illustrates a partition of the space surrounding a reference point into five

distance distinctions.
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Figure 2.9 Qualitative distances.

For a formal definition of qualitative distances let P be a set of points and D = {dist0,

…, distn} be n + 1 distance intervals. A qualitative distance between a primary point P1

and a reference point P0 is a function d : P x P → D, which identifies the qualitative

distance, or symbol, associated with the distance from P0 to P1. The distance symbols are

totally ordered, that is, dist0 < dist1 < … < distn. From the ordering of symbols, the

successor and predecessor of a symbol can be defined: Succ(disti) = disti+1 for i < n and

succ(distn) = distn. Similarly, pred(disti) = disti-1, for i > 1, and pred(dist1) = dist1.

Each distance symbol has an acceptance area associated with it. This area specifies the

region surrounding the reference point A, such that for all points B within that region the

distance dAB maps onto the same distance symbol disti. For an isotropic space the

acceptance areas are annular regions and hence can be specified by a set of non-

overlapping intervals, {I0, I1, …, In}, which form a complete partition of the space.

The intervals have a well defined comparative relationship between successor and

predecessor since they characterize orders of magnitude. The two conditions that

determine the relationship between intervals are:
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Monotonicity. The lengths of intervals increase monotonically, that is, I0 ≤ I1 ≤ … ≤ In.

Range restriction. Let Si denote the sum of lengths of all preceding intervals,

Si = I j
j=0

i

∑ , then Ii ≥ Si-1 (Hernández et al. 1995). The length of interval i is greater than or

equal to the sum of the lengths of preceding intervals. Hong (1995) proposed the more

restrictive requirement based on a series of systematic tests and simulation experiments

with increasing integral ratios between successive intervals, which showed that

composition results were consistent geometric computations if the ratio of successive

interval lengths was greater than or equal to three.

These formal properties of the distance system are independent of the level of

distinctions made and of the actual lengths of the intervals. The granularity of the

distinctions and the mapping between quantitative intervals and qualitative distances is

often determined by the scale and nature of the application. For example, downtown

Bangor is far from the UMaine campus by bicycle, but close by car.

For the purpose of this study we assume that (1) the space is isotropic, (2) the number

of distinctions and their symbols is predetermined, and (3) the scale is fixed.

2.3 Methods of Spatial Reasoning

Methods for spatial reasoning were motivated by developments in image information

systems, robotics, artificial intelligence, and geographic information systems. The primary

goal of each proposed method is a symbolic representation of the original image or data,

which captures sufficient information to facilitate spatial reasoning tasks such as path

finding, similarity retrieval, inference of spatial relations, and consistency checking. The

various proposals can be broadly classified as being based on projections, combinations of

orientation and topology or distance, and order relations.
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2.3.1 Projection–Based Methods

The projection–based methods represent spatial relationships using n independent

dimensions of the embedding space. Spatial reasoning tasks are carried out in each of the n

dimensions and the final result is a conjunction of n results. These approaches are all

enhancements or variations of the basic concepts developed in Allen’s (1983) work on

reasoning about temporal intervals. Techniques developed for temporal reasoning are

applicable to individual dimensions in the spatial domain since time and one-dimensional

space share the properties of order and continuity (Valdés-Pérez 1986).

2.3.1.1 Interval Relations

Based on the observation that human knowledge of time is most often concerned with

relative comparisons, Allen developed a temporal interval logic for qualitative reasoning in

the temporal domain. An event has a duration, which is represented as a 1-dimensional

interval. Using an exhaustive analysis of the relations between the start and end points of

two intervals, Allen identified thirteen mutually exclusive relations between two intervals,

which form a complete set. Figure 2.10 shows the geometric interpretation of the interval

relations for one-dimensional objects A and B. The transitivity law holds for all of these

relations with the exception of overlap, overlapped-by, meets, and met-by. A 13×13

transitivity table, defined using the transitivity property and a detailed analysis of the

possibilities, lists the result of the composition of any two interval relations. The

composition of interval relations determines the relation, or set of possible relations,

between intervals A and C based on the knowledge of the relations between A and B, and

B and C. For example, A meets  B; B contains C ⇒  A before  C.
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BA

BEFORE MEETS OVERLAPS

FINISHEDBY

EQUALS

DURING

STARTS FINISHES

OVERLAPPEDBY

STARTEDBY

CONTAINS

METBY AFTER

A
B

B
A

A
B

Figure 2.10 Allen’s interval relations for 1-dimensional intervals.

The observation that Allen's interval relations are essentially topological relations in 1-

dimension enhanced by the distinction of the order of the space, leads to the possibility of

using them as a canonical model for performing heterogeneous reasoning about direction

and topological spatial relations between extended objects (Chapter 4).

2.3.1.2 Order Relations

Order relations are reflexive, antisymmetric, and transitive. A set S with a binary relation ≤

is a partially ordered set if and only for every x, y, z in S the following conditions are

satisfied:

∀ x ∈  S: x ≤ x (reflexivity)

x  ≤ y  ∧ y  ≤ x  ⇒  x  = y (antisymmetry)

x  ≤ y  ∧ y  ≤ z  ⇒  x  ≤ z (transitivity)

The relation ≤ can be interpreted as “is contained in” and the inverse relation ≥ as

“contains.” Two useful concepts, the greatest lower bound and the least upper bound, can

be defined for such sets. A greatest lower bound is the largest element in the set that is

contained in both the elements x and y. The least upper bound is the smallest element in S

that contains both x and y. Adding this refinement gives a lattice, which is a partially

ordered set such that for every pair of elements, x and y, there exists a greatest lower
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bound and a least upper bound. The concepts of inclusion and containment can hence be

represented using partially ordered sets and lattices (Pullar and Egenhofer 1988; Kainz

1990; Kainz et al. 1993), thereby providing the capability of answering questions such as:

• Which regions are contained in region A?

• Does region B contain region A?

• Which is the largest region contained in a given set of regions?

• Which is the smallest region that contains a given set of regions?

These queries can be answered without recourse to geometric computations by simply

finding the lower bounds of A, the greatest lower bound of A and B, and the least upper

bound.

2.3.1.3 Interval Relation Based Definition of 2-Dimensional Spatial

Relations

Guesgen (1989) used a straightforward extension of Allen’s work for reasoning in two or

more dimensions, by partitioning the relationships between objects into components along

the axes for each dimension. Allen’s interval logic can be applied for relations on

individual axes resulting in a tuple of relations. Guesgen did not use all thirteen interval

relations defined by Allen, rather he defined eight relations—left, attached to, overlapping,

inside, and their converse relations—based on combinations of Allen’s relations. A

composition table for the eight relations is also defined based on Allen’s transitivity tables

for intervals. The process of performing inferences for each axis independently and

subsequently combining the results to form a tuple leads to a combinatorial explosion of

possibilities. The other major concern is that while topological relations disjoint and
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overlap can be represented easily, defining and representing orientation relations is

cumbersome.

2.3.1.4 Projection and Order–Based Definition of Spatial Relations

Encoding an n–dimensional scene as sets of relations between the projections of the

objects onto each axis was effectively used by Chang et al. (1988) to represent an image as

a symbolic picture. The symbolic picture consists of a grid whose elements are filled by

objects or empty space. The grid is created by partitioning the embedding space by lines

tangent to extreme points of the objects and parallel to one of the axes. The extreme points

are either concave or convex object-points. Once this cutting has been performed a 2-

dimensional image, for example, becomes a gridded picture made up of vertical and

horizontal strips. The strips have a left-right bottom-up order and represent sets of location

along each axis. Thus objects or object segments that lie in each strip may either share an

edge or a set of locations. Another possibility is that one object’s extent ends within one

strip and the next object’s extent begins within some subsequent strip. These situations are

captured by three operators {<, =, |} where “<” is the left-right or below-above relation,

“=” stands for the relation “in the same location”, and “|” represents the fact that objects are

edge-to-edge. Using object names, the three operators, and the cutting mechanism, a 2-

dimensional symbolic picture is encoded into two strings, u and v, known as 2D-G

strings. The relations along the horizontal axis are represented by the u string and the

vertical axis relations are represented by the v string. The u- and v-strings for the 2-D

picture with cutting lines shown in Figure 2.11 are:

u: A|B=A|B<C<D

v:D|B=D|B<C|A=C|A
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v

u

A

B

D

Figure 2.11 Cutting lines for creating a 2D-G string symbolic representation.

In addition to the three operators the separators, “(” and “)” are used for compound

objects or to group objects that form a local composite object. For example, the u-string

A(B|C) implies that the compound object BC is at the same location as A on the x-axis.

Taken together the strings encode the spatial arrangement of objects and are thus a

symbolic index useful for similarity retrieval. Finding images that match a specified

description of spatial relations becomes a matter of coding that description as 2D-G strings

and performing substring matches on the symbolic index of images.

Symbolic projections and 2D strings, have been used for more than just symbolic

indexing of images in information systems. Holmes and Jungert (1992) demonstrate their

use for navigation or finding the shortest path in digitized maps. Chang and Jungert

(1990) show how symbolic projections can derive directional relations, such as North or

Northwest, between objects from the 2D strings for an image. They also describe how 2D

strings can be used to retrieve images containing objects that satisfy specified spatial
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conditions, for example, “hiking trails crossing streams,” or in query processing.

Examples of queries answerable using 2D string descriptors for a picture P are; “find all

objects South of object B,” “what is the spatial relation between A and C,” and “which

objects are adjacent to object X.”

An improvement on 2D-G strings using fewer cutting lines is possible if Allen’s

interval relations are used in place of the three operators {<, |, =}. Maintaining the left-

right bottom-up order the 2D-C string (Lee and Hsu 1990) records the relations between

the extents of pairs of objects along each dimension. The directional relations North,

South, East, West and the topological relations disjoint, overlap, meet, contains, and

inside can be defined from 2D-C strings. Since there are thirteen interval relations in one

dimension there are 169 possible relations between rectangles. The limitation of using

bounding rectangles for defining the topological relation is that situations can occur when

the relation between MBRs differs from the relation between the objects.

The 2D Projection Interval Relationship (2D-PIR) (Nabil et al. 1995) is one solution

for this problem. For all object pairs in the picture the topological relation as well as the

interval relations along each axis are computed and stored. The representation scheme is a

labeled connected digraph, whose nodes correspond to objects and its edges are labeled

with the 2D-PIR for that object pair. This representation is particularly suited for exact or

similarity retrieval of pictures, because identifying pictures or subpictures that match a

given one is done by testing graph isomorphism. In general detecting graph isomorphism

is NP-Hard (Garey and Johnson 1979), but for this specific problem the complexity is

reduced due to the graph construction process.

2.3.2 Symbolic Arrays

Symbolic arrays, like symbolic projections, are a means for qualitative representation of

spatial information (Glasgow and Papadias 1992; Papadias and Sellis 1994).
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Representative points are used to identify or distinguish the objects in the original image

and these points occupy distinct cells in the symbolic arrays. The arrays, therefore, capture

the topological and orientation information but may exclude details like relative distances,

sizes, and shapes. Symbolic arrays can also represent hierarchies or part_of relationships

since they can be nested with each nested level containing finer details (Figure 2.12).

A

B
C

D

E

F

A1
A2

Figure 2.12 Symbolic array representation of a scene (Papadias and Sellis 1994).

Directional information is easily obtained by using a projection-based model for

directions. Topological information such as adjacency and neighborhood are easily

represented by single points representative per object, whereas containment requires at

least two points per object since the spatial extents of the objects must be represented.

Papadias (1994) uses the projection-based model for directions, the 4-intersection model

for binary topological relations between regions, and symbolic arrays as the basis of a

pictorial query-by-example language (Papadias and Sellis 1995). Topological information

is encoded by marking arrays cells whenever an intersection of the boundary or interior of

two objects occurs or when the bottom-left and top-right corners of the object’s bounding

rectangle are encountered.

Multidimensional symbolic arrays are particularly useful for computational models of

mental imagery that humans use for spatial reasoning (Farah 1988). Mental imagery

provides: (1) an implicit encoding of the relations among objects; (2) a preservation of the

spatial relations between objects; and (3) a structural equivalence between the perceived
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scene and the working memory representation of the scene (Finke 1989). Symbolic arrays

provide a formal meta-language for mental imagery since they are based on array theory

(Jenkins and Glasgow 1989), which is the mathematics of nested collections of data

objects that have spatial locations relative to each other. Thus the spatial structure of an

image is represented by a multidimensional symbolic array whose elements denote the

meaningful parts of the image and implicitly encodes their spatial relationships. These

relationships can be interpreted directly from the array representation and the semantics

depends on the domain of the application. For example, if the arrays represent mental

maps of geographic space then we use cardinal directions, whereas if the mental map is of

the layout of a room then we use orientation relations such as left, right, front, or back.

Since the relations are interpreted, rather than logically inferred from the array

representation, updates are handled easily. A change in an object’s location requires only a

modification of that object’s representative point or points in the array. The array

representation has the additional advantage of allowing the extraction of propositional

information, such as left_of(A, B), and the creation of symbolic arrays from propositional

information. Inference of spatial relations between objects in different symbolic that have

at least one object in common is done using composition tables in manner similar to

propositional or predicate representations (Papadias and Sellis 1992). However, symbolic

arrays do not have the expressive power of first-order logic since it is not possible to

express quantification or disjunction. For example, it is impossible to represent a

configuration in which object A is either North or South of object B.

2.3.3 Combining Orientation and Topology

Recognizing that topological and orientation relations both serve to identify regions of

space in which the primary object may exist and hence together the relations further limit

the extent of this region, Hernández (1994) developed a formalism for representing

combined information about the topological and orientation relations between objects.
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Hernández’s work is concerned with building a cognitive model of physical space that is

constructed using abstract mathematical structures and incorporates humans’ perceptions

and descriptions of space. The abstract mathematical structures used are graphs and

lattices. Graphs capture the relationships between the objects, whereas lattices capture the

partial ordering or hierarchy of the relations involved. Human perception and description

is incorporated by using qualitative spatial information.

The innovation lies in the concept of neighborhood of the relations and the use of this

structure in the inference mechanism. The composition table reflects the neighborhood

structure, because the result of a composition of relations that are not immediate neighbors

will contain the relations that are on the shortest path between the two. The neighborhood

structure of the relations results from the properties of the physical space in which the

objects are placed. Since the space is continuous, changes in an object’s position are also

continuous rather than discrete. If object A’s position changes from location X to location

Y the locations must be adjacent or a connected path from X to Y must exist. This

connectivity of locations implies that spatial relations also have a neighborhood structure.

The neighborhood structure implies if one of two disjoint objects is moved towards the

other then they will meet before they overlap. Similarly assume there is a fixed viewpoint

and reference object A. If the primary object B, is initially at the back of A, then if B is

moved such that it is currently on the right of A then at some intermediate points B must

have been at the right-back of A. Figure 2.13 shows the combined neighborhood structure

of topological and orientation relations.
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left-back
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right

right-back
disjoint

tangency

overlap

containment

Figure 2.13 Combined neighborhood structure of orientation and topological relations

(Hernández 1994).

The only topological relations that are enhanced by orientation information are disjoint,

meet, and overlap. However the locational uncertainty for the relation disjoint is still quite

large and hence a logical step would be to consider delineating the probable locations by

taking the distance between objects into account.

2.3.4 Combining Orientation and Distance

For objects that are disjoint, the addition of qualitative information about distances gives

further reasoning capabilities (Frank 1992; Hernández et al. 1995; Hong 1994). In many

instances inferences can be made regarding the direction and qualitative distance between

two objects given their relationships with a common third object. For example, the mere

knowledge that A is North of B and B is South of C does not provide any information on

the relation between A and C; however, adding the facts that A is Close to B and B is Far

from C allows one to infer that A is South of C.

Figure 2.14 illustrates the delineation of the space surrounding an object into sectors

bounded by orientation lines and distance intervals. Assuming A, B, and C are points, the

validity of the inference that A is South of C is evident from the figure. The dotted lines
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indicate the demarcation of the space around object A, while the solid lines indicate the

same for object B. Object C could lie anywhere in the sector (f, N), i.e., far and North of,

for B and hence C must be North of A; and C could be either far or at a medium distance

from A.

m f vf

N

S
SE

E

NENW

W

SW

C

vc

A

c

Figure 2.14 Qualitative distances and directions.

The monotonicity and range restriction properties of intervals denoting qualitative

distance determine the lower and upper interval bounds of the vector addition of two

distances and therefore the result of the composition of two qualitative distances.

A B
C1

C2

C3

C4

C5

dAB dBC

Figure 2.15 Effect of orientation on addition of distances.
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 The effect of orientation is largely to limit the set of possibilities (Figure 2.15). If the

two distances have the same orientation—AB and BC1 in Figure 2.15—then the

composition result is the upper bound. On the other hand, if the orientations are

opposite—AB and BC5—the composed distance is the lower bound. For any other

orientation—BC2, BC3, or BC4—the result is between the lower and upper bounds. An

exhaustive and systematic analysis of various possibilities results in a composition table

for qualitative distances. Using the composition table one can draw such inferences as A

{far, medium} C from the facts A North B, B South C, and B far from C.

2.4 Summary

The various proposals for defining and modeling spatial relationships take one of two

approaches. The first is choosing a representation for space and objects within it.

Relationships among objects are then defined in terms of the particular representational

method such as the 2-D C-string. The second approach is identifying what spatial

relationships can exist and how they could be characterized. The definition of spatial

relationships depends on the nature of the objects under consideration, but not on the

representation of space. One example is the point-set based definition of binary topological

relations. We use the latter approach. The following chapter describes how spatial

inferences may be performed within each model for qualitative distances and topological

and directional spatial relations.



52

Chapter 3

Homogeneous Spatial Reasoning

High-level spatial information about a scene or collection of spatial objects can be

described in terms of a set of qualitative spatial relations between the objects, where the

spatial relations are binary predicates, that is, each relation holds between two objects.

Unlike a graphical representation that is complete and consistent within itself, a set of

qualitative spatial relations may be incomplete and even inconsistent. The consistent

integration of such spatial information relies on the algebraic properties of the qualitative

spatial relations. Properties such as the converseness of pairs of relations and the

composition of relations must be fulfilled, for any combination of relations, in order to

guarantee that the description is free of internal contradictions so that a physical realization

is possible.

While consistency is implied in any graphical rendering it is difficult to evaluate or

enforce it for any symbolic representation. We are primarily interested in whether a

specified set of binary spatial relations giving a symbolic description of a scene, is

consistent or not. Solutions to this problem have been applied to various aspects of

topological spatial reasoning. Some of these are: (1) identifying whether or not a set of

topological relations is sufficient to describe a scene uniquely (Egenhofer and Sharma

1992); (2) comparing two sub-scenes, or multiple representations of the same scene, for

the same topology (Egenhofer et al. 1994); and (3) finding efficient strategies to execute

queries over multiple topological constraints (Egenhofer and Sharma 1993a; Clementini et

al. 1994). This chapter presents the basis of a rigorous computational method, i.e., the
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composition tables, designed to facilitate reasoning about qualitative spatial relations and to

evaluate the consistency of such spatial information.

3.1 Types of Spatial Relations and Their Compositions

Qualitative spatial relations have been the subject of extensive research over the past few

years and numerous formalisms and prototype systems exist (Dutta 1989; Egenhofer,

1989; Mukerjee and Joe 1990; Freksa 1992b; Cui et al. 1993; Hernández 1993; Papadias

and Sellis 1993). These formalisms could be substituted or complemented by any other

formalization of spatial relations that follows the guidelines of a relation algebra (Tarski

1941).

This thesis is concerned with three types of qualitative spatial relations namely,

topological relations, directional relations, and qualitative distances. The remaining

sections describe formalisms for each one of these types of spatial relations and their

composition tables.

3.2 Formalisms for Topological Relations

The relation algebra for topological relations is based on the 9-intersection, which analyzes

the intersections of the two objects’ interiors ( °), boundaries ( ∂ ), and exteriors ( − )

(Egenhofer and Herring 1990; Egenhofer and Franzosa 1991). We illustrate the use of this

algebra with the theory developed for region objects (Figure 2.1, in Section 2.2.1). The

same method is applicable to topological relations between any combination of regions,

lines, and points (Egenhofer and Herring 1991).

The basis of the reasoning mechanism is the composition of topological relations,

which is defined by the composition table. The composition table was formally derived

based on the transitivity of empty and non-empty intersections between the object parts

and gives the results of the 64 compositions of the 8 basic region-region relations
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(Egenhofer 1994). Each object has three parts (interior, boundary, and exterior) which

have a particular relationship with the three parts of another object. Hence a total of nine

intersections between object parts exist and these characterize the topological relationship

between the objects. One of the nine intersections, the exterior-exterior, is always non-

empty since by definition region objects cannot be half-planes, therefore, only eight

intersections are relevant in encoding the information about the topological relation. The

eight intersections are set intersections, as the object parts are point-sets, and hence the

transitivity properties of set relations can be used to derive the composition of binary

topological relations.

Given three region objects A, B, and C, and the 9-intersection for the pairs {A, B}

and {B, C} the 9-intersection for the pair {A, C} is derived using rules determined by the

values of the set intersections and subset relations between their parts. The symbols Ai,

Aj, Ak, Bl, Bm, Bn, Co, Cp, Cq represent pairwise disjoint point-sets that are components

of objects A, B, and C and their complements. Similarly Ax, By, and Cz denote any one of

the three components. The symbols A', B', and C' denote subsets of the union of objects

A , B , and C  and their complements, respectively. Thus, C' could represent the

complement of C, or union of the boundary and the interior of C, or the whole space, that

is, the union of C and its complement. A special subset relation is required for specifying

the general rules for deriving the intersections between components of objects A and C.

The special subset relation, denoted by p, occurs when one set is a subset of the union of

one or more sets and has a non-empty intersection with each one of them. For instance,

when Ai ⊆  (Bl ∪  Bm) and Ai ∩  Bl = ¬Ø and Ai ∩  Bm = ¬Ø.

The first rule deals with the propagation of non-empty intersections such that Ai

intersects with at least one of the set of components of C that constitute C' (Equation 3.1).

• If Ai ∩  Bl = ¬Ø and Bl p C' then Ai ∩  C' = ¬Ø (3.1)
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The second rule deals with the propagation of non-empty intersections (Equation 3.2).

It holds only under the additional constraints that (1) C' is the union of at most two of the

three parts (interior, boundary, exterior) of C and (2) the object part Ai is a subset of the

object part Bl  such that Ai does not intersect with any of the set of components of C that

do not constitute C'.

• If Ai ∩  Bl = ¬Ø and Bl p C' then Ai ∩ C ∪ C − ′C( ) = ∅  (3.2)

The two rules must be applied to the components of both objects A and C and their

relationships with the components of the common object B. Translating the set intersection

and subset relations into an equivalent 9-intersection form, and the rules, allow for the

derivation of eight relevant object part intersections that determine the topological relation

between two objects. The ninth object part intersection is always non-empty since by

definition no pair of objects constitute the whole space, therefore, the two exteriors must

intersect.

The composition of two topological relations, denoted by r1 ; r2, could result in a

single topological relation, e.g., meet ; contains = disjoint, or more than one, e.g.,

contains ; meet = contains v covers v overlap. Table 3.1 gives the 64 compositions of the

binary topological relations A ri B and B rj C. It uses iconic representations (Figure 3.1),

which are based on the conceptual neighborhood of binary topological relations

(Egenhofer and Al-Taha, 1992).

meet contains ∨  covers ∨  overlap

Figure 3.1 Iconic representation of binary topological relations.

The topmost circle, if filled in, represents the relation disjoint, the next is meet,

followed by overlap and so on. The disjunction of topological relations is denoted by

filling more than one circle in the icon.
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disjoint meet overlap coveredBy inside covers contains equal

Table 3.1 The composition table for binary topological relations between regions
(Egenhofer 1994).

We use the 9-intersection formalism and hence Table 3.1 for homogeneous spatial

reasoning about topological relations in this thesis.

3.3 Formalisms for Cardinal Directions

The prototypical concept of cardinal directions comes from the compass, from which the

idea of cone-shaped areas each associated with a specific direction has been derived

(Figure 2.4a). An equally useful construction is based on projections (Figure 2.4b), where
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the directions are defined by half-planes. Similar to topological relations as formalized by

the 9-intersection, one can construct relation algebras for the different models of cardinal

directions (Frank 1992).

The composition of cardinal directions is based on an algebra for paths and a mapping

from paths onto directions (Frank 1992). A path is a directed edge from a start point P1 to

an end point P2. Properties of paths, such as associativity, and operations, such as inverse

and addition, are used to determine the composition rules for directions. The inverse of a

path from P1 to P2 is the path from P2 to P1. Composition combines two paths from  P1 to

P2 and from P2 to P3 resulting in a path from P1 to P3. The result of a composition is thus

a single well-defined path. The identity element for paths is the special path from a point to

itself and is denoted by the symbol 0p. These operations are correspondingly defined for

cardinal directions.

The inverse of a direction from point P1 to P2 is the direction from P2 to P1 and must

be defined for all qualitative direction symbols. The composition of two directions follows

from the composition of paths by defining a mapping, denoted by dir, from paths onto

directions. Let ;p denoted path composition and ;c denote composition of cardinal

directions and p1, p2 denote two paths, then the mapping dir distributes over the

composition (Equation 3.3).

dir( p1 ;p p2) = dir(p1) ;c dir(p2) (3.3)

The identity element for cardinal directions, denoted by 0c, is the direction from a

point to itself and dir(0p) = 0c.

The set of symbols, Cn, used for qualitative directions depends on the specific model

used, for example, using two half-planes gives the set C4 = {N, E, S, W} whereas using

a cone-shaped model with eight directions gives C8 = {N, NE, E, SE, S, SW, W, NW}.

The number of symbols is always finite, they are cyclically ordered, and can be mapped
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onto integers modulo n. The cyclic ordering means that an anti-clockwise turn of 2π/n,

denoted as turn(1), in a path’s direction results in path of the successor direction, e.g.,

turn(1)(N) = E for a four direction system. Since each direction symbol corresponds to an

acceptance area rather than a specific path or set of paths, Frank (1992) defines two

averaging rules that allow for the composition of directions that are one or more turns off

from each other. The averaging rules determine which among a set of possibilities is

selected as the result of the composition and this result is termed as being Euclidean

approximate (Frank 1992). The Euclidean approximate results are sufficient if all that is

required is a single-step inference result. If chain-reasoning, that is, a sequence of

inferences with the result of one inference being the input to the next inference step, is

required then it is necessary to use composition tables with disjunctions of base directional

relations (Table 3.2) or tables with directional relations at different levels of resolution (see

Papadias and Sellis (1994) for a definition of composition of high and low-resolution

directional relations).

North Northwest or North or Northeast

Figure 3.2 Iconic representation of directional relations.

The iconic representation (Figure 3.2) used in Table 3.2 should be interpreted as

follows. Filled-in circles represent the directional relation or relations. Thus a filled-in top

center circle represents North, while a filled-in top right circle represents Northeast and so

on. If more than one circle is filled-in then that icon represents a disjunction of relations.

This occurs, for instance, in the composition of North with North where the icon entry in

the first row and column of the table has the top three circles filled-in and represents the

relation Northwest or North or Northeast. If all circles are filled-in then that icon

represents the universal relation, that is, the directional relation can be any one from the

complete set of possible directional relations.



59

Table 3.2 Composition of directional relations between two regions.

The above table was derived using the projection-based system of directions for

extended objects. The North-South and East-West extents of the objects are projected onto

each axis and these projections recorded as interval relations between the two objects along

each axis. The composition of interval relations is then used to determine the composition

of the directional relations.

We use compositions that result in disjunctions of base relations in this thesis and

therefore Table 3.2 for composition of directional relations.
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3.4 Formalisms for Approximate Distances

Distances are quantitative values determined through measurements or calculated from

known coordinates of the two objects in some reference system. People, however,

frequently use approximations and qualitative notions such as near or far when reasoning

about distances. Such qualitative distances are defined by a set of symbols, denoting

qualitative measures such as near or far, and addition rules—sometimes in combinations

with direction reasoning—such as near plus far is far (Frank 1992). Approximate

distances have been mapped onto quantitative distances using fuzzy sets (Dutta 1989) or

mutually exclusive distance intervals of increasing ratio (Hong 1994). Reasoning with

approximate distances, however, is either necessarily Euclidean approximate or involves

disjunctions of relations, except in the cases when the distances have the same or opposite

orientations.

Frank (1992) and Hong (1994) derived the composition tables for approximate

distances for the situations based on various definitions of distance systems. Composition

in this case is addition of approximate distances. The composition table is derived by

mapping the approximate distances onto a set of intervals that partition the real number

line. The four approximate distances vc, c, f, and F correspond to the four half-open

intervals [0, 1), [1, 4), [4, 13), and [13, ∞), respectively. Composition of approximate

distances is done by performing an interval addition and mapping the mid-point of the

resultant interval back onto an approximate distance.

Adding approximate distances using interval addition and subsequent mapping of the

mid-point of the resultant interval is valid only for the addition of two distances. For

example, the addition vc + vc + vc should result in c since the resultant interval is [0, 3). If

interval arithmetic is not used for each addition, however, we get the result vc since the

additions performed are:
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vc + vc + vc = (vc + vc) + vc = vc + vc = vc

Interval addition also fails to take into account the fact that the two distances may be

collinear and of opposite orientation. In such as case a distance subtraction rather than a

distance addition must be performed. Hong’s method for reasoning about qualitative

distance and direction (Hong 1994) gives the composition table for qualitative distances,

with direction information being disregarded, that contains disjunctions of qualitative

distances as its entries (Table 3.3).

very close

close

far

very far

Table 3.3 Addition of approximate distances (adapted from Hong 1994).

Table 3.3 was derived using vector addition of distances and mapping the set of

possible results onto qualitative distance symbols. In general, the result of adding two

distances is essentially the result of adding two vectors (Figure 2.18). Vector addition is

dependent on orientation, therefore, any relatively robust addition system for approximate

distances must take orientation into account. For this reason we need an integrated

qualitative distance and direction reasoning system (Hong, 1994).
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3.5 Examples of Homogeneous Spatial Reasoning

The composition tables for spatial relations facilitate reasoning with incomplete spatial

information by allowing the inference of new information. We illustrate the use of

composition tables for assessing the consistency of complete and possibly incomplete

spatial information about a scene. For a specified scene description the problem is

determining if every given fact is consistent with inferred facts.

The example used in this section is for binary topological relations. A similar approach

can be applied to reasoning about directions only (Hernandez, 1994; Frank, 1995) or

approximate distances only (Frank, 1992). The composition table for binary topological

relations enables the evaluation of topological consistency and inference of relations by

expressing them as constraint satisfaction problems (Egenhofer and Sharma 1992; Smith

and Park 1992; Egenhofer and Sharma 1993a). Each given topological relation between

two objects A and B, is considered a constraint ti(A, B). Similarly the composition of two

relations, ti(A, B) and tj(B, C), results in a set of constraints on objects A and C. The

constraints set forth by all specified relations and possible compositions describe the

topological consistency of a scene. That is, for any pair of objects A and B, the specified

relation must exist in the set of relations inferred using all possible compositions.

Among n spatial object there are n2 binary topological spatial relations. These can be

represented by an n × n matrix called the connectivity matrix, in which each element tij

represents the topological relation between the two objects I and J (Table 3.4).

A B L N

A t11 t12 L t1n

B t21 t22 L t2n

M M M M M

N tn1 tn2 L tnn

Table 3.4 The connectivity matrix.
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For example the topology of the scene in Figure 3.3 can be represented by the

connectivity matrix in Table 3.5.

A C
D B

Figure 3.3 An example scene.

A B C D

A equal meet meet disjoint

B meet equal covers contains

C meet coveredBy equal covers

D disjoint inside coveredBy equal

Table 3.5 The connectivity matrix for the configuration in Figure 3.2.

The advantage of the connectivity matrix, over a graphical representation, is that it

allows for the representation of incomplete information. Table 3.6 shows a connectivity

matrix for a scene with unknown and incomplete information, denoted by “?” and “OR”

respectively.

A B C D

A equal ? meet ?

B ? equal covers OR

contains

contains

C meet coveredBy equal covers

D ? inside OR

overlap

coveredBy equal

Table 3.6 An incomplete connectivity matrix.

The connectivity matrix has a certain structure that is determined by the properties

converseness and the identity relation of topological relations. The topological relation

between every object and itself is equal, and is the identity relation (Equation 3.4)
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∀ itii = equal (3.4)

Each of the eight possible topological relations, t(A, B), between regions has a

converse relation t(B, A) (Equation 3.5a-h).

• disjoint (A, B) ⇔ disjoint (B, A) (3.5a)

• meet (A, B) ⇔ meet (B, A) (3.5b)

• equal (A, B) ⇔ equal (B, A) (3.5c)

• overlap (A, B) ⇔ overlap (B, A) (3.5d)

• inside (A, B) ⇔ contains (B, A) (3.5e)

• contains (A, B) ⇔ inside (B, A) (3.5f)

• covers (A, B) ⇔  coveredBy (B, A) (3.5g)

• coveredBy (A, B) ⇔  covers (B, A) (3.5h)

These dependencies impose the following structure on the connectivity matrix:

∀ i, j tij = converse t ji( ) (3.6)

Two further relations, the universal relation U  and the empty relation Ø, are

introduced in order define additional constraints on the connectivity matrix. The universal

relation is the disjunction of all possible topological relations (Equation 3.7) and holds true

for the relation between any two objects.

  

U = tiU

= disjoint∨ meet ∨ equal ∨ overlap ∨ inside ∨ coveredBy ∨ covers ∨ contains
 (3.7)
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In terms of the connectivity matrix it implies that every tij must be a subset of the

universal relation (Equation 3.8).

∀ i, j tij ⊆ U (3.8)

The empty relation is introduced to denote a consistency violation. If one or more

elements of the connectivity matrix are empty then the set of topological relations for that

scene is inconsistent. For consistent scene descriptions no relation may be empty

(Equation 3.9).

∀ i, j tij ≠ ∅ (3.9)

The connectivity matrix can be transformed into a constraint network with the objects

being the nodes and the relations between them forming the labeled edges of a directed

graph (Montanari 1974; Mackworth 1977). A theorem by Montanari (1974) provides the

basis for reducing the problem of evaluating the consistency of the whole network to the

intersection of all binary compositions. It states that the network is path-consistent if the

composition of all paths of length 2 is consistent and hence no other combinations of paths

need be considered. For a network of relations, as in the case of a topological scene

description, the theorem implies that the intersection of all pairs of compositions possible

between every pair of objects, I and J, is sufficient to evaluate the consistency of the

scene. For each pair the inferred or specified relation is consistent if and only if it is the

intersection of all pairs of possible compositions (Equation 3.10).

′tij = ti1;t1 j( ) ∩ ti2;t2 j( ) ∩ L ∩ tin; tnj( )

= tik ; tkj
k=1

n

I

(3.10)

This consistency property may be used to derive a unique relation as the set

intersection of multiple underdetermined compositions that link the same objects. For
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example, assume we are given four objects and the four relations contains (A, B), meet

(B, C), disjoint (A, D), and overlap (D, C). The relation between A and C can be uniquely

determined as the set intersection of the two compositions (contains ; meet) and (disjoint ;

overlap), i.e.,

contains;meet( ) ∩ disjoint;overlap( ) = contains,covers,overlap{ } ∩

disjoint,meet,inside,coveredBy,overlap{ }
= overlap

If the set intersection of all compositions is empty then the topological constraints that

describe the scene are inconsistent. Such a scene has no possible geometric interpretation,

i.e., it cannot be realized in ℜ 2 . For example,

inside;inside( ) ∩ contains;contains( ) = inside ∩ contains( ) = ∅

Evaluation of topological consistency is an extremely useful tool, particularly for

spatial query processing where a contradiction in the specified spatial constraints can be

detected. Detecting the contradiction saves processing time and computational resources

since costly geometric computations can be avoided.

3.6 Limitations of Homogeneous Spatial Reasoning

While homogeneous spatial reasoning is useful it has certain limitations, especially when

applied in inference of new spatial relations from a set of base spatial relations. Certain

spatial relations, such as qualitative distances and directions, have a dependency that

cannot be exploited using homogeneous spatial reasoning. In the case of qualitative

distances, the directional relation between the two distances is vital in determining the

result of their composition (Hong 1994) since the result of adding distances with the same

orientation differs from that for distances of opposite orientation. Thus, reasoning about

qualitative distances necessarily involves integrated spatial reasoning about qualitative



67

distances and directions. Similarly, topological and directional relations have a dependency

that can be exploited in spatial reasoning. In the case of topological relations, a contained

object must necessarily have the same directional relations with other objects as that of the

containing object. For instance, if A is inside B and B is North of C then A is also North

of C. This inference is impossible using homogeneous spatial reasoning since the

directional relation is implied by a topological relation. Such heterogeneous spatial

reasoning is described in Chapter 4. In the case of directional relations, the definition of

the relations imply a topological relation since directional relations for regions are based on

the ordering of interval relations along two axes. Thus if region A is North of B then this

fact implies that region A is disjoint from or meets region B. The topological relation

between the two objects is implied by their directional relationship and this

interdependence cannot be exploited by homogeneous spatial reasoning, which only deals

with spatial relations of the same type.

3.7 Summary

The composition tables for individual types of spatial relations are derived based on the

notion of transitivity of a particular relation. For example, in the case of point-set

topological relations it is the transitivity of the subset relation that is used. Similarly the

transitivity of the order relation is used in determining the composition of directional

relations. These tables, however, are valid only for spatial relations of the same subtype.

The following chapter introduces a method for determining the composition tables for

combinations of different types of spatial relations, called heterogeneous spatial reasoning.
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Chapter 4

Heterogeneous Spatial Reasoning

Heterogeneous spatial reasoning in the context of this thesis is the inference of spatial

relations from specified information on spatial relations of different kinds between the

objects of interest. An example of heterogeneous spatial reasoning is the inference of the

directional relation between objects A and C from the topological relation between objects

A and B and the directional relation between objects B and C.

The motivation for heterogeneous spatial reasoning comes from the analysis of

homogeneous spatial reasoning presented in Chapter 3, which showed that there are

situations that require combining spatial information, and utilizing the dependency among

different types of spatial relations, for inferring new spatial information. As is evident

from the existence of natural language terms for topological and directional relations, such

as disjoint and North, and approximate distances, such as near and far, people distinguish

between these kinds of spatial relations. Studies by cognitive psychologists and cognitive

science researchers have shown, however, that people commonly use combined

knowledge of various kinds of spatial relations when drawing inferences (Blades 1991;

Mark 1993). For example, they may infer that Orono is North of Portland, Maine using

the qualitative distance information, Orono is near Bangor and Bangor is far from

Portland, and the directional information Bangor is North of Portland.

We are primarily concerned with reasoning using combined information about

topological and directional spatial relations. This chapter introduces a formal framework

for performing inferences using information about topology and direction. Since binary
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topological relations exist between objects with an extent we first outline our framework

for defining directional relations between extended objects. We then show how the

framework is applicable to deriving the composition tables for pairs of topological and

directional relations, which is the basis of the inference mechanism. Next we demonstrate

how the inference mechanism, using combined information, permits valid inferences that

are not derivable from the topological and directional relation information individually.

4.1 Types of Heterogeneous Spatial Relation Compositions

There are three types of qualitative spatial relations: qualitative distances, topological

relations, and directional relations. Three distinct pairings of these relations are possible,

with each pairing having two possible orderings, and therefore, four distinct composition

tables, giving a total of twelve composition tables (Figure 4.1).

Topological
relations

Directional
relations

Topological
relations

Topological
relations

Directional
relations

Directional
relations

Topological
relations

Directional
relations

Topological
relations

Topological
relations

Directional
relations

Directional
relations

(a) (b) (c) (d)

Topological
relations

Qualitative
distances

Topological
relations

Topological
relations

Topological
relations

Directional
relations

Topological
relations

Topological
relations

Directional
relations

Directional
relations

(e) (f) (g) (h)

Qualitative
distances

Qualitative
distances

Qualitative
distances

Qualitative
distances

Qualitative
distances

Qualitative
distances

(i) (j) (k) (l)

Qualitative
distances

Qualitative
distances

Qualitative
distances

Qualitative
distances

Qualitative
distances

Directional
relations

Directional
relations

Directional
relations

Figure 4.1 Heterogeneous spatial relation compositions.

The following sections describe the derivation of the composition tables for pairs of

topological relations, directional relations, and qualitative distances. The method for
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deriving the composition tables for topological and directional relations is described in

detail since these spatial relation types are the focus of this thesis. Section 4.5 gives the

tables for topological and directional relations, while sections 4.6 and 4.7 give the tables

for topological relations and qualitative distances and directional relations and qualitative

distances, respectively.

4.2 Reasoning about Topology and Directions

Reasoning about topology and directions requires firstly, a definition and characterization

of both kinds of spatial relations and secondly, a common representation scheme for them

both, which would thereby facilitate heterogeneous spatial reasoning. We use a method

based on point-set topology, the 9-intersection, to characterize topological spatial relations,

and a projection-based system of directions for the definition of the directional relations

between extended objects.

A topological relation between two regions, or extended objects, is invariant under

certain continuous transformation, in particular rotation. A directional relation, however, is

not. Thus a topological relation is independent of the ordering among the objects along any

given axis, while a directional relation is dependent on, and in fact defined by, the

ordering of objects along a specific axis. By knowing the directional relationship, the

spatial information about the objects concerned is enhanced by information about their

relative ordering. The topological relationship, on the other hand, contributes by providing

information about the connectivity of the two objects.

It is this connectivity information that permits the inference of a directional relation in

the following situation. Assume that the relation North between regions holds if and only

if all points of region A are North of all points in region B and the regions have no points

in common. Then given the three facts (1) A North of B, (2) B meets C, and (3) C  North

of D the directional relation between A and D follows from the ordering and connectivity
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information provided by three facts (Figure 4.2). The fact B meets C implies that objects B

and C have some points in common, called C´. C´ is part of both B and C. Hence from A

North of B it follows that A is North of C´ (since C´ ⊂  B) and from C  North of D it

follows that C´ is North of D (since C´ ⊂  C). Since North implies an ordering and an

ordering is transitive, we infer that A is North of D.

A

B

C

D

Figure 4.2 A situation where topology and direction reasoning is useful.

The definition of North used in the above example implied a topological relation,

namely disjoint, between the regions. This definition is not the only possible one, for

example one may say that the state of Utah is North of Arizona despite their sharing a

border. The remainder of this section describes our method of defining directions between

regions and its implications for combined topological and direction reasoning.

A direction between two points is an order relation along a primary axis regardless of

whether a cone-shaped or projection-based direction system is used. Thus, if North

corresponds to After and South to Before, then the statement A is North of B means that A

is after B along the North-South axis. This does not mean that the points lie on the axis.

Point A may lie anywhere within the acceptance region specified in the direction system

that contains the North-South axis (Figure 4.3). A second important property of

directions, namely converseness, follows from this notion of order. Since A after B

implies B before A it is also true that A North of B implies B South of A, and vice versa.

Thus a direction is an order relation and hence each direction has a converse direction.
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N

S

A

B

Figure 4.3 A North of B hence A is after B along the N-S axis.

These properties should also hold for directions between region objects. Let us

consider various possible definitions for directions between simply connected, convex

regions without holes. At this point we are considering reasoning along a single axis only

and not reasoning about directions such as North and Northeast.

 

A

B

N

Figure 4.4 A completely North of B, hence interval A after interval B along the N-S axis.

Starting with the notion of order we define North as A is North of B if all points of A

are North of all points of B. That is, for any pair of points (a, b) with a ∈ A and b ∈  B, it

is true that a is North of b. Since regions have an extent, the above definition means that

there is an interval relationship between the two objects along the North-South axis

(Figure 4.4). Thus any reasoning about directions, based on the above definitions, is

interval-based reasoning. For example North ; North = North follows from the interval

composition After ; After = After. This definition of direction between region objects

preserves converseness. It also implies disjointness, e.g., A North of B implies A disjoint
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B. However, disjointness is independent of order, therefore the fact A North of B

enhances the information about the disjointness of A and B in that it specifies that A is

after B on the North-South axis. It is this ordering, combined with connectivity, which

enables topology-direction reasoning in the situation shown in Figure 4.2.

There are two observations of note in the above situation. First, the direction

reasoning is along a single axis, North-South in this case, and hence the relative order of

A and B and C and D is known. Second, the topological relation specifies that the objects

have some point or points in common along the North-South axis. Since all points of A

are After all points B along the North-South axis, the points of A are also After all the

points that B has in common with C. Now since these points are in object C and all points

of object C are After all points of D, it follows from the transitivity of After that all points

of A are After all points of D along the North-South axis. This implies that A is North of

D.

The definition based on order excludes cases where regions have a border point in

common along the reference axis. If we relax the definition to include such cases then the

interval relation between the objects’ extents is a Meet/MetBy relation. This definition also

implies an ordering along the reference axis and converseness. Hence interval based

reasoning is applicable and permits the inference North ; North = North. In fact since all

Allen relations except Equal, During, and Contains specify an order along the axis and

have a converse relation they could all be used in defining the notion of direction between

region objects along a particular axis (Figure 4.5). For example, if we allow the objects to

overlap then the composition of intervals OverlappedBy ; OverlappedBy = After or MetBy

or OverlappedBy, all three of which are included in the definition of North, therefore, the

inference North ; North = North is still valid.
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BEFORE

MEETS

OVERLAPS

FINISHEDBY

EQUALS

DURING

STARTS FINISHES

OVERLAPPEDBY

STARTEDBY

CONTAINS

METBY

AFTER

Figure 4.5 Iconic representation of Allen’s interval relations.

Now let us consider those intervals that imply that a portion of one interval is before or

after all of the second interval. Starting with the strict definition that all points of A are

North of all points of B we consider the interval relation After and its composition table

(Table 4.1). The result of the composition is After and hence the closure property is

satisfied.

Table 4.1 Composition for the interval relation subset {After}.

Relaxing the definition of Northness to include portions of one object being North of

all of the second object allows additional interval relations, MetBy, OverlappedBy, or

StartedBy to be included in the definition of North. These interval relation are successive

neighbors of each other as apparent from the conceptual neighborhood graph in Figure

4.5. Examining the composition tables for the subsets of intervals {After, MetBy} (Table

4.2), {After, MetBy, OverlappedBy} (Table 4.3), {After, MetBy, OverlappedBy,

StartedBy} (Table 4.4) we note that the closure property is satisfied in all these cases, i.e.,

the result of the composition of any pair of interval relations is a set of elements belonging

to the original subset.
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Table 4.2 Composition for the interval relation subset {After, MetBy}.

Extending the set with the interval relation OverlappedBy gives a composition table

(Table 4.3) whose the entries are all elements of the subset of interval relations used to

define the directional relation North.

Table 4.3 Composition for the interval relation subset {After, MetBy, OverlappedBy}.

Further relaxing the definition of North and thereby adding StartedBy to the subset of

interval relations results in Table 4.4.
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Table 4.4 Composition for the interval relation subset {After, MetBy, OverlappedBy,
StartedBy}.

The intervals {After, MetBy, OverlappedBy, StartedBy} all imply that some part of A

is North of all of B. From the conceptual neighborhood graph we see that OverlappedBy

has two neighbors, namely StartedBy and Finishes, and the intuition underlying the

conceptual neighborhood concept suggests that either or both neighbors should be

included in the relaxed definition of Northness. The interval relation Finishes differs from

the others since it implies that all of A is North of some part of B. Table 4.5 gives the

composition table of the expanded subset of intervals.
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Table 4.5 Composition for the interval relation subset {After, MetBy, OverlappedBy,
StartedBy, Finishes}.

The results of the composition are from the set {Finishes, StartedBy, OverlappedBy,

MetBy, After} which defines Northness. Thus even if we relax the definition of North to

permit the inclusions B is in the Northern or Southern part of A, the inference North ;

North = North is valid. This inference holds regardless of the shape or relative size of the

objects.

While the relaxation in the definition of Northness is immaterial for pure direction

reasoning, it has implications for combined topology and direction reasoning. Recall that

the effect of directions was to order the participating objects along a particular axis and the

effect of the topological relation was to determine whether or not the two projected

intervals could have any points in common. If we relax the definition of direction to

include overlap then the overlap information obtained from the topological relation

provides no additional constraints. As a result the inference A North of D from the facts A

North of B, B meets C, and C North D is invalid because there can be some part of A

South of D (Figure 4.6).
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A North B, B meets   C, C North of D.

B

C

D

A

Figure 4.6 Situation where a relaxed definition of direction limits the inferences possible,
because one cannot infer A North of D as there can be some part of A South

of D

The above discussion of the definition of directional relations based on order assumed

a primary axis for the direction. In the case of two points the line between them defines the

primary axis of the direction. This is not the case for regions. Since regions have an

extent, two regions can have a North-South as well as an East-West relationship. So we

need to assess which direction relations can exist between two regions for 4 and 8

direction systems.

First we examine the possible directions relations in a four direction system based on a

cone-shaped model and on projections. For a cone-shaped model the region of acceptance

changes with distance from the point of origin and hence the directional relation between

regions can change with distance, because we consider the extent of the primary object

when determining the relationship (Figure 4.7a). When A is close to B it is both North and

East of it, but A is solely North of B when it is at a farther distance. For a projection-based

system the directional relation is independent of the distance between the objects (Figure

4.7b).
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Figure 4.7 Effect of distance on the directional relation between regions.

Since our preferred definition is such that direction is independent of distance between

objects we use the projection-based method for both four and eight direction systems. In

the four direction system we are concerned with intervals along the N-S and E-W axes

formed by the Minimum Bounding Rectangles (MBRs) of the objects and hence directions

between regions can be defined in terms of directions between MBRs. Thus the direct

consequences of defining directions between regions in terms of intervals are (1) the

projection-based system of directions must be used, and (2) the directions between regions

are determined by the relationships between their MBRs.

The possible relations between MBRs that can correspond to a directional relationship

are in turn determined by the interval relations used to define the directional relationships.

We will consider this effect by incrementally relaxing an initially strict definition of

direction.

We start by allowing only the intervals Before or After in defining a directional

relation, that is, all of A must be North, South, East, or West of all of B. This means that

the MBRs of the two objects are necessarily disjoint, because the interval relationship

along either axis is from the set {Before, After} (Figure 4.8). If the MBRs were not

disjoint then the intervals along at least one axis would have points in common and hence

that directional relation would be undefined. The directional relation is said to be



80

SameEastWesterly or SameNorthSoutherly if the interval relation along the E-W or N-S

axis is from the set SDI = {Meets, Overlaps, FinishedBy, Contains, Starts, Equals,

StartedBy, During, Finishes, OverlappedBy, MetBy}. Thus the possible directional

relations in terms of pairs of intervals relations are:

{Before, Before} ⇒  A is West and South of B (Figure 4.8a)

{Before, Y} Y ∈  SDI ⇒  A is West and SameNorthSoutherly of B (Figure 4.8b)

{Before, After}⇒  A is West and North of B (Figure 4.8c)

{After, Before} ⇒  A is East and South of B (Figure 4.8d)

{After, Y} Y ∈  SDI ⇒  A is East and SameNorthSoutherly of B (Figure 4.8e)

{After, After}⇒  A is East and North of B (Figure 4.8f)

{X, Before} X ∈  SDI ⇒  A is South and SameEastWesterly of B (Figure 4.8g)

{X, After} X ∈  SDI ⇒  A is North and SameEastWesterly of B (Figure 4.8h)

{X, Y} X ∈  SDI, Y ∈  SDI ⇒  No direction relation between A and B can be specified and
they have points in common.

(a) (b) (c) (d)

(e) (f) (g) (h)

E

A

B

N

Figure 4.8 Possible directions between regions for a strict definition of direction.
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If the definition of direction is relaxed to include the situation where regions have a

border point in common along either axis then the possible directional relations are defined

in terms of pairs of elements from the sets {Before, Meets, MetBy, After} and SDI =

{Overlaps, FinishedBy, Contains, Starts, Equals, StartedBy, During, Finishes,

OverlappedBy}. They are:

{Before or Meets, Before or Meets} => A is West and South of B (Figure 4.9a)

{Before or Meets, Y} Y ∈  SDI => A is West and SameNorthSoutherly of B  (Figure 4.9b)

{Before or Meets, After or MetBy}=> A is West and North of B  (Figure 4.9c)

{After or MetBy, Before or Meets} => A is East and South of B (Figure 4.9d)

{After or MetBy, Y} Y ∈  SDI => A is East and SameNorthSoutherly of B (Figure 4.9e)

{After or MetBy, After or MetBy}=> A is East and North of B (Figure 4.9f)

{X, Before or Meets} X ∈  SDI => A is South and SameEastWesterly of B (Figure 4.9g)

{X, After or MetBy} X ∈  SDI => A is North and SameEastWesterly of B (Figure 4.9h)

(a) (b) (c) (d)

(e) (f) (g) (h)

N

E

A

B

Figure 4.9 Possible directions between regions whose interval relations are disjoint or
meet.
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The consequence, for topological reasoning, of restricting the interval relations to the

subset {Before, Meets, MetBy, After} is that the bounding rectangles between the objects

can only be disjoint from or touching each other. The implications for topological relations

is that objects may only be disjoint or may meet along either or both the direction axes.

Therefore, the interval-based definition of directional relations also restricts the topological

relations between objects.

Having decided upon a characterization of directional relations for region objects

which has implications for topological reasoning, we need a common representation for

both types of spatial relations. The following section outlines the mapping of topological

and directional relations onto pairs of interval relations.

4.3 Interval-based Representation of Topological and Directional Relations

Since directional relations between regions are defined only when the regions are disjoint

or meet, the interval relation subset {Before, Meets, MetBy, After} is used to characterize

directional relations. Therefore, each of the directions North, Northeast, East, Southeast,

South, Southwest, West and Northwest corresponds to mutually exclusive subsets of the

169 possible pairs of interval relations. Figure 4.10a shows the mappings for North and

Figure 4.10b shows the mappings for the directions Northeast, Southeast, Southwest, and

Northwest.
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A

B
(Overlaps,
After)

(Overlaps,
MetBy)

(Starts,
After)

(Starts,
MetBy)

(FinishedBy,
After)

(FinishedBy,
MetBy)

(During,
After)

(During,
MetBy)

(Contains,
After)

(Contains,
MetBy)

(OverlappedBy,
After)

(OverlappedBy,
MetBy)

(Equals,
After)

(Equals,
MetBy)

(Finishes,
After)

(Finishes,
MetBy)

(StartedBy,
After)

(StartedBy,
MetBy)

(a) A North of B

A NorthWest of B A SouthWest of BA SouthEast of BA NorthEast of B

(Before,
After)

(Meets,
MetBy)

(After,
After)

(MetBy,
MetBy)

(After,
Before)

(MetBy,
Meets)

(Before,
Before)

(Meets,
Meets)

(b)

Figure 4.10 Mapping directions onto pairs of interval relations.

The mappings for directional relations are such that one and only one subset of the 169

possible pairs of inetrval relations corresponds to one directional relation. For topological

relations, however, the subsets are not mutually exclusive, primarily because the ordering

between the objects is unimportant. Hence a particular interval relation pair can correspond

to more than one binary topological relation. For example, the pair (Equals, Equals) can

occur if the regions A and B are disjoint, meet, overlap, equal, or if region A covers B or

A is coveredBy B. Figure 4.11 shows the possible pairs of interval relations for the

topological relation A covers B. Each of the eight topological relations between regions is

mapped onto some set of pairs of interval relations.

Once both directional and topological relations have been mapped onto pairs of interval

relations the composition of pairs of topological and directional relations can be determined

from the composition of corresponding pairs of interval relations.
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A
B

(StartedBy,
 StartedBy)

(Contains,
 StartedBy)

(FinishedBy,
 StartedBy)

(StartedBy,
 Contains)

(Contains,
 Contains)

(FinishedBy,
 Contains)

(StartedBy,
 FinishedBy)

(Contains,
 FinishedBy)

(FinishedBy,
 FinishedBy)

(Equals,
 StartedBy)

(Equals,
 Contains)

(Equals,
 FinishedBy)

Figure 4.11 Interval relations pairs possible for the topological relation covers.

4.4 Composition of Pairs of Interval Relations

Composition of pairs of interval relations are performed using Allen’s composition tables

for interval relations. The first interval of the first pair is composed with the first interval

of the second pair, and similarly for the second interval of each pair. Each composition

results in a set of intervals. The composition of the two pairs of intervals is given by the

Cartesian product of the results of the composition of corresponding elements of the pairs.

For example, consider the composition of interval pairs P = (Before, MetBy) and Q =

(Meets, After). The composition of P ; Q is given by the Cartesian product (×) of the

individual compositions Before ; Meets and MetBy ; After (Equation 4.1).

P;Q = (Before, MetBy);(Meets, After)

= (Before; Meets) × (MetBy; After)

= {Before}×{After} = (Before, After)

(4.1)

For topological and directional relations, however, each relation maps onto a set of

interval relation pairs. The composition of pairs of interval relations can then be used to

determine the composition of combinations topological and directional relations, or for
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determining the topological relation implied by the composition of directional relations.

For example, the direction Northwest  implies that any one of the interval pairs from

among the sets {(Before, After), (Before, MetBy), (Meets, After), (Meets, MetBy)} is

possible, while the topological relation contains  implies the set {(Contains, Contains)}.

Therefore, determining the topological relations implied by the composition Northwest ;

contains involves the composition of the elements formed by the Cartesian product of the

above two sets of pairs of interval relations (Equation 4.2).

Northwest;contains =

Before, After( ), Before, MetBy( ), Meets, After( ), Meets, MetBy( ){ }
; Contains,Contains( ){ }

= Before, After( ); Contains,Contains( ){ } ∪ Before, MetBy( ); Contains,Contains( ){ }
∪ Meets, After( ); Contains,Contains( ){ } ∪ Meets, MetBy( ); Contains,Contains( ){ }
= Before, After( ){ } ∪ Before, MetBy( ){ } ∪ Meets, After( ){ } ∪ Meets, MetBy( ){ }
= Before, After( ), Before, MetBy( ), Meets, After( ), Meets, MetBy( ){ }
= disjoint∨ meet

(4.2)

The composition tables for combinations of the eight topological and eight directional

relations between regions are derived using the above method and are given in the

following section.

4.5 Composition Tables for Topological and Directional Relation Pairs

Topological and directional relations map onto sets of interval relations. Compositions of

these sets of interval relation pairs is accomplished using Allen’s tables for the

composition of individual interval relations. Therefore, an integrated mechanism exists

with which pairs of topological and directional relations can be combined. Composition of

the corresponding sets of interval relation pairs determines the set of interval relation pairs
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that correspond to the composition of a topological with a directional relation or directional

with a topological relation. The resultant set of pairs of interval relations is then mapped

back onto sets of topological relations and directional relations, thereby giving the results

of the composition of topological and directional relations. This process is carried out

systematically and exhaustively for each topological-directional relation and directional-

topological relation pair and results in a set of composition tables.

The composition tables are given below. Table 4.6 describes the composition of

topological with directional relations giving directional relations as the result.

Table 4.6 Topological relation ; directional relation ⇒  directional relations.
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An inspection of the above table indicates that the strongest inference is made when the

topological relation between the first pair of objects is one of containment, i.e., any one of

equal, inside, or coveredBy. This occurs because the contained object must necessarily

have the same directional relations as the containing object. A similar observation can be

made in the next table, which is for the composition of topological and directional relations

giving topological relations as the result (Table 4.7).

Table 4.7 Topological relation ; directional relation ⇒  topological relations.

In the case of Table 4.7 we note that the topological relations disjoint or meet, implied

by the definition of directional relations, are the ones that are inferred whenever

containment is the topological relationship participating in the composition.
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Table 4.8 describes the composition of directional and topological relations giving

directional relations as the result.

Table 4.8 Directional relation ; topological relation ⇒  directional relations.

Finally, Table 4.9 defines the composition of directional and topological relations

giving topological relations as the result.
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Table 4.9 Directional relation ; topological relation ⇒  topological relations.

Tables 4.6-4.9 show that heterogeneous spatial reasoning about topology and

direction is most effective when there is a containment relationship between one pair of

objects participating in the composition. This is a valid observation for single-step

inferences. The following section demonstrates, however, that heterogeneous spatial

reasoning using pairs of interval relations is useful for multi-step compositions even when

there is no containment relationship among the participating objects.
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4.6 Reasoning About Topology and Distance

Reasoning about topology and distance requires a definition of distance relations between

extended objects that is compatible with the 9-intersection formalism for binary topological

spatial relations. While distances and qualitative distances between point objects have been

defined (Section 2.2.3) the same has not been done for objects with a linear or areal

extent.

Defining distances between regions is a complex task since the size of each object

plays an important role in determining the possible distances. Some possibilities for

defining distances between regions are: taking the distance between the centroids of the

two regions; taking the shortest distance between the two regions; or taking the furthest

distance between the two regions. Each of these definitions has potential for

inconsistencies and contradictions particularly if one or both regions contain other regions

and the distance relation between the containers is inherited by the contained regions.

The continental United States, as a region, contains 48 states. Similarly Mexico is a

region that can be considered as one unit or as a container of smaller regions, namely its

states. If the shortest distance between two regions is used to determine the qualitative

distance relationship then one would state that Mexico is very close to the United States.

While this is correct for Mexico and the U.S. as regions, this same qualitative distance

relation does not hold between Maine, contained in the U.S., and Mexico. Similarly the

facts Mexico is very close to the U.S. and the U.S. is very close to Canada result in the

possibly incorrect inference that Mexico is very close or close to Canada.

In view of the above potential inconsistencies any definition of qualitative distance

relations among regions must take into account the sizes of the regions. This consideration

adds much complexity to the definition of qualitative distance relations. Since the primary

purpose of this thesis is a systematic study of types of spatial reasoning for topological
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and directional relations, and qualitative distances are included for the sake of

completeness only, we assume a very simple notion of distance between regions. We

consider only two possible qualitative distance relations, SamePlace and Not SamePlace,

i.e., two regions have some interior points in common or have no interior points in

common, respectively. The advantage of this simplified definition is that the relation

SamePlace corresponds to the topological relations {overlap ∨  inside ∨  coveredBy ∨

contains ∨  covers ∨  equal} and the relation Not SamePlace corresponds to {disjoint ∨

meet}. This correspondence enables the derivation of the composition tables given in this

section.

Tables 4.10 through 4.13 give the results of composing topological relations and

qualitative distances. The entries in each table were determined by substituting the sets of

topological relations {disjoint ∨  meet}, for the qualitative distance SamePlace, and

{overlap ∨  inside ∨  coveredBy ∨  contains ∨  covers ∨  equal}, for Not SamePlace. and

subsequently performing the appropriate compositions between topological relations.
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Not SamePlaceSamePlace

Table 4.10 Topological relation ; qualitative distance ⇒  topological relations.

The entry for coveredBy ; Not SamePlace in Table 4.10, for example, was derived

performing the composition coveredBy ; {disjoint ∨  meet} which results in the set

{disjoint ∨  meet} (Equation 4.3).

coveredBy; disjoint∨ meet{ } = coveredBy;disjoint{ } ∪ coveredBy;meet{ }

= disjoint{ } ∪ disjoint∨ meet{ }

= disjoint∨ meet{ } (4.3)
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Table 4.11 gives the qualitative distances that can be inferred from the composition of

a topological relation with a qualitative distance.

SamePlace Not SamePlace

Table 4.11 Topological relation ; qualitative distance ⇒  qualitative distances.

Using the same method as for Table 4.10 the entry for coveredBy ; Not SamePlace in

Table 4.11 is the qualitative distance Not SamePlace, since it is equivalent to {disjoint ∨

meet}. The same approach was used for Tables 4.12 and 4.13.
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Table 4.12 Qualitative distance ; topological relation ⇒  topological relations.

Table 4.12 gives the topological relations that can be inferred from the composition of

a qualitative distance with a topological relation.

Table 4.13 Qualitative distance ; topological relation ⇒  qualitative distances.

Table 4.13 gives the qualitative distances that can be inferred from the composition of

a qualitative distance with a topological relation.

4.7 Reasoning About Distance and Direction

This section gives the composition tables for qualitative distances and directions. The

composition tables are derived as follows. First, the two qualitative distances, SamePlace

and Not SamePlace, are mapped onto topological relations. Second, topology and distance

reasoning is used to determine the relevant compositions. Third, the relations resulting
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from the second step are mapped onto qualitative distance and directional relations, thereby

giving the desired composition tables 4.14 through 4.17.

SamePlace

Not SamePlace

Table 4.14 Qualitative distance ; directional relation ⇒  directional relations.

Table 4.14 gives the directional relations that can be inferred from the composition of a

qualitative distance with a directional relation.

SamePlace

Not SamePlace

Table 4.15 Qualitative distance ; directional relation ⇒  qualitative distances.

Table 4.15 gives the qualitative distances that can be inferred from the composition of

a qualitative distance with a directional relation.
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Table 4.16 Directional relation ; qualitative distance ⇒  directional relations.

Table 4.16 gives the directional relations that can be inferred from the composition of a

directional relation with a qualitative distance.
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Table 4.17 Directional relation ; qualitative distance ⇒  qualitative distances.

Table 4.17 gives the qualitative distances that can be inferred from the composition of

a directional relation with a qualitative distance.

4.8 Using the Composition of Interval Pairs for Multi-step Inferences

Composition of interval pairs is also useful for determining the composition of sequences

of directional and topological relations. Consider the situation illustrated in Figure 4.2

where the directional relation between objects A and D is obtained by the three relation
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composition A North B ; B meet C ; C North D. We simplify the following presentation

by assuming that only the North-South relationship of A and D is of concern. Thus only

intervals along the North-South axis are of importance in the reasoning process.

The multi-step composition using intervals along the North-South axis is done as

follows. The directional relation North implies the interval relation set {After, MetBy},

while the topological relation meet implies the interval relation set {Meets, Overlaps,

Starts, FinishedBy, Contains, Equals, During, Finishes, StartedBy, OverlappedBy,

MetBy}. Their compositions are:

North;meet;North = After, MetBy{ } ;

Meets,Overlaps,Starts,FinishedBy,Contains,Equals,

During,Finishes,StartedBy,OverlappedBy, MetBy












;

After, MetBy{ }

=
After, MetBy,OverlappedBy,StartedBy,

FinishedBy,Contains,Equals,Finishes












; After, MetBy{ }

= After, MetBy{ } = North

While the mapping onto interval relations allows for the multi-step composition of any

sequence of directional and topological relations we are particularly interested in

compositions of the form di ; tj ; di where di ∈  {North, South, East, West} and tj is a

binary topological relation.

Sistla et al. (1994) stated the inference rule

A x D :: A x B, B overlaps C, C x D,

where x denotes any one of the orientation relationships {left_of, right_of, front_of,

behind}. They provide no formal justification for the rule, its derivation, and validity. Our

interval-based representation of spatial relations provides a formal definition and derivation
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for the above inference rule and thereby determines its validity. We determined that the

inference rule holds for all topological relations, with the exception of disjoint, between

two regions. These inference rules were derived by constructing eight 13x13 composition

tables, one for each topological relation.

For example, the composition table for the topological relation meet gives the results

of the composition Ii ; Imeet ; Ij where Ii and Ij are interval relations and Imeet is the set of

interval relations along a particular axis that are mapped onto the relation meet. Based on

these composition tables the derived inference rules are:

• A di B, B meets C, C di D ⇒  A di D

• A di B, B overlaps C, C di D ⇒  A di D

• A di B, B equal C, C di D ⇒  A di D

• A di B, B contains C, C di D ⇒  A di D

• A di B, B covers C, C di D ⇒  A di D

• A di B, B inside C, C di D ⇒  A di D

• A di B, B coveredBy C, C di D ⇒  A di D

where di is one of the directions North, South, East, or West.

Thus an interval-based representation of spatial relations is useful for determining the

composition of combinations of different types of spatial relations since it provides a

canonical representation of these relations.

4.9 Summary

This chapter defined heterogeneous spatial reasoning and presented a formalism for

performing inferences over heterogeneous spatial relations, in particular topological and

directional relations. Examining the composition tables for such heterogeneous reasoning

we note that it is most useful whenever the topological relationships between the objects
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concerned is one of containment. This is because the contained object always has the same

directional relationships with other objects as the containing object.

The composition tables given in this chapter determine the result of composing pairs of

spatial relations of two different types to give inferred relations of either type. It is possible

to envision yet another type of composition table. One which gives spatial relations of a

third type inferred from the composition of a pair of spatial relations of two different

types. An example of such a composition table would be one that gives the topological

relations inferred from the composition of a qualitative distance and a directional relation.

Such heterogeneous composition tables are not considered in this work.

If, however, a mapping can be established from say qualitative distance onto

directions and vice versa, then the above heterogeneous composition becomes a case of

composing two qualitative distances or two directions and inferring topological relations.

This is mixed spatial reasoning, a variation on heterogeneous spatial reasoning, whereby

spatial relations of one type, e.g. topological, are inferred from the composition of spatial

relations of a different type, such as directional relations. The following chapter describes

a mechanism for mixed spatial reasoning.
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Chapter 5

Mixed Spatial Reasoning

Mixed spatial reasoning, in the context of this thesis, is the inference of spatial relations of

one type from the composition of two spatial relations of a different type. An example of

mixed spatial reasoning is the inference of topological relations, between objects A and C,

from the composition of the directional relation between objects A and B and the

directional relation between objects B and C.

This chapter introduces a formal framework for performing such inferences about

topology, direction, and qualitative distance information. It starts with a definition of the

types of mixed spatial relation compositions that can be performed. The subsequent

sections describe the composition of: topological relations giving directional relations or

qualitative distances (Section 5.2); directional relations giving topological relations or

qualitative distances (Section 5.3); and qualitative distances giving topological relations or

directional relations (Section 5.4).

5.1 Types of Mixed Spatial Relation Compositions

For each of the three types of spatial relations, the composition of a pair of relations results

in spatial relations of the other two types. Thus a total of six distinct composition tables

must be derived (Figure 5.1).
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Figure 5.1 Mixed spatial relation compositions.

The following sections give the composition tables for topological relations,

directional relations, and qualitative distances.

5.2 Composition of Topological Relations

The composition table for topological relations, Table 3.1 in Section 3.2, can be used to

derive the tables for inferring directional relations and qualitative distances from the

composition of topological relations. The topological relations disjoint or meet map onto

the qualitative distance Not SamePlace or any one of the eight directional relations.

Similarly, the topological relations other than disjoint or meet all map onto the qualitative

distance SamePlace or onto the directional relation, OverlapNoDirection.
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disjoint meet overlap coveredBy inside covers contains equal

Table 5.1 Topological relation ; topological relation ⇒  directional relations.

Table 5.1 gives the directional relations implied by the composition of topological

relations. It is evident that the only information provided by this table is that the

composition of topological relations implies only that a directional relation exists or that it

does not exist. No specific directional relation, or set of possible directional relations, can

be determined because topological relations are independent of the ordering among

objects, whereas directional relations depend on the ordering of objects along an axis.



104

Table 5.2 gives the qualitative distances implied by the composition of topological

relations. It was derived by mapping the topological relations disjoint or meet onto the

qualitative distance relation Not SamePlace, and the remaining topological relations onto

the qualitative distance relation SamePlace.

disjoint meet overlap coveredBy inside covers contains equal

Table 5.2 Topological relation ; topological relation ⇒  qualitative distances.

Table 5.2 is identical to table 5.1 and can be obtained from it by substituting

SamePlace wherever OverlapSameDirection occurs and Not SamePlace wherever

OverlapSameDirection does not occur.
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5.3 Composition of Directional Relations

In this thesis directional relations are characterized by pairs of interval relations. The

composition of pairs of interval relations also determines topological and qualitative

distance relations. For example, the direction Northwest implies that any one of the

interval pairs from among the set {(Before, After), (Before, MetBy), (Meets, After),

(Meets, MetBy)} is possible. Therefore, determining the topological relation implied by

the composition Northwest ; Northwest involves the compositions of the elements formed

by the Cartesian product of the above set with itself (Equation 5.1).

Northwest; Northwest =

Before, After( ), Before, MetBy( ), Meets, After( ), Meets, MetBy( ){ } ;

Before, After( ), Before, MetBy( ), Meets, After( ), Meets, MetBy( ){ }
= Before, After( ); Before, After( ){ } ∪ Before, After( ); Before, MetBy( ){ }
∪ Before, After( ); Meets, After( ){ } ∪ Before, After( ); Meets, MetBy( ){ }
M

∪ Meets, MetBy( ); Before, After( ){ } ∪ Meets, MetBy( ); Before, MetBy( ){ }
∪ Meets, MetBy( ); Meets, After( ){ } ∪ Meets, MetBy( ); Meets, MetBy( ){ }
= Before, After( )
= disjoint

(5.1)

Table 5.3 gives the topological relations implied by the composition of directional

relations.
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Table 5.3 Topological relations inferred from the composition of directional relations.

From Table 5.3 one may observe that the relation disjoint is inferred whenever the pair

of composed directional relations has a direction in common. Thus, disjoint is the inferred

relation when composing North with North, Northwest, or Northeast and similarly when

composing Northwest with North, Northwest, Northeast, West, or Southwest.

Mapping the topological relations in Table 5.3 onto the qualitative distance relations

SamePlace, Not SamePlace, and SamePlace or Not SamePlace gives Table 5.4.



107

Table 5.4 Qualitative distances inferred from the composition of directional relations.

Table 5.4 is identical to table 5.3 since the topological relations map onto qualitative

distances. The following section presents the composition tables for inferring topological

and directional relations from the composition of qualitative distances.

5.4 Composition of Qualitative Distances

The simple definition of qualitative distances between regions, SamePlace and Not

SamePlace, essentially means that no direction information can be inferred from their

composition (Table 5.5).
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SamePlace

Not SamePlace

Table 5.5 Directional relations inferred from the composition of qualitative distances.

In the case of topological relations, however, some information can be obtained since

the qualitative distances map onto topological relations. Not SamePlace maps onto the

relations disjoint or meet, whereas SamePlace maps onto the remainder of the set of eight

binary topological relations. Table 5.6 was derived using these mappings.

The entry for SamePlace ; Not SamePlace, for example, was derived from the

composition of the two sets of topological relations (Equation 5.2).

SamePlace; Not SamePlace =

overlap,inside,coveredBy,contains,covers,equal{ } ; disjoint,meet{ }

= disjoint,meet,overlap,covers,contains{ } ∪ disjoint,meet{ }

∪ meet,overlap,covers,contains{ } ∪ disjoint{ } ∪ meet{ }

∪ overlap,covers,contains{ }

= disjoint,meet,overlap,covers,contains{ } (5.2)

SamePlace

Not SamePlace

Table 5.6 Topological relations inferred from the composition of qualitative distances.
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The difference between tables 5.5 and 5.6 arises from the fact that topological relations

do not record the ordering among objects and hence do not imply a directional relation.

The qualitative distances map onto topological relations and therefore the composition of

qualitative distances provides no direction information.

5.5 Summary

This chapter presented the composition tables that allow for the inference of spatial

relations of one type from the composition of spatial relations of a different type. While the

tables seem to indicate that mixed spatial reasoning often provides little or no additional

information, this is always the case. The following chapter demonstrates that mixed spatial

reasoning is crucial for combined reasoning about topological and directional relations and

makes combined spatial reasoning equivalent to integrated spatial reasoning.
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Chapter 6

Integrated Spatial Reasoning

Integrated spatial reasoning in the context of this thesis is the inference of spatial relations

from completely specified information on relations of different kinds for each object pair

of interest. For example, integrated spatial reasoning is involved when inferring the

topological and directional relation between objects A and C given the topological and

directional relations between objects A and B, as well as the same types of relations

between B and C. The term integrated is used to denote the fact that different kinds of

spatial relations are used together when specifying the spatial relation between objects such

as “A is North of and disjoint from B.” For the remainder of this thesis the term integrated

spatial relations refers to the conjunction of topological and directional spatial relations.

Information on both topological and directional relations may enhance our knowledge

about the locational relationship between objects. For example, knowing that A is North of

B in addition to the fact A disjoint B limits the subset of space in which A can lie relative to

B. Similarly knowing that A meets B in addition to the fact A is North of B also constrains

the possible location of A relative to B to a greater degree than the single fact A North of

B. This situation, where both topological and directional relations between all pairs of

objects are known, differs from situations where heterogeneous spatial reasoning is used.

In the case of heterogeneous spatial reasoning the available information consists of a

spatial relation of one type, such as topological, between one pair of objects and a spatial

relation of a different type, say directional, between the other pair of objects. When

information about all types of spatial relations between both pairs of objects is available
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then that information may be integrated when used for spatial reasoning. This chapter

describes a framework for spatial reasoning by integrating information about different

spatial relations between pairs of objects.

Integrating spatial information allows inferences such as A is North of and disjoint

from C given the facts that (1) A is North of and meets B  and (2) B is North of and meets

C . The above inference is impossible using directional or topological relations

individually. Thus integrated spatial reasoning may provide additional capabilities for any

automated spatial reasoning system. In the above case, however, utilizing the fact that

topological relations can be inferred from the composition of directional relations allows

for the same inference from the same facts using combined spatial reasoning. We evaluate

the capabilities of integrated spatial reasoning and compare them with combined spatial

reasoning. This comparison forms the test of our hypothesis that combined spatial

reasoning, about topological and directional relations, is equivalent to integrated spatial

reasoning and both provide the same set of inferred spatial relations.

In order to perform inferences about integrated spatial relations, however, we first

need a definition of these spatial relations and a representation scheme. Since we are

concerned with only topological and directional relations, we use interval relations as the

representation and method for defining integrated topological and directional spatial

relations. As a consequence, the composition of pairs of interval relations is used to

determine the composition of the integrated topological and directional spatial relations.

The following sections give an example demonstrating the utility of integrated spatial

reasoning, followed by a description of the spatial relations themselves and a mechanism

for determining their composition tables. Finally, we compare the results of using

integrated spatial reasoning, when all relevant information is available, with the results of

using combined spatial reasoning.
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6.1 Integrated Topological and Directional Spatial Relations

Directional relations determine the relative orientation between objects whereas topological

relations do not. Based on the definition of directional relations used in this thesis the

topological relation between objects that have a particular directional relation may only be

disjoint or meet. Thus taken together the two types of relations may constrain the spatial

relationship between objects further than the individual relations do, and provide the

enhanced capability to reason about conjunctions of spatial relations. A prerequisite for

such integrated reasoning, however, is the definition of integrated spatial relations. The

following paragraphs define the integrated topological and directional relations used in this

study.

The directional relations of interest is the set {North, Northeast, East, Southeast,

South, Southwest, West, Northwest}. From among the various definitions possible for

directional relations (Section 4.2) between region objects we choose one that allows

objects to be disjoint or meet along the reference axis, North-South or East-West. This

definition implies a topological relationship, thereby facilitating integrated reasoning. The

implication of the definition of directional relations is that the only possible topological

relations between object that have one of the above eight directional relationships are

disjoint and meet. Therefore, the integrated topological and directional relations must at

least be a Cartesian product of the sets {disjoint, meet} and {North, Northeast, East,

Southeast, South, Southwest, West, Northwest}, giving sixteen relations. These are:

DisjointNorth, DisjointNortheast, DisjointEast, DisjointSoutheast, DisjointSouth,

DisjointSouthwest, DisjointWest, DisjointNorthwest, MeetNorth, MeetNortheast,

MeetEast, MeetSoutheast, MeetSouth, MeetSouthwest, MeetWest, and MeetNorthwest.

The above set of sixteen relations, however, does not provide a complete coverage since

objects may overlap or have a containment relationship. For such situations we introduce

the broadly defined relationship OverlapNoDirection. This relation specifies that the
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objects share a common region and includes the possibility that one object is contained in

or equal to the other. Thus the sixteen relations plus OverlapNoDirection provide a

complete coverage and an exhaustive set of integrated topological and directional relations

between regions.

The following section describes how the sixteen integrated relations are mapped onto

pairs of interval relations between objects. The pairs of interval relations are the ones used

in determining the composition of integrated topological and directional relations.

6.2 Mapping Integrated Relations onto Interval Pairs

The mapping of integrated relations onto interval pairs is done by taking the intersection of

the individual mappings of topological and directional relations onto interval pairs. The

topological relations of interest are disjoint and meet only due to the definition of

directional relations between regions. These topological relations map onto interval pairs

formed by the Cartesian product of the set {Before, Meets, MetBy, After} with itself. In

the case of directional relations the interval relations Before and Meets correspond to West

or South depending on the axis. Similarly, the interval relations After and MetBy

correspond to East or North depending on the axis. For pairs of interval relations the order

of the elements in the pair is important. Figure 6.1 shows the correspondence between

direction information and interval pairs.

1 2 3 4 5 76 1098 11 12 13
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Before

Meets

Overlaps

After

MetBy

OverlappedBy

Equals

Starts

StartedBy

Finishes

FinishedBy

During

Contains

Disjoint with North-South
and East-West information

Disjoint with North-South
information

Disjoint with East-West
information

Meet with North-South and
East-West information

Meet with North-South
information

Meet with East-West
information

Non-disjoint or meet with
no direction information

Figure 6.1 Directions and corresponding interval pairs.
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The numbers along each edge represent the interval relations ranging from Before to

After. The top right corner, therefore, corresponds to the interval pair (After, After) and

the bottom left corner to the pair (Before, Before). Now After implies East along the first

axis, horizontal in Figure 6.1, and North along the second axis, which is the vertical axis

in Figure 6.1. Therefore the top right corner corresponds to Northeast and the bottom left

to Southwest. The topological relation information implied by the interval relations is

disjoint, meet, or neither In the figure, the cross-hatched patterns correspond to relations

where the objects may touch and the horizontal and vertical hatched patterns indicate

disjointedness of objects. The interval relation After implies disjoint regardless of the axis.

If After is interval relation along the vertical axis then it implies the directional relation

North while the East-West relationship is implied by the interval relation along the

horizontal axis. If, however, the interval relation along the horizontal axis is from the set

{Overlaps, Starts, FinishedBy, During, Equals, Contains, Finishes, StartedBy,

OverlappedBy} then interval relation After along the vertical implies that one region is

North of the other. Using this correspondence the relation DisjointNorth maps on to the

set of interval pairs, {(Overlaps, After), (Starts, After), (StartedBy, After), (Contains,

After), (Equals, After), (Finishes, After), (FinishedBy, After), (During, After),

(OverlappedBy, After)}. Similarly, the relation MeetNorth is obtained by substituting the

interval relation Meets for After in the above set.

6.3 Composition of Integrated Topological and Directional Relations

The integrated topological and directional relations are represented iconically using a cyclic

pattern of circles corresponding to the eight directions, two topological relations, and

overlapping objects (Figure 6.2).

DisjointNorth MeetNorth OverlapNoDirection

Figure 6.2 Iconic representation of integrated relations.
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The outer circles correspond to the relations DisjointNorth through DisjointNorthwest,

the inner circles to the relations MeetNorth through MeetNorthwest, and the center to

OverlapNoDirection. The same iconic representation can be used to indicate a disjunction

of relations. Figure 6.3 shows the representation of the relations Not South and

(DisjointNortheast or MeetNortheast).

Not South DisjointNortheast
          or
MeetNortheast

Figure 6.3 Iconic representation of disjunctions of integrated relations.

Each of the integrated spatial relations, such as DisjointNorth or MeetNorth, map onto

a set of interval relation pairs. For example, DisjointNorth maps onto the set {(Overlaps,

After), (OverlappedBy, After), (Starts, After), (StartedBy, After), (Finishes, After),

(FinishedBy, After), (Contains, After), (During, After), (Equal, After)} and MeetNorth

maps on to {(Overlaps, MetBy), (OverlappedBy, MetBy), (Starts, MetBy), (StartedBy,

MetBy), (Finishes, MetBy), (FinishedBy, MetBy), (Contains, MetBy), (During, MetBy),

(Equal, MetBy)}. The composition of integrated spatial relations is then obtained by the

same procedure used for heterogeneous topological and directional relation compositions.

The composition of the two sets of pairs of interval relations is performed using Allen’s

transitivity table for interval relations and the resulting set of interval pairs is mapped back

onto an integrated spatial relation.

For example, the result of the composition DisjointNorth ; MeetNorth is determined as

follows:
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Disjoint North;MeetNorth = Overlaps, After( )K OverlappedBy, After( ){ } ;

Overlaps, MetBy( )K OverlappedBy, MetBy( ){ }

=
Overlaps, After( ); Overlaps, MetBy( )

∪ K ∪ OverlappedBy, After( ); OverlappedBy, MetBy( )













= Overlaps, After( )K OverlappedBy, After( ){ }
= Disjoint North

The ellipses used above convey that the set of pairs of interval relations is such that

interval relation along the second axis is always After or MetBy while the interval relation

along the first axis goes from Overlaps through to OverlappedBy thereby forming the nine

pairs of interval relations corresponding to DisjointNorth or MeetNorth.

The following four tables give the results of the composition of integrated topological

and directional relations. For each table the topological relation between objects pairs is

fixed and the eight rows and columns correspond to the eight directions clockwise from

North to Northwest. Table 6.1 is the composition table for the case when the topological

relation between both pairs of objects (A, B) and (B, C) is disjoint.
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Table 6.1 Direction composition table with A disjoint B and B disjoint C.
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Table 6.2 is the composition table for the case when the topological relation between

the first pair of objects (A, B) is disjoint and the second pair of  objects (B, C) meet. That

is, the table gives the composition of relations such as DisjointNorth with MeetEast.

Table 6.2 Direction composition table with A disjoint B and B meet C.
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Table 6.3 is the composition table for the case when the topological relation between

the first pair of objects (A, B) is meet and the second pair of objects (B, C) is disjoint, that

is, the table gives the composition of relations such as MeetNorth with DisjointEast.

Table 6.3 Direction composition table with A meet B and B disjoint C.

Table 6.4 is the composition table for the case when the topological relation between

both pairs of objects (A, B) and (B, C) is meet, that is, the table gives the composition of

relations such as MeetNorth with MeetEast.
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Table 6.4 Direction composition table with A meet B and B meet C.

Examining tables 6.1 through 6.4 we see that the diagonal [n, n], and off-diagonal,

[n, n-1] and [n-1, n], entries all contain the topological relation disjoint only. For the

directional relations Northeast, Northwest, Southeast, and Southwest the composition

result contains only disjoint when the direction difference between the composed relations

is two or less. Entries in the diagonal, and one- and two-off the diagonal, all contain only

disjoint and not meet. An explanation of this pattern is provided through a comparison of

integrated spatial reasoning with combined spatial reasoning in the following section.
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6.4 Comparison of Integrated with Combined Spatial Reasoning

The only topological relations that participate in both types of spatial reasoning, i.e.,

combined and integrated, are the relations disjoint and meet. Therefore, we consider the

reasoning capabilities of the two approaches in the situations where the topological relation

involved is disjoint or meet.

Combined spatial reasoning is the coupling of homogeneous and heterogeneous and

mixed spatial reasoning (Equation 6.1), whereas integrated spatial reasoning deals with the

compositions of tuples of spatial relations.

Combined = Homogeneous ∧  Heterogeneous ∧  Mixed (6.1)

For topological and directional relations, combined spatial reasoning, is formally

specified by Equations 6.2a and 6.2b,

{ti  ;t tj } ∧  {ti  ;t dj } ∧  {di  ;t tj } ∧  {di ;t dj } ⇒  tk (6.2a)

and

{ti  ;d tj } ∧  {ti  ;d dj } ∧  {di  ;d tj } ∧  {di ;d dj } ⇒  dk (6.2b)

and integrated spatial reasoning by Equation 6.3.

[ti, di] ; [tj, dj ] ⇒  {[tk, dk ]} (6.3)

The composition operators, however, differ for the two types combined and integrated

spatial reasoning. For instance, combined spatial reasoning about topology and direction

requires two composition operators “;t” and “;d”. The first one returns topological relations

and the second returns directional relations, given two spatial relations of either type

(Equations 6.2a and 6.2b) whereas integrated spatial reasoning requires a single operator

(Equation 6.3).
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One form, combinations of spatial relations, is mapped onto the other, integrated

spatial relations using the operations group and ungroup. Given the set {ti, dj } of spatial

relations between two objects, the operator group creates a tuple [ti, dj], which is the

integrated spatial relation between the two objects. The inverse operator, ungroup, creates

the set from the tuple. Group and ungroup are required since the composition of integrated

spatial relations is defined only on a tuple of spatial relations.

From the fact that the tuple denoting an integrated spatial relation is obtained by

grouping a set of spatial relations of different types we note that Equation 6.3 is a compact

expression of the compositions defined by Equations 6.2a and 6.2b. Hence the sets of

spatial relations obtained using either inference mechanism, on combinations of spatial

relations, should be equal (Figure 6.4).

A ti B, B  tj C

A di B, B  dj C
A [ti, di] B
B [tj, dj] C

A  {tk} C
A  {dk}C

A {[tk, dk]}C
A  {t'k} C
A  {d'k}C

?

group

ungroup

Perform tuple
compositions (Eqn. 1.3)

Perform all individual
compositions (Eqns. 1.5a and 1.5b)

=

Figure 6.4 Composition of combinations of spatial relations.

 This equality of sets of inferred results is indeed valid in the following situation.

Given spatial relations (1) A North B, (2) A meet B, (3) B East C, (iv) B meet C. The

integrated spatial relations in this instance are A MeetNorth B and B MeetEast C and the

composition to be performed is MeetNorth ; MeetEast. Similarly, for this instance the

combinations of spatial relations and their compositions are: (1) North ;d East, (2) North ;t
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East, (3) meet ;t meet, (4) meet ;d meet, (5) North ;t meet, (6) North ;d meet, (7) meet ;t

East, and (8) meet ;t East. Using either integrated or combined spatial reasoning the

inferred spatial relations are (1) A {disjoint, meet, overlap, contains, covers} C, and (2) A

{North, Northeast, East} C.

Given that both methods for spatial reasoning give the same results in the above

instance the question of interest is whether the two are equivalent in all instances. In order

to determine equivalence we need the four composition tables (Tables 6.5 - 6.8 below) for

combined spatial reasoning that correspond to the four composition tables for integrated

spatial reasoning (Tables 6.1 - 6.4).

Tables 6.5 through 6.8 are derived using the composition tables for homogeneous,

heterogeneous, and mixed spatial reasoning about topological and directional relations

given in Chapters 3-5.
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Table 6.5 Combined spatial reasoning with A disjoint B and B disjoint C.

Table 6.6 is the combined reasoning composition table for the situations where the

first pair of objects are disjoint and the second pair meet.
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Table 6.6 Combined spatial reasoning with A disjoint B and B meet C.

Table 6.7 is the combined reasoning composition table for the situations where the

first pair of objects meet and the second pair are disjoint .
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Table 6.7 Combined spatial reasoning with A meet B and B disjoint C.

Table 6.8 is the combined reasoning composition table for the situations where the

topological relation between both pair of objects is meet.
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Table 6.8 Combined spatial reasoning with A meet B and B meet C.

Proposition : Integrated spatial reasoning and combined spatial reasoning result in the

same set of inferred relations.

Proof: Tables 6.1 through 6.4 and tables 6.5 through 6.8 are identical. For topological

and directional spatial relations, therefore, both integrated and combined spatial

reasoning give the same set of inferred relations.
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Since the set of inferred spatial relations is the same regardless of the spatial reasoning

mechanism that is used we conclude that our hypothesis is valid and that integrated spatial

reasoning is equivalent to combined spatial reasoning.

The same approach, comparing composition tables for combined and integrated spatial

reasoning, is valid when qualitative distances are involved.

6.5 Discussion

The tables which give the composition for integrated and combined spatial reasoning have

some patterns from which the following conclusions can be drawn:

• Integrated spatial reasoning gives the same results as combined spatial reasoning if

mixed spatial reasoning is used for inferring topological relations from the

composition of directional relations.

• If mixed spatial reasoning is not used then inferring a topological relation from the

composition of directional relations can be done only by mapping the resultant

directional relations onto topological relations. By definition a directional relation

holds whenever the two objects are disjoint or meet each other. Using homogeneous

or heterogeneous reasoning, therefore, the topological relationships meet  and

disjoint are in the inferred relation set. In the case of integrated reasoning, however,

the topological relation meet is excluded from the set inferred from the composition

of the same topological and directional relations. This is because the pairs of interval

relations, resulting from the composition, contain information about directional and

topological relations.

• The composition of directions that are conceptual neighbors does not ever result in

the topological relation meet (Table 4.6). Therefore only disjoint  is in the inferred set

of spatial relations whenever the composition of topological and directional relations
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involves directions that are conceptual neighbors. This creates the pattern observed

among the diagonal and off-diagonal entries in Tables 6.1 through 6.4.

6.7 Summary

In summary, we may conclude that integrated spatial reasoning is equivalent to

combined spatial reasoning. Since a single table-lookup is more efficient than multiple

lookups followed by set intersections, integrated spatial reasoning is the preferred choice

whenever complete information is available about the qualitative spatial relationships

among the objects. By complete information we mean information about the qualitative

spatial relations of each type between each pair of objects. In other instances the

homogeneous and heterogeneous methods of reasoning about topological and directional

relationships should be used for inferring spatial relations. The following chapter proposes

a framework and implementation of a comprehensive qualitative spatial reasoner that is

capable of effectively utilizing the mechanisms for homogeneous, heterogeneous, mixed,

and integrated spatial reasoning described thus far.
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Chapter 7

A Framework for

Qualitative Spatial Reasoning in GIS

The paradigm of “complete and exact spatial information” underlies the use of any current

commercial Geographic Information System (GIS). Complete and exact refer to spatial

data modeled in a Cartesian coordinate space with all coordinate information available for

all spatial entities whose geometry is represented exactly by the coordinates. Therefore,

current GISs are very good at integrating and analyzing quantitative spatial information.

The emphasis on quantitative is a result of the underlying assumptions regarding

databases and information systems. These assumptions are that databases should contain

consistent, accurate, and non-redundant data and that information systems must provide a

definitive answer to any query (Egenhofer and Mark 1995).

We introduce a framework that pursues a radically different approach to handling

geographic data. Rather than forcing a user to translate all spatial concepts into a

quantitative framework, users can reason about qualitative spatial information within a

purely qualitative environment. While quantitative models use absolute values, qualitative

models deal with magnitudes. The advantage of qualitative reasoning models is that they

can separate numerical analyses from the determination of magnitudes or events, which

may be assessed differently depending on the context. In qualitative reasoning a situation

is characterized by variables that can only take a small, predetermined number of values
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and the inference rules that use these values in lieu of numerical quantities that approximate

them (de Kleer and Brown 1984).

7.1 Qualitative Spatial Reasoning in GIS

For a qualitative spatial reasoner, it is important to find representations that support partial

and imprecise information. This qualitative spatial reasoning framework presented here is

based on the representation of explicit spatial relations. It allows users to record spatial-

relation information independent of the actual geometry of the spatial objects. Examples of

explicit spatial relations are cardinal directions such as north or north-east; approximate

distances such as near and far; and topological relations such as inside, disjoint, or

overlap. Unlike Euclidean-based geographic databases and GISs, which provide for a

single way of determining such relations by quantitative calculations, the qualitative spatial

reasoner can infer information at different conceptual levels. In geographic applications

entities are defined both in terms of their attributes and the complex spatial relations, such

as proximity and connectivity, between them. This spatial structure is of primary interest

in geographic databases and hence must be represented or modeled in some form. The two

approaches are (1) to define it explicitly in a relational form or (2) to construct it using

rules in a deductive database. We combine these approaches by defining relations as first-

class objects, which have an associated spatial reasoning system; therefore, such a spatial

reasoner has three basic approaches to determining the result of a geographic database

query:

• use explicitly stored, qualitative information if it meets the requirements;

• infer the result with qualitative reasoning formalisms; and

• compute a qualitative spatial relation by transforming the query into a quantitative

Euclidean coordinate space, in which the problem gets solved by applying algorithms



132

on some model such as a raster or vector representation, and map the quantitative

result back onto a qualitative value.

Qualitative spatial inferences are performed using composition tables that define the set

of possible spatial relations that can exist between two objects when their spatial

relationships with a common third object are known. Homogeneous composition tables

are required when the known spatial relations are all of the same type, for example,

topological; heterogeneous composition tables when the relations are of different types, for

example the topological relation between A and B and the directional relation between B

and C; while integrated composition tables are required when two or more spatial relations

between each pair of objects is known, for example both the topological and directional

relations for the object pairs (A, B) and (B, C).

7.1.1 Explicitly Stored Relations

In the most simple situation, the spatial relation for which a user asks is explicitly stored in

the database; therefore, a particular kind of spatial relation can be retrieved immediately

and query processing becomes a simple table look up. For example, if the cardinal

direction between Bangor and Orono is recorded, then there is no need to compute it.

7.1.2 Qualitatively Inferred Relations

The behavior of spatial relations is captured in relation algebras. These algebras formalize

particular properties of relations that are crucial when deriving information.

• A relation r is symmetric if A r B implies B r A.

• Two relations r1 and r2 are converse if A r1 B implies B r2 A.

The most powerful property is the composition. It infers the relation r1 between two

objects A and C from the knowledge of the relations A r2 B and B r3 C.
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Frequently, the inferred relation is imprecise and represented by a disjunction of

several possible relations. An important property of composition is that it distributes over

disjunctions, i.e.,

ri ; (rj v rk) = (ri ; rj) v (ri ; rk) (7.1)

The transitivity of a relation is a special case of the composition in which r1 = r2 = r3

such that A r B and B r C implies A r C.

A constraint network (Guesgen and Hertzberg 1993) is used for representing the

relations and for evaluating consistency or inferring relations. The nodes in the network

represent individual objects, while each arc is labeled by the possible relations between the

two objects at its nodes. Consistency is maintained by computing all consequences

whenever a new relation is added to the network (Hernández 1993). The consequent

relations are determined by computing the transitive closure of the relations using the

appropriate transitivity table.

Such qualitative inferences allow a query processor to derive answers even if the

particular spatial or temporal relation has not been recorded explicitly. For example, if a

system stores that “Orono is North of Bangor” and a user asks the query for the cardinal

direction between Bangor and Orono, given the knowledge that North and South are

converse relations, the query processor can infer that Bangor is South of Orono.

7.1.3 Quantitatively Calculated Relations

Quantitative evaluation of spatial relations is the most commonly used method in

commercial GISs. The geometry of the objects is represented in terms of a set of

coordinates or pixels in some Cartesian reference grid. Computational geometry

algorithms such as nearest neighbor search, point in polygon tests, and line-line

intersections are used to compute spatial relations like inside, within X miles, or north of.
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It is important to note that these spatial computations are performed on a model and a

necessarily finite precision representation of the reality of interest. The results of the

computations are either the values of the deisred spatial relations or they are mapped onto

qualitative spatial relations between the real world entities. The underlying assumption

here is that the model and its representation are an accurate and valid encapsulation of the

nature and properties of the geographic entities.

7.2 Object-Oriented Design for a Qualitative Spatial Reasoner

The conceptual design of our qualitative spatial reasoner differs from conventional GISs

and spatial reasoning systems by treating relations as explicit objects, rather than labeled

links between spatial objects. This looser framework permits the system to be used as a

test bed for qualitative reasoning, which can be expanded to accommodate additional types

of (spatial) relations. It leads to an object-oriented implementation in which objects as well

as relations have operations and respond to messages.

Figure 7.1 shows the object hierarchy developed for the reasoner. There are two first-

order classes in this hierarchy, the Relation and the Relative. The Relative is the

abstract class for objects involved in Relations. It provides methods for getting access to

the Relations in which a Relative is involved, getting its name, and for dissolving

Relations when the Relative is deleted. All Relatives require a name, which is used as

an identifier.

Relative

Place

Relation

Topological DirectionDistance

Figure 7.1 Object hierarchy for a qualitative geographic reasoner.
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A Place is a Relative with a location and may participate in a spatial relation. For

example, the Place Bangor is South of Orono. The location was defined as a 3-

dimensional Cartesian coordinate. Much of the reasoning over Places assumes a

representative coordinate for objects that have, at least, a two-dimensional extent. This

ambiguous representation is very similar to human reasoning over hierarchically ordered

spaces (Frank 1992), but can produce erroneous results on occasion. For instance, when

you are in Reno Nevada, California is to the Northwest, West, Southwest, South and

Southeast, but the result calculated from the representative points would be South or even

Southeast.

The Relation class is an abstract class that binds two Relatives in a spatial relation.

It provides basic utilities for relation management such as retrieving the Relatives

involved, and creating and destroying the Relation. Each of the types of relations

described in the previous section is a subclass of Relation. It has its methods for

accessing an object’s value, e.g., the value overlaps in a Topological Relation (Figure

7.2). Again it should be noted that the Relation has a value appropriate to its type, and

limited reasoning can be accomplished without reference to the values stored by the

Relatives involved in the Relation.
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Relative

IRelative(…)
GetName(…)
GetRelations(…)
GetRelationsWith( Relation )
Associate( Relation )
Disassociate( Relation )

Place
IPlace(…)
GetLocation(…)
GetTopoRelations(…)
GetDistRelations(…)
GetDirRealtions(…)

Relation

IRelation(…)
GetFirstRelative(…)
GetSecondRelative(…)
GetOtherRelative( Relative )

Topological
ITopological(…)
ICalcTopological(…)
IInferTopological(…)
GetValue(…)
ConverseVal(…)
Compose( Relation )

Distance
IDistance(…)
ICalcDistance(…)
IInferDistance(…)
GetLength(…)
GetUnits(…)
Same( Relation )
Closer( Relation )
Farther( Relation )

Direction
IDirection(…)
ICalcDirection(…)
IInferDirection(…)
GetAzimuth(…)
ConverseAzi(…)
Compose(…)

Figure 7.2 Methods for Relative and Relation classes and their subclasses.

Each class provides three separate initializers for explicit, calculated, and inferred

creation.

• Explicit creation is used when a fact is known about two Relatives, for example

Edinburgh is north of London. Neither of the relatives referenced in the relation need

to have exact coordinates to be part of an explicit definition. This is similar to

receiving a news report that there was rioting in South Central Los Angeles.

• Calculated creation depends on both Relatives being completely defined

quantitatively. This is the way most GISs currently treat topology definition and,

therefore, complete and accurate geometric definition is assumed on the part of users

of the system.

• Inferred creation is used when a Relation is needed between two Relatives, but

the relationship is not known explicitly and the Relatives are not quantitatively
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defined. It is possible that such a request will fail, meaning that no unambiguous

relation could be derived at this time.

7.3 The Spatial Reasoning Subsystems

The relation classes and the query handling system interface with a spatial reasoning

subsystem that performs homogeneous, heterogeneous, and integrated spatial reasoning

and combinations thereof. When a relation class requires an inferred creation of an object it

directly requests the isolated reasoning subsystem to perform the necessary inference

process. Heterogeneous and integrated reasoning are invoked by the query handler or by

the spatial reasoning subsystem if it determines the need for them.

The query handler identifies the types of spatial constraints, such as topological or

directional, specified in the query and depending on the combinations of constraints

requests either type of reasoning. For example, if a query is “Find scenes such that region

A is West of region B, region B meets region C and is West of it, and C is disjoint from

and West of region D” then both isolated and integrated spatial reasoning may be used to

determine the unspecified relations before passing the scene description on to a scene

matching subsystem. The spatial reasoner itself can evaluate which of the three types of

reasoning or their combinations can be used based on the relationships among objects of

interest and related objects that have been stored in the database. It does so by constructing

a labeled directed multigraph with objects as nodes and relationships as edges, i.e., a

constraint network.

The option of storing, inferring, or computing spatial relationships can lead to

inconsistencies within the database. Three types of conflicts are possible: (1) between the

stored and computed value, (2) between the inferred and computed value, and (3) between

an inferred value and a subsequent update due to a value being expressly specified or

recomputed. At present we do not deal with resolving such conflicts. The computed value
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is always assumed to be the most accurate or correct one and replaces any stored value.

Future work will explore mechanisms for resolving such conflicts and for integrating

qualitative and quantitative methods for spatial data handling.

The working prototype of the spatial reasoning subsystems for combined topological

and direction reasoning, written in C, exists on a DEC Alpha workstation and the shell

archive of the source files can be downloaded using the appropriate link in the web page

http://www.ncgia.maine.edu/jayant.html. A web-based user interface to the inference

mechanism is being constructed and will be available through the same link. The interface

will permit a user to test the inference mechanism by specifying a set of spatial constraints

and having the system evaluate its consistency.

The prototype uses initialized tables to store the composition tables for topological and

directional relations. The scene description or set of spatial constraints is represented by a

set of constraint networks and evaluation of consistency or determining unspecified spatial

relations is done by constraint propagation. The constraint propagation algorithm used is

modified version of Mackworth’s (1977) path consistency algorithm which maintains a

queue of all paths of length two that must be considered. If any constraints associated with

a path are modified due to a path consistency check then all paths likely to be affected by

the change are appended to the queue. Constraint propagation ends when the queue is

empty or if an inconsistency is found.

The prototype implementation demonstrates that (i) combined spatial reasoning is more

powerful than homogeneous spatial reasoning, and (ii) when both topological and

directional relations are specified then integrated and combined spatial reasoning are

equivalent. The implementation, however, does not demonstrate how the spatial inference

mechanism could be used for spatial query processing tasks such as minimization of a set

of spatial constraints.
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The following section describes the results of two tests run on the prototype system for

demonstrating how the query process responds to a request for information. The examples

show the use of retrieval of stored and inference of unknown spatial relationships only.

7.4 Test Results

The two examples in this section demonstrate the use of homogeneous, heterogeneous,

and integrated spatial reasoning in answering a query regarding the spatial relationships

between objects from a database that contains less than complete spatial information. For

the purposes of these examples we are concerned only with qualitative spatial information,

i.e., the spatial relationships among the objects.

The first example illustrates the use of homogeneous spatial reasoning and shows how

it is used to evaluate the consistency of topological constraints specified in a query. The

procedure for evaluating consistency described in Chapter 3 (Section 3.5) applies also to

spatial query processing. It enables the detection of inconsistent queries over topological

spatial relations without having to perform expensive geometric computations over the

actual data. For example, the following query formulated in a spatial SQL dialect,

SELECT lake, name
FROM state, county, lake
WHERE state.geometry CONTAINS county.geometry and

county.geometry CONTAINS lake.geometry and
(state.geometry DISJOINT lake.geometry or
 state.geometry MEET lake.geometry)

can be immediately rejected since the constraints in the WHERE clause are inconsistent.

Table 7.1 shows the connectivity matrix for the above query using the fact that each object

is equal to itself and the universal relation in place of unspecified constraints.
state county lake

state equal contains disjoint
OR meet

county U equal contains
lake U U equal

Table 7.1 The connectivity matrix for the spatial SQL query.
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Evaluating the consistency of the description shows that the relation ′tstate,lake  is empty.

equal; disjoint or  meet( )( ) ∩ contains;contains( )

∩ disjoint or  meet( );equal( )

= disjoint,meet{ } ∩ contains{ } ∩ disjoint,meet{ }

= ∅

By evaluating queries for topological consistency, expensive computations and time

delays can be avoided for ill-formulated constraints.

The second example illustrates the use of heterogeneous and integrated spatial

reasoning. Heterogeneous spatial reasoning is useful when the topological relationship

between one or more pairs of objects is a containment relationship. Integrated spatial

reasoning is used when both the topological and directional relations between the objects

are known.

Consider the scene containing four distinct objects A, B, C, and D having twenty-four

binary topological and directional relations among them. Of these twenty-four relations

only six are specified and stored in the database. These are {A inside B ; B disjoint C, B

disjoint D, C meet D, B North C, C North D} and can be represented by the constraint

graph shown in Figure 7.3. The following queries are asked and in the given order: (i)

What is the topological relation between B and A?, (ii) What are the topological and

directional relations between A and C?, (iii) What is the directional relational between B

and D?, and (iv) What are the topological and directional relations between A and D?.
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A B

CD

disjoint

inside

meet
North

disjoint

North

Figure 7.3 The constraint graph for the spatial relations {A inside B ; B disjoint C, B
disjoint D, C meet D, B North C, C North D}.

• Query 1. What is the topological relation between B and A?

The topological relation A inside B is stored in the database. Hence this relation is

retrieved and the converse relation B contains A is returned as the response to the

query.

• Query 2. What are the topological and directional relations between A and C?

From the constraint graph (Figure 7.3) we see that the composition A inside B ; B

disjoint C permits the inference of the topological relation A disjoint C. There is no

path from A to C that is labeled by directional relations for each edge. Hence the only

recourse is the heterogeneous composition A inside B ; B North C which gives the

inferred directional relation A North C. The database is updated with these inferred

relations and the constraint graph is now as shown in Figure 7.4.

A B

CD

disjoint

inside

meet
North

disjoint

North

disjoint

North

Figure 7.4 The constraint graph after query 2.

• Query 3. What is the directional relational between B and D?



142

No directional relation between B and D is stored in the database but those between

objects B and C and C and D are stored. These relations are used in the composition

B North C ; C North D to infer the relation B North D which is then stored in the

database giving the constraint graph shown in Figure 7.5.

A B

CD

disjoint

inside

meet
North

disjoint

North

disjoint

North
North

Figure 7.5 The constraint graph after query 3.

• Query 4. What are the topological and directional relations between A and D?

From the constraint graph (Figure 7.5) we can see that the stored relations C meet D

and C North D and the inferred and subsequently stored relations A disjoint C and A

North C form a path that can be used to infer the spatial relations between A and D.

Since both the topological and directional relations are known, the integrated

composition A DisjointNorth C ; C MeetNorth D is used to infer A DisjointNorth D.

This inferred relation implies the topological relation A disjoint D and the directional

relation A North D. After updating the database the constraint graph is as shown in

Figure 7.6.

A B

CD

disjoint

inside

meet
North

disjoint

North

disjoint

North

disjoint

North

Figure 7.6 Constraint graph after query 4.
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Of the twenty-four topological and directional spatial relationships that exist for the

objects in the scene shown in Figure 7.7, pure homogeneous spatial reasoning requires at

least seven of them to be specified in order to infer the complete set of relations. Twelve

relations are inferred using the converseness property of topological and directional

relations. Five others can be inferred from the base set of seven specified relations which

are {A inside B ; B disjoint C, B disjoint D, C meet D, A North C, B North C, C North

D}. Of these seven, the directional relation A  North C  can be inferred using the

heterogeneous composition A inside B ; B North C.

A B

C

D

N

Figure 7.7 A situation where heterogeneous spatial reasoning is useful.

Therefore a qualitative spatial reasoner can effectively exploit the added reasoning

power provided by integrated and heterogeneous compositions whenever the situation

warrants it. The applicability of heterogeneous or integrated compositions is determined

using the constraint graph. The labeled edges specify which relationships are known.

Hence integrated compositions are used when, for example, both topological and

directional relations are given. Heterogeneous compositions are used when a containment

relationship exists between two objects or when one of the topological or directional

relations between the objects is not known. Determining which composition or which

sequences of composition to use, given a constraint network graph, is not a trivial

problem. We propose to investigate and evaluate efficient algorithms for handling this
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problem which has been much studied within the context of Artificial Intelligence research

on constraint-satisfaction (Guesgen and Hertzberg 1992; Tsang 1993; Meyer 1995).

7.5 Summary

We have described a framework for implementing a comprehensive qualitative spatial

reasoning system. The system consists of subsystems that can perform inferences on

individual types of spatial relations, such as topological relations, on combinations of

different types of relations, and on integrated relations formed as conjunctions of different

spatial relations such as topological and directional relations. The spatial reasoner does not

replace but rather complements an existing database and information system which uses

quantitative data and computes spatial relationships based on this data. The query handler

determines whether a query must be satisfied by a stored, inferred, or computed

relationship and takes the appropriate steps to answer the query. Updates, however, pose

a special problem since the possibility exists of conflicts from inconsistencies among

stored, inferred, and computed relationships. Further work is required in order to devise

strategies for resolving the various conflicts that can occur. We also show how and when

the qualitative spatial reasoner could utilize combined knowledge of different types of

spatial relations in order to reduce the number of stored relations in the database.
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Chapter 8

Conclusions and Future Work

This thesis dealt with computational methods that exploit qualitative spatial information for

making inferences about objects in a geographic database. The motivation was to enhance

Geographic Information Systems with intelligent mechanisms to deal with complex spatial

concepts and providing facilities for the representation of qualitative spatial information

and making inferences.

The qualitative spatial information we dealt with consisted of a system of qualitative

directions, such as {North, Northeast, East, Southeast, South, Southwest, West}, and

binary topological relations, such as {Disjoint, Meet, Overlap, CoveredBy, Inside,

Covers, Contains, Equal}. We defined the semantics of these spatial relations for

homogeneously two-dimensional simply connected objects. The definition of the spatial

relations also consists of composition tables that define the result of composing two spatial

relations of the same type to obtain a set of spatial relations of the same type. The

composition tables form the basis of the inference mechanism used throughout this thesis.

Spatial inference is the process of utilizing known spatial information and rules to deduce

new spatial information. Thus given a pair of spatial relations over a common object one

can infer the unspecified spatial relation or relations possible between the two objects

related to the common object by using the composition tables.

We investigated the inference of qualitative spatial information from stored base facts,

that is, finding those spatial relations that are implied by a particular configuration from a

set of objects and a set of spatial constraints relating these objects. In particular we
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examined the various types of inferencing over combined or integrated spatial relations and

developed the appropriate composition tables for topological and directional relations.

8.1 Major Results

The primary contributions of this thesis are:

• A clear definition of the types of spatial inferences that can be performed in a

comprehensive spatial reasoning system. The four types are (1) homogeneous spatial

reasoning about relations of the same type, (2) heterogeneous spatial reasoning about

pairs of relations of different types such as topological and directional relations, (3)

mixed spatial reasoning about spatial relations of one type from the composition of

pairs of spatial relations of a different type, and (4) integrated spatial reasoning about

conjunctions of topological and directional relations considered as integrated relations

such as the relation DisjointNorth denoting the spatial relations disjoint and North.

• A systematic consideration of each element of a comprehensive framework for spatial

reasoning in geographic information systems. We identify the missing elements and

develop the formalisms, namely composition tables for heterogeneous and integrated

spatial reasoning.

• Comparing the result of using a combination of homogeneous and heterogeneous

inferences with that of using an integrated inference mechanism. This comparison is

useful in determining which method should be used when all the necessary

information is available. Integrated spatial reasoning provides smaller sets of inferred

relations when the topological relation between object pairs is either disjoint or meet.

Heterogeneous reasoning is useful when one object contains another since all its

directional relations also hold for the contained object.
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• Identifying that all types of spatial reasoning, and their combinations, provide the

same set of inferred relations when the directional relation between objects are not

along the same axis. One such example is when the composition involves the

directions North and East or South and West.

• The design of a framework for comprehensive qualitative spatial reasoning that

allows spatial relations to be stored in a database. This facilitates the integration of

quantitative and qualitative spatial data handling mechanisms.

• Identification of the possible sources of data value conflicts when spatial

relationships are stored or inferred in addition to being computed from geometric

information in the database. The three main sources are: errors in the geometric

information, propagation of computational errors resulting in incorrect determination

of qualitative spatial relationships, and errors in stated qualitative spatial relationships

added to the database thereby resulting in contradictions among the stored facts.

8.2 Directions for Future Work

Beyond the particular results this thesis provides a starting point for much further work in

the area of integrated spatial reasoning. In this section we identify new research questions,

ranging from conceptual to implementations issues, that are complementary to the results

presented in this thesis. This research would enable the construction of a comprehensive

qualitative spatial reasoning system capable of handling large data sets consisting of both

quantitative and qualitative spatial information.

8.2.1 Extending the 9-intersection for Concave Regions

The 9-intersection method for characterizing binary topological spatial relationships is

valid for convex regions. An extension of the 9-intersection applies to regions with holes

(Egenhofer, Clementini, and Di Felice 1994b). A further generalization of the intersection-



148

based formalism is required, however, for dealing with regions of arbitrary shape

(Abdelmoty 1995). Each region is decomposed into a number of components and the

topological relationship between two regions is characterized by the values of the set

intersections of the components of the regions. The set of intersections can be represented

as a matrix and if every object has exactly the three components, interior, boundary, and

exterior then this representation is equivalent to the 9-intersection formalism.

The generality of this method lies in the fact that an object can have any number of

components. The components may be virtual in that they have no physical boundary that

delineates their extent. The advantage of this flexibility is that spatial relationships such as

geometrically-inside and partially-inside, as defined by Cui et al.(1993), can be defined

using an intersection matrix. This definition is useful for distinguishing qualitative spatial

relationships such as a ship being outside, partially-inside, or geometrically-inside a

harbor (Figure 8.1). These distinctions cannot be made using the 9-intersection formalism.
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h0

h3

h2

h1

s1

s2
s0

h0

h3

h2

h1

s1
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h0
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h1s outside h s partially-inside h s geometrically-inside h

h0 h1 h2 h3 h0 h1 h2 h3 h0 h1 h2 h3
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s1

s2

s0
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1 1 1 1

1 0 0 0

1 0 0 0

1 1 1 1

1 0 0 1

1 0 0 1

1 1 1 1

0 0 0 1

0 0 0 1

Figure 8.1 Component intersection method for distinguishing between outside, partially-
inside, and geometrically-inside.

Composition of topological relations, characterized by the above method, is derived

using the two rules (Equations 3.1 and 3.2) specified for the 9-intersection. Thus the
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above method can potentially replace the 9-intersection. Additional work is required,

however, before such a step can be taken.

Consider the case illustrated in Figure 8.1. The distinction between outside, partially-

inside, and geometrically-inside depends on the division of the exterior of the object h into

two components, h0 and h3. In order for a symbolic reasoner to distinguish between an

exterior that has been partitioned into virtual components and one that has not, there must

be an additional rule that specifies when a partition is made. For the above instance, an

appropriate rule could be that the exteriors of all concave objects are partitioned into

components. One component being the exterior of the convex hull of the object and the

rest being the portions of the exterior enclosed by the boundary of the convex hull and the

boundary of the object, such as component h3 above. Thus, while Abdelmoty and

colleagues proposed method is indeed a generalization of the 9-intersection, it requires a

clear specification of how an object should be partitioned into components and what these

components represent.

8.2.2 Integrating Qualitative Distances and other Spatial Relations

This thesis assumed a very simple model for qualitative distances since the focus of this

work was investigating the power of interval-based reasoning. Interval-based methods,

however, are inappropriate for representing and reasoning about qualitative distances.

Integrated topological and distance relations, such as DisjointFar or DisjointNear, cannot

be characterized by interval relations, therefore an alternative representation must be

devised.

The same representation scheme should also be suitable for characterizing directions

and qualitative distances between regions. The key problem, however, is defining distance

relations between extended objects since they may vary depending on the sizes of the

objects concerned. If the sizes of the regions are disregarded and the distance between two
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regions is defined as the distance between their centroids, nearest points, or furthest points

then inconsistencies may arise between inferred and computed distance relations. For

example, if the shortest distance between two regions defines their qualitative distance

relationship, then the facts Mexico is very close to the U.S. and Canada is very close to

the U.S. imply that Mexico is very close or close to Canada. Computing the shortest

distance between the two regions, however, may result in the qualitative distance far,

depending on the definition of the qualitative distances very close, close, and far.

Once a suitable method for characterizing distances between extended objects has been

devised, we need a means of characterizing integrated topological and distance relations

and integrated distance and direction relations between objects. Having the appropriate

representation for the three types of qualitative spatial relations will enable the construction

of a truly comprehensive spatial reasoning system.

8.2.3 Integrating Qualitative and Quantitative Spatial Information

• Identifying the specific problems in integrating quantitative and qualitative spatial

information with particular emphasis on maintaining and checking consistency.

The basic purpose of qualitative approaches to spatial data handling is to enhance the

ability of an information system to deal with less than complete information. Problems can

occur, however, when the qualitative information derived by inference either contradicts or

differs slightly from the qualitative information derived by computation on quantitative

information. The sources and causes of inconsistency include (1) lower resolution or

imprecision in the specified qualitative information as compared to the quantitative

information; (2) inaccuracies in the quantitative information such as the position of the

objects; and (3) mismatches between the model for spatial relations used the information

system and the model used by the information gatherer or specifier.
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The first source of inconsistency, lower resolution information, can lead to conflicts

between inferred and computed spatial relation information because the computational

process results in a single possibility, while the inference process results in a set of

possibilities. Resolving the conflict is fairly simple since the computed information is

expected to be a subset of the inferred information.

Computed information may not always be a subset of inferred information particularly

if the quantitative values used are near the “landmark,” i.e., border of a range, values for a

qualitative spatial relation. For example, assume that intervals of increasing size are used

to define qualitative distances. The intervals are [0, 100), [100, 1000), and [1000, 10000)

miles for the qualitative distances near, far, and very far respectively. Now assume for

points A, B, and C the distance between A and B is very close to but just above 0 miles

and that between B and C is very close but less than 100 miles and the points are collinear.

It is possible that using qualitative inference the distance between A and C is inferred to

fall in the range near but due to computational errors is computed to be in the range far.

Such conflicts are quite unlikely to occur but nevertheless must be identified and resolved

when they do occur.

The third source of inconsistency, difference in mental models, is particularly

problematic. An example of such a difference is when an information system uses a

projection-based system of directions, while a user thinks of directions in terms of a cone-

shaped system. The composition tables for the two systems differ and so will the inference

results. Based on the unexpected results users may believe the system to be unreliable.

There is no clear solution to this problem. Further research on mental models with

particular emphasis on determining if different classes of users have distinct models or if

there is a substantial commonalty in their mental models will help considerably in finding

effective solutions. An information system should also be reconfigurable or customizable
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such that the underlying qualitative spatial data and relation model is selectable and

modifiable by a domain expert.

8.3.4 Directional Relations Between Contained Objects

• A definition of directional relations between contained objects, that is, relations such

as Maine is in the Northeastern part of the United States, and their use in direction

reasoning.

The directional relations may be defined by partitioning the containing object. One

possibility would be to subdivide the object A into four subobjects with the centroid being

the meeting point. Then a contained object B  can be classified as being in the

Northeastern, Southeastern, Southwestern, or Northwestern part of A if one of the four

subdivisions of A completely contains B. If B spans subdivisions then the projection

based definition of North, South, East, and West can be used to classify B as being in the

Northern or whichever part of A. A second possibility would be to use a projection-based

segmentation with a neutral zone around the centroid of the container object A. This

definition will facilitate reasoning since the interval-pair composition mechanism used in

this work will be directly applicable.

8.3.5 Directions Between Overlapping Objects

• Reasoning about direction relations between overlapping objects.

This is useful in cases such as when object A overlaps with the Northern part of B and

C overlaps with the Southern part of B. If the definition of Northern and Southern is such

that there is no overlap between the parts then one can infer that A is North of B in the

above situation.

Segmentation of both objects and the definition of Northern, Northeastern and such

like parts of each object is one possible approach to the problem. The overlap relationship
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can then be specified with greater detail as in A overlaps the Northern part of B. Interval-

based reasoning is applicable here too, because the parts of each object are assumed to be

non-overlapping.

8.3.6 Hierarchical Spatial Reasoning

• A mechanism for hierarchical spatial reasoning. More specifically a means for

qualitative reasoning about spatial objects represented at the same or different levels

of detail or a containment hierarchy.

Reasoning about objects at the same and different levels of detail may be necessary for

instance when information about the directional relations between cities in a country such

as India is stored as follows. The country is divided into states, each having a capital city.

The directional relations among cities within each state are stored as are the directional

relations among the capital cities of all states. Thus the capital cities form the link between

the non-capital cities of the various states. Reasoning about the directional relation between

two non-capital cities in two different states is done as follows. The directional relation

between each city and the capital city of each state is known as is the directional relation

between the two capital cities. Thus a sequence of compositions of the three known

directional relations may permit the inference of the directional relational between the two

cities. For example, Calcutta the capital of West Bengal if Southeast of Lucknow, the

capital of Uttar Pradesh. Diamond Harbor in West Bengal is South of Calcutta. Dehra Dun

in Uttar Pradesh is Northeast of Lucknow. Given these facts the directional relation Dehra

Dun Northwest of Diamond Harbor can be inferred using hierarchical spatial reasoning.

Reasoning about objects in a containment hierarchy occurs, for example, when

inferring the directional relation between Athens, Greece and Paris, France based on

directional relations between cities in Europe versus inferring the directional relationship

between the two cities based on that of the two countries in which the cities exist.
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Constraint processing and constraint satisfaction form the basis of the reasoning

methods described above. Therefore special attention must be paid to constraint processing

techniques for spatial information.

8.3.7 Heuristics for Constraint Satisfaction

• Developing heuristics for improving the efficiency of constraint satisfaction

mechanisms used for inferring relations and evaluating consistency.

In particular, we need heuristics for ensuring locality of inference such that inferences

concerning cities in the state of Maine do not consider relationships between cities in

Oregon for example.

Constraint reasoning is done using a constraint network graph. Inferences or

consistency checks are done by first finding a sequence of edges that connect the reference

and primary objects between whom the spatial relationship must be determined. Numerous

paths may exist. Consistency requirements dictate that the inferred relations belong to the

intersection of the sets of relations inferred using each one of the possible paths. This may

not be required or desirable, however, if it can be assumed that local consistency implies

global consistency. In such cases we need heuristics that identify and use paths consisting

of objects within a certain neighborhood of the objects of interest. If the objects of interest

are not “close” then many intermediate objects must be found. The intermediate objects on

the selected paths should be such that they are “closer” to the objects of interest than

intermediate objects on discarded paths. The definition of close need not be based on a

metric value. One possible definition is that each pair of adjacent edges, and hence a

composition, should be chosen such that the cardinality of the set of inferred relations is

less than that for any other path. In particular if a composition at some intermediate stage

in a path results in a universal relation then that path should be discarded. Another thumb

rule, specific to topological spatial relations, could be to seek paths such that the
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compositions involve containment or overlap relationships rather than disjoint or meet

since compositions involving the latter typically result in a larger set of possibilities.

Determining suitable paths or constructing constraint graphs that reflect locality is made

easier if indexes exist on the spatial objects and relations in the database.

8.3.8 Indexing Schemes for Spatial Relations

• Evaluation of indexing schemes for stored spatial relations that allow retrieval of

relation objects based on the spatial relationship or on the geographic entities

involved in the relationship.

Indexes on the geographic or spatial entities are useful when constructing a constraint

graph that is not concerned with the complete database but rather a subset of objects that lie

within some neighborhood of interest. This is useful for restricting constraint processing

to objects and relations within a local area of the database, as in the case of reasoning

about cities in Maine while disregarding relations among cities in California. If objects are

clustered by spatial location then all objects on a certain set of disk pages can be retrieved

and form the nodes of the constraint graph. Next the index on stored spatial relations can

be used to label the edges in the graph.

The indexing mechanisms will differ for the spatial entities of various dimension or

shape and for the spatial relations. While spatial entities can be clustered based on location,

determining criteria for clustering of spatial relations is a complex problem. Another

problem with indexing spatial relations is deciding whether relations should be indexed

individually, as in the case of topological relations, or whether they should be indexed

jointly since they usually used in conjunction, as in the case of qualitative distance and

orientation relations. Thirdly, the indexing mechanisms may be different based on the type

of spatial relation involved such as topological, directional, or qualitative distance.
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