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Information integration is the combination of different types of information in a

framework so that it can be queried, retrieved, and manipulated. Integration of

geographic data has gained in importance because of the new possibilities arising from

the interconnected world and the increasing availability of geographic information.

Many times the need for information is so pressing that it does not matter if some

details are lost, as long as integration is achieved. To integrate information across

computerized information systems it is necessary first to have explicit formalizations

of the mental concepts that people have about the real world. Furthermore, these

concepts need to be grouped by communities in order to capture the basic agreements

that exist within different communities. The explicit formalization of the mental

models within a community is an ontology.

This thesis introduces a framework for the integration of geographic

information. We use ontologies as the foundation of this framework. By integrating

ontologies that are linked to sources of geographic information we allow for the

integration of geographic information based primarily on its meaning. Since the
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integration may occurs across different levels, we also create the basic mechanisms for

enabling integration across different levels of detail. The use of an ontology, translated

into an active, information-system component, leads Ontology-Driven Geographic

Information Systems.

The results of this thesis show that a model that incorporates hierarchies and

roles has the potential to integrate more information than models that do not

incorporate these concepts. We developed a methodology to evaluate the influence of

the use of roles and of hierarchical structures for representing ontologies on the

potential for information integration. The use of a hierarchical structure increases the

potential for information integration. The use of roles also improves the potential for

information integration, although to a much lesser extent than did the use of

hierarchies. The combined effect of roles and hierarchies had a more positive effect in

the potential for information integration than the use of roles alone or hierarchies

alone. These three combinations (hierarchies, roles, roles and hiearchies) gave better

results than the results using neither roles nor hierarchies.
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Chapter 1 

Introduction

Information integration is the combination of different types of information in a

framework so that it can be queried, retrieved, and manipulated. The specific case of

integration of geographic information is the main topic of this thesis. This integration

is usually done through an interface that acts as the integrator of information

originating from different places.

Integration of geographic information has gained in importance because of the

new possibilities arising from the interconnected world and the increasing availability

of geographic information. This new information originates from new spatial

information systems and also from new and sophisticated data collection technologies.

Now information integration is turning into a science (Wiederhold 1999), and it is

necessary to find innovative ways to make sense of the huge amount of information

available today.

Many times the need for information is so demanding that it does not matter if

some details are lost, as long as integration is achieved. For example, frequently

sufficient information exists to solve a problem, but integration is difficult to achieve

in a meaningful way, because the available information was collected by different

agents and with diverse purposes. Events such as the wild fires in and around Los

Alamos, New Mexico during the summer of 2000 require a dynamic integration of

geographic information. In such a case, a user may be interested in bodies of water

that can be used to support the fire extinguishing efforts. In an emergency, the user is

not interested in how the information is stored or which data model is being used, but

in the value of the information itself, in the meaning of the information. A user wants

to know simply and directly “where can I get water; fast?”
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For the user in question it does not matter if the information is stored in ArcInfo

or in GRASS, two popular GIS software packages. The availability of a growing

number of software packages and the ensuing variety of internal data models has

created a demand for mechanisms that allow the exchange of geographic information

stored in different geographic databases. Early attempts to obtain integration of

different GISs involved the direct translation of geographic data from one vendor

format into another. A variation of this practice is the use of a standard file format.

These formats can lead to information loss, as is often the case with the popular CAD-

based format DXF. Alternatives that avoid this problem are also available, but are

usually more complex and include the Spatial Data Transfer Standard (SDTS) (USGS

1998) and the Spatial Archive and Interchange Format (SAIF) (Sondheim et al. 1999).

Although standards for data exchange are necessary and useful for the transfer of large

amounts of data, they lack the capability of also transferring the meaning associated

with the piece of information when it was first created.

A common format alone is not enough to provide information integration based

on meaning (Mark 1993). A growing interest in the development of a common data

model led to new lines of research in geographic information integration. One of the

largest initiatives following this line of research is the OpenGISTM Consortium (McKee

and Buehler 1996). This association of software developers, government agencies, and

systems integrators aims at defining a set of requirements, standards, and

specifications to support GIS interoperability. The development of the OpenGIS data

model deals primarily with representations of geographic information. New

approaches are needed to step up to a higher level of abstraction where the more

valuable information about the meaning of the data can be handled. Neither a standard

data format nor a common data model allows for the transfer of the meaning of

information. The more complex issue of what is represented instead of how it is

represented needs to be addressed. For instance, the user looking for water in New

Mexico can obtain this information from the files of the Environmental Protection

Agency or from information stored by the New Mexico Parks and Recreation

Department. The important thing here is that these two agencies share the same
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concept of what a body of water is. An active agent that uses this concept can actively

look for this information, retrieve it, and make it available for the user.

For integration to be efficient and to deliver the kind of information that the user

is expecting, it is necessary to have an agreement on the meaning of words. In a

broader scope, it is necessary to reach an agreement about the meaning of the entities

of the geographic world. In this thesis the term semantics is used to refer to the basic

meaning of these entities. These entities are parts of a mental model that represents

concepts of the real world, or more specifically, of the geographic world. A concept

such as body of water carries with it a definition and the mental image that people

have of it.

What kinds of agreement can be reached among people? The question whether it

is possible to reach such an agreement among all humankind regarding the basic

entities of the world belongs to the realm of philosophy and is not part of this

investigation. We argue in this thesis that small agreements can be made within small

communities. Later, these agreements can be expanded to reach larger communities.

When this larger agreement occurs, part of the original meaning is lost, or at least

some level of detail is lost. For instance, inside a community of biology scholars, a

specific body of water in the state of New Mexico can be a lake that serves as the

habitat for a specific species and, therefore, it can have a special concept or name to

refer to it. Nonetheless, it is still a body of water, and when a biologist is working at a

more general level it is considered as a body of water and not as a lake. At this higher

level it is more likely that this real-world entity–body of water–can find a match with

the same concept in another community. So the biologist and some member of another

community can exchange information about bodies of water. The information will be

more general than when the body of water is seen as the habitat of a specific fish

species.

For this kind of integration of information to happen among computerized

information systems it is necessary first to have explicit formalizations of the mental

concepts that people have about the real world. Furthermore, these concepts need to be
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grouped by communities representing the basic agreements that exist within each

community. Once these mental models are explicitly formalized, mechanisms must be

created for generalizing a specific type of lake into a body of water or for adding

sufficient specification to the concept of body of water that it becomes a specific lake.

People perform such operations in their minds all the time. The requirement to

formalize them comes from the need to have these operations available as computer

implementations.

Such an explicit formalization of our mental models is usually called an

ontology. The basic description of the real things in the world, the description of what

would be the truth, is called Ontology (with an upper-case O). The result of making

explicit the agreement within communities is what the Artificial Intelligence

community calls ontology (with a lower-case o). Therefore, there is only one

Ontology, but many ontologies. This thesis uses the second option, because the goal is

to integrate the information that represents the view of diverse communities, each one

with its own ontology. We argue that these different views, expressed as ontologies,

can be integrated across different levels of detail.

In this thesis we introduce a framework for the integration of geographic

information. Ontologies are used as the foundation of this framework. By integrating

ontologies that are linked to sources of geographic information we create a mechanism

that allows geographic information to be integrated based primarily on its meaning.

Since the integration may occur across different levels, as in the case of a body of

water and a lake, we also create the basic mechanisms for changes of levels of detail.

The use of an ontology, translated into an active, information-system component,

leads to Ontology-Driven Information Systems (ODIS) (Guarino 1998) and, in the

specific case of GIS, it leads to what we call Ontology-Driven Geographic Information

Systems (ODGIS) (Fonseca and Egenhofer 1999).

1.1 Representing Ontologies: Hierarchies and Roles

The example of the biologist’s view of a lake presents a series of questions. First,

related to semantics, we can ask, “what does a body of water, a lake, a habitat mean?”
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or “how many communities, or better, which communities, share the same concept of

body of water?”

The communities that offer the information to share (i.e, the information

producers) or the communities that want access to information (i.e., the consumers of

information) each have an ontology. Each of these ontologies may be subdivided into

smaller ontologies. The level of detail of the ontologies is related to the level of detail

of the geographic information. Information should also be integrated at different levels

of detail. Therefore, two of the main questions of this thesis are “how can these

ontologies be combined, leading to information integration?” And, “what are the

mechanisms for change of levels inside ontologies?”

The goal of this thesis is to find a mechanism for integrating ontologies and,

consequently, for integrating geographic information. This mechanism should provide

a way to navigate at different levels in the ontology structure, because in order to

answer user queries it is necessary to combine information at different levels of detail

and consolidate information on a specific level.

Since ontologies are the foundation of the solution created here for geographic

information integration, how they are represented becomes a key factor in the solution.

One common solution is to use hierarchies to represent ontologies. Hierarchies are

also considered a good tool for representing geographic data models (Car and Frank

1994). Besides being similar to the way we organize the mental models of the world in

our minds (Langacker 1987), hierarchies also allow for two important mechanisms in

information integration: generalization and specialization. Many times it is necessary

to omit details of information in order to obtain a bigger picture of the situation. Other

times it is mandatory to do so, because part of the information is only available at a

low-level of detail. For instance, if a user wants to see bodies of water and lakes

together, and manipulate them, it is necessary to generalize lake to body of water so

that it can be handled together with bodies of water. Another solution would be to

specialize bodies of water by adding more specific information. Hierarchies can also

enable the sharing and reuse of knowledge. We can consider ontologies as repositories
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of knowledge, because they represent how a specific community understands part of

the world. Using a hierarchical representation for ontologies enables us to reuse

knowledge, because every time a new and more detailed entity is created from an

existing one it is necessary to add knowledge to previous existing knowledge. When

we specify an entity lake in an ontology, we can create it as a specialization of body of

water. In doing so we are using the knowledge of specialists who have early specified

what “body of water” means. The ramifications of reusing knowledge are great and

can improve systems specification by helping to avoid errors and misunderstandings.

Therefore, we choose to use hierarchies as the basic structure for representing

ontologies of the geographic world.

The choice of hierarchies as the representation of the ontologies leaves us with a

new problem, however. Many geographic objects are not static: they change over time.

In addition, people view the same geographic phenomenon with different eyes. The

biologist, for instance, looks at the lake as the habitat of a fish species. Nonetheless, it

is still a lake. For a Parks and Recreation Department the same entity is a lake, but it is

also a place for leisure activities. Or legislation might be passed that considers the

same lake as a protected area. For instance, the biologist’s lake can be created by

inheriting from a specification of lake in a hydrology ontology and from a previous

specification of habitat in an environmental ontology. One of the solutions for this

problem is the use of multiple inheritance. In multiple inheritance a new entity can be

created from more than one entity. Multiple inheritance has drawbacks, however. Any

system that uses multiple inheritance must solve problems such as name clashes, that

is, when features inherited from different classes have the same name (Meyer 1988).

Furthermore, the implementation and use of multiple inheritance is non-trivial

(Tempero and Biddle 1998). We chose to use objects with roles to represent the

diverse character of the geographic entities and to avoid the problems of multiple

inheritance. This way an entity is something, but can also play different roles. A lake

is always a lake, but it can play the role of a fish habitat or a role of a reference point.

Roles allow not only for the representation of multiple views of the same

phenomenon, but also for the representation of changes in time. The same building

that was a factory in the past must be remodeled to function as an office building. So it
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is always a building, but a building playing different roles over time. In our

framework, roles are the bridge between different levels of detail in an ontology

structure and for networking ontologies of different domains.

1.2 Goal and Hypothesis

This thesis introduces a framework based on ontologies to integrate geographic

information. One of the main characteristics of such a framework is its support for

information integration. The integration is accomplished through the integration of

ontologies. The entities in the ontologies are linked to the information sources;

therefore, the integration of ontologies leads to integration of associated information.

The integration of ontologies and the inherent issues associated with it are among the

main problems that drive the development of this thesis. Specifically, we are

investigating the following questions:

• What are the components that influence most the amount of geographic

information that can be integrated?

• How can the potential for information integration be measured?

The answer to the first question leads to the development of a framework for

geographic information systems based on ontologies. The framework stresses the

importance of hierarchies in the representation of models of the geographic world. The

framework also makes use of roles. Each entity in an ontology can play many roles.

The answer to the second question leads to the development of a method to evaluate

the potential for information integration when combining two ontologies. The

hypothesis of this thesis is:

A model that incorporates hierarchies and roles has a potential to integrate

more information than models that do not incorporate these concepts.

In the approach used by this thesis, information is integrated after the integration

of ontologies. Therefore, the approach to test the hypothesis is to measure the potential

for information integration after combining ontologies. We developed a method to
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evaluate the potential for information integration. This evaluation took into account

how the use of roles and hierarchies for representing ontologies influenced the

potential for information integration.

We conducted a simulation in which two randomly generated ontologies were

combined and the resulting potential for information integration was measured. The

measurements were made for ontologies that (1) used roles, (2) used roles and

hierarchies together, (3) used hierarchies alone, and (4) used no roles and no

hierarchies. We found that the hypothesis is supported by the analysis of the

simulation of the integration of two ontologies.

1.3 Scope of the Thesis

Goodchild et al. (1999b) define GIScience as the systematic study according to

scientific principles of the nature and properties of geographic information. GIScience

is mainly concerned with three areas, the individual, the system, and the society. This

thesis addresses the interface between individuals and systems. We start with the

individual, using a person’s perception of the geographic world formalized through

geo-ontologies. Then we move to computer implementations of ontologies and the

associated mechanisms to deal with them. The classes extracted from ontologies can

be used to build GIS applications in the system area.

This thesis focuses on the creation of mechanisms to be used in the integration

of ontologies. Since the ontologies are linked to the information sources, the

integration of ontologies will result in the integration of geographic information. We

develop a methodology for the development of geographic information systems based

on ontologies. Mechanisms that provide changes of level of detail are also explored in

this work. A measure of the potential for information integration when combining two

ontologies is also developed here.

This thesis does not attempt to create substantive theories of spatial objects and

their relations. Our intention is to offer a framework within which such theories can be

used to help the integration of geographic information. Throughout this thesis we use
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simplified theories that can be part of a more complete ontology of the geographic

world. Most of the examples are based on a subset of two ontologies, WordNet (Miller

1995) and SDTS (USGS 1998), which were combined in Rodríguez (2000).

1.4 Major Results

The major result of this thesis is the specification of a framework based on ontologies

for the integration of geographic information The framework allows integration of

information at different levels of detail. Since there is not a unifying concept of space

(Frank 1997) it is necessary to be able to deal with multiple views of the geographic

world. Therefore, it is necessary for GIS developers to be able to integrate different

ontologies. The solution presented here allows for the integration of ontologies and the

integration of information associated with the ontologies. The integration is

accomplished through the combination of classes derived from multiple ontologies. In

this way it is possible to create geographic entities that are able to represent the

complexity of the geographic world.

The possibility of having multiple views of a single geographic object is

provided by the use of hierarchies and roles to support the representation of

ontologies. Therefore, a geographic object can have more than one description. The

support of multiple interpretations of the same geographic area answers the questions

regarding different applications over the same region (Gahegan and Flack 1996). This

approach also addresses issues regarding manipulations of different levels of detail of

the same object by different applications (Hornsby 1999; Fonseca et al. 2000).

An experiment with the integration of randomly generated sets of ontologies

tested the hypothesis that a model that incorporates hierarchies and roles has a

potential to integrate more information than models that do not incorporate these

concepts. We evaluated the influence of the number of roles and the hierarchical

structure for representing ontologies on the potential for information integration. We

observed a strong influence of the number of roles in increasing the potential for

information integration. The use of a hierarchical structure also improved the potential

for information integration, although to a much lesser extent than did the use of roles.
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The combined effect of roles and hierarchies had a more positive effect in the potential

for information integration than the use of roles only or hierarchies only. All those

three combinations gave better results than the results using neither roles nor

hierarchies. These results supported the hypothesis.

1.5 Intended Audience

This thesis is intended for anyone interested in the integration of geographic

information, mainly based on its semantic aspect rather than the way data are stored or

represented geometrically. People working with the design and development of GIS,

and the development of ontology-driven information systems, including researchers

interested in geo-ontologies, geographic database design, and geographic object

models, will also find material of interest in this thesis. GIScientists concerned with

the individual and the system areas will find this thesis interesting, because it

addresses a subject on the interface between these two areas. Computer scientists

concerned with implementations of GIS and ontology-driven information systems

should also find in this thesis useful material regarding the use of ontologies as

components of information systems.

1.6 Thesis Organization

The remainder of this thesis is organized as follows.

Chapter 2 reviews related work on the use of object orientation and ontologies

for the computer representation of conceptualizations of the geographic world. A

classification of ontologies according to their level of details is presented. The use of

ontologies for information integration is also reviewed. Two implementations of

information systems that use ontologies are shown.

Chapter 3 introduces a multiple-ontology approach to geographic information

integration. The different kinds of ontology–phenomenological domain ontology and

application domain ontology–are introduced. The chapter also discusses vertical and
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horizontal navigation inside the framework. The operations of inheritance, inclusion,

and role extraction that are used for vertical and horizontal navigation are presented.

Chapter 4 describes a methodology for creating the framework focusing on the

aspects of knowledge generation and knowledge use. Then it shows how the

ontologies are specified by the geospatial communities. It presents how the knowledge

generated in the first phase of the system can be used to develop GIS applications. The

mechanism that allows a piece of information to change its level of detail is presented.

The different levels of detail of information and their relation to different levels of

ontologies are discussed here.

Chapter 5 discusses ontology integration and introduces the concepts of high-

level and low-level integration. Also presented in this chapter is a measure of the

potential for information integration when combining two ontologies. Two

experiments and the results supporting the hypothesis are described. The chapter also

concludes that the number of roles has a strong influence in increasing the potential

for information integration.

Chapter 6 discusses implementation issues and describes how the main

components can be implemented. The chapter analyzes the implementation options for

the main components of the framework. The use of Java as an implementation

language is discussed. The development of an ontology editor was suggested. The

ontology browser is presented. A query for three different entities in an ontology is

shown and the results are discussed.

Chapter 7 presents conclusions and future work. The chapter presents the main

contributions of the framework for the integration of geographic information and a

summary of the work. The methodology for evaluating the potential for information

integration when two ontologies are combined is reviewed. The effects of using roles

and hierarchies in the potential of geographic information that can be integrated are

discussed. Future research regarding further development of the framework is

discussed. New problems in ontology integration, geographic information retrieval on
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the web, ontology specification, ontology of actions, and ontology of images are

suggested as themes for future research.
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Chapter 2 

Objects and Ontologies for GIS Integration

Research on integration of databases can be traced back to the mid 1980s (Batini et al.

1986), and today it is widespread among the GIS community (Worboys and Deen

1991; Kashyap and Sheth 1996; Bishr 1997; Bishr 1998; Mena et al. 1998; Gahegan

1999; Goodchild et al. 1999a; Harvey 1999). The complexity and richness of

geographic information and the difficulty of its modeling raise specific issues for GIS

interoperability, such as the integration of different models of geographic entities (i.e.,

objects and fields ) and different computer representation of these entities (i.e., raster

and vector).

The literature shows many proposals for the integration of information, ranging

from federated databases with schema integration (Sheth and Larson 1990) and the use

of object orientation (Kent 1993; Papakonstantinou et al. 1995), to mediators

(Wiederhold 1991) and ontologies (Wiederhold 1994; Guarino 1998). The new

generation of information systems should be able to handle semantic heterogeneity in

making use of the amount of information available with the arrival of the Internet and

distributed computing (Sheth 1999). The semantics of information integration is

getting more attention from the research community (Worboys and Deen 1991; Kuhn

1994; Kashyap and Sheth 1996; Bishr 1997; Câmara et al. 1999; Gahegan 1999;

Harvey 1999; Sheth 1999; Rodríguez 2000). The support and use of multiple

ontologies should be a basic feature of modern information systems if they want to

support semantics in the integration of information. Ontologies can capture the

semantics of information, can also be represented in a formal language, and can be

used to store the related metadata enabling this way a semantic approach to

information integration.
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We argue that sophisticated structures, such as ontologies, are good candidates

for abstracting and modeling geographic information. Our solution is based on a

semantic approach using the concept of geographic entities (Nunes 1991). The next

section shows the importance of the use of an object model to model the geographic

world, followed by a discussion of GIS interoperability and the use of ontologies to

achieve it. Then we review system architectures for integrated GIS and ontology-

driven systems. The last section of this chapter presents a summary of the chapter.

2.1 An Object View of the World

The use of the object data model as the basic conceptualization of space has been

discussed before in the literature. The issue of defining geographic space is actually

the issue of defining and studying the geographic objects, their attributes, and

relationships (Nunes 1991). The object view of the spatial world (Egenhofer and Frank

1992) avoids problems such as the horizontal and vertical partitioning of data (Kuhn

1991), although objects can provide both, if necessary. Furthermore, an object

representation of the geographic world offers many views of a geographic entity.

Objects are also useful in zooming operations, because when we get closer to a scene,

instead of seeing enlarged objects we see different kinds of objects (Tanaka and

Ichikawa 1988; Volta and Egenhofer 1993; Timpf and Frank 1997). These operations

are performed through aggregation as in the case of a house constituted by walls and a

roof, or a block formed by land parcels (Kuhn 1991).

We model geographic phenomena using an object-oriented approach. This

approach should not be mistaken by the conceptualization for the representation of the

geographic world. The most accepted models for representation are the object and

field models (Couclelis 1992; Goodchild 1992). The object model represents the world

as a surface occupied by discrete, identifiable entities with a geometrical

representation and descriptive attributes. These objects are not necessarily related to a

specific geographic phenomenon and they can be constructed features, such as roads

and buildings.  The field model views geographic reality as a set of spatial

distributions over geographic space. Climate and vegetation cover are typical
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examples of geographic phenomena modeled as fields. Although this simple

dichotomy has been subject to criticism (Burrough and Frank 1996), it has proven to

be a useful frame of reference and has been adopted, with some variations, in the

design of the current generation of GIS technology (Câmara et al. 1996). We accept

this model and use it for the representation of geographic entities.

A class is the extension of the concept of an abstract type, a structure that

represents a single entity, describing both its information content and its behavior. A

class defines the structure and the set of operations that are common to a group of

objects (Meyer 1988). An instance, or object, represents an individual occurrence of a

certain class. While the class is the type definition, an instance is the data structure

represented in the memory of a computer and manipulated by a software system. In

this thesis, the terms object and instance are used interchangeably.

An object functions as a complex data structure that is capable of storing all of

its data, along with information about the necessary procedures to create, destroy, and

manipulate itself. In an object-oriented GIS, for instance, the separation of spatial and

non-spatial attributes is avoided because everything is stored together.

The ability to hide from the user the internal structure of an object is called

encapsulation. With encapsulation it is possible to manipulate the object’s data only

by using a set of predefined functions. This approach ensures data independence: the

internal implementations of the data structure used by the object can change without

influencing what the user perceives.

One of the most important concepts in object-oriented systems is inheritance.

Inheritance is a classification mechanism in which a class can be the subclass of

another (i.e., it incorporates the other’s features in addition to its own). Features can be

attributes, functions or rules. A subclass is called a descendant. A superclass is any

class that is up in the direct hierarchy. When a given class inherits directly from only

one superclass, it is called single inheritance; when a class inherits from more than

one immediate superclass, it is called multiple inheritance (Cardelli 1984). Multiple

inheritance is a controversial concept, with benefits and drawbacks. For instance, any
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system that uses multiple inheritance must provide an adequate solution to problems

such as name clashes (i.e., when features inherited from different classes have the

same name). Although the implementation and use of multiple inheritance is non-

trivial (Tempero and Biddle 1998), its use in geographic data modeling is essential

(Egenhofer and Frank 1992). In order to avoid the problems of multiple inheritance

and at the same time represent the diverse character of the geographic entities we

introduce the concept of roles.

2.2 Objects with Roles

An object is something–it has an identity (Hornsby 1999)–but it can play different

roles. Usually the notion of role is linked with change in time. An object is only one

thing but it can play different roles during its lifetime. The use of roles in object

orientation is reviewed in detail by Pernici (1990), Albano et al. (1993), Wong (1997),

and Steimann (2000). The use of roles in the specification of ontologies is discussed in

Guarino (2000a). The concept of role as interfaces as we use in the implementation of

this thesis is reviewed in Steimann (2001).

One of the most common use of roles is to represent changes in an object during

its lifetime. The typical example is of a person that plays the roles of a student, a

parent, and a member of a club. In this thesis roles also help to express different points

of view of the same phenomenon. One community may see a certain phenomenon X

and consider that X is a occurrence of an entity A. Another community may classify

the same phenomenon X as being B. For this second community, B may also play a

role of A.

The main objective of using roles in this thesis is to employ them as a tool to

connect different ontologies. Therefore we use here a more unrestrained definition of

roles than other authors (Guarino and Welty 2000a) who argue that roles should have

their own hierarchy and can only subsume or be subsumed by another role. Some

authors consider that an object can play a role only if the role is a subtype (Bock and

Odell 1998) or a supertype (Halbert and O’Brien 1987) of the object. This point of
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view is not adopted here, because for us a role is an entity. Each community has a

right to its own point of view and information must be integrated on that basis, hence

an use of a flexible specification of role. A more rigid specification would require, for

instance, a habitat to be a subclass of a geographical region. As a consequence, in a

biologist’s ontology, a habitat would not be an entity but only a role. Using a more

flexible specification of role we can allow a habitat to be an entity. In this specific

point of view, a habitat has an identity and all the attributes that characterize an entity

as being distinct from other entities. In our framework every role is an entity. An

entity plays roles that are entities in other ontologies.

For instance, for a biologist a habitat can play a role of a lake or a role of woods

near the lake. Some authors would argue that habitat is only a role and should be

always played by a geographic location. We do not agree with this argument. In our

framework a habitat is an entity in a biologist’s ontology. He/she can work with the

entity habitat having all the characteristics of a lake. He can also use a role of lake.

He/she can reuse the entity lake avoiding to redefine all of its properties again. Using

lake as a role instead of as a superclass gives the biologist more flexibility. He/she can

have habitat inherit from a more related entity in his/her biologic point of view, thus

avoiding too strong a geographic point of view. Another reason for using lake as a role

is for obtaining metadata and data from other sources.

 A role can be viewed in different ways (Steimann 2000). First, a role is viewed

as a named relationship. This point of view stresses that roles exist only within some

particular context. Second, a role is viewed a specialization or a generalization. The

problem with this point of view is that it contradicts Guarino’s (1992) and mixes the

dynamic nature of the role concept with the rigid properties of a type hierarchy.

Finally, roles can be represented as adjunct instances. In this point of view, roles are

considered totally dependent on the instances that play them and do not carry their

own identity. The object and its roles form an aggregate.

We choose here to use roles as adjunct instances for two main reasons. First, we

consider roles and types to be parts of separate and independent hierarchies. Second,
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the use of adjunct instances is more in accordance with our mechanism to extract roles

and with our implementation based on delegation. The extraction operation is one of

the features that roles can have.

The extraction of roles and the resulting generation of a new instance of a class

can be classified by what is called in the literature as object migration or dynamic

reclassification (Su 1991; Mendelzon et al. 1994). The term migration is used to

model the change from one role to another in systems in which class membership is

the main mechanism for assigning roles. Dynamic reclassification by role-based

systems enable objects to dynamically change types and classes membership. This

concept can be extended into multiple classification, (allowing an object to be an

instance of multiple classes), dynamic reclassification, (allowing an object to gain and

lose class memberships throughout the object’s lifetime), and dynamic restructuring,

(allowing an object’s structure to change dynamically throughout the object’s lifetime)

(Kuno and Rundensteiner 1996).

2.3 GIS Interoperability

Despite initiatives such as SDTS, SAIF, and OpenGIS, the use of data transfer

standards as the only worthwhile effort to achieve interoperability is not widely

accepted. Since widespread heterogeneity arises naturally from a free market of ideas

and products, it is difficult for standards to banish heterogeneity by decree

(Elmagarmid and Pu 1990). The use of semantic translators in dynamic approaches is

a more powerful solution for interoperability than the current approaches that promote

standards (Bishr 1997).

Another important question in GIS interoperability is semantics. Considering the

complex issue of the meaning of information and its description, three types of

heterogeneity are distinguished (Bishr 1998):

• semantic heterogeneity, in which a fact can have more than one description

or interpretation;
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• schematic heterogeneity, in which the same object in the real word is

represented using different concepts in a database; and

• syntactic heterogeneity, in which the databases use different paradigms.

A set of rules and constraints should be attached to the object class definitions in

order to overcome semantic heterogeneity, which should be solved before schematic

and syntactic heterogeneity (Bishr 1998).

The idea of a virtual space where different conceptualizations would meet is also

discussed in the literature. The Virtual DataBase system (VDB) is an architecture to

integrate and retrieve information from multiple component systems, distributing the

processing load through the global front end and the components. VDB is based on an

object-oriented model and uses the schema integration approach (Abel et al. 1998).

The Virtual Data Set (VDS) uses a well-defined canonical interface to access multiple

spatial databases. VDS corresponds to a protocol between the data consumer and the

data producer. VDS is also based on the object orientation paradigm (Vckovski 1997).

The concept of object orientation to provide interoperability can be used either

in the implementation or in the modeling phase of system development. The ability to

represent complex data structures and behavioral specifications is seen as a reason for

using object technology in interoperation (Soley and Kent 1995). Object orientation

has some features that are useful to enhance information compatibility, such as the use

of object identity to link different sources and reconciliation of different levels of

abstraction through subtyping (Kent 1993). Clients prefer to receive information in an

object-oriented format when integrating multiple heterogeneous sources, because

objects enable aggregation of information into meaningful units. These units can have

hierarchical linkages to other classes and so can provide a valid model even for a

complex world (Papakonstantinou et al. 1995; Wiederhold 1998). Other lines of

research in interoperability consider different solutions such as the use of ontologies as

the common point among diverse user communities (Wiederhold 1994). The use of

ontologies to enable interoperation is the theme of the next section.
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2.4 Ontology and Interoperation

The foundation of ODGIS is the willingness of users to share information. The reasons

to do so can be economic or regulatory. Reusing information can dramatically

decrease the costs of developing a GIS project and can also be a positive factor in the

success of a project (Huxhold 1991). Since it is difficult to lower these costs it is better

to focus research on sharing the knowledge already acquired. Sharing is a way to build

qualitatively larger knowledge-based systems, because we can rely on previous labor

and experience (Neches et al. 1991). Many high-level government institutions

recommend the use of mechanisms that enhance the possibility of information sharing

(Arctur et al. 1998).

For interoperability to take place, an agreement on the terminology in the shared

area must occur through the definition of an ontology for each domain (Wiederhold

1994). Ontologies are crucial for knowledge interoperation, and they can serve as the

embodiment of a consensus reached by a professional community (Farquhar et al.

1996). Sharing the same ontology is a pre-condition to information sharing and

integration. There should be an ontological commitment revealing the agreement

between the generic user querying the database and the database administrator that

made the information available (Kashyap and Sheth 1996). An alternative to an

explicit ontological commitment is the semantic approach. One solution is the

derivation of a global schema to overcome the absence of a common shared ontology

through the use of clustering techniques. This way the solution of semantic

heterogeneity is done through description logic (Bergamaschi et al. 1998). Another

semantic approach is a similarity assessment among ontologies using a feature-

matching process and semantic distance calculations (Rodríguez et al. 1999). In

ODGIS, the agreement is expressed through the use of elected ontologies that are used

to derive new ontologies, from which the software components are derived.

Who are the producers and users of the ontologies used in ontology-driven

information systems? We can group the users of geographic information into

geospatial information communities (GIC) according to their conceptualizations of the

world. The definition of a GIC should not be restricted to users that share the same
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data model. Hence we can use the definition of a GIC as a group of users that share an

ontology (Bishr 1997). In the solution presented here, we allow the GIC to commit to

several ontologies. The users have means to share information through the use of

common classes derived from ontologies.

Semantic translators are one of the means to provide interoperability among and

within GICs. Semantic translators, also called mediators (Wiederhold 1991), use a

common ontology library as a measure of semantic similarity. Dynamic approaches

for information sharing, as provided by semantic translators, are more powerful than

the current approaches that promote standards (Bishr 1997). Mediation is also

proposed as the principal means to resolve semantic heterogeneity through an

incremental domain approach that brings domains together when needed. Mediators

look for geographic information and translate it into a format understandable by the

end user. The mediators are pieces of software with embedded knowledge. Experts

build the mediators by putting their knowledge into them and keeping them up to date

(Wiederhold 1994).

2.5 Ontology Levels

In the ODGIS architecture there are different levels of ontologies. Accordingly, there

are also different levels of information detail. There is a distinction is between coarse

and fine-grained ontologies. A coarse ontology consists of a minimal number of

axioms and is intended to be shared by users that already agree on a conceptualization

of the world. A fine-grained ontology needs a very expressive language and has a

large number of axioms. Coarse ontologies are more likely to be shareable and should

be used on-line to support the system’s functionality. On the other hand, fine-grained

ontologies should be used off-line, because they are accessed eventually for reference

purposes. Our solution allows the user to incrementally go from coarse to fine-grained

ontologies on-line, thus eliminating the division between on-line and off-line

ontologies (Guarino 1998).

In this thesis we use the term low-level ontologies for fine ontologies and they

represent very detailed information and high-level ontologies for coarse ontologies and
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they represent more general information. Thus, if a user is browsing high-level

ontologies he or she should expect to find less detailed information. We propose that

the creation of more detailed ontologies should be based on the high-level ontologies,

such that each new ontology level incorporates the knowledge present in the higher

level. These new ontologies are more detailed, because they refine general

descriptions of the level from which they inherit.

  Ontologies are classified according to their dependence on a specific task or

point of view (Guarino 1997):

• Top-level ontologies describe very general concepts. In ODGIS a top-level

ontology describes a general concept of space. For instance, a theory

describing parts and wholes, and their relation to topology, called

mereotopology (Smith 1995), is at this level.

• Domain ontologies describe the vocabulary related to a generic domain,

which in ODGIS can be remote sensing or the urban environment.

• Task ontologies describe a task or activity, such as image interpretation or

noise pollution assessment in ODGIS.

• Application ontologies describe concepts depending on both a particular

domain and a task, and are usually a specialization of them. In ODGIS these

ontologies are created from the combination of high-level ontologies. They

represent the user needs regarding a specific application, such as an

assessment of lobster abundance in the Gulf of Maine.

Representing geographic entities–either constructed features or natural

differentiations on the surface of the earth–is a complex task. They are not merely

located in space, they are tied intrinsically to space (Smith and Mark 1998). For

instance, boundaries that seem simple can in fact be very complex. An example is the

contrast between soil boundaries, which are fuzzy, and land parcels whose boundaries

are crisp. Users who are developing an application can make use of the accumulated

knowledge of experts that have specified an ontology of boundaries instead of dealing
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with these complex issues by themselves. The same is true for ontologies that deal

with geometric representations, land parcels, and environmental studies. Users should

be able to create new ontologies building on existing ontologies whenever possible.

An example of a backbone taxonomy, which represents the most important properties

in a high-level ontology is given in Figure 2-1 (Guarino and Welty 2000b).

Entity

Location Physical
object

Living
being

Amount
of

matter Social
entity

Group

Geographical
region

Fruit
Animal Country

Group
of

people

Apple
Lepidopteran Vertebrate

Organization

PersonCaterpillar Butterfly

Figure 2-1 A basic taxonomy, from Guarino and Welty (2000).

If a local government is starting a GIS project based on ontologies, we can use a

basic urban ontology such as (Huxhold and Levinsohn 1995):

• The geographic coverage of the local government area

• The people within the area

• The buildings and facilities
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• The business activities

• The land itself

Instead of defining these four main branches in detail, the users could use the

backbone taxonomy introduced before and from it, start their own ontology. A sample

result can be seen in Figure 2-2 where the class People is derived from the class

Person, Business is derived from Organization, and Land is derived from

Geographical region. At the same time, if the urban ontology is general enough, it can

be used as the foundation for other local government projects.
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Group

Geographical
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Group
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people

Apple
Lepidopteran Vertebrate
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PersonCaterpillar Butterfly

People

Land

Business

Figure 2-2 Deriving new classes from a high-level ontology.

An application developer can combine classes from diverse ontologies and

create new classes that represent user needs. In this way, a class that represents
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Building in the urban ontology can be built from Physical object in the basic

taxonomy. At the same time, Building can be seen as a location and can also hold a

social entity or an organization. Thus, Building can play the roles of Location and

Organization extracted from the urban ontology. So the real class is Building, but it

plays many roles (Figure 2-3) that together give the class its unique characteristics.
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Figure 2-3 A class can play many roles.

2.6 Ontology-Based System Architectures

The new generation of information systems should be able to solve semantic

heterogeneity. The support and use of multiple ontologies should be a basic feature of

the modern information systems. We review here Ontolingua, a language to specify
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ontologies which can be used for these kinds of systems and OBSERVER, an

information retrieval system based on ontologies.

2.6.1 Ontolingua

A mechanism to edit, browse, translate, and reuse ontologies is presented in the

Ontolingua Server (Farquhar et al. 1996), which is based on Ontolingua (Gruber

1992), a language to specify ontologies. The syntax and semantics of Ontolingua

definitions are based on the Knowledge Interchange Format (KIF) (Genesereth and

Fikes 1992). KIF is a monotonic, first-order predicate calculus with a simple syntax

and support for reasoning about relations. The approach used in Ontolingua is to

translate ontologies specified in a standard, system-independent form into specific

language representations. The Ontolingua Server allows multiple users to collaborate

on ontology construction in a shared section. It also accepts queries from remote

applications. The Ontolingua translation strategy allows the use of an ontology both in

the development and in the production phases of a system. The translation targets can

be representations in CORBA interface definition language (IDL) (OMG 1991),

Prolog (Clocksin and Mellish 1981), Epikit (Genesereth 1990), or KIF. An excerpt of

a graphic representation of an urban ontology is shown in Figure 2-4, an example of

the ontology Simple-Geometry in Ontolingua is given in Figure 2-5, and a description

of the ontology Quantity-Space inside the ontology Simple-Geometry using the

language LISP generated by Ontolingua is given in Figure 2-6.
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Figure 2-4 A graphic representation of an urban ontology in Ontolingua.
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Ontology SIMPLE-GEOMETRY
* Last modified: Tuesday, 2 September 1997
* Generality: High
* Maturity: High
* I/O Syntax: Case Insensitive
* Private by default: No
* Source code: simple-geometry.lisp
Ontology documentation:
This ontology attempts to capture basic geometric concepts used in mechanical
systems modelling. These concepts include points, frames, position, and orientation
but exclude notions of extent.
Summary of Simple-Geometry:
Simple-Geometry includes the following ontologies:
  3d-Tensor-Quantities
  Quantity-Spaces
  Standard-Dimensions
No ontologies include Simple-Geometry.
Class hierarchy (3 classes defined):
    3d-Direction-Cosine
    3d-Frame
    3d-Point
No relations defined.
4 functions defined:
  Distance
  Orientation
  Position
  Simple-Rotation
1 individual defined:
  3d-Length-Space
44 unnamed axioms defined.
No named axioms defined.

Figure 2-5 An example of the ontology Simple-Geometry in Ontolingua.
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(in-package “ONTOLINGUA-USER”)
(define-ontology quantity-spaces (physical-quantities)
  “A quantity-space is a set that has the property that a distance function is
defined for any two elements in the set.  In addition, the range of the distance
function is a subclass of the class of scalar quantities. This ontology defines
the class of quantity-space, and the associated relations POINT-IN,
DISTANCE. It is agnostic about the semantics of the points -- they needn’t
be spatial things or of any particular dimensionality.”
  :maturity :moderate
  :generality :moderate
  :issues (“Copyright (c) 1994 Greg R. Olsen and Thomas R. Gruber”

   (:see-also “The EngMath paper on line“)))
(in-ontology ‘quantity-spaces)
(define-class QUANTITY-SPACE (?s)
“A quantity-space is a set that has the property that a distance function is
defined for any two elements in the set.  In addition, the range of the distance
function is a subclass of the class of scalar quantities.”
  :iff-def
    (and (set ?s)

 (forall (?x1 ?x2)
 (=> (and (member ?x1 ?s)

  (member ?x2 ?s))
     (exists (?d)

   (and
   (= ?d (distance ?x1 ?x2))
   (scalar-quantity@scalar-quantities ?d)))))))

Figure 2-6 The description of the ontology Quantity-Space in LISP.

2.6.2 OBSERVER

OBSERVER (Kashyap and Sheth 1996; Mena et al. 1996; Mena et al. 1998) is an

architecture for query processing in global information systems that supports

interoperation across ontologies. It focuses on information content and semantics, and

employs a loosely-coupled approach to match different vocabularies used to describe

similar information across domains. Instead of integrating pre-existing ontologies,

OBSERVER uses synonym relationships between terms across ontologies. Synonymy,

hyponymy, and hypernymy are semantic relations defined between words and word

senses. Synonymy (syn same, onyma name) is a symmetric relation between word

forms. Hyponymy (sub-name) and its inverse, hypernymy (super-name), are transitive

relations between sets of synonyms. This semantic relation is usually organized in a
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hierarchical structure (Miller 1995). OBSERVER uses hyponymy and hypernymy to

translate terms that are not synonymous in different ontologies. It substitutes non-

translated terms with the intersection of their immediate parents or the union of the

immediate children. The approach used here is to pursue the definition of a method

that finds similar entity classes that can link entities in independent databases to

achieve information integration (Figure 2-7). Unlike OBSERVER, other solutions do

not create new ontologies, but create links between similar entities in distinct

ontologies (Rodríguez 2000).
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S
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Figure 2-7 Hyponym and synonym relationships, from Rodríguez (2000).

The basic components of OBSERVER are the query processor, the ontology

server, and the interontology relationships manager. The user query is based on an
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ontology chosen by the user. The query processor matches the terms in the user

ontology to the system component ontologies. The ontology server provides

information about ontologies using mappings between ontologies and the structures in

data repositories. The interontology relationships manager provides the synonym

relationships.

2.7 Summary

This chapter reviewed related work on the use of object orientation and ontologies for

the computer representation of conceptualizations of the geographic world. The

different types of ontologies were presented. The use of ontologies for information

integration was also reviewed. Two implementations of information systems that use

ontologies were shown.

The next chapter introduces a multiple-ontology approach to geographic

information integration. Two kinds of ontology, a phenomenological domain ontology

and an application domain ontology, are introduced. The chapter also discusses

vertical and horizontal navigation inside the framework and the operations of

inheritance, inclusion, and role extraction that are used for navigation are presented.
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Chapter 3 

A Conceptual Framework for Geographic

Information Integration

In order to understand how people see the world and how ultimately the mental

conceptualizations of the apprehended geographic features are represented in a

computer system we must develop abstraction paradigms. The result of the abstraction

process is a general view of the process that goes from the real object to its computer

representation. The use of different levels of abstraction allows the development of

specific tools for the different types of problems at each level. In this chapter, we

introduce a conceptual framework for the understanding and representation of the

geographic world. The main components are five universes and the operations that

connect them. The concepts presented in this chapter give the foundations for the

understanding of ontology-driven geographic information systems.

We introduce the five-universes paradigm, which builds on the four-universes

paradigm (Gomes and Velho 1995), by adding new components and explaining some

of the concepts from the point of view of the geographic world. Our main

contributions to the four-universes paradigm are:

• the addition of the cognitive universe;

• the connection of the cognitive universe to the logical universe; and

• the use of ontologies as the key component of the logical universe.

In the next section we explain how the geographic world can be understood

using the five-universes paradigm and which are the operations that interconnect the

universes. Then we introduce the multiple-ontology approach for ontology-driven
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geographic information systems. This approach enables the reuse of knowledge and a

better understanding of the geographic phenomena. Two kinds of ontologies for the

geographic world are introduced. One is called Phenomenological Domain Ontology

and aims at capturing the different dimensions and internal properties of the

geographic phenomena. The other type is concerned with description of specific

subjects and tasks and is called the Application Domain Ontology. The multi-ontology

approach leads to bi-directional integration of geographic information. The chapter’s

summary is the last section.

3.1 An Abstraction Paradigm for the Geographic World

The understanding of the geographic world, with the final objective of having a

computer representation, has been the subject of much study in the last decade. In

assembling our view of the world we build on previous explanations of how people

see and mentally represent the world (Requicha 1980; Couclelis 1992; Goodchild

1992; Gomes and Velho 1995). Each of the five levels in our abstraction model deals

with conceptual characteristics of the geographic phenomena of the real world. The

first two levels, the physical level and the cognitive level, are only briefly described

here. This thesis is concerned mainly with the three last levels, the logical level, the

representation level, and the implementation level. Once one level is understood, we

are able to face the problems of the next level.

The five universes are the physical universe , the cognitive universe , the logical

universe, the representation universe, and the implementation universe (Figure 3-1). A

geographic phenomenon in the real world is captured by the cognitive system of a

person and is classified and stored in the human mind. The representation of the real

world object in the human cognitive system is done within the cognitive universe. The

formalization of the conceptualizations of the world in the human mind gives us

explicit formal structures, the ontologies that are part of the logical universe. When we

take into account the particularities of the spatial world–for instance, reference

systems and conceptualizations such as fields and objects–we are dealing with the

representation universe. The shift to the implementation universe is made through the
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translation of the components of the representation universe into computer language

structures.

Implementation

Lake

Logical

Physical

Representation

Cognitive

Vision

Formalization

Mediation

Objects Fields

Low-level

High-level

Java
Classes

Translation

Figure 3-1 The five-universe-paradigm.

The physical universe is the real world with everything that people are capable

of perceiving. The real objects are there. Vegetation, rivers, and mountains are part of

the real-world phenomena that we are interested in. The process called vision (Marr

1982) is the connection between the physical universe and the cognitive universe.

Through vision, images that correspond to real world objects are formed inside

people’s mind. These images in the cognitive universe are representations of the

entities in the physical universe. But these images are not merely stored in the mind in

a haphazard way; they are organized in a logical framework (Bryant and Tversky
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1992). When this framework is made explicit using logical methods, we obtain

ontologies (Guarino and Welty 2000a). They are the formal representations of the

logical schemes of the human mind and they exist in the logical universe.

The logical universe contains two types of ontologies. High-level ontologies

contain the more general theories of the world, such as the general concepts of a

theory of natural geography. Low-level ontologies are specializations of more general

ontologies. They can be detailed descriptions of specific domains and the tasks that

deal with these domains. The logical universe is connected to the representation

universe by semantic mediators.

The representation universe is where a finite symbolic description of the

elements in the logical universe is made so that we can apply operations on them. Here

the ontologies of objects and fields are defined as the basic conceptualizations of the

geographic world. Also here is the place to deal with all the concerns related to how

these concepts are captured from the real world and how they are measured. The

ontologies present at the representation level and at the logical level can be translated

into computer languages, generating classes that belong to the implementation

universe.

The implementation universe can include elements, such as algorithms in

computer language, vector and raster data structures, and classes in object-oriented

languages. In this thesis we deal only with classes that are the result from the

translation of entities in ontologies.

3.2 A Multiple-Ontology Approach

Ontologies for the geographic world, the geo-ontologies, should be divided in two

types. One type is the Phenomenological Domain Ontology (PDO). This ontology

captures the different dimensions and internal properties of the geographic

phenomena. This specific ontology is distinct and independent from the other type, the

Application Domain Ontology  (ADO). This ontology is concerned with description of

specific subjects and tasks that the GI scientists use as a source of information.
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Since the PDO is concerned with how the geographic phenomenon can be

captured and represented by computer systems, it is located in the representation

universe. The ADO is part of the logical universe because, it deals with the description

of the phenomenon itself, where it fits in the world, and how it can be best described.

The connection between PDO and ADO is made by semantic mediators (Figure 3-2).

Phenomenological
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Ontology

Application
Domain

Ontology

Method
Ontology

Measurement
Ontology

Subject
Ontology

Task
Ontology

Semantic
Mediator

Logical
Universe

Representation
Universe

Figure 3-2 Phenomenological and application ontologies

One of the objectives of separating geo-ontologies in PDO and ADO is to

emphasize the detection of spatio-temporal configurations of geographic phenomena.

In a single time instance, the set of matchings of a concept from the application

domain ontology to an instance of a concept on the phenomenological ontology is

called a spatial configuration . Given a temporal sequence of geographic phenomena,

the set of spatial configurations is called a spatio-temporal configuration. This idea is

consistent with the identity-based modeling of change (Hornsby 1999), where object

identity is proposed as a central notion for modeling spatial-temporal change. The
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framework allows an object, identified as part of the user ontology, to be related to

different descriptions in the PDO, because of changes in the object during a time

series. Consider for example mapping urban sprawl for a city by analyzing a 20-year

time series of LANDSAT images. The geometries that describe the evolution of the

urban boundaries of the city change annually, yet the identity of the object remains the

same.

Another objective is to be able to reuse elements of the same ontoloy in different

applications. With this separation we make clear what are the specific methods and

what are the more general ones. The specific methods can be reused for similar

phenomena, while the general ones have a broader use. A simple example is the case

of detecting or extracting line segments from a series of images. Line segment is a

concept that is part of the structural ontology of the image. It has clearly defined

geometric properties. These lines can take different roles in domain ontologies of

different user communities. Another example is that all the methods for spatial

analysis over polygons available on the PDO side can be reused for every application

on the ADO side.

Each geographic object is unique as a concept in the logical universe and above.

Although we choose different conceptualizations to represent it–objects and fields–its

nature does not change. For instance, a reservoir is a reservoir, either represented by

an aerial photograph, a vector representation, or a digital terrain model. Figure 3-3

shows a reservoir represented in three different ways.
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Figure 3-3 Three different representations of reservoir.

The representations are located in the representation universe, while the concept

and its formal description are located in the logical universe. The concept reservoir is

described only once in a high-level ontology, for instance a natural-geography

ontology but it can be linked to more than one element in the PDO, (i.e., one for each

of the different representations mentioned above).

3.2.1 Phenomenological Domain Ontology

An ontology of the geographic phenomena at the representation level has special

characteristics, such as dependence on measurement, intrinsic properties, and reuse of

algorithmic knowledge.
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There is a strong dependency on the measurement process for both objects and

fields. Objects recorded as collection of points can carry several differences. Points

collected with a Global Positioning System (GPS) receiver need post-collection

processing that can enhance the precision or dismiss some of the points (Figure 3-4).

                                (a)   (b)

Figure 3-4 Lines and tracks of an athletic field collected with a GPS receiver

(a) before and (b) after processing.

Data acquired by different sensors will also need different processing and give

different results of the same phenomenon. Figure 3-5 shows an area in the Brazilian

Amazon forest obtained by LANDSAT TM (optical) and RADARSAT L-band

(radar). In the LANDSAT image it is possible to claim the existence of world objects

(e.g., forest, as well as deforested and regrowth areas), whereas in the radar image is it

more appropriate to consider the existence of land cover patterns, which result in

different textures in the image. In fact, a large number of radar image classification

algorithms are texture-based relying on the detection of statistical and structural

texture measures.
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Figure 3-5 Two images of the same area captured differently.

Regarding intrinsic properties we argue that remotely sensed imagery cannot be

reduced to the case of a single-date, single-band raster geometry, since most real-

world uses of remotely sensed data rely on their temporal and multispectral nature.

Image ontologies should consider their intrinsic properties: temporal cycle,

multispectral capability, and spectral resolution.

Reusing algorithmic knowledge is important, because there is a significant

amount of knowledge for different applications in the form of image processing

algorithms, such as principal components, maximum-likelihood classifier, and texture

measures. Applications that use the same kind of data will be able to reuse previously

acquired knowledge.

The phenomenological domain ontology is measurement-dependent and has two

distinct, but interrelated components:

• A measurement ontology describes the physical process of recording a geographic

phenomenon. This recording process generates fields and objects. Regarding

fields, there is the example of images where we are interested in expressing

knowledge about the relation between energy reflected by the Earth’s surface and

the measurements obtained by the sensor. Typical concepts here include spectral

response, backscatter, and Lambertian target. For objects, we are interested in the

techniques for collecting the points, lines, and polygons that represent them.

Procedures regarding precision and accuracy are also described here.
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• A method ontology consists of a set of algorithms and data structures, which

represent reusable knowledge to operate on the measured phenomenon. Sometimes

they are in the form of processing techniques that can be used to transform the

measured phenomenon from the representation level (e.g., by filtering or

enhancement for images and geocoding for lines or polygons) to the logical level,

or to perform feature extraction, segmentation, and classification in images leading

also to the logical level. The operations regarding topology are also at this level,

for instance, point-in-polygon operations, and the 9-intersection model.

The algorithms that are part of the method ontology perform transformations

from the representation level to the logical level through a process called structural

identification. When applied to an image (or a set of images), this process results in a

set of structures strongly related to the measurement device properties and its

interaction with the physical landscape. These structures may be geometric (e.g.,

regions extracted by a segmentation procedure) or functional (e.g., NDVI estimates

obtained from NOAA/AVHRR series of images). When applied to objects, the result

is the identification of the object and the association of this object to a meaning. For

instance, what was just a polygon then becomes a lake, if it is associated with the

class lake in an ontology present at the logical level.

3.2.2 Application Domain Ontology

Although the phenomenological ontologies are observer-independent, the application

domain ontologies are not, because the domain scientists do their work using concepts

from their knowledge domains. Within the application domain ontology we

distinguish between two kinds of ontology: a subject ontology, which describes the

vocabulary related to a generic domain (e.g., geology or ecology), and a task ontology,

which are specializations of a domain ontology, describing a task or activity within a

domain, such as water pollution assessment for ecological studies.

The concepts in the ADO are able to deal with the phenomena independent of

representation. For instance, take the example of a study of homicide rates in the city

of São Paulo, Brazil (Figure 3-6). The study itself and its ontology are independent of
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how the phenomenon is spatially represented. In this case the available data was

registered by regions. The researcher wanted to work with a field-like distribution,

because the study made more sense with a smooth distribution. Therefore, the

researcher used geostatistics techniques to obtain a new map with the same data but

represented differently.

Figure 3-6 Three representations of the same phenomenon.

3.2.3 Semantic Mediators

The domain and task ontologies of the domain scientist include two different types of

spatial entities: classes of identifiable objects that are modeled as objects and classes

of spatially continuous phenomena that are modeled as fields. The relation between

the phenomenological domain ontology and the application domain ontology is

achieved by means of a semantic mediator, which performs two basic functions, i.e.,

selection and identification.

Selection is the operation of choosing the right methods that perform the

identification. Image processing and pattern recognition algorithms described in the

method ontology are needed to extract the desired structures from the image or to

transform the physical values (i.e., pixel) into structures described in the structural

ontology to obtain the desired information. For objects, this process is usually known

as geocoding. For instance, to associate a set of centerlines to their correct codes there
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is a series of methods, such as associating by individual addresses, zipcodes or street

names.

Identification is the process of transforming generic entities present at the

representation level, such as generic objects or images, into objects or image regions

that have an identity. This process is a mapping from concepts on the subject ontology

onto structures extracted from the image set. For example, a subject ontology may

contain a concept of a road. Using the semantic mediator, we may try to identify linear

structures in the representation level that correspond to roads at the application domain

ontology (logical level). It is necessary to find the appropriate entities in the ontologies

available at the logical level and make the association between them and the specific

objects. Another example of identification is linking the gray area in Figure 3-4 to the

football field in the Alumni Stadium and the lines to the Beckett Track.

The use of a semantic mediator allows different application domain ontologies

to be related to a single phenomenological ontology, a perspective that reflects the fact

that the same representation of a geographic phenomenon can be used in many

knowledge domains. For example, the same set of images can be used for land-use and

land-cover mapping or for geological studies.

There are many different ways one might create a semantic mediator. In this

thesis, we consider the following constructive approach: an external observer builds

the semantic mediator by forming a correspondence between concepts in the

application domain ontology and measurements in the phenomenological domain

ontology.

Consider the example of mapping deforestation of a tropical forest (Figure 3-7).

In this image a segmentation algorithm has extracted regions from the pixel values

(Shimabukuro et al. 1998). Two distinctly different types of deforestation can be

observed: regular square-like patterns resulting from large cattle ranches and irregular

patterns, resembling fish bones, which result from colonization projects. In this case,

the subject ontology may distinguish generic types of concepts, such as forest, non-

forest vegetation, and deforested areas. This latter concept could be specialized into
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cattle ranches and small farms. At the phenomenological domain ontology level, we

may distinguish such concepts as region and its specializations fishbone region and

regular region. In the image, each region will be described by a set of statistical and

morphological properties.

Figure 3-7 Deforestation mapping with a LANDSAT image (source: INPE).

A mapping between a concept in the subject ontology (e.g., small farm) and an

instance of a concept on the measurement ontology (e.g., one instance of fishbone

region) defines a matching. The set of all matchings between instances of fishbone

regions to small farm defines, for this specific image, is a spatial configuration. When

this set of matchings is performed in a time-series of images containing deforested

regions, the set of spatial configurations of matchings of fishbone regions to small

farms is a spatio-temporal pattern.

3.3 Bi-Directional Integration

One of the main objectives of this thesis is to integrate geographic information from

different sources. The diverse geospatial information communities have different

views of the world. These views can be formalized in different ontologies. Therefore,

it is necessary to accommodate multiple ontologies, which in our model lie both inside

the logical universe and inside the representation universe.
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We introduce here two different ways to integrate ontologies. The first is the

integration inside one subject and is called vertical integration. The other kind of

integration is called horizontal integration, and involves integrating ontologies of

different subjects (Figure 3-8).
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Figure 3-8 Horizontal and vertical integration.

When a new ontology is specified it is necessary to have a set of operations that

allow the reuse of previous ontologies or parts of them. In an ODGIS environment

three operations are available: inheritance, inclusion, and roles. Inheritance is used for

vertical integration and roles are used for horizontal integration. Inclusion can be used

for both integrations.

Classes in ODGIS are defined hierarchically, taking advantage of inheritance. It

is possible to define more general classes, containing the structure of a generic type of

object, and then specialize these classes by creating subclasses. The subclasses inherit

all properties of the parent class and add some more of their own. For instance, within

a local government there may exist different views and uses for land parcels. A

standardization committee can specify a land parcel definition with general

characteristics. Each department that has a different view of a land parcel can specify
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its own land parcel class, inheriting the main characteristics from the general

definition of land parcel and including the specifics of the department. In this way, a

land parcel is defined for the whole city and derive two different specializations, one

for tax assessment and the other for building permits.

We use roles to get around problems with multiple inheritance. In multiple

inheritance for instance, a geographic feature can be at the same time a lake and a

tourist attraction. In ODGIS we represent this entity as a lake that plays a role of a

tourist attraction. Maybe later the lake can be considered as an environmentally

protected area, that is, another role played by the entity lake. In ODGIS an entity can

have many roles.

Inclusion is an operation in which an entity of one ontology is used to specify

any part of an entity in a new ontology. For instance, an ontology that deals with

representations of spatial objects will include many parts from a geometry ontology.

The integration operations are used in different stages of the ontology

specification process. This separation happens because the levels of detail are different

at the many stages of ontology specification. We suggest the use of inheritance in the

high-level ontology integration and inheritance and roles at the low-level integration.

Inclusion is used in every level of integration.

The multi-level ontology approach generates a very flexible model. In order to

exploit this flexibility, we need a specific model for navigation among the diverse

entities. We choose to develop the navigation model in the implementation universe.

Since the classes extracted from the ontologies are in this level, the navigation model

is based on change of classes.

3.4 Summary

This chapter introduced a multiple-ontology approach to geographic information

integration. The different kinds of ontology, phenomenological domain ontology and
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application domain ontology, were introduced. The operations inheritance, inclusion,

and roles that are used for navigation inside ontologies were presented.
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Chapter 4 

A Methodology for Creating an ODGIS

The use of ontologies translated into active information system components leads to

Ontology-Driven Information Systems (ODISs) (Guarino 1998) and, in the specific

case of GIS, it leads to Ontology-Driven Geographic Information Systems (ODGISs)

(Fonseca and Egenhofer 1999). ODGISs are built using software components derived

from various ontologies. These software components are classes that can be used to

develop new applications. Being ontology-derived, these classes embed knowledge

extracted from ontologies.

The ODGIS framework is presented in the next two sections focusing on the

aspects of knowledge generation and knowledge use (Figure 4-1). First we show how

the ontologies are specified by the geospatial communities. Then we present how the

knowledge generated in the first phase of the system can be used to develop GIS

applications. This chapter also presents the mechanism for changes of classes. This

mechanism allows an instance of a class to be generalized or specialized thus enabling

information integration at different levels. The different levels of information

granularity and their relation to different levels of ontologies are discussed here. The

navigation introduced here shortens the gap between generic and specialized

ontologies, enabling the sharing of software components and information.
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Figure 4-1 ODGIS framework.

4.1 Knowledge Generation

Ontology-driven geographic information systems are supported by two basic notions:

(1) making the ontologies explicit before the systems are developed and (2) the

hierarchical organization of communities. Explicit ontologies contribute to better

information systems because every information system is based on an implicit

ontology. The act of making the ontology explicit avoids conflicts between the

ontological concepts and the implementation. Furthermore, top-level ontologies can be

used as the foundation for the integration of systems, because they represent a

common vocabulary shared by many communities.

Sometimes there is a misuse of the terms ontologies and database schemas. We

are discussing here ontologies and not database schemas. Ontologies are semantically

riches than database schemas and thus closer to the user’s cognitive model. Our
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approach is based on a group of people reaching an agreement about the basic

geographic entities of their world. It does not matter whether the entities are stored in

a database. A database schema represents what is stored in the database. An ontology

represents concepts in the world. Although ontologies and database schemas can be

related, ontologies are richer than database schemas in their semantics. The ontologies

we deal with are created from the world of geographic phenomena. The information

that exists in the databases has to be adapted to fill in the classes of the ontologies. For

instance, the concept of lake can be represented differently in diverse databases, but

the concept is only one, at least from one community’s point of view. This point of

view is expressed in the ontology that this community has specified. In the ODGIS

architecture, diverse mediators have to act to gather the main aspects of lake from

diverse sources of information and assemble the instance of a lake according to the

ontology.

The world is divided into different groups of people each one with a different

view of the world. We use the term geospatial information communities (GIC) to

name these groups. Each GIC is a group of users that shares an ontology of real world

phenomena. It is a basic assumption of this thesis that ontologies of diverse user

communities can be explicitly specified. These groups generate ontologies of different

levels of detail, the broader the group the more general the ontology. For instance, in a

city, the mayor and his/her immediate staff view the city at a given abstract level. The

department of transportation has a different and maybe more detailed view of the city.

Inside the department of transportation, the section in charge of the subway system

will have an even more specialized view of the city. We consider shared ontologies as

the high-level language that holds those communities together. For instance, the

department of transportation of a big city has a software specialized in transportation

modeling beyond the regular GIS package, and therefore, they use more than one data

model. But the conceptualization of the traffic network of the city may be the same

and so only one ontology can hold this conceptualization. A GIC may commit to

several ontologies. The users have the means to share information through the use of

common classes derived from ontologies. The level of detail of the information is

related to the abstraction level of the ontology. We use shared ontologies in a flexible
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way, as users can derive more specific ontologies from shared ontologies creating new

ones that apply directly to their work. These more specific ontologies have been called

applied ontologies (Smith 1998) and application ontologies (Guarino 1998). Since we

propose a flexible approach that integrates multiple ontologies, the communities of

users are not constrained by a single ontology, but instead they can use the shared

ontologies as a link to other user communities. The deeper we go into the user

ontology (i.e., in the ontology hierarchy), the less information the users will be able to

share with other user communities.

In ODGIS it is necessary that GICs assemble and specify ontologies at different

levels. The first ontology specified inside a community is a top-level ontology. The

assumption here is that this ontology exists and that it can be specified. The question

of whether this one ontology exists or not is a matter very discussed and on which no

consensus exists. We argue that it exists inside each community, although it can be

sometimes too generic. People inside each community communicate, and therefore

they agree on the most basic concepts. The top-level ontology describes these basic

concepts. Specific ontologies can be created after the top-level ontology is specified.

Medium-level ontologies are created using entities and concepts specified in high level

ontologies. These concepts are specified here in more detail and new combinations of

entities can appear.

For instance, consider a concept such as lake. It is a basic assumption of this

thesis that a consensus can be reached by a GIC about which are the basic properties

of a lake. Mark (1993) agrees that a generic definition of a class can be specified by its

most common properties and thus avoid a rigid definition of exactly what a lake is.

More specific definitions can be made at lower levels. This idea is applied in our

multi-level ontology structure. We also share the belief of Smith (1998) that these

different high-level concepts will converge on each other leading to common

ontologies. The mechanisms introduced by this thesis enables the sharing of the

common points of these theories.
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A lake can be seen differently by different GICs. For a water department a lake

can be a source of pure water. For an environmental scientist it is a wildlife habitat.

For a tourism department it is a recreation point. The Wordnet ontology (Miller 1995)

and the ontology extracted from SDTS (USGS 1998) were combined (Rodríguez

2000) and the result is used in the example. In this combined ontology a lake is “a

body of (usually fresh) water surrounded by land.” SDTS can be considered as a high-

level ontology. Other concepts of lake can be derived from this high-level ontology.

This is done using inheritance. The new concepts of lake will have all the basic

properties defined in the Wordnet-SDTS ontology plus the add-ons that the GIC think

are relevant to their concept of lake. The same happens with the other GICs. If they all

are derived from the WordNet-SDTS lake they will be able to share complete

information at this level only, although at a lower level they will share partial

information.

There are two options to build the ontologies. First, we can consider that small

GICs can assemble with other GICs with the same interests and try to build from their

existing ontologies a high-level ontology that encompasses their lower level

ontologies. The second option is that these GICs assemble before specifying their own

ontologies in order to specify a high-level ontology for these group of communities.

The most important thing here is that the architecture of an ODGIS allows reusing and

integration of ontologies based in the reuse of classes through the use of inheritance

and roles. The same rationale applied inside one community can be expanded to high

level communities or to subgroups inside a community.

4.2 Knowledge Use

The result from the work of the GICs with the ontology editor is a set of ontologies.

Once the ontologies are specified they can be translated to classes. The translation is

available as a function of the ontology editor. The ontologies can be browsed by the

end user, and they provide metadata about the available information. The set of classes

contains data and operations that constitute the system’s functionality. These classes
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contain the knowledge available to be included in the new ontology-based information

systems.

A basic schema of an ODGIS is (Figure 4-2):

Applications

Ontologies

ClassesSpecifications

Information
Sources

Ontology
Server

Mediators

Figure 4-2 Basic components of an ODGIS.

• The ontology server: the ontology server has a central role in an ODGIS

because it provides the connection among all the components. The server is

also responsible for making the ontologies available to applications. The

connection with information sources is done through mediators. Mediators

look for geographic information and translate it into a format

understandable by the end user. The mediators are pieces of software with



54

embedded knowledge. Experts build the mediators by putting their

knowledge into them and keeping them up to date.

• The ontologies: they are represented by two kinds of structures, (i.e., the

specifications and the classes). The specifications are made by the experts

and stored according their distinguishing features. The structure provides

information about the meaning of the available information. It can be used

by the user to know which information is available and to match his/her

conception of the world with other available conceptions stored by the

ontology manager. The classes are the result of the translation of the

ontologies.

• The information sources: the sources of geographic information in an

ODGIS can be any kind of geographic database as long as they commit

themselves to a mediator. The mediator has the function of extracting the

pieces of information necessary to generate an instance of an entity

belonging to an ontology. The mediator also has the function of bringing

back new information in the case of an update.

• The applications: the main application of an ODGIS is information

retrieval. The mediators provide instances of the entities available in the

ontology server. The user can browse the information at different levels of

detail depending on the ontology level used. Other kinds of applications

can be developed, such as database update and different kind of geographic

data processing, including statistical analysis and image processing.

4.3 Mechanisms for Changes of Classes

The knowledge-use phase of an ODGIS uses the products from the previous phase: a

set of ontologies formally specified and a set of classes. The ontologies are available

to be browsed by the end user and they provide metadata about the available

information. A set of classes that contains data and operations constitutes the system’s

functionality. These classes are linked to geographic information sources through the
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use of mediators. In this section we will discuss the operations of generalization and

specification over the instances of classes from ontologies. The operations described

here are applied over instances of classes, the real objects with data and operations.

There are two types of changes of classes in ODGIS. The first type occurs when

an instance of a class immediately above or immediately below is generated from a

given class. We call this transformation vertical navigation. The second type occurs

when one of the roles played by the object is extracted from one instance. This way a

new instance is generated producing a new object that belongs to the class of the role.

We call this transformation horizontal navigation (Figure 4-3).

Body of
Water

Lake Reservoir
Role:Protected Area

Vertical
Navigation

Lake

Body of
Water

Horizontal
Navigation

Lake
Protected

Area
Role:Protected

Area

Figure 4-3 Vertical and horizontal navigation in an ontology of bodies of

water.
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Vertical navigation implies a change of level of detail, because it produces a new

instance with more detail or one with less detail than the original instance. Horizontal

navigation does not imply a change of the level of detail. The new class generated by

horizontal navigation can be at any level in the hierarchy of classes.

4.3.1 Semantic Granularity in ODGIS

The abstraction of concepts and notions about real-world objects is an important part

of the creation of information systems. In the abstraction process, certain

characteristics of the objects are identified and coded in a database in such a way that

the set of characteristics is representative of the much more complex real-world object.

Depending on the user’s interest, however, this set of characteristics can be defined to

be more or less detailed.

Some authors consider granularity in a spatial database to be the same as

resolution, thus implying that granularity is related to the level of distinction between

elements of a phenomenon that is represented by the dataset (Stell and Worboys

1998). Hornsby (1999) points out the difference between resolution and granularity.

Resolution refers to the amount of detail in a representation, while granularity refers to

the cognitive aspects involved in selection of features. This kind of granularity is

called semantic granularity. The notion of granularity applied to GIS leads to studies

of the variation in the representation of geographic objects and phenomena across a

wide range of scales. Certain phenomena are scale-dependent, (i.e., their

representation varies across the scales). For instance, if an urban settlement is

perceived at a small scale, the level of detail is usually small enough for an entire city

with all its complex internal structure to be represented as a point or as a simple

polygon on a map. If the same city is perceived at a larger scale it becomes necessary

to represent its internal structure with more detail, for instance depicting blocks,

squares, major streets, and buildings. Considering a geographic database where two

representations of the same phenomenon have to coexist, Beard (1987) shows how it

could be possible to maintain and update only the most detailed version of the objects

and then to filter out unwanted detail to produce the less-detailed version. Here we
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work with a higher level of abstraction dealing with information systems instead of

databases. In an ODGIS, a concept can have more than one representation. For

instance, the usual concepts about a river are independent of how it is represented,

whether as a network for transportation or as an important element of the environment

of a region. In an ontology, a river is defined first by its general meaning. More

specialized ontologies deal with representation issues later.

In the ODGIS framework there are different levels of ontologies. Accordingly

there are also different levels of information detail. Low-level ontologies correspond

to very detailed information and high-level ontologies correspond to more general

information. Thus, if a user is browsing high-level ontologies he or she should expect

to find less detailed information. We propose that the creation of more detailed

ontologies should be based on the high-level ontologies, such that each new ontology

level incorporates the knowledge present in the higher level. These new ontologies are

more detailed, because they refine general descriptions of the level from which they

inherit.

We follow Hornsby’s (1999) approach, considering that the level of semantic

granularity is related to the level of ontology used. Ontologies can be used to specify

how high-level abstractions relate to concepts of a lower level by establishing methods

that help to implement rules and constraints. Guarino (1998) proposes a distinction

between coarse and fine-grained ontologies, or on-line and off-line ontologies. A

coarse ontology consists of a minimal number of axioms and it is intended to be

shared by users that already agree on a conceptualization of the world. A fine-grained

ontology needs a very expressive language and has a large number of axioms. Guarino

concludes that coarse ontologies are more likely to be shareable and should be used

on-line to support the system’s functionality. On the other hand, fine-grained

ontologies should be used off-line, because they are accessed eventually for reference

purposes. Our solution allows the user to incrementally go from coarse to fine-grained

ontologies on-line, thus eliminating the division between on-line and off-line

ontologies.
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4.3.2 The Mechanism for Changes of Granularity

There are two operations for changes in the level of detail: generalization and

specialization. In generalization one class with a certain level of detail generates a new

class with less detail. For instance, using Guarino’s ontology (Figure 2-1), a

Geographical Region can be generalized into a Location. Specialization is

the operation in which a more general class is converted into a more specific class.

In ODGIS every class inherits from a basic class called Object. This specific

class has two basic methods to be used in changes of granularity. One method is used

to generalize new classes and it is called Up(), and the other is used to specialize

classes and it is called Create_From().

For example, if a user is dealing with instances of the class lake and of the

class reservoir, the user can see and manipulate the instances of those objects as

instances of body of water. This way the user is able to obtain better results in

queries, retrieving more objects than if he had used only lake or only reservoir.

In specialization we can consider the same example but in a different order. The

user has an instance of lake but he/she is interested in using some methods only

available for the class reservoir or the user wants to combine in a detailed fashion

the data available about the class lake with the data available about the class

reservoir. The solution presented here allows the user to generalize first the

instances of lake into body of water, and then from this new set of instances,

specialize them into reservoir.

4.3.3 Generalization and Specialization

The generalization operation implies generating a new instance of a class with less

detail and less knowledge than the original instance. To perform this operation it is

necessary to have knowledge about which kind of data is going to be thrown out and

which kind of data is going to kept or transformed. The best place to do this is inside
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the instance that has all the data of the object that is going to be generalized. The

operation that performs the generalization is called Up() and it implies changes not

only to non-graphic data but also changes in representation formats. Generalizations of

representation formats have been discussed elsewhere (Bertolotto and Egenhofer

1999; Davis and Laender 1999; Parent et al. 2000). What is presented here is the

framework in which this kind of operation can happen. ODGIS is a framework that

enables the integration of existing knowledge, either at the logical level or at the

representation level.

The specialization operation implies generating a new instance of a class with

more detail and, therefore, more knowledge embedded in it. In order to accomplish

specialization we choose to place the method for specialization in the class that will

receive the result of the operation. This choice was made because the know-how to

perform this operation resides in the new class. Therefore, the class provides the

methods and the rules for creating a new instance of itself from a more generic

instance.

For example, if an instance of reservoir is going to be created, only the

reservoir class knows all the details necessary to create an instance of itself. To

create a class of reservoir from lake it is necessary that

• an instance of lake creates an instance of body of water;

• an empty instance of reservoir is created; and

• the instance of reservoir populates itself with data from the instance of body

of water.

The result is an incomplete but working version of an instance of reservoir.

To make the instance of reservoir complete, the mediators have to look into

the source of reservoir and then use similarity matching techniques (Rodríguez

2000) to try to match the new instance with available data. The result of this operation
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is a more complete instance. From the point of view of lake, this new instance is

richer, because it has all the information that it had before as lake, plus the

information retrieved by the mediator from the source of reservoir.

4.3.4 Role Extraction

In an ODGIS, an object can play many roles. The object cannot change its own class

without losing its identity, but it can play different roles depending on the context. In

order to provide the user with the ability to work with these different roles we

introduced the concept of horizontal navigation. This is the creation of a new instance

of the class of the role played by an object. One of the roles played by the object is

extracted, i.e., one new instance is available for the user.

This kind of operation is not an specialization or generalization, since a role can

be seen as being at the same level of the originating classes instead of being at the

level of their subtypes. For instance, a lake can play the role of a link is a

transportation network. The ontology of bodies of water and the ontology of

transportation can be at the same level.

Lake

Transportation link

Transportation
link

role 3

role 2

Figure 4-4 Role extraction.

The slots for roles are defined in the general class object. The rules and

methods for generating an instance of a role should be provided in this class. The

method for extracting a role is called extract(). For instance, the syntax to extract

the role link from lake is: new object link = lake.extract(link).
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4.4 Summary

This chapter presented the ODGIS framework focusing on the aspects of knowledge

generation and use. First it was shown how the ontologies are specified by the

geospatial communities. Then it was presented how the knowledge generated in the

first phase of the system can be used.

This chapter also presented the mechanism for changes of classes. This

mechanism allows an instance of a class to be generalized or specialized thus enabling

information integration at different levels. The different levels of information

granularity and their relation to different levels of ontologies was discussed here. The

navigation introduced here shortens the gap between generic and specialized

ontologies, enabling the sharing of software components and information.

The next chapter of this thesis presents an assessment of alternatives for

integrating ontologies.
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Chapter 5 

Ontology Integration

Geographic entities are complex objects that require sophisticated structures, such as

ontologies, to abstract and represent them. A framework that intends to work with

these kinds of objects should provide a solution for the problem of integrating

ontologies. Furthermore, the development of a single theory, unifying all others is

unlikely (Frank 1997) or at least will take some time (Smith 1998). To build an

ontology of geographic objects it is necessary to integrate, for instance, a spatial

ontology with a geometric ontology and a spatial reference system ontology. Section

5.1 presents the ODGIS view of information integration, and section 5.2 introduces the

operations available for ontology integration. In the second part of the chapter,

sections 5.3 through 5.6 present a measurement of the potential for information

integration, discuss the experiment used to test the hypothesis, and show the results.

The chapter’s summary is in section 5.7.

5.1 Information Integration

The basic principle in this thesis is to allow for the integration of what is possible,

instead of trying to integrate everything. It is our premise that once you achieve some

kind of integration then further integration can occur incrementally. Some kinds of

information will never be completely integrated since their natures are fundamentally

different. For instance, a lake from the point of view of a parks and recreation

department (lake p&r) has different functions and attributes than a lake from the

point of view of a water department (lake w). The assumption in this thesis is that

the lake is only one entity, but it is seen differently by different groups of people;

therefore, a complete integration of all information available in these two (or more)
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views is impossible, but the common characteristics can be shared. It is the integration

of the common parts of concepts that we address here.

In order to integrate the common parts of shared concepts we propose a

hierarchical representation of ontologies. The integration is always made at the first

possible intersection going upward in the ontology tree. For instance, if both views of

lake (lake p&r and lake w) are derived from the same entity lake in the

WordNet-SDTS ontology, the possible integration is made at this level (Figure 5-1).

WordNet-SDTS

lake

P&R Dept.

lake p&r

Water Dept.

lake w

Integration

Figure 5-1 Integration of lake.

The integration includes all the methods and attributes of the class (i.e., the

common methods and attributes of the class lake are all available for the user that is

using the integrated information). In order for this to happen, it is necessary that the

instances of lake p&r and lake w are converted to instances of the class lake.

In the similar way, roles can also be used to integrate information. A role in one

class can be matched to another class or role. For instance, the role of a wildlife

habitat that lake plays in the water-department ontology can be extracted and

converted into an instance of wildlife habitat from the Environmental

Protection Agency (EPA) ontology and then integrated with other instances of

wildlife habitat coming from other sources of information.
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The conversion of instances from one class to another is governed by a

navigation method using the methods Up() and Create_From() inherited from

the basic class called Object. These two methods provide the means to navigate

through the whole ontology tree. Since each class in the ontology tree is derived from

the basic class, each interface inherits the necessary navigation tools. So if the

navigation method Up() is applied to lake p&r, the class returned is the next class

in the upper hierarchy, the class lake.

5.2 Types of Ontology Integration

Ontologies can be integrated at different phases of a system life cycle. They can be

considered for integration in (1) specification, (2) conceptualization, (3) formalization,

(4) implementation, and (5) maintenance. When the integration happens in any of the

first three phases we call it high-level ontology integration , and we call it low-level

ontology integration when it happens in any of the last two phases.

The integration of ontologies in ODGIS is accomplished through the derivation

of existing ontologies or through the insertion of existing ontology references into new

ontologies. For instance, in an ontology for a parks and recreation department, the

specification of lake can be inherited from lake in the Environmental Protection

Agency (EPA) ontology. Different functions and attributes of a lake can come from

different ontologies by use of the inclusion operation. The attribute location can also

come from a different ontology. High-level ontology integration is done at the

ontologies at the highest levels because these ontologies are stable, well developed,

and are subject to few updates.

For instance, lake inheriting from body of water, geographical

region inheriting from region, and lake having beach as one of its parts are

considered high-level integration operations (Figure 5-2).
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Figure 5-2 High-level integration.

At the level of an application ontology, more updates are expected. Application

ontologies should be more flexible and be allowed to evolve with time. We propose

that ontology integration at this level should be done through the integration of the

classes. New classes are created through the use of inheritance. The new classes can

play many roles that correspond to other classes in the ontologies. Since each role can

come from a different ontology, the ontology integration is achieved through these

classes. A lake that plays the role of geographical region or a lake that

plays a role of surface are examples of low-level integration operations (Figure

5-3).
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Figure 5-3 Low-level integration.

5.3 Measuring the Integration of Ontologies

In an ODGIS environment, when a user is trying to retrieve information from different

sources it is necessary to combine the ontologies that represent the information. The

multi-level approach used here allows for different levels of ontology integration. The

entities in the ontologies are linked to sources of information. Therefore, if we

measure the combination of ontologies we can evaluate the potential for information

integration.

In order to measure the potential for information integration we took into

consideration the kind of matching that happens at the entity level inside an ontology.

When combining two ontologies the resulting potential for information integration is

the sum of the potential for information integration of each match of an entity in one

ontology to an entity in the other ontology, considering all the possible combinations.

All possible matches are checked and the ones that can be accomplished are

considered in the final result. Therefore, there is an evaluation for matches at the entity
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level. The result of each match is accumulated giving a numerical measure for the

potential for information integration when combining two ontologies.

One kind of integration that is possible is through the use of roles. One role in an

entity can be matched to an entity in another ontology, or even to a role played by

another entity. The possible matches are (Figure 5-4):

• one entity in the first ontology with one entity in the second ontology (E-E);

• one entity in the first ontology with one role in the second ontology (E-R);

• one role in the first ontology with one entity in the second ontology (R-E);

• one role in the first ontology with one role in the second ontology (R-R).

Role

Entity

Role

Entity

Role

Entity

Role

Entity

Role

Entity

Role

Entity

Role

Entity

Role

Entity

Figure 5-4 Types of integration using roles.
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The second kind of integration is accomplished through the use of hierarchies.

Since we use a hierarchical structure to represent ontologies, we can try to extend the

possibilities of integrating information by including the parent of an entity in the

search for a match. Considering the influence of hierarchies, the possible matches are

(Figure 5-5):

• one entity in the first ontology with the parent of one entity in the second

ontology (E-PE);

• one role in the first ontology with the parent of one entity in the second

ontology (R-PE);

Role

Entity

Role

Entity

Role

Entity

Role

Entity

Parent

Parent

Figure 5-5 Types of integration using hierarchies and roles.

The final result reflects the sum of the amount integrated in all the matches of E-

R, E-E, R-R, R-E, E-PE, and R-PE. A schema of what is computed is shown in Figure

5-6.
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R - R

E - E

E - R

E - PE

R - PE

R - E

Figure 5-6 Possible matches between two ontologies: E-PE (Entity-Parent of

Entity), R-PE (Role-Parent of Entity), E-E (Entity-Entity), E-R

(Entity-Role), R-E (Role-Entity), and R-R (Role-Role).

5.4 A Method for Evaluating the Potential for Integration
of Information

A domain can be represented as a set of ontologies (Equation 5.1).

Domain D :  {On} n ≥ 1 (5.1)

An ontology can be represented as a set of entities that belong to a domain

(Equation 5.2).

Ontology On : {Ei} E ⊆ D, 0 ≤ i ≤ n, where n is the size of the ontology (5.2)

An entity can be represented as a set that includes an identifier and a set of roles

(Equation 5.3).

Entity E: {id, R} (5.3)
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The representation of an entity is much more complex than this. The term id

includes everything that helps to identify uniquely an entity, such as the set composed

of the definition, the parts, the functions, and the attributes.

 A set of roles can be represented as a set of entities (Equation 5.4).

Rn: {Ei} Ei ⊆ D, 0 ≤ i ≤ n, where n is the size of the set. (5.4)

Calculating the potential of information that can be integrated between two

ontologies is done by comparing each component of each ontology. The main factors

in this operation are the entities, the roles, and the parent classes of each entity.

The potential for information integration in the matching of two ontologies is

given by the sum of the potential for information integration in each pair of entities

that can be formed through the combination of all entities in one ontology with all the

entities in the other ontology. The general formula for measuring the potential for

information integration when combining two ontologies On and Om is given in

Equation 5.5.

I =  ∑ comparek (E1,E2) E1  ⊆ On, E2  ⊆ Om, where k is n x m (5.5)

I is the number that gives the potential for information integration, compare is a

function that matches the entity E1 to the entity E2, E1 is an entity of the ontology On,

E2 is an entity of the ontology Om.

In order to learn how the hierarchical organization of the ontologies and the use

of roles influence the potential for information integration we develop four different

types of evaluation. In the next sections we present the method to measure the

potential for the integration of information when combining two ontologies (1) using

roles alone, (2) using roles and hierarchies, (3) using hierarchies alone, and (4) without

using roles or hierarchies.
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5.4.1 Evaluation with Roles Alone

When comparing two ontologies with the goal of integrating them, we can extend the

potential of information to be integrated by adding the roles that an entity plays to the

arguments of the comparison. The potential for information integration in the match of

two entities, each one from one different ontology, including the effect of the use of

roles, is given in Equation 5.6.

IR = EE + RE + RR (5.6)

where

• IR is the potential for information integration considering the effect of

roles;

• EE has a value 1 if the id of E1 is equal to the id of E2, 0 if the id of E1 is

not equal to the id of E2;

• RE is the number of roles of E1 with the id equal to the id of E2; and

• RR is the number of roles of E1 that are equal to any role played by E2.

The total potential for information integration when combining On and Om

considering the effects of roles is given in Equation 5.7.

I =  ∑ (IR) k, where k is n x m. (5.7)

For instance, the entity lake, playing a role of protected area, is

compared with the entity transportation link that plays the role of lake in a

second ontology (Figure 5-7).
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protected
area

lake

Lake

transportation
link

Figure 5-7 An entity vs. entity match.

 The evaluation gives:

EE = 0

RE = 1

RR = 0

IR = 0 + 1 + 0  =  1

5.4.2 Evaluation with Roles and Hierarchies

If the ontologies are organized hierarchically we can increase the potential for

information integration. Our framework allows the change of classes up and down in

the hierarchy. Therefore, we can add to the basic evaluation the effects of the use of

hierarchies in the representation of ontologies. By broadening the scope of comparison

we can compare each entity and each role, not only with the matching entity and role

of the other ontology, but also with the parent class of the matching entity. The

potential for information integration in the match of two entities, each one from a

different ontology, is given by the following formula, which includes the effects of the

hierarchical organization:

IR+H = IR + IH (5.8)

The expanded formula is given in Equation 5.9.

IR+H = (EE + RE + RR ) + (EE+H + RE+H) (5.9)
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From Equation 5.9 we have:

• IR+H is the potential for information integration considering the effect of

roles and of the hierarchy;

• EE has a value 1 if the id of E1 is equal to the id of E2, 0 if the id of E1 is

not equal to the id of E2;

• RE is the number of roles of E1 with the id equal to the id of E2;

• RR is the number of roles of E1 that are equal to any role played by E2;

• EE+H has a value 1 if the id of E1 is equal to the id of the parent of E2, 0 if

the id of E1 is not equal to the id of the parent of E2; and

• RE+H is the number of roles of E1 with the id equal to the id of the parent of

E2.

We consider here only the comparison of one entity (E1) and its roles (RE1) in

the first ontology with each entity (E2) of the second ontology and its parent (E2P). If a

match is not achieved with the immediate parent of E2, comparisons are made with the

parent of the parent till the root of the ontology.

The total potential for information integration when combining On and Om,

considering the effects of roles and hierarchies, is given by Equation 5.10.

I =  ∑ (IR+H) k, where k is n x m (5.10)

For instance, the entity body of water that plays the role of protected

area is compared with the entity reservoir that plays the role of protected

area in a second ontology. Furthermore, reservoir has body of water as its

parent (Figure 5-8).
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Figure 5-8 A mixed match.

The evaluation gives:

EE = 0

RE = 0

RR = 1

EE+H = 1

RE+H = 0

RR+H = 0

IE+H = (0 + 0 + 1) + (1 + 0 + 0 ) =  2

5.4.3 Evaluation with Hierarchies Alone

Another way to evaluate the potential for information integration when combining two

ontologies is without taking into account the roles played by the entities. Such an

evaluation depends only on the hierarchical organization of the ontologies and is based

solely on the comparison of two entities at a time, disregarding any roles if they exist.
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The potential for information integration in the match of two entities, each one from

one different ontology, is given by equation 5.11.

IH = (EE) + (EE+H) (5.11)

where

• IH is the potential for information integration considering the effect of the

hierarchy alone;

• EE has a value 1 if the id of E1 is equal to the id of E2, 0 if the id of E1 is

not equal to the id of E2; and

• EE+H has a value 1 if the id of E1 is equal to the id of the parent of E2, 0 if

the id of E1 is different from the parent of E2. If EE is equal to 1, EE+H

should be 0, because the integration has already occurred at the entity level

without using parents.

The measure for total potential for information integration when combining On

and Om, considering the effects of hierarchies only, is given by Equation 5.12.

I =  ∑ (IH) k, where k is n x m (5.12)

For instance, the entity lake is compared with the entity reservoir in a

second ontology. Furthermore, reservoir has body of water as its parent

(Figure 5-9).
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lake reservoir

body of
water

Figure 5-9 An entity vs. parent of entity match.

The evaluation gives:

EE = 0

EE+H = 1

IH = 0 + 1 =  1

5.4.4 Evaluation without Roles and without Hierarchies

The simplest way to evaluate the integration of two ontologies in our setting is to

disregard both the effects of the roles played by the entities and the hierarchical

organization of the ontologies. Such an evaluation consists only of the comparison of

two entities at a time, disregarding any roles if they exist and not making any

comparisons with parent classes. The measure for the potential for information

integration in the match of two entities, each one from one different ontology, is given

by Equation 5.13.

I-R-H =  (EE) (5.13)

where
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• I-R-H is the potential for information integration without the effect of roles

or the hierarchy; and

• EE has a value 1 if the id of E1 is equal to the id of E2, 0 if the id of E1 is

not equal to the id of E2.

The total potential for information integration when combining On and Om is

given by Equation 5.14.

I =  ∑ (I-R-H) k, where k is n x m (5.14)

For instance, the following entity body of water is compared with the

entity body of water in a second ontology (Figure 5-10).

body of
water

body of
water

Figure 5-10 A simple match.

The evaluation gives:

EE = 1

I = 1

5.5 The Simulation

The objective of the simulation was to model a geospatial information community.

This community, a city for instance, has defined a basic ontology with a certain

number of entities. Two departments of this city built their own ontologies based on

this large set of entities. Now these two departments want to share information. So we

need to integrate the two ontologies, one for each department. These two ontologies



78

may have no parts in common, or they may have some overlap. The objective of the

experiment is to measure the intersection of the two ontologies, that is, the potential

for information integration when combining two ontologies. The possible results of

the combination of two ontologies are (a) no overlap at all, (b) small overlap, (c) large

overlap, and (d) inclusion (Figure 5-11).

a b c d

Figure 5-11 Possible results of the combination of two ontologies: (a) no

overlap at all, (b) small overlap, (c) large overlap, and (d)

inclusion.

In the experiment a large set of entities was randomly generated. Then two

subsets of smaller ontologies were randomly extracted from the large set and

compared with each other in order to measure the potential for information integration.

The number of descendants of a given entity was randomly generated and varied from

0 to 5 descendants. The number of roles in a given entity was randomly generated and

varied from 0 to 5 roles.

The results were normalized by dividing the measure of the amount of entities

actually matched by the amount that could be matched. For instance, considering in

the first ontology O1 an entity E1 with P1 as a parent and playing two roles R11 and

R12. Considering the second ontology O2 an entity E2 with P2 as a parent and playing

two roles R21 and R22. The maximum amount that can be integrated is given by the

match of:

• E1 with E2, R21 or R22;
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• plus the match of R11 with E2, R21 or R22; or

• the match of R12 with E2, R21 or R22.

In this example the largest amount of information that could be integrated is 3. If

for instance E1 is equal to R21 and R11 is equal to R22 then the evaluation of the match

is 1 (E1-R21) plus 1 (R11-R22), summing up 2. The normalized result is 2/3.

5.5.1 The Small-Scale Experiment

This experiment simulates a community with an ontology of 1000 entities. There are

two groups within this community that want to share information. This is a small

community and, therefore, accommodates a small number of groups. The size of the

ontologies of each group is 200 entities.

A set of 1000 entities was randomly generated for the community ontology. The

number of descendants of an entity was randomly generated and varied from 0 to 5

descendants. The number of roles of each entity in this ontology was randomly

generated, varying from 0 to 5. Two subsets of 200 entities were drawn from the larger

set and compared for the evaluation of the potential for information integration.

We ran the experiment 100 times. The potential for information integration was

recorded for four types of measurement: (1) using hierarchies and roles, (2) using roles

alone, (3) using hierarchies alone, and (4) using neither hierarchies nor roles. A

sample of the results is shown in Table 5-1. The results for the potential of information

that could be matched for (1) and (2) are the same because the method for evaluation

for both gives a maximum of 1 for the match of an entity with an entity or the match

of an entity with a parent of an entity. The results for the potential of information that

could be matched for (3) and (4) are the same because the method for evaluation uses

the same rationale of (1) and (2) plus the effects of roles that are present in both.
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Using neither

hierarchies nor roles

Using hierarchies

alone

Using roles alone Using hierarchies and

roles

Actual

matching

Could be

matched

Normal-

ized

Actual

matching

Could be

matched

Normal-

ized

Actual

matching

Could be

matched

Normal-

ized

Actual

matching

Could be

matched

Normal-

ized

27 200 0.13 74 200 0.37 171 702 0.24 360 702 0.51

41 200 0.20 68 200 0.34 172 693 0.24 362 693 0.52

45 200 0.22 75 200 0.37 233 706 0.33 382 706 0.54

Table 5-1 Extract from the results of the small-scale experiment

For instance, for the measurement of the potential for information integration

using roles alone we had a mean of 184.89 and a standard deviation of 24.48 for the

non-normalized result. The normalized result had a mean of 0.36 and a standard

deviation of 0.037. Table 5-2 shows the mean and standard deviation of the non-

normalized and normalized measurements of the potential for information integration

using no roles and no hierarchies, using hierarchies alone, using roles alone, and using

roles and hierarchies.
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Using no
roles and no
hierarchies

Using
hierarchies

alone

Using roles
alone

Using roles
and

hierarchies

mean of non-
normalized results

36.64 72.1 184.89 368.52

standard deviation
of the non-

normalized results
5.62 7.47 24.48 25.52

mean of
normalized results

0.18 0.36 0.26 0.53

standard deviation
of the normalized

results
0.028 0.037 0.034 0.030

Table 5-2 A summary of the results of the small-scale experiment.

The results of the potential for information integration are shown in Figure 5-12.

The points in the graph represent the normalized results of each of the 100 times that

the experiment was made. The Y axis represents the potential for information

integration and the X axis represents the number of the experiment run.
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Figure 5-12 Graph results of the small-scale experiment.

The variation of each type of measurement is due to the randomness in the

generation of the sets. The potential for information integration with hierarchies and

roles was the greatest of all and had a mean of 0.53 and a standard deviation of 0.03.

The potential for information integration with hierarchies alone had a mean of 0.36

and a standard deviation of 0.03. The potential for information integration with roles

alone had a mean of 0.26 and a standard deviation of 0.03. The potential for

information integration with no hierarchies and no roles had a mean of 0.18 with a

standard deviation of 0.02.
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5.5.2 The Large-Scale Experiment

The second experiment was made with the same rationale as the first one. The idea is

simulating a ten times larger community. There are two groups within the community

that want to share information. Since this is a large community, it accommodates more

groups. The size of the ontologies of each group is 500 entities.

A set of 10,000 entities was randomly generated for the large community. The

number of descendants of an entity was randomly generated and varied from 0 to 5.

The number of roles of each entity in this ontology was randomly generated varying

from 0 to 5. Two subsets of 500 entities were drawn from the larger set and compared

for the evaluation of the potential for information integration.

The potential for information integration was recorded for four types of

measurement: (1) using hierarchies and roles, (2) using only roles, (3) using only

hierarchies, and (4) using neither hierarchies nor roles.

The results of the potential for information integration are shown in Figure 5-13.

The points in the graph represent the results of 100 runs of the experiment. The

potential for information integration with hierarchies and roles was the greatest of all

and had a mean of 0.34 and a standard deviation of 0.019. The potential for

information integration with hierarchies alone had a mean of 0.256 and a standard

deviation of 0.017. The potential for information integration with roles alone had a

mean of 0.0802 and a standard deviation of 0.012. The potential for information

integration with no hierarchies and no roles had a mean of 0.049 and a standard

deviation of 0.010.
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Figure 5-13 Potential for information integration in the large-scale

experiment.

The non-normalized results for roles alone sometimes are greater than the results

for hierarchies alone. But when these results are normalized the results for hierarchies

alone are better. An extract of roles alone and hierarchies alone the first 20 times of

the experiment is shown in Table 5-3.
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Roles alone Hierarchies
alone

Roles alone Hierarchies
alone

non-normalized normalized

1st run 127 138 0.0718 0.276
2nd run 122 114 0.0689 0.228
3rd run 160 142 0.0930 0.284
4th run 139 138 0.0792 0.276
5th run 180 140 0.1063 0.28
6th run 123 127 0.0737 0.254
7th run 110 114 0.0601 0.228
8th run 143 142 0.0849 0.284
9th run 145 131 0.0837 0.262

10th run 145 116 0.0817 0.232
11th run 119 137 0.0656 0.274
12th run 114 122 0.0658 0.244
13th run 116 122 0.0628 0.244
14th run 127 131 0.0732 0.262
15th run 148 129 0.0831 0.258
16th run 126 118 0.0724 0.236
17th run 155 132 0.0876 0.264
18th run 110 140 0.0653 0.28
19th run 161 129 0.0956 0.258
20th run 169 127 0.0994 0.254

mean of
100 times

128.05 140.04 0.0802 0.256

standard
deviation

of 100
times

8.96 20.43 0.012 0.017

Table 5-3 An extract of the sample of the large-scale experiment.

5.6 Analysis of the Results

The results of both simulations were very similar. The potential for information

integration is greater with roles and hierarchies than without them. The variation can

be grouped into two types. A first group with the higher results is for ontologies that

use roles together with hierarchies. The second group with lower results is the group in

which the ontologies had hierarchies alone, roles alone, and no hierarchy and no roles.
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5.6.1 The Effect of Using of Hierarchies

The use of a hierarchical structure to represent ontologies had a positive effect on the

potential for information integration. Specifically, the potential for information

integration with this model was better than the amount integrated with the model that

used no hierarchy at all and better than the model that used roles alone.

5.6.2 The Effect of Using Roles

The use of roles in the representation of ontologies had a positive effect on the

potential for information integration. Specifically, the potential for information

integration using this model was better than the amount integrated with the model that

used no roles and better than the model that used no roles and no hierarchies.

5.6.3 The Combined Effect

The combined effect of the use of roles and the hierarchical structure proved to be the

best of all. In the small-scale experiment, the improvement over the model that used

roles alone was 2 times more than the second best result. In the large-scale experiment

it was almost 5 times better.

5.6.4 The Effect of Using no Roles and no Hierarchies

Of all the combinations, the potential for information integration with no roles and no

hierarchies was the smallest. Using roles was 1.2 times better, using hierarchies was

1.6 times better, and the combined effect of roles and hierarchies was 3.7 times better

than using no roles and no hierarchies.

5.6.5 Evaluation in Favor of Hypothesis

This experiment evaluated the influence of the number of roles and of the hierarchical

structure for representing ontologies on the potential for information integration. We

observed a strong influence of the use of a hierarchical structure in increasing the

potential for information integration. The use of roles also improved the potential for

information integration although to a much lesser extent than the use of hierarchies
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alone did. The combined effect of roles and hierarchies had a more positive effect in

the potential for information integration than the use of roles only or hierarchies only.

All three combinations gave better results than the results using neither roles nor

hierarchies. Therefore, we can say that the use of hierarchies and roles in the

representation of ontologies increases the potential for information integration. This

statement supports the hypothesis that a model that incorporates hierarchies and roles

has a potential to integrate more information than models that do not incorporate these

concepts.

5.7 Summary

This chapter addressed the issue of ontology integration inside the ODGIS framework.

First the ODGIS view of information integration was presented. The high-level

integration of ontologies was discussed, followed by a discussion oflow-level

integration.

A method for evaluating the potential for information integration was

introduced. The measurement captures the effects of the use of roles and of

hierarchical structures in the representation of ontologies in the potential for

information integration. Two experiments and their results, both of which supported

the hypothesis, were described. The chapter also presented the conclusion that the use

of roles and hierarchies have a positive influence in the potential for information

integration. The use hierarchies alone had more influence in the potential for

information integration than the use of roles alone.

The next chapter of this thesis presents guidelines for the implementation of the

main components of an ODGIS.
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Chapter 6 

Guidelines for Implementation

In this chapter we analyze the options for implementation of the main components of

an ODGIS. We are suggesting here specific tools for implementation. We know that

these tools are not the only solutions but the evolution of ontology-driven information

systems will lead to the use similar tools or to an evolution of these same tools.

An ontology-driven information system deals with instances of classes called

objects. These objects are extracted from geographic databases and carry data and

operations. One of the most suitable options for implementing interoperable objects or

components (Betz 1994) that need to share both code and data across a heterogeneous

network is the use the programming language Java (Clemens 1996; Lewandowsky

1998), because compiled Java code (bytecode) can be executed by Java interpreters

available on most computers. Furthermore, the object-oriented structure of Java offers

many features for the implementation of distributed objects. There are two options for

implementing Java objects from ontologies. First, the objects can be generated from

ontologies specified in an ontology editor, such as Ontolingua, which has the ability to

create CORBA IDL headers (OMG 1991) from ontology components. In this case, a

CORBA IDL header is a skeleton of ontologies and its components, which should be

complemented by implementation code written in Java. The second option is to

generate Java interfaces from an ontology editor that has this capability. Since

Ontolingua is not able to generate Java interfaces, we opted to develop an ontology

editor to do this kind of work.

The remainder of this chapter introduces the ontology editor and the ontology

browser. We show an example of how to query such a system and results get

presented. The chapter’s summary is in section 6.4.
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6.1 The Ontology Editor

The ontology editor allows users to work on the specification of ontologies. After the

ontology is specified, the user may query and update the ontologies using remote

applications on the Internet.

The set of ontologies is represented in a hierarchy. The components of the

hierarchy are classes modeled by their distinguishing features–parts, functions, and

attributes (Figure 6-1). This structure for representing ontologies is extended from

Rodríguez (2000) with the addition of roles. Roles allow for a richer representation of

geographic entities and avoid the problems of multiple inheritance.

Figure 6-1 Basic structure on an ontology class.

Once the ontology is specified, the ontology editor has facilities for translating

ontologies from repositories into application environments. We use Java as the

implementation language. The basic mechanism for inheritance in Java is through the

use of the keyword “extends”. This mechanism allows a new class to inherit from only

one parent class. The entities in the ontologies are translated into Java interfaces. A
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Java interface describes the set of public methods that a class that implements the

interface must support, and also their calling conventions. But a Java interface does

not implement those methods. Each descendant class has to provide the code for each

existing interface method (Figure 6-2).

Public interface lake

{

Vector roles;
//parts
Object water;
Object cove;
//functions
public void swim();
public void navigate();
public void fish();
//attributes
public String location;
public String acidity;
public String artificially_improved;
public String name;
public String mineral_content;
public String restrictions;
public String temperature;
public String charted_depth;
}

Figure 6-2 A Java interface for lake.

6.2 The Ontology Browser

In the ODGIS approach, the application program relies on classes derived from

ontologies. These classes can be as simple as one entity or as complex as a part of an

ontology . The application developer is able to browse the ontology that is the origin

of these classes. The ontology browser has two important functions. First, it can be

used during ontology specification by users who wish to collaborate in composing a

shared ontology. Second, once the ontology has been specified, the browser is used to

show the available geographic entities to the users. Mediators connect entities in

ontologies to features in spatial databases.
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Figure 6-3 Browsing a top-level ontology.

For instance, a user wants to retrieve information about bodies of water for a

determined region. First, the user browses the ontology server looking for the related

classes. After that, the ontology server starts the mediators that look for the

information and return a set of objects of the specified class. The results can be

displayed (Figure 6-4) or can undergo any valid operation, such as statistical analysis.
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Figure 6-4 Schema for a query processing with an ODGIS.

6.3 Querying the System

The framework allows the user to browse at different levels of information. Ontologies

are structured in a hierarchical way. This kind of organization leads to queries by

level.

The entities chosen to be queried are body of water, lake, and

reservoir (Figure 6-5).
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Figure 6-5 Query by level.

The user has to find the concepts in the ontology tree. The queries for lake

presented the following result: 79 objects found (Figure 6-6). The query for

reservoir is similar to the previous query. The result for reservoir was: 91

objects found (Figure 6-7).
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Figure 6-6 Query for lake.
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Figure 6-7 Query for reservoir.

When browsing the ontology of bodies of water, the user may choose to query

for body of water. This entity is located one level higher than lake and

reservoir, that is, it is necessary to explore the concept of body of water,

finding that it includes both the concepts of lake and reservoir, thereby selecting

both during the query. As a result, the query was performed at a higher semantic level.

The result of the query for body of water was: 176 objects found (Figure 6-8).
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Figure 6-8 Query for body of water.

The results of the query using the semantic query for body of water can be

compared against the results of the first two queries and against the result of the sum

of these first two queries.

The query for body of water returned more objects (176) than the query for

lake (79) and more than the query for reservoir (91). This result was expected

and shows that with the semantic search broadened more adequate results are

produced. These results correspond more closely to the user’s notions about bodies of

water, assuming that the concepts the user works with are adequately laid out as an

ontology.

The expected results of a query for body of water could be the sum of the

lake and reservoir, but we obtained a higher number (176) than that sum (170).
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This result has two explanations. Both show the strength of the semantic approach for

geographic information integration.

First, one reason for retrieving 176 objects instead of 170 is that since we are in

a higher level in the hierarchy, other classes beyond lake and reservoir can be

retrieved and classified as body of water, thus producing a broader result.

The second reason implies that, among the information systems integrated in this

particular scenario of ODGIS, some of them can have information classified only at

the higher conceptual level, i.e., body of water. The reasons for this more generic

classification can be:

• Unclassified information collected from other sources.

• The source does not disclose the classification at a high level of detail. It only

releases information at the lower semantic levels, because of security reasons

or commercial purpose.

6.4 Summary

In this chapter we analyzed the implementation options for the main components of an

ODGIS. We suggested the use of Java as an implementation language an ontology

editor and an ontology browser was shown. The functionality of these systems

components was demonstrated by a query for three different entities, performed at

different levels of the ontology.

The next chapter of this thesis summarizes the work on ontology-driven

geographic information systems and highlights the major findings of this thesis. Future

directions of this research are also discussed.
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Chapter 7 

Conclusions and Future Work

This thesis focused on finding innovative ways to integrate geographic information.

The thesis started the integration of information from entities of the physical universe.

This approach differs from usual approaches that start from the implementation and

representation universes. Our approach enables the integration of information based on

its semantics content instead of dealing first with data formats and geometric

representations. In order to integrate information it was necessary to integrate first

ontologies. Therefore, this thesis studied new approaches to ontology integration. The

question of how to measure the potential for information integration when combining

two ontologies was also investigated here.

7.1 Summary of Thesis

This thesis investigated new ways to integrate geographic information. We chose to

use ontologies as the foundation of the integration, because ontologies can represent

real world entities using a sophisticated structure with components such as definitions,

parts, functions, attributes, and rules of relationship. Furthermore, ontologies capture

the semantics of information, can be represented in a formal language, and can be used

to store related metadata. Ontologies can be used to establish agreements about diverse

views of the world and consequently carry the meaning of the original ideas that are

embedded in the representation of geographic phenomena in the human mind. The

ontologies are linked to information sources through semantic mediators, therefore,

the integration of ontologies leads to integration of information.

The integration of information depends on many factors, such as the way

information is organized and the level of detail of each of its pieces. To face the

problem of organization we proposed the use of ontologies as the basic representation
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of geographic information. We chose a hierarchical organization, because hierarchies

are a good way of representing the geographic world. Since geographic phenomena

change over time and can also be seen as different things by different groups of

people, we introduced the concept of roles. A geographic object can play different

roles at the same time or during its lifetime depending on the point of view of a group

of users. Roles act as the bridge between different levels of detail in an ontology

structure. They are used also for networking ontologies of different domains.

The problem of the different levels of detail was approached by the introduction

of a navigation mechanism that allows an object (i.e., the implementation of an

ontology entity) to change its class by generalization or specialization. In a

generalization, a more specific object drops some pieces of information and turns itself

into a more general instance. In a specialization, a more general object gathers more

information and becomes a more specific object. We also introduced the operation

called role extraction, in which a role played by an object can be extracted and

transformed into a new instance. This new instance acts as an independent object.

Therefore, the new instance can be matched with an object associated with another

entity in a different ontology.

We used a multiple-ontology approach to solve the problem of the different

views of the world. The framework allows for the presence of multiple ontologies and

provides mechanisms for integrating the ontologies. We also introduced a

classification of ontologies of geographic phenomena in two types. One type is the

phenomenological domain ontology (PDO). This ontology captures the different

dimensions and internal properties of the geographic phenomena. This specific

ontology is distinct and independent from the other type, the application domain

ontology (ADO). This ontology is concerned with description of specific subjects and

tasks that the GI scientists use as a source of information.

To validate our use of the concept of roles and hierarchies as the support for the

ontology representation structure we made a simulation in which we measured the

potential for information integration when combining two ontologies. Four different
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evaluation measures were used to assess the potential for information integration: (1)

using roles, (2) using roles and hierarchies, (3) using only hierarchies, and (4) using

neither roles nor hierarchies. The use of a hierarchical structure improved the potential

for information integration. So did the use of roles although to a much lesser extent

than did the use of hierarchies. The combined effect of roles and hierarchies had a

more positive effect in the potential for information integration than the use of roles

alone or hierarchies alone. All three combinations gave better results than the results

using neither roles nor hierarchies. The results supported the hypothesis that a model

that incorporates hierarchies and roles has a potential to integrate more information

than models that do not incorporate these concepts.

An ontology editor and an embedded translator from entities to classes were

developed to support the knowledge-generation phase of the architecture. For the

knowledge-use phase, a user interface to browse ontologies was also developed and

the container of geographic objects was extended from Fonseca and Davis (1999).

7.2 Results and Major Findings

The main contribution of this thesis is the definition of a framework based on

ontologies for the integration of geographic information. The use of ontologies

allowed the integration of information to be based primarily on semantics contrasting

thus with past approaches that were based on data formats and geometric

representation. Our approach can be seen as complementary to existing approaches

and it needs existing solutions to be fully implemented. The framework allows

integration of information at different levels of detail. The general approach used by

this thesis enables the use of the framework by developers of new GIS applications

and by GIS database designers.  The framework is up to date with requirements of

modern information systems that should provide integration based on a semantic

approach (Sheth 1999).

Another contribution of this thesis is that the framework provided a structure for

the use and integration of multiple ontologies. Since it is difficult to find a unifying

concept of space (Frank 1997) it is necessary to deal with multiple views of the
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geographic world. GIS application developers need a tool to integrate multiple

ontologies. The solution presented here allows for the integration of ontologies and

hence the integration of information. The integration is accomplished through the

combination of classes derived from diverse ontologies. This way it is possible to

create geographic entities that are able to represent the complexity of the geographic

world. The possibility of having multiple views of a single geographic object was

supported by the use of hierarchies and roles in the representation of ontologies.

Therefore, a geographic object can have more than one description. The support of

multiple interpretations of the same geographic phenomenon answers the questions

regarding different applications over the same area (Gahegan and Flack 1996).

The introduction of a mechanism to deal with changes of the level of detail

proved to be useful, because information is available at different granularities and it

also needs to be integrated at different levels of detail. The navigation mechanism

allows an object to be transformed into a more general class or into a more specific

class. We introduced also an operation called role extraction in which a role played by

an object can be extracted and transformed in a new instance. This new instance acts

as an independent object and can be matched with an object associated with another

entity in a different ontology.

A major result of this thesis is a new methodology to measure the potential for

information integration when combining two ontologies. Based on the structure used

to represent ontologies, the measurement considered each one of the possible matches:

entity vs. entity, entity vs. role, and role vs. role, entity vs. parent of an entity, and role

vs parent of an entity. The measurement was used in an experiment that evaluated the

influence of the use of hierarchical structure and roles for representing ontologies on

the potential for information integration. The use of a hierarchical structure improved

the potential for information integration. The use of roles also presented good results

for the potential for information integration although to a much lesser extent than the

use of hierarchies did. The combined effect of roles and hierarchies had a more

positive effect in the potential for information integration than the use of roles alone or

hierarchies alone. All three combinations gave better results than the results using
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neither roles nor hierarchies. The results of the experiment supported the hypothesis of

this thesis that a model that incorporates hierarchies and roles has a potential to

integrate more information than models that do not incorporate these concepts.

This thesis presented a model for the integration of ontologies that is flexible

enough to accommodate two different perspectives of ontologies. The first perspective

is that there is one Ontology and that we can reach a consensus about it through the

refinement of the concepts step by step over time. The other perspective does not

accept this one Ontology and says that it is necessary to live with incompatible views

of reality. The model presented here is based on the assumption that this one Ontology

exists, at least inside small communities. Small here can vary from a group of five or

six people in an office to 100 people in a local government department. We argue that

there is consensus inside each community about the geographic phenomena that are

part of the basic domain of this group. Using this model we can start combining

ontologies at a higher level of abstraction and this way composing new and more

comprehensive ontologies. There will be always some amount of information lost

when combining different ontologies, but at the same time there is always some

amount that remains available after the integration. This way we can refine

progressively groups of ontologies and maybe one day reach this one big Ontology.

The answer to the question if this is possible or not is subject to further study.

7.3 Future Work

A variety of issues remain to be resolved. One of them is to study the effect of other

ontology components, besides roles and hierarchies, on the potential for information

integration when combining two ontologies. The use of ontologies in information

systems is an emerging field and many questions are open. In the next sections we

discuss new questions that became apparent through the results of this thesis. They

address ontology integration, geographic information retrieval on the web, ontology

specification, ontology of actions, and ontology of images.
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7.3.1 Other Approaches to Ontology Integration

Building an ODGIS requires an ontological commitment from users and information

providers. User associations can be used as anchor points to start the production of

ontologies. A further study should investigate how to incorporate approaches that

allow composition of pre-existing, independently developed ontologies, for instance,

through the use of a context algebra to compose diverse ontologies (Wiederhold and

Jannink 1998). The solution presented here specifies ontologies through the use of

parts, functions and attributes. The use of an algebraic definition of semantics based

on operations (Kuhn 1994) and the matching of synonym, hyponym, and hypernym

terms (Kashyap and Sheth 1996; Mena et al. 1996; Mena et al. 1998) in the integration

of ontologies should be studied.

7.3.2 Ontologies for the Web

The commercial structure that the Internet is bringing is quite different from the past.

One of the models that is being established gives for free basic services and charges

for more sophisticated solutions. This willingness to offer products to attract new

customers can be the foundation for future ontology-driven information systems. Top-

level ontologies may be offered for free to users. The more elaborate

ontologies–domain, task, and application ontologies–can be charged and customized

according to the users needs. So, one of the future directions of this research is to

analyze the role of these service providers as the focal points for ontology servers.

The integration of informal ontologies representing the information available

today on the Internet was beyond the scope of this thesis, however, the dynamic

object-oriented approach suggested here can be extended to fulfill the requirements of

future geographic information systems that are strongly based on the Internet and on

the integration of diverse sources of information.

7.3.3 Foundations of Ontology Specification

Frank (1999) points out that the formal specification of spatial objects and spatial

relations is one of the first steps for GIS interoperability. This specification should be
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close to what people use in their everyday lives (Egenhofer and Mark 1995). The

foundation for the specification of large-scale objects using image schemata has been

laid (Rodríguez and Egenhofer 1997; Egenhofer and Rodríguez 1999; Frank and

Raubal 1999; Rodríguez and Egenhofer 2000). One interesting line of research is to

explore how image schemata can be used as the support for the specification of geo-

ontologies.

7.3.4 Action-Driven Ontologies

The main emphasis of current approaches to geo-ontologies pursue a static perspective

of geographic reality. In this thesis we followed this direction considering only the

operations from a high abstraction level and thus only operations inherent to the

existing geographic objects are modeled. Future work should consider the study of

ontologies of the operations that can be performed by a GIS user. These ontologies

should capture the intended use of the information and consider an ontology of actions

independent of the existing objects. New approaches to geo-ontologies can be based

on a definition of space proposed Santos (1997) “Space is a system of objects and a

system of actions.” In this view, space consists of natural and technical objects, and

the actions that have transformed nature by human decision. We cannot capture the

full meaning of an object, without taking into account the intentionality of the human

action that has produced the object and placed it in a location on space. These kind of

ontologies are called action-driven, considering that they should capture, to some

extent, knowledge domains such as cartographic modeling, spatial queries, spatial

statistics, cellular automata and dynamic modeling. Action-driven ontologies should

consist of three different components:

• A description of a set of entities, using concepts from the user domain and their

relation to geometrical representations in a computer.

• A description of a set of actions, including both the knowledge domain vocabulary

and its relation to the GIS operations and to the data that are being produced.
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• A description of the intended use of such information, including the intermediate

and final products.

7.3.5 Ontology of Images

Remotely sensed imagery is one of the most frequently used sources of spatial data

currently available to researchers. There is a large variety of spatial and spectral

resolutions for remote sensing images, ranging from IKONOS 1-meter panchromatic

images to the polarimetric radar images soon to be part of the next generation of

RADARSAT and JERS satellites.

In spite of the ubiquitous nature of remote sensing imagery, and more than 30

years experience of data gathering, processing, and analysis, their ontological status is

still open to debate. It is surprisingly difficult to provide a straightforward answer to a

very basic question: What is in an image? We can ask the same question in a different

way: What is the ontological status of the information content of remote sensing

imagery? The answer to this question requires the specification of the

phenomenological domain ontology. This line of research should examine different

possible answers to this question generating a set of ontologies that will allow a more

complete understanding of the role of images as sources of geographic information.

Although these topics are beyond of the scope of this thesis, they give directions

for future work. The framework presented here is a foundation for future ontology-

driven information systems. The highly semantic approach used here follows a trend

of modern information systems. Although the development of the large amount of

ontologies necessary to fully unlash the power of these kind of systems is still an

ongoing effort, users of future information systems will be able to deal with

information in a much more intuitive and easy way than in today’s keyword based

systems.
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