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People conceptualize objects in an information space over different levels of details or 

grantrkarities and shift among these granularities as necessary for the task at hand. 

Shifting among granularities is f~~ndamental for understanding and reasoning about an 

information space. In general, shifting to a coarser granularity can improve one's 

understanding of a complex information space, whereas shifting to a more detailed 

granularity reveals information that is otherwise unknown. To arrive at a coarser 

granularity. objects must be generalized. There are multiple ways to perform 

generalization. Several generalization methods have been adopted from the abstraction 

processes that are intuitively carried out by people. Although, people seem to be able to 

carry out abstractions and generalize objects with ease. formalizing these generalization 

and shifts between them in an information system, such as geographic inforniation 

system, still offers many challenges. A set of rules capturing multiple granularities of 



objects and the use of these granularities for enhanced reasoning and browsing is yet to 

be well researched. 

This thesis pursues an approach for arriving at multiple granularities of spatial objects 

based on the concept of coarsening. Coarsening refers to the process of transforming a 

representation of objects into a less detailed representation. The focus of this thesis is to 

develop a set of cocrrsening opernkws that are based on the objects' attributes, attribute 

values and relations with other objccts, such as containment, connectivity, and nearness. 

for arriving at coarser or amalgamated objects. As a result. a set of four coarsening 

operators- group, C O I ~ ~ O S C ,  coexis\, and jiller are defined. 

A framework, called a g~~unzilcrr.i\y grcrph. is presented for modeling the application of 

coarsening operators iteratively to form amalgamated objects. A granularity graph can be 

used to browse through objects at different granularities, to retrieve objects that are at 

different granularities, and to examine how the granularities are related to each other. 

There can occur long sequenccs of operators between objects in the graph, which need to 

be simplified. Con~positions of coarsening operators are deril~ed to collapse or simplify 

the chain of operators. The semantics associated with objects amalgamations enable to 

determine correct results of the con~positions of coarsening operators. The composition of 

operators enables to determine all the possible ways for arriving at a coarser granularity 

of objects from a set of objects. Capturing these different ways facilitates enhanced 

reasoning of how objects at multiple granularities are related to each other. 
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Chapter 1 

INTRODUCTION 

Spatio-temporal knowledge representation often requires changing from one level of 

detail to another so that users can carry out a desired task (Buttenfield and Delotto 1989; 

Guptill 1990; Hornsby and Egenhofer 1999). Location-based querying, monitoring of 

hazard zones. and planning a transport system, for example, need to be examined over 

different levels of details. Geographic information systems (GISs) typically support 

changes in the level of detail from the perspective of changes to geometric properties of 

map objects. Changing the map scale or emphasizing essential map objects while 

suppressing the unimportant are some functions that render different levels of detail. Data 

can be represented at different levels of detail, each suited for a particular purpose. In a 

GIS. for example, it is required to display data at certain levels of detail while guiding a 

person through a maze of streets or to assist military personnel across an area of 

landmines. In this thesis, we refer to the level of detail as grunzilciri~y (Hornsby and 

Egenhofer 2002). Incorporating multiple granularities of spatio-temporal data and 

enabling translations among different granularities have been identified as important in 

information systems (Buttenfield and Delotto 1989). In order to deal successfully with 

several emerging spatio-temporal applications, such as multiple representations of spatio- 



temporal data, GISs must support methods for modeling data at different granularities 

and enable shifts among them. 

The most common approach to simplifying levels of detail of information is by the 

process of selection and generalization. In everyday life, the amount of information 

people encounter is vast and much more detailed than they can cognize. To deal with the 

complexities, people typically consider only things that are relevant to their tasks and 

abstract away the unnecessary details (Hobbs 1990; Bederson and Hollan 1994; Timpf 

and Frank 1998). Several methods for generalizing map objects have been adoptcd based 

on abstraction processes that are intuitively carried out by people. Abstraction factors out 

the commonalities in the description of several concepts in an information space into the 

description of a more general concept (Timpf 1999). For example, the different kinds of 

buildings on a university campus, such as academic buildings. administrative buildings. 

dormitories, gymnasium, and arts centers, can be abstracted to a simpler and more 

general concept of campus buildings. It is typically sufficient to refer to the various types 
U 

of buildings as campus buildings when describing the university campus to a friend, 

whereas more specific details are required when directing a student to a particular 

building. In this process of understanding and reasoning about an information space. 

people intuitively perform shifts among the different granularities and draw on an 

information space that is at a required level of detail, according to their task. 

Shifting among granularities is fundamental for reasoning (I-Iobbs 1990) and key for 

any knowledge-based system. In general. shifting to a coarser granularity of entities can 

improve one's understanding of a complex information space. Conversely, shifting to a 

more detailed granularity can uncover information that otherwise is unknown (Hornsby 



and Egenhofer 1999). It is, therefore, of primary importance to support n~ultiple 

granularities and shifts among these granularities. 
L 

Although people carry out abstractions or shifts to more detailed granularities nit11 

ease, formalizing these shifts for integration into an information system and query 

languages still offers many challenges. Considerable amount of work has been done bj. 

the cartographic and GIs  con~munity to generate map-based generalizations, that is, 

trailslations of maps to higher or less precise scales (Buttenfield and McMaster 199 1: 

Muller et L I I .  1995a). Multi-resolution map models have been proposed to offer increased 

capabilities for spatial reasoning and representation (Puppo and Dettori 1995; Stell and 

Worboys 1998). Techniques have also been developed to change granularities for 

enhanced visualization (Furnas 1986; Tanaka and Ichikawa 1988; Stone et nl 1994: 

Tiinpf and Frank 1998). To date, automated map generalization and visualization-based 

generalization have been based on a set of complex geometric and attribute 

manipulations. Object-oriented abstraction methods are other most con~monly used 

approaches for arriving at generalizations (Smith and Smith 1977: Brodie et nl 1984) 

using the principles of inheritance and aggregation. However. deriving granularities is a 

subjective process and there can be multiple ways of arriving at a granularity. A set of 

rules capturing the complete set of possible granularities is yet to be developed. A11 

approach for building the different grailularities and enabling shifts among them is 

required. Other challenges are to find relations anlong entities at different granularities 

and to use them for enhanced reasoning based on multiple granularities. 



1.1 Background of Thesis 

A simple approach for modeling data at different granularities in a GIS is to store 

different datasets as layers for the same geographic space (Figure ] . la) .  Each layer 

contains data specific for a task, such as town data, city data, and road network data, 

which can be integrated spatially (Figure 1.lb) resulting in a detailed granularity. 

Selecting and omitting the layers in the dataset allows shifting to more or fewer spatial 

details. In this approach, a fixed set of granularities is used, whereas it is often required to 

be able to derive different granularities according to the user's task at hand. 

(a) (b) 

Figure 1.1 (a) Different datasets for the same geographic space. (b) Overlaying 

different datasets in a GIS leads to a refined granularity. 

Another approach to arrive at coarser granularities involves the selective omission of 

map features and the generalization of map features into more abstract forms (McMaster 

and Shea 1992). Map-based generalization or cartographic generalization has been a 

major subject of study, particularly from a geometric perspective. Cartographic 

generalization involves a reduction in the map content dependent on scale changes to 

maps and attribute data manipulation, transforming a detailed representation of the map 

(Figure 1.2a) into a less detailed representation (Buttenfield and McMaster 199 1; Muller 



et CII .  1995a). An initial step in the generalization process involves the selection of map 

features, relevant to the task. Selection results in a less detailed granularity consisting of 

only the relevant map features (Figure 1.2b). Following the selection, such operations as 

smoothing, simplification, and aggregation (Figure 1 . 2 ~ )  are applied to map features 

based on geometric and attribute transformations to result in a new, generalized map 

representation (McMaster and Shea 1992). Similarly, automated map generalization, 

which employs agents to attain an acceptable level of detail (Lamy et ul. 1999) and 

generalization of coverages using thematic information (Frank e/ 01. 1997) are other 

methods to obtain map-based generalizations. Since map-based generalizations 

frequently address geometric manipulations, the computations can be complex and highly 

dependent on map features. 

Figure 1.2 Map-based generalization: (a) snapshot view of map objects, 

generalization of data by (b) selection process and (c) aggregation. 

To avoid the geometric con~plexities in map-based generalizations several techniques 

have been proposed to render enhanced visualization by manipulating the semantic 

properties of map elements. Fisheye views (Furnas 1986) provide a visualization of maps 

based on the concept of a panorama by implementing the local details in context with the 

global structure. Fisheye views are obtained by varying the sen~antic importance of map 



elements. Pad++ (Bederson and Hollan 1994) is a graphic zooming technique that 

renders generalizations based on semantic task-based filtering. A semantic paruling and 

zooming technique from the perspective of filtering objects supports a step-by-step 

refinement of map elements through visual feedback from thc user (Tanaka and Ichikawa 

1988). The Perspective Wull (Mackinlay et ul. 1991) and the A4ugic Filter (Stone et ul. 

1994) are other visualization-based generalizations, which also use filtering techniques in 

the generalization process. The visualization-based methods, however, do not incorporate 

any techniques to combinc or amalgamate entities into more general concepts. 

Several multi-resolution map inodels have been proposed to implement these filtering 

and abstraction mechanisms in order to offer increased support in spatial reasoning. 

Multi-resolution models facilitate storing the multi-granular representation of maps by 

using a hierarchical tree structure (Frank and Timpf 1994; Puppo and Dettori 1995). Such 

models provide flexibility to represent data with regard to scale and resolution. Stell and 

Worboys (1998) illustrate an approach to model multi-resolution spatial data by using 

granularity lattices and map spaces. They provide methods to shift between map spaces 

and a formal discussion for integrating semantically and geometrically heterogeneous 

spatial datasets. 

For multi-resolution models to be effective, it was necessary to have a means to make 

appropriate transitions between different granularities of data (Hornsby and Egenhofer 

1999: Stell and Worboys 1999). Further work on multi-resolution models has led to an 

investigation of the types of operations necessary to arrivc at different granularities. 

Timpf (1999) provided a categorization of hierarchies for the abstraction process based 

on the generalization operations of filter, aggregation, and classification. Stell and 



Worboys (1999) introduce two kinds of generalization operations. selection and 

amalgamation, enabling transitions to granularities with less detail. A few generalization 

operations have been identified, however, the operations do not model the different 

semantics associated with combining objects to result in coarser granularities. Also, there 

is a need for uniformity in modeling the operators. The definition of operations lacks a 

common set of criteria for comparison, which limits the use of the operators based on the 

multiple granularities. For example, application of the operators for determining the 

relation between the objects at different granularities or the different ways (i.e., shortest 

path or desired path) of arriving at an object granularity is not investigated. The process 

of abstracting to coarser granularities and the use of such models for enhanced reasoning 

and browsing based on niultiple granularities is yet to be well researched. 

1.2 Motivation for Research 

We envision that objects are rich in structure and semantics. Exploiting an object's 

semantic attributes and relations with other objects can lead to a large number of possible 

ways to generalize data. Treating the geometry, scale, and attributes of the map features 

has resulted in a set of cartographic generalization operators (McMaster and Shea 1992), 

such as simplification. aggregation, smoothing, amalgamation, merging, collapse, 

refinement, exaggeration, enhancement, and displacement. Ormsby and Mackaness 

(1999) also discuss map generalizations based on the different phenomena of map 

features determined by geometry, semantic, and inter-object relationships. GIs, however, 

requires methods for addressing generalizations and granularity change operations 

beyond map-based generalization. Timpf (1999) and Stell and Worboys (1999) propose 

semantic generalization operations for multi-resolution models by considering spatial 



data as objects. The senlantic and task-based generalizations of map features have 

resulted in methods alternative to the complex geometrical computations for generalizing 

objects. Modeling multiple granularities, however. involvc other challenges, such as 

determining the semantics associated with different granularities, enabling shifts among 

the different granularities for retrieving coarser and finer object granularities, and finding 

the relation between the different granularities. 

This thesis develops an approach to model multiple granularities of objects bascd on 

the concept of courscning. Coarsening refers to the process of transforming a 

reprcsentation of objects into a less detailed representation. Coarsening of objects is 

achieved by filter and undgu~nulion.  Filter is the process of selecting a subset of objects 

from a set while omitting the other objects. The selected ob-jects are considered as part of 

a coarser granularity. Amalgamation is the process of combining two or more objects to 

result in a single object at a coarser granularity (Stell and Worboys 1999). There are 

different semantics associated with object amalgamations that lead to a coarsening and in 

this thesis we identify the differcnt kinds of object amalgamations. 

A11 oDjec.1 is the representation of a physical entity, such as a building or a lake, or a 

fiat entity (Smith and Varzi 1997), such as a land-parcel or a university, in an information 

system. Objects are also distinguished as clc~sscs or as an instcince of a class. For 

example, object Building is a class with attributes that correspond to buildings and object 

Bourd~nun Hall is an instance of the class Building. Each ob-ject is defined by a (1) set of 

attributes, (2) attribute values, and (3) relations with respect to other objects. In this 

thesis, we address spatial relationships anlong the objects, namely contained connecled, 

and near. The different kinds of object amalgamations are defined based on the three 



con~ponents of objects. As a result, we define four coarsening operators - gi-oup, 

compose, coexis, and jillrr for combining and selecting objects to result in coarser 

granularities or amalgamated objects. Applying the coarsening operators iteratively to 

objects and their ainalgamatcd objects leads to the crcation of a framework consisting of 

multiple granularities of objects, called a grunulcl-ity grcydz. 

Granularity graphs represent a rich structure of objects at multiple granularities. 

connected by coarsening operators. The graphs provide a framework for shifting among 

different object granularities. It also supports browsing through granularities, enabling 

retrieval of objects at different granularities. A granularity graph can contain long 

sequences of operators connecting two object granularities and often it would be required 

to simplify the sequence of operators. For example, to determine a shorter path in the 

graph or how two granularities are connected to each other. Compositions of operators 

play a significant role in collapsing or simplifying the sequences of coarsening operators. 

In this thesis, we derive all possible compositions of the coarsening operators and 

determine valid compositions that can be used in simplifying the sequence of operators. 

The different applications of the composition of operators are also presented highlighting 

their use in enhanced reasoning based on the multiple granularities. 

1.3 Key Research Questions 

Systems that model multiple granularities need methods supporting translations among 

the different granularities and for arriving at a required granularity. When translating 

between two different granularities several questions arise with regard to the objects that 

are at finer or coarser granularities. To process such queries one needs a framework and 



rules for modeling all ob-jcct combinations that lead to coarse granularities. The 

development of such a framework is guided by the following research questions: 

Can two objects be amalgamated to result in a coarser granularity? 

What are the different ways in which an object can be combined with other 

objects? 

What are the semantics associated with the retrieval of coarser granularities of a 

set of objects'? 

A framework of multiple granularities consists of objects at different levels of details 

connected by coarsening operators. There can occur long sequences of operators 

connecting two objects in the framework that may require to be simplified. Composition 

of coarsening operators can be used to collapse or simplify the sequence of operators. 

Based on the valid compositions of the coarsening operators. we can answer challenging 

research questions, such as: 

Is it possible to derive valid compositions for all operators? 

Applying the compositions, can the number of operators be simplified or 

collapsed to a simpler sequcnce'? 

Which of the operators result in most effective compositions or least effective 

compositions'? 

1.4 Goal and Hypothesis 

The goal of this thesis is to model multiple granularities of objects and enabling shifts 

among them for retrieving finer or coarser granularities. The main focus of this approach 

is to distinguish the different semantics associated with combining objects for arriving at 



multiple coarser granularities. A set of coarsening operators is developed to result in a 

framework of multiple granularities. Each operator models a distinct object 

amalgamation or selection and is defined based on the valid instances and classes of 

objects to which it can be applied. Another contribution of this work is the derivation of 

all possible compositions of the coarsening operators and their different useful 

applications based on n~ultiple granularities. 

Compositions of coarsening operators play an important role in simplifying the 

sequence of operators between two objects in a granularity graph. The compositions arc 

used for determining a sl~orter path in the graph and the relations among the objects at 

different granularities in the graph. Composition of operators is significant for reasoning 

based on multiple granularities and enables one to obtain more completc semantics of 

objects at multiple granularitics. Understanding the semantics of coarsening operators 

that connect the different granularities is important for determining valid con~positions of 

operators. Hence, in this thesis we focus on the semantics of object amalgainations and 

their effect in deriving valid con~positions of operators. The hypothesis of this thesis is: 

Dgerent sernan/ics c~~socicrted wilh the object nmalgcr~~~a/ions are needed lo yield 

correct resztlts of  the co~npositions of coarsening oyera/ors. 

1.5 Scope of Thesis 

This thesis builds on a framework of coarsening operators, consisting of filtering and 

amalgamations, to model multiple granularities of objects. We identify four ways in 

which objects can be combined or selected into a coarser granularity based on common 

attributes, common attribute values, and similar relations with other objects. The use of 



geometry in the amalgamation process or the spatial resolution of objects is not a focus of 

this work. By common attributes and common attribute values of objects, we imply 

identical values of the attribute names and the attribute values of objects, respectively. 

The coarsening operators can also be extended to consider range of values of attributes 

instead of a particular value, though we do address range of valucs in this thesis. We 

consider only three spatial relations among objects, namely contained, connected, and 

near. Coarsening operators can be extended to include other spatial relations that capture 

different semantics of object amalgamations. 

We develop a model for building multiple granularities of objects, support shifting 

among the different granularities and enable determining the relation between 

granularities. An object-oriented approach is used for arriving at granularities. It also 

includes spatial relations in order to capture rich semantics of object amalgamations. 

Similar to the other generalization techniques, the approach presented in this thesis 

enables to form multiple granularities of objects. Comparison between the different 

approaches is beyond the scope of this thesis. 

Applying coarsening operators can result in an object that is a class, such as Bzrilding 

or an object that is an instance, such as College ofE17gineering. The operators, by their 

definitions, determine only a subset of the actual properties of the resulting amalgamated 

object. The operators do not assist in finding out the spatial nature or topology of the 

amalgamated object. 

The granularity graph derived from using these operators does not necessarily 

represent all possible coarsenings that can exist among the granularities. Each level in the 



granularity graph is derived using a particular sequence of coarsening operators. A 

different granularity graph may be obtained by changing the sequence of the operations. 

We present a complete set of the compositions of coarsening operators based on the 

definitions on the coarsening operators. The result of a possible composition of operators 

can be valid, giving a single result, or undetermined, implying that there are more than 

one possible result of the composition. The undetermined composition requires more 

information from the user in order to determine the valid result of the composition. 

This thesis does not present an exhaustive classification of amalgamations of objects. 

We restrict our amalgan~ation based on attributes, attribute values, and three spatial 

relations among objects. There can be other object amalgamation, such as evolution of 

objects or merging of ob.jects that can be included in the set of operators by treating 

additional relations among objects. Our approach provides a conceptual modeling anlong 

granularities and does not deal with the multiple geometric representations of spatial 

objects. We suggest a framework for building multiple objects granularities and enable 

browsing through them. It does not yet support any query language for multiple 

granularities. 

1.6 Major Results 

This approach highlights the differences in the granularity of objects obtained from the 

different semantics of object combinations. A set of coarsening operators and granularity 

graphs are the outcome of modeling multiple granularities through coarsening. The 

granularity graph derived using the operators supports a nlulti-granular model of the 

objects. The graph structure enables mapping of the different graph operations for 



browsing through the object granularities. The browsing operations enable the retrieval of 

objects at different granularities, such as objects that are at finer or coarser granularities. 

or objects that share a common coarser granularity in the graph. Several unary and binary 

browsing operations are reviewed. 

Another major result from the coarsening operators is valid compositions of the 

coarsening operators. The con~position of operators can be used to reduce the sequencc of 

operators connecting two objects in the graph to a minimum. They enable determination 

of how two objects at different granularities are related to each other. Applying the 

compositions, it is also possible to determine the different ways of arriving at a 

granularity from a set of objects. The undetermined compositions prevent arriving at 

invalid results of compositions and prompt the user to find the valid con~position by using 

more information. 

1.7 Organization of the Thesis 

'The remainder of the thesis is organized into seven chapters. 

Chapter 2 discusses the research and the literature that underlie this work: from the 

need to model granularity and granularity changes to the state-of-art of the different 

approaches to model multi-granular data. 

Chapter 3 introduces the basis for arriving at coarser granularities of objects through 

filtering and amalgamation. Several different kinds of amalgamations and their seinantics 

are presented. Four distinct coarsening operators are compiled to capture the semantics of 

the different amalgamations and filtering. Formal rules for implementing the operators 

are also specified. 



Chapter 4 discusses the building of a granularity graph applying the coarsening 

operators. The element of a graph and a basic algorithm for constructing a granularity 

graph is presented. The several browsing operations for a graph and its mapping to 

browse objects at different granularities is discussed. 

C..hapter 5 is a study on the composition of the coarsening operators. We examine the 

sequences of operations and identify all the possible compositions of operators. 

Inferences from the compositions and their affect on the granularities are presented. 

Several applications of thc compositions are also reviewed. 

In chapter 6, the implementation of the prototype for modeling multiple granularities 

is discussed. Following the design and specification of the prototype. an example is 

presented to demonstrate the construction of a granularity graph and browsing operations 

on the graph. 

Chapter 7 concludes the thesis with a discussion of the major results. We also present 

the scope for carrying out further research work in this area. 



Chapter 2 

MODELING MULTIPLE GRANULARITIES 

Different levels of details are useful for different tasks. For certain tasks, a coarser le\~el 

of detail is needed, whereas other tasks may require a more detailed perspective of data. 

In this thesis, we refer to these levels of detail as granularity. Granularities of entities are 

fundamental for understanding and reasoning about the world (Hobbs 1990). People 

consider only certain relevant data according to their interest or tasks being performed 

and abstract the excessivc details (Hornsby and Egenhofer 1999). In addition to 

simplifying the information space by selecting relevant data. combining or grouping data 

to coarser granularities enables better understanding of complex information spacc. 

Examples such as "I went to the Mall." "Stillwater is a good neighborhood," and 

"University parking is safe," are expressions that contain commonly used coarser 

approximations of an information space obtained by combining several features in the 

information space. Modeling the infinitely detailed real world into a finite system space, 

likewise, requires methods that translate the complexities of the world into simpler 

representations. 

People intuitively draw on an information space that is at different levels of details 

and perform shifts among thesc granularities (Hobbs 1990). From a computational 

viewpoint, generalization methods are commonly used to generate simpler 



representations by manipulating the attributes of entities in an information space. In a 

GIs, map-based generalization methods are developed as a set of complex rules based on 

the objects' geometries and spatial relations (Buttenfield and McMaster 199 I ; McMaster 

and Shea 1992  Weibel and Dutton 1999). Object-oriented concepts of classes and 

instances, and properties of classes, such as inheritance and aggregation, provide another 

perspective of modeling generalizations based on the semantic relations and attributes of 

objects (Hammer and McLeod 198 1 ; Maier and Stein 198 1 ; Stroustrup 199 1 ). Research 

into the application of object-oriented concepts to GIs has proven to offer a good design 

environment well suited for a GIs by offering simple and better modeling methods 

(Oosterom and Bos 1989; Egenhofer and Frank 1992; Worboys 1994). It has been 

suggested (Schiel 1989; Kosters el a/. 1996; Stell and Worboys 1999; Timpf 1999) that 

generalizations need not only be based on complex geometric calculations, but also be 

semantically possible. 

Hobbs (1990) uses granularity to refer to the notion that the world is perceived at 

different grain sizes or granules. Local weather, for instance, is commonly given to the 

granularity of a city, whereas a person's driver's license is given to the granularity of a 

State. For temporal data, granularity is typically defined as calendar-dependent 

partitioning of a time line (Wiederhold el crl. 1991; Dyreson and Snodgrass 1995). 

Different granularities of time exist, such as minutes, hours, and years. Granularities can 

be compared, where some granularities are finer or coarser with respect to other 

granularities. 

The concept of granularity is also inherent in ob-iect-oriented programming (OOP) 

principles through abstraction. The provisions in OOP to support class inheritance, by 



defining base class, derived class, and friend class, models the class structure as more 

generic or more detailed (Stroustrup 1991). The base class can be looked upon as a 

generalization of the several specialized derived classes. Similarly. in databases, a query 

result, such as a horizontal or vertical partition of the database, or a join operation among 

tables generate as results different granularities of the database. 

Modeling multiple granularities conveys how the entities in an information space are 

related and thereby provide users with embedded knowledge of a system. 7'11e different 

granularities can be used for domain organization and for browsing through the 

granularities in order to obtain more detail or more general information. 

This chapter provides an overview of granularity by reviewing the different methods 

for modeling multiple granularities. A detailed description of the different approaches for 

changing granularity, such as the object-based and map-based approaches, is also 

presented. 

2.1 Methods for Modeling Object Granularities 

Modeling multiple granularities provides a valuable framework for handling and 

integrating the different levels of details. The different levels of granularities in an 

information space can be examined in order to obtain more detail or more general 

information. In this section we describe the different  neth hods for modeling multiple 

granularities of objects that are con~n~only  adopted by computer science research. 

2.1.1 Concept hierarchies 

Concept hierarchies (CHs) define a sequence of mappings from a set of lower-level 

concepts to their higher-level correspondences resulting in a hierarchy of concepts 



(Madria el d 1998; Hilderman et a1 1999). CHs express the different granularities of 

objects based on domain values of attributes. For example, a set of objects [school, post 

office, restaurant} can be generalized into higher-level concept as a building. CH is 

defined on a set of attributes of objects. The most detailed concept corresponds to 

specific values of attributes. whereas the most general concepts are the all or the any 

description. A knowledge engineer or a domain expert constructs mappings of the 

different levels in a CH. Many different CHs can be constructed based on different 

viewpoints or user preferences; however, a common CH can be associated with an 

attribute. 

CHs are constructed as part of the database definition phase for each of the attributes 

by defining a classification hierarchy based on the doinain values of those attributes. A 

CH is represented as a tree, where the leaf node corresponds to the actual data and the 

intermediate nodes correspond to the more general concepts. The CH providing 

inforn~ation for the street attribute in a road network database is as shown (Figure 2.1). 

The leaf nodes are the actual streets. At higher levels, a CH refers to streets by the 

corresponding street types (such as one-way street or a two-way street) or the division or 

area to which the streets belong, abstracting the individual streets. CHs present only one 

possible group of granularities to the user without evaluating the other possibilities. To 

facilitate the generation of other granularities of objects, new data structures such as the 

doinain generalization graphs (Hilderman et al. 1999) are introduced. 



Figure 2.1 Concept hierarchy for the street attribute. 

2.1.2 Domain generalization graphs 

A domain generalization graph (DGG) (Read et crl. 1992: Hilderman et ul. 1999) 

supplements a concept hierarchy by defining a partial order that represents a set of 

generalization relations for the attribute. Different granularities of objects are possible, 

but, particularly for data mining, it is efficient and effective to limit the nodes in the 

hierarchies to those representing generalized encodings of the domain. The DGG models 

possible generalizations as a partial order rather than a strict hierarchy. A DGG is 

designed to include a single leaf node and a single root node. The node at each depth in a 

DGG is a general description of the nodes at the same depth in a corresponding CH. For 

example, the different nodes in a DGG for the street attribute would be the general 

concepts of the corresponding nodes in the CH (Figure 2.1), such as a particular street, 

street - type, and division respectively (Figure 2.2a). The edges in the graph denote the 

partial order relation between the nodes. When multiple CHs are associated with a single 

attribute, a multi-path DGG can be constructed for that attribute (Figure 2.2b). The 

generalizations modeled in a DGG are partial order relations among attributes. DGGs do 



not model abstraction mechanisms such as aggregation or association, and do not make 

any distinction with respect to the semantic relations among ob.jects. 

Division 

StreetX & 
Figure 2.2 Single and multi-path DGG for the slreel attribute. 

2.1.3 Ontologies 

An ontology is defined as a specification of a conceptualization, that is, an ontology is a 

description (a formal specification of a program) of the concepts and relationships of 

entities that can exist in some domain (Guarino 1994). In the context of AI, an ontology 

refers to a formal model, constituted by a specific vocabulary used to describe a certain 

reality. It induces a set of assumptions regarding the intended meaning of the vocabulary 

words, and formal axioms that constrain the interpretation and well-formed use of these 

terms. By defining an ontology, some formal properties that account for distinctions 

among objects can be worked out, although complete definitions may not be given. Such 

formal properties result in a clearer taxonomy, clarifying the intended meaning of the 

concepts, reducing the inconsistencies, and producing a more reusable ontology. The 

relationships among the different entities in the domain, particularly the is-a relation, are 



modeled at different levels in the ontology. Ontologies have been implcn~ellted as 

hierarchies and are formalized with constraints. The lower levels in the ontology 

hierarchy reveal more detail, giving the instance of a particular entity, the higher levels in 

the hierarchy are at a more general granularity. 

The different levels in these methods are obtained by a change in the granularity. A 

change in granularity can occur by inanipulating the geometric. spatial: and semantic 

attributes and relations of objects. I11 the followiilg section we review the different 

approaches for changing granularity. 

2.2 Object-Oriented Approaches for Changing Granularity 

Object-oriented generalization (Smith and Smith 1977; Brodie el u1. 1984) is targeted to 

exploit the semantics of objects' attributes and relations with other objects to result in 

coarser granularities of objects. The object model enables a separation of the 

complexities of the granularity used for visualization purposes, particularly dealing with 

geometry. maintaining geometric consistency of map features, and algorithms for 

processing map elements from the generalization proccss. limiting it to only the 

manipulation of semantics associated with objects. This section rcviews the fundamental 

concepts of object-oriented models. Several implementations of the 00 concepts in a 

GIs are also discussed. 

2.2.1 Object-oriented abstraction methods 

Object-oriented models deconlpose an information space into objects. Objects must be 

identifiable and describable. An object can be described by a set of attributes (such as 

name of a city or population), behavioral characteristics (such as a method for computing 



the area of an object), and structural characteristics (such as part-whole relationships) 

(Winston et al. 1987). Each object has an identifier that uniquely defines an object. For 

example, a city can be described as an object with attributes name, population, and area 

(Figure 2.3a). and the name of the city can be considered as a unique identifier for city. 

Structural characteristics of an object can be specified as city X is part of a state Y or X 

connected to a city Z. Objects with similar behavior are organized into types. Thus, 

objects such as river, lake, and pond are of type water-bodies. At the implementation 

level the grouping of objects with corresponding attributes and methods is defined as a 

class. For example, Bangor and Portland can be grouped into a class city (Figure 2.3b). 

Giving specific values for the inember attributes of a class is defined as an instance of a 

class. Thus, an object is an instance of a class. For example, city with name = Bangor and 

population = 32,000, is an instance of the class city. 

f city Name: 
c i t y l ~ o p ~ n :  I 

1 City I 
Name: class 

( 4  (b) 

Figure 2.3 Describing (a) city as a class and (b) instances of city, Bangor and 

Portland. 



An important object-oriented property is inl?eri/ance. In inheritance, generic features 

common to a group can be used to define a base class and then. new specialized cIasses, 

called derived classes can be created by modifying and adding existing features. For 

example, a generic class called Shcrpe can be defined and specialized classes called 

Rec/ungle or Cir-cle can be derived from shape. Inheritance consists of two operations. 

generalizalion and speciulizcr/ion. Abstracting common properties of several types into a 

generic type is called generalization. Generalization results in a higher-level class based 

on common properties of entities. For example, class Shcpe is a generalization of the 

different kinds of shapes, such as a Circle, Rec/ungle, Triangle, based on their common 

properties such as area. perimeter, etc. The reverse process of distinguishing the distinct 

types from a generic type according to specific roles is called specialization. Thus, Pain/, 

Segment, and Polygon can be considered as specializations of the class A4ap elernen/. 

Another object-oriented incthod of abstraction is achieved by uggr-eg~l/ior?. An 

aggregate object is one, which contains other objects. For example. an Airldane class 

would contain Engine, Wing, Tail, and C.'re~l as its component objects. Sometimes 

aggregation coiresponds to physical containment (e.g., contained in the airplane). But 

sometimes it is more abstract (e.g., Club and Members). The condition to aggregate 

objects is to identify if there is a whole/pai-t relationship between them. In linguistics, 

aggregate objects are called composite objects (Winston e/ ul. 1987). Winston elaborated 

a study of the relations between the parts and wholes providing a taxonomy of part-whole 

relations. 

Grouping of objects or clussiJication is yet another method of abstraction. 

Classification is formed from a hon~ogeneous set of objects, based on specific values of 



common properties of objects. Rules for classification describe conditions on attributes of 

individual entities that must be satisfied so that the entities can be grouped into a more 

general entity. For example, Urhui7Areu is a classification of all the regions with 

population density of 0.G and industrial growth ratio > 0.5. 

Inheritance, aggregation, and generalization are abstraction mechanisms important for 

deriving and modeling n~ultiple representations. These abstraction mechanisms have been 

implemented using the entity relation (ER) model as well as the object-oriented (00) 

model (Ramalu-ishnan 1997). Hadzilacos and Tryfona (1 997) extend the ER model to the 

Geo-ER model. which models the part-of relation for aggregation and member-of relation 

for grouping. These relations express the semantics of the geographic entities' position, 

spatial attributes and relations. For example, a spatial aggregation is defined if and only if 

the position of an object is the geometric union of the position of its geographic parts. 

Semantic networks used for modeling structural relationships among objects (Schiel 

1989) also use generalization, aggregation and grouping as the semantic links and 

correspond to is-a, part-of. and element-of relationships. respectively. Sin~ilarly. 

abstraction hierarchies (Timpf 1999) use network graphs for data modeling, to develop 

conceptual schemata, and to demonstrate multiple granularities of objects. 

2.2.2 Object-orientation in GIS 

Geographic information systems are characterized by structurally complex information, 

specialized graphical requirements, and non-standard transactions (Oosterom and Bos 

1989). The applicability of an ob.ject-oriented approach to GIS has been reviewed and 

promoted (Oosterom and Bos 1989; Egenhofer and Frank 1992; Worboys 1994). 

Applying object-oriented concepts, map features are modeled as special data structures 



called reactive data structures to incorporate granularity information (Oosterom and Bos 

1989). The level of detail is inaintained in the data structure by a link to the parent object 

for each object in the system. The object model allows storing different representations of 

a map feature and also supports modeling semantic relations among objects, such as a 

part-whole relation, grouping two or more objects and representing them by a single 

graphical primitive. 

Another approach that makes use of object-oriented principles is based on 

hierarchical structures that describe abstraction mechanisms. such as classification, 

generalization. and aggregation (Timpf 1999). A map is modeled as a complex object 

system composed of several elements and the elements of the map can be aggregated or 

generalized to more general objects. Timpf describes how the application of abstraction 

creates granularities of objects. Hierarchies are formed by factoring out the 

commonalities in the description of several objects into the description of a more general 

object. 

Stell and Worboys (1999) present a method for coarsening using a multi-resolution 

model that distinguishes between selection of features and amalgamation of features. 

Each map feature is considered identifiable and describable, similar to objects. Selection 

refers to choosing the necessary features from the set and omitting the remaining features, 

and amalgamation refers to grouping features together such that some features become 

indistinguishable as a result. In general, a loss of detail between X and Y involves both 

selection and amalgamation operations. A type of generalization referred to as a 

simplification is presented as a selection followed by an amalgamation. This thesis 



investigates the different semantics associated with object amalgamations that result in 

coarser granularities. 

2.3 Map-Based Approaches for Changing Granularity 

Multi-scale maps are conmonly used to convey levels of detail of geographic space. 

Researchers investigated models to store multi-scale maps and developed algorithms to 

fetch the appropriate map representation that matched a task (Guptill 1990). Multi-scale 

maps posed several limitations, such as only a static set of representations was made 

available and expensive search routines were necessary to obtain a correct match. Further 

research suggested starting with a detailed map as an alternative to storing multiple 

representations (Beard 1990), and developing methods for changing granularity and 

translating among granularities. Deriving granularities was seen to be a usefill alternative 

as it provided the flexibility with respect to the level of detail. 

Cartographic generalization is aimed at generating visualizations and graphical 

symbolization of map features over multiple scales (Buttenfield and McMaster 1991: 

McMaster and Shea 1992; Muller el trl. 1995a; Muller el ul. 1995b). Cartographic 

generalizations reduce in scope the amount of data, scale, and graphical portrayal of map 

elements, to generate simple, clear, and easier-to-understand maps. McMaster and Shea 

(1 992) present some guidelines for when and how to generalize. The map generalization 

process is necessary to generate maps for a specific purpose and an intended audience. 

with appropriate scale and clarity. It also requires methods for reducing the complexity. 

maintaining spatial and attribute accuracy, and for applying the rules in a consistent 

manner. The need for applying the methods arises when there is congestion or 



complication of map features, or when there is a need to focus few map features. The 

generalization process involves the selection of map objects for representation followed 

by the manipulation of geometry and attributes of the geographic objects to generate a 

simplified representation of details (Weibel and Dutton 1999) appropriate to the scale and 

the purpose of the map. 

Scale reduction auton~atically leads to an abstraction resulting only in the map 

features that have a fair resolution in the given scale. The remaining map features with 

very high resolution do not appear in the representation. Scale reduction alone, however, 

does not influence the generalization process. For the same scale, the map details 

required by a visitor to tour a wilderness park, for example, will be different from the 

ones targeted for the park ranger. Thus, the task at hand plays an important role in 

generalizing maps focusing on the information essential to the intended audience. Brassel 

and Weibel suggested a model to focus on the map features of interest by associating a 

measure of importance with each map feature (McMaster and Shea 1992). A 

phenomenological generalization method (Ormsby and Mackaness 1999) associates the 

degree of importance to the geometry of an object based on the object's semantics. For 

example, a rectangular geometry becomes more meaningful by adding whether it is a 

building or a tennis court. Stell and Worboys ( 1998) propose another formal approach for 

processing and reasoning about multiple granularities in spatial databases with regard to 

semantic and geometric precision. They organize a series of maps into a map space and 

define operations to shift among the map spaces. Frank and Timpf (1994) propose a 

multi-scale, lierarchical approach to cartographic generalization. where renderings of 

map objects are stored at different granularities. To obtain an output map, a top-down 



selection of pre-generalized cartographic objects is performed until a sufficient 

granularity is reached. 

Cartographic generalization is achieved through the application of a variety of 

generalization operators developed from the cartographic practices, each resultillg in 

spatial abstraction. The initial step in any generalization operation is to identify the map 

objects of interest, called the selection process (Buttenfield and McMaster 1991) resulting 

in a granularity with fewer objects. Following the selection process, the selected map 

objects are subjected to the generalization process. Generalization operators may address 

the spatial component or the attributes of the map objects. A spatial transformation 

involves the manipulation of the object's geometry, focusing primarily on the locational 

aspects of data. Ten spatial transformations have been identified: simplification, 

smoothing, aggregation, amalgamation, merging, collapse, refinement. exaggeration. 

enhancement, and displacement (McMaster and Shea 1992). Each of the spatial 

transformations alters the data representation from a geographical or topological 

perspective. The aggregation operation, for instance, groups the point features in close 

proximity into a higher order class feature represented with a different syn~bolization 

(Figure 2.4b). Amalgamation performs a different grouping by joining contiguous 

polygonal features with similarities into a larger area feature (Figure 2 .4~) .  



Figure 2.4 (a) Original map and (b) generalized map using aggregation operation and 

(c) amalgamation operation. 

In addition to the spatial transformations, the other type of generalization operation is 

attribute transformation (Buttenfield and McMaster 1991) involving the process of 

classification / symbolization of map features based on the attributes of map objects. 

2.4 Visualization-Based Approaches 

Another approach for generalization focuses on the visualization of the map. Applying 

the generalization operations to map features locally can suffer from the drawback of 

losing context. For example, several levels of zoom-in operations, performed to 

understand the local details, are likely to move away from the original context of the 

map. To avoid this situation, it was necessary to model the local details in context with 

the global structure. Fisheye views (Fumas 1986) implement a strategy to provide a 

balance of the local detail and the global context. Fisheye views are generated by Degree 

of Interest (DOI) functions, which assign to each point in the structure a weight of 

interest that is a threshold to determine the contents of the display. A desired level of 

detail can be obtained by simply showing the n most interesting points as indicated by the 

DO1 function. The perspective wall technique is an improven~ent over fisheye views 



(Mackinlay e/ 01. 1991), enabling users to see large linear information spaces by 

smoothly integrating detailed and contextual views. 

Pad++, a framework for exploring visualization of graphical data with a zooming 

interface (Bederson and Hollan 1994), supports manipulation and navigation of multi- 

scale graphical objects. More details of an object are seen when zooming in. When 

zoomed out, however, a different representation of the object is viewed than of a scaled 

down version. The map details are rendered based on various semantic task-based 

considerations. Tanaka and Ichikawa (1988), describe a similar approach based on the 

degree of importance and semantic categories of map objects. Maps are derived through a 

step-by-step refinement of user preferences through visual feedback. The semantic 

zooming operation is used to control the display of map features according to the user's 

interest and the importance of categories, while a semantic panning operation specifies 

the different categories of relevant map elements. A more detailed map is obtained 

through semantic zoom-in. By semantically panning to a category. a thematic map is 

obtained that contains map elements belonging to a new category. Other kinds of 

operations, such as content zoom, intelligent zoom, and the filter operation, such as the 

magic filters (Stone el al. 1994), also support granularity change by improving 

visualization. Map-based approaches to granularity change can be intricate and detailed 

processes, involving geometric complexities in the generalization process. In their pursuit 

to provide alternate solutions, researchers have identified that generalizations can be non- 

algorithmic tasks (Muller el crl. 1995a; Muller el LII. 1995b). 



2.5 Summary 

Modeling multiple granularities and performing shifts among the granularities is 

fundamental to the process of reasoning about information space. In this chapter, wc 

reviewed different methods to model objects at multiple granularities, such as concept 

hierarchies, domain generalization graphs, and ontological structures. There are different 

approaches for granularity change. This chapter described the object-oriented approaches, 

map-based, and visualization-based approaches for arriving at different granularities. The 

mapping coininunity uses a set of cartographic generalization operations to generate 

different granularities of maps. These operations manipulate the geometric properties, 

spatial relations, and attributes of map objects spatial entities to result in different map 

granularity. Visualization-based approaches manipulate the semantic propertics of map 

objects. These approaches involve complex geometric computations, are expensive to 

compute, and subjective in nature. Alternate non-computational generalizations for 

objects are discussed by using an object-based approach for granularity change. where 

the information space is treated as a set of objects, and the object's attributes and 

relationship among objects are manipulated to lead to different granularities. 

In the next chapter, we present a novel approach for arriving at granularities of 

objects through the process of coarsening. The different semantics of objects that lead to 

a coarser granularity of objects are identified and a set of coarsening operators for 

arriving at coarser objects is presented. 



Chapter 3 

DENVING OBJECT GRANULARITIES THROUGH 

COARSENING 

This chapter identifies and presents different ways for arriving at multiple granularities of 

objects. In this thesis, we adopt object-based generalization operations to arrive at coarser 

granularities, namely jiller and nmcrlgrm~ution (Section 2.2.2) (Stell and Worboys 1999). 

A rcduction in detail is obtained by applying a filter to objects followed by amalganlating 

them. Compared to filtering, which mostly depends upon a user's interest or 

requirements, amalgamation can be complex as there are different ways in which objects 

can be combined to result in coarser granularities. This chapter distinguishes the different 

types of ainalgamations by identifying the different semantics associated with 

ainalgamations leading to coarser granularities. Filtering and the different kinds of 

amalgamations are described as operations that contribute to multiple granularities of 

objects through coarsening. Based on the filter and the kinds of amalgamations, a set of 

coarsening operators is presented to create coarser granularities of objects from a detailed 

granularity. The coarsening operators represent a method to achieve a richer set of 

simplifications. 



3.1 Coarsening 

Coarsening is defined as the process of transforming a granularity of objects in an 

information space into a less detailed granularity. It is a method for creating different 

object granularities. There can be more than one way to obtain coarser object 

granularities. In this thesis: coarsening is based on the two fundamental operations: 

filtering and amalgamation. We begin with a universal set of objects U that consists of all 

the objects in an information space. Coarsening is applied to objects in U such that the 

resulting granularity contains feu~er objects. 

Objects in U are filtered or amalgamated to arrive at a coarser ob-ject granularity. 

Filtering is applied to select a subset of objects from a set while omitting the other 

objects. Objects can be filtered from the set U such that the resulting coarser granularity 

contains fewer objects (Figure 3.la). For example, applying filters to objects x3 and s, 

from U = [xl. ~ 2 .  .., x,,) selects these ob.jects from U resulting in a coarser granularity [x3, 

x,). In a different way, objects in U can also be amalgamated resulting in a coarser 

granularity with fewer, coarse-grained objects. 

Figure 3.1 (a) Filtering objects x3 and x, from the set U = (xl, x2, .. .st,) and (b) 

amalgamation of ob.jects XI, x-2, and x-3 into yl. 



Amalgamation refers to the process of combining or grouping objects in order to 

arrive at a coarser granularity of objects. For instance, objects in U, XI, xl, and x3 are 

amalgamated to a coarser granularity y,  (Figure 3.1 b). 

Attributes of objects are used in deriving different granularities in generalization 

graphs (Hamilton and Randall 1999). However, attributes of objects only partially 

contribute to the generalization and do not capture all the possible semantics associated 

with grouping objects for arriving at a coarser granularity. Alternatively, there exist 

several hierarchical relationships among objects that model the semantics among objects 

(Schiel 1989), such as Echo luke is a type of Lake or Echo luke is part of Acudiu ~Votionnl 

Park. Object-oriented approaches for generalization use the relations among objects to 

describe the different abstraction mechanisms, such as generalization, aggregation, and 

classification (Smith and Smith 1977; Brodie el al. 1984). 

In this thesis, we investigate the different semantics associated with amalgamations of 

objects based on common attributes of objects, common attribute values, and similar 

relationships of objects with other objects. There are different ways to perform object 

amalgamation depending on an object's attributes and relations with other objects. We 

identify three kinds of object amalgamations: (1) grouping similar objects, (2) combining 

component objects to form a composite object, and (3) combining objects with similar 

values into a collection. The different kinds of amalgamations and filtering that lead to 

multiple granularities of objects are compiled as a set of coarsening operators. The term 

cour.sening operators refers to a collection of operators that can be applied to a set of 

objects and result in coarser granularities of objects. The operators in~lude~filfer and the 



different kinds of amalgamations, namely grorrp, compose, and coexist. Each operator is 

distinct and generates a unique coarse granularity of objects. 

In our approach. an object in the universe U is defined by its attributes and 

relationships with other objects. Each attribute of an object belongs to a particular 

attribute type, such as integer, days of a week, or states in USA, and can only hold values 

that lie in the donlain of their attribute type. For example, the town of Orono can be 

described as an object: Orono(popu1ation:int = 15,000; county:county-type = Penobscot 

County) consisting of the attributes population and county of type integer and county- 

type respectively and the attribute have values of 15,000 and Penobscot County. The 

relationship among objects is represented as r(01, 02') where r is the relation and 0 1  and 

0 2  are the objects connected by r. For example, is-a(Bangor. City) describes an is-a 

relation among the objects Bungor and Cily. A function crltr(0bject) is defined to list all 

the attributes of an object. Another function attrVal(cittr(0~j~'ct)) lists the attribute values 

for all the attributes belonging to an object. For example, d/r(City) = (population, 

county} and attr J/crl(~rttr(C'ity)) = (population : 15000, county : Penobscot County). 

Objects are described as instances of classes or as classes. Instances of classes hold 

specific values for attributes, such as C'ity(name = Bangor, population = 32000). Classes 

are more generic objects as Cily(name, population) and Wustelanci(id, area, city). Classes 

have only attributes and do not have associated values. To arrive at coarser granularities 

of objects, we investigate the objects relationships between: instance-instance, instance- 

class, and class-class for the different kinds of amalgamations. The next section presents 

a detailed discussion on the coarsening operators with formalisn~s for each operator and 

examples. 



3.2 Filter 

Filtering objects of interest is a coinmon method used to arrive at a coarser granularity of 

objects. Cartographic (McMaster and Shea 1992) and visualization-based generalization 

(Furnas 1986; Stone et cil. 1994) approaches use a selection operation for choosing 

certain map features as being crucial for the abstraction process. Stell and Worboys 

(1999) also define a selection operation as part of the simplification process. Selecting 

objects from a set of objects creates a filter hierarchy (Timpf 1999). The select macro in 

database query languages returns records with specific attributes of interest from a 

database (Ramakrishnan 1997). In this thesis, a ,fil/er operator is used to describe 

selection of a subset of objects from a set while omitting the other objects (Figure 3.2a). 

Filtering objects contributes to coarsening by resulting in a less-detailed granularity 

consisting of fewer objects. Objects are filtered depending upon the user's requirements, 

such as attributes or specific values of objects. 

X3 X4 X2 X3 X4 X5 Y3 x5 

Filter I  I  I 1 1  - I - -  I  
X2 X3 X4 X5 X2 X3 X4 X- 3 I X2 x3 X4; Xs 

L - - _ _ - - - - - a  

(a) (b) (c) 

Figure 3.2 (a) Filtering ob-jects x3 and ,Q from U = {x?, x3, x-4, xj), (b) trivial ,fil/e~. 

operation selecting all the objects in U, and (c) triviaI,fil/er operation on x j  

and amalgamation of xz, x3, and x l  into y3. 

A trivial case ofjijilter is defined as applying the,jilter operator to select all the objects 

in a set (Figure 3.2b). Thus, a trivialjlter does not lead to a coarsening by itself and it 



must be applied only in combination with an amalgamation operation (Figure 3 . 2 ~ )  for 

resulting in a coarser granularity. 

3.2.1 Formalization of the operator 

If the universal set U = (all objects) defines the set of all objects in an information space, 

then aJil/er. operator can be defined as a function F: p (Uj  + U such that, 

F(xj = {x: x EU) 

3.2.2 Example 

Consider the different metro lines present in the Boston subway network, U = [RedT, 

BlzreT, GreenT, OrcingeT). The individual objects are described as: 

- OmngeT(lengt11:tloat = 18miles, no. of stops:int = 19, time:int = 33min) 

- BlueT(1ength:float = 9.5iniles, no. of stops:int = 12, time:int = 23min) 

- RedT(lengt1xfloat = 33miles, no. of stops:int = 22, time:int = 46mi11) 

- GreenT(1ength:float = 3 1 miles, no. of stops:int = 17, time:int = 42min) 

The inetro lines can be filtered based on their attributes or attribute values that satisfy 

a user's interest or rcquirement. For instance, the shortest metro line [BlueT,' can be 

selected by applying aJ//er. operator based on its attribute length. Also, a filler. operator 

can be used to select metro lines having 15 or more stations resulting in a view of the 

metro lines that is at a coarser granularity {Oi.cmgeT, Red[ GreenT). 

Fil/ei.(Or.nngeT Gr.een7: RedT, BIzieTj = {OiwngeT, RedT GreenTl;' 

3.3 Group 

Objects can be amalgamated from the recognition of similar object types, factoring out 

the con~monalities in the individual objects into a more general object (Hammer and 



McLeod 1981 : Worboys 1994). For instance, one can intuitively say that a vehicle is an 

object and cur is a subtype of vehicle. Similarity object type is con~monly modeled as an 

is-a relationship among classes (Smith and Smith 1977; Brodie el cd. 1984), such as car 

is-a type of vehicle. The rationale for modeling an is-a relation among objects is defined 

by the common attribute names of objects. For example, let us consider the objects, 

Lake(name, depth, volume, type, watershed area), Pond(area, depth. volume, type). and 

M'cller-body(type. depth, volume). Among their set of attributes, Lake and Pond have the 

attributes type, depth, and volume in common with the attributes in Water-body (Figure 

3.3). Since Lake and P o t d  have additional attributes and Water-body has no other 

attributes than those of Luke and Pond, we can say that a Lake is-a Watet.-body and Pond 

is a Water-body. Objects with common attribute names are recognized as having the is-a 

relation and are amalgamated to a coarser object granularity by grouping. 

1 Lake 

Name 
Depth 
Volume 
TY pe 
Watel-shed-Area 

Pond 

Area 
Depth 
Volume 

Figure 3.3 Grouping Luke and Pond into Waler-bock 

attributes, depth, volume, and type. 

TY pe 
Depth 
Volume 

based 011 their common 

A group operator is defincd as the amalgamation of similar objects into a common 

class. Group operator is expresscd as a class-class amalgamation operation based on the 

is-a relation among classes. The resulting coarser object is a st~perclws (e.g., Watet.- 

bo~fy) and each of the combining ob.jects is a sz~bclass, (e.g., Luke and Pond). Similarity 



in object types also occurs between instances and classes. lnstances of a class are similar 

in behavior to the class but hold different attribute values for a class. For example, 

Boardmun Hcrll(#floors:int =3. #rooms:int = 45, architect:string = "Mittal". type:bldtype 

= academic) and Bcrri-ows Hd1( #floors:int =2. #rooms:int = 55, architect:string = 

"Ral~eja builders", type:bldtype = academic) are instances of a class Building based on 

the similar attributes, #floors, architect, and type. lnstances belonging to a class can be 

grouped into a class based on the instance-ofrelation (Brodie el crl. 1984). Thus, a group 

operator can be used to combine classes into a more abstract class or instances of a class 

into a class. 

3.3.1 Formalization of the operator 

If the universal set U =  (all objects} defines the set of all objects in an information space, 

then the group operator can be expressed as a function GI-: p ( 1 J )  U such that for S _c 

U. 

- where is-@, y) if crttr(yl _c affl-(x) and 

- instance-oj&y) fcr//r(y) _c crtir(x) and 3cr/fr Val(u//r(x)) 

3.3.2 Example 

Consider the following objects ~Cfuple - S/ree/, Elm - Slreel, Sfi.ee/, Highway, Road, and 

Boulevcrrd. The objects are described as: 

- ins~ance-of(Maple - Street, Street) 

- in,vtance-oj(E1n1-Street, Street) 

- Stree/(name, id, length, speed limit) 

- Highwcry(id, no. of lanes, distance, major connecting cities, length, speed 

limit) 



- Boz,levard(id, intersection, length. speed limit) 

- Road(id, Icngth, speed limit) 

Table 3.1 Common attributes of objects: length and speed limit. 

Objects 

Highway 

Boulevard 

Street 

Road 

Based on the coininon attributes of objects (Table 3.1), it can be derived that Sfreel has a 

subset of its attributes coinmon with Road (i.e., length, speed limit) and the Ro~id does 

Attributes 

not have any other attributes of its own. Hence, it can be derived that is- street, Road). 

Likewise, is- highway, Road) and is- boulevard, Road). Applying the gt-ozip operator, 

cities ... 
- 

Maple - Slreet and Elm-S'lreel are amalgamated into Slreel based on the instance-of 

avg. traffic 

pavement width 
#lanes 

name 

relation among objects (Equation 3.2). And, Slree~,  Highw~iy, and Borllev~ird are 

amalgamated into a coarser object Ro~id  based on the is-a relation among objects 

length 

length 

length 

length 

(Equation 3.2). 

speed limit 

speed limit 

speed limit 

speed limit 

Ct-ozip (Slreet, Highway, Boulevard) = Road 

3.4 Compose 

Objects can comprise of components objects. Component objects that combine to form a 

whole exhibit a part-of rclation with the whole. For example, the individual buildings that 

comprise the university campus, are part-of the university campus. At times. it is 

sufficient to directly refer to the whole, abstracting the details of its parts or component 

objects. For example, the university campus, is adequate to describe the campus 



boundary or the location and the details about the individual buildings can be abstracted. 

Component objects play a structural or a functional role to the whole (Winston et ul. 

1987). In this thesis, the foundation for addressing part-whole relationships among 

objects is based on spatial containment, spatial connectivity, or nearness of objects. These 

spatial relations capture distinct part-whole semantics among ob.jects. 

Objects can be spatially contained within another object. A11 object A contains B if A 

and B share the same interior region but do not have common or intersecting boundaries 

(Egenhofer 1993). For example, buildings in a university campus are contained within the 

campus. Objects that are contained in an object can be amalgamated into the whole based 

on their containment property. Spatial containment among objects is modeled as a 

relation contained(A, B). The part-of relation among objects is defined based on a spatial 

containment relation. 

Another basis for describing part-whole relationships among objects is through spatial 

connectivity among objects. Objects sharing a common boundary or a common point of 

contact are described as conncctecl objects. Objects A and B are connected implies that 

there is a path from A to B and from B back to A. An object A connected to B is expressed 

by the rclation connec/ed(A,B). Objects exhibiting the connected relation can be 

amalganlated into a whole, a coarser object representing the connected objects. For 

example, two minor roads Exi/51 and Muin $/reel are connected to a major street 

S/illn:ater Avenue by the relations, connected(Exit 51, Stillwater Avenue) and 

connected(Main Street, Stillwater Avenue). The smaller roads can be amalgamated into 

the major road S/illwater Aveme. Objects Exit 51 and Muin Street are described as past- 

of Stillwcrter Avenue based on spatial connectivity. Thus, the result of the amalgamation 



can be an object that is dominant in the connectivity among objects, e.g., Stilh~wter 

Avenue, or it could be a new object abstracting all the connecting objects. such as a 

Univei.sily Network that consists of all the streets connected in the university. 

Spatial proximity or nearness among objects is yet another way of signifying the part- 

whole relationships. Objects that are within a certain distance of each other can be 

combined into a whole based on the nearness among objects. For example, objects that 

are within a mile from the Wilmington - Metro-Station can be amalgamated into 

H~ilmington - Station - Area. The different objects combining to form Wilminglon - Slulion 

- Areu are within a small radius of the station. Objects that are near each other can be 

modeled by the relation ne~w(A, B) where object A is near object B. It might appear that 

the objects combining to form the IViIinington-Slution-Area are more likely expressed as 

contained in the M~ili~~ing~on~Station-Ai.ea. At a generic level, all part-whole 

relationships can be described using the conraininent relation among objects. With the 

relations, such as connec~ed and near; we look at finer semantics of how the objects are 

contained to form the whole. Thus. it is true that the objects in our example are contained 

in the Wilmington - Station - Arecr, however, the near relation models the semantics of 

nearness among objects or the accessibility of objects From each other. which is not 

captured by the cont~lined relation. 

A compose operator is defined as the amalgamation of objects having a common part- 

of relation with another object. Part-whole relationships among objects are defined by the 

relations conlained(A,B), connected(A,B), and near(A,B). Among the three spatial 

relations, conlained and connected are transitive, whereas nc.ai. is not transitive. A 

compose operator identifies part-of relations among both instances of classes and among 



classes (Schiel 1989). Since instances have specific values of attributes, the part-wholc 

relation among instances is well defined. For example, con~ained(Civil-Engineering 

Department, Boardman-Hall) is a part-of relation among instances. There are also cases 

where the part-whole relation can exist among classes, such as con~uined(Building, 

University). However, classes are weakly connected to each other by the part-of relation 

since, not all instances of a class satisfy the part-whole relationship. For example. not 

every Bzlilding is part-of the University cuinpzrs. 

The class-instance pair for a coirzpose is a special case of the operator. With multiple 

ob.ject granularities, objects that are classes to some objects may behave like an instance 

to another object. Consider for example, Beehive Trail and Bowl Trail as instances of a 

class Trail. There may also exist a relation conlcrined(Trails, Acadia Park), that models all 

the Trcrils as contained in the Acudia Nc~lional Pcrrk. The contained relation exists 

between the class Trtrils and an instance Acuch ~Ve~lionrrl Purk. A contained rclation 

modeling the parts of an instance, such as Acadia Nutionul Purk, exhibits strong 

connectivity with the parts (i.c., one can say all the trails are part of the Acadia National 

park). Thus, compose operator from (c-i) is treated similar to compose operator f ro~n (i-i). 

Hence, Tiuils, which is a class for the individual trails, it is modeled as an instance for the 

Acadia National Park. The operator from class-instance enables modeling such dual roles 

of objects. 

3.4.1 For~nalization of the operator 

If the universal set U = [all objects) in an information space. then a compose operator 

can be defined as Co: y(U) + U such that, for S _c U 

Co(S) ={ y E U: Y.. E L S ,  3parl-oj(x,y)) (3 .3) 



- where part-ofcqy) if 3 conlcrined(x, y) or 

- 3 connecledc~, y) or 

- 3 rzear.(~, x 3 

3.4.2 Example 

Consider objects, Aiol-th-Ridge-Trc/il and C'crdill~rc~Sumnzi~~Trcril with relations: 

- conlailzc.d~o1-th-Ridge-Trail, Cadillac-Mountain) and 

- conlcrined(Cadil1ac-Summit-Trail, Cadillac-Mountain). 

Based 011 their spatial containment relation. Norrh-Ridge-Trcril and 

Caciillcrc - Sunzlnil-TI-cril can bc described as part-of Ccrdillc/c-A4o~rntain. Thus, applying 

the composc operator AJol-th .- Ridge - Trail and Cc~dillcrc. - Sur~zrni~-Trcd can bc 

amalgamated into Cadill~rc - Mozrnrain (Equation 3.3). 

Comnpose(~Vorth--Ri~Igc.-TI-cril, Ce~di l luc~S~n~rni t  - Truil) = C'~rdi1lac iMounlain 

3.5 Coexist 

A different kind of amalgamation involves grouping objects that have a common purpose 

or objects in association with each other. Associativity among objects is described by the 

common attribute values of ob-jects. Objects can have common attribute names with 

similar attribute values, such as Brooke - Lclke(activity:watersport = motor boating, 

canoeing) and Jordan Pond(actii4ty:watersport = motor boat, canoeing. fishing). Such 

objects can be amalgamated based on similar attribute names and similar attribute values 

into a coarser object, a collection (e.g., Acadia-Wa~ersporl). Objects in a collection are 

referred to as member ob-jects (Winston et al. 1987; Hornsby and Egenhofer 1998). The 

collection is defined by the coexistence of member objects with a common purpose and 

each member exhibits a lnenzher-of relation with the collection. Member objects do not 



contribute to the structural or the functional definition of a collection and can be added to 

or removed from a collection. 

A coexis! operator is defined as the amalgamation of ob-iects having a common 

member-of relation into a collection. The rationale for defining the member-of relation 

among objects is the common attribute values of objects. Hence, the member-of relation 

can only occur among instance-instance and instance-class. Similar to the part-whole 

relation among objects, a member-of relation is well defined among instances. For 

example, member-oj(Buildingl2, Theta - Kai-Fraternity). The member-of relation can 

also relate instances to a class. For example, member-of(Brow11, Team) implies that 

Brown is a member of the class Team. The membership can also be described as each 

instance of the class T e ~ m  has several instances of the class Person. 

3.5.1 Formalization of the operator 

If the universal set U = {all objects) in an information space, then a coexist operator can 

be defined as Ce: p ( U )  + U such that, for S_c U 

C.'e(S) =Jy E U: Vx E S, 3mernher.-of(x,y)) 

- where mentber-oj(x,y) if n uttrVuI(utlr@,)) # 0 
I 

3.5.2 Example 

Consider the different engineering departments, Spatial, Civil. Mechanicul. Elecll~ical, 

and Cher-rzical. 

- Spali~rl(Department:ProgramType = Engineering, Location:building = 

"Boadn~an Hall") 

- Civil(Department:ProgramType = Engineering. #Labs:int = 3) 

- ~Mechanic~~I(Department:ProgramType = Engineering) 



- Eleclric~d(Major:ProgramType = Engineering, Location:building = 

"Barrows Hall") 

- Chemic~d(Progran~:ProgramType = Engineering. Location:building = 

"Jenness Hall") 

Based on the common attribute value 'Engineering', the objects can be combined into 

a whole, exhibiting a common purpose, i.e., departments contributing to engineering. 

Applying the coexisl operator (Equation 3.4) the objects can be amalgamated to C'ollege 

of Engineering. Every object under College of Engineering must have an attribute 

department with a value 'engineering'. 

C'oexist(Sp~ltia1, Civil, Mech~rnical, Electrical, C'hemicd) = C'ollege of Engineering 

3.6 Summary 

This chapter introduces the operations of filtering and the different kinds of 

amalgamations to arrive at coarser granularities of objects. The semantics of the relations 

among objects are explored and different kinds of amalgainations are identified. The 

filtering and amalgamation operations are compiled as a set of coarsening operators. 

Coarsening operators include filler, group, compose, and coexisl. The operators are used 

to arrive at different object granularities and are defined by the attributes and relations 

among objects. The table summarizes the different coarsening operators and their valid 

instance-class pairs to which they can be applied (Table 3.2). 



Operators 

Filter 

Group 

Coexist 

Compose 

Table 3.2 

Rationale 

User-defined 
attribute 

Common 
attribute names 

Common 
attribute value 

Spatial 
containment, 
connectivity, 
nearness 

Relation 

is-a 

Member- 
of 

part-of 

Instance- I Class- 
instance 1 class 

Instance- 
class 

Class- 
instance 

Coarsening operators and the corresponding instance-class pairs to which 

the operators can be applied. 

The next chapter describes how applying the coarsening operators can lead to the 

generation of a granularity graph. A set of basic graph operations is also presented for 

querying and browsing ob-ject granularities. 



Chapter 4 

GRANULARITY GRAPHS 

For multiple object granularities to be effective, we organize the objects and their higher- 

order granularities into an integrated framework and provide a means for making 

appropriate shifts among objects. Coarsening operators are applied to ob-jects in order to 

arrive at different object granularities. Applying the operators recursively leads to an 

arrangement of object granularities, called a granularily graph. In this chapter, we 

introduce a granularity graph for modeling multiple object granularities. An algorithm is 

presented for constructing a granularity graph and illustrated with examples. Two aspects 

relating to modeling multiple granularities, namely matching objects granularities and 

assembling object granularities, are discussed. A review of the operations for browsing a 

granularity graph followed with the mapping of the browsing operations on multiple 

granularities, are also presented. 

4.1 Rationale for a Granularity Graph 

Shifting among granularities is fundamental for understanding and reasoning about an 

information space. In order to support appropriate shifts anlong object granularities it is 

required to examine the different object granularities in an integrated setting. There exist 

few approaches for modeling multiple object granularities, such as concept hierarchies 



and domain generalization graphs (Hamilton et ~ d .  1999). A concept hierarchy provides a 

natural way for expressing lower-level and higher-level concepts based on domain wlues 

of attributes. A domain generalization graph models relevant attributc based 

generalizations of objects as a partial order. Ontologies allow formal specification of the 

concepts and relationships of entities as a taxonomy particularly (Guarino and Welty 

2000) using the class-subclass relation. These frameworks capture attribute-based 

generalizations and typically model inheritance among object granularities. These 

models. however. do not address till the relations among objects that contribute to object 

granularities. Also, methods for modeling object granularities based on both attributes 

and relations of objects are yet to be well explored. 

In this thesis, we introduce a seinailtically rich framework for modeling multiple 

granularities of objects called a ~unul t rr i ty  gr~iph (GG). A GG is an arrangement of 

objects connected by the coarsening operators. The different granularities can be used for 

domain organization and browsing support. GGs provide users with knowledge about the 

semantic relations among the entities in the system. A GG facilitates shifting among 

object granularities, leading to a more detailed or a coarser perspective on an objcct. GGs 

can also be exploited for potentially useful, valid patterns of object granularities and to 

establish relationships among object granularities. 

4.2 Elements of a Granularity Graph 

A granularity graph is defined by a graph structure G = (hi, E). where A1 and E are the 

disjoint finite sets of nodes and edges, respectively. Each node in the graph represents an 

object at a granularity. The edges in the graph are the coarsening operators (i.e.. ,filter, 



group, compose, coexirl) used for arriving at a coarser gran~~larity of objects. An edge 

connects two different objects and no two edges can connect to the same pair of objects. 

( compose 

Figure 4.1 A granularity graph. U= {x,, XI, ..., XI(,). 

Consider a granularity graph for an information space U= { X I ,  XI, ..., XI(,) (Figure 

4.1). The objects or the nodes in the graph {X I ,  ... xlo) are represented as a dot with a 

label. The edges are the lines connecting the nodes. The edges in the graph are labeled 

with the appropriate coarsening operators used for arriving at a coarser object granularity. 

Objects fir',rl, .., xlo) below the line L represents all of the objects in U. Objects can also be 

described as an illstance of a class or as a class. In a granularity graph, an instance of a 

class is represented as an ellipse (e.g., Xj, x6, xs) and a class is represented by a solid 

rectangle (e.g., XI, x2). A subset of relevant objects S = p(U) = (x?, ~ 3 ,  XJ, XG, x8) is the leaf 

nodes in the granularity graph, which correspond to the fine-grained objects in U. 

Applying the coarsening operators, objects in S can be filtered or amalgamated resulting 

in coarser granularities. For example, objects {xa x3, x 3  are amalgamated to xl applying 

the group operator while objects fir6, xs] are amalgamated to yl by the compose operator. 



The object X I  is also present in the set of objects in U. Hence, there is both a jiller and 

group to x l .  AjZter operator is represented by an edge connecting the same object at two 

consecutive levels and a dotted rectangular box around the objects represents an 

amalgamation of objects. Objects {XI .  yl,' are the intermediate nodes in the graph 

corresponding to coarser object granularities, and the root node yl is the coarsest object 

granularity for the objects in U. 

4.3 Constructing a Granularity Graph 

Constructing a granularity graph begins by defining an inforn~ation space U. Details 

about objects, i.e., attributes and relations, that coinprise the information space are 

specified as part of the definition. An object in U is described by a set of attributes with 

an optional attribute type and value, for example, cily (Nme:slring = Bangor, 

popzhlion:int = 32,000, st~lle. USslule = Muine). Relationships are also expressed among 

two objects granularities, such as contuins(Boai-dinm - Hull, Civil-engineering). Five 

object relationships are modcled in a granularity graph including: is-u(A,B), connecled(A, 

B), conlains(A, B). near(A, B), and member-of(A,B). Based on objects' attributes and 

relations in U, coarsening operators are applied to objects. Coarsening operators can be 

recursively applied to the resulting object granularities leading to coarser granularities 

until the object can no longer be amalgamated. An algorithm (Algorithm 4.1) captures the 

process of building a granularity graph on a set of objects in U. 



Algorithm 4.1 An algorithm for constructing a granularity graph 

I .  Select objecls (i.e., /he leqf norle.s)j?om U, S= y (U)  rtpplying lhejiller operulor.. 

2, Initialize the sel of resul!ant object gra17~tlaritie.s S t =  0 

3. For each operator (i.e.. group, co~?~pose, coexist) 

3.1. Vx E S 

3.1. I .  I f x  salisfies [he necessary operrrlor condilion 

mark x US red 

3.2. Ifthe number of objects marked red > I 

3.2.1. C,'reate L I  coarser objecl givznularity y crnd slore /he re1~11io11 

parent(y, [o&ecls marked red], opervrlor). 

3.2.2. i f y  6 U 

3.2.2.1. Add y to U. 

3.2.2.2. Addfacts about y to U. 

3.2.3. Add [he resul/anr ohjecl grnnulari~y y to S: 

3.2.4. Resel all marked objects. 

4. I f 3 x  E S such thcit x is relevant to  he user, 

4.1. Select x applying the-filter operator. 

4.2. Add x to the set S '  

5. /SS'= 0 

bk E U szrch lhat x can be amalgamated with x E S, Add x to S. 

else 

s = s : s / = 0  

6. Repeat steps 3 to 5 until U = @ 



There are two different settings in which the algorithm is used: (1) creating object 

granularities and (2) matching object granularities. The following two sections give an 

example for each. 

4.3.1 Creating object granularities 

An information space can contain objects at different levels of details, modeling the 

different perspectives of objects. Coarsening operators can be applied to objects resulting 

in amalgamated objects. The resultant object can already exist as one of the objects in the 

information space U or it can be a new object, which is not present in U. The process of 

creating object granularities combines objects to result in a new amalgamated object. 

Table 4.1 

Object 1 Attributes 1 
1 type - of - trail: distance: float 1 

lnformation space of the Acadia National Park modeling the different 

Beehive-trail 

Bowl-trail 

Jordanqond-trail 

Cadillac - mtn - trail 

Great-head-trail 

Truils. 

Consider Acadia National Park as an information space U. The different trails in the 

tYPe 

Strenuous 

Easy 

Easjr 

Strenuous 

Easy 

Acadia park are presented as objects in U (Table 4.1). The trails have common attributes 

(miles) 

3.0 

2.0 

5.0 

2.7 

2.2 

[ype - of' - [rail and dis/unce. The domain for the attribute l y ~ x  .- of - ~ r ~ i i l  = {strenllous. 

ensy,'. A coexist operator amalgamates objects based on the common attribute values of 

objects. Beehive - ~rui l  and C'udillac - rnln - truil have a coinillon attribute value 's~r.enuot/s' 



for the attribute type-ojlrrail (Table 4.2). Hence, by applying the coexisr operator these 

trails are amalgamated to a coarser granularity S~renzious-trails. Similarly, Bowl-/rail, 

Jordun_pond - [rail, and Greurheudlrai l  can be amalgamated into Easy-rrails based on 

their common attribute value 'emy' for the attribute r p e  - of - racril (Table 4.2). The two 

resultant object granularities Slrenuous-trails and Eusy-rruils do not exist in U and are 

newly derived by applying the coesisl operator to objects. This process is referred as the 

creating object granularities. The derived objects can be added to U along with new 

attributes and relations of objects. Other coarsening operators are applied to objects in a 

similar way to derive new object granularities. 

Object Attribute 

Bowl-trail 

Jordan - pond trail - 

--trail 
I I 

Table 4.2 Similar attribute values of objects for the attribute lype-of_rruil: + denotes 

Easy 

Easy 

Strenuous 

Great-headtrai I 

strenuous trails, while O denotes easy rruils. 

1 
- 
- 

+ 

4.3.2 Matching object granularities 

Easy 

An information space can contain perspectives based on fine-grained as well as coarser 

r - 

objects and the relationships among them. While combining objects to arrive at a coarser 

granularity it can be possible that the resulting granularity of object already exists as an 

object in the information space U. Thus, a matching process can be performed to compare 



the resultant object with the existing objects in U. In this case. the coarsening operators 

play the role of establishing a connection among the granularities of objects in U. 

Objects exhibiting a spatial containment relation. 

-- -- 

contained( Bar-harbor, Mount-desert-island) 

contained( Acadiagark, Mount-desert-island) 

Table 4.3 

Consider 

Relations among objects lMu~ln! - deser! - isl~ind Bcir - h~irhor. and 

Acadiuj~crrk. 

the objects, Bur - hurhor and Acadiuycirk to be contained in the 

 mount-deser-t-islclnd (Figure 4.2). Based on spatial containment, a part-whole relation 

can be established among the objects (i.e., Bachnrbor. part-of iMo~~n~-deser!-isIc~n~l and 

Accidiuyark part-of ~Moun! deser-1 - island) (Table 4.3). The cwn~pose operator enables 

the amalgamation of objects by determining the part-of relation among the objects. 

Therefore, applying a compose operator, the objects, Acudiu~crrk and Bur - hcirbor can 

be amalgamated to a coarser granularity Mount - deser! - islnncl (Figure 4.3). In this case. 

all three ob-jects, Bcir - hurhor-, Acudinyark, and ~Moun! - desert - i~ land ,  are objects that are 

described by relations in U and the compose operator plays a role in connecting the 

objects to each other. Similar to a compose operator, other coarsening operators can also 

be applied for matching object granularities from the information space. 



Figure 4.3 Matching object granularity: A compose operator is used to connect the 

existing objccts granularities A c a d i ~ ~ p n - k ,  Bur - hurbor and 

4.3.3 Case study: Acadia Park 

This section demonstrates how the algorithm works for constructing a granularity graph 

using Acadia National Park as a case study. The universal set U of all objects in Acadia 

Park and the relations among objects are described (Table 4.4) 

1. From the set U, objects that are of interest to the user are selected as the leaf nodes 

of the granularity graph. These objects are typically instances of objects, described by a 

number of attributes and attribute values. In this example, we begin by selecting the leaf 

nodes S= y (U)={ Beehive - trail. Bowl - tsuil, Jotx'rmj?oncl - tmil, Greut - heud - t ~ v i l .  

Cudilluc - mtn - trail) applying a filter operator. The filter operator selects these objects 

from the set U leading to a coarser granularity with fewer objects. 



Beehive-trail (id:int = 01, type:trailType = strenuous, distance:float = 3.0 miles) 
Bowl-trail (id:int = 05, type:trailType = easy, distance:float = 2.0 miles) 
Jordan-pond-trail (id:int = 04, type:trailType = easy, distance:float = 5.0 miles) 
Cadillac-mtn-trail (id:int = 02, type:trailType = strenuous, distance:float = 2.7 
miles) 
Great - head-trail (id:int = 07, type:trailType = easy, distance:float = 2.2 miles) 
Ponds (depth:int, area:float) 
Park-loop-road (distance:float = 22 miles) 
Cadillac-mountain (e1evation:int = 460 ft) 

connected (Sand-beach, Park-loop-road) 
connected (Campground, Park-loop-road) 
connected (Trails, Park-loop-road) 
connected (Ponds, Park-loop-road) 
contained (Cadillac mountain, Mountdesert-island) 
contained (Bar-harbor. Mountdesert-island) 
contained (Acadiaqark, Mount-desert-island) 

Table 4.4 Information space for Acadia National Park. 

2. Any of the coarsening operators can now be applied to the objects in S. In this 

scenario, objects in S have common attributes, such as type - of - trail and distance with 

respective attribute values (Table 4.4). Applying the group operator, which is based on 

common attributes, these objects can be combined into Trails(type-oj~tr.ail:type, 

distunce:flocrt). Each object can be therefore expressed as an instance-qfthe class Truil. 

The group operator is applied to amalgamate objects in S to Truils, based on the instance- 

of relation among objects (Figure 4.4). 



The necessary condition for applying a coexisl operator is that objects must have 

similar attribute values. Objects in S have common attribute values for the attribute 

lype - of - frail. Beehive - ~rcril and C'crdillac - m1n - /rail have a common attribute value 

slrenztous trails and hence the two trails can be amalgamated to their common attribute 

value S~renuozls - trails (Figure 4.4). Similarly, Bowl - hail, GI-eat - head trail, and 

Jordungond-trail can be amalgamated to their common attribute value Eusy - lrai1.s 

(Figure 4.4). The resulting objects are newly derived ob.ject granularities and they are 

added to U. Attributes for the resultant objects, such as Strenuous - ~rails(code:@pe = 's '. 

iu'.int, disrance:flocrl) and Easy - rruils(code:type = 'e : id:int, dislcri~ce,jlou~) can also be 

included in U. 

Objects in S do not satisfy the necessary conditions for the cotnpose operator and 

hence cannot be further amalgamated. If desired, a.filler operator can now be applied to 

select relevant objects. In this case, we assume that the ob.jects do not satisfy user 

requirements and hence need not be filtered. Thus, after the first pass through the 

operators (i.e., steps 3 to 5): S = {Slrenzioza - trails, Easy - ~rails. Truils]. 





levels, they are one and the same object. A jilrer operator is used to connect the two 

occurrences of Trails. 

4. I11 a similar way, steps 3 through 5 from the algorithm are performed recursively to 

objects in S until there are no more objects in U that can be ainalyainatecl with objects in 

S or until U = The granularity graph for the Acadia Park is as shown in Figure 4.6. 

Attractions 

I I 
; ;t 

I I trail 
I 

Figure 4.6 Granularity graph for Acadia National Park. 



4.4 Browsing a Granularity Graph 

The graph structure with connected nodes and edges facilitates translations arnong the 

different levels in a graph and supports browsing the object granularities in the graph. 

Browsing a granularity graph refers to making translations either to coarser granularities 

or more detailed object granularities in the graph. The browse operations on a graph are 

categorized as unary and binary operations. Simple browse operations on a graph are 

methods defined on a single node. Examples are methods for obtaining a parent or a child 

node of a particular node. These primitive browse operations can be extended for two 

nodes by applying set theoretic operations, such as union, intersection, symmetric 

difference, and set difference {u, n, @, 1)  to the simple operations. If X and Y are nodes 

in the graph and X is a parent of Y, then a relation par.ent(X, Y) can be derived from the 

graph. Further, if op is thc coarsening operator connecting X and a list of objects Y,  the 

parent relation can be expressed as parent(X, Y, op). The parent relation can also be 

expressed with an optional operator op parameter such a s p ~ i ~ - ~ n t ( X ,  Y, J .  

parent(Strenuous Trails, Cadillac-mtn Trail, coexist) 
parent(Easy Trails, Great-head Trail, coexist) 
parent(Trails, Strenuous Trails, group) 

parent(Park-loop-road, Trails, con~pose) 

Table 4.5 Axioms partly describing the granularity graph for Acadia National Park. 

Following are some of the axioms (Table 4.5) that describe the granularity graph 

shown in Figure 4.6. Given the par.ent(X, IT, op) relation among the different nodes as 

axioms, the graph operations for browsing can be defined based on this relation. The 

operations are defined in predicate logic. Each operation is described as a predicate \;51ith 

its arguments. The arguments include both the operand and the result. A few predefined 



operations are used in defining of the predicates for browsing. For example, position(X 

List, N) - to find the position N of an element A' in a list, GetN~rmCIddren6~ to retrieve 

the number of children of an element X, interaect(iM,Af,X) - to find the intersection of two 

objects M and N, union(A4 N,X) - to find the union of two objects h/l and N. 

4.4.1 Unary operations 

A unary browse operation has only one operand, the node that is operated on. A unary 

operation is applied to a node and retrieves as a result a node or a set of nodes. For a node 

I\/, the basic unary operations would be to retrieve the nodes above and below A/, if any. 

The following are the different unary operations for a graph (Table 4.6). 



Predicate 

getparent 

getChildrenOp 

Description 

Takes an operand Y and 
returns the parents(s) X 
of Y 

Takes an operand Y and 
returns the N-th child X 
of Y 

Takes an operand Y and 
returns a list of children 
List of Y connected by 
the operator Op 

Takes an operand Y and 
returns all the 
descendants X of Y 

Takes an operand Y and 
returns all the ancestors 
X o f  Y 

Definition 

getparent ('\: Y) :- parent( 'Y, Lisl, 

), meinber(Y, Lisl). 

getchild ('\'; Y ,  N) :- parent (l', 
Lisl, ), position (X, Lisl, A?. 

- 

getChildrenOp (List, Y, Op) :- 

parent (Y, Lisr, Op). 
getChildrenOp (List, Y, J :- 

parent (Y, List, - ). 

getDescendant (A', Y) :- 

getchildren (X, Z, -), For I = 1 to 
getNurnChildren (X) 
getDescendant (position (2, X, I), 

Y). 

getAncestor (X, Y) :- parent(A: 
List, - ). member(Z Lisl), 
getAncestor(Z. Y). 

Table 4.6 Unary browsing operations on graph. 

4.4.2 Binary operations 

Binary operations take two operands and return a resultant node or list of nodes by 

operating on both the operands. Binary operations are extensions of the primitive unary 

operations and are defined using set theoretic operations, such as union, intersection, 

difference, symmetric difference. The primitive unary operations can be combined using 

the set operations leading to interesting binary operations (Table 4.7). In this section we 

introduce only the common binary operations based on the union and intersection of the 

primitive operations. 



Predicate F Iescription 

Takes two operands 0 1  
and 0 2  and returns the 
;ommon ancestors X of 
0 1  and 0 2  

Takes two operands 0 1  
and 0 2  and returns the 
common descendants X 
of 01 and 0 2  

Takes two operands 0 1  
and 0 2  and returns the 
ancestors X belonging 
to either 0 1  or 0 2  or 
both 

Takes two operands 0 1  
and 0 2  and returns the 
descendants A' 
belonging to either 0 1  
or 0 2  or both 

Takes two operands 0 1  
and 0 2  and retrieves the 
common relatives X that 
are an ancestor of 0 1  
and a descendant of 0 2  

Definition 

getCommonAncestor (X, 0 1 , 0 2 ) : -  
getAncestor (IM, 0 1 ) ,  getAncestor 
(A', 0 2 ) ,  intersect(M, IV, X). 

getCommonDescendant (A: 
0 1 , 0 2 )  :-getDescendant (M, O l ) ,  
getDescendant (AT, 04, intersect 
(hi hi, A?. 

getAllAncestors (/Y 0 1 ,  0 2 )  :- 

getAncestor (M, 0 1 ) ,  getAncestor 
(hl, 021, union (iM, N, X). 

getAllDescendants (X  0 1 ,  0 2 )  :- 
getDescendant (M, O l ) ,  

getDescendant (N, 0 2 ) ,  union (M, 
lV, A?. 

getAncestorDescendant (1\: 01.  
0 2 )  :- getAncestor (lC./, O l ) ,  

getDescendant (N, O), intersect 
(IM N, 'q. 

Table 4.7 Binary browsing operations on the graph. 

4.4.3 Mapping of graph operations onto object granularities 

The unary and the binary browsing operations enable the retrieval of parent, child, 

ancestors and other connected nodes for a selected node or nodes respectively. These 

operations can be applied to translate up the graph to the root as well as shifting to lower 

levels in the graph as far as the leaf nodes. These translations can be well mapped to 



operations for retrieving object granularities. The unary and binary graph operations can 

be mapped to two kinds of operations: refinement browsing operations that enables 

retrieval or shifts to finer object granularities and coarsening browsing operations that 

enables retrieval or shifts to more coarse granularities. The browsing operations on the 

graph and the corresponding mapping to the object granularities are presented. 

Refinement operations - Graph operations leading to finer object granularities: 

getchild (X, Y, A') Returns the fine-grained granularity X or 

getchildren (Lisl, Y, Op) granularities List of an object Y such that X 

and Yare connected to each other by a single 

coarsening operator. 

The getDescendant method returns all the fine- 

grained granularities X of an object Y present 

in the granularity graph until the leaf nodes are 

reached. 

getCommonDescendant (A: 01, 02)  The method retrieves the detailed granularity X 

common to the objects 0 1  and 0 2 .  

getAllDescendants (X 01, 02)  Given two objects 0 1  and 0 2 ,  the method 

retrieves the fine-grained object granularities 

connected to object 0 1  or 0 2  or both. 

An example of applying the method getDescendar~t(X, )3 with Y = Park loop r o d  is - - 

shown in Figure 4.7. The getDescendant method retrieves all the objects that are at a finer 

granularity to Park - loop-rood in the granularity graph. 



1 compose 

Figure 4.7 Result of the browse operation, getDescendant(X; Park-looproad). 

Coarsening operations - Graph operations leading to coarser object granularities: 

getParent(X, Y) Retrieves the multiple coarser granularities X 

of an object Y, where a single coarsening 

operator connects X and Y. 

gethcestor  (X; Y) This method retrieves all the coarser 

granularities X of an object Y until the root 

node in the graph (Figure 4.8). 

getCommonAncestor (X; 01, 02 )  Given two objects 01 and 0 2 ,  the method 

retrieves a coarser granularity X that is 

common to both 01 and 02. 



Given two objects 01 and 02 ,  the 

getAllAncestors method retrieves all of the 

coarser granularities belonging to either or 

both the objects. 

An example of applying the getAncestor browse operation to Cadillac-mountain, 

retrieves all the objects that are at a coarser granularity to Cadillac-mountain, such as 

Mount-desert - island and Tourist - Attractions (Figure 4.8). 

I compose I ,filter 

Figure 4.8 Granularities retrieved by applying the binary browse operation 

A few of the binary graph operations are not strictly refinement or coarsening 

operations. These operations play a dual role by retrieving objects that are at a coarser 

granularity with respect to an object while at a finer granularity to another object. For 

example, applying the getAncestorDescendant operation to Trails and Acadia Park, 

retrieves the coarser granularity of Trails, i.e., Park - loop - road and Acadiaqark, and the 

finer granularities to Acadia Park, i.e., Park-looproad, Ponds, Trails, Campgounds, and 



Sand - beach. The intersection of these two sub-operations, i.e., Park-looproad, is the 

result of the browse operation (Figure 4.9). 

getAncestorDescendant(X 01, 02) The method retrieves an object X that has 

object 01 at a finer granularity and object 0 2  

at a coarser granularity. 

I compose I filter 

Carriage-road ark-loop-road Cadillac-mountain -- 1 compare 

/ I Ponds I I ~r:lss--! Campground I @ d - b e 9  
I --__ L--- - - - - - - - - - - , - - - - - - r - , - - - - - - - - - - - - - - - - - - - - - - - - :  ----_- 

Figure 4.9 Browse operation getAncestorDescendant(X Trails, Acadia Park) yields 

Park-looproad, which is both an ancestor to Trails and descendant to 

Acadia Park. 

In a similar way, other browse operations can be defined by combining the primitive 

unary and binary browse operations to retrieve a particular pattern of granularities or to 

retrieve object based on specific operators. Browsing operations can also be defined to 

retrieve all leaf nodes in the graph or all top nodes in the graph. 



4.5 Summary 

This chapter introduces a semantically rich framework for modeling multiple object 

granularities called a granularity graph. A granularity graph is constructed by applying 

the coarsening operators to objects in a recursive procedure. An algorithnl describing the 

process for constructing a graph is presented. The coarsening operators can be used to 

derive object granularities as well as match object granularities with the existing 

granularity. The algorithm used for constructing a granularity graph is demonstrated by 

using Acadia National Park as a case study. 

The granularity graph also provides a framework for performing translations among 

the different levels of granularities. We present a suite of graph operations for browsing 

an object's multiple granularities. Browsing a graph enables the retrieval of more details 

or less details from the graph. 

In the next chapter we investigate the conlpositions of the coarsening operators and 

derive \lalid composition. 



Chapter 5 

COMPOSITION OF COARSENING OPERATORS 

Granularity graphs provide a framework for objects at different levels of detail, related by 

coarsening operators. An inforn~ation space consisting of a large number of objects or 

objects comprising an extensive structure may lead to a granularity graph of significant 

depth. With an increase in the number of levels in the graph, the chain of operators 

connecting objects at finer granularities to objects at a coarser granularity also increases 

and it would be required to simplify the sequence of operators. Compositions of 

coarsening operators can be used to collapse or simplify the sequence of operators. 

Sinlplifying the sequence of operators between two objects supports in deriving a shorter 

path in the granularity graph. It also provides for efficient retrieval of objects from the 

graph and for determining how two objects at different levels of detail are related in the 

graph. Compositions of operators can also be used in determining the multiple ways of 

arriving at a granularity. In this chapter we explore the con~position of operators for the 

four coarsening operators used in constructing a granularity graph: group, C O I I Z ~ O S ~ ,  

coexisf, and filter. 

Let A ,  B, and C be objects at different levels of detail in a granularity graph. Given a 

coarsening operator R from A to B and a coarsening operator S from B to C', the 



composition T = R D S  of the operators R and S (where R is performed first followed by 

S) yields an operator from A to C' (Figure 5. I), which is defined by: 

R Q S  = ((A,C): there exist an object B for which R(A,B) anndS(B,C')) (5.1) 

Figure 5.1 Composition of operators R and S yield T = R O S  from A to C,' 

In order to work with the compositions we define a path in a granularity graph. 

Objects in a granularity graph are connected by a sequence of coarsening operators, 

which constitutes a path. Consider a granularity graph constructed for objects that are 

related to Acadia National Park consisting of six levels of objects at different 

granularities (Figure 5.2). A simple path in the graph is an alternating sequence of objects 

and operators, such that an operator Ri begins at an object A and ends at an object B. For 

example, a path from Beehive Trail to Accrdia Pork is {Beehive Trail, group. Trails. 

,Jiltei; TI-ails, conzpose, Acadiu Park). The number of operators in the path denotes length 

of the path. Thus, length of the path from Beehive Tiwil to Aca~iia Park is 3 ,  consisting of 

a sequence of operators group, ,filter, and compose. One of the applications of the 

compositions is to reduce the length of a path in a granularity graph up to a minimum 

number. The applications are discussed in detail in Section 5.4. 



group compsoe 

compose I compose 

Figure 5.2 Granularity graph for Acadia National Park. 

In the remainder of this chapter, we derive the exhaustive composition of all 

coarsening operators, determine valid compositions, and present several useful 

applications that will assist the development of efficient retrieval methods for multiple 

granularities. 

5.1 Definitions for Composing Coarsening Operators 

Different possible compositions of the coarsening operators, including $filter, group, 

compose, and coexist are investigated. Compositions of operators are defined based on 

the structure of an object and operators that are applied. Among the four coarsening 

operators, the compose operator is complex, defined by a part-of relation among objects. 

The part-of relation is modeled based on the spatial relations among objects, such as 



containment, connectivity, and nearness (Chapter 4). To analyze compositions correctly, 

we distinguish three kinds of compose operators based on its spatial relations (Section 

3.4). that is, cnn7pose[C'oi?tcrii7ed]. cornpose[Corzrzected], and compose[Near-/. lncludiny 

the three kinds of compose with the other coarsening operators, gives six coarsening 

operators in the context of composition of operators. For each coarsening operator the 

valid instance-class pair to which the operators can be applied are also recognized 

(Chapter 3). 

- 

Filter 

Table 5.1 Coarsening operators and their corresponding instance-class pairs. 

I I I I 

The compositions can be redefined as follows. If R is an operator given as a function 

R: A+B and S is another operator given as a fimction S: B-K', then the compositions of 

operators in which the co-domain of R is the domain of S, are possible (Table 5.1). Based 

on instance-class pairs (i-i), (i-c), (c-c), (c-i) for each operator, there exists 18 valid pairs. 

Thus, there are a total of 18x1 8 = 324 coinpositions of operators. Each of the .filter, 

group, and coexist operators have two valid instance-class pairs. Hence, they can be 

combined with other with other possible operators (Table 5.1) can lead to 3x(2x 18)=108 

compositions. The types of compose operators in composition amongst themselves can 

lead to 12x12 = 144 compositioils and 12 x 6 =72 compositions with the other operators. 

Instance-instance 

d 

- Coexist 14 

Class-class 

d 

- / .I 

Instance-class 
- 

Class-instance 
- 



Summing these gives us 324 possible compositions of coarsening operators. For each 

composition, we evaluate cases of objects, as instances and as classes. 

5.1.1 Compositions with filter 

A filter operator is used to select a subset of objects from a set. The selected objects 

become available for amalgamation. While treating compositions with.filler, we use the 

trivialJiller. The trivial.fil/er allows selecting all the objects in the set. Tri~ial~filler acts 

as an identity operator. Applying a filter to an instance or a class results in the same 

instance or class, respecti\~ely. For example. applying a trivial Jilkr operator to Ecisy 

Trciils results in the same object Eusy Trails (Figure 5.3). Consider a trivial.fil/er operator 

from object A to B (i.e., (i-i) or (c-c)) and a coarsening operator R from B and C. Since 

objects A and B are connected by a .filler operator, ,4 = B. Thus. .filler O R, the 

composition ofJiller and R, yields the operator R from A to C'. Similarly, the composition 

of a coarsening operator R with jiller, is equivalent to applying the operator R (i.e., if R is 

the operator from A to B and trivial filter is applied from B to C, then B = C'). Thus. R O  

,filter also yields R. For example, coexisl @filter, composition of a coexisl operator from 

{Greal Head Trail, JO~L~UII Trail, Bowl Trial) to Easy Trciils and the filter operator from 

Eusy Trails to Easy Ti.uils is the same as a coexisl operator from {Greul Heud Truil, 

Jordan Trail, Bowl Trial) to Easy Trails (Figure 5.3). 



coexist 

coexisl 

Figure 5.3 Composition of coexist withfilter yields a coexist operator. 

5.1.2 Compositions with group and coexist 

A group operator captures an is-a relation among objects, whilc a coexist operator defines 

a member-of relation among objects. The is-a relation and member-of relations defining 

the operators are used for determining the compositions with group and coexist. Group 

operates from instance-class and from class-class (Table 5.1). Consider an is-a relation 

from object A to B (i.e., (i-c)) and from B to C (i.e., (c-c)). The is-a relation is transitive, 

that is, is-a(A,B) and is-a(B,C? implies is-a(A,C). Thus, group Ogroup, the composition 

of a group operator with itself, yields group. The member-of relation defining a coexist 

operator is based on common attribute values of objects. All objects that combine by a 

coexist operator must have the same attribute value. Coexist can be applied from 

instance-instance or from instance-class. Consider a member-of relation from A to B. 

(i.e., (i-i) or (i-c)) and from B to C. The member-of relation among objects is also 

transitive, implying that A is a member-of C. Thus, the composition, coexist O coexist 

yields a coexist. 



Trails 
-no.of t ra ik in t  11 
-11ike~type:htype 11 
-Avg.hikers/day:int 11 
-open-dates:date 1 )  

/ \ 

Easy Trails 
-no.of t ra ik in t  = 15 I I 
-hike-type:htype = Class A 11 
-Avg.hikers!day:int = 230 1) 
-open-dates:date = 051 10- 1 1/25 11 

group \ 
Strenuous Trails 

-no.of t ra ik in t  = 5 I I 
-hike-type:htype = Class C 11 
-Avg.hikerslday:int = 50 1) 
-open-dates:date - O5i2O- I 1/25 ( 1  

Jordan Pond Trail 
-id:char = T C  10 
-distance:float = 4.2 
-type:trail-type = strenuous trails I rn 

coe.visi 

Beehive Trail 
-id:char = TAO I 
-distance:float = 3.5 
-type:trail-type = strenuous trails . 

Figure 5.4 Amalgamation of objects applying a coexist followed by a group: m -  

common attribute values and 1 1  - common attributes of objects. 

Consider the composition of a group with a coexist operator. Since groicp is applied 

to instance-class or class-class, the result of a group is a class, consisting of only 

attributes of objects. The resultant object does not contain attribute values. A group 

cannot be followed with a coexisl operator and therefore, group @ coexist, composition 

of a group with a coexist operator cannot exist. For a coexist @group, consider a coexisl 

operator from A to B (i-i) and a group operator from B to C' (i-c). Object B is an instance- 

of class C (e.g., Strenuous trails is an instance-of Trails) (Figure 5.4). An object that is 

member-of an object is also be a member of its class. Hence, coexist @group yields a 

coexist, i.e., object A is also a member-of the class C. For example, Beehive Trail is a 

member of Trails (Figure 5.4). 



5.1.3 Compositions with compose 

A cornpose operator is modeled by spatial containment, connectivity, and nearness 

among objects. Compositions with compose are evaluated based on these spatial relations 

of objects. Therefore, the cornpose operator is categorized into three sub-operators 

compose[Con/cri~~et~, cornpo~e[C'onnected/ and compose[~\~ecirlJ operators. Wc first 

present compositions of the kinds of cornpose operators with each other and then in 

combination with the other operators. 

A corrtpose[Cor7lcrir~ed] operator from object A to B models the containment relation 

among objects, for example, Scind Bench is contained within the Actrdiu Purk. Spatial 

containment has a transitivity property. Thus, if object A is contained in B and object B is 

contained in C, then A is contained in C. Hence, a conzpose[Con/uined] operator is 

transitive and its composition yields a coml?ose[Conttrineg] (Tablc 5.2). Thc transitivity 

property holds for objects that are classes as well as instances of classes. 

A compose[Connec/et~ operator from A to B and from B to C' that defines a spatial 

connectivity among the objects is also transitive (Table 5.2). Thus, composition of 

conzpose[C'onnected] with cornpose[Connec/ed] yields a cornpose[Cor7nc?c/ed]. However. 

a compose[Near~ operator defining nearness between two objects, is not transitive. For 

example. consider object A near B and object B near C. The composition may result in 

object A near C or A farther away from C.  Hence, corrzpose[~\;etrrj O compose[Nc?nr] is 

undetermined (Table 5.2). A value undetermined for a composition implies that there can 

be more than one result of the composition. More information about the objects involved 

in the composition would be required in order to arrive at a single value of the 

composition. 



Let us consider the conlposition of a cornpose[Contained/ with other kinds of 

cornpose, such as a con7j~ose[C'onlained] operator from A to B with a 

compose[Connec/ed] operator from B to C. The result of the composition leads to several 

possible relations from A to C. For example, object A may be near C or A may be 

connected to C (Table 5.2).  There is no definite relation that can be derived from A to C. 

Hence, con~position conzpose[Con/ained] Ocompose[Cbnnected] is undetermined. 

I -descp:text = tourist / 
center, ocean front I 

4ocation:USstate = ME I 

I Acadia P a r r y  
-type:T = outdoor 
-Avg.visitors/day:i~~t = 850 

...... I -aetivities:A = hiking, 
biking, canoeing 

/' \ 

-trail-idstring = "TA 10" 
-hike-_type:htype = Easy ...... 

Figure 5.5 Composition of coinpose[C'on~nined] with cornposeLVecir] yields an 

undetermined composition. 

Likewise, the compositions of the other kinds of compose operators with each other 

do not imply any definite relation from A to C and are undetermined. For example, 

Beehive Trail contained in Accrdia Park, need not necessarily be near Bar Harbor, though 

Acadia Park is near Bar Hurbor (Figure 5.5). 



The table (Table 5.2) lists the compositions of each kind of con~pose operator with 

other coarsening operators. A row in the table describes a composition. Figures are 

provided to support the rationale for deriving the result of the composition. The result is a 

single valid composition or an undetermined composition denoted by a -. Spatial objects 

used in the example are regions and roads, represented as ellipses and lines respectively, 

and are labeled A,  B, and C. In each row, the first part in the figure represents the first 

operator in the composition, thc second part represents the second operator in the 

composition as well as the possible result of composition. The third part, if present, 

describes the other possible results of the composition. For example. Row 1, 

comnpose[confnined] O con~posefconfained] is described in figure as A contained in B 

and B contained in C'. The second figure also shows the result of the con~position A 

contained in C. Similarly, all other compositions with the compose operators are 

presented. 



Composition Rationale Result 

Compose 
[Contained] 

Compose 
[Connected] 

Table 5.2 Compositions of the conzpose operators with each other. - represents 

undetermined compositions. 



Now, let us consider the compositions of the different compose operators with gi.ozip. 

and coexist. For the composition of the compose operators with a group, we first consider 

the case with objects as instances of a class. Consider a corrrpose(Contained] operator 

from A to B (i-i)and group operator from B to C (i-c). An object that is contained in 

another object. which is an instance, is also contained in its class. Hence. if A is in B and 

B is a C, then A is also in C. Therefore, the composition of a coi~zpose[C'of7t~~ine~I'/ with 

group results in a coi~zpose[ContuinerI]. For example, consider the relations Sand Beach 

is contained in Acadia Purk and Acadia Park is an instance-of a Muine Attractions. 

Applying the compositions, we can derive that Sund Becich is part-of kluine A/trv~c/ion.s 

by the conzpose[Conruined] operator (Figure 5.6). This holds true for the other types of 

compose operations also. Thus, any compose with a group will result in the 

corresponding coinpose operator. 

Acadia Park 1 -  

swimming 1 

-type:T - outdoor 
-Avg.visitors/day:int = 850 
-activities:A = hiking, 

biking, canoeing 

Figure 5.6 Composition of compose[Contained] with a group over instances yields a 

conzpose(C'on/crined]. 

...... 



The reverse case, composition of a group with coinpose[coi~tcrii~ed] yields different 

results depending on instance and classes of objects. Consider a group operator from A to 

B (i-c) and a cori~pose[Coiztc~ii~e~~ operator from B to C (c-c). Class B is contained in C' 

and therefore an instance of the class B, A ,  is also contained in C. Hence. group Q 

con7pose[Contuined] yields a coi~~pose/C'oi~/c~ined] operator from A to C. For example, 

Echo Lake is an instance of a Lake by a group operator and Luke is part-of the Ccldilluc 

~Mountuin by a conzpose[C'onltrine~~ operator. This suggests that Echo Luke is also part- 

of the Cadillac iMouniuin by the conzpose[Contuined] operator. The compositions of 

group with compose[Connec/eci'l and comyose~Veur] operators also yield the respective 

compose operators. 

Maine-Attraction 
-Avg.visitors/day:int 
-Acti\~ities:A 

Figure 5.7 Composition co117~~o,re[C'ontrrined] O group over classes yields an 

undetermined result. 

Let us now consider the compositions of compose operators with group based on 

objects as classes. Let comyose[Contained] be an operator from A to B (c-c) and group 



an operator from B to C (c-c) (Figurc 5.7). Object B is derived from class C, and can be 

referred to as a specialized class C' that contains class A. Objects that are contained in B 

need not necessarily be a contained in its class C. The spatial containment of an object in 

B, therefore, may not hold true for C. Thus, compose[Contui~~ed]Qgroul~ for classes is 

undetermined. For example, Trails are contained in Purk and Purk is a 11krine Aliraction 

(Figure 5.7). But Trails need not be contained in every Maine Altraclion. This holds true 

for compositions of the other compose operators with group for objects as classes, and it 

is also undetermined. 

Finally, cornpositions of the compose operators with a coexisl operator are 

considered. A coexist operator operates only on attribute values. Hence, the con~position 

of the con7pose operator and a coexist operator exists only for instances of classes. 

Consider a co~npose[Contcrined] operator from A to B (i-i) and a coexisi operator from B 

to C (i-i). Only based on the spatial containment relation between A and B, not much can 

be inferred about the common attributes values of A with C'. Therefore, the composition 

compose[C~ontrrined] Q coexisl is undetermined for instances of classes. Similarly, the 

compositions of a compose[Connected] and con~pose[Necrr] with a coexist leads to an 

undetermined result. 

The reverse composition, coexist Q compose[Contained]. for a coexist operator from 

A to B and a con~pose[C'ontained] operator from B to C is also undetermined. In this case 

too, the compose[Con/cri~~ed] operator from B to C only defines the spatial containment 

of B in C and does not express similarity of C with attribute values in A. Thus, A, B, and 

C may not have any attribute values in common. Hence, this composition is 



undetermined, and this applies to the compositions with the other compose operators as 

well. 

5.2 Inferences from Compositions 

A complete set of all possible compositions is derived based on valid instance class pairs 

of operators. Coinpo.re is distinguished into three types, that is, coinpose[C'ontcrine~i]. 

~01npose[~o~2nected]. and compose[A'ear]. Of the 324 compositiolls of operators there 

exist 160 possible compositions, of which there are 74 valid and determinable 

compositions and 86 undetermined compositions. The labels, F, G, Ce, cn, Co, and A' 

denote the coarsening operators jiltel-, group, and coexist and the types of conzpose - 

contained, connected and near, respectively. The coinpositioils are separated into two 

tables as compositioils over classes (Table 5.3) and over instances (Table 5.4). The empty 

cell denotes that a composition for that particular sequence of operators does not exist 

and cannot be performed. - indicates that the composition is undetermined and may be 

established with additional information. Valid con~positions are represented with 

corresponding letters of coarsening operators. A composition in the table is read as 

coarsening operator A (row) in composition with coarsening operator B (column) yields 

an operator that is represented by the corresponding cell value of the combining 

operators. For each operator, valid instance-class pairs are specified. For example, a 

group (i-c), is a group from an instance to a class, in composition with a 

compose[c0~2taineUI/ (c-c), from a class to a class, is valid and the result of the 

composition is a compo.se[contained] operator (i-c). 



Filter Group Coexist Compose Compose 

I I 

(ii) 1 (ic) I (cc) (ci) I (ii), (ic) 

Table 5.3 Compositions of coarsening operators over classes. - signifies 

undetermined compositions. 

Filter 

Group 

Coexist - 

Compose 

- 

Filter 

Table 5.4 Con~positions of coarsening operators over instances. - signifies 

undetermined compositions. 

Group Coexist Compose Compose 



The con~positions of conipose operators from i-i or i-c with the coinpose operator 

from i-i or i-c are equal. Similarly, compositions of the comnpose operator from i-i or i-c 

with the compose operator from c-c and c-i have equal values of compositions. Hence, 

the colun~ns for cor~~pose operator have i-i and i-c in one column and c-c and c-i together 

in another. 

The following inferences can be made from the table: 

From the compositions over classes it can be derived that there are 40 possible c-c 

compositions, of which 20 are valid. Also, there are 13 valid c-i compositioi~s of 30 

possible cases. Similarly from the con~positions over instances, we can derive 17 valid (i- 

i) coi~lpositions from 40 possible and 24 valid (i-c) compositions from 50 possible cases. 

From these figures, the percentages of valid compositions over classes and instai~ces can 

be derived. It is seen that the compositions over c-c and i-c are most with 50% and 48% 

valid compositions respectively. 

Table 5.5 Percentage of valid compositions over instances and classes. 

Filter operator acts as an identity operator in compositions. 

Result of a composition can yield a group only by composing a group with itself 01- 

with.filter. 

Coexist operator is obtained by composing coexisl with afiller, gi-ozp, or with itself. 



The table does not exhibit symmetry. Thus, the compositions of operators are not 

commutative. For example, coexisf @group + coexisf, whereas grotlp o coexisf does not 

exist. 

It can also be inferred from the table that the group and Jilter operators result in 

maximum number of valid con~positions, whereas the cornyose[neur] operator has the 

least number of valid compositions. Hence, group and Jilfer are the most functional 

operators in a composition. And coinpose[near] is the least functional operator. 

Table 5.6 Compositions of the detailed compose operators with each other. - 
represents undetermined compositions. 

The part-of relation among objects is typically regarded as transitive, implying part-of 

C3 part-of -+ part-of. However, the results of compositions of the different compose 

operators with each other are not identical (Table 5.6). This suggests that the different 

semantics of part-of lead to different results on coinposition. For example, 

compose[contuined] and coinpose[connecfed] are transitive and their respective 

compositions are valid. However, compose[neur] is not transitive and hence, the 

composition compose[near]@ cornpose[neai-] is undetermined. Also, the composition of 

two different compose operators leads to an undetermined result. 



The value of the undetermined composition can be either contained or connected or 

near or even be not part-of (i.e.. null). For example, consider contained(Summit-trail, 

Cadillac mountain) and near(Cadil1ac mountain, Echo lake). Using the general notion of 

part-of as being transitive, from the example, we can say that Summit - Trcd is part-of 

Echo - Luke. But. Summit-Trail is not contained in Echo-lake, it is not connected to 

Echo - lake, and it is not near Echo-lake. Hence, Summit-Trail is not part-of Echo-lake. 

Thus, part-of 8 part-of + part-of does not necessarily hold. The result of the 

composition that we obtain (i.e., conipose[contuined]@ compose[ne~rr.] is undeternined) 

is correct and acceptable. Therefore, detailed compose operators are needed to reveal 

correctly the results of compositions of coarsening operators. This proves our hypothesis 

that 

Dflkrent semuntics associated with object amcrlgcrmations yield correct results of' 

the compositions of coarsening operators. 

5.3 Application of Compositions 

The valid compositions can be used to reduce the sequence of operators in a path 

connecting two objects in a granularity graph. For example, consider the path {Beehive 

Trail, group, Trails, .filler. compose[Cbnnecte~(l, Pcrrk - loop - roud compose[C'ontuii~eu'], 

Acadiu Park) (Figure 5.8). The sequence of operators can be reduced as in Table 5.7. 

Tlius, a shorter path of length 2 is obtained from Beehive Trail to Aca~liu Purk (Figure 

5.8). 



group €3 filter €3 compose[Connected] @ compose[Contained] 

+ group @ coinpose[Connected] €3 compose[Contained] 

+ compose[Connected] €3 compose[Contained] 

Table 5.7 Applying con~positions of operators to arrive at a shorter path. 

Acadia Park 

con?pose[C'or~lainec~ 

comn~~o.st?[~~onnc'c~e~f] / 
Beehive Trail 

Beehive Trail 

Figure 5.8 Simplifying the path from Beehive Truils to Acadiu Park. 

Also, applying the compositions, the original path (Figure 5.9) in the granularity 

graph can be replaced by the derived shorter paths. For example, a path in the graph 

Island), can be simplified to (C,vrrdillac !Mountain, conzpose[col~tained], ~trlotm! Desert 

Islund), The number of objects in the graph is reduced, leading to a simplification of the 

granularity graph (Figure 5.10). 



Mount-desert 
Attractions 

ccontained 

Figure 5.9 Granularity Graph with a selected path. 

Attractions 

Figure 5.10 Simplified granularity graph applying compositions. 

Composition of operators can also be used to derive the multiple ways of arriving at a 

granularity. Given n operators in a path, the compositions can be applied to derive up to 

n-1 different ways to arrive at a granularity. For example, consider the path connecting 

Beehive Trail to Acadia Park (Figure 5.8). Applying the compositions, 3 different ways 

of arriving at Acadia Park is obtained (Table 5.8) consisting of 4, 3, and 2 operators 

respectively. 



Path 1 - group O filter @ compose[Connected] 8 compose[Contained] 

Pat112 - group 8 compose[Contained] 8 compose[connected] 

Path3 - compose[Contained] 63 compose[Connected] 

Table 5.8 Multiple ways to arrive at Acadia Park from Beehive Truils. 

Multiple ways to arrive at a granularity is useful for retrieving the shortest path. or a 

path with a specific operator, or path with minimum number of different operators. If the 

cost of applying each operator can be evaluated, then the multiple paths can be used to 

obtain the most efficient way of arriving at a granularity. 

The composition of operators exhibits the associative property. Thus, if R I ,  R2, R3 is 

a sequence of operators connecting two objects at different granularities, then (RI 8 R2) 

8 R3 = RI O (R2 O R3). The composition of the operators can therefore, be applied to 

the sequence of operators in any order. For example, group O cornpose[C'on/uined] 8 

jX/er, yields the same result conzpo.se[C'on/ained] though the conlpositions are applied in 

any order (Table 5.9). 

Table 5.9 Simplification of a sequence of operators using the associative property of 

(group C3 compose[Contained]) @ filter 

compose[Contained] 63 filter 

compose[Contained] 

compositions. 

group 63 (compose[Contained] o filter) 

group 63 compose[Contained] 

compose[Contained] 

The associative property of the compositions is significant because it partially 

removes the need to apply the compositions in strict order from left to right. Applying 

this property, it is possible to retain a particular granularity of interest (e.g., group) in the 

graph while determining a shorter path (Figure 5.1 1). 



Acadia Park 

cornpose[Con tnineii'] Acadia Park 

cornpose[C'ontcrii?e~ 

con?pose[CTonnec tea'] 

Beehive Trail Beehive Trail 

Figure 5.1 1 Deriving a path from Beehive Trail to ,4cudirr Purk with a group operator. 

Another application of the operators is for determining how two objects at different 

levels of detail are related in the granularity graph. Consider the path from Beehive Truil 

to Acadiu Purk. There exist two paths (a) {Beehive Truil, coexist, Strenuous Tmils, 

group, Truils, conzpose[Contrrined], Acadicl Purk) and (b) {Beehive Trail, group, Trcds. 

filter; Trails, corrzpose[Contrrine~i], Acadia Park). Let us consider path b. The operators 

in path b are grozp, filter, and cornpose[Contuined]. Applying the composition of 

operators (Table 5.10) to the sequence of operators in path b, we obtain that Beehive Truil 

is connected to Acudia Purk by the cornpose[Conluined] operator. Having reduced the 

sequence of operators to one, it is possible to directly relate Beehive Trail and Acudi~c 

Park, i.e., Beehive Trail is contained in Acdiiicr Pnrk. 

group O filter 6 compose[Contained] 

1 -+ group 6 compose[Contained] 1 

Table 5.10 Simplifying sequence of operators for relating object granularities. 



Consider another example of a path from Sand Beuch to Touris/ AItraclions; {LTund 

Beuch, compose[Connec~cd], Pwk  Loop Rocrd, conzpose[Conl~rined], Acudiu Pcrrk, 

group, Touris1 Attruclionsf . Applying the valid compositions of operators, a shorter path 

(Table 5.1 1) from Sand Beach to Tozlrisl Allractions with two operators, 

{coinpose[Connecled], cotnpose[C'ontcrined]} is obtained. This path suggests that, Scrnd 

Becrch is connected to Pcrrk Loop Rocrd and Pcrrk Loop Road is contained in the Acudia 

Park. Consider a second path between the same two objects consisting of 

{cotnpose[Co~~lcrined], Accrdi~r Purk Jillei; Accrdicr Park, gwz1p, Touris/ Allr~lclions). 

Based on this path, the composition can be applied to the operators resulting in Scmd 

Be~rch cotnpose[C70nlciitzedj in Tozri'isl A~lruclions (Table 5.1 1). The simplification 

obtained using two different paths do not contradict each other instead complen~ent one 

other. Using both relations from the granularity graph, a more complete semantics of 

Sund Beuch and the Touris1 Altrmlions can be determined, i.e., Sund Beach and Pcrrk 

Loop Road are both contained in the Tozrrisl Atti.crc/ions and Scrnd Becrch is connected to 

the Park Loop Road. The relations that are derived among objects can be stored into a 

knowledge base for providing reasoning as to how the objects at different granularities 

are related to each other. 



Path a 

compose[Connected] 0 compose[Contained] 8 group 

+ compose[Connected] 0 compose[Contained] 

Path b 

compose[Contained] C3 filter C3 group 

+ compose[Contained] 63 group 

+ compose[Contained] 

Table 5.1 1 Two different paths connecting Sand Beach to Toulist Attrcrctions yields 

analogous simplifications. 

5.4 Summary 

This chapter provides a detailed evaluation of the compositions of the coarsening 

operators. Compositions of coarsening operators are primarily required to collapse or 

simplify long sequences of operators in a granularity graph. We derive a complete set of 

324 different compositioils of the coarsening operators based on their valid instance-class 

pairs. The definitions for the composition of operators are presented and supported with 

several examples. Of the 324 compositions, 160 are possible compositioils and there are 

74 compositions that are valid and determinable (i.e., up to a maximum of 50% of the 

compositions). Therefore compositions must be exploited and used in simplifications. 

Several inferences are derived based on the compositions of operators. It is inferred that 

the different semantics associated with the coarsening operators play an important role in 

deriving correct results of the compositions. We support this with the detailed compose 

operators. Also, con~positions enable in determining the most functional and least 

functional operators while arriving at a simplification. 



This chapter also presents the several applications of the compositions. Compositions 

are used in deriving shorter paths in the granularity graph and for determining the 

multiple ways of arriving at a granularity. They can also be used for efficient retrieval of 

objects and for relating objects at multiple granularities in a granularity graph. The 

multiple simplifications obtained by applying the compositioils support enhanced 

reasoning based on the object granularities. 

The next chapter describes the implementation of a prototype using the algorithms 

discussed in Chapter 4 to test the browsing and compositions of operators. 



Chapter 6 

PROTOTYPE FOR CONSTRUCTING AND 

BROWSING A GRANULARITY GRAPH 

This chapter describes the design and implementation of a prototype for modeling 

multiple granularities of spatial objects. The prototype allows building a granularity 

graph and enables shifting among granularities through browsing. The goal of the 

prototype is to demonstrate the construction of multiple granularities of spatial objects by 

applying the coarsening operators. Browsing operations on the graph for retrieving 

objects at finer or coarser granularities are also implemented. The following sections 

discuss the design of the prototype and implementation of data structures, coarsening 

operators, and the user interface. The working of the prototype is illustrated with an 

example. 

6.1 Prototype Design and Specification 

The prototype implements a step-wise building of a granularity graph. The design of thc 

prototype is separated into two components: the user-interface and graph builder (Figure 

6.1). The user-interface facilitates input to the application, display of a granularity graph, 

construction of the graph, and generation of browse results. The graph builder 

implements the coarsening operators. A set of objects from an information space is given 



as input to the model. These objects are stored in a list structure. Coarsening operators are 

applied to the objects in the list resulting in amalgamated objects. The amalgamated 

objects are displayed in the granularity graph and appended to the list of ob-jects. 

Coarsening operators are now applied to the amalgamated objects added to the list, 

arriving at another new set of amalgamated objects. The process is repeated until objects 

can no longer be amalgamated or the user requirements are satisfied. The prototype is 

implemented in Visual C++ (6.0), with a GUI. A viewer window is provided for 

displaying the granularity graph and operations on the graph. The main building blocks of 

the model are the objects and the functions implementing the coarsening operators. 

Graph Builder 
User Interface 

ListJ 1 Coarsening / 
Operators , 

Amalgamated 1 
Objects I 

Figure 6.1 The prototype architecture: user-interface and graph builder. 

6.1.1 Objects 

The prototype models objects at different levels of details. A structure GObject is defined 

to store an object. Every object consists of a label o~Vame for displaying the object, 

number of attributes of objects oNum - attributes, array of attribute names, attribute 

values, and relations with other objects GOAttrib. In a granularity graph, objects are 

connected to other objects at coarser granularities through a coarsening operator. Thus, 

every object can have knowledge about the objects at a finer granularity as well as the 



corresponding coarsening operator connecting the objects. GOLink models the coarsening 

operator and the objects at finer granularities to an object, where G0Link::oOpr 

represents the coarsening operator and GOLink::oChildIds are the objects at a finer 

granularity (Figure 6.2). Other data members of an object. such as system id old, the level 

of the object in the granularity graph oLevel, and the bounding rectangle oRect are private 

data members used for displaying the object in a granularity graph. 

enum GOperator (Group =0, 
Compose,Coexist, Filter, N); 

template <class T >  
struct GOAttrib 
I 

CString oAttName; 
T oAttValue; 

1;  

struct GOLink 
{ 

GOperator oOpr; 
vector <CString> oChildIds; 

1; 

class GObject: public CObject 1 
{ 

public: I 
CString oName; 
int oNurn-attributes; 
vector <GOAttrib> oAtt; 
GOLink o l i n k ;  

private: 
int oId; 
int olevel; 
RECT oRect; 

1; 

Figure 6.2 Structure of an object, GObject. 

For traversing the graph, it is required to iterate through the stored objects. Iterating 

the objects in the graph requires objects to be stored as a collection that can be accessed 

sequentially or by pointers. Therefore, we derive the object class GObject from the base 

class CObject enabling access to a collection of objects. CObjecf is the root class for 

CObList, which supports ordered lists of type CObject. CObList lists behave like doubly 

linked lists. 



6.1 2 Coarsening operators 

Each of the coarsening operators is implemented as a function. A class GraphBzrilder is 

defined to handle the operators (Figure 6.3). Each operator function accepts an array of 

objects for amalgamation. Objects are selected through the GUI and an array of objects is 

passed to the operator function. The function compares the structure of the objects for 

attributes and values that are required to satisfy the operator condition and returns thc 

object ids that satisfy the condition in a structure of type GOLirzk. For example, if two 

objects Beehive Trail (sysid:int = 1.  id:char = T01. distance:float = 3.5, type:ttype = easy 

trail) and Bowl Trail(sysid:int = 2, id:char = T12, dista1ice:float = 3.0, type:ttype = 

strenuous trail) are passed to the function, then comparing the structure of the objects 

based on the operators, the function returns a structure GOLink with values 

G0Link::cChil~ld.r. = {1,2) and G0Link::oOpr = Group. A new amalgamated object is 

created consisting of objects at finer granularities from G0Link::oC'hildIcis and connected 

by the operator GOLink::oOpr. For example, GOLink GraphBuilder::Group(GO~ject.s* 

ob) accepts an object array and returns a GOLirzk structure with object ids having similar 

attribute names. 

Filter 
Group 
Compose ) Coexist 
u 

Figure 6.3 Class GraphBui1~ic.r~. 



The user can add a label for the new amalgamated object. Additional attribute names 

and values for the object can be added and stored in the object list. The object gets added 

as a new node to the granularity graph and is connected to other objects with its 

respective coarsening operator. 

6.1.3 Granularity graph 

A granularity graph modeling n~ultiple object granularities is implemented as a collection 

of objects using a linked list structure. Objects at each level are stored in a linked list 

derived from C'ObList (Figure 6.4). A variable of type POSITION is a key for the list. 

The POSITIOhI variable can be used as an iterator to traverse a list sequentially. Objects 

can be inserted very fast at the list head, at the tail: or at a known POSITION. A 

sequential search is necessary to look up an element by value or index. This search can be 

slow if the list is long. As, an alternative, a C~McrpStringToOb, a dictionary collection 

class that maps unique CStrii~g objects to C'Object pointers is used (Figure 6.4). Once a 

CString-CObject* pair (element) is inserted into the map, an object can be efficiently 

retrieved using a string value as a key. It is also possible to iterate through the elements in 

the map. 

I List 

LA CMapStringToOb 1 
L__- 

Figure 6.4 Classes for implementing the graph structure. 



6.2 The User Interface 

Input to the prototype, interactive building of a granularity graph, and browsing 

operations on the graph are the main features of the user interface. These tasks are 

provided as menu items in the application (Figure 6.5). The interface consists of the 

granularity graph window for displaying the graph, a set of coarsening operators used for 

building the graph, and an attribute list window for displaying the attributes and relations 

associated with a selected object. Selection of objects and operators on the graph is 

enabled through mouse clicks in the viewer window. The following sections describe the 

functions supported by the user interface. 

BS 
- 

&!lA 

? P  

Coarsening 4- 
operators 

Attribute +- 

window 

Granularity 
Graph 
window 

Figure 6.5 User interface of the prototype. 
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6.2.1 Creating a new granularity graph 

Objects in an information space can be stored in a Microsoft Access Database (.mdb) file. 

The input file consists of 4 tables. namely Object - stores the objects. each object has a 

name and system id, Re11 - stores the attributes of objects. modeled using an is-a 

relations among objects, Re12 - a table to store part-of relations among objects, Re13 - 

stores the member-of relation among objects. The table Rell, Re12, and Re13 stores 

corresponding relations of objects using the object id in tablc Object. The object file 

name (rndb) is passed as input for creating a new granularity graph through the menu 

item a GG. The application reads the set of objects from the file and displays 

them in the viewer window, as the first level of objects in the granularity graph. These arc 

the leaf nodes of the granularity graph. Additional levels of objects can be added to the 

graph by applying the coarsening operators. 

On saving the file, a text (.gg) file consisting of the objects in an information space is 

created. The values for ob-jects are written in the format satisfying the object structure. 

Each object begins with the keyword object followed by the name. number of objects, list 

of attributes, and list of corresponding attribute values. 

If the granularity graph already exists, then the user can open the graph (gg) file 

through the menu item Open a GG and perform operations on the graph. 

6.2.2 Applying coarsening operators 

From the objects displayed in the viewer window, the user can select objects of interest 

by clicking the mouse inside the rectangular object area. The selected objects are 

highlighted and their attributes are displayed in the object attribute box. As the objects 



are selected, the coarsening operators that can be applied are enabled in the graph builder 

dialog, provided on the left of the viewer window. The user can then select an operator 

that is enabled by checking the box against the operator. For each operator that can be 

successfully applied to the objects. a new amalgamated object is created. The new object 

with its values is added to the set of objects in the text file and to the granularity graph. 

The operator used in the amalgamation is represented by the corresponding color of the 

edge. These steps can be repeated to add fiirther levels in a graph. 

6.2.3 Browsing object granularities 

Browsing operations for the graph (Chapter 4) are implemented to support retrieval of 

objects that are at different granularities. In the user interface, browsing operations can be 

chosen though the menu item G~.c~ntilurity G r y h  - Bwwse. We have implemented two of 

the browse operations: getC,'hildOp(B, A) and getDescenu'crnts(B, A). The operation 

getChildOlp retrieves the fine-grained granularities that are adjacent to an object by 

applying a specific operator. The getDescendants operation enables retrieval of all the 

ob-iects at a finer granularity to an object, until the leaf nodes are reached. The user 

selects a browsing operation and the result of the operation is displayed on the graph in 

the viewer window. 

6.3 Illustration of the Prototype 

This section illustrates the use of the prototype with an example. We use Acadia National 

Park as our information space of objects. Several hiking trails in the park are given as the 

input set of ob-jects (e.g., input file Acudiu - Trailxmdb) using the menu item Create-GG. 



A granularity graph with the leaf nodes is created. The different trails objects from the 

file are displayed in the graph viewer window as the leaf nodes in the graph (Figure 6.6). 

Figure 6.6 Selecting three trails for amalgamation from the set of objects. 

A Trail can be selected and its corresponding attributes can be viewed in the attribute 

display window on the left window (Figure 6.6). Selected trails are highlighted in a green 

color in the graph window. Multiple trails can be selected for applying the coarsening 

operators (Figure 6.6). On selecting multiple trails, the coarsening operators that can be 

applied to the trails become available in the operator window. One or all of the operators 

can be selected by clicking in the checkbox against the operator and applied to objects. 

On selecting an operator, an operator dialog box will pop up that displays the 

combining objects and the resultant amalgamated object (Figure 6.7). A suitable label can 



be given to the amalgamated objects in a text box in the dialog. Additional attributes and 

values of objects can also be added to the newly created amalgamated object. 

/J"6;' OcT 

WIT 
Gnfirm Amalgamate 

Eaw-Trails 

Figure 6.7 Creating an amalgamated object Easy - Trails for the selected objects by 

applying the group operator. 

The resulting amalgamated object is added to the graph at a new level, connecting the 

combining objects with the corresponding coarsening operator (Figure 6.8). The edges in 

the graph, i.e., coarsening operators, are color coded in the application for providing a 

better graph visualization: group -red, compose -orange and coexist - purple. 



Figure 6.8 Step-wise building of a granularity graph. (a) Creating an amalgamated 

object Easy Trails by the group operator and (b) adding amalgamated 

object Forest Trails by applying the compose operator. 

Other objects from the first level in the graph can be selected resulting in more 

amalgamated objects. Once all possible operators are applied to objects in level 1, a level 

2 set of objects is constructed in the graph. Operators can now be applied to objects in 

level 2 to result in higher level of amalgamated objects. The process is repeated until a 

level with a single object is obtained. A granularity graph for Acadia Park with 4 levels 

of granularities is shown (Figure 6.9). 



Figure 6.9 Granularity graph for the Acadia Trails. 

Once the graph is constructed, browsing operations can be applied to the graph for 

retrieving finer or coarser granularities of objects. Two unary browsing operations 

getChildOp and getDescendanfs are implemented in this prototype. Browse operations 

can be selected from the menu item Granularity graph - Browse. On selecting a browse 

operation, a node in the graph must be selected for applying the browsing. 



Figure 6.10 Result of the browse operation getChlidOp on TrailRoutes based on the 

group operator. 

For example, the getChilpOp operation is applied to the object Trail Routes based on 

the group operator (Figure 6.10). The operation retrieves the objects that are at a finer 

granularity in the preceding level to Trail Routes, (i.e., Sea-cl* Trails, Forest Trails, 

Scenic Trails, Sand Beach Trails). The result of the browse operation is highlighted in the 

graph. Similarly, the operation getDescendant can be applied to objects to retrieve all 

finer granularities of an object. For example, getDescendants when applied to the Hike 



Trails retrieves all the finer granularities that are connected to Hike trails, displayed as 

orange rectangles in the graph (Figure 6.1 1). 

Figure 6.1 1 Result of the browse operation getDescendants on Hi& Trail. 

6.4 Summary 

This chapter described the prototype implementation for constructing and browsing a 

granularity graph. The prototype design and specification, and the class structures were 

discussed to understand the data flow and the interaction between the application 



program and the user. The prototype was also used as a test bed for deriving a framework 

of multiple granularities and investigating the application of the granularities. 

The next chapter concludes this thesis with a summary and future recoinmendations 

to be carried out based on this research work. 



Chapter 7 

CONCLUSIONS AND FUTURE WORK 

The focus of this thesis is to model multiple granularities of spatial objects and perform 

shifts anlong different granularities. An approach for modeling objects at different 

granularities has been developed with an understanding that spatial objects' attributes and 

relation with other spatial objects can be exploited to result in coarser granularities. The 

approach captures the different semantics associated with combining objects that lead to 

multiple granularities and presents a categorization of coarsening operators based on 

these semantics. 

Multiple granularities of objects can be organized into a granularity graph. Such a 

granularity graph can be used for retrieving granularities of objects at finer or coarser 

granularities with respect to an object. It is also possible to analyze the multiple ways of 

arriving at a granularity and to determine relations among objects at different 

granularities in the graph. This chapter summarizes the thesis work and presents 

conclusions. The future directions for research based on this ~ ~ o r k  are highlighted with 

recommendations. 



7.1 Summary 

There exist different granularities of objects, each suited for a particular purpose. In the 

process of reasoning about our information space, it is required to make available a 

means for performing shifts among the multiple granularities. In this thesis, we identify 

multipIe granularities of objects and formalize shifts among them. 

This thesis pursues an object-oriented approach for modeling multiple granularities of 

objects based on the concept of coarsening. An object is modeled as a structure consisting 

of attributes, attribute values, and relations with other objects. Based on the attributes and 

relations of objects, the different semantics of how objects can be combined resulting in 

coarser granularities are identified. As a result, four coarsening operators, $her, grotip, 

compose, and coexisr are defined. 

Applying the operators to objects recursively results in amalgamated or coarser 

granularities of objects. The multiple granularities of objects are organized in a 

framework, a granularity graph. A granularity graph is comprised of objects at different 

granularities related to each other by coarsening operators. llsing the granularity graph, 

several browsing operations are defined. Browsing a granularity graph refers to making 

translations either to coarser granularities or to more detailed granularities in the graph. 

Browse operations on a graph are categorized as unary and binary operations. Unary 

operations can be applied to an object to retrieve its finer or coarser granularities of 

objects. Binary operations are used to determine the common coarser or finer 

granularities to two objects. For example, gefAllAncestora(XM,N) is a binary browse 

operation to obtain all the coarser granularities of objects to objects and N. The 



operations also enable the retrieval of objects that are connected to each other based on a 

particular coarsening operator. 

This thesis also presents the compositions of coarsening operators. We derive a 

complete set of all possible compositions of the operators, consisting of 74 valid 

compositions. Compositions effectively collapse a sequence of operators into a simpler, 

reduced sequence. Thus, compositions can be used for determining a shorter path 

connecting two objects in the graph. The compositions also play an important role to 

determine the multiple ways of arriving at a granularity and to arrive at a desired 

granularity. The con~positions exhibit an associative property. Using this propeily, the 

coinpositions can be applied anywhere in a sequence, providing more flexibility to find 

the multiple paths to arrive at a granularity. Compositions are used to find the relation 

among objects at multiple grailularities in a granularity graph. The different relations that 

can be obtained by applying the compositions provide enhanced reasoning using the 

object granularities with regard to how the objects are connected in the graph. The 

prototype developed complements the approach by supporting the consti-uction of a 

granularity graph and enabling browsing through multiple object granularities. 

7.2 Conclusions 

Different semantics are involved when creating coarser granularities of objects. We 

define a set of coarsening operators based on these semantics to derive amalgamated 

objects. From this foundation, solutions can be presented for research questions. such as 

is it possible to combine two objects in order to arrive at a coarser granularity? or what 

are the different ways in which an object can be combined with other objects? 



The granularity graph is a rich structure modeling the multiple granularities. 

Browsing operations on the graph enable the retrieval of finer and coarser granularities of 

objects. Queries related to multiple granularities, such as what are all the objects that are 

at a finer granularity to an object? or what is a coarser granularity of an object? can be 

answered using the browsing operations. 

Another major contribution of this thesis is the composition of coarsening operators. 

Compositions of operators are required for simplifying long sequences of operators 

connecting two objects in a granularity graph. Compositions of operators are derived 

based on their applicable instance-class pairs and the semantics associated with object 

amalgamations. The result of a composition is either a single convincing result or an 

undetermined result. The case when an undetermined result occurs, there can exist 

multiple results of the composition, such as one of the operators in the composition, or 

nothing. Thus, composition of a compose operator with itself cannot be always be 

generalized to coinpose. The hypothesis of this thesis is defined as: different semantics 

associated with object amalgamations yield correct results of the compositions of 

coarsening operators. We support our hypothesis by describing the compositions of the 

different compose operators. It is observed that detailed compose operators reveal 

correctly the results of compositions of coarsening operators. 

Composition of operators enables one to reduce the sequence of n operators 

connecting two objects in a granularity graph up to a single operator. The simplification 

of the sequence of operators to a single operator, provided there are no undetermined 

relations between the granularities, indicates that it is possible to determine the relation 

between any two objects at different granularities in the graph. 



Applying the compositions of operators to a path consisting of n operators, between 

two objects, it is possible to derive n-1 ways of arriving at a coarser granularity. Thus, the 

compositions complenient the multiple ways of arriving at a granularity of objects and 

can also be used to find the different sequences of coarsening operators that lead to a 

coarser granularity from an object. 

7.3 Future Work 

This section lists a set of possible future research tasks that are enabled by this work. 

Extending the set of coarsening operators 

The set of coarsening operators capturing multiple granularities is rich but not necessarily 

complete. There may be other ways of combining objects, for example, objects can 

combine to evolve in to a new object and objects can merge into another object. 

Evolution of objects results in a new object. The properties of the objects can be 

completely different from the combining objects and need not be determined by the 

structure of combining objects. Alternatively, dynamic objects exhibit the semantics of 

merging, for example, a cur merging into a irujic. These semantics are temporal in 

nature and will need additional information about the objects. Several questions will need 

to be addressed. How will the temporality in the structure of objects modify the 

granularities? Can we integrate spatio-temporal objects into the granularity graph? What 

is the effect of including these objects in the granularity graph? Will the associative 

property of the compositions hold for these cases? 

Computing undetermined compositions of the coarsening operators 

The compositions of operators had 86 undetermined compositions out of the 160 possible 

compositions. An extension of this thesis is to successfully reduce the number of 



undetermined compositiolls. Are there any other attribute or relations of objects that 

when captured, can reduce the undetermined relations? What are all the ~oss ib le  values 

of operators that correspond to the undetermined compositions? Is it possible to list the 

different values that represent an undetermined composition? 

Visualization of multiple granularities 

This thesis discussed only one possible model for multiple granularities of objects and the 

usefulness of the models in translating among the granularities. When modeling 

granularities in a GIs, the effectivcness of the shifts in the granularities is portrayed only 

by the spatial representation of the granularities of objects. Many functions need to be 

investigated to accommodate the spatial representation of objects. This opens the door to 

some challenging research questions for associating a spatial representation with objects 

over multiple granularities. Can we use this model to determine the relation among 

granularities and retrieve the corresponding spatial representations from another stored 

source? Is it possible to convey multiple granularities only by displaying the spatial 

representation of the fine-grained objects and derive methods for approsimating the 

representation of coarser objects? Can this model be used as a meta-data or for relational 

indexing of objects to arrive at the corresponding spatial granularities? 
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