The University of Maine
Digital Commons@UMaine

Electronic Theses and Dissertations Fogler Library
12-2002

Modeling Multiple Granularities of Spatial Objects
Chitra Ramalingam

Follow this and additional works at: http://digitalcommons.libraryumaine.edu/etd
b Part of the Databases and Information Systems Commons, and the Theory and Algorithms

Commons

Recommended Citation

Ramalingam, Chitra, "Modeling Multiple Granularities of Spatial Objects" (2002). Electronic Theses and Dissertations. 584.
http://digitalcommons.library.umaine.edu/etd/584

This Open-Access Thesis is brought to you for free and open access by Digital Commons@UMaine. It has been accepted for inclusion in Electronic

Theses and Dissertations by an authorized administrator of Digital Commons@UMaine.

http://digitalcommons.library.umaine.edu?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F584&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.library.umaine.edu/etd?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F584&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.library.umaine.edu/fogler?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F584&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.library.umaine.edu/etd?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F584&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F584&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F584&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F584&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.library.umaine.edu/etd/584?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F584&utm_medium=PDF&utm_campaign=PDFCoverPages

MODELING MULTIPLE GRANULARITIES OF

SPATIAL OBJECTS

By
Chitra Ramalingam

B.E. Datta Meghe College of Engineering, Bombay - India, 1998

A THESIS

Submitted in Partial Fulfillment of the
Requirements for the Degree of
Master of Science

(in Spatial Information Science and Engineering)

The Graduate School
The University of Maine
December, 2002
Advisory Committee:
Max J. Egenhofer, Professor of Spatial Information Science and Engineering,
Co-Advisor
Kathleen Hornsby, Assistant Research Professor, National Center for Geographic
Information and Analysis, Co-Advisor
M. Kate Beard-Tisdale. Professor of Spatial Information Science and Engineering

Robert D. Franzosa, Professor of Mathematics

MODELING MULTIPLE GRANULARITIES OF
SPATIAL OBJECTS

By Chitra Ramalingam
Thesis Co-Advisors: Dr. Max J. Egenhofer

Dr. Kathleen Hornsby

An Abstract of the Thesis Presented
in Partial Fulfillment of the Requirements for the
Degree of Master of Science
(in Spatial Information Science and Engineering)
December, 2002

People conceptualize objects in an information space over different levels of details or
granularities and shift among these granularities as necessary for the task at hand.
Shifting among granularities is fundamental for understanding and reasoning about an
information space. In general, shifting to a coarser granularity can improve one’s
understanding of a complex information space, whereas shifting to a more detailed
granularity reveals information that is otherwise unknown. To arrive at a coarser
granularity, objects must be generalized. There are multiple ways to perform
generalization. Several generalization methods have been adopted from the abstraction
processes that are intuitively carried out by people. Although, people seem to be able to
carry out abstractions and generalize objects with ease. formalizing these generalization
and shifts between them in an information system, such as geographic information

system, still offers many challenges. A set of rules capturing multiple granularities of

objects and the use of these granularities for enhanced reasoning and browsing is yet to

be well researched.

This thesis pursues an approach for arriving at multiple granularities of spatial objects
based on the concept of coarsening. Coarsening refers to the process of transforming a
representation of objects into a less detailed representation. The focus of this thesis is to
develop a set of coarsening operators that are based on the objects’ attributes, attribute
values and relations with other objects, such as containment, connectivity, and nearness.
for arriving at coarser or amalgamated objects. As a result. a set of four coarsening

operators- group, compose, coexist, and filter are defined.

A framework, called a granularity graph, is presented for modeling the application of
coarsening operators iteratively to form amalgamated objects. A granularity graph can be
used to browse through objects at different granularities, to retrieve objects that are at
different granularities, and to examine how the granularities are related to each other.
There can occur long sequences of operators between objects in the graph, which need to
be simplified. Compositions of coarsening operators are derived to collapse or simplify
the chain of operators. The semantics associated with objects amalgamations enable to
determine correct results of the compositions of coarsening operators. The composition of
operators enables to determine all the possible ways for arriving at a coarser granularity
of objects from a set of objects. Capturing these different ways facilitates enhanced

reasoning of how objects at multiple granularities are related to each other.

ACKNOWLEDGMENTS

This thesis would have been impossible without the support and guidance of many

people. [take this opportunity to extend my sincere gratitude to all.

First, 1 gratefully acknowledge my advisors, Dr. Max Egenhofer and Dr. Kathleen
Hornsby, whose enthusiasm and guidance was crucial for the progress of my thesis. Their
generous cooperation and encouragement helped me accomplish the successful

completion of this thesis.

[would like to specially thank Dr. Bob Franzosa for his willingness to discussions,
which helped me in clarifying many doubts. I thank him and my other committee

member, Dr. Kate Beard, for their support and guidance.

Thanks to all my colleagues in the SIE department, especially Ramaswamy
Hariharan, Jim Farrugia, and Hariharan Gowrishankar for their many stimulating
discussions. This research would not have been possible without the huge personal and
academic support from Ram and [thank him for sharing every moment of this thesis with

me.

My sincere appreciation and thanks to Dr. Alfred Leick for allowing me to work in

his lab during my prototype implementation.

I would also like to thank my professors in India, Dr. Parvatham Venkatachalam and
Dr. Krishna Mohan, whose encouragement and guidance enabled me to pursue the

graduate study at SIE.

Thanks to my all friends at the University who made my study here a memorable one.
This list is long, but I would like to mention Maya Panangadan, Isolde Schlaisich, Tam

Thanh Huynh, Sirisha Pochareddy. Anuket Bhaduri, and Sharad Chakravarthy.

Funding for this thesis from National Imagery and Mapping Agency under grant

number NMA201-00-1-2009 is specially acknowledged.

Finally, I thank all my family members, my parents, sisters, and bother-in-law for

their love and support through all the years and encouraging me in all my endeavors.

1

TABLE OF CONTENTS

ACKNOW LED GMEN T S ittt ii

LIST OF TABLE S .. it e viil

LIST OF FIGURE S ..ottt X
Chapters

1. INTRODUCTION . e e e 1

1.1 Background of Thesis ..o 4

1.2 Motivation for Researchc.cooiviiiiiiiiiii 7

1.3 Key Research QUESHIONS ...co.viiiiiiiiiiiiiiecie e 9

1.4 Goal and Hypothesiscoiiiiiiiiieiice e 10

1.5 SCOPE OF TRESIS cveiieieiie ittt 11

1.6 MaJOr RESULLS oottt e 13

1.7 Organization of the TResiScoooiiiiiii i 14

2. MODELING MULTIPLE GRANULARITIES. ..., 16

2.1 Methods for Modeling Object Granularities..........cceevveerirreeiiee i 18

2.1.1 Concept hierarchies.........ccocveiiiiiiieiie e 18

2.1.2 Domain generalization graphsc.ccceovviveieeeieiieeeeieeeeceeeee e 20

2,13 ONEOIOZIES .eevviiiieeiieeet ettt 21

2.2 Object-Oriented Approaches for Changing Granularity................c...ccooveeinn.o. 22

2.2.1 Object-oriented abstraction methodsc.cccoeiioviiiiiiiiiii e 22

2.2.2 Object-orientation in GIS.............cocoioiiiiiiiii e, 25

2.3 Map-Based Approaches for Changing Granularitycccooooeviiiioiiiiieriecnnn. 27

(OS]

2.4 Visualization-Based Approachescocoovviioiiiiemiii s 30
2.5 SUITHYIATY 1.veveereereereneeuee et eaeeessreer s es e se s e s e s b oo 32
DERIVING OBJECT GRANULARITIES THROUGH COARSENING............... 33
3.1 COAISENING .ovvevevireetiie ettt et 34
I S 1 L= O RO PP PP SO PPPPR PR 37
3.2.1 Formalization of the Operator.............ccocoiiiiiiiiiiiii e 38
3.2.2 0 EXAMPLE oot 38
3.3 GIOUD -ttt e e e 38
3.3.1 Formalization of the Operator..........c.coccerriviiiiiiiiiiii e 40
3.3.2 0 EXAMPLE oo 40
304 COIMPOSE ettt ettt s bbb 41
3.4.1 Formalization of the operator...........ccccoovvvivriiiiiiic 44
342 EXAMPIE coiiiiiiiiiie e e 45
3.5 COBXISE 1ttt ettt ettt 45
3.5.1 Formalization of the Operator..........c.cccoveviiiiiiiiiiiiii e, 46
3.5.2 0 EXAMPIE oo e 46
3.6 SUIMIMATY toeiiiiiie it e ettt e e et e e e st e e e s et e e e e e saann e e e e ratesessenaens 47
GRANULARITY GRAPHS .. 49
4.1 Rationale for a Granularity Graphccoooveiiinioiiie 49
4.2 Elements of a Granularity Graph...........ccccoeviiiiiiiiiinciec e, 50
4.3 Constructing a Granularity Graph..........ccocoocoviiiiieiiiiiiieee e 52
4.3.1 Creating object granularities...........ccoovvevvieciirierieieeeecreeie e 54
4.3.2 Matching object granularitiescocoeciiiiiviiiieiieeee e 55

wn

4.3.3 Case study: Acadia Park ... 57

4.4 Browsing a Granularity Graph..........ccoocoiiiiii 62
4.4.1 UNAry OPETAtIONSc..eeveiiiiieisireeiteeteet sttt 63
4.4.2 BINAry OPEIAIONS c..ecuvevveeiieriieireiiiieiis ettt sa e 64
4.43 Mapping of graph operations onto object granularitiescocooevvevieenn, 65

4.5 SUINIMIATY ovvviiirieeeitiee ettt e et sb s st e e ab e e st e e eaa e et b e e e b e e se bt 70

COMPOSITION OF COARSENING OPERATORS. ... 71

5.1 Definitions for Composing Coarsening Operatorsccoeevieircririiiiininnninenns 73
5.1.1 Compositions With [IIeroccooviiiiiiiiiii e, 75
5.1.2 Compositions with group and COEXiSt.........occvrririiiirieiiiiiie e 76
5.1.3 Compositions With COMPOSE........c.cevuiriiiriiiiiiiire e 78

5.2 Inferences from COMPOSIIONS ...cuviiiriiiriiiiiiiee e 85

5.3 Application of COMPOSILIONSeeirriiiiiieiriieieir e 89

S SUIMIMAIY ceeiviieieiee et e et e et e ettt e st e e s s seetare e e setbeeesnnnree s 95

PROTOTYPE FOR CONSTRUCTING AND BROWSING A GRANULARITY

GRAPH. .. 97
6.1 Prototype Design and Specification..........c.ooecvvviiiieiiiiiiiiececceecce e 97
0.1.1 ODBJECLS 1ottt 98
6.1.2 COoarseNINg OPETALOLServiiriiritieiiieitieeiieerteesttesresteeetreeenaeeeteseseeeaeaaeea 100
6.1.3 Granularity @raph.......ccccocociioiiiiiic e 101
6.2 The User INTerface.........ccooviiiriiiiiiie e 102
6.2.1 Creating a new granularity graph..........ccoeeeevvoiiiiiieiciiiiciieceeceeee 103
6.2.2 Applying coarsening OPEeratorscc.ccvviiverreerereieieesieeeeeeeres e areee e 103

vi

6.2.3 Browsing object granularitiescccooevvieiiiiiieiiii i 104

6.3 Tllustration of the PrototyPeccovveeeeiiiiieiee e e 104
0.4 SUIMIMATY 1eouoiiiieeeieieiee et et e st ee ettt e e ettt s e st e e e e et ne e s smanetesanenaeeenenes 110
CONCLUSIONS AND FUTURE WORK 112
7.1 SUMIMATY oottt 113
7.2 CONCIUSIONS ...coviiiiiiiii et e 114
7.3 FUIE WOTK oot 116
BIBLIOGRAPHY ... 118
BIOGRAPHY OF THE AUTHOR 125

vii

Table 3.1

Table 3.2

Table 4.1

Table 4.2

Table 4.3

Table 4.4

Table 4.5

Table 4.6

Table 4.7

Table 5.1

Table 5.2

Table 5.3

Table 5.4

Table 5.5

LIST OF TABLES

Common attributes of objects: length and speed limit................c.coooei 41
Coarsening operators and the corresponding instance-class pairs to
which the operators can be applied. ... 48
Information space of the Acadia National Park modeling the
QUTEIENt THAILS. .oooovoeeevieeee e 54
Similar attribute values of objects for the attribute rype of trail:
denotes strenuous trails, while |1 denotes easy trails. ..., 55
Relations among objects Mount desert islund. Bar harbor, and
ACAAIA_PUFK. .o 56

Information space for Acadia National Park. ... 58

Axioms partly describing the granularity graph for Acadia National

PaTK. oo e et 62
Unary browsing operations on graph.ccccooviiiiiiiiinieeen 64
Binary browsing operations on the graph. ... 65
Coarsening operators and their corresponding instance-class pairs. 74

Compositions of the compose operators with each other. ~ represents

undetermined COMPOSILIONS.c.veiieieiieriiiiiieeie ettt 81
Compositions of coarsening operators over classes. ~ signifies
undetermined COMPOSIHIONS. ...ocv.iivireeriieie ettt 86
Compositions of coarsening operators over instances. ~ signifies
undetermined COMPOSILIONS. ...vviiiieieiiie ittt 86
Percentage of valid compositions over instances and classes................... 87

viii

Table 5.6 Compositions of the detailed compose operators with each other. ~

represents undetermined compositions. e 88
Table 5.7 Applying compositions of operators to arrive at a shorter path................ 90
Table 5.8 Multiple ways to arrive at Acadia Park from Becehive Trails. 92
Table 5.9 Simplification of a sequence of operators using the associative

property 0f COMPOSIIONS.ccviviiiiiriieeiee et 92
Table 5.10 Simplitying sequence of operators for relating object granularities.......... 93

Table 5.11 Two different paths connecting Sand Beach to Tourist Attractions

yields analogous simpliflcations.cccooeeiiiiiiii e 95

1X

Figure 1.1

Figure 1.2

Figure 2.1

Figure 2.2

Figure 2.3

Figure 2.4

Figure 3.1

Figure 3.2

Figure 3.3

Figure 4.1
Figure 4.2

Figure 4.3

LIST OF FIGURES

(a) Different datasets for the same geographic space. (b) Overlaying

different datasets in a GIS leads to a refined granularity..................co.o.

Map-based generalization: (a) snapshot view of map objects,

generalization of data by (b) selection process and (c) aggregation.
Concept hierarchy for the sfreet attribute. ..o,

Single and multi-path DGG for the streef attribute. ...

Describing (a) city as a class and (b) instances of city, Bangor and

POTEIANG. o oeeeee et et e et

(a) Original map and (b) generalized map using aggregation

operation and (¢) amalgamation Operation.c.coceovvririeiieiineinennns

(a) Filtering objects x3 and x, from the set U = {x;, x5, ...x,} and (b
=4 f 7]

amalgamation of objects x;, X2, and X3 INLO V7. coovviveieriiiiiciieieceeeen

(a) Filtering objects x; and x; from U = {x x3 Xy, x5, (b) trivial

filter operation selecting all the objects in U, and (c) trivial filter

operation on x5 and amalgamation of x;, x3, and x; Into y3. .c...ccoeeereenne,

Grouping Lake and Pond into Water-body based on their common

attributes, depth, volume, and type.c..cooveeviiiiiiiii e

A granularity graph. U= {x;, x>,

Objects exhibiting a spatial containment relation.c..coceenenn.

Matching object granularity: A compose operator is used to connect
the existing objects granularities Acadia park, Bar harbor and

Mount_desert island

,\‘/()/'. ...

Lod

e

20

21

30

34

37

39

51

56

Figure 4.4

Figure 4.5

Figure 4.6

Figure 4.7

Figure 4.8

Figure 4.9

Figure 5.1

Figure 5.2

Figure 5.3

Figure 5.4

Figure 5.5

Figure 5.6

Figure 5.7

Figure 5.8

Figure 5.9

A granularity graph of the Acadia Park consisting of two levels. 59
Filtering objects Ponds, Campground. and Sand _beach from the set
Uto result in a set S = { Sand beach, Campground, Trails, Ponds). 60
Granularity graph for Acadia National Park. ... 61
Result of the browse operation, getDescendant(X, Park loop_road).67
Granularities retrieved by applying the binary browse operation
getAncestor to Cadillac_ mount@in.c.ccocoviiviiiiiniin, 68
Browse operation geldncestorDescendant(X, Trails, Acadia Park)

yields Park loop road, which is both an ancestor to Trails and

descendant to Acadicr Park..........c.cooevevievivieiiiiee e 69
Composition of operators R and Syield 7=R &S fromAto C............... 72
Granularity graph for Acadia National Park...........c.coccooiiniiinnn. 73
Composition of coexist with filter yields a coexist operator.............c........ 76

Amalgamation of objects applying a coexis! followed by a group: ®-
common attribute values and ||- common attributes of objects. 77
Composition of compose[Contained] with compose[Near] yields an
undetermined COMPOSIION.c.vivviiiriiiiieiiic it 79
Composition of compose[Contained] with a group over instances

yields a compose[Contained].c..c.cccooviiviiviiiiiiiiiieiciecie e 82

Composition compose[Contained] ® group over classes yields an

undetermined reSult. ... 83
Simplifying the path from Beehive Trails to Acadia Park. 90
Granularity Graph with a selected path.cccoooooiiiiiiiiiii 91

X1

Figure 5.10

Figure 5.11

Figure 6.1
Figure 6.2
Figure 6.3
Figure 6.4
Figure 6.5
Figure 6.6

Figure 6.7

Figure 6.8

Figure 6.9

Figure 6.10

Figure 6.11

Simplified granularity graph applying COmMpOSIIONS.ccoooviiiiieicininn 91

Deriving a path from Beehive Trail to Acadia Park with a group

OPETALOT. ©..eeteetie ettt eeca et s st s bbbk s 93
The prototype architecture: user-interface and graph builder................... 98
Structure of an object, GOBJECL.oovviviiiiieiiiie 99
Class GFaphBUILACEccoooiiviiiiiiiiiiiiicii e 100
Classes for implementing the graph structure..............cccccoovininnnnn 101
User interface of the prototype.ccoveeviivieiiiiiiiicecee e 102
Selecting three truils for amalgamation from the set of objects. 105

Creating an amalgamated object Easy Trails for the selected objects
by applying the group operator.........ccocoviviiiiiiiiiiiiii 106
Step-wise building of a granularity graph. (a) Creating an
amalgamated object Easy Trails by the group operator and (b)
adding amalgamated object Forest Trails by applying the compose
0 11 2 110) USRS 107
Granularity graph for the Acadia Trails...........cccoovviiiiieii 108
Result of the browse operation getChlidOp on Trail Routes based on
the Zroup OPETATOT.oiiiiiiiie e 109

Result of the browse operation getDescendants on Hike Trail................ 110

Xii

Chapter 1

INTRODUCTION

Spatio-temporal knowledge representation often requires changing from one level of
detail to another so that users can carry out a desired task (Buttenfield and Delotto 1989;
Guptill 1990; Hornsby and Egenhofer 1999). Location-based querying, monitoring of
hazard zones, and planning a transport system, for example, need to be examined over
different levels of details. Geographic information systems (GISs) typically support
changes in the level of detail from the perspective of changes to geometric properties of
map objects. Changing the map scale or emphasizing essential map objects while
suppressing the unimportant are some functions that render different levels of detail. Data
can be represented at different levels of detail, each suited for a particular purpose. In a
GIS, for example, it is required to display data at certain levels of detail while guiding a
person through a maze of streets or to assist military personnel across an area of
landmines. In this thesis, we refer to the level of detail as granularity (Hornsby and
Egenhofer 2002). Incorporating multiple granularities of spatio-temporal data and
enabling translations among different granularities have been identified as important in
information systems (Buttenfield and Delotto 1989). In order to deal successfully with

several emerging spatio-temporal applications, such as multiple representations of spatio-

temporal data, GISs must support methods for modeling data at different granularities

and enable shifts among them.

The most common approach to simplifying levels of detail of information is by the
process of selection and generalization. In everyday life, the amount of information
people encounter is vast and much more detailed than they can cognize. To deal with the
complexities, people typically consider only things that are relevant to their tasks and
abstract away the unnecessary details (Hobbs 1990; Bederson and Hollan 1994; Timpf
and Frank 1998). Several methods for generalizing map objects have been adopted based
on abstraction processes that are intuitively carried out by people. Abstraction factors out
the commonalities in the description of several concepts in an information space into the
description of a more general concept (Timpf 1999). For example, the different kinds of
buildings on a university campus, such as academic buildings, administrative buildings.
dormitories, gymnasium, and arts centers, can be abstracted to a simpler and more
general concept of campus buildings. It is typically sufficient to refer to the various types
of buildings as campus buildings when describing the university campus to a friend,
whereas more specific details are required when directing a student to a particular
building. In this process of understanding and reasoning about an information space.
people intuitively perform shifts among the different granularities and draw on an

information space that is at a required level of detail, according to their task.

Shifting among granularities is fundamental for reasoning (Hobbs 1990) and key for
any knowledge-based system. In general, shifting to a coarser granularity of entities can
improve one’s understanding of a complex information space. Conversely, shifting to a

more detailed granularity can uncover information that otherwise is unknown (Hornsby

S

and Egenhofer 1999). It is, therefore, of primary importance to support multiple

granularities and shifts among these granularities.

Although people carry out abstractions or shifts to more detailed granularities with
ease, formalizing these shifts for integration into an information system and query
languages still offers many challenges. Considerable amount of work has been done by
the cartographic and GIS community to generate map-based generalizations, that is,
translations of maps to higher or less precise scales (Buttenfield and McMaster 1991;
Muller ef al. 1995a). Multi-resolution map models have been proposed to offer increased
capabilities for spatial reasoning and representation (Puppo and Dettori 1995; Stell and
Worboys 1998). Techniques have also been developed to change granularities for
enhanced visualization (Furnas 1986; Tanaka and Ichikawa 1988; Stone er «l. 1994;
Timpf and Frank 1998). To date, automated map generalization and visualization-based
generalization have been based on a set of complex geometric and attribute
manipulations. Object-oriented abstraction methods are other most commonly used
approaches for arriving at generalizations (Smith and Smith 1977; Brodie er al. 1984)
using the principles of inheritance and aggregation. However, deriving granularities is a
subjective process and there can be multiple ways of arriving at a granularity. A set of
rules capturing the complete set of possible granularities is yet to be developed. An
approach for building the different granularities and enabling shifts among them is
required. Other challenges are to find relations among entities at different granularities

and to use them for enhanced reasoning based on multiple granularities.

1.1 Background of Thesis

A simple approach for modeling data at different granularities in a GIS is to store
different datasets as layers for the same geographic space (Figure 1.1a). Each layer
contains data specific for a task, such as town data, city data, and road network data,
which can be integrated spatially (Figure 1.1b) resulting in a detailed granularity.
Selecting and omitting the layers in the dataset allows shifting to more or fewer spatial
details. In this approach, a fixed set of granularities is used, whereas it is often required to

be able to derive different granularities according to the user’s task at hand.

(a) (b)

Figure 1.1 (a) Different datasets for the same geographic space. (b) Overlaying

different datasets in a GIS leads to a refined granularity.

Another approach to arrive at coarser granularities involves the selective omission of
map features and the generalization of map features into more abstract forms (McMaster
and Shea 1992). Map-based generalization or cartographic generalization has been a
major subject of study, particularly from a geometric perspective. Cartographic
generalization involves a reduction in the map content dependent on scale changes to
maps and attribute data manipulation, transforming a detailed representation of the map

(Figure 1.2a) into a less detailed representation (Buttenfield and McMaster 1991; Muller

et al. 1995a). An initial step in the generalization process involves the selection of map
features, relevant to the task. Selection results in a less detailed granularity consisting of
only the relevant map features (Figure 1.2b). Following the selection, such operations as
smoothing, simplification, and aggregation (Figure 1.2c) are applied to map features
based on geometric and attribute transformations to result in a new, generalized map
representation (McMaster and Shea 1992). Similarly, automated map generalization,
which employs agents to attain an acceptable level of detail (Lamy et «/. 1999) and
generalization of coverages using thematic information (Frank e/ al. 1997) are other
methods to obtain map-based generalizations. Since map-based generalizations
frequently address geometric manipulations, the computations can be complex and highly

dependent on map features.

S| 78 &
= = <D

(a) (b) (c)

Figure 1.2 Map-based generalization: (a) snapshot view of map objects,

generalization of data by (b) selection process and (c) aggregation.

To avoid the geometric complexities in map-based generalizations several techniques
have been proposed to render enhanced visualization by manipulating the semantic
properties of map elements. Fisheye views (Furnas 1986) provide a visualization of maps
based on the concept of a panorama by implementing the local details in context with the

global structure. Fisheye views are obtained by varying the semantic importance of map

wn

elements. Pad++ (Bederson and Hollan 1994) is a graphic zooming technique that
renders generalizations based on semantic task-based filtering. A semantic panning and
zooming technique from the perspective of filtering objects supports a step-by-step
refinement of map elements through visual feedback from the user (Tanaka and Ichikawa
1988). The Perspective Wall (Mackinlay et al. 1991) and the Magic Filter (Stone et al.
1994) are other visualization-based generalizations, which also use filtering techniques in
the generalization process. The visualization-based methods, however, do not incorporate

any techniques to combine or amalgamate entities into more general concepts.

Several multi-resolution map models have been proposed to implement these filtering
and abstraction mechanisms in order to offer increased support in spatial reasoning.
Multi-resolution models facilitate storing the multi-granular representation of maps by
using a hierarchical tree structure (Frank and Timpf 1994; Puppo and Dettori 1995). Such
models provide flexibility to represent data with regard to scale and resolution. Stell and
Worboys (1998) illustrate an approach to model multi-resolution spatial data by using
granularity lattices and map spaces. They provide methods to shift between map spaces
and a formal discussion for integrating semantically and geometrically heterogeneous

spatial datasets.

For multi-resolution models to be effective, it was necessary to have a means to make
appropriate transitions between difterent granularities of data (Hornsby and Egenhofer
1999; Stell and Worboys 1999). Further work on multi-resolution models has led to an
investigation of the types of operations necessary to arrive at different granularities.
Timpf (1999) provided a categorization of hierarchies for the abstraction process based

on the generalization operations of filter, aggregation, and classification. Stell and

Worboys (1999) introduce two kinds of generalization operations. selection and
amalgamation, enabling transitions to granularities with less detail. A few generalization
operations have been identified, however. the operations do not model the different
semantics associated with combining objects to result in coarser granularities. Also, there
is a need for uniformity in modeling the operators. The definition of operations lacks a
common set of criteria for comparison, which limits the use of the operators based on the
multiple granularities. For example, application of the operators for determining the
relation between the objects at different granularities or the different ways (i.e., shortest
path or desired path) of arriving at an object granularity is not investigated. The process
of abstracting to coarser granularities and the use of such models for enhanced reasoning

and browsing based on multiple granularities is yet to be well researched.

1.2 Motivation for Research

We envision that objects are rich in structure and semantics. Exploiting an object’s
semantic attributes and relations with other objects can lead to a large number of possible
ways to generalize data. Treating the geometry, scale, and attributes of the map features
has resulted in a set of cartographic generalization operators (McMaster and Shea 1992),
such as simplification, aggregation, smoothing, amalgamation, merging, collapse.
refinement, exaggeration, enhancement, and displacement. Ormsby and Mackaness
(1999) also discuss map generalizations based on the different phenomena of map
features determined by geometry, semantic, and inter-object relationships. GIS, however.,
requires methods for addressing generalizations and granularity change operations
beyond map-based generalization. Timpf (1999) and Stell and Worboys (1999) propose

semantic generalization operations for multi-resolution models by considering spatial

data as objects. The semantic and task-based generalizations of map features have
resulted in methods alternative to the complex geometrical computations for generalizing
objects. Modeling multiple granularities, however, involve other challenges, such as
determining the semantics associated with different granularities, enabling shifts among
the different granularities for retrieving coarser and finer object granularities, and finding

the relation between the different granularities.

This thesis develops an approach to model multiple granularities of objects based on
the concept of coarsening. Coarsening refers to the process of transforming a
representation of objects into a less detailed representation. Coarsening of objects is
achieved by filter and amalgamation. Filter is the process of sclecting a subset of objects
from a set while omitting the other objects. The selected objects are considered as part of
a coarser granularity. Amalgamation is the process of combining two or more objects to
result in a single object at a coarser granularity (Stell and Worboys 1999). There are
different semantics associated with object amalgamations that lead to a coarsening and in

this thesis we identify the different kinds of object amalgamations.

An object is the representation of a physical entity, such as a building or a lake, or a
fiat entity (Smith and Varzi 1997), such as a land-parcel or a university, in an information
system. Objects are also distinguished as classes or as an instance of a class. For
example, object Building is a class with attributes that correspond to buildings and object
Boardman Hall is an instance of the class Building. Each object is defined by a (1) set of
attributes, (2) attribute values, and (3) relations with respect to other objects. In this
thesis, we address spatial relationships among the objects, namely contained, connected,

and near. The different kinds of object amalgamations are defined based on the three

components of objects. As a result, we define four coarsening operators - group.
compose, coexist and filter for combining and selecting objects to result in coarser
granularities or amalgamated objects. Applying the coarsening operators iteratively to
objects and their amalgamated objects leads to the creation of a framework consisting of

multiple granularities of objects, called a granularity graph.

Granularity graphs represent a rich structure of objects at multiple granularities.
connected by coarsening operators. The graphs provide a framework for shifting among
different object granularities. It also supports browsing through granularities, enabling
retrieval of objects at different granularities. A granularity graph can contain long
sequences of operators connecting two object granularities and often it would be required
to simplify the sequence of operators. For example, to determine a shorter path in the
graph or how two granularities are connected to each other. Compositions of operators
play a significant role in collapsing or simplifying the sequences of coarsening operators.
In this thesis, we derive all possible compositions of the coarsening operators and
determine valid compositions that can be used in simplifying the sequence of operators.
The different applications of the composition of operators are also presented highlighting

their use in enhanced reasoning based on the multiple granularities.

1.3 Key Research Questions

Systems that model multiple granularities need methods supporting translations among
the different granularities and for arriving at a required granularity. When translating
between two different granularities several questions arise with regard to the objects that

are at finer or coarser granularities. To process such queries one needs a framework and

rules for modeling all object combinations that lead to coarse granularities. The
development of such a framework is guided by the following research questions:
e Can two objects be amalgamated to result in a coarser granularity?
e What are the different ways in which an object can be combined with other
objects?
e What are the semantics associated with the retrieval of coarser granularities of a

set of objects?

A framework of multiple granularities consists of objects at different levels of details
connected by coarsening operators. There can occur long sequences of operators
connecting two objects in the framework that may require to be simplified. Composition
of coarsening operators can be used to collapse or simplify the sequence of operators.
Based on the valid compositions of the coarsening operators, we can answer challenging
research questions, such as:

e s it possible to derive valid compositions for all operators?

e Applying the compositions, can the number of operators be simplified or

collapsed to a simpler sequence?

e Which of the operators result in most effective compositions or least effective

compositions?

1.4 Goal and Hypothesis

The goal of this thesis is to model multiple granularities of objects and enabling shifts
among them for retrieving finer or coarser granularities. The main focus of this approach

is to distinguish the different semantics associated with combining objects for arriving at

10

multiple coarser granularities. A set of coarsening operators is developed to result in a
framework of multiple granularities. Each operator models a distinct object
amalgamation or selection and is defined based on the valid instances and classes of
objects to which it can be applied. Another contribution of this work is the derivation of
all possible compositions of the coarsening operators and their different useful

applications based on multiple granularities.

Compositions of coarsening operators play an important role in simplifying the
sequence of operators between two objects in a granularity graph. The compositions are
used for determining a shorter path in the graph and the relations among the objects at
different granularities in the graph. Composition of operators 1s significant for reasoning
based on multiple granularities and enables one to obtain more complete semantics of
objects at multiple granularities. Understanding the semantics of coarsening operators
that connect the different granularities is important for determining valid compositions of
operators. Hence, in this thesis we focus on the semantics of object amalgamations and

their effect in deriving valid compositions of operators. The hypothesis of this thesis is:

Different semantics associated with the object amalgamations are needed to yield

correct resulls of the compositions of coarsening operalors.

1.5 Scope of Thesis

This thesis builds on a framework of coarsening operators, consisting of filtering and
amalgamations, to model multiple granularities of objects. We identify four ways in
which objects can be combined or selected into a coarser granularity based on common

attributes, common attribute values, and similar relations with other objects. The use of

11

geometry in the amalgamation process or the spatial resolution of objects is not a focus of
this work. By common attributes and common attribute values of objects, we imply
identical values of the attribute names and the attribute values of objects, respectively.
The coarsening operators can also be extended to consider range of values of attributes
instead of a particular value, though we do address range of values in this thesis. We
consider only three spatial relations among objects, namely contained, connected, and
near. Coarsening operators can be extended to include other spatial relations that capture

different semantics of object amalgamations.

We develop a model for building multiple granularities of objects, support shifting
among the different granularities and enable determining the relation between
granularities. An object-oriented approach is used for arriving at granularities. It also
includes spatial relations in order to capture rich semantics of object amalgamations.
Similar to the other generalization techniques, the approach presented in this thesis
enables to form multiple granularities of objects. Comparison between the different

approaches is beyond the scope of this thesis.

Applying coarsening operators can result in an object that is a class, such as Building
or an object that is an instance, such as College of Engineering. The operators, by their
definitions, determine only a subset of the actual properties of the resulting amalgamated
object. The operators do not assist in finding out the spatial nature or topology of the

amalgamated object.

The granularity graph derived from using these operators does not necessarily

represent all possible coarsenings that can exist among the granularities. Each level in the

granularity graph is derived using a particular sequence of coarsening operators. A

different granularity graph may be obtained by changing the sequence of the operations.

We present a complete set of the compositions of coarsening operators based on the
definitions on the coarsening operators. The result of a possible composition of operators
can be valid, giving a single result, or undetermined, implying that there are more than
one possible result of the composition. The undetermined composition requires more

information from the user in order to determine the valid result of the composition.

This thesis does not present an exhaustive classification of amalgamations of objects.
We restrict our amalgamation based on attributes, attribute values, and three spatial
relations among objects. There can be other object amalgamation, such as evolution of
objects or merging of objects that can be included in the set of operators by treating
additional relations among objects. Our approach provides a conceptual modeling among
granularities and does not deal with the multiple geometric representations of spatial
objects. We suggest a framework for building multiple objects granularities and enable

browsing through them. It does not yet support any query language for multiple

granularities.

1.6 Major Results

This approach highlights the differences in the granularity of objects obtained from the
different semantics of object combinations. A set of coarsening operators and granularity
graphs are the outcome of modeling multiple granularities through coarsening. The
granularity graph derived using the operators supports a multi-granular model of the

objects. The graph structure enables mapping of the different graph operations for

browsing through the object granularities. The browsing operations enable the retrieval of
objects at different granularities, such as objects that are at finer or coarser granularities,
or objects that share a common coarser granularity in the graph. Several unary and binary

browsing operations are reviewed.

Another major result from the coarsening operators is valid compositions of the
coarsening operators. The composition of operators can be used to reduce the sequence of
operators connecting two objects in the graph to a minimum. They enable determination
of how two objects at different granularities are related to each other. Applying the
compositions, it is also possible to determine the different ways of arriving at a
granularity from a set of objects. The undetermined compositions prevent arriving at
invalid results of compositions and prompt the user to find the valid composition by using

more information.

1.7 Organization of the Thesis

The remainder of the thesis is organized into seven chapters.

Chapter 2 discusses the research and the literature that underlie this work: from the
need to model granularity and granularity changes to the state-of-art of the different

approaches to model multi-granular data.

Chapter 3 introduces the basis for arriving at coarser granularities of objects through
filtering and amalgamation. Several different kinds of amalgamations and their semantics
are presented. Four distinct coarsening operators are compiled to capture the semantics of
the different amalgamations and filtering. Formal rules for implementing the operators

are also specified.

14

Chapter 4 discusses the building of a granularity graph applying the coarsening
operators. The element of a graph and a basic algorithm for constructing a granularity
graph is presented. The several browsing operations for a graph and its mapping to

browse objects at different granularities is discussed.

Chapter 5 is a study on the composition of the coarsening operators. We examine the
sequences of operations and identify all the possible compositions of operators.
Inferences from the compositions and their affect on the granularities are presented.

Several applications of the compositions are also reviewed.

In chapter 6, the implementation of the prototype for modeling multiple granularities
is discussed. Following the design and specification of the prototype, an example is
presented to demonstrate the construction of a granularity graph and browsing operations

on the graph.

Chapter 7 concludes the thesis with a discussion of the major results. We also present

the scope for carrying out further research work in this area.

15

Chapter 2

MODELING MULTIPLE GRANULARITIES

Different levels of details are useful for different tasks. For certain tasks, a coarser level
of detail is needed, whereas other tasks may require a more detailed perspective of data.
In this thesis, we refer to these levels of detail as granularity. Granularities of entities are
fundamental for understanding and reasoning about the world (Hobbs 1990). People
consider only certain relevant data according to their interest or tasks being performed
and abstract the excessive details (Hornsby and Egenhofer 1999). In addition to
simplifying the information space by selecting relevant data, combining or grouping data
to coarser granularities enables better understanding of complex information space.
Examples such as “I went to the Mall,” “Stillwater is a good neighborhood,” and
“University parking is safe,” are expressions that contain commonly used coarser
approximations of an information space obtained by combining several features in the
information space. Modeling the infinitely detailed real world into a finite system space,
likewise, requires methods that translate the complexities of the world into simpler

representations.

People intuitively draw on an information space that is at different levels of details
and perform shifts among these granularities (Hobbs 1990). From a computational

viewpoint, generalization methods are commonly wused to generate simpler

16

representations by manipulating the attributes of entities in an information space. In a
GIS, map-based generalization methods are developed as a set of complex rules based on
the objects’ geometries and spatial relations (Buttenfield and McMaster 1991; McMaster
and Shea 1992; Weibel and Dutton 1999). Object-oriented concepts of classes and
instances, and properties of classes, such as inheritance and aggregation, provide another
perspective of modeling generalizations based on the semantic relations and attributes of
objects (Hammer and McLeod 1981; Maier and Stein 1981; Stroustrup 1991). Research
into the application of object-oriented concepts to GIS has proven to offer a good design
environment well suited for a GIS by offering simple and better modeling methods
(Oosterom and Bos 1989; Egenhofer and Frank 1992; Worboys 1994). It has been
suggested (Schiel 1989; Kosters er al. 1996; Stell and Worboys 1999; Timpf 1999) that
generalizations need not only be based on complex geometric calculations, but also be

semantically possible.

Hobbs (1990) uses granularity to refer to the notion that the world is perceived at
different grain sizes or granules. Local weather, for instance, is commonly given to the
granularity of a city, whereas a person’s driver’s license is given to the granularity of a
State. For temporal data, granularity is typically defined as calendar-dependent
partitioning of a time line (Wiederhold e/ @/ 1991; Dyreson and Snodgrass 1995).
Different granularities of time exist, such as minutes, hours, and years. Granularities can
be compared, where some granularities are finer or coarser with respect to other

granularities.

The concept of granularity is also inherent in object-oriented programming (OOP)

principles through abstraction. The provisions in OOP to support class inheritance, by

17

defining base class, derived class, and friend class, models the class structure as more
generic or more detailed (Stroustrup 1991). The base class can be looked upon as a
generalization of the several specialized derived classes. Similarly, in databases, a query
result, such as a horizontal or vertical partition of the database, or a join operation among

tables generate as results different granularities of the database.

Modeling multiple granularities conveys how the entities in an information space are
related and thereby provide users with embedded knowledge of a system. The different
granularities can be used for domain organization and for browsing through the

granularities in order to obtain more detail or more general information.

This chapter provides an overview of granularity by reviewing the different methods
for modeling multiple granularities. A detailed description of the different approaches for
changing granularity, such as the object-based and map-based approaches, is also

presented.

2.1 Methods for Modeling Object Granularities

Modeling multiple granularities provides a valuable framework for handling and
integrating the different levels of details. The difterent levels of granularities in an
information space can be examined in order to obtain more detail or more general
information. In this section we describe the different methods for modeling multiple

granularities of objects that are commonly adopted by computer science research.

2.1.1 Concept hierarchies
Concept hierarchies (CHs) define a sequence of mappings from a set of lower-level

concepts to their higher-level correspondences resulting in a hierarchy of concepts

18

(Madria er al. 1998; Hilderman et al. 1999). CHs express the different granularities of
objects based on domain values of attributes. For example, a set of objects {school, post
office, restaurant} can be generalized into higher-level concept as a building. CH is
defined on a set of attributes of objects. The most detailed concept corresponds to
specific values of attributes, whereas the most general concepts are the all or the any
description. A knowledge engineer or a domain expert constructs mappings of the
different levels in a CH. Many different CHs can be constructed based on different
viewpoints or user preferences; however, a common CH can be associated with an

attribute.

CHs are constructed as part of the database definition phase for each of the attributes
by defining a classification hierarchy based on the domain values of those attributes. A
CH is represented as a tree, where the leat node corresponds to the actual data and the
intermediate nodes correspond to the more general concepts. The CH providing
information for the street attribute in a road network database is as shown (Figure 2.1).
The leaf nodes are the actual streets. At higher levels, a CH refers to streets by the
corresponding street types (such as one-way street or a two-way street) or the division or
area to which the streets belong, abstracting the individual streets. CHs present only one
possible group of granularities to the user without evaluating the other possibilities. To
facilitate the generation of other granularities of objects, new data structures such as the

domain generalization graphs (Hilderman et al. 1999) are introduced.

19

Figure 2.1 Concept hierarchy for the street attribute.

2.1.2 Domain generalization graphs

A domain generalization graph (DGG) (Read e «/. 1992; Hilderman et al. 1999)
supplements a concept hierarchy by defining a partial order that represents a set of
generalization relations for the attribute. Different granularities of objects are possible,
but, particularly for data mining, it is efficient and effective to limit the nodes in the
hierarchies to those representing generalized encodings of the domain. The DGG models
possible generalizations as a partial order rather than a strict hierarchy. A DGG is
designed to include a single leaf node and a single root node. The node at each depth in a
DGG is a general description of the nodes at the same depth in a corresponding CH. For
example, the different nodes in a DGG for the street attribute would be the general
concepts of the corresponding nodes in the CH (Figure 2.1), such as a particular street,
street_type, and division respectively (Figure 2.2a). The edges in the graph denote the
partial order relation between the nodes. When multiple CHs are associated with a single
attribute, a multi-path DGG can be constructed for that attribute (Figure 2.2b). The

generalizations modeled in a DGG are partial order relations among attributes. DGGs do

20

not model abstraction mechanisms such as aggregation or association, and do not make

any distinction with respect to the semantic relations among objects.

Division

(a) (b)
Figure 2.2 Single and multi-path DGG for the streef attribute.

2.1.3 Ontologies

An ontology is defined as a specification of a conceptualization, that is, an ontology is a
description (a formal specification of a program) of the concepts and relationships of
entities that can exist in some domain (Guarino 1994). In the context of Al, an ontology
refers to a formal model, constituted by a specific vocabulary used to describe a certain
reality. It induces a set of assumptions regarding the intended meaning of the vocabulary
words, and formal axioms that constrain the interpretation and well-formed use of these
terms. By defining an ontology, some formal properties that account for distinctions
among objects can be worked out, although complete definitions may not be given. Such
formal properties result in a clearer taxonomy, clarifying the intended meaning of the
concepts, reducing the inconsistencies, and producing a more reusable ontology. The

relationships among the different entities in the domain, particularly the is-a relation, are

21

modeled at different levels in the ontology. Ontologies have been implemented as
hierarchies and are formalized with constraints. The lower levels in the ontology
hierarchy reveal more detail, giving the instance of a particular entity, the higher levels in

the hierarchy are at a more general granularity.

The different levels in these methods are obtained by a change in the granularity. A
change in granularity can occur by manipulating the geometric, spatial, and semantic
attributes and relations of objects. In the following section we review the different

approaches for changing granularity.

2.2 Object-Oriented Approaches for Changing Granularity

Object-oriented generalization (Smith and Smith 1977; Brodie ¢/ a/. 1984) is targeted to
exploit the semantics of objects’ attributes and relations with other objects to result in
coarser granularities of objects. The object model enables a separation of the
complexities of the granularity used for visualization purposes, particularly dealing with
geometry, maintaining geometric consistency of map features, and algorithms for
processing map elements from the generalization process, limiting it to only the
manipulation of semantics associated with objects. This section reviews the tundamental
concepts of object-oriented models. Several implementations of the OO concepts in a

GIS are also discussed.

2.2.1 Object-oriented abstraction methods
Object-oriented models decompose an information space into objects. Objects must be
identifiable and describable. An object can be described by a set of attributes (such as

name of a city or population), behavioral characteristics (such as a method for computing

22

the area of an object), and structural characteristics (such as part-whole relationships)
(Winston ef al. 1987). Each object has an identifier that uniquely defines an object. For
example, a city can be described as an object with attributes name, population, and area
(Figure 2.3a), and the name of the city can be considered as a unique identifier for city.
Structural characteristics of an object can be specified as city X is part of a state ¥ or X
connected to a city Z. Objects with similar behavior are organized into types. Thus.
objects such as river, lake, and pond are of type water-bodics. At the implementation
level the grouping of objects with corresponding attributes and methods is defined as a
class. For example, Bangor and Portland can be grouped into a class city (Figure 2.3b).
Giving specific values for the member attributes of a class is defined as an instance of a
class. Thus, an object is an instance of a class. For example, city with name = Bangor and

population = 32,000, is an instance of the class city.

City
Name: class
Popln:

city_Name: Get_Pop()

city Popln: Connected to()

Get_cityPop()
cityConnected_to()

instance-of

Name: Bangor
Popln: 32,000

instance-of

Name: Portland

Popln: 50,000
(a) (b)
Figure 2.3 Describing (a) city as a class and (b) instances of city, Bangor and
Portland.

S}
(O8]

An important object-oriented property is inheritance. In inheritance, generic features
common to a group can be used to define a base class and then. new specialized classes,
called derived classes can be created by modifying and adding existing features. For
example, a generic class called Shape can be defined and specialized classes called
Rectangle or Circle can be derived from shape. Inheritance consists of two operations.
generalization and specialization. Abstracting common properties of several types into a
generic type is called generalization. Generalization results in a higher-level class based
on common properties of entities. For example, class Shape is a generalization of the
different kinds of shapes, such as a Circle, Rectangle, Triangle, based on their common
properties such as area, perimeter, etc. The reverse process of distinguishing the distinct
types from a generic type according to specific roles is called specialization. Thus, Point,

Segment, and Polygon can be considered as specializations of the class Map element.

Another object-oriented method of abstraction is achieved by waggregation. An
aggregate object is one, which contains other objects. For example, an Adirplane class
would contain Engine, Wing, Tail, and Crew as its component objects. Sometimes
aggregation corresponds to physical containment (e.g., contained in the airplane). But
sometimes it is more abstract (e.g., Club and Members). The condition to aggregate
objects is to identify if there is a whole/part relationship between them. In linguistics,
aggregate objects are called composite objects (Winston et al. 1987). Winston elaborated
a study of the relations between the parts and wholes providing a taxonomy of part-whole

relations.

Grouping of objects or clussification is yet another method of abstraction.

Classification is formed from a homogeneous set of objects, based on specific values of

24

common properties of objects. Rules for classification describe conditions on attributes of
individual entities that must be satisfied so that the entities can be grouped into a more
general entity. For example, Urban_Area is a classification of all the regions with

population density of 0.6 and industrial growth ratio > 0.5.

Inheritance, aggregation, and generalization are abstraction mechanisms important for
deriving and modeling multiple representations. These abstraction mechanisms have been
implemented using the entity relation (ER) model as well as the object-oriented (OO)
model (Ramakrishnan 1997). Hadzilacos and Tryfona (1997) extend the ER model to the
Geo-ER model, which models the part-of relation for aggregation and member-of relation
for grouping. These relations express the semantics of the geographic entities’ position,
spatial attributes and relations. For example, a spatial aggregation is defined if and only if
the position of an object is the geometric union of the position of its geographic parts.
Semantic networks used for modeling structural relationships among objects (Schiel
1989) also use generalization, aggregation and grouping as the semantic links and
correspond to is-a, part-of, and element-of relationships, respectively. Similarly,
abstraction hierarchies (Timpf 1999) use network graphs for data modeling, to develop

conceptual schemata, and to demonstrate multiple granularities of objects.

2.2.2 Object-orientation in GIS

Geographic information systems are characterized by structurally complex information,
specialized graphical requirements, and non-standard transactions (Oosterom and Bos
1989). The applicability of an object-oriented approach to GIS has been reviewed and
promoted (Oosterom and Bos 1989; LEgenhofer and Frank 1992; Worboys 1994).

Applying object-oriented concepts, map features are modeled as special data structures

25

called reactive data structures to incorporate granularity information (Oosterom and Bos
1989). The level of detail is maintained in the data structure by a link to the parent object
for each object in the system. The object model allows storing different representations of
a map feature and also supports modeling semantic relations among objects, such as a
part-whole relation, grouping two or more objects and representing them by a single

graphical primitive.

Another approach that makes use of object-oriented principles is based on
hierarchical structures that describe abstraction mechanisms. such as classification,
generalization, and aggregation (Timpf 1999). A map is modeled as a complex object
system composed of several elements and the elements of the map can be aggregated or
generalized to more general objects. Timpf describes how the application of abstraction
creates granularities of objects. Hierarchies are formed by factoring out the
commonalities in the description of several objects into the description of a more general

object.

Stell and Worboys (1999) present a method for coarsening using a multi-resolution
model that distinguishes between selection of features and amalgamation of features.
Each map feature is considered identifiable and describable, similar to objects. Selection
refers to choosing the necessary features from the set and omitting the remaining features,
and amalgamation refers to grouping features together such that some features become
indistinguishable as a result. In general, a loss of detail between X and Y involves both
selection and amalgamation operations. A type of generalization referred to as a

simplification is presented as a selection followed by an amalgamation. This thesis

26

investigates the different semantics associated with object amalgamations that result in

coarser granularities.

2.3 Map-Based Approaches for Changing Granularity

Multi-scale maps are commonly used to convey levels of detail of geographic space.
Researchers investigated models to store multi-scale maps and developed algorithms to
fetch the appropriate map representation that matched a task (Guptill 1990). Multi-scale
maps posed several limitations, such as only a static set of representations was made
available and expensive search routines were necessary to obtain a correct match. Further
research suggested starting with a detailed map as an alternative to storing multiple
representations (Beard 1990), and developing methods for changing granularity and
translating among granularities. Deriving granularities was seen to be a useful alternative

as it provided the tlexibility with respect to the level of detail.

Cartographic generalization is aimed at generating visualizations and graphical
symbolization of map features over multiple scales (Buttenfield and McMaster 1991:
McMaster and Shea 1992; Muller er af. 1995a; Muller ¢f ul. 1995b). Cartographic
generalizations reduce in scope the amount of data, scale, and graphical portrayal of map
elements, to generate simple, clear, and easier-to-understand maps. McMaster and Shea
(1992) present some guidelines for when and how to generalize. The map generalization
process is necessary to generate maps for a specific purpose and an intended audience,
with appropriate scale and clarity. It also requires methods for reducing the complexity,
maintaining spatial and attribute accuracy, and for applying the rules in a consistent

manner. The need for applying the methods arises when there is congestion or

27

complication of map features, or when there is a need to focus few map features. The
generalization process involves the selection of map objects for representation followed
by the manipulation of geometry and attributes of the geographic objects to generate a
simplified representation of details (Weibel and Dutton 1999) appropriate to the scale and

the purpose of the map.

Scale reduction automatically leads to an abstraction resulting only in the map
features that have a fair resolution in the given scale. The remaining map features with
very high resolution do not appear in the representation. Scale reduction alone, however,
does not influence the generalization process. For the same scale, the map details
required by a visitor to tour a wilderness park, for example, will be different from the
ones targeted for the park ranger. Thus, the task at hand plays an important role in
generalizing maps focusing on the information essential to the intended audience. Brassel
and Weibel suggested a model to focus on the map features of interest by associating a
measure of importance with each map feature (McMaster and Shea 1992). A
phenomenological generalization method (Ormsby and Mackaness 1999) associates the
degree of importance to the geometry of an object based on the object’s semantics. For
example, a rectangular geometry becomes more meaningful by adding whether it is a
building or a tennis court. Stell and Worboys (1998) propose another formal approach for
processing and reasoning about multiple granularities in spatial databases with regard to
semantic and geometric precision. They organize a series of maps into a map space and
define operations to shift among the map spaces. Frank and Timpf (1994) propose a
multi-scale, hierarchical approach to cartographic generalization. where renderings of

map objects are stored at different granularities. To obtain an output map, a top-down

28

selection of pre-generalized cartographic objects is performed until a sufficient

granularity is reached.

Cartographic generalization is achieved through the application of a variety of
generalization operators developed from the cartographic practices, each resulting in
spatial abstraction. The initial step in any generalization operation is to identify the map
objects of interest, called the selection process (Buttenfield and McMaster 1991) resulting
in a granularity with fewer objects. Following the selection process, the selected map
objects are subjected to the generalization process. Generalization operators may address
the spatial component or the attributes of the map objects. A spatial transformation
involves the manipulation of the object’s geometry, focusing primarily on the locational
aspects of data. Ten spatial transformations have been identified: simplification,
smoothing, aggregation, amalgamation, merging, collapse. refinement, exaggeration.
enhancement, and displacement (McMaster and Shea 1992). Each of the spatial
transformations alters the data representation from a geographical or topological
perspective. The aggregation operation, for instance, groups the point features in close
proximity into a higher order class feature represented with a different symbolization
(Figure 2.4b). Amalgamation performs a different grouping by joining contiguous

polygonal features with similarities into a larger area feature (Figure 2.4¢).

29

[]

(NN
() (b) (c)

Figure 2.4 (a) Original map and (b) generalized map using aggregation operation and

(¢) amalgamation operation.

In addition to the spatial transformations, the other type of generalization operation is
attribute transformation (Buttenfield and McMaster 1991) involving the process of

classification / symbolization ot map features based on the attributes of map objects.

2.4 Visualization-Based Approaches

Another approach for generalization focuses on the visualization of the map. Applying
the generalization operations to map features locally can suffer from the drawback of
losing context. For example, several levels of zoom-in operations, pertormed to
understand the local details, are likely to move away from the original context of the
map. To avoid this situation, it was necessary to model the local details in context with
the global structure. Fisheye views (Furnas 1986) implement a strategy to provide a
balance of the local detail and the global context. Fisheye views are generated by Degree
of Interest (DOI) functions, which assign to each point in the structure a weight of
interest that is a threshold to determine the contents of the display. A desired level of
detail can be obtained by simply showing the n most interesting points as indicated by the

DOI function. The perspective wall technique is an improvement over fisheye views

30

(Mackinlay et al. 1991), enabling users to see large linear information spaces by

smoothly integrating detailed and contextual views.

Pad++, a framework for exploring visualization of graphical data with a zooming
interface (Bederson and Hollan 1994), supports manipulation and navigation of multi-
scale graphical objects. More details of an object are seen when zooming in. When
zoomed out, however, a different representation of the object is viewed than of a scaled
down version. The map details are rendered based on various semantic task-based
considerations. Tanaka and Ichikawa (1988), describe a similar approach based on the
degree of importance and semantic categories of map objects. Maps are derived through a
step-by-step refinement of user preferences through visual feedback. The semantic
zooming operation is used to control the display of map features according to the user’s
interest and the importance of categories, while a semantic panning operation specifies
the different categories of relevant map elements. A more detailed map is obtained
through semantic zoom-in. By semantically panning to a category. a thematic map is
obtained that contains map elements belonging to a new category. Other kinds of
operations, such as content zoom, intelligent zoom, and the filter operation, such as the
magic filters (Stone e/ al. 1994), also support granularity change by improving
visualization. Map-based approaches to granularity change can be intricate and detailed
processes, involving geometric complexities in the generalization process. In their pursuit
to provide alternate solutions, researchers have identified that generalizations can be non-

algorithmic tasks (Muller ef al. 1995a; Muller ef al. 1995b).

31

2.5 Summary

Modeling multiple granularities and performing shifts among the granularities 1s
fundamental to the process of reasoning about information space. In this chapter, we
reviewed different methods to model objects at multiple granularities, such as concept
hierarchies, domain generalization graphs, and ontological structures. There are different
approaches for granularity change. This chapter described the object-oriented approaches,
map-based, and visualization-based approaches for arriving at different granularities. The
mapping community uses a set of cartographic generalization operations to generate
different granularities of maps. These operations manipulate the geometric properties,
spatial relations, and attributes of map objects spatial entities to result in different map
granularity. Visualization-based approaches manipulate the semantic properties of map
objects. These approaches involve complex geometric computations, are expensive to
compute, and subjective in nature. Alternate non-computational generalizations for
objects are discussed by using an object-based approach for granularity change, where
the information space is treated as a set of objects, and the object’s attributes and

relationship among objects are manipulated to lead to different granularities.

In the next chapter, we present a novel approach for arriving at granularitics of
objects through the process of coarsening. The different semantics of objects that lead to
a coarser granularity of objects are identified and a set of coarsening operators for

arriving at coarser objects is presented.

32

Chapter 3
DERIVING OBJECT GRANULARITIES THROUGH

COARSENING

This chapter identifies and presents different ways for arriving at multiple granularities of
objects. In this thesis, we adopt object-based generalization operations to arrive at coarser
granularities, namely filter and amalgamation (Section 2.2.2) (Stell and Worboys 1999).
A reduction in detail is obtained by applying a filter to objects followed by amalgamating
them. Compared to filtering, which mostly depends upon a user’s interest or
requirements, amalgamation can be complex as there are different ways in which objects
can be combined to result in coarser granularities. This chapter distinguishes the different
types of amalgamations by identifying the different semantics associated with
amalgamations leading to coarser granularities. Filtering and the different kinds of
amalgamations are described as operations that contribute to multiple granularities of
objects through coarsening. Based on the filter and the kinds ot amalgamations, a set of
coarsening operators is presented to create coarser granularities of objects from a detailed
granularity. The coarsening operators represent a method to achieve a richer set of

simplifications.

3.1 Coarsening

Coarsening is defined as the process of transforming a granularity of objects in an
information space into a less detailed granularity. It is a method for creating different
object granularities. There can be more than one way to obtain coarser object
granularities. In this thesis, coarsening is based on the two fundamental operations:
filtering and amalgamation. We begin with a universal set of objects U that consists of all
the objects in an information space. Coarsening is applied to objects in U such that the

resulting granularity contains fewer objects.

Objects in U are filtered or amalgamated to arrive at a coarser object granularity.
Filtering is applied to select a subset of objects from a set while omitting the other
objects. Objects can be filtered from the set U such that the resulting coarser granularity
contains fewer objects (Figure 3.1a). For example, applying filters to objects x3 and x,
from U = {x;, x> .., x,} selects these objects from U resulting in a coarser granularity /x;,
x40 In a different way, objects in U can also be amalgamated resulting in a coarser

granularity with fewer, coarse-grained objects.

X, X, Y,
FilterI I I
e o ® S RS
X, Xy X3 Xy e X, L XXy XXy .
(a) (b)
Figure 3.1 (a) Filtering objects x3 and x, from the set U = {x,, x ..x,} and (b)

amalgamation of objects x,, x,, and x;3 into y,.

34

Amalgamation refers to the process of combining or grouping objects in order to
arrive at a coarser granularity of objects. For instance, objects in U, x;, x2, and x3 are

amalgamated to a coarser granularity y; (Figure 3.1b).

Attributes of objects are used in deriving different granularities in generalization
graphs (Hamilton and Randall 1999). However, attributes of objects only partially
contribute to the generalization and do not capture all the possible semantics associated
with grouping objects for arriving at a coarser granularity. Alternatively, there exist
several hierarchical relationships among objects that model the semantics among objects
(Schiel 1989), such as Echo lake is a type of Lake or Echo lake is part of Acadia National
Park. Object-oriented approaches for generalization use the relations among objects to
describe the different abstraction mechanisms, such as generalization, aggregation, and

classification (Smith and Smith 1977; Brodie ef al. 1984).

In this thesis, we investigate the different semantics associated with amalgamations of
objects based on common attributes of objects, common attribute values, and similar
relationships of objects with other objects. There are different ways to perform object
amalgamation depending on an object’s attributes and relations with other objects. We
identify three kinds of object amalgamations: (1) grouping similar objects, (2) combining
component objects to form a composite object, and (3) combining objects with similar
values into a collection. The different kinds of amalgamations and filtering that lead to
multiple granularities of objects are compiled as a set of coarsening operators. The term
coarsening operators refers to a collection of operators that can be applied to a set of

objects and result in coarser granularities of objects. The operators include filter and the

35

different kinds of amalgamations, namely group, compose, and coexist. Each operator 1S

distinct and generates a unique coarse granularity of objects.

In our approach, an object in the universe U is defined by its attributes and
relationships with other objects. Each attribute of an object belongs to a particular
attribute type, such as integer, days of a week, or states in USA, and can only hold values
that lie in the domain of their attribute type. For example, the town of Orono can be
described as an object: Orono(population:int = 15,000: county:county-type = Penobscot
County) consisting of the attributes population and county of type integer and county-
type respectively and the attribute have values of 15,000 and Penobscot County. The
relationship among objects is represented as r(O/, O2) where r is the relation and O/ and
02 are the objects connected by r. For example, is-a(Bangor, City) describes an is-a
relation among the objects Bangor and City. A function attr(Object) 1s defined to list all
the attributes of an object. Another function attrVal(attr(Object)) lists the attribute values
for all the attributes belonging to an object. For example, a/tr(City) = {population,
county} and attrVal(attr(City)) = {population : 15000, county : Penobscot County}.
Objects are described as instances of classes or as classes. Instances of classes hold
specific values for attributes, such as City(name = Bangor, population = 32000). Classes
are more generic objects as Cify(name, population) and Wasteland(id, area, city). Classes
have only attributes and do not have associated values. To arrive at coarser granularities
of objects, we investigate the objects relationships between: instance-instance, instance-
class, and class-class for the different kinds of amalgamations. The next section presents
a detailed discussion on the coarsening operators with formalisms tor each operator and

examples.

36

3.2 Filter

Filtering objects of interest is a common method used to arrive at a coarser granularity of
objects. Cartographic (McMaster and Shea 1992) and visualization-based generalization
(Furnas 1986; Stone ef al. 1994) approaches use a selection operation for choosing
certain map features as being crucial for the abstraction process. Stell and Worboys
(1999) also define a selection operation as part of the simplification process. Selecting
objects from a set of objects creates a filter hierarchy (Timpf 1999). The select macro in
database query languages returns records with specific attributes of interest from a
database (Ramakrishnan 1997). In this thesis, a filter operator is used to describe
selection of a subset of objects from a set while omitting the other objects (Figure 3.2a).
Filtering objects contributes to coarsening by resulting in a less-detailed granularity
consisting of fewer objects. Objects are filtered depending upon the user’s requirements,

such as attributes or specific values of objects.

Xy X, Xy Xy X Y3 X
Filter I I FilterI I I I I
[] [] | et)
Y X Xy X % X X X L T2 D T
(a) (b) (c)
Figure 3.2 (a) Filtering objects x; and x, from U = {x, x3 x, x5}, (b) trivial filter

operation selecting all the objects in U, and (¢) trivial filter operation on x;

and amalgamation of x, x3, and x, into y;.

A trivial case of filter is defined as applying the filter operator to select all the objects

in a set (Figure 3.2b). Thus, a trivial filfer does not lead to a coarsening by itself and it

37

must be applied only in combination with an amalgamation operation (Figure 3.2¢) for

resulting in a coarser granularity.

3.2.1 Formalization of the operator
If the universal set U = {all objects} defines the set of all objects in an information space,

then a filter operator can be defined as a function F: (U) — U such that,

F(x) = {x: xeU} (3.1

3.2.2 Example
Consider the different metro lines present in the Boston subway network, U = {RedT,
BlueT, GreenT, OrangeT}. The individual objects are described as:

— OrangeT(length:float = 18miles, no. of stops:int = 19, time:int = 33min)

— BlueT(length:float = 9.5miles, no. of stops:int = 12, time:int = 23min)

— RedT(length:float = 33miles, no. of stops:int = 22, time:int = 46min)

— Greenl(length:float = 31miles, no. of stops:int = 17, time:int = 42min)

The metro lines can be filtered based on their attributes or attribute values that satisfy

a user’s interest or requirement. For instance, the shortest metro line /BlueT} can be
selected by applying a filter operator based on its attribute length. Also, a filter operator
can be used to select metro lines having 15 or more stations resulting in a view of the

metro lines that is at a coarser granularity {OrangeT, RedT, GreenT].

Filter(OrangeT, Greenl, RedT, BlueT) = {Orangel, RedT, GreenT}

3.3 Group

Objects can be amalgamated from the recognition of similar object types, factoring out

the commonalities in the individual objects into a more general object (Hammer and

38

McLeod 1981; Worboys 1994). For instance, one can intuitively say that a vehicle is an
object and car is a subtype of vehicle. Similarity object type is commonly modeled as an
is-a relationship among classes (Smith and Smith 1977; Brodie ef al. 1984), such as car
is-a type of vehicle. The rationale for modeling an is-a relation among objects is defined
by the common attribute names of objects. For example, let us consider the objects,
Lake(name, depth, volume, type, watershed area), Pond(area, depth. volume, type). and
Water-body(type, depth, volume). Among their set of attributes, Lake and Pond have the
attributes type, depth, and volume in common with the attributes in Water-body (Figure
3.3). Since Lake and Pond have additional attributes and Water-body has no other
attributes than those of Lake and Pond, we can say that a Lake is-a Water-body and Pond
is a Water-body. Objects with common attribute names are recognized as having the is-a

relation and are amalgamated to a coarser object granularity by grouping.

Lake
Pond
Name Water-body
Depth Area
Volume Depth Type
Type Volume Depth
Watershed-Area Type Volume
Figure 3.3 Grouping Lake and Pond into Waler-body based on their common

attributes, depth, volume, and type.

A group operator 1s defined as the amalgamation of similar objects into a common
class. Group operator is expressed as a class-class amalgamation operation based on the
is-a relation among classes. The resulting coarser object is a superclass (e.g., Water-

body) and each of the combining objects is a subclass, (e.g., Luke and Pond). Similarity

39

in object types also occurs between instances and classes. Instances of a class are similar
in behavior to the class but hold different attribute values for a class. For example,
Boardman Hall(#floors:int =3, #rooms:int = 45, architect:string = “Mittal®, type:bldtype
= academic) and Barrows Hall(#floors:int =2, #rooms:int = 55, architect:string =
“Raheja builders”, type:bldtype = academic) are instances of a class Building based on
the similar attributes, #floors, architect, and type. Instances belonging to a class can be
grouped into a class based on the instance-of relation (Brodie e/ al. 1984). Thus, a group
operator can be used to combine classes into a more abstract class or instances of a class

into a class.

~

3.3.1 Formalization of the operator
If the universal set U = {all objects} defines the set of all objects in an information space,
then the group operator can be expressed as a function Gr: (U) — U such that for § <
U.
Gr(S) ={y e U: Vx €8, Fis-a(xy) or Finstance-of{x,y)} (3.2)

— where is-a(x,y) if altr(y) < attr(x) and

— instance-of(x.y) if attr(y) c attr(x) and FattrVal(atir(x))
3.3.2 Example
Consider the following objects Maple Street, Elm_Street, Street, Highway, Road, and
Boulevard. The objects are described as:

— instance-of(Maple Street, Street)

— instance-of(Elm_Street, Street)

— Street(name, id, length, speed limit)

— Highway(id, no. of lanes, distance, major connecting cities, length, speed

limit)

40

— Boulevard(id, intersection, length, speed limit)

— Road(id, length, speed limit)

Objects Attributes
Highway #lanes | length | speed limit | avg. traffic cities...
Boulevard length | speed limit | pavement width
Street name | length | speed limit
Road length | speed limit
Table 3.1 Common attributes of objects: length and speed limit.

Based on the common attributes of objects (Table 3.1), it can be derived that Streef has a
subset of its attributes common with Road (i.c., length, speed limit) and the Road does
not have any other attributes of its own. Hence, it can be derived that is-a(Street, Road).
Likewise, is-a(Highway, Road) and is-a(Boulevard, Road). Applying the group operator,
Maple Street and Elm Street are amalgamated into Streer based on the instance-of
relation among objects (Equation 3.2). And, Street, Highway, and Boulevard are
amalgamated into a coarser object Road based on the is-a relation among objects
(Equation 3.2).
Group (Street, Highway, Boulevard) = Road

Group (StreetX, StreetY) = Streel

3.4 Compose

Objects can comprise of components objects. Component objects that combine to form a
whole exhibit a part-of relation with the whole. For example, the individual buildings that
comprise the university campus, are part-of the university campus. At times. it is
sufficient to directly refer to the whole, abstracting the details of its parts or component

objects. For example, the university campus, is adequate to describe the campus

41

boundary or the location and the details about the individual buildings can be abstracted.
Component objects play a structural or a functional role to the whole (Winston ef al.
1987). In this thesis, the foundation for addressing part-whole relationships among
objects is based on spatial containment, spatial connectivity, or nearness of objects. These

spatial relations capture distinct part-whole semantics among objects.

Objects can be spatially contained within another object. An object 4 contains B if 4
and B share the same interior region but do not have common or intersecting boundaries
(Egenhofer 1993). For example, buildings in a university campus are contained within the
campus. Objects that are contained in an object can be amalgamated into the whole based
on their containment property. Spatial containment among objects is modeled as a
relation contained(A, B). The part-of relation among objects is defined based on a spatial

containment relation.

Another basis for describing part-whole relationships among objects is through spatial
connectivity among objects. Objects sharing a common boundary or a common point of
contact are described as connected objects. Objects 4 and B are connected implies that
there is a path from 4 to B and from B back to 4. An object A connected to B is expressed
by the relation connected(d4,B). Objects exhibiting the connected relation can be
amalgamated into a whole, a coarser object representing the connected objects. For
example, two minor roads Exit5/ and Muin Street are connected to a major street
Stillwater Avenue by the relations, connected(Exit 51, Stillwater Avenue) and
connected(Main Street, Stillwater Avenue). The smaller roads can be amalgamated into
the major road Stillwater Avenue. Objects Exit 51 and Main Street are described as part-

of Stillwater Avenue based on spatial connectivity. Thus, the result of the amalgamation

42

can be an object that is dominant in the connectivity among objects, €.g., Stillwater
Avenue. or it could be a new object abstracting all the connecting objects, such as a

University Network that consists of all the streets connected in the university.

Spatial proximity or nearness among objects is yet another way of signifying the part-
whole relationships. Objects that are within a certain distance of each other can be
combined into a whole based on the nearness among objects. For example, objects that
are within a mile from the Wilmington Metro Station can be amalgamated into
Wilmington Station_Area. The different objects combining to form Wilminglon Station
_Area are within a small radius of the station. Objects that are near each other can be
modeled by the relation near(A4,B) where object A is near object B. It might appear that
the objects combining to form the Wilmington Station Area are more likely expressed as
contained in the Wilmington Station Area. At a generic level, all part-wholc
relationships can be described using the containment relation among objects. With the
relations, such as connected and near, we look at finer semantics of how the objects are
contained to form the whole. Thus. it is true that the objects in our example are contained
in the Wilmington Station_Area, however, the near relation models the semantics of
nearness among objects or the accessibility ot objects from each other, which is not

captured by the contained relation.

A compose operator is defined as the amalgamation of objects having a common part-
of relation with another object. Part-whole relationships among objects are defined by the
relations contained(A,B), connected(4,B), and near(4,B). Among the three spatial
relations, contained and connected are transitive, whereas near is not transitive. A

compose operator identifies part-of relations among both instances of classes and among

classes (Schiel 1989). Since instances have specific values of attributes, the part-whole
relation among instances is well defined. For example, contained(Civil Engineering
Department, Boardman_Hall) is a part-of relation among instances. There are also cases
where the part-whole relation can exist among classes, such as contained(Building,
University). However, classes are weakly connected to each other by the part-of relation
since, not all instances of a class satisfy the part-whole relationship. For example, not

every Building is part-of the University campus.

The class-instance pair for a compose is a special case of the operator. With multiple
object granularities, objects that are classes to some objects may behave like an instance
to another object. Consider for example, Beehive Trail and Bow! Trail as instances of a
class Trail. There may also exist a relation contained(Trails, Acadia Park), that models all
the Trails as contained in the Acadia National Park. The contained relation exists
between the class Trails and an instance Acadia National Park. A contained relation
modeling the parts of an instance, such as Acadia National Park, exhibits strong
connectivity with the parts (i.e., one can say all the trails are part of the Acadia National
park). Thus, compose operator from (c-i) is treated similar to compose operator from (i-i).
Hence, Trails, which is a class for the individual trails, it is modeled as an instance for the
Acadia National Park. The operator from class-instance enables modeling such dual roles

of objects.

3.4.1 Formalization of the operator
If the universal set U = {all objects} in an information space, then a compose operator

can be defined as Co: jo(U) — U such that, for S c U

Co(S) ={y e U: vx €8, Jpart-of(x,y)} (3.3)

44

— where part-of{x,y) if 7 contained(x,y) or
— Fconnected(x,y) or
— dnear(x, x’)
3.4.2 Example
Consider objects, North Ridge Trail and Cadillac_Summit_Trail with relations:
— contained(North_Ridge Trail, Cadillac Mountain) and
— contained(Cadillac_ Summit_Trail, Cadillac_Mountain).

Based on their spatial containment relation, North Ridge Trail —and
Cadillac Summit_Trail can be described as part-of Cadillac Mountain. Thus, applying
the compose operator North Ridge Trail and Cadillac Summit Trail can be
amalgamated into Cadillac Mountain (Equation 3.3).

Compose(North_Ridge Trail, Cadillac_Summit_Trail) = Cadillac Mountain

3.5 Coexist

A different kind of amalgamation involves grouping objects that have a common purpose
or objects in association with each other. Associativity among objects is described by the
common attribute values of objects. Objects can have common attribute names with
similar attribute values, such as Brooke Lake(activity:watersport = motor boating,
canoeing) and Jordan Pond(activity:watersport = motor boat, canoeing. fishing). Such
objects can be amalgamated based on similar attribute names and similar attribute values
into a coarser object, a collection (e.g., Acadia Watersport). Objects in a collection are
referred to as member objects (Winston ef al. 1987; Hornsby and Egenhofer 1998). The
collection is defined by the coexistence of member objects with a common purpose and

each member exhibits a member-of relation with the collection. Member objects do not

45

contribute to the structural or the functional definition of a collection and can be added to

or removed from a collection.

A coexist operator is defined as the amalgamation of objects having a common
member-of relation into a collection. The rationale for defining the member-of relation
among objects is the common attribute values of objects. Hence, the member-of relation
can only occur among instance-instance and instance-class. Similar to the part-whole
relation among objects, a member-of relation is well defined among instances. For
example, member-of(Buildingl2, Theta Kai Fraternity). The member-of relation can
also relate instances to a class. 'or example, member-of(Brown, Team) implies that
Brown 1s a member of the class 7eam. The membership can also be described as cach

instance of the class 7eam has several instances of the class Person.

3.5.1 Formalization of the operator
If the universal set U = {all objects} in an information space, then a coexist operator can
be defined as Ce: @ (U) — U such that, for S c U

Ce(S) ={y e U Vx €S, Imember-ofix,y)} (3.4)

— where member-of(x.y) it N attrVal(attr(x;)) = <&

3.5.2 Example

Consider the different engineering departments, Sparial, Civil. Mechanical, Electrical,
and Chemical.
= Spatial(Department:ProgramType = Engineering, Location:building =
“Boadman Hall™)
— Civil(Department:ProgramType = Engineering, #Labs:int = 3)

— Mechanical(Department:ProgramType = Engineering)

46

— Electrical(Major:ProgramType = Engineering, Location:building =
“Barrows Hall”)
—~ Chemical(Program:ProgramType = Engineering. Location:building =
“Jenness Hall™)
Based on the common attribute value ‘Engineering’, the objects can be combined into
a whole, exhibiting a common purpose, i.e., departments contributing to engineering.
Applying the coexist operator (Equation 3.4) the objects can be amalgamated to College
of Engineering. Every object under College of Engineering must have an attribute

department with a value ‘engineering’.

Coexist(Spatial, Civil, Mechanical, Electrical, Chemical) = College of Engineering

3.6 Summary

This chapter introduces the operations of filtering and the different kinds of
amalgamations to arrive at coarser granularities of objects. The semantics of the relations
among objects are explored and different kinds of amalgamations are identified. The
filtering and amalgamation operations are compiled as a set of coarsening operators.
Coarsening operators include filter, group, compose, and coexist. The operators are used
to arrive at different object granularities and are defined by the attributes and relations
among objects. The table summarizes the different coarsening operators and their valid

instance-class pairs to which they can be applied (Table 3.2).

47

Operators | Rationale Relation | Instance- | Class- Instance- | Class-
instance | class class instance

Filter User-defined N N - -
attribute

Group Common is-a - N N, -
attribute names

Coexist | Common Member- | v - N, _
attribute value of

Compose | Spatial part-of | N N N
containment,
connectivity,
nearness

Table 3.2 Coarsening operators and the corresponding instance-class pairs to which

the operators can be applied.

The next chapter describes how applying the coarsening operators can lead to the

generation of a granularity graph. A set of basic graph operations is also presented for

querying and browsing object granularities.

48

Chapter 4

GRANULARITY GRAPHS

For multiple object granularities to be effective, we organize the objects and their higher-
order granularities into an integrated framework and provide a means for making
appropriate shifts among objects. Coarsening operators are applied to objects in order to
arrive at different object granularities. Applying the operators recursively leads to an
arrangement of object granularities, called a granularity graph. In this chapter, we
introduce a granularity graph for modeling multiple object granularities. An algorithm is
presented for constructing a granularity graph and illustrated with examples. Two aspects
relating to modeling multiple granularities, namely matching objects granularities and
assembling object granularities, are discussed. A review of the operations for browsing a
granularity graph followed with the mapping of the browsing operations on multiple

granularities, are also presented.

4.1 Rationale for a Granularity Graph

Shifting among granularities is fundamental for understanding and reasoning about an
information space. In order to support appropriate shifts among object granularities it is
required to examine the different object granularities in an integrated setting. There exist

few approaches for modeling multiple object granularities, such as concept hierarchies

49

and domain generalization graphs (Hamilton ef al. 1999). A concept hierarchy provides a
natural way for expressing lower-level and higher-level concepts based on domain values
of attributes. A domain generalization graph models relevant attribute based
generalizations of objects as a partial order. Ontologies allow formal specification of the
concepts and relationships of entities as a taxonomy particularly (Guarino and Welty
2000) using the class-subclass relation. These frameworks capture attribute-based
generalizations and typically model inheritance among object granularities. These
models, however, do not address «// the relations among objects that contribute to object
granularities. Also, methods for modeling object granularities based on both attributes

and relations of objects are yet to be well explored.

In this thesis, we introduce a semantically rich framework for modeling multiple
granularities of objects called a granularity graph (GG). A GG is an arrangement of
objects connected by the coarsening operators. The different granularities can be used for
domain organization and browsing support. GGs provide users with knowledge about the
semantic relations among the entities in the system. A GG facilitates shifting among
object granularities, leading to a more detailed or a coarser perspective on an object. GGs
can also be exploited for potentially useful, valid patterns of object granularities and to

establish relationships among object granularities.

4.2 Elements of a Granularity Graph

A granularity graph is defined by a graph structure G = (N, E), where N and F are the
disjoint finite sets of nodes and edges, respectively. Each node in the graph represents an

object at a granularity. The edges in the graph are the coarsening operators (i.e., filter,

50

group, compose, coexist) used for arriving at a coarser granularity of objects. An edge

connects two different objects and no two edges can connect to the same pair of objects.

|\1| (2] |\3| |x4|“I“.

Figure 4.1 A granularity graph, U= {x;, x2, ..., x10}.
Consider a granularity graph for an information space U= {x;, x5 ..., x;9! (Figure

4.1). The objects or the nodes in the graph {x;, ... x;5} are represented as a dot with a
label. The edges are the lines connecting the nodes. The edges in the graph are labeled
with the appropriate coarsening operators used for arriving at a coarser object granularity.
Objects {x,, .., x;p} below the line L represents all of the objects in U. Objects can also be
described as an instance of a class or as a class. In a granularity graph, an instance of a
class is represented as an ellipse (e.g., x5, X5, Xs) and a class is represented by a solid
rectangle (e.g., x;, x2). A subset of relevant objects S = @ (U)= {x3, x3, x4, x5 xs} 18 the leaf
nodes in the granularity graph, which correspond to the fine-grained objects in U.
Applying the coarsening operators, objects in S can be filtered or amalgamated resulting
in coarser granularities. For example, objects {x» x; x ' are amalgamated to x; applying

the group operator while objects /x4 xs} are amalgamated to y; by the compose operator.

51

The object x/ is also present in the set of objects in U. Hence, there is both a filter and
group to x1. A filter operator is represented by an edge connecting the same object at two
consecutive levels and a dotted rectangular box around the objects represents an
amalgamation of objects. Objects {x; y;} are the intermediate nodes in the graph
corresponding to coarser object granularities, and the root node y; is the coarsest object

granularity for the objects in U.

4.3 Constructing a Granularity Graph

Constructing a granularity graph begins by defining an information space U. Details
about objects, i.e., attributes and relations, that comprise the information space are
specified as part of the definition. An object in U is described by a set of attributes with
an optional attribute type and value, for example, city (Name:string = Bangor,
population:int = 32,000, state: USstate = Muaine). Relationships are also expressed among
two objects granularities, such as contains(Boardman Hall, Civil engineering). Five
object relationships are modeled in a granularity graph including: is-a(4.B), connected(A4,
B), contains(4, B), near(4, B), and member-of(4,B). Based on objects™ attributes and
relations in U, coarsening operators are applied to objects. Coarsening operators can be
recursively applied to the resulting object granularities leading to coarser granularities
until the object can no longer be amalgamated. An algorithm (Algorithm 4.1) captures the

process of building a granularity graph on a set of objects in U.

52

Algorithm 4.1 An algorithm for constructing a granularity graph

1. Select objects (i.e., the leaf nodes) from U, S= go(U) applying the filter operator.
2. Initialize the set of resultant object granularities S”'= &
3. For each operator (i.e., group, compose, coexist)
3.1. vk eS
3.1.1. If x satisfies the necessary operator condition
mark x as red.
3.2. If the number of objects marked red > 1
3.2.1. Create a coarser object granularity y and store the relation
parent(y, [objects marked red], operator).
3.22.ify ¢ U
3.2.2.1. Add y to U.
3.2.2.2. Add facts about y to U.
3.2.3. Add the resultant object granularity y to S’
3.2.4. Reset all marked objects.
4. If Ix € S such that x is relevant to the user,
4.1. Select x applying the filter operator.
4.2. Add x to the set S’
SIS =0
Vx € U such that x can be amalgamated withx € S, Add x 1o S,
else
§=8/8"=0

6. Repeat steps 3 to S until U = &

There are two different settings in which the algorithm is used: (1) creating object
granularities and (2) matching object granularities. The following two sections give an

example for each.

4.3.1 Creating object granularities

An information space can contain objects at different levels of details, modeling the
different perspectives of objects. Coarsening operators can be applied to objects resulting
in amalgamated objects. The resultant object can already exist as one of the objects in the
information space U or it can be a new object, which is not present in U. The process of

creating object granularities combines objects to result in a new amalgamated object.

Object Attributes
type of trail: | distance: float
type (miles)
Beehive trail Strenuous 3.0
Bowl_trail Easy 2.0
Jordan pond trail Easy 5.0
Cadillac_mtn_trail Strenuous 2.7
Great_head trail Easy 2.2
Table 4.1 Information space of the Acadia National Park modeling the different

Trails.

Consider Acadia National Park as an information space U. The different trails in the
Acadia park are presented as objects in U (Table 4.1). The trails have common attributes
type_of trail and distance. The domain for the attribute type of trail = [strenuous,
easy}. A coexist operator amalgamates objects based on the common attribute values of

objects. Beehive (rail and Cadillac min trail have a common attribute value “strenuous’

54

for the attribute rype of trail (Table 4.2). Hence, by applying the coexist operator these
trails are amalgamated to a coarser granularity Strenuous trails. Similarly, Bowl trail,
Jordan pond_trail, and Great heud trail can be amalgamated into Easy (rails based on
their common attribute value ‘easy’ for the attribute type of trail (Table 4.2). The two
resultant object granularities Strenuous trails and Easy trails do not exist in U and are
newly derived by applying the coexist operator to objects. This process is referred as the
creating object granularities. The derived objects can be added to U along with new
attributes and relations of objects. Other coarsening operators are applied to objects in a

similar way to derive new object granularities.

Object Attribute
type: trailType | match

Beehive trail Strenuous .
Bowl trail Easy

Jordan pond_trail Easy

Cadillac_mtn_trail Strenuous ’
Great_head _trail Easy

Table 4.2 Similar attribute values of objects for the attribute fype_of trail: ¢ denotes

strenuous trails, while [1 denotes easy (rails.

4.3.2 Matching object granularities

An information space can contain perspectives based on fine-grained as well as coarser
objects and the relationships among them. While combining objects to arrive at a coarser
granularity it can be possible that the resulting granularity of object already exists as an

object in the information space U. Thus, a matching process can be performed to compare

55

the resultant object with the existing objects in U. In this case. the coarsening operators

play the role of establishing a connection among the granularities of objects in U.

Mount_desert _island

-

Acadia_park

Figure 4.2 Objects exhibiting a spatial containment relation.

contained(Bar_harbor, Mount_desert_island)

contained(Acadia_park, Mount_desert_island)

Table 4.3 Relations among objects Mount desert island, Bar harbor, and

Acadia_park.

Consider the objects, Bar harbor and Acadia_park to be contained in the
Mount_desert island (Figure 4.2). Based on spatial containment, a part-whole relation
can be established among the objects (i.e., Bar harbor part-of Mount desert _island and
Acadia_park part-of Mount desert_island) (Table 4.3). The compose operator enables
the amalgamation of objects by determining the part-of relation among the objects.
Therefore, applying a compose operator, the objects, Acadia_park and Bar harbor can
be amalgamated to a coarser granularity Mount desert island (Figure 4.3). In this case.
all three objects, Bar_harbor, Acadia_park, and Mount_desert island, are objects that are
described by relations in U and the compose operator plays a role in connecting the
objects to each other. Similar to a compose operator, other coarsening operators can also

be applied for matching object granularities from the information space.

56

Mount_desert_island

compose _L

Figure 4.3 Matching object granularity: A compose operator is used to connect the
existing objects granularities Acadia_park, Bar harbor and

Mount _desert_island.

4.3.3 Case study: Acadia Park
This section demonstrates how the algorithm works for constructing a granularity graph
using Acadia National Park as a case study. The universal set U of all objects in Acadia

Park and the relations among objects are described (Table 4.4).

1. From the set U, objects that are of interest to the user are selected as the leat nodes
of the granularity graph. These objects are typically instances of objects, described by a
number of attributes and attribute values. In this example, we begin by selecting the leaf
nodes S= o(U)={Bechive trail, Bowl trail, Jordan pond trail, Great head trail,
Cadillac_mtn_trail} applying a filter operator. The filter operator selects these objects

from the set U leading to a coarser granularity with fewer objects.

57

Beehive_trail (id:int = 01, type:trail Type = strenuous, distance:float = 3.0 miles)
Bowl_trail (id:int = 05, type:trailType = easy, distance:float = 2.0 miles)
Jordan_pond_trail (id:int = 04, type:trail Type = easy, distance:float = 5.0 miles)
Cadillac_mtn_trail (id:int = 02, type:trail Type = strenuous, distance:float = 2.7
miles)

Great_head_trail (id:int = 07, type:trail Type = easy. distance:float = 2.2 miles)
Ponds (depth:int, area:float)

Park_loop_road (distance:tloat = 22 miles)

Cadillac_mountain (elevation:int = 460 ft)

connected (Sand_beach, Park_loop road)
connected (Campground, Park loop road)
connected (Trails, Park_loop road)

connected (Ponds, Park loop road)

contained (Cadillac mountain, Mount_desert_island)
contained (Bar_harbor, Mount_desert_island)
contained (Acadia_park. Mount desert_island)

Table 4.4 Information space for Acadia National Park.

2. Any of the coarsening operators can now be applied to the objects in S. In this

scenario, objects in S have common attributes, such as type of trail and distance with

respective attribute values (Table 4.4). Applying the group operator, which is based on

common attributes, these objects can be combined into Trails(type-of trail:type,

distance:float). Each object can be therefore expressed as an instance-of the class Trail.

The group operator is applied to amalgamate objects in S to Trails, based on the instance-

of relation among objects (Figure 4.4).

58

Trails
Silter

group

““““““““““““““““““

[}
1| Strenuous_trails
[}
1

coexist coexist

group

Great_head Jordan Bowl

trail trail trail pond trail || trail Leaf nodes

[
v
o
o
[
o
[

Figure 4.4 A granularity graph of the Acadia Park consisting of two levels.

The necessary condition for applying a coexist operator is that objects must have
similar attribute values. Objects in S have common attribute values for the attribute
type of trail. Beehive trail and Cadillac_mtn trail have a common attribute value
strenuous trails and hence the two trails can be amalgamated to their common attribute
value Strenuous trails (Figure 4.4). Similarly, Bowl (rail, Great head trail, and
Jordan pond_trail can be amalgamated to their common attribute value Easy trails
(Figure 4.4). The resulting objects are newly derived object granularities and they are
added to U. Attributes for the resultant objects, such as Strenuous trails(code. type = 's’,
id:int, distance.float) and Easy trails(code:type = ‘e’, id:int, distance float) can also be

included in U.

Objects in S do not satisty the necessary conditions for the compose operator and
hence cannot be further amalgamated. 1f desired, a filter operator can now be applied to
select relevant objects. In this case, we assume that the objects do not satisfy user
requirements and hence need not be filtered. Thus, after the first pass through the

operators (i.€., steps 3 to 5), S = {Strenuous_trails, Easy trails, Trails).

59

3. The operators are recursively applied to objects in S. Applying a similar approach,
objects Strenuous_trails and Easy trails can be amalgamated into Trails by a group
operator and at the end of the iteration S = {rails} (Figure 4.4). The next pass through the
steps 3 to 5 will result in S = & Thus, there are no objects that can be combined with
Trails leading to more amalgamated objects. At this time, objects can be selected from
the set of objects, U, and combined to create more amalgamated objects. For example,
objects Sand beach, Campground. and Ponds can be combined with Trails based on the
spatial connectivity relation among the objects. Therefore, these objects are filtered and

added to S such that S = {Sand beach, Campground, Truils, Ponds} (Figure 4.5).

Campground| (Sand beach i

Trails

i Ponds

group

[}
R ~ | §
! Cadlllac_mtn: ' (Great_head Jo(ridan'l BO\.AIII | —
' . : [. " X [
) trail trail) trail pond_trai tral 1 1 Leaf nodes

Figure 4.5 Filtering objects Ponds, Campground, and Sand beach from the set U to

result in a set .S = [Sand beach, Campground, Trails, Ponds].

It is seen that there are two occurrences of the object Trails in the graph (Figure 4.4).
In level 1, Trails is obtained by the process of creating an object granularity and the
object is added to the set U. In level 2, Trails is already existing in U and hence, it is

obtained by a matching process. Thus, though Trails is obtained differently in the two

60

levels, they are one and the same object. A filter operator is used to connect the two

occurrences of Trails.

4. In a similar way, steps 3 through 5 from the algorithm are performed recursively to
objects in S until there are no more objects in U that can be amalgamated with objects in

Soruntil U = & The granularity graph for the Acadia Park is as shown in Figure 4.6.

Tourist Mount_desert
Attractions island

group compose

Trails

sroup filter

Cadillac_ mtn/” Beehive Great head

trail

pond_trail

]
] :
[
b ——
1]
P Leaf nodes

Figure 4.6 Granularity graph for Acadia National Park.

61

4.4 Browsing a Granularity Graph

The graph structure with connected nodes and edges facilitates translations among the
different levels in a graph and supports browsing the object granularities in the graph.
Browsing a granularity graph refers to making translations either to coarser granularities
or more detailed object granularities in the graph. The browse operations on a graph are
categorized as unary and binary operations. Simple browse operations on a graph are
methods defined on a single node. Examples are methods for obtaining a parent or a child
node of a particular node. These primitive browse operations can be extended for two
nodes by applying set theoretic operations, such as union, intersection, symmetric
difference, and set difference {\, N, @, /} to the simple operations. If X and ¥ are nodes
in the graph and X is a parent ot Y, then a relation parent(X,Y) can be derived from the
graph. Further, if op is the coarsening operator connecting X and a list of objects Y, the
parent relation can be expressed as parent(X, Y, op). The parent relation can also be

expressed with an optional operator op parameter such as parent(X, ¥,).

parent(Strenuous Trails, Cadillac_mtn Trail, coexist)
parent(Easy Trails, Great_head Trail, coexist)
parent(Trails, Strenuous Trails, group)
parent(Park loop road, Trails, compose)

Table 4.5 Axioms partly describing the granularity graph for Acadia National Park.

Following are some of the axioms (Table 4.5) that describe the granularity grapt
shown in Figure 4.6. Given the parent(X, Y, op) relation among the different nodes as
axtoms, the graph operations for browsing can be defined based on this relation. The
operations are defined in predicate logic. Each operation is described as a predicate with

its arguments. The arguments include both the operand and the result. A few predefined

62

operations are used in defining of the predicates for browsing. For example, position(X,
List, N) — to find the position N of an element X in a list, GetNumChildren(X) to retrieve
the number of children of an element X, infersect(M,N,X) — to find the intersection of two

objects M and N, union(M N, X) — to find the union of two objects M and V.

4.4.1 Unary operations

A unary browse operation has only one operand, the node that is operated on. A unary
operation is applied to a node and retrieves as a result a node or a set of nodes. For a node
N, the basic unary operations would be to retrieve the nodes above and below N, if any.

The following are the different unary operations for a graph (Table 4.6).

63

Predicate Description Definition

getParent Takes an operand Y and | getParent (X, ¥) :- parent(X, List,
returns the parents(s) X |), member(Y, Lis?).
of ¥

getChild Takes an operand ¥ and | getChild (X, Y, N) :- parent (Y,
returns the N-th child X | List,), position (X, List, N).
of Y

getChildrenOp Takes an operand Y and | getChildrenOp (List, Y, Op) :-
returns a list of children | parent (Y, List, Op).
List of Y connected by getChildrenOp (List, Y,) :-
the operator Op parent (¥, List,).

getDescendant Takes an operand Y and | getDescendant (X, ¥) :-
returns all the getChildren (X Z,), For/=11to
descendants X of ¥ getNumChildren (X)

getDescendant (position (Z, X, [),
Y).

getAncestor Takes an operand Y and | getAncestor (X, ¥) :- parent(X,
returns all the ancestors | List,), member(Z, List),
XofY getAncestor(Z, 1).

Table 4.6 Unary browsing operations on graph.

4.4.2 Binary operations

Binary operations take two operands and return a resultant node or list of nodes by

operating on both the operands. Binary operations are extensions of the primitive unary

operations and are defined using set theoretic operations, such as union, intersection,

difference, symmetric difference. The primitive unary operations can be combined using

the set operations leading to interesting binary operations (Table 4.7). In this section we

introduce only the common binary operations based on the union and intersection of the

primitive operations.

64

Predicate

Description

Definition

getCommonAncestor

Takes two operands O/
and O2 and returns the

common ancestors X of
Ol and O2

getCommonAncestor (X, O/,02):-
getAncestor (M, OF), getAncestor
(N, 02), intersect(M, N, X).

getCommonDescendant

Takes two operands O/
and O2 and returns the
common descendants X’
of Ol and O2

getCommonDescendant (X,
01,02) :-getDescendant (M, O1),
getDescendant (N, 02), intersect
(M, N, X).

getAllAncestors

Takes two operands O/
and O2 and returns the
ancestors X belonging
to either O/ or O2 or
both

getAllAncestors (X, O/, O2) :-
getAncestor (M, OI), getAncestor
(N, O2), union (M, N, X).

getAllDescendants

Takes two operands O/
and O2 and returns the
descendants X'
belonging to either O/
or 02 or both

getAllDescendants (X, O1, O2) :-
getDescendant (M, OF),
getDescendant (N, O2), union (M,
N, X).

getAncestorDescendant

Takes two operands O/
and O2 and retrieves the
common relatives X that
are an ancestor of O/
and a descendant of 02

getAncestorDescendant (X, O1.
02) :- getAncestor (M, O1),
getDescendant (N, 02), intersect
(M, N, X).

Table 4.7

Binary browsing operations on the graph.

4.4.3 Mapping of graph operations onto object granularities

The unary and the binary browsing operations enable the retrieval of parent, child,

ancestors and other connected nodes for a selected node or nodes respectively. These

operations can be applied to translate up the graph to the root as well as shifting to lower

levels in the graph as far as the leaf nodes. These translations can be well mapped to

65

operations for retrieving object granularities. The unary and binary graph operations can
be mapped to two kinds of operations: refinement browsing operations that enables
retrieval or shifts to finer object granularities and coarsening browsing operations that
enables retrieval or shifts to more coarse granularities. The browsing operations on the

graph and the corresponding mapping to the object granularities are presented.

Refinement operations - Graph operations leading to finer object granularities:
getChild (X, ¥, N) Returns the fine-grained granularity X or
getChildren (List, ¥, Op) granularities List of an object ¥ such that X
and Y are connected to each other by a single
coarsening operator.

getDescendant (X, ¥) The getDescendant method returns all the fine-
grained granularities X of an object ¥ present
in the granularity graph until the leaf nodes are
reached.

getCommonDescendant (X, O/, 02) The method retrieves the detailed granularity X
common to the objects OI and 02.

getAllDescendants (X, O/, 02) Given two objects O and 02, the method
retrieves the fine-grained object granularities

connected to object OI or O2 or both.

An example of applying the method getDescendant(X, Y) with Y = Park loop road is
shown in Figure 4.7. The getDescendant method retrieves all the objects that are at a finer

granularity to Park_loop road in the granularity graph.

66

H Strenuous_trails]

coexist

(—
Leaf nodes

Figure 4.7 Result of the browse operation, getDescendant(X, Park loop road).

Coarsening operations - Graph operations leading to coarser object granularities:

getParent(X,)

getAncestor (X, 1)

getCommonAncestor (X, O/, O2)

Retrieves the multiple coarser granularities X
of an object ¥, where a single coarsening
operator connects X and Y.

This method retrieves all the coarser
granularities X of an object ¥ until the root
node in the graph (Figure 4.8).

Given two objects O and 02, the method
retrieves a coarser granularity X that is

common to both O1 and 02.

67

getAllAncestors (X, O1, 02) Given two objects OI and 02, the
getAllAncestors method retrieves all of the
coarser granularities belonging to either or

both the objects.

An example of applying the getdncestor browse operation to Cadillac_mountain,
retrieves all the objects that are at a coarser granularity to Cadillac_mountain, such as

Mount desert_island and Tourist_Attractions (Figure 4.8).

Tourist Mount_desert_
Attractions island

I group compose

Figure 4.8 Granularities retrieved by applying the binary browse operation

getAncestor to Cadillac_mountain.

A few of the binary graph operations are not strictly refinement or coarsening
operations. These operations play a dual role by retrieving objects that are at a coarser
granularity with respect to an object while at a finer granularity to another object. For
example, applying the getAncestorDescendant operation to Trails and Acadia Park,
retrieves the coarser granularity of Trails, i.e., Park loop road and Acadia park, and the

finer granularities to Acadia Park, i.e., Park _loop road, Ponds, Trails, Campgounds, and

68

Sand_beach. The intersection of these two sub-operations, i.e., Park loop road, is the

result of the browse operation (Figure 4.9).

getAncestorDescendant(X, O1, O2) The method retrieves an object X that has
object OI at a finer granularity and object 02

at a coarser granularity.

Figure 4.9 Browse operation getdncestorDescendant(X, Trails, Acadia Park) yields
Park_loop road, which is both an ancestor to Trails and descendant to

Acadia Park.

In a similar way, other browse operations can be defined by combining the primitive
unary and binary browse operations to retrieve a particular pattern of granularities or to
retrieve object based on specific operators. Browsing operations can also be defined to

retrieve all leaf nodes in the graph or all top nodes in the graph.

69

4.5 Summary

This chapter introduces a semantically rich framework for modeling multiple object
granularities called a granularity graph. A granularity graph is constructed by applying
the coarsening operators to objects in a recursive procedure. An algorithm describing the
process for constructing a graph is presented. The coarsening operators can be used to
derive object granularities as well as match object granularities with the existing
granularity. The algorithm used for constructing a granularity graph is demonstrated by

using Acadia National Park as a case study.

The granularity graph also provides a framework for performing translations among
the different levels of granularities. We present a suite of graph operations for browsing
an object’s multiple granularities. Browsing a graph enables the retrieval of more details

or less details from the graph.

In the next chapter we investigate the compositions of the coarsening operators and

derive valid composition.

70

Chapter S

COMPOSITION OF COARSENING OPERATORS

Granularity graphs provide a framework for objects at different levels of detail, related by
coarsening operators. An information space consisting of a large number of objects or
objects comprising an extensive structure may lead to a granularity graph of significant
depth. With an increase in the number of levels in the graph, the chain of operators
connecting objects at finer granularities to objects at a coarser granularity also increases
and it would be required to simplify the sequence of operators. Compositions of
coarsening operators can be used to collapse or simplify the sequence of operators.
Simplifying the sequence of operators between two objects supports in deriving a shorter
path in the granularity graph. It also provides for efficient retrieval of objects from the
graph and for determining how two objects at different levels of detail are related in the
graph. Compositions of operators can also be used in determining the multiple ways of
arriving at a granularity. In this chapter we explore the composition of operators for the
four coarsening operators used in constructing a granularity graph: group, compose,

coexist, and filter.

Let 4, B, and C be objects at different levels of detail in a granularity graph. Given a

coarsening operator R from A4 to B and a coarsening operator S from B to C, the

71

composition 7 = R &S of the operators R and S (where R is performed first followed by
S) yields an operator from 4 to C (Figure 5.1), which is defined by:

R ®S = {(4,C): there exist an object B for which R(4,B) and S(B,C)} (5.1

C C
///"" o N //
/ S //
B | T=R®S
x.
//R
A] | A

Figure 5.1 Composition of operators R and S'yield 7= R &S from 4 to C.

In order to work with the compositions we define a path in a granularity graph.
Objects in a granularity graph are connected by a sequence of coarsening operators,
which constitutes a path. Consider a granularity graph constructed for objects that are
related to Acadia National Park consisting of six levels of objects at different
granularities (Figure 5.2). A simple path in the graph is an alternating sequence of objects
and operators, such that an operator R; begins at an object 4 and ends at an object B. For
example, a path from Beehive Trail to Acadia Park is {Beehive Trail, group, Trails,
Silter, Trails, compose, Acadia Park}. The number of operators in the path denotes length
of the path. Thus, length of the path from Beehive Trail to Acadia Park is 3, consisting of
a sequence of operators group, filter, and compose. One of the applications of the
compositions is to reduce the length of a path in a granularity graph up to a minimum

number. The applications are discussed in detail in Section 5.4.

Mount_desert
island

compsoe

!
il Strenuous_trails |
]

coexist

‘_
Leaf nodes

Figure 5.2 Granularity graph for Acadia National Park.

In the remainder of this chapter, we derive the exhaustive composition of all
coarsening operators, determine valid compositions, and present several useful
applications that will assist the development of efficient retrieval methods for multiple

granularities.

5.1 Definitions for Composing Coarsening Operators

Different possible compositions of the coarsening operators, including filter, group,
compose, and coexist are investigated. Compositions of operators are defined based or
the structure of an object and operators that are applied. Among the four coarsening
operators, the compose operator is complex, defined by a part-of relation among objects.

The part-of relation is modeled based on the spatial relations among objects, such as

73

containment, connectivity, and nearness (Chapter 4). To analyze compositions correctly,
we distinguish three kinds of compose operators based on its spatial relations (Section
3.4), that is, compose[Coniained], compose[Connected], and compose[Near]. Including
the three kinds of compose with the other coarsening operators, gives six coarsening
operators in the context of composition of operators. For each coarsening operator the

valid instance-class pair to which the operators can be applied are also recognized

(Chapter 3).
Instance-instance | Class-class | Instance-class | Class-instance

Filter vV N _ _

Group - N N _

Coexist v - N _
Compose[contained] | v N N] N
Compose[connected] | N N] N
Compose[near] v N N J

Table 5.1 Coarsening operators and their corresponding instance-class pairs.

The compositions can be redefined as follows. If R is an operator given as a function
R: A—B and S is another operator given as a function S: B—(, then the compositions of
operators in which the co-domain of R is the domain of S, are possible (Table 5.1). Based
on instance-class pairs (i-1), (i-c), (c-c), (c-i) for each operator, there exists 18 valid pairs.
Thus, there are a total of 18x18 = 324 compositions of operators. Each of the filrer,
group, and coexist operators have two valid instance-class pairs. Hence, they can be
combined with other with other possible operators (Table 5.1) can lead to 3x(2x18)=108
compositions. The types of compose operators in composition amongst themselves can

lead to 12x12 = 144 compositions and 12 x 6 =72 compositions with the other operators.

74

Summing these gives us 324 possible compositions of coarsening operators. For each

composition, we evaluate cases of objects, as instances and as classes.

5.1.1 Compositions with filter

A filter operator is used to select a subset of objects from a set. The selected objects
become available for amalgamation. While treating compositions with filfer, we use the
trivial filter. The trivial filter allows selecting all the objects in the set. Trivial filter acts
as an identity operator. Applying a filter to an instance or a class results in the same
instance or class, respectively. For example, applying a trivial filter operator to Euasy
Trails results in the same object Easy Trails (Figure 5.3). Consider a trivial filter operator
from object 4 to B (i.e., (i-1) or (c-¢)) and a coarsening operator R from B and C. Since
objects A and B are connected by a filter operator, 4 = B. Thus, filter & R, the
composition of filter and R, yields the operator R from 4 to . Similarly, the composition
of a coarsening operator R with filler, is equivalent to applying the operator R (i.e., if R is
the operator from A4 to B and trivial filter is applied from B to C, then B = (). Thus, R®
filter also yields R. For example, coexist & filter, composition of a coexis! operator from
{Greal Head Trail, Jordan Trail, Bow!l Trial} to Easy Trails and the filter operator from
Easy Trails to Easy Trails is the same as a coexist operator from {Great Head Truil,

Jordan Trail, Bowl Trial} to Eusy Trails (Figure 5.3).

75

Easy _trails Easy trails

—
filter

Easy trails coexist
coexist

Jordan
pond _trail

Jordan

Great_head
trail

Figure 5.3 Composition of coexist with filter yields a coexist operator.

5.1.2 Compositions with group and coexist

A group operator captures an is-a relation among objects, while a coexist operator defines
a member-of relation among objects. The is-a relation and member-of relations defining
the operators are used for determining the compositions with group and coexist. Group
operates from instance-class and from class-class (Table 5.1). Consider an is-a relation
from object 4 to B (i.e., (i-¢)) and from B to C (i.e., (c-c)). The is-a relation is transitive,
that is, is-a(4,B) and is-a(B,(") implies is-a(4,(). Thus, group & group, the composition
of a group operator with itself, yields group. The member-of relation defining a coexist
operator is based on common attribute values of objects. All objects that combine by a
coexist operator must have the same attribute value. Coexist can be applied from
instance-instance or from instance-class. Consider a member-of relation from 4 to B,
(i.e., (i-1) or (i-c)) and from B to C. The member-of relation among objects is also
transitive, implying that 4 is a member-of C. Thus, the composition, coexist & coexist

yields a coexist.

76

Trails

-no.of trails:int |
-hike type:htype
-Avg hikers/day:int Il
-open-dates:date ||

group group
Easy Trails Strenuous Trails ®
-no.of trails:int = 15 | -no.of trails:int = 5 I
-hike_type:htype = Class A If -hike type:htype = Class C ||
-Avg.hikers/day:int = 230 Il -Avg.hikers/day:int = 50
-open-dates:date = 05/10-11/25 I -open-dates:date = 05/20-11/25 l
coexist \coe.\'ist
Jordan Pond Trail Beehive Trail
-id:char = TC10 -id:char = TAO1
-distance:float = 4.2 -distance:float = 3.5
-type:trail-type = strenuous trails m -type:trail-type = strenuous trails ™

Figure 5.4 Amalgamation of objects applying a coexist followed by a group: ®-

common attribute values and ||- common attributes of objects.

Consider the composition of a group with a coexist operator. Since group is applied
to instance-class or class-class, the result of a group is a class, consisting of only
attributes of objects. The resultant object does not contain attribute values. A group
cannot be followed with a coexist operator and therefore, group & coexist, composition
of a group with a coexist operator cannot exist. For a coexist ® group, consider a coexist
operator from 4 to B (i-i) and a group operator from B to C (i-c). Object B is an instance-
of class C (e.g., Strenuous trails is an instance-of Trails) (Figure 5.4). An object that is
member-of an object is also be a member of its class. Hence, coexist & group yields a

coexist, 1.e., object 4 is also a member-of the class C. For example, Beehive Trail is a

member of Trails (Figure 5.4).

77

5.1.3 Compositions with compose

A compose operator is modeled by spatial containment, connectivity, and nearness
among objects. Compositions with compose are evaluated based on these spatial relations
of objects. Therefore, the compose operator is categorized into three sub-operators
compose[Contained], compose[Connected] and compose[Near] operators. We first
present compositions of the kinds of compose operators with each other and then in

combination with the other operators.

A compose[Contained] operator from object 4 to B models the containment relation
among objects, for example, Sand Beach is contained within the Acadia Park. Spatial
containment has a transitivity property. Thus, if object 4 is contained in B and object B is
contained in C, then 4 is contained in C. Hence, a compose[Contained] operator is
transitive and its composition yields a compose[Contained] (Table 5.2). The transitivity

property holds for objects that are classes as well as instances of classes.

A compose[Connected] operator from 4 to B and from B to C that defines a spatial
connectivity among the objects is also transitive (Table 5.2). Thus, composition of
compose[Connected] with compose[Connected] yields a compose[Connected]. However,
a compose[Near| operator defining nearness between two objects, is not transitive. For
example, consider object 4 near B and object B near C. The composition may result in
object 4 near C or A4 farther away from C. Hence, compose[Near] ® compose[Near] is
undetermined (Table 5.2). A value undetermined for a composition implies that there can
be more than one result of the composition. More information about the objects involved
in the composition would be required in order to arrive at a single value of the

composition.

78

Let us consider the composition of a compose[Contained] with other kinds of
compose, such as a compose[Contained] operator from 4 to B with a
compose[Connected] operator from B to C. The result of the composition leads to several
possible relations from 4 to C. For example, object 4 may be near C or A may be
connected to C (Table 5.2). There is no definite relation that can be derived from 4 to C.
Hence, composition compose[Contained] & compose[Connected] is undetermined.

. Barwl-lart.){c;;
-descp:text = tourist ,

center, ocean front
-location:USstate = ME

/

/ “._compose[Near
compose[Near] // . i [__em] -
—~ Acadia Park
‘ ,,,,,,, ‘ | -type: T = outdoor
----- -Avg.visitors/day:int = 850
""" -activities:A = hiking,
biking, canoeing
o SN
. A AN
compose[{Contained] / \\compuse[Contained]
= AN
| Beehive Trail - |
" -trail_id:string = "TA10" |
| -hike_type:htype = Easy ‘ I
Figure 5.5 Composition of compose[Contained] with compose[Near] yields an

undetermined composition.

Likewise, the compositions ot the other kinds of compose operators with each other
do not imply any definite relation from A4 to C and are undetermined. For example,
Beehive Trail contained in Acadia Park, need not necessarily be near Bar Harbor, though

Acadia Park is near Bar Harbor (Figure 5.5).

79

The table (Table 5.2) lists the compositions of each kind of compose operator with
other coarsening operators. A row in the table describes a composition. Figures are
provided to support the rationale for deriving the result of the composition. The result is a
single valid composition or an undetermined composition denoted by a ~. Spatial objects
used in the example are regions and roads, represented as ellipses and lines respectively,
and are labeled 4, B, and C. In each row, the first part in the figure represents the first
operator in the composition, the second part represents the second operator in the
composition as well as the possible result of composition. The third part, if present,
describes the other possible results of the composition. For example, Row 1,
compose[contained] & compose[contained] is described in figure as 4 contained in B
and B contained in C. The second figure also shows the result of the composition 4
contained i C. Similarly, all other compositions with the compose operators are

presented.

80

Composition Rationale Result
Compose[Contained ® C Compose
compose|Contained| [Contained]
Compose[Connected| ® ~_ Compose
compose[Connected] j /‘—/ \JL .\“__. [Connected]
Compose[Near| ® @@ @ @@ ~
compose[Near] © G
Compose[contained] ® B 5 (©) 3 ~
compose|connected] @ @ @
Compose[contained] ® © 5 ~
compose[Near] @
Compose[connected| &® A A ~
compose[Contained]
Compose[near] ® @ C ~
compose[contained] @ ° QSO
Compose[connected] ® A A ® ~
compose[near] e ©
Compose[near| &® @ @ { @ ~
compare[connected] @ ‘ C

©
Table 5.2 Compositions of the compose operators with each other. ~ represents

undetermined compositions.

81

Now, let us consider the compositions of the different compose operators with group.
and coexist. For the composition of the compose operators with a group, we first consider
the case with objects as instances of a class. Consider a compose[Contained] operator
from A to B (i-i)and group operator from B to C (i-c). An object that is contained in
another object, which is an instance, is also contained in its class. Hence. if 4 is in B and
Bis a C, then 4 is also in (. Therefore, the composition of a compose[Contained] with
group results in a compose[Contained]. For example, consider the relations Sand Beach
is contained in Acadia Park and Acadia Park is an instance-of a Maine Attractions.
Applying the compositions, we can derive that Sand Beach is part-of Muine Attractions
by the compose[Contained] operator (Figure 5.6). This holds true for the other types of
compose operations also. Thus, any compose with a group will resull in the

corresponding compose operator.

Maine Attraction

-type: T
-Avg.visitors/day:int
! -Activites:A
| N AN
group N\ group
VT — T
Acadia Park , |
-type:T = outdoor | !
-Avg.visitors/day:int=850 | | 7
-activities:A = hiking,] o
biking, canoeing
| - R compose[Contained]
compose[C. on!aiﬂed]\ T ;
Sand Beach

-area:float = 120.0 |
-activities;water_sport .
= swimming

Figure 5.6 Composition of compose[Contained] with a group over instances yields a

compose[Contained].

82

The reverse case, composition of a group with composefcontained] yields different
results depending on instance and classes of objects. Consider a group operator from 4 to
B (i-¢) and a compose[Contained] operator from B to C (c-c). Class B is contained in ¢
and therefore an instance of the class B, 4, is also contained in C. Hence, group &
compose[Contained] yields a compose[Contained] operator from 4 to C. For example,
FEcho Lake is an instance of a Lake by a group operator and Lake is part-of the Cadillac
Mountain by a compose[Contained] operator. This suggests that Echo Lake is also part-
of the Cadillac Mountain by the compose[Contained] operator. The compositions of
group with compose[Connected] and compose[Near] operators also yield the respective

compose operators.

Maine_Attraction
-Avg.visitors/day:int
-Activities: A

group \group

Park
-type:T
-Avg.visitors/day:int
-Activities: A

composef C()mained]/ compose[Contained]

Trails
-distance:float | | = o
-type:trail_types

Figure 5.7 Composition compose[Contained] ® group over classes yields an

undetermined result.

Let us now consider the compositions of compose operators with group based on

objects as classes. Let compose[Contained] be an operator from A4 to B (c-c) and group

83

an operator from B to C (c-c) (Figure 5.7). Object B is derived from class C, and can be
referred to as a specialized class (' that contains class 4. Objects that are contained in B
need not necessarily be a contained in its class C. The spatial containment of an object in
B, therefore. may not hold true for C. Thus, compose[Contained]® group for classes 1s
undetermined. For example, Trails are contained in Park and Park is a Maine Attraction
(Figure 5.7). But Trails need not be contained in every Maine Attraction. This holds true
for compositions of the other compose operators with group for objects as classes, and it

is also undetermined.

Finally, compositions of the compose operators with a coexis/ operator are
considered. A coexist operator operates only on attribute values. Hence, the composition
of the compose operator and a coexist operator exists only for instances of classes.
Consider a compose[Contained] operator from 4 to B (i-i) and a coexist operator from B
to C (i-1). Only based on the spatial containment relation between A and B, not much can
be inferred about the common attributes values of 4 with C. Therefore, the composition
compose[Contained] & coexist is undetermined for instances of classes. Similarly, the
compositions of a compose[Connected] and compose[Near] with a coexist leads to an

undetermined result.

The reverse composition, coexist & compose[Contained], for a coexist operator from
A to B and a compose[Contained] operator from B to C is also undetermined. In this case
too, the compose[Contained] operator from B to C only defines the spatial containment
of B in C and does not express similarity of C with attribute values in 4. Thus, 4, B, and

C may not have any attribute values in common. Hence, this composition is

84

undetermined, and this applies to the compositions with the other compose operators as

well.

5.2 Inferences from Compositions

A complete set of all possible compositions is derived based on valid instance class pairs
of operators. Compose is distinguished into three types, that is, compose[Contained],
compose[Connected], and compose[Near/. Of the 324 compositions of operators there
exist 160 possible compositions, of which there are 74 valid and determinable
compositions and 86 undetermined compositions. The labels, F, G, Ce, Cn, Co, and N
denote the coarsening operators filter, group, and coexist and the types ol compose —
contained, connected and near, respectively. The compositions are separated into two
tables as compositions over classes (Table 5.3) and over instances (Table 5.4). The empty
cell denotes that a composition for that particular sequence of operators does not exist
and cannot be performed. ~ indicates that the composition is undetermined and may be
established with additional information. Valid compositions are represented with
corresponding letters of coarsening operators. A composition in the table is read as
coarsening operator 4 (row) in composition with coarsening operator B (column) yields
an operator that is represented by the corresponding cell value of the combining
operators. For each operator, valid instance-class pairs are specified. For example, a
group (i-c), is a group from an instance to a class, in composition with a
compose[contained] (c-c), from a class to a class, is valid and the result of the

composition is a compose[contained] operator (i-¢).

85

Filter Group Coexist Compose Compose
(ii) | (ce) | (ic) | (ce) | (iD) | (ic) | (cc)(ci) (i1), (ic)
Cn |Co |N |Cn|Co N
Filter (cc) F G Cn |Co | N
Group (cc) G G Cn | Co | N
Compose | (cc) | Cn Cn ~ Cn | ~ ~
Co Co ~ ~ Co | ~
N N ~ ~ |~]~
(ci) {Cn | Cn Cn ~ |~ Cn |~ |~
Co | Co Co ~ |~ ~ Co |~
N |N N ~ |~ ~ I~ |~
Table 5.3 Compositions of coarsening operators over classes. ~ signifies
undetermined compositions.
Filter Group Coexist Compose Compose
(ii) | (cc) | (ic) | (ec) | (iD) | (ic) | (i), (ic) (cc), (ci)
Cn {Co|N |Cn|Co|N
Filter (1-1) F G Ce | Ce Cn | Co | N
Group (i-c) G G Cn | Co | N
Coexist (i-1) Ce Ce Ce | Ce ~ I~ |~
(i-¢) Ce Ce ~ < 1<
Compose | (ii)) [Cn | Cn Cn ~ ~ Cn |~ |~
Co | Co Co ~ ~ ~ Co | ~
N |N N ~ ~ ~ |~ |~
(ic) | Cn Cn ~ Cn |~ |~
Co Co ~ ~ | Co |~
N N ~ ~ |~ |~
Table 5.4 Compositions of coarsening operators over instances. ~ signifies

undetermined compositions.

86

The compositions of compose operators from i-i or i-c with the compose operator
from i-i or i-c are equal. Similarly, compositions of the compose operator from i-i or i-¢
with the compose operator from c-c and c-i have equal values of compositions. Hence,
the columns for compose operator have i-i and i-c in one column and c-c and c-i together

in another.

The following inferences can be made from the table:
¢ From the compositions over classes it can be derived that there are 40 possible c-c
compositions, of which 20 are valid. Also, there are 13 valid c-i compositions of 30
possible cases. Similarly from the compositions over instances, we can derive 17 valid (i-
1) compositions from 40 possible and 24 valid (i-c) compositions from 50 possible cases.
From these figures, the percentages of valid compositions over classes and instances can
be derived. It is seen that the compositions over c-¢ and i-c¢ are most with 50% and 48%

valid compositions respectively.

Class-class 50%
Instance-class 48%
Class-instance 43.3%
Instance-instance 42.5%
Table 5.5 Percentage of valid compositions over instances and classes.

e Filrer operator acts as an identity operator in compositions.

e Result of a composition can yield a group only by composing a group with itself or

with filter.

e (Coexist operator is obtained by composing coexist with a filter, group, or with itself.

87

e The table does not exhibit symmetry. Thus, the compositions of operators are not
commutative. For example, coexist & group — coexist, whereas group o coexist does not
exist.

e It can also be inferred from the table that the group and filter operators result in
maximum number of valid compositions, whereas the compose[near] operator has the
least number of valid compositions. Hence, group and filter are the most functional

operators in a composition. And compose[near] is the least functional operator.

Cn Co N
Cn | Cn ~ ~
Co |~ Co |~
N ~ ~ ~
Table 5.6 Compositions of the detailed compose operators with each other. ~

represents undetermined compositions.

e The part-of relation among objects is typically regarded as transitive, implying part-of
® part-of — part-of. However, the results of compositions of the different compose
operators with each other are not identical (Table 5.6). This suggests that the different
semantics of part-of lead to different results on composition. For example,
compose[contained] and compose[connected] are transitive and their respective
compositions are valid. However, compose[near] is not transitive and hence, the
composition compose[near]® compose[near] is undetermined. Also, the composition of

two different compose operators leads to an undetermined result.

88

The value of the undetermined composition can be either contained or connected or
near or even be not part-of (i.e.. null). For example, consider contained(Summit_trail,
Cadillac mountain) and near(Cadillac mountain, Echo lake). Using the general notion of
part-of as being transitive, from the example, we can say that Summit_Trail is part-of
Echo_Lake. But, Summit_Trail is not contained in Echo_lake, it is not connected to
Echo_lake, and it is not near Echo lake. Hence, Summit_Trail is not part-of Echo_lake.
Thus, part-of ® part-of — part-of does not necessarily hold. The result of the
composition that we obtain (i.e., compose[contained] ® compose[near] is undetermined)
is correct and acceptable. Therefore, detailed compose operators are needed to reveal
correctly the results of compositions of coarsening operators. This proves our hypothesis

that

Different semantics associated with object amalgamations yield correct resulls of

the compositions of coarsening operators.

5.3 Application of Compositions

The valid compositions can be used to reduce the sequence of operators in a path
connecting two objects in a granularity graph. For example, consider the path {Bechive
Trail, group, Trails, filter, compose[Connected], Park loop road, compose[Contained].
Acadia Park} (Figure 5.8). The sequence of operators can be reduced as in Table 5.7.

Thus, a shorter path of length 2 is obtained from Beehive Trail to Acadia Park (Figure

5.8).

89

group ® filter ® compose[Connected] @ compose|Contained]
—» group ® compose[Connected] ® compose| Contained]

— compose[Connected] ® compose[Contained]

Table 5.7 Applying compositions of operators to arrive at a shorter path.

Acadia Park

compose[Contained]

Acadia Park

compose[Connected _
posel / compose[Contained]

filter
group compose[Connected]

Beehive Trail
Beehive Trail

Figure 5.8 Simplifying the path from Beehive Trails to Acadia Park.

Also, applying the compositions, the original path (Figure 5.9) in the granularity
graph can be replaced by the derived shorter paths. For example, a path in the graph
{Cadillac Mountain, filter, Cadillac Mountain, compose[contained], Mount Desert
Island}, can be simplified to {Cuadillac Mountain, compose[contained], Mount Desert
Island}, The number of objects in the graph is reduced, leading to a simplification of the

granularity graph (Figure 5.10).

90

Tourist Mount_desert
Attractions island

I group cContained

Sfilter

Acadia_park

Figure 5.9 Granularity Graph with a selected path.

Mount_desert
island

filter

Cadillac_mountain

Tourist
Attractions

cContained

joe)
f=>1

| -
=
f=%1
-
o
o
=

Silter

Acadia_park

Figure 5.10 Simplified granularity graph applying compositions.

Park loop road Cadillac_mountain

Composition of operators can also be used to derive the multiple ways of arriving at a
granularity. Given n operators in a path, the compositions can be applied to derive up to
n-1 different ways to arrive at a granularity. For example, consider the path connecting
Beehive Trail to Acadia Park (Figure 5.8). Applying the compositions, 3 different ways
of arriving at Acadia Park is obtained (Table 5.8) consisting of 4, 3, and 2 operators

respectively.

91

Path 1 - group ® filter ® compose[Connected] & compose|Contained |

Path2 - group ® compose[Contained] ® compose[connected]

Path3 — compose[Contained] ® compose[Connected]

Table 5.8 Multiple ways to arrive at Acadia Park from Beehive Trails.

Multiple ways to arrive at a granularity is useful for retrieving the shortest path. or a
path with a specific operator, or path with minimum number of different operators. If the
cost of applying each operator can be evaluated, then the multiple paths can be used to

obtain the most efficient way of arriving at a granularity.

The composition of operators exhibits the associative property. Thus, if R/, R2, R3 1s
a sequence of operators connecting two objects at different granularities, then (R/ & R2)
®R3 =Rl & (R2 ® R3). The composition of the operators can therefore, be applied to
the sequence of operators in any order. For example, group & compose[Contained] &

filter, yields the same result compose[Contained] though the compositions are applied in

any order (Table 5.9).

(group ® compose[Contained]) ® filter | group ® (compose[Contained] o filter)
compose{Contained] ® filter group ® compose[Contained]
compose[Contained] compose{Contained]

Table 5.9 Simplification of a sequence of operators using the associative property of

compositions.

The associative property of the compositions is significant because it partially
removes the need to apply the compositions in strict order from left to right. Applying
this property, it is possible to retain a particular granularity of interest (e.g., group) in the

graph while determining a shorter path (Figure 5.11).

92

Acadia Park

compose[Contained] Acadia Park

compose[Contained]
compose[Connected]

compose[Connected]

filter

group

Beehive Trail Beehive Trail

Figure 5.11 Deriving a path from Beehive Trail to Acadia Park with a group operator.

Another application of the operators is for determining how two objects at different
levels of detail are related in the granularity graph. Consider the path from Beehive Trail
to Acadia Park. There exist two paths (a) {Bechive Trail, coexist, Strenuous Trails,
group, Trails, compose[Contained], Acadia Park} and (b) {Bechive Trail, group, Trails,
filter, Trails, compose[Contained], Acadia Park}. Let us consider path b. The operators
in path b are group, filter, and compose[Contained]. Applying the composition of
operators (Table 5.10) to the sequence of operators in path b, we obtain that Beehive Trail
is connected to Acadia Park by the compose[Conlained] operator. Having reduced the
sequence of operators to one, it is possible to directly relate Beehive Trail and Acadia

Park, i.e., Beehive Trail is contained in Acadia Park.

group & filter ® compose{Contained]
—> group ® compose[Contained]
— compose{Contained]

Table 5.10 Simplifying sequence of operators for relating object granularities.

93

Consider another example of a path from Sand Beach to Tourist Attractions; {Sand
Beach, compose[Connected], Park Loop Road, compose[Contained], Acadia Park,
group, Tourist Attractions}. Applying the valid compositions of operators, a shorter path
(Table 5.11) from Sand Beach to Tourist Attractions with two operators,
{compose[Connected], compose[Contained]} is obtained. This path suggests that, Sand
Beach is connected to Park Loop Road and Park Loop Road is contained in the Acadia
Park. Consider a second path between the same two objects consisting of
{compose[Contained], Acadia Purk, filter, Acadia Park, group, Tourist Attractions}.
Based on this path, the composition can be applied to the operators resulting in Sand
Beach compose[Contained] in Tourist Attractions (Table 5.11). The simplification
obtained using two different paths do not contradict each other instead complement one
other. Using both relations from the granularity graph, a more complete semantics of
Sand Beach and the Tourist Attractions can be determined, i.e., Sund Beach and Park
Loop Road are both contained in the Tourist Attractions and Sand Beach is connected to
the Park Loop Road. The relations that are derived among objects can be stored into a
knowledge base for providing reasoning as to how the objects at different granularities

are related to each other.

94

Path a

compose[Connected] ® compose[Contained] ® group

— compose|Connected] ® compose[Contained]

Path b

compose|Contained] ® filter ® group

— compose[Contained] ® group

— compose|Contained]

Table 5.11 Two different paths connecting Sand Beach to Tourist Attractions yields

analogous simplifications.

5.4 Summary

This chapter provides a detailed evaluation of the compositions of the coarsening
operators. Compositions of coarsening operators are primarily required to collapse or
simplify long sequences of operators in a granularity graph. We derive a complete set of
324 different compositions of the coarsening operators based on their valid instance-class
pairs. The definitions for the composition of operators are presented and supported with
several examples. Of the 324 compositions, 160 are possible compositions and there are
74 compositions that are valid and determinable (i.e., up to a maximum of 50% of the
compositions). Therefore compositions must be exploited and used in simplifications.
Several inferences are derived based on the compositions of operators. It is inferred that
the different semantics associated with the coarsening operators play an important role in
deriving correct results of the compositions. We support this with the detailed compose
operators. Also, compositions enable in determining the most functional and Ieast

functional operators while arriving at a simplification.

95

This chapter also presents the several applications of the compositions. Compositions
are used in deriving shorter paths in the granularity graph and for determining the
multiple ways of arriving at a granularity. They can also be used for efficient retrieval of
objects and for relating objects at multiple granularities in a granularity graph. The
multiple simplifications obtained by applying the compositions support enhanced

reasoning based on the object granularities.

The next chapter describes the implementation of a prototype using the algorithms

discussed in Chapter 4 to test the browsing and compositions of operators.

96

Chapter 6
PROTOTYPE FOR CONSTRUCTING AND

BROWSING A GRANULARITY GRAPH

This chapter describes the design and implementation of a prototype for modeling
multiple granularities of spatial objects. The prototype allows building a granularity
graph and enables shifting among granularities through browsing. The goal of the
prototype is to demonstrate the construction of multiple granularities of spatial objects by
applying the coarsening operators. Browsing operations on the graph for retrieving
objects at finer or coarser granularities are also implemented. The following sections
discuss the design of the prototype and implementation of data structures, coarsening
operators, and the user interface. The working of the prototype is illustrated with an

example.

6.1 Prototype Design and Specification

The prototype implements a step-wise building of a granularity graph. The design of the
prototype is separated into two components: the user-interface and graph builder (Figure
6.1). The user-interface facilitates input to the application, display of a granularity graph,
construction of the graph, and generation of browse results. The graph builder

implements the coarsening operators. A set of objects from an information space is given

97

as input to the model. These objects are stored in a list structure. Coarsening operators are
applied to the objects in the list resulting in amalgamated objects. The amalgamated
objects are displayed in the granularity graph and appended to the list of objects.
Coarsening operators are now applied to the amalgamated objects added to the list,
arriving at another new set of amalgamated objects. The process is repeated until objects
can no longer be amalgamated or the user requirements are satisfied. The prototype is
implemented in Visual C++ (6.0), with a GUL. A viewer window is provided for
displaying the granularity graph and operations on the graph. The main building blocks of

the model are the objects and the functions implementing the coarsening operators.

Graph Builder
User Interface) JRSTAS——
= = S S r —— | .

P — T I . | ' Coarsening |

. Objects ——— | L —> e © Operators |
. T |
’ Granularity ‘ !_‘___ |
| | 0/p |
| Graph < — Amalgamated |
| | Objects _
Figure 6.1 The prototype architecture: user-interface and graph builder.

6.1.1 Objects

The prototype models objects at different levels of details. A structure GObject is defined
to store an object. Every object consists of a label oName for displaying the object,
number of attributes of objects oNum_attributes, array of attribute names, attribute
values, and relations with other objects GOAnrib. In a granularity graph, objects are
connected to other objects at coarser granularities through a coarsening operator. Thus,

every object can have knowledge about the objects at a finer granularity as well as the

98

corresponding coarsening operator connecting the objects. GOLink models the coarsening
operator and the objects at finer granularities to an object, where GOLink::00pr
represents the coarsening operator and GOLink::0Childlds are the objects at a finer
granularity (Figure 6.2). Other data members of an object, such as system id old, the level
of the object in the granularity graph oLevel, and the bounding rectangle oRect are private

data members used for displaying the object in a granularity graph.

|enum GOperator {(Group =0,
Compose,Coexist, Filter, N}; | — —

{

‘ | class GObject: public CObject
template <class T> |{

[public:

‘ CString oName;

(int oNum attributes; |
‘ T oAttValue; vector <GOAttrib> oAtt; |
}; | ‘ GOLink oLink;

\Struct GOAttrib
{ |
CString oAttName;

struct GOLink private:
[{ int old;
i GOperator oOpr; ' int olevel;
‘ vector <CString>» oChildIds; | | RECT oRect;
i

L); '

Figure 6.2 Structure of an object, GObject.

For traversing the graph, it is required to iterate through the stored objects. Iterating
the objects in the graph requires objects to be stored as a collection that can be accessed
sequentially or by pointers. Therefore, we derive the object class GObject from the base
class CObject enabling access to a collection of objects. CObject is the root class for

CObList, which supports ordered lists of type CObject. CObList lists behave like doubly

linked lists.

99

6.1.2 Coarsening operators

Each of the coarsening operators is implemented as a function. A class GraphBuilder is
defined to handle the operators (Figure 6.3). Each operator function accepts an array of
objects for amalgamation. Objects are selected through the GUI and an array of objects is
passed to the operator function. The function compares the structure of the objects for
attributes and values that are required to satisfy the operator condition and returns the
object ids that satisfy the condition in a structure of type GOLink. For example, if two
objects Beehive Trail (sysid:int = 1, id:char = TO1, distance:float = 3.5, type:ttype = easy
trail) and Bow/ Trail(sysid:int = 2, id:char = T12, distance:float = 3.0, type:ttype =
strenuous trail) are passed to the function, then comparing the structure of the objects
based on the operators, the function returns a structure GOLink with values
GOLink::cChildlds = {1,2} and GOLink::00pr = Group. A new amalgamated object is
created consisting of objects at finer granularities from GOLink::0Childlds and connected
by the operator GOLink:.0Opr. For example, GOLink GraphBuilder:. Group(GObjects*
ob) accepts an object array and returns a GOLink structure with object ids having similar

attribute names.

™y
f»GraphBuilder !

m_obList

| Filter

- Group

' Compose
Coexist

AN _/

Figure 6.3 Class GraphBuilder .

100

The user can add a label for the new amalgamated object. Additional attribute names
and values for the object can be added and stored in the object list. The object gets added
as a new node to the granularity graph and is connected to other objects with its

respective coarsening operator.

6.1.3 Granularity graph

A granularity graph modeling multiple object granularities is implemented as a collection
of objects using a linked list structure. Objects at each level are stored in a linked list
derived from CObList (Figure 6.4). A variable of type POSITION is a key for the list.
The POSITION variable can be used as an iterator to traverse a list sequentially. Objects
can be inserted very fast at the list head, at the tail, or at a known POSITION. A
sequential search is necessary to look up an element by value or index. This search can be
slow if the list is long. As, an alternative, a CMapStringToOb, a dictionary collection
class that maps unique CString objects to CObject pointers is used (Figure 6.4). Once a
CString-CObject* pair (element) is inserted into the map, an object can be efficiently

retrieved using a string value as a key. It is also possible to iterate through the elements in

the map.
'CObject |
List
~——| CObList
M
— CMapStringToOb |
Figure 6.4 Classes for implementing the graph structure.

101

6.2 The User Interface

Input to the prototype, interactive building of a granularity graph, and browsing
operations on the graph are the main features of the user interface. These tasks are
provided as menu items in the application (Figure 6.5). The interface consists of the
granularity graph window for displaying the graph, a set of coarsening operators used for
building the graph, and an attribute list window for displaying the attributes and relations
associated with a selected object. Selection of objects and operators on the graph is
enabled through mouse clicks in the viewer window. The following sections describe the

functions supported by the user interface.

D dE B[S TN %
Coatsering Operalors
Step-wize bulding of the gramdanty graph
Sel cument object granularity: |1 'l
-
r
e+
Coarsening «—4 "
operators e
Apply Operator
— Granularity
Graph
window
Object Attrbutes and Relations
Attribute <
window

Figure 6.5 User interface of the prototype.

102

6.2.1 Creating a new granularity graph

Objects in an information space can be stored in a Microsoft Access Database (.mdb) file.
The input file consists of 4 tables. namely Object - stores the objects, each object has a
name and system id, Rell — stores the attributes of objects, modeled using an is-a
relations among objects, Re/2 — a table to store part-of relations among objects, Rel3 —
stores the member-of relation among objects. The table Rel/, Rel2, and Rel3 stores
corresponding relations of objects using the object id in table Object. The object file
name (.mdb) is passed as input for creating a new granularity graph through the menu
item Create a GG. The application reads the set of objects from the file and displays
them in the viewer window, as the first level of objects in the granularity graph. These are
the leaf nodes of the granularity graph. Additional levels of objects can be added to the

graph by applying the coarsening operators.

On saving the file, a text (.gg) file consisting of the objects in an information space is
created. The values for objects are written in the format satisfying the object structure.
Each object begins with the keyword object followed by the name, number of objects, lis

of attributes, and list of corresponding attribute values.

If the granularity graph already exists, then the user can open the graph (gg) file

through the menu item Open a GG and perform operations on the graph.

6.2.2 Applying coarsening operators
From the objects displayed in the viewer window, the user can select objects of interest
by clicking the mouse inside the rectangular object area. The selected objects are

highlighted and their attributes are displayed in the object attribute box. As the objects

are selected, the coarsening operators that can be applied are enabled in the graph builder
dialog, provided on the left of the viewer window. The user can then select an operator
that is enabled by checking the box against the operator. For each operator that can be
successfully applied to the objects. a new amalgamated object is created. The new object
with its values is added to the set of objects in the text file and to the granularity graph.
The operator used in the amalgamation is represented by the corresponding color of the

edge. These steps can be repeated to add further levels in a graph.

6.2.3 Browsing object granularities

Browsing operations for the graph (Chapter 4) are implemented to support retrieval of
objects that are at different granularities. In the user interface, browsing operations can be
chosen though the menu item Granularity Graph — Browse. We have implemented two of
the browse operations: ge/ChildOp(B, 4) and getDescendants(B, 4). The operation
getChildOp retrieves the fine-grained granularities that are adjacent to an object by
applying a specific operator. The getDescendants operation enables retrieval of all the
objects at a finer granularity to an object, until the leaf nodes are reached. The user
selects a browsing operation and the result of the operation is displayed on the graph in

the viewer window.

6.3 Illustration of the Prototype

This section illustrates the use of the prototype with an example. We use Acadia National
Park as our information space of objects. Several hiking trails in the park are given as the

input set of objects (e.g., input file Acadia Trails.mdb) using the menu item Create-GG.

104

A granularity graph with the leaf nodes is created. The different trails objects from the

file are displayed in the graph viewer window as the leaf nodes in the graph (Figure 6.6).

" I =12 x|

m. ER View Help Model Granularties
D o8 TR W
Coarsening Operators
Step-wica buiding of the granulanly graph
Set curant object granedarity || 'l
I Group
I~ Compaza
r

r
r

part-of (Scenic_T)

N N N N N N N N N N N N

Ul 121

Figure 6.6 Selecting three trails for amalgamation from the set of objects.

A Trail can be selected and its corresponding attributes can be viewed in the attribute
display window on the left window (Figure 6.6). Selected frails are highlighted in a green
color in the graph window. Multiple trails can be selected for applying the coarsening
operators (Figure 6.6). On selecting multiple trails, the coarsening operators that can be
applied to the trails become available in the operator window. One or all of the operators

can be selected by clicking in the checkbox against the operator and applied to objects.

On selecting an operator, an operator dialog box will pop up that displays the

combining objects and the resultant amalgamated object (Figure 6.7). A suitable label can

105

be given to the amalgamated objects in a text box in the dialog. Additional attributes and

values of objects can also be added to the newly created amalgamated object.

x|
Operator: IG[OUD
Dbjects Amalgamate
CsT easy_t
JpT
OcT
WIT
Confirm Amalgamate
|Easy_Trails
Cancel | Finish]|

Figure 6.7 Creating an amalgamated object Fasy Trails for the selected objects by

applying the group operator.

The resulting amalgamated object is added to the graph at a new level, connecting the
combining objects with the corresponding coarsening operator (Figure 6.8). The edges in
the graph, i.e., coarsening operators, are color coded in the application for providing a

better graph visualization: group —red, compose —orange and coexist — purple.

106

eacaaacaadc . N N N N N N N

(a) (b)
Figure 6.8 Step-wise building of a granularity graph. (a) Creating an amalgamated

object Easy Trails by the group operator and (b) adding amalgamated

object Forest Trails by applying the compose operator.

Other objects from the first level in the graph can be selected resulting in more
amalgamated objects. Once all possible operators are applied to objects in level 1, a level
2 set of objects is constructed in the graph. Operators can now be applied to objects in
level 2 to result in higher level of amalgamated objects. The process is repeated until a
level with a single object is obtained. A granularity graph for Acadia Park with 4 levels

of granularities is shown (Figure 6.9).

107

o aded sbene . 18] x|

Flo Ed Viw Help Mockl Granariies
Ded 78 TR

Cossaning Dpecators
Stwp-view bulding of the grerulaily graph

Set curent abjec! grarudanity: m

A

S B

Object Attributes and Relations

. I+

Figure 6.9 Granularity graph for the Acadia Trails.

Once the graph is constructed, browsing operations can be applied to the graph for
retrieving finer or coarser granularities of objects. Two unary browsing operations
getChildOp and getDescendants are implemented in this prototype. Browse operations
can be selected from the menu item Granularity graph — Browse. On selecting a browse

operation, a node in the graph must be selected for applying the browsing.

108

Figure 6.10 Result of the browse operation getChlidOp on Trail Routes based on the

group operator.

For example, the getChilpOp operation is applied to the object Trail Routes based on
the group operator (Figure 6.10). The operation retrieves the objects that are at a finer
granularity in the preceding level to Trail Routes, (i.e., Sea-cliff Trails, Forest Trails,
Scenic Trails, Sand Beach Trails). The result of the browse operation is highlighted in the
graph. Similarly, the operation getDescendant can be applied to objects to retrieve all

finer granularities of an object. For example, getDescendants when applied to the Hike

109

Trails retrieves all the finer granularities that are connected to Hike trails, displayed as

orange rectangles in the graph (Figure 6.11).

Figure 6.11 Result of the browse operation getDescendants on Hike Trail.

6.4 Summary

This chapter described the prototype implementation for constructing and browsing a
granularity graph. The prototype design and specification, and the class structures were

discussed to understand the data flow and the interaction between the application

110

program and the user. The prototype was also used as a test bed for deriving a framework

of multiple granularities and investigating the application of the granularities.

The next chapter concludes this thesis with a summary and future recommendations

to be carried out based on this research work.

111

Chapter 7

CONCLUSIONS AND FUTURE WORK

The focus of this thesis is to model multiple granularities of spatial objects and perform
shifts among different granularities. An approach for modeling objects at different
granularities has been developed with an understanding that spatial objects’ attributes and
relation with other spatial objects can be exploited to result in coarser granularities. The
approach captures the different semantics associated with combining objects that lead to
multiple granularities and presents a categorization of coarsening operators based on

these semantics.

Multiple granularities of objects can be organized into a granularity graph. Such a
granularity graph can be used for retrieving granularities of objects at finer or coarser
granularities with respect to an object. It is also possible to analyze the multiple ways of
arriving at a granularity and to determine relations among objects at different
granularities in the graph. This chapter summarizes the thesis work and presents
conclusions. The future directions for research based on this work are highlighted with

recommendations.

112

7.1 Summary

There exist different granularities of objects, each suited for a particular purpose. In the
process of reasoning about our information space, it is required to make available a
means for performing shifts among the multiple granularities. In this thesis, we identify

multiple granularities of objects and formalize shifts among them.

This thesis pursues an object-oriented approach for modeling multiple granularities of
objects based on the concept of coarsening. An object is modeled as a structure consisting
of attributes, attribute values, and relations with other objects. Based on the attributes and
relations of objects, the different semantics of how objects can be combined resulting in
coarser granularities are identified. As a result, four coarsening operators, filter, group,

compose, and coexist are defined.

Applying the operators to objects recursively results in amalgamated or coarser
granularities of objects. The multiple granularities of objects are organized in a
framework, a granularity graph. A granularity graph is comprised of objects at different
granularities related to each other by coarsening operators. Using the granularity graph,
several browsing operations are defined. Browsing a granularity graph refers to making
translations either to coarser granularities or to more detailed granularities in the graph.
Browse operations on a graph are categorized as unary and binary operations. Unary
operations can be applied to an object to retrieve its finer or coarser granularities of
objects. Binary operations are used to determine the common coarser or finer
granularities to two objects. For example, getdllAncestors(X,M,N) is a binary browse

operation to obtain all the coarser granularities of objects to objects A and V. The

113

operations also enable the retrieval of objects that are connected to each other based on a

particular coarsening operator.

This thesis also presents the compositions of coarsening operators. We derive a
complete set of all possible compositions of the operators, consisting of 74 valid
compositions. Compositions effectively collapse a sequence of operators into a simpler,
reduced sequence. Thus, compositions can be used for determining a shorter path
connecting two objects in the graph. The compositions also play an important role to
determine the multiple ways of arriving at a granularity and to arrive at a desired
granularity. The compositions exhibit an associative property. Using this property, the
compositions can be applied anywhere in a sequence, providing more flexibility to find
the multiple paths to arrive at a granularity. Compositions are used to find the relation
among objects at multiple granularities in a granularity graph. The different relations that
can be obtained by applying the compositions provide enhanced reasoning using the
object granularitites with regard to how the objects are connected in the graph. The
prototype developed complements the approach by supporting the construction of a

granularity graph and enabling browsing through multiple object granularities.

7.2 Conclusions

Different semantics are involved when creating coarser granularities of objects. We
define a set of coarsening operators based on these semantics to derive amalgamated
objects. From this foundation, solutions can be presented for research questions, such as
is 1t possible to combine two objects in order to arrive at a coarser granularity? or what

are the different ways in which an object can be combined with other objects?

114

The granularity graph is a rich structure modeling the multiple granularities.
Browsing operations on the graph enable the retrieval of finer and coarser granularities of
objects. Queries related to multiple granularities, such as what are all the objects that are
at a finer granularity to an object? or what is a coarser granularity of an object? can be

answered using the browsing operations.

Another major contribution of this thesis is the composition of coarsening operators.
Compositions of operators are required for simplifying long sequences of operators
connecting two objects in a granularity graph. Compositions of operators are derived
based on their applicable instance-class pairs and the semantics associated with object
amalgamations. The result of a composition is either a single convincing result or an
undetermined result. The case when an undetermined result occurs, there can exist
multiple results of the composition, such as one of the operators in the composition, or
nothing. Thus, composition of a compose operator with itself cannot be always be
generalized to compose. The hypothesis of this thesis is defined as: different semantics
associated with object amalgamations yield correct results of the compositions of
coarsening operators. We support our hypothesis by describing the compositions of the
different compose operators. It is observed that detailed compose operators reveal

correctly the results of compositions of coarsening operators.

Composition of operators enables one to reduce the sequence of n operators
connecting two objects in a granularity graph up to a single operator. The simplification
of the sequence of operators to a single operator, provided there are no undetermined
relations between the granularities, indicates that it is possible to determine the relation

between any two objects at different granularities in the graph.

115

Applying the compositions of operators to a path consisting of » operators, between
two objects, it is possible to derive n-/ ways of arriving at a coarser granularity. Thus, the
compositions complement the multiple ways of arriving at a granularity of objects and
can also be used to find the different sequences of coarsening operators that lead to a

coarser granularity from an object.

7.3 Future Work

This section lists a set of possible future research tasks that are enabled by this work.

° Extending the set of coarsening operators

The set of coarsening operators capturing multiple granularities is rich but not necessarily
complete. There may be other ways of combining objects, for example, objects can
combine to evolve in to a new object and objects can merge into another object.
Evolution of objects results in a new object. The properties of the objects can be
completely different from the combining objects and need not be determined by the
structure of combining objects. Alternatively, dynamic objects exhibit the semantics of
merging, for example, a car merging into a fraffic. These semantics are temporal in
nature and will need additional information about the objects. Several questions will need
to be addressed. How will the temporality in the structure of objects modify the
granularities? Can we integrate spatio-temporal objects into the granularity graph? What
1s the effect of including these objects in the granularity graph? Will the associative
property of the compositions hold for these cases?

. Computing undetermined compositions of the coarsening operators

The compositions of operators had 86 undetermined compositions out ot the 160 possible

compositions. An extension of this thesis is to successfully reduce the number of

116

undetermined compositions. Are there any other attribute or relations of objects that
when captured, can reduce the undetermined relations? What are all the possible values
of operators that correspond to the undetermined compositions? Is it possible to list the
different values that represent an undetermined composition?

. Visualization of multiple granularities

This thesis discussed only one possible model for multiple granularities of objects and the
usefulness of the models in translating among the granularities. When modeling
granularities in a GIS, the effectiveness of the shifts in the granularities is portrayed only
by the spatial representation of the granularities of objects. Many functions need to be
investigated to accommodate the spatial representation of objects. This opens the door to
some challenging research questions for associating a spatial representation with objects
over multiple granularities. Can we use this model to determine the relation among
granularities and retrieve the corresponding spatial representations from another stored
source? Is it possible to convey multiple granularities only by displaying the spatial
representation of the fine-grained objects and derive methods for approximating the
representation of coarser objects? Can this model be used as a meta-data or for relational

indexing of objects to arrive at the corresponding spatial granularities?

117

BIBLIOGRAPHY

K. Beard (1990) Constraints on rule formation. in: B. Buttenfield and R. McMaster
(Eds.), Map Generalization: Making Rules for Knowledge Representation. pp. 121-
135, Longmans, London, UK.

B. Bederson and J. Hollan (1994) Pad++: a zooming graphical interface for exploring
alternate interface physics. in: ACM Symposium on User Interface Sofiware and

Technology (UIST). pp. 17-26.

M. Brodie, J. Mylopoulos, and J. Schmidt, Eds. (1984) On conceptual modeling,
perspectives from artificial intelligence, databases, and programming languages.

Springer-Verlag, New York, NY.

B. Buttenfield and J. Delotto (1989) Muitiple representations. National Center for

Geographic Information and Analysis (NCGIA), UCSB Santa Barbara, CA,
Technical Report 89-3.

B. Buttenfield and R. McMaster, Eds. (1991) Map generalization: Making Rules for
Knowledge Representation. John Wiley & Sons, New York, NY.

C. Dyreson and R. Snodgrass (1995) Temporal granularity. in: R. Snodgrass (Ed.), The

TSQL2 Temporal Query Language. pp. 347-394, Kluwer Academic Publishers,
Norwell, MA.

M. Egenhofer (1993) A model for detailed binary topological relationships. Geomatica
47(3&4): 261-273.

M. Egenhofer and A. Frank (1992) Object-oriented modeling for GIS. Journal of the

Urban and Regional Information Systems Association 4(2): 3-19.

118

A.

A

G

N

N

S.

T.

H

H

Frank and S. Timpf (1994) Multiple representations for cartographic objects in a
multi-scale tree: An intelligent graphical zoom. Computers and Graphics 18(6):

823-829.

. Frank, G. Volta, and M. McGranaghan (1997) Formalization of families of categorical
coverages. International Journal of Geographical Information Science 11(3): 215-

231.

. Furnas (1986) Generalized fisheye views. in: M. Mantei and P. Orbeton (Eds.),
Human Factors in Computing Systems CHI'86, New York, NY, pp. 16-23.

. Guarino (1994) The ontological level. in: R. Casati, B. Smith, and G. White (Eds.),
Philosophy and the Cognitive Science, Vienna, pp. 443-456.

. Guarino and C. Welty (2000) A formal ontology of properties. in: R. Dieng and O.
Corby (Eds.), 12th International Conference on Knowledge FEngineering and
Knowledge Management (EKAW), pp. 97-112.

Guptill (1990) Multiple representations of geographic entities through space and time.
in: K. Brassel (Ed.), 4th International Symposium on Spatial Data Handling,
Zurich, pp. 859-868.

Hadzilacos and N. Tryfona (1997) An extended entity-relationship model for
geographic applications. SIGMOD Record 26(3): 24-29.

. Hamilton, R. Hilderman, L. Li, and J. Randall (1999) Generalization lattices. 2nd
European Symposium on Principles of Data Mining and Knowledge Discovery

(PKDD): 328-336.

. Hamilton and D. Randall (1999) Heuristic selection of aggregated temporal data for
knowledge discovery. in: I. Imam, Y. Kodratoff, A. EI-Dessouki, and M. Ali (Eds.),

119

Multiple Approaches to Intelligent Systems,12th International Conference on
Industrial and Engineering Applications of Artificial Intelligence and Exper!
Systems (IEA/AIE). Lecture Notes in Computer Science 1611, pp. 714-723, Springer
Verlag, Cairo, Egypt.

M. Hammer and D. McLeod (1981) Database description with SDM: a semantic database
model. Association for Computing Machinery: Transactions on Database Systems

6(3): 351-386.

R. Hilderman, H. Hamilton, and N. Cercone (1999) Data mining in large databases using

domain generalization graphs. Journal of Intelligent Information Systems 13(3):

195-234.

J. Hobbs (1990) Granularity. in: D. Weld and J. Kleer (Eds.), Readings in Qualitative
Reasoning about Physical Systems, San Mateo, CA, pp. 542-545.

K. Hornsby and M. Egenhofer (1998) Identity-based change operations for composite
objects. 8th International Symposium on Spatial Data Handling: 202-213.

K. Hornsby and M. Egenhofer (1999) Shifts in detail through temporal zooming. in: A.
Toja, A. Cammelli, and R. Wagner (Eds.), Tenth International Workshop on
Database and Fxpert Systems Applications. pp. 487-491, IEEE, Computer Society,

Florence, Italy.

K. Hornsby and M. Egenhofer (2002) Modeling moving objects over multiple

granularities. Annals of Mathematics and Artificial Intelligence 36: 177-194.
G. Kosters, B. Pagel, and H. Six (1996) GeoOOA: object-oriented analysis for

geographic information systems. in: [EEE International Conference for

requirements Engineering, Colorado Springs, pp. 245-253.

120

S. Lamy, A. Ruas, A. Demazeau, M. Jackson, W. Mackaness, and R. Weibel (1999) The
application of agents in automated map generalization. in: 19th International

Cartographic Conference, Ottawa, Canada, pp. 1225-1234.

J. Mackinlay, G. Robertson, and S. Card (1991) The perspective wall: detail and context
smoothly integrated. in: ACM CHI Conference on Human Factors in Computing

Systems, New Orleans, LA, pp. 173-180.

S. Madria, M. Mohania, and J. Roddick (1998) 4 query processing model for mobile
computing using concep!t hierarchies and summary databases. Center for Advanced

Information Systems, Technical Report 16.

D. Maier and J. Stein (1981) Development and implementation of an object-oriented

DBMS. dssociation for Computing Machinery: Transactions on Database Systems

6(3): 167-184.

R. McMaster and K. Shea (1992) Generalization in digital cartography. Association of

American Geographers, Washington, DC.

J. Muller, J. Lagrange, and R. Weibel, Eds. (1995a) GIS and generalization: methodology

and practice. Taylor & Francis, London, UK.

J. Muller, R. Weibel, J. Lagrange, and F. Salge (1995b) Generalization: state of the art
and issues. in: J. Muller, J. Lagrange, and R. Weibel (Eds.), GIS and

generalization: methodology and practice. pp. 3-17, Taylor and Francis, London,
UK.

P. Oosterom and J. Bos (1989) An object-oriented approach to the design of geographic
information systems. Computing and Graphics 13: 409-418.

121

D. Ormsby and W. Mackaness (1999) The development of phenomenological
generalization within an object oriented paradigm. Cartography and Geographical

Information Systems 26: 70-80.

E. Puppo and G. Dettori (1995) Towards a formal model for multiresoultion spatial maps.
in: M. Egenhofer and J. Herring (Eds.), Advances in Spatial Databases SSD'95, 4th
International Symposium. Lecture Notes in Computer Science 951, pp. 152-169,
Springer Verlag, Portland, ME.

R. Ramakrishnan (1997) Database management systems. McGrawHill,

R. Read, D. Fussell, and A. Silberschatz (1992) A multi-resolution relational data model.

in: Proceedings of the 18th Conference on Very Large Databases, Vancouver.

U. Schiel (1989) Abstractions in semantic networks: axiom schemata for generalization,
aggregation and grouping. in: (Eds.), ACM SIGART Bulletin. pp. 25-26, ACM

Press, Brazil.

B. Smith and A. Varzi (1997) Fiat and bona fide boundaries. in: S. Hirtle and A. Frank
(Eds.), Spatial Information Theory: A Theoretical Basis for 1S, Laurel Highlands,
Pennsylvania, pp. 103-119.

J. Smith and D. Smith (1977) Database abstractions: aggregation. Communications of the
ACM 20(6): 405-413.

J. Stell and M. Worboys (1998) Stratified map spaces: a formal basis for multi-resolution
spatial databases. in: T. Poiker and N. Chrisman (Eds.), Eighth International

Symposium on Spatial Data Handling, Vancouver, Canada, pp. 180-189.

122

J. Stell and M. Worboys (1999) Generalizing graphs using amalgamation and selection.
in: R. Giiting, D. Papadias, and F. Lochovsky (Eds.), Advances in Spatial
Databases, 6th International Symposium, SSD'99, Hong Kong, China, pp. 19-32.

M. Stone, K. Fishkin, and E. Bier (1994) The movable filter as a user interface tool. in:

Human Factors in Computing Systems (CHI), Boston, MA.
B. Stroustrup (1991) The C++ programming language. Addison-Wesley,

M. Tanaka and T. Ichikawa (1988) A visual user interface for map information retrieval

based on semantic significance. IEEE Transactions on Sofiware Engineering 14(5):

666-670.

S. Timpf (1999) Abstractions, levels of detail, and hierarchies in map series. in: C. Freska
and D. Mark (Eds.), Spatial Information Theory: Cognitive and Computational
Foundations of Geographic Information Science. Lecture Notes in Computer

Science 1661, pp. 125-139, Springer Verlag, Stade, Germany.

S. Timpf and A. Frank (1998) Geographic zooming. Department of Geolnformation.

Technical University of Vienna, Technical Report.

R. Weibel and G. Dutton (1999) Generalizing spatial data and dealing with multiple
representations. in: P. Longley, M. Goodchild, D. Maguire, and D. Rhind (Eds.),
Geographical Information Systems, New York, pp. 125-155.

G. Wiederhold, S. Jajodia, and W. Litwin (1991) Dealing with granularity of time in
temporal databases. in: R. Andersen, J. Bubenko, and A. Solvberg (Eds.), 3rd
International Conference on Advanced Information Systems Engineering (CAISE),

Trondheim, Norway, pp. 124-140.

M. Winston, R. Chaffin, and D. Herrmann (1987) A taxonomy of part-whole relations.
Cognitive Science 11: 417-444.

M. Worboys (1994) Object-oriented approaches to geo-referenced information.

International Journal of Geographical Information Systems (IJGIS) 8(4): 385-399.

124

BIOGRAPHY OF THE AUTHOR

Chitra Ramalingam was born in Kerala, India on October 23, 1976. She received her
undergraduate degree, Bachelor of Engineering in Computer Engineering, from Bombay
University, India, in 1998. Thereafter, she worked at the Center of Studies in Resources
Engineering (CSRE), one of the departments with active research in GIS, at the Indian
Institute of Technology (IIT), Bombay, for two years. At CSRE, she held the post of a
software developer and research associate and was involved in developing a geographic
information system, called GRAM++. She then joined the University of Maine’s Spatial
Information Science and Engineering program as a master’s candidate in the fall of 2000.
Here she worked as a graduate research assistant with the National Center for Geographic
Information and Analysis (NCGIA). Chitra is a candidate for the Master of Science
degree in Spatial Information Science and Engineering from The University of Maine in

December, 2002.

125

	The University of Maine
	DigitalCommons@UMaine
	12-2002

	Modeling Multiple Granularities of Spatial Objects
	Chitra Ramalingam
	Recommended Citation

	tmp.1326834853.pdf.av0n7

