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Within a CIS environment, the proper use of information requires the identification of the 

uncertainty associated with it. As such, there has been a substantial amount of research dedicated 

to describing and quantifying spatial data uncertainty. 

Recent advances in sensor technology and image analysis techniques are making image-derived 

geospatial data increasingly popular. Along with development in sensor and image analysis 

technologies have come departures from conventional point-by-point measurements. Current 

advancements support the transition from traditional point measures to novel techniques that 

allow the extraction of complex objects as single entities (e.g., road outlines, buildings). As the 

methods of data extraction advance, so too must the methods of estimating the uncertainty 

associated with the data. Not only will object uncertainties be modeled, but the connections 

between these uncertainties will also be estimated. 

The current methods for determining spatial accuracy for lines and areas typically involve 

defining a zone of uncertainty around the measured line, within which the "actual" line exists 

with some probability. Yet within the research community, the proper shape of this 'uncertainty 



band' is a topic with much dissent. Less contemplated is the manner in which such areas of 

uncertainty interact and influence one another. The development of positional error models, from 

the epsilon band and error band to the rigorous G-band, has focused on statistical models for 

estimating independent line features. Yet these models are not suited to model the interactions 

between uncertainty fields of adjacent features. At some point, these distributed areas of 

uncertainty around the features will intersect and overlap one another. In such instances, a 

feature's uncertainty zone is defined not only by its measurement, but also by the uncertainty 

associated with neighboring features. It is therefore useful to understand and model the 

interactions between adjacent uncertainty fields. 

This thesis presents an analysis of estimation and modeling techniques of spatial uncertainty, 

focusing on the interactions among fields of positional uncertainty for image-derived linear 

features. Such interactions are assumed to occur between linear features derived from varying 

methods and sources, allowing the application of an independent error model. A synthetic 

uncertainty map is derived for a set of linear and aerial features, containing distributed fields of 

uncertainty for individual features. These uncertainty fields are shown to be advantageous for 

communication and user understanding, as well as being conducive to a variety of image 

processing techniques. Such image techniques can combine overlapping uncertainty fields to 

model the interaction between them. Deformable contour models are used to extract sets of 

continuous uncertainty boundaries for linear features, and are subsequently applied to extract a 

boundary of influence shared by two uncertainty fields. These methods are then applied to a 

complex scene of uncertainties, modeling the interactions of multiple objects within the scene. 

The resulting boundary uncertainty representations are unique from the previous independent 

error models which do not take neighboring influences into account. By modeling the boundary 



of interaction among the uncertainties of neighboring features, a more integrated approach to 

error modeling and analysis can be developed for complex spatial scenes and datasets. 
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1.1 Geospatial Uncertainty 

Attempting to describe and quantify uncertainty as it relates to spatial data has become a 

developing interest in the past decade. The wide array of topics currently being studied extends 

from error modeling and communication to the use of risk management procedures to help deal 
1 

with spatial data uncertainty in decision-making. While there exists a sizeable amount of 

research dedicated to the sources, effects, and solutions of spatial uncertainty, much of the 

academic research has yet to be applied in the form of usable tools that can be used in everyday 

practice (Hunter, 1999). The reason for this is the rather complex mathematical and statistical 

concepts involved in spatial uncertainty estimation, and the poor communication potential of 

these concepts. 

A geographical information system (GIs) is a computer-based system capable of assembling, 

storing, manipulating, and displaying geographically referenced information. The term GIs 

typically encompasses not only the computer-based system, but also the collection of data and 

operating procedures that are applied within the system. GISs are commonly utilized as a medium 

to store and display spatial objects and their associated attributes. Thus, a GIs database is a 

digital representation of the spatial organization of objects and phenomena in the real world. 

GISs are characterized by the multitude of data, sources, and methodologies employed in data 

production and manipulation. Data in a GIs are often stored in the form of data layers or 

coverages. Multiple data types can be overlaid to present the user with a wealth of information in 

a single view. Roads, rivers, contours, political boundaries, and building layers are just a few 

common examples of data layers employed in a GIs. GIs data are often treated as precisely 

located, or deterministic values, rather than probabilistic, stochastic values. Yet measurement 

procedures, imperfect by nature, produce spatial data with limited accuracy, leading to uncertain 



description of spatial objects. Spatial objects are typically represented in a GIs with definite 

boundaries, while in reality they have indeterminate boundaries and fuzzy spatial extent. Using 

GIs data in a deterministic sense tends to ignore the many kinds of uncertainty associated with 

the data. Space, attribute, time, inconsistency, and incompleteness are characteristics of spatial 

data that contribute uncertainty (Guptill and Momson, 1995); positional and attribute error 

models are considered the most important for a GIs. Thus, uncertainties exist within and despite 

the crisp object description of geographical entities (Cheng, 2002). 

Spatial data layers may originate from a variety of sources: digitized maps, points acquired 

through global positioning devices, and surveyed attributes entered into a software package are 

examples. Layers may also consist of objects extracted from remotely-sensed imagery (e.g. road 

networks, forest coverage). Recent advances in sensor technology and image analysis techniques 

are making image-derived geospatial data increasingly popular. While the spatial data 

community is eager to apply the products of these new technologies, the data is often used 

without regard to the uncertainty of the data production process. Within a GIs environment, the 

proper use of information requires the identification of the uncertainty estimates associated with 

it. Currently, a major dilemma in evaluating the positional accuracy of a CIS dataset lies in 

determining the uncertainty of different objects within the set. Positional accuracy assessments 

typically examine error by attempting to predict its propagation from points to lines and objects 

within a GIs. Yet, along with development in sensor and image analysis technologies have come 

departures from conventional point-by-point measurements. Current advancements support the 

transition from traditional point measures to novel techniques that allow the extraction of 

complex objects as single entities (e.g., road outlines, buildings). The current methods for 

determining spatial accuracy for lines and areas typically involve defining a zone of uncertainty 

around the measured line, within which the "actual" line exists with some probability. Yet within 

the research community, the proper shape of this 'uncertainty zone' is a topic with much dissent 



(Veregin, 1998). Less contemplated is the manner in which such areas of uncertainty interact and 

influence one another. Distributed areas of uncertainty around linear features will intersect and 

overlap one another at a given juncture. In such instances, a feature's uncertainty is defined not 

only by its measurement, but by the uncertainty associated with neighboring features. It is 

therefore useful to understand and model the interactions between adjacent uncertainty fields. In 
I 

the context of this thesis, such uncertainty interactions are assumed to occur among features 

derived from differing sources and derivation methods. 

The most fundamental geometric elements are points and lines, and an analysis of positional 

accuracy would logically begin with these simple objects. The fields of geodesy, surveying, and 

cartography have long studied the uncertainty associated with points. Knowing the error of each 

point, the error along a line can be determined and an arbitrary point on the line can have an 

accuracy index associated with it. Error models for points and the lines segments that connect 

them have been developed, such as the epsilon-band, confidence region, and G-Band models (Shi 

and Liu 2000). These models are based on an assumed statistical distribution of the error 

associated with each point, typically a Gaussian (Normal) distribution. However, these error 

models have typically been restricted to individual line segments, i.e., they are unable to take into 

account outside influences or dependencies affecting a feature's uncertainty. 

Within our discussion, the terms 'error' and 'uncertainty' will be used almost interchangeably. 

The spatial data community, while recognizing the inherent differences between the terms, is 

often at odds when trying to define or separate them. This confusion is due, in part, to the similar 

concepts the terms are meant to convey. Error analysis is used to determine the discrepancy 

between the true and measured values of an object or location. However, a true value or location 

is a luxury not often available in spatial data. For example, determining a 'true' location for a 

wetlands boundary, or 'true' location of objects extracted from coarse imagery. In the absence of 



a true value, uncertainty is substituted for error. In order to achieve the goals of this paper, we 

must analyze and apply previous research on positional error and uncertainty. Any investigation 

of uncertainty measurement methods reveals extensive use of error analysis techniques. For the 

sake of simplicity we will assume that the terms 'uncertainty', and 'error' both indicate a 

deviation from an expected value. In addition, the term accuracy can be considered the 
I 

complement to the two terms, i.e., the "closeness" to the true value. 

In this thesis we are addressing uncertainty boundary estimation, with an emphasis on linear 

segments. The process applied herein approaches maps and other GIs layers as composites of 

data produced from different sources and techniques. We will therefore be examining the case 

where such segments are derived through differing extraction methods. In one method of feature 

extraction, deforrnable contour models, line segments are linked in a continuous manner based on 

an energy minimization function. Just as these contour models can extract a feature's outline, 

they can also extract an uncertainty boundary. It is then worthwhile to examine how uncertainty 

associated with neighboring line segments contributes to uncertainty of the featured object. By 

modeling the boundary of interaction between the uncertainties of two features, we investigate 

how this information can be merged together for spatial scenes containing a composite of 

datasets. 

1.2 Objective 

The objective of this thesis is to analyze estimation and modeling techniques of spatial 

uncertainty. More specifically, we are interested in examining interactions among fields of 

positional uncertainty for image-derived linear features. By investigating current positional error 

models, we hope to offer improvements in communication, understanding, and uncertainty 

estimation. We derive a synthetic uncertainty map for a set of linear features to model a 

distributed field of uncertainty for a feature, which offers advantages for communication and user 



understanding. We apply digital image processing techniques to communicate and estimate the 

uncertainty associated with these features, extracting a set of continuous uncertainty boundaries. 

Adjacent uncertainty fields are combined to model the interactions between them, and a 

deformable contour model will be applied to extract the boundary of influence shared by two 

uncertainty fields. These methods are then applied to a complex scene of uncertainties, modeling 
I 

the interactions of multiple objects within the scene. The resulting boundary representations are 

unique from the previous independent error models which do not take neighboring influences into 

account. 

1.3 Intended Audience 

The intended audience of this thesis are those professionals, researchers, and participants in the 

fields of GIs, remote sensing, photogrammetry, surveying, and computer programming. The 

research and results apply to a broad range of fields due to the examination of spatial data and the 

uncertainty associated with it. Programmers manipulating boundary representation objects may 

be interested in the intexaction between boundaries of distributed features. The fields of 

surveying, remote sensing, and photogrammetry will be able to apply the concepts to any and all 

collected spatial data in order to improve its accuracy and objectivity. 

1.4 Thesis Structure 

Section 1 provides an overview of the scope and intent of this thesis. Section 2.1 discusses topics 

and definitions relevant to spatial uncertainty. Estimation and modeling techniques for spatial 

uncertainty are examined in Section 2.2, including statistical methods, fuzzy set theory, Bayesian 

statistics, and Dempster-Shafer theory. Section 2.3 touches upon image-based positional 

measurements, including photogrammetry, remote sensing, and digital image processing. In 

Section 3, positional uncertainty of a line segment is studied, including some rigorous error 

models that have advanced the field. Section 3.2 offers possible improvements for 



communicating and estimating positional uncertainty of a line segment via an uncertainty field. 

Section 4 concentrates on the modeling of interactions among adjacent uncertainty fields. Digital 

image processing techniques are used in conjunction with uncertainty fields to estimate positional 

uncertainty of continuous line segments in Section 4.1. Interactions between uncertainty fields 

are modeled in Section 4.2, and a boundary of interaction is extracted using deformable contour 

models. Section 4.3 examines this same uncertainty field interaction and boundary extraction 

within a complex scene. Section 5 brings the thesis to a close with a summary and outlets for 

future research. 



2. LITERATURE REVIEW 

2.1 Concepts and Definitions 

This purpose of this section is to detail fundamental notions and concepts within the realm of 

spatial uncertainty. An overview of spatial uncertainty begins by exploring accuracy and quality 

of spatial information while examining sources and causes of uncertainty. In addition, spatial 

uncertainty estimation and modeling techniques are reviewed. Section 2 closes with a summary 

of remote sensing as well as digital image processing techniques to be applied towards 

uncertainty estimation. 

2.1.1 Overview of Spatial Uncertainty 

The definition of uncertainty as it relates to spatial information systems is a much debated and 

often cloudy issue. A variety of terms have been used, almost interchangeably, to communicate 

spatial uncertainty, including: error, accuracy, precision, vagueness, ambiguity, and reliability. 

Uncertainty is broader than any of these terms and includes these more restrictive concepts 

(Gottsegen, Montello, and Goodchild, 1999). 

Klir and Yuan (1995) define uncertainty issues as either products of fuzziness or products of 

ambiguity. Fisher (1999) takes the work a step further, defining uncertainty as dependent upon 

how well objects or classes are defined. Figure 1 illustrates Fisher's different types of uncertainty 

within spatial information and the methods that deal with them. 



1 Uncertainty 

Well-defined 

Figure 1 

Discord 

Conceptual model of uncertainty (adapted from Fisher, 1999, and Klir and Yuan, 1995) 

In order to determine which elements of uncertainty affect a specific spatial object, it is necessary 

to determine whether the class of objects is well defined or poorly defined. If the object is well 

defined, (e.g., land ownership boundaries), then the uncertainty is caused by errors and is 

probabilistic in nature. If the object is poorly defined, such as vegetation or soil boundaries, then 

specific types of uncertainty, vagueness or ambiguity, can be acknowledged. Here Fisher 

replaces Klir and Yuan's fuzziness with vagueness. Vagueness is associated with poor definition 

of the class in which the object belongs. For example, using the class definitions of "dry", 

"medium", and "wet" to label regions by average rainfall would be an example of vague class 

definition. There is no distinct boundary between the classes, resulting in uncertainty in the 



classification process. Similarly, classifying a person as "tall" or "bald are vague concepts that 

give rise to uncertainty. 

Ambiguity is associated with instances when there exists doubt as to how an object should be 

classified because of differing perceptions of it. Ambiguity can be further broken down into 

discord (disagreement over which class an object belongs to) and non-specificity (object 

belonging to no class). Discord occurs when an object is clearly defined, yet differing 

perceptions of the classification scheme allow the object to be classified in more than one class. 

As an example of discord, Fisher cites dispute over territorial claims of land. Both India and 

Pakistan have border conflicts and disagreements over the Kashrnir area. Both countries claim 

Kashmir as part of their territory, resulting in discord over the political classification of the 

geographic area. Differing classification schemes regarding wetlands can result in discord 

between organizations in their classifications of marsh areas. 

Non-specificity occurs when features have no appropriate class to be assigned to. Consider a 

census charting the ethnic diversity of a region. If the census provides Caucasian and African 

American as the only two ethnic choices, it is non-specific to a variety of other alternatives, such 

as Hispanic or Native American. When studying vagueness and ambiguity, it is apparent that 

uncertainty arising from poorly defined objects is mainly a problem of labeling. This point will 

be discussed in more detail in Section 2.1.5. 

It is important to note that the conceptual model provided is not an exhaustive representation of 

the possibilities within uncertainty. It is better used as a general framework to provide insight to 

the sources and types of uncertainty in spatial data. It is a model of reality that varies with scale, 

processing, and application; different models, definitions, and interpretations can be adapted from 



it. For instance, an increase in scale will often amplify both the variety of features discernible as 

well as the complexity of classes needed to categorize these features. 

Most research on expressing uncertainty within spatial databases has concentrated on two main 

methods: fuzzy set theory to represent vagueness, and probability theory to characterize error 

(Fisher, 1999). Linear features are well-defined objects and our measurement of them is a 

measurement of space. We are concerned not necessarily with measurements of attributes such 

as position or length, but rather of extractions of the objects themselves. Our work with spatial 

uncertainty focuses on well-defined elongated objects observed in digital images. In Section 

2.1.5 we therefore provide an adapted model of uncertainty to apply to image-based applications. 

2.1.2 Meaqurements of Spatial Information 

Uncertainty arises from imperfect measurement of spatial information. Spatial information exists 

in three components: 

Time 

Space 

Attribute 

Measurements of time, or the temporal aspect of data, act as an important reference to 

characterize data. Time can be treated as an absolute series with a desired origin and unit of 

measurement, such as 1918 A.D. or 2:42 PM. Time can also be treated as cyclical, such as days 

of the week or seasons of the year. The assignment of temporal values to data is referred to as 

dating. Another consideration is the temporal validity of spatial data. It is useful to know 

whether spatial data is valid to make decisions based on its time frame. A study of income 

distribution throughout Europe during World War I would have little meaning using today's 

salary figures. Temporal validity can depend on an absolute date or can be conditional on a 



period of time (e.g., 10 days). The temporal aspect of data, while often not emphasized, plays an 

important role in spatial analysis. 

Measurements of space are taken to define the geographic location and extent of objects or 

phenomena. Spatial measurements can be carried out over varying dimensions (I-D, 2-D, 3-D), 

units (feet, meters, degrees, etc.), and reference systems (Cartesian, latitude-longitude, etc.). 

Furthermore, spatial measurement can be placed in a relative or absolute context. A relative 

measurement locates a feature with respect to its surrounding environment, such as the location of 

a library within a university campus. Absolute measurements locate objects on a universal scale, 

linking any two positions using a common origin and measurement system. Typical absolute 

spatial measurements assume a 2-D representation of the earth's surface and exist as (X,Y) 

coordinate pairs or latitude-longitude pairs. However, the varying third dimension of the Earth's 

surface (height) plays an important role in spatial measurement. 

Spatial measurements are not solely declarations of the positions of geographic features. Spatial 

measurements are also used to derive representations of objects. Examples include road edges, 

the outline of a house, or the extent of a forest. Road centerlines often indicate the average 

position of a linear road feature, but do not provide information as to the extent or width of the 

feature. An accurate representation of the road encompasses these spatial characteristics, often in 

the form of an outline. A house can be represented by a single position, perhaps the center of a 

land area. Yet the house is better characterized by an outline of its edges, often in the form of a 

four-comered polygon. Consider a forest, where a single average position within the forest would 

be of little use to a data user. Representing the forest as an area with extent in multiple directions, 

rather than as a simple coordinate pair, is a far more appropriate approximation. 



Attribute measurements are those that deal with the nonspatial elements of data. An attribute 

value represents specific characteristics of spatial features. Attribute values can be anything from 

average age of a town, length or elevation of a feature, or spectral reflectance of a pixel. 

Accordingly, attribute values can take any units necessary (or no units at all) to adequately 

describe the characteristics of geographic features. 

2.1.3 Statistical Measures of Accuracy 

No measurement, spatial or otherwise, is ever perfect or exact. Every measurement contains 

error, and different measurements have different degrees of error. Two common indicators to the 

degree of error are accuracy and precision. An analysis of uncertainty within information of any 

type would be incomplete without addressing these fundamental terms. 

All observations and measured values contain errors. An error is a discrepancy between the 

measured and actual value of a particular attribute for a given entity (Veregin, 1998). When 

dealing with observations and measurements, the three sources of error are: 

Instrumental Those caused by imperfections in instrument functionality 

Natural Errors caused by changing conditions in the environment 

Personal Those errors created by limitations in the human senses 

Examples of instrumental errors could be uncalibrated parts or lenses in an imaging device, or 

non-uniform spacing between divisions on a theodolite or total station instrument. Natural errors 

may include variations in temperature, wind, atmospheric pressure, gravitational fields, and 

magnetic fields. Personal errors arise from one's inability to perfectly see, perceive, or 

interpolate observations. Examples include errors from actions such as digitizing a point, 

centering a level bubble, or reading angles from a theodolite (Wolf and Ghilani, 1997). 



While errors can be categorized by their sources, these sources can prcduce three distinct types of 

errors: blunders, systematic errors, and random errors. Blunders are errors (usually large) that 

result from the carelessness of the observer, such as mistakes in reading or writing observations 

values or using the wrong datum. Systematic errors are those that follow some physical law and 

hence can be predicted. Often systematic errors are removed by deriving corrections based on the 
I 

physical conditions that created them (e.g., atmospheric interference, solar radiation). Random 

errors are errors inherent in the nature of measurement, those errors that exist after all blunders 

and systematic errors have been removed. Random errors can arise from human and instrument 

imperfection, as well as imperfect corrections. Random errors are impossible to avoid and do not 

follow any physical laws. Therefore they must be handled according to the mathematical laws of 

probability and corrected by a series of adjustments (Leick, 1995; Wolf and Ghilani, 1997). 

When analyzing uncertainty within remote sensing and GlS, a common assnmption is that all 

blunders and systematic errors have been accounted for, either through elimination or by having 

some correction applied. The result is an uncertairity analysis that focuses on assessing and 

predicting the random errors within the system or model. This assumption is useful for assessing 

positional uncertainty of spatial features and serves as the basis of the many probability-based 

methods examining spatial uncertainty. Unfortunately, the random error assumption proves too 

limiting when taking thematic uncertainty into account. The biases inherent in a classification 

scheme require a more complex method to assess thematic uncertainty. 

Some common statistical indicators of error within a set of measurements are standard deviation, 

variance, covariance, and correlation. &or is the difference between a measurement and its true 

value. Often the true value is unknown and can be replaced by an expected value, such as an 



average. A sample variance can give an estimate of the spread of a set of measurements. The 

equation for the sample variance ( a 2 )  is: 

where n is the number of measurements and E is the sample mean. The standard deviation ( a )  

for a set of measurements is the square root of the variance: 

and is an estimate of how tightly measurements are clustered about the mean. Covariance is a 

measurement of the relationships that exist between two variables; in other words, how the 

variables tend to vary together. The equation for the covariance between two variables is: 

While the variance is the average of the squared deviation of a feature from its mean, the 

covariance is the average of the products of the deviations of feature values from their means 

(Duda 1997). Covariance can be used to calculate correlation between measurements, which 

expresses the degree that measurements interact together. A correlation coefficient of +1 means 

the measurements are highly correlated, while a correlation coefficient of -1 indicates the 

measurements are inversely related. The correlation coefficient can be calculated as: 

Two measures of quality regarding spatial measurements are accuracy and precision. These 

terms are often used together, without an adequate understanding of the differences. Accuracy is 



how close a set of observations are to the true value. It is a relative measure, since accuracy is 

always measured relative to the specification. Precision is a measure of the consistency of 

repeated observations; variance can be an estimate of precision. Consider the targets in Figure 2 

to help illustrate the concepts of accuracy and precision. Since accuracy is a measure of 

closeness to a "true" value (the target center), the shots in figure 2(a) are inaccurate. In addition, 

the randomlike pattern of shots indicates imprecision due to lack of repeatability. The shots in 

2(b) are precise because they are clustered together, but inaccurate because they failed to hit the 

intended target. In figure 2(c), the shots are accurate because their average position is the target 

center; however, the shots are imprecise because they are not clustered. Figure 2(d) demonstrates 

both high accuracy and precision: the shots are clustered around the intended target. 

(a) Neither precise nor accurate (b) Precise, yet inaccurate 

I (c) Accurate, yet imprecise (d) Both precise and accurate 

Figure 2. Illustration of accuracy versus precision using shots at a target 



2.1.4 Data Quality 

Uncertainty has emerged as the preferred term to describe the difference between what a database 

indicates and what exists in reality (Goodchild, 1998). However, another oft-used term to 

describe how well data represents objects or phenomenon in the real world is data quality. Data 

quality is a term used by various spatial data standards in their attempts to categorize components 

of uncertainty. It is therefore significant to address data quality in a study of uncertainty. 

Data quality is itself a difficult term to categorize. The term data quality is broader than the 

accuracy of the data. Accuracy plays a large part in evaluating quality, but there are related 

issues that must also be considered. There are many varying classification schemes developed by 

research organizations to describe data quality. The objective of the different categorizations is to 

separate data suitability into distinct components. For instance, the U.S. Spatial Data Transfer 

Standard breaks data quality down into five divisions (US National Institute of Standards and 

Technology 1992): 

Lineage - Sources of data, operations and transformations applied 

Positional Accuracy - Spatial and geometric accuracy of data 

Attribute Accuracy - Accuracy of values and classification of nonspatial elements in data 

Logical Consistency - Truthfulness of relationships; internal consistency of data 

Logical Completeness - How completely data represents world; commission and 

omission 

Meanwhile, the International Organization for Standardization (Technical Committee 21 1) data 

quality categorization is slightly different: 

Temporal Accuracy - Includes accuracy, consistency, validity of temporal context 

Positional Accuracy 



Thematic Accuracy - See: Attribute Accuracy above 

Logical Consistency 

Completeness - See: Logical Completeness above 

While these are just two examples of differing perceptions of data quality, they demonstrate that 

there is no universally accepted definition of the concept. The difficulty in defining and 

distinguishing between terms such as uncertainty, quality, and accuracy is not simply a semantic, 

problem confined to the realm of research. It directly affects the ease with which metadata, 

descriptive information about the data, is defined and produced. Metadata allows details of the 

data, including important temporal, thematic, and positional uncertainty estimates, to be provided 

to the user. In this way the user can gain an understanding of the level of uncertainty present. 

The data quality categorizations and their parameters are defined and determined by the data 

producers (Bonin, 1998). However, producers' differing classifications and content of metadata 

inhibit the usefulness and analysis of spatial data. Without a universal structure and content of 

metadata, users are unable to confidently interchange data from various sources. Lack of a 

common metadata format or derivation of accuracy estimates is a hindrance to uncertainty 

analysis. Often uncertainty in the data is ignored and data is taken at "face-value"; linear features 

extracted from an image are represented as crisp lines, despite uncertainty associated with them. 

The lack of well-accepted definitions of uncertainty or quality within the world of spatial data is 

an obstacle in estimating these concepts. The problem filters from producers to users and 

ultimately to subjective interpretations of data. 

2.1.5 Uncertainty in Image Applications 

As previously stated in Section 2.1.1, poorly defied objects are typically products of 

classification or some labeling process. We now present a more general framework for 

uncertainty than that presented by Fisher (1999) and Klir and Yuan (1995). We are interested in 



uncertainty as it relates to features within spatial imagery. While Fisher's model is object-based, 

our model is directed towards use with spatial imagery and finds its foundation in the three 

components of spatial measurement discussed in Section 2.1.2. The model's applications to 

spatial imagery include images themselves, as well as features and objects within the images. 

No measurement is without error; the presence of error introduces uncertainty. The three types of 

measurement of spatial information are temporal, spatial, and attribute-based. An image-driven 

model of spatial uncertainty should therefore have time, space, and attribute at its foundation. 

Temporal uncertainty arises from assigning values of time to information, and determining the 

validity of data to relevant situations. Both spatial and attribute values are dependent on the 

temporal measurement of data, and therefore the flow of uncertainty begins with the temporal 

aspect. 

The positioning of an image, feature, or object possesses uncertainty that is neither vague nor 

ambiguous; there is one position and extent in space. However, the measurement of position is an 

imperfect process and therefore subject to error. The concept of spatial positioning can be 

expanded into two components, position and extent. Position is the location in space of an object 

or feature, whether absolute or relative. Every point in an image, feature, object, etc. has a 

position. Extent is the area or coverage in space that an object or feature occupies, often 

represented as an outline. Extent refers to the measurable geometric qualities of a feature, 

whereas position is used to place the extent in a spatial reference system. For an image, the 

extent is the physical ground coverage recorded in the image. The image has position as well, 

such as the absolute GPS position of the image's center. On the other hand, the extent of an 

object can be an outline of a house or the edges of a road. Object extent is defined by points 

connected by lines, planes, and polygons. The objects have position in space as well, whether the 

area's center or nodal positions. 



Determining position and extent are imperfect procedures affected by random error and are 

therefore inherently uncertain. The process of assessing and estimating positional uncertainty can 

be generalized according to our conceptual model of uncertainty, which will be seen in figure 3. 

Positioning (spatial measuremeat) of features is a process free from vagueness and ambiguity, yet 

subject to error. Although vagueness and ambiguity may arise in determining where features 

begin and end, this is a problem of labeling and will be discussed shortly. However, once the 

feature boundaries are defined, the measurement of these boundaries is subject only to error. We 

are assuming that blunders and systematic errors have been removed, leaving random errors to be 

assessed. Random errors are probabilistic in nature, and are best handled using spatial statistics 

and probability theory. 

Labeling spatial features is the process of determining characteristics to record and then assigning 

values to those characteristics. The uncertainties associated with labeling are: 

Vagueness (associated with object or class description) 

Ambiguity (associated with attribute value or object assignment) 

Vagueness occurs when there is poor definition of class or individual object; it is a result of 

attempts to describe objects or classes. Vagueness indicates the presence of borderline cases for a 

term, concept, or classification. For instance, when classifying road condition as "straight" or 

"curvy" where does the border exist between the two? If a road with no curves is straight, how 

does one classify a road with one curve? Or a road with a few minor curves? In this manner, 

borderline cases can arise, where the classifier is uncertain as to the extent of class boundaries. 

Terms such as "wet", "dry", "smooth", "bumpy", "long", etc. are vague terms with no concrete 

definition. 



In addition, vagueness has an implication that is synonymous with generality. It is often claimed 

that vagueness exists because "broad categories ease the task of classification" (Sorensen, 2002). 

Vagueness is present in the process of describing entities, and is inherent in class definitions. No 

feature or object can be completely described, no matter how many attributes are detailed. The 

process of choosing which attributes are significant enough to describe a feature is subjective, and 

the resulting representation will be vague to some degree. For instance, a road can be described 

as a feature made up of asphalt. This definition is vague in that it fails to distinguish the road 

from a parking lot or some rooftops, which are made of the same material. If the road class 

definition is expanded to be an elongated object made up of asphalt, this is a less vague 

description. Including a smoothness attribute for curves and angles is an even less vague 

description. Attempting to describe images, features, or objects by attributes is a vague notion 

that is subjective to views of what is significant and important to record. 

We have shown that vagueness arises from the description of classes and attributes. 

Alternatively, the process of assigning values to attributes or objects to classes can lead to 

ambiguity. Ambiguity occurs when there is doubt as to how an object should be labeled, 

resulting in assignment to more than one class (discord) or no classes (non-specificity). If a 

process is unable to distinguish between two different classes or types of objects, the result is 

ambiguous. 

Ambiguity can occur in the absence of vagueness, meaning that even though classes are well- 

defined, the process of assigning objects or values is unable to sufficiently distinguish between 

these classes. Ambiguity is a result of confusion over the definition of sets, typically due to 

differing classification schemes. It arises "when there is doubt as to how a phenomenon should 

be classified (Fisher, 1999). Ambiguity is therefore process-dependent; i.e., the means used to 

assign objects or features determines whether the results are ambiguous. Consider a well-defined 



road classification scheme based on spectral signatures from digital imagery. An unsupervised 

classification may still incorrectly classify as roads those areas far removed from roads. The 

inability to distinguish between roads and non-roads is a problem of ambiguity. In addition, 

differing classification schemes can produce different results. A supervised classification may 

detect different road instances than an unsupervised classification; classifying a feature as a road 

with one process and a non-road with another process is a result of ambiguity. The differing 

perceptions of roads and their identification is ambiguous. Fisher (1999) provides examples of 

differing classification schemes, including the Indian-Pakistani dispute over Kashrnir, and 

differing views of wetlands. For example, if a classification process intended to assign lakes to 

countries, would the Great Lakes belong to the United States or Canada? Depending on the 

complexity of the process (whether it allows for lakes to exist in multiple countries) the results 

could be ambiguous. Estimating uncertainty arising from labeling requires robust methods that 

utilize logic, rule-based sets, and decision-making. Among the robust methods for modeling 

thematic uncertainty are fuzzy set theory, Bayesian statistics, and Dempster-Shafer Belief theory. 

Figure 3 outlines an extended framework for uncertainty in image applications. Uncertainty 

originates in the three basic measurements of spatial information: time, space, and attribute. 

Temporal uncertainty is found in the dating of information and the validity of the data for its use. 

Spatial uncertainty originates from the error inherent in the position and extent of spatial objects 

and phenomena. Attribute uncertainty arises from the labeling of spatial features; the imperfect 

description of features yields vagueness, while the process of assigning values and objects to 

classes produces ambiguity. 
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Figure 3. An extension of the conceptual model of uncertainty for image applications 

2.2 Estimation and Modeling Techniques for Spatial Uncertainty 

This section introduces some definitions of statistical probability methods and indicates why they 

are useful for modeling positional uncertainty. The majority of spatial uncertainty analysis is 

accomplished via statistics, probability theory, and adjustments, well-known mathematical 

techniques. However, these are not the sole methods for uncertainty assessment. Certain types of 

uncertainties (vagueness, ambiguity, imprecision) require more robust means of uncertainty 

determination. Methods such as fuzzy set theory, Bayesian statistics, and Dempster-Shafer 

theory are often more suitable for uncertainty within poorly defined data (Carosio and Kutterer, 

2001). 



2.2.1 Statistical Probability Methods 

For any measurement of a parameter, there is a probability that it is correctly measured. Methods 

for determining uncertainty using probability are based on assumptions of standard error theory. 

While errors occur both systematically and randomly, most methods assume systematic error has 

been corrected for (e.g., via calibration). As a result, uncertainty related to the observation or 

measurement of values is considered to be random. When many independent random factors act 

in an additive manner to create variability, data (or errors) will follow a bell-shaped distribution 

called the normal, or Gaussian, distribution. The normal distribution has some distinct 

mathematical properties that form the basis of many statistical tests. It is characterized by a 

symmetric, bell-shaped density curve. The normal distribution is symmetric about a central 

value, the mean of the random variable, at which point the peak density occurs. The distribution 

is therefore described by its mean and standard deviation, indicating the spread of the curve. The 

total area under the normal curve is equal to 1, and any area under the normal curve corresponds 

to a specific probability. The equation for a normal distribution's probability density function is: 

All normal curves exhibit an important property related to the area under the curve and the 

standard deviation from the mean. Considering a normal distribution of measurements, 

approximately 68% of all observations (x) fall within one standard deviation ( 0 )  of the mean 

(p)  , in the interval (p - 0 ,  p + 0 )  . Thus, 68% of observations fall within p - 0 < x < p + 0 . 

In addition, 95% of all data will fall within two standard deviations (20)  from the mean, and 

99.7% of the data will fall within three standard deviations (30) from the mean. Thus, for a 

normal distribution, practically all data lie within three standard deviations from the mean 



(Narasimhan, 1996). Figure 4 illustrates the graphical representation of a normal curve centered 

on mean (p )  with 68% of its data falling within the range: - CT < x < CT . 

Figure 4. Normal (Gaussian) distribution curve 
(Figure from Computational Science Education Project, 1996) 

The normal distribution plays a central role in statistics because of a mathematical relationship 

known as the Central Limit Theorem. The central limit theorem states that if randomly selected 

samples are large enough, the distribution of sample means will follow a normal distribution even 

if the population is not normal. Since most statistical tests are concerned only with differences 

between means, the central limit theorem lets these tests work well even when the populations are 

not normal. For this to be valid, the samples have to be reasonably large, depending on how far 

the population distribution differs from a normal distribution (Motulsky, 1999). 

Random errors vary in such a way that individual errors of an observation cannot be 

predetermined. A statistical approach can model these errors, and an estimated "correct" value 

can be calculated in this manner. Generally there is a probability distribution function that can be 

applied to the behavior of random errors. While most data capturing is not done in a statistical 



manner, the observations are often assumed to be like random variables whose errors follow a 

normal distribution. These assumptions and their models allow the uncertainty of observations to 

be estimated (Azouzi, 1999). 

Indeed, the U.S. Federal Geographic Data Committee (US FGDC) has adopted a standard for 
: 

reporting positional accuracy of points that relies on the assumption of normally distributed 

positional errors (US FGDC, 1998). Goodchild and Hunter argue that while this distribution may 

apply to positional uncertainty in points, no comparable theory exists for complex features. In the 

absence of evidence supporting a normal distribution of complex feature separations, the authors 

propose a method that is non-parametric (1 997). In fact, there are numerous methods and models 

for determining the positional uncertainty of spatial features, be they points, lines, or polygons. 

Estimating positional uncertainty will be examined more closely in Section 3 and Appendix A. 

Positional uncertainty of digital spatial databases is typically expressed through point error 

measurements. Point errors can be quantified using standard deviations of points in the x, y, and 

z directions. Due to the twedimensional nature of maps and imagery, error is typically 

quantified as either a single directionally independent measure ( a ) ,  or as a standard deviation in 

two directions (a,,  a , ) .  One important measure of error that utilizes standard deviations is the 

root-mean-square positional error, or RMSP. The RMSP for a point can be calculated 

accordingly: 

RMSP = ,/= (Caspary and Scheuring, 1992) 

A visual indicator of error or uncertainty of points is an error ellipse. An error ellipse uses 

standard deviations in two directions (e.g., x and y) to define its semi-major and semi-minor axes 

and rotation. The ellipse's axes are defined in the following manner: 



Semi-minor axis = --- 
2 

Along with the rotation of the ellipse (angle t in figure 5)' these axes provide useful visual 

information regarding a point's positional uncertainty. The semi-major axis defines the weakest 

direction in which a point's position is known (i.e., the direction of maximum uncertainty). 

Figure 5. Error ellipse and its components 

Consequently, the semi-minor axis defines the point's direction of least uncertainty, or the 

strongest direction in which the point's position is known (Wolf and Ghilani, 1997). If the 

uncertainties in both directions are equal (i.e., a, = 0, ) and independent, the ellipse's shape is 

an error circle. Yet another measure of positional uncertainty is Circular Error Probable (CEP). 

The CEP is defined to be CEP = 0.589(a,ay), where the probability of the point's true 

position lying inside a circle with radius CEP is 50 percent. The RMSP, error ellipse, and CEP 

are common methods of quantifying point positional error. Appendix B offers a more 

comprehensive examination of statistical probability methods for positional uncertainty. 



While point error models provide information regarding positional uncertainty, it is more useful 

to obtain uncertainty measures for lines and objects. Despite solid point modeling theory, lines 

and polygons have proven more problematic for visualizing and modeling their associated errors. 

The complexity arises from the need to take independent error models of individual points and 

combine them to form a more complex, dependent model. Just as a line is composed of two 

endpoints, the line's error is derived from the error of its endpoints. Ln like manner, a polygon's 

error can be derived from the error of its boundary line segments. By designing error models for 

spatial objects based on the error models of their more basic components, it is hoped that a 

building-block approach can be used to formulate uncertainty indices for complex objects. 

2.2.2 Fuzzy Set Theory 

Within a GIs, spatial phenomena often possess indeterminate boundaries yet are represented by 

sharply bounded objects. This data may be better characterized by a more vague or fuzzy 

description when class boundaries are unclear. Fuzzy set theory is one such approach which can 

manage vague objects and classes. It is a mathematical modeling environment that incorporates 

uncertainty, imprecision, and partial truths in its process. 

Fuzzy set theory represents a method for assigning levels of membership to elements in a set. It 

is closely related to fuzzy logic, which allows the assignment of weights to propositions within a 

system and is useful for decision-making. Fuzzy set theory is well suited for handling vagueness 

(i.e., poor object or class definition). Fuzzy sets use membership functions to assign real numbers 

in the interval [O,l] to elements. Membership in a fuzzy set is treated as a probability, which can 

be considered a degree of truthfulness for an assertion using fuzzy logic. The real number value 

indicates the element's grade of membership within the set, with 1 being complete membership 

and 0 being no membership. When fuzzy membership functions are used to classify spatial data, 

fuzzy objects with indeterminate boundaries result. Fuzzy set theory can enhance traditional 



vector data models by incorporating existing uncertainty into the qualitative and visual 

representation of the data. Crisp boundaries are therefore replaced by fuzzy borders, yielding a 

less precise but more accurate spatial portrayal. Within raster data, fuzzy set theory can divide 

spatially continuous fields into fuzzy regions or classes. The typical approach in image analysis 

begins by segmenting the image into re~ions that are similar with regard to an attribute(s). 

However, it is often difficult to divide data into distinct classes, as is the case with remotely 

sensed forest and vegetation imagery. With the presence of vague class boundaries, fuzzy set 

theory can be very useful in handling complex class membership schemes. 
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Figure 6. Fuzzy membership function with interval [O,l] 
(Figure from Rogge and Halden, 2000) 

Some other advantages of fuzzy set theory are its ability to use an infinite set of membership 

grades, and the ability to use functions and quantifiers that are inherently vague. However, 

drawbacks include the problems associated with changing class intervals, and when data has zero 

value or is missing, resulting in a skewed class distribution. 



2.2.3 Bayesian Statistics 

Bayesian statistics are used to combine information from different sources with varying degrees 

of reliability. Bayesian networks are a powerful tool that can define a complete probabilistic 

model based on local conditional probability distributions. These probabilistic models can then 

be applied to manage uncertainty in GIS applications. 

While probability is at the foundation of Bayesian statistics, their significance stems from the 

additional use of prior knowledge concerning the variables or parameters of interest. Bayesian 

networks contain rule-based reasoning capability that can incorporate this prior knowledge (e.g., 

uncertainty estimates). Bayesian techniques can be applied to mathematical models, probability 

distributions, and thematic spatial data. Within spatial analysis, Bayesian statistics are useful for 

showing how an observed value of a variable is significantly different from the mean or expected 

value. 

Bayesian networks are capable of representing a system's variables, relationships, and underlying 

probabilities. Variables are represented by nodes, with the relationships between the nodes 

expressed as conditional probabilities and represented by arcs. Prior knowledge can be input into 

each node (variable), and this information can be propagated through its dependent nodes in the 

system. Flow from one node to another may exist in only one direction, indicating that the source 

node is conditionally independent of the other. 

Bayesian statistics provide a meaningful and straightforward interpretation of probabilistic 

inferences by incorporating prior knowledge. Such knowledge may come in the form of 

estimates for an underlying distribution, acquired via sampling and field data. Berztiss (2002) 

uses the example of estimating the number of left-handed people in your city. If at the time of the 

sampling you know a convention of left-handed people is being held, this prior knowledge can be 



used to adjust the observed probability. Bayesian networks are essentially extended probabilistic 

models. By combining the model predictions with outside knowledge, the resulting estimates are 

able to provide a more accurate approximation than probability models alone. 

2.2.4 Dempster-Shafer Belief Theory 

Similar to Bayesian networks, Dempster-Shafer theory presents a useful tool for making 

decisions under uncertainty, combining information from different sources. The theory allows a 

method for pooling the total evidence available for a decision. Dempster-Shafer focuses on the 

combination of degrees of belief or support from distinct bodies of evidence. Uncertain belief for 

propositions based on evidence is represented by belief functions. Conventional probability 

theory (and Bayesian networks) use probabilities that are fixed and known in advance. 

Dempster-Shafer theory is a generalization of probability theory, in that only the upper and lower 

bounds on probabilities are available. 

Dempster-Shafer theory attempts to fully describe the evidence concerning inferences or 

propositions. To accomplish this, Dempster-Shafer techniques quantify the degree of support for 

a proposition (beliej), support for the negation of a proposition (disbeliej), as well as the degree to 

which the negation of the proposition is not supported (uncertainty or lack of beliej). In this 

manner there may be some belief that is uncommitted, and therefore a distinction between 

disbelief in a hypothesis and lack of belief in a hypothesis. 

The portrayal of evidence for a hypothesis within Dempster-Shafer theory is based on two 

independent "belief functions". The upper boundary function of uncertainty, plausibility, 

separates disbelief from uncertainty. The plausibility function represents an optimistic 

assessment that the evidence supports a proposition. The lower boundary function, belief, is the 

conservative assessment that the proposition is supported by the evidence. The belief function 



separates uncertainty from belief. Uncertainty is considered the degree of confidence in the belief 

portrayal, and is represented by a confidence band bounded by the belief functions (Rogge and 

Halden, 2000). A real number between 0 and 1 indicates the degree of support a body of 

evidence provides for a proposition. In this manner: 

Belief + Disbelief + Uncertainty = I 

This contrasts with Bayesian theory which assumes that the inference or proposition is Boolean; it 

either exists or does not exist. In the Bayesian case: 

Belief + Disbelief = 1 

I Plausibilitv function 

I/ Uncertainty 

/ I Belief function 

Evidence Value 

Figure 7. Dempster-Shafer belief functions (Figure from Rogge and Halden, 2000) 

By integrating uncertainty with belief and disbelief, Dempster-Shafer theory allows a process that 

can adapt to accumulating evidence. Gordon and Shortliffe (1985) developed an algorithm which 

adjusts the belief functions based on new evidence, attempting to narrow uncertainty to either 

belief or disbelief. 



There is limited research applying Dempster-Shafer to decision-making and GIs. Most GIs 

projects employing Dempster-Shafer theory have focused on the thematic aspect of spatial data. 

Such research typically derives evidence for class membership from various spatial data sources, 

including remotely sensed imagery and GIs field data. Further investigation could focus on 

incorporating Dempster-Shafer theory into criteria selection, uncertainty evaluation, and risk 

analysis in the GIs environment. 

An insightful comparison of the Bayesian statistical model and the Dempster-Shafer belief theory 

is provided by Flack (1996), who claims the difference between the two measures is conceptual. 

The Bayesian model assumes that phenomena are Boolean, meaning they either exist or do not 

exist: 

"The result of this assumption leads to the implication that commitment of belief 

to a hypothesis leads to the commitment of the remaining belief to its negation. 

If there is little belief for the existence of a phenomena this would imply, under 

Bayesian formulation, a large belief to its non-existence." (Flack, 1996) 

As we have shown, Dempster-Shafer theory assumes more complex, non-Boolean behavior, and 

therefore lack of belief in a proposition does not imply disbelief. 

Flack additionally notes another distinction between Bayesian statistics and Dempster-Shafer 

theory, that of prior probabilities. Bayesian networks use probabilities that are fixed and known 

in advance; therefore each parameter within the Bayesian model must be assigned a prior 

probability. Within some applications, such as ground truthing within remote sensing, this can be 

a daunting task (Strahler, 1980). However, supporters of Bayesian theory claim that prior 

probabilities, representing a priori expectations that are refined as evidence is accumulated, are a 



natural part of reasoning (Flack, 1996). Stassopoulou and Caelli (2000) provide a method of 

building detection using Bayesian networks, while (Stassopoulou et al, 1996) incorporate 

Bayesian and neural networks for geographic information processing. 

Some advantages of Dempster-Shafer theory are its capability to handle missing or zero-value 

data, and its application to areas not well explored. However, critics cite the impracticality of 

trying to conceptualize belief and disbelief as a major drawback. 

2.3 Image-based Positional Measurements 

2.3.1 Film-based Photogrammetry 

Remotely sensed imagery provides a fast and efficient means of collecting large volumes of 

information about the earth's surface. Remote sensing is the act of measuring electromagnetic 

energy from a region (visible light, radio waves, heat, etc.) at a distance. The measurement of 

electromagnetic energy can be performed either photographically or electronically, and the results 

are recorded and stored in the form of images. The art of measuring and interpreting remotely 

sensed images is termed photogrammetry. Photogrammetry allows measurements from 

photographs and digital images to be converted into X,Y,Z ground coordinates of individual 

points through the process of aerotriangulation. 



Figure 8. Geometric relationships between focal plane, camera lens, and ground (Fahsi, 1996) 

Analytical photogrammetry deals mainly with film-based aerial photography, while digital 

photogrammetry makes use of digital imagery that has been either digitized or remotely sensed. 

Analytical photogrammetry is typically of higher precision due to manual input and measurement 

of reference points. Digital photogrammetry employs powerful automated detection and 

extraction procedures which allow large amounts of data to be processed quickly. Film-based 

photographs, their features, and measurements can be converted for use in digital databases 

through digitizing or digital image scanning. 

Analytical photogrammetry is that realm of photogrammetry that deals with film-based remotely 

sensed imagery. Film-based imagery is often collected via aerial cameras, or sometimes high- 

altitude terrestrial cameras. Photogrammetric measurements such as length, angles, or 

coordinates are made with respect to the image negatives. Analytical measurements are made 

with various equipment, the most rigorous and complex of which is the stereoplotter. A 

stereoplotter is used to align two parallel aerial images in a way that three-dimensional ground 



measurements can be derived from them. These ground measurements are determined through 

aerotriangulation, which utilizes the condition that an object point, its photo image, and the 

exposure station all lie along a straight line. 

The accuracy of points or targets measured by steroplotters is dependent on the flying height 

when the image was captured. A well-marked target in an image can be measured by a 

stereoplotter to a, = +5pm. The actual horizontal ground accuracy this represents depends on 

the scale of the image. The scale of an image (S, ) is related to the image flying height (2) and 

the focal length of the camera (c) . 

Vertical accuracy can be measured by a stereplotter to approximately 0.006% of the flying height. 

For instance, at a flying height of 1,00Om, a stereoplotter can measure with a vertical accuracy of 

(a, = 6cm). 

When dealing with points that are not well marked, (i.e., natural points like corners of buildings 

or manholes) a manual operator will be subject to the steroplotter's measuring limitations (f 

6pm) as well as identification error. Identification error arises from imperfect definition of points 

or objects within an image. A human's ability to discern objects is limited and therefore affects 

the accuracy with which these objects are measured. A general formula for determining the 

accuracy of measuring natural points involves the stereoplotter's measuring accuracy (0, ) as 

well as error of definition (adcf). 



Table 1 outlines typical errors of definition when using a stereoplotter to measure various points. 

The table illustrates that errors of definition are larger than a stereoplotter's errors of 

measurement. 

r h i n t  Error of definition: 0, (den Error of definition: q (den 

I I 

Table 1: Rules of thumb for errors of definition with stereoplotter 

Comer of building I 7 - 12cm 

Manhole 

Comer of field 

Bushes, Trees F 
Manually measuring continuous lines with a stereoplotter is less accurate than point 

8 - 15cm 

measurement. The horizontal accuracy of such lines typically ranges from 0.3 - 0.45pm. A 

coarse formula for the vertical accuracy of measuring lines is f 0.025% of the flying height. 

4 - 6cm 

20 - lOOcm 

20 - lOOcm 

Photogrammetric plotters can also be used as a stereo (3D) digitizer, collecting planimetric and 

height data for digital maps. When used to measure heights within an image, the plotters surface 

measurements are interpolated between measurements to produce continuous digital elevation 

1 - 3cm 

10 - 20cm 

20 - lOOcm 

models (DEM). 

2.3.2 Digitizing 

Before geographic information systems can be designed, the data they consist of first has to exist 

in digital form. Paper maps and other physical representations are converted to digital form by 

the process of digitizing. Manual digitizing by an operator is used to record key features from a 

physical representation and convert them to vector data consisting of points, lines, and polygons. 

In addition, image scanners can be used to digitize whole maps or photographic images into 



continuous raster data. Often the two methods are combined: physical images are often converted 

to raster data through digital scanning, and a hunlan operator can then perform vector tracing of 

the new digital image. Similar to digitizing, vector tracing is the process of recording relevant 

features from a rister image to be stored in vector form. The accuracy of digitizingtvector tracing 

is dependent on both the resolution of the representation being traced and the accuracy of the 

human operator. A digitizing table will also have accuracy dependent on the resolution of the 

signal passed between the table and the digitizing pen. Typically a digitizing table's 

measurement accuracy is in the range of 0.075 mrn to 0.5 mm, without taking into account human 

error (Jackson and Woodsford, 1991). Human error is almost impossible to model due to 

cognitive decision making far too complex for any mathematical model. The process of 

digitizing typically involves the extraction of continuous multi-nodal features, such as road 

networks or polygons. The continuity of the vector tracing of such features gives rise to 

continuity and dependency among their errors, which further complicates the error modeling 

process. 

Digital scanners have varying accuracies depending on cost and intended use; today's simple 

office scanners typically have a scanning accuracy of 0.021 mm, which translates to 1200 dots 

per inch. High end scanners are capable of accuracies greater than 0.002 mm, or 12,500 dots per 

inch. Inaccuracies in digitized map features arise for a variety of reasons, such as the original 

article's resolution, circumstances of data capture, the manner in which features are represented 

in a database, and the ways which data are manipulated (Dutton, 1992). When determining 

accuracies of digitizing maps or images, standard deviations can be derived through differences 

of repeat digitizations (Caspary and Scheuring, 1992). These standard deviations can then be 

used as point error models for error adjustment and propagation of error through complex objects. 

Errors arising due to the digitization process are sometimes described using a circular nonnal 

distribution. A circular normal distribution involves two variables with no correlation to each 



other and equal standard deviations. The lack of correlation indicates the variables are 

independent, and the equal standard deviations indicate uniform error in all directions. An error 

circle can be used to visualize this condition, as discussed in Appendix B. 

2.3.3 Digital Remote Sensing and Image Processing 

Film-based photography measures and records electromagnetic data on film. Digital photography 

is similar to film photography, but image data is recorded on arrays of charge-coupled devices 

(CCDs). These electronic sensors generate an electrical signal that corresponds to the energy 

variations in the original scene. The resulting digital image consists of pixels storing each 

sensor's signal as an integer (digital number). Digital remotely sensed data can be obtained 

through handheld digital cameras, digital aerial cameras, and space-borne satellites. Digital 

camera image formats range from 5 12 by 512 pixels to 2048 by 2048 pixels or higher, with a 

typical pixel size of 9 by 9 pm. The ground resolution of digital aerial cameras is dependent on 

flying height. but common results range from 0.5 to 4 meters per pixel (Lillesand and Kiefer, 

1994). Satellite sensors are continuously measuring electromagnetic energy and streaming the 

data to earth in digital format. These satellites house diverse sensors that can detect multispectral 

bands of the electromagnetic spectrum. Remote sensing spacecraft such as Landsat, SPOT, and 

NOAA satellites can provide imagery with ground resolution between 1 and 30 meters. 

Film-based photography offers a higher degree of spatial detail and geometric integrity than 

electronic sensing devices. However, electronic sensors cm detect a broader range of the 

electromagnetic spectrum, results are achieved quickly and are stored in convenient digital form. 

Digital image data is extremely useful for geographic information systems for many reasons. It 

allows the storage and cataloging of numerous images, and most importantly, data analysis of the 

images can be automated. Broad spectral patterns can be quickly and fully examined using 

qutomated techniques, a process that would otherwise be tedious for a human operator. Since 



digital images are simply sets of pixels with numerical values, computers can apply equations and 

algorithms on a pixel-by-pixel basis to manipulate and interpret them. Among the computer- 

assisted techniques are image rectification and restoration, enhancement, and image 

classification. Image rectification adjusts image distortion or degradation to "create a more 

faithful representation of the original scene" (ibid.). Image enhancement techniques adjust 

images to more effectively prepare images for analysis and interpretation. Examples include 

thresholding, contrast stretching, spatial filtering, edge enhancement, and Fourier analysis. Yet 

the most significant of automated processes of digital images are those involving image 

classification. 

Classifying pixels in an image allows visual analysis to be replaced by automated quantitative 

techniques for identification of features in a scene. The goal of classification is to categorize an 

image's pixels into various land cover classes or themes. Classification is based on both spectral 

pattern recognition (trends in the recorded spectral responses) and spatial pattern recognition 

(geometry of features in a scene). Spectral patterns are useful because different feature types 

exhibit different spectral reflectance properties across wavelength bands. Spatial pattern 

recognition categorizes image pixels based on their spatial relationships with neighboring pixels. 

Aspects of spatial patterns taken into account are texture, pixel nearness, shape, directionality, 

and repetition. Spatial pattern recognition attempts to mimic the cognitive spatial analysis 

performed by humans during visual interpretation of images. Consequently, such classification 

tends to be more complex and computationally intensive than spectral pattern recognition 

procedures (ibid.). Often the best classification result is obtained through a combination of both 

spectral and spatial pattern recognition. As a result, a variety of methods of pixel classification 

exist to transform imagery into simpler maps for such themes as land use or vegetation cover 

(Goodchild and Min-hua, 1989). 



The spectral response recorded for each pixel in a digital image is an integral over the area of the 

pixel of a continuous, spatially autocorrelated variable. Consequently, it is common to think of 

response data as a random sampling of a continuous surface or field. Yet an image that has been 

classified can be conceptualized as an array of discrete values in which each pixel has been 

assigned to one of a number of classes (ibid.). As a result, there are no objects or features to be 

located; pixels are simply members of a group. Therefore, classification accuracy is a function of 

the errors in the assignment of classes to each pixel. 

Another fundamental photogrammetric operation related to classification is automated feature 

extraction. It is a technology that can assist and facilitate image analysis and interpretation of 

remotely sensed data. By applying post-processing techniques to enhance and isolate feature 

definition within digital imagery, automated feature extraction can identify relevant features and 

their outlines. Such post-processing techniques include mathematically strengthening feature-to- 

background contrast, eliminating image "noise", and pattern recognition (NCRST, 2001). 

Feature extraction is typically semi-automated, requiring human input for some manual 

approximations which are then applied within automated algorithms. Which tools and 

approaches to use, as well as the quality of the results, depends upon the qualities and 

characteristics of the imagery and on the nature of the feature extraction problem. The complete 

process requires setting up a sequence of processing steps and defining the parameters and 

initialization criteria for each step. 

Automated feature extraction can be applied to a broad range of imagery interpretation tasks, 

employing complex image processing algorithms to isolate desired features. Success in isolating 

specific features depends on establishing a set of conditions that uniquely mark that feature. The 

spectral signature of a given feature, as represented by digital numbers stored in pixels, typically 

clusters around some mean value. This knowledge can be used to exclude large portions of an 



image from consideration in the extraction process. While spectral signature alone is normally 

not sufficient to allow feature recognition, it is an important part of defining the subset of an 

image. In panchromatic imagery, only one value is used to represent each pixel in the image. In 

multispectral imagery, more information is available from different spectral bands which can be 

used to refine exclusion criteria. Knowledge of range and contrast of the surrounding pixels, 

referred to as texture or segmentation analysis, is also useful in automated feature extraction. The 

spectral characteristics of image subsets provide information about the features and transitions 

from one area of the image to another. Patterns (and their distribution) within an image aid in the 

filtering process by offering indicators of the location and configuration of a feature. As a result, 

linear features such as roads, railroads, and pipelines are prime candidates for automated feature 

extraction (ibid.). 

Such linear features may take approximations in the form of an initial point and approximate 

direction, or a set of points that approximate the feature from start to end. These approximations 

are then employed by automated algorithms that conduct profile matching, line detection, edge 

analysis, or combinations of the methods (Agouris et a]., 2001). Automated methods such as 

dynamic programming and deformable contour models are examples of robust methods for 

extracting linear features. Full automation of the feature extraction process is being researched 

by automating the selection of initial approximations, such as node locations or road orientation 

(ibid.). 

2.3.4 Deformable Contour Models 

A tool commonly used to extract linear features from digital imagery is the deformable contour 

model. This tool, sometimes referred to as an active contour model or a "snake" (Kass, et al., 

1987), is a computer-generated curve that moves within images to find object boundaries. Snakes 

are often used in digital image processing and image analysis to detect and locate objects, and to 



describe their shape. Within this thesis, deformable contour models will be examined as a means 

to obtain continuous uncertainty boundaries of extracted linear features. Subsequently, snakes 

will be used to model the interactions between the uncertainty boundaries of neighboring objects. 

A post-processing step following the extraction of the linear feature, this will serve as the second 

stage in the information extraction process. 

Deformable contour models represent image contours that are easily manipulated by higher-level 

processes. A snake is essentially a deformable curve that moves under a variety of image 

constraints (which tend to be local) and object-model constraints. The snake is controlled by a 

minimizing function which converts high-level information (e.g., curvature and discontinuities) 

and low-level image information (e.g., gray values, edge gradients and terminations) into 

energies. 

Snakes can be guided or constrained to seek out features in images with particular attributes. 

Perhaps their most common use is for finding edges and lines in images. Lines and edges have 

very distinct properties within images regarding their contrast with neighboring features (pixel 

gradient). Geometrically, a snake will attach itself to an edge location in an image and extend 

itself along the edge as a series of nodes and line segments until reaching a state of stability. The 

state of stability is defined by the minimizing energy function. The minimizing energy function 

defines both internal and external forces which constrain the snake to "slither" under "controlled 

continuity" (ibid.). Internal forces constraining a snake ensure a degree of smoothness and 

continuity in its shape. External forces attract or push the snake towards significant image 

features, i.e., edges. In addition, supplemental external approximations or constraints may be 

applied to initiate or guide the snake. These approximations may be a direction or a set of points 

the snake must reach. Most snake operations are semi-automatic, meaning some preliminary 

approximations must be provided to initiate the extraction procedure. However, these 



approximations may also be derived automatically, moving the extraction process closer to a fully 

automated task. The snake is "active" or "deformable" because it will continue to seek or extend 

an edge until its constraints are met by a minimized energy function. This turns the object or 

edge extraction process into an optimization problem (Agouris, et al., 2001). 

The snake's position can be expressed parametrically by v(s) = (x(s), y(s)) . Its total energy 

can be written in terms of its component energies: 

(Kass et al., 1987) 

where Eint is the internal energy (smoothness, continuity) of the snake, Eimge are the image forces 

attracting the snake to an edge, and Econ are any external constraints or approximations supplied 

by the user. 

Extensions of the original snake model include differential snakes (Agouris, et al., 2001), which 

further defines the total energy along a snake at each point as: 

where the three components are continuity, curvature, and edge. Finding edges in an image can 

be done using a simple calculation of gradients within an image. The larger the gradient is, the 

greater the snake's attraction to the edge. The edge term, and all the terms, can be diminished or 

emphasized by adjusting their corresponding coefficients (a, b, g). The coefficients act as 

"energy costs" towards the total energy function. Since the snake is constrained by a minimizing 

function, it will iteratively search for the path that generates the least resistance, i.e., the least 

energy. The iterative behavior of the snake as it attempts to minimize the energy function holds 

significant implications for the errors associated with extracted lines and edges. 



As the snake iteratively lengthens itself along an edge, it adds nodes to its shape in a continuous 

manner. A small error at an early iteration can therefore have an impact on the shape and error of 

the entire edge. For example, if the snake strays from the edge during its initial iterations, it may 

be inclined to continue its current course in order to minimize the energy function. The small 

error can be compounded iteration after iteration, and may eventually propagate throughout the 

entire contour line. The result is a line lying only partly on the edge with one end dangling in 

image space. It may seem that the simple solution would be to give the gradient a high emphasis. 

However, rarely are edges fully continuous and unobstructed by neighboring features or noise. 

Over-emphasizing the edge term can cause the snake to search for the largest gradient in the 

neighborhood, which may not be the current edge. The snake may otherwise search for any 

gradient, causing the snake to jump to different edges at edge junctions (e.g., road intersection, 

noisy areas, obstructed views). The challenge is coming up with suitable coefficients for the 

snake minimizing function. 

Deformable contour models are a powerful feature extraction tool for extracting lines and edges 

as continuous objects. Section 4 will demonstrate how the continuous nature of deformable 

contour models can be used to extract uncertainty boundaries of multiple line segments. Building 

upon this approach, snakes will further be used to model the interaction of uncertainty boundaries 

of neighboring features. 

Another semi-auto'inated linear feature extraction method is based onsequential solutions derived 

by dynamic programming that requires seed points to provide a rough description of the line. 

Alternatively, a combination edge analysis follower and area-based correlation follower can 

emplos an initial point and direction for linear extraction. Similar to snakes, these models are 

based on iterative processes that can result in positional error propagation. An analysis and 



comparison of these methods with regard to road extraction is provided by Dal Poz and Gyftakis 



3. ESTI-MATING POSITIONAL UNCERTAINTY OF A LINE SEGMENT IN GIS 

Developing methods to express the accuracy or uncertainty of spatial information has been the 

focus of much research within the spatial data community. With regards to positional 

uncertainty, these methods have been continually developed and extended over the last twenty 

years. Within our discussion, the terms 'error' and 'uncertainty' will be used almost 

interchangeably. The spatial data community, while recognizing the inherent differences between 

the terms, is often at odds when trying to define or separate them. This confusion is due, in part, 

to the similar concepts the tenns are meant to convey. Error analysis is used to determine the 

discrepancy between the true and measured values of an object or location. However, a true 

value or location is a luxury not often available in spatial data. For example, determining a 'true' 

location for a wetlands boundary. or 'true' location of objects extracted from coarse imagery. In 

the absence of a hue value, uncertainty is substituted for error. In order to achieve the goals of 

this paper, we must analyze and apply previous research on positional error and uncertainty. Any 

investigation of uncertainty measurement methods reveals extensive use of error analysis 

techniques. For the sake of simplicity we will assume that the term 'uncertainty', and 'error' 

both indicate a deviation from an expected value. In addition, the term accuracy can be 

considered the complement to the two terms, i.e., the "closeness" to the true value. 

The topics of this paper are concerned mainly with estimating spatial uncertainty boundaries and 

modeling their interactions with each other. The spatial uncertainty we address is that which 

arises from image-based measurement and data production methods, e.g., automated feature 

extraction. Furthermore, we wish to focus on interactions among data derived from different 

sources and techniques. As previously noted, spatial objects are comprised of points, lines, and 

polygons. As the most fundamental geometric element, points and their error models have long 

been sfudied in the fields of geodesy, surveying, and mapping (Shi 2000). Section 2.1.3 stated 

that all observations and measured values contain errors, and Section 2.3 indicated sources of 



error or uncertainty within positional measurements. The uncertainty of digital spatial databases 

is typically expressed through point error measurements. Point errors can be quantified using 

standard deviations of points in the x, y, and z directions. Due to the two-dimensional nature of 

maps and imagery, error is typically quantified as either a single directionally independent 

measure (o), or as standard deviation along two directions (&,o,). Some common error 

measurement methods that utilize standard deviations are the root-mean-square positional error 

(RMSP), error ellipses, and the Circular Error Probable measure (CEP). Section 2.1 and 

Appendix B examine point error measurement methods more closely. 

While point error models provide information regarding positional uncertainty, it is more useful 

to obtain uncertainty measures for lines and objects. Current techniques of spatial data 

measurement extract complex objects as separate entities made up of nodes and line segments. 

As the methods of data extraction advance, so too must the methods of estimating the associated 

uncertainty within the data. Despite solid point modeling theory, lines and polygons have proven 

more problematic for visualizing and modeling their associated errors. The complexity arises 

from the need to take independent error models of individual points and combine them to form a 

more complex, dependent model. Just as a line is composed of two endpoints, the line's error is 

derived from the error of its endpoints. In like manner, a polygon's error is derived from the error 

of its boundary line segments. By designing error models for spatial objects based on the error 

models of their more basic components, it is hoped that a building-block approach can be used to 

formulate uncertainty indices for complex objects. To this end, recent research has been devoted 

to develop error models for the positional uncertainty of a line segment. Appendix B includes an 

in-depth examination of four major efforts that have produced or advanced positional error 

models for line segments. The results will be reviewed here briefly. 



3.1 Rigorous Error Models 

Chrisman (1982)' expanding on the work of Perkal(1966)' investigates the idea of providing an 

uncertainty boundary surrounding a line segment. The uncertainty boundary, called an epsilon 

band, is based upon a constant radius (epsilon) around a line's true or most likely position. The 

quantity epsilon ( E )  is derived from the radius of the line's endpoint error circles, assuming a 

digitization process that yields random coordinate error in a circular n o m l  distribution. The 

circular normal distribution is two-dimensional (bivariate) and varies norn~ally, meaning that it 

consists of errors in two directions that are equal and uncorrelated. As figure 9 demonstrates, the 

epsilon band's width is contingent on a single error quantity. The main drawback of this model is 

that it provides no interpretation of error distribution inside the band. 

Figure 9. Chrisman's E - band (Adapted from Chrisman, 1992) 

Dutton (1992) tests the method Chrisman and Perkal use to derive vector representations of 

digitized map features. Similar to their work, Dutton assumes that digitized points produce error 

that follows a circular normal distribution. Likewise, his analysis characterizes feature 

uncertainty by constructing regions of "constant locational probability around the edges of 

polylines" (ibid.). However, Dutton's result describes concave curvilinear error bands along the 

most likely line segment position. An underlying basis for study of digital spatial feature 

uncertainty is that every feature is made up of points that are uncertain to some degree. Dutton 

assigns each point a circular "locus of uncertainty", within which "any location can be considered 

a reasonable alias" (ibid.). This uncertainty area is simply an error circle, with each error circle 



possessing equal radii. Since any location within the circle can represent the actual point, Dutton 

postulates that a multitude of line segments can connect two uncertain points. In order to 

determine a most likely segment position, Dutton performs an experiment involving multiple 

realizations of possible segment positions. 

Figure 10 illustrates Dutton's experiment and results. As a result of his experiments, Dutton finds 

that the displacement error from each segment to the median line it represents is greatest near the 

measured points and least halfway between them. Dutton finds the results "odd at first," because 

the midpoint error is at a minimum despite the lack of a coordinate measurement (ibid.). The 

conclusion is that despite the precision of a segment's endpoint positions, its centerpoint is the 

most reliable location. Based on the standard deviation at 11 evenly-spaced locations along the 

baseline, Dutton is further able to derive a probability contour one standard deviation (4 in 

width. In the same year, the work of Caspary and Scheuring (1992) helps verify that Dutton's 

simulations are right on target. 

Caspary and Scheuring refine Chrisman's idea to describe the accuracy of lines derived from 

positional errors of endpoints. Like Chrisman and Dutton, they assume equal endpoint coordinate 

errors following a circular normal distribution. However, the authors use error propagation and 

Monte Carlo simulation 

Figure 10 illustrates Dutton's experiment and results. As a result of his experiments, Dutton finds 

that the displacement error from each segment to the median line it represents is greatest near the 

measured points and least halfway between them. Dutton finds the results "odd at first,'' because 

the midpoint error is at a minimum despite the lack of a coordinate measurement (ibid.). The 

conclusion is that despite the precision of a segment's endpoint positions, its centerpoint is the 

most reliable location. Based on the slandard deviation at 11 evenly-spaced locations along the 



a) A line segment is drawn with equal error circles around 
each endpoint 

b) Possible endpoint locations are drawn via circular normal distributions 

c) Random endpoints are connected to form line segments; 
standard deviation is less at midpoints than at endpoints 

d) Probability contours of one standard deviation may be abstracted at 
intervals along the median line 

Figure 10. Dutton's experiment simulating line segments (Adapted from Dutton, 1992) 



baseline, Dutton is further able to derive a probability contour one standard deviation (d) in 

width. In the same year, the work of Caspary and S c h e u ~ g  (1992) helps verify that Dutton's 

simulations are right on target. 

Caspary and S c h e u ~ g  refine Chrisman's idea to describe the accuracy of lines derived from 

positional errors of endpoints. Like Chrisman and Dutton, they assume equal endpoint coordinate 

errors following a circular normal distribution. However, the authors use error propagation and 

Monte Carlo simulation to derive their own error-band that sags at the midpoint of the line 

segment. 

Caspary and Scheuring define the coordinates of an arbitrary point along a line as a function the 

line's endpoints and the point's position along the line. By applying error propagation law to this 

definition and assuming independent and equal endpoint errors, the authors are able to predict 

how the uncertainty varies along the length of the line. Using their derivations, Caspary and 

Scheuring show that points towards the middle of straight lines have smaller RMSP values than 

those at the endpoints. More precisely, the midpoint error proves to be a factor of 1/42 less than 

the endpoint error, while the error-band is 0.8 times smaller than the area of the epsilon-band. 

The authors propose that the more accurate error-band is an area determined by the error circle 

boundaries of all points along the line, rather than strictly the error of the endpoints. However, it 

should be noted that applying error propagation law still requires the inner error circles to be 

dependent on the endpoint error. 

As a result of smaller error at a line's midpoint, Caspary and Scheuring's error-band curves 

towards the center, similar to Dutton's. Despite the admitted difficulties of analytically 



expressing the shape of their error-band, the authors are able to approximate the shape and area of 

the region according to figure 1 1. 

Figure 1 1. Approximation of the error-band 
(Adapted from Caspary and Scheuring, 1992) 

The authors wish to derive a region of constant probability around a straight line, which they 

represent as a four-dimensional random vector. In order to verify their work, they use Monte- 

Carlo simulation similar to that of Dutton's (1992), as illustrated in figure 12. 

Figure 12. Cell array and random lines simulation 
(Adapted from Caspary and Scheuring, 1992) 

The work of Caspary and Scheuring (1992) is important for positional accuracy of objects within 

spatial databases because it: 

1. Uses the error propagation law to derive positional errors along the line. 

2. Concludes that an appropriate error-band is determined by the error circle boundaries of 

all points along the line, rather than strictly the error of the endpoints. 

3. Views a straight line as a four-dimensional random vector. 

4. Compares the marginal density of a line to the distribution function of an endpoint. 



These observations are employed by Shi and colleagues (Shi and Tempfli, 1994; Shi and Liu, 

2000) to expand on Caspary and Scheuring's work to model positional errors of line features in 

GIs. Once again, uncorrelated coordinate errors are assumed, following a normal distribution. In 

addition, the positional error and distribution of an arbitrary point on a line segment are 

dependent on the errors and distribution of the endpoints. Using these assumptions, Shi and 

Tempfli (1994) define the probability distribution of a line segment. Shi and Liu (2000), 

however, use the more general case of interrelation between two endpoints to generate a modified 

error-band. 

Providing a more explicit characterization of Caspary and Scheuring's (1992) idea of a four- 

dimensional random vector, Shi and Tempfli ( 

following a normal distribution: 

994) define two endpoints as stochastic vectors 

The equal variances and covariances indicate independent endpoint errors, which the authors 

admit, "may not be realistic in case of a multi-source GIs" (ibid.). The line connecting the two 

endpoints is expressed as a linear, normally distributed function of the endpoints. Drawing from 

Caspary and Scheuring's (1992) investigation of the marginal density of a line, Shi and Tempfli 

derive the probability distribution of a point in a direction perpendicular to the line. In this 

manner, a boundary can be formed indicating how the point's position can vary from its true or 

mean position. The probability distribution of the line segment can therefore be characterized by 

the perpendicular density of any point along the line and the density at the two endpoints. The 

line segment's probability distribution describes how the segment can deviate from its expected 



or mean location (Shi and Tempfli, 1994). This concept is expanded upon in Shi's later work 

with Liu (2000). 

Figure 13. The probability density function (bivariate) of the point (x,y) 
(Adapted from Shi and Tempfli, 1994, and Shi and Liu, 2000) 

Shi and Liu further develop these ideas by producing a more general model of the error band, 

called the G-band model. The main improvement of the G-band model is that it allows for 

correlation between two endpoints, a condition not handled by previous models. In addition, the 

authors specifically target cases with differing errors between the endpoints. Endpoint errors are 

still assumed to follow two-dimensional normal distributions. Based on Shi and Tempfli's work 

(1994), the authors statistically derive the distribution and density functions of a line segment to 

further define errors of arbitrary points on the line. 



The representation of a line as a four-dimensional random vector indicates a four-dimensional 

normal distribution. The authors offer a parametization similar to the one presented by Caspary 

and Scheuring (1992), and indicate that a line segment is a "composite of.. .infinite stochastic 

variables X(t) and Y(t)": 

X(t) = (1-t)Xo +tX, 
( b ~ t ~ l )  (Shi, 1994 and Shi and Liu, 2000) 

Y (t) = (1 - t)Yo + tY, 

The authors then derive an uncertainty information matrix which provides the linear correlation 

between segment points and their coordinates. The uncertainty matrix contains relationships 

between varying errors for two different points in two directions. The matrix is simplified when 

handling the condition of directional independence among the error components (i-e., for any 

point, ( ~ x  = oy); error ellipses then become error circles with a radius of uncertainty equal to: 

2 2 Ta = [  (1-t) oo +t20: ] (ibid.) 

This is often the case within GIs vector data production operations, such as digitizing or 

automated feature extraction. 

Based on work with distribution and density functions and their uncertainty information matrix, 

Shi and Liu derive a generic error band model. Named the G-band, its boundaries are defined by 

the error ellipses of arbitrary points on the line segment and the error ellipses of the endpoints. 

While based on conclusions previously drawn by Caspary and Scheuring, the G-band has distinct 

properties not before articulated. The G-band is directly linked to the distribution and density 

functions of a line segment, which completely describe a line's statistical characteristics. As 

such, it is able to handle correlation between endpoint errors, as well as inequality between these 

errors. Figure 14 illustrates the definition of the generic error band according to Shi and Liu 



(2000). By slicing the spatial density distribution surface parallel to the X-Yplane, an infinite 

number of two-dimensional bands can be obtained. Of these parallel slices through the density 

surface, the G-band is described by the plane passing through the error ellipse of the endpoints 

(ibid.). 

Figure 14. The probability density function of a line (Adapted from Shi and Liu, 2000) 

Similar to previous band models, the G-band's shape is described by the error ellipses of all 

points along the line segment. While Caspary and Scheuring's (1992) error band relies on the 

assumption of directional independence, this condition is only a special instance of the G-band. 

Figure 15(a) illustrates this special case of the G-band, when endpoint errors are independent and 

equal. Under these conditions, the G-band reduces to the error band models of Caspary and 



Scheuring (ibid.). Figure 15(b) illustrates the more general case of the G-band, which allows 

each endpoint to have varying errors in both dimensions. 

Figure 15. G-bands under varied conditions: (a) equal, uncorrelated errors; 
(b) unequal, correlated errors (Adapted from Shi and Liu, 2000) 

Similar to previous error band models, the G-band sags as the error ellipses along the line 

decrease. However, due to the G-band's ability to handle unequal endpoint errors, the minimum 

error ellipse is not necessarily located at the center of the line segment. Figure 16 demonstrates 

this property with error circles. 

Shi and Liu's G-band is the most advanced positional error model of linear GIs features to date. 

It is a flexible model that can handle unequal and correlated errors between endpoints. Appendix 

B offers a more comprehensive overview of the aforementioned error models and the statistical 

measures behind them. 



Figure 16. Location of minimum error circle: (a) oo c al , t c 112 ; 
(b) a0 > 01, t > 112; 

Figure 17. Visualization of G-band as composite of error ellipses (circles) 



3.2 Improving Communication and Estimation of Positional Uncertainty Models 

While research of positional uncertainty of line segments has been mathematically impressive, 

using these models as error measures may not be the best solution. The approaches have a sound 

foundation in mathematics and statistics, yet a few shortcomings are noticeable. One such pitfall 

involves effectively communicating the results of error measurement to the user. The G-band is a 

complex and dynamic modeling of the uncertainty of a line segment. Shi and Tempfli (1994) 

provide some complementary error indicators for a line segment, such as Segment Standard Error 

and Segment Probable Error. These indicators are less complicated for a user to understand, but 

offer only a narrow interpretation of the error. Visualization is perhaps the most useful method 

towards understanding error estimates. Tools such as error ellipses allow quick visual 

comparisons of relative precisions among points. A strength of the G-band is its unique shape, 

modeling complex relationships along a line in smooth sets of curves. However, the simple shape 

of the G-band itself, formed of multiple varying ellipses, is sophisticated. While visually 

intriguing, as in figure 17, the G-band may serve well in its most basic form: as a simple 

boundary of uncertainty on both sides of a line segment. In fact, Shi and Liu (2000) use the G- 

band in this manner to communicate the positional uncertainty of a simple GIS data set. 

However, the simple sagging towards the middle of recent error models is "odd at first", and this 

alone requires a degree of understanding from the user (Dutton, 1992). 

Which brings up a second difficulty: while communicating the results of error measures is one 

pitfall, understanding the foundation of these models is a more daunting task. The mathematical 

approaches used aren't always intuitive. The mathematical methods behind such error models 

can be rigorous and cumbersome for a single line segment alone. When deriving models for 

whole geometric features or scenes, the calculations can be overwhelming. Complicating matters 

is the application of such mathematical models by the user. An average user of spatial data will 

have little understanding of the basis of complex error models such as the G-band. As the state of 



spatial information stands now, users are likely to take whatever error estimates are given to them 

by the data producers. Whether these error estimates are in the form of coordinate standard 

deviations or complex interpretations of error bands often matters little to the user. There is no 

doubt the error measures will enhance the quality indicators of a spatial database. Yet 

understanding these quality indicators will in turn require at least a moderate amount of expertise 

or proficiency in error analysis. However innovative an error model may be, the ultimate 

judgement of its value will be determined by the user. Hunter (1999) urges the GIs research 

community to prove that its algorithms and methodologies "are not simply esoteric exercises in 

higher mathematics and statistics." Indeed, there is a need to demonstrate that these error models 

and concepts can be converted into useful tools. 

A third complexity with recent error models is that even the most advanced (the G-band) is a 

measure of positional uncertainty of single line segments. The case of more complex geometric 

features, such as polygons or curves, is handled by simply overlaying each segment's G-band 

endpoint to endpoint. This procedure ignores the complex interactions between the uncertainties 

of neighboring objects. The uncertainty distribution of one measured object is inherently affected 

by the uncertainty distribution of adjacent measured objects. The G-band is based on a stochastic 

process and indicates that a line segment can be represented as a four-dimensional random vector. 

This representation can take into account dependencies in two dimensions between the two 

endpoints of a line segment. Yet, the uncertainties of neighboring features, and the manner in 

which they affect the given feature, are ignored. This tends to examine a line segment as a stand- 

alone geometric feature, which is rarely the case in a GIs. Modeling uncertainty in the same 

manner that composite features are modeled (i.e., using a building block approach of point and 

line errors) ignores the influence of neighboring feature uncertainty. A more integrated approach 

to error modeling and analysis will account for the continuities and interactions that exist in and 

among spatial features due to differing automated production methods and sources. 



Recent developments in modeling positional uncertainty of spatial elements have provided 

impressive statistical analysis. Yet there is a need for uncertainty measures that integrate a 

diverse composite of extracted features and the interactions of their uncertainties, while 

effectively communicating the results. There is little agreement on how spatial uncertainty 

information should be represented in order to be communicated reliably. Rather than restricting 

our examination of spatial uncertainty to individual objects, it may be beneficial to study feature 

uncertainty using a field model. Maps representing distributed uncertainty can be a preferable 

approach to estimate, model, and communicate data quality at a selected point or region. 

Accordingly, we will examine positional uncertainty by extending error-band modeling 

techniques to produce fields of uncertainty. A synthetic uncertainty map will enable us to outline 

the distribution of errors around a feature, and generate more accurate error boundaries. This 

uncertainty map is linked to the rigorous error models we have studied, but offers distinct 

advantages regarding communication and the manner in which uncertainty boundaries are 

generated. 

An error band is a region of uncertainty around a geometric feature; in this case, a line segment. 

As we have explained, the G-band model of a line segment's errors is a closed crisp boundary 

defined by the standard deviations of endpoint coordinates (see figures 15, 16, 17). 

Figure 18. G-band of a line segment with unequal endpoint errors 
following a circular normal distribution 



The use of a field to model the regions of uncertainty around a line segment may de-emphasize 

this crisp object model and re-focus on the uncertainty variation at points within the line's 

proximity. Using standard deviations and error band theory, it is possible to construct a field of 

uncertainty around a line segment. This field is consistent with uncertainty contours as they are 

derived from the G-band model, but extends their application from a single-level discrete curve to 

a multi-level uncertainty field. By assigning relative values to each contour based on its distance 

from the line segment, a field of error distribution can be created. The uncertainty field can 

visually indicate error distribution relative to the orthogonal distance from the line segment. 

Figure 19 illustrates such an uncertainty field associated with uncertainty contours derived from a 

segment's G-bands using 0.25q0.54 0.754 and 1 a for each endpoint. The contours are 

assigned a corresponding value (e.g., 1,2,3, or 4) and shaded to indicate relative errors. In figure 

19, areas nearest the line receive the lightest shading, with uncertainty shading increasing at 

points further from the measured line. 

Figure 19. Uncertainty field of a line segment, with contours at 0 n, 
wheren =0.25,0.5,0.75, 1.0 

By using the relative values assigned to each contour line, a smooth uncertainty distribution can 

be obtained via interpolation, similar to constructing a digital elevation model. This permits the 

construction of a continuous error landscape for a spatial feature, as seen in figure 20. 



Figure 20. Smoothed uncertainty field of a line segment. for o- n , n E [0,1] 

This continuous uncertainty field is produced by scaling the shading intensity (from black to 

white) to correspond with the contour values. In this case the intensity range is [0 (black), 10 

(white)] corresponding to contour values for c n . n E [O,l]. However, the uncertainty field is 

not restricted by a standard deviation. Using G-band realizations for various target uncertainty 

boundaries, it is possible to map out any number of uncertainty field extents. For instance. figure 

21 demonstrates an uncertainty field for o n , n E [O. 3.21. 

Figure 21. Uncertainty field of a line segment. for o- n . n E (0.3.21 

Representing the positional uncertainty of the line via an uncertainty field offers benefits over 

traditional error bands. While retaining the distinct G-band shape, the uncertainty field offers a 

noticeable improvement in communicating the band's results and meaning. The uncertainty map 

successfully conveys the notion of continuity among the line segment's errors. The smooth 



uncertainty shading indicates that points farther from the measured line are less likely to be part 

of the true or expected line. The points nearest the line hold the most likely position of the true 

line; therefore they receive minimal uncertainty shading. 

In the previous examples, the contour values serve as uncertainty intensity indicators increasing 

up to a given distance from the line segment, e.g., the a value. However, it is also beneficial to 

model uncertainty up to and beyond a target error value. For instance, the visualization of an 

uncertainty boundary up to one standard deviation (d) from a line (see figure 20) indicates an 

abrupt border where the uncertainty field ends. This may be misleading to users in that even the 

G-band's rigorous methods are still an approximation, as is any uncertainty field bounded by a 

value. Furthermore, such an abrupt boundary may be disadvantageous when attempting to 

approximate and extract continuous error boundaries. Therefore the uncertainty field may be 

enhanced by emphasizing the target uncertainty value a while displaying uncertainty past this 

boundary. Doing so provides a more accurate and complete error model, communicating a 

boundary for the target uncertainty while providing a more extensive representation of the 

segment's uncertainty field. Figure 22 illustrates such an example of an uncertainty field 

designed to emphasize a target boundary of 1 a while displaying an uncertainty boundary up to 

2.50. 

Figure 22. Uncertainty field of a line segment emphasizing lo while displaying field up to 2.50 



As figure 22 demonstrates, the continuous intensity values of the uncertainty field are altered to 

stress the target boundary distance, 1 a. This is accomplished by stretching the shading intensity 

along its full range (i.e., [0,10]) up to the target boundary of 1 a. An inverse stretch is then 

applied for distances between 1 a and 4.50 in order to outline a more inclusive uncertainty field. 

A display of such intensity shading is given in figure 23. As a result, points lying farther from the 

measured line segment increase in uncertainty shading up to a distance of 1 a, at which point the 

uncertainty shading continuously decreases until 2.56 This extended uncertainty field allows a 

more comprehensive study of a line segment's error, isolating a target uncertainty boundary while 

still describing uncertainty beyond this boundary. In addition to the visual and communicative 

advantages, such a representation holds important benefits for continuity and contour extraction, 

as Section 4 will illustrate. 
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Figure 23. Stretching of uncertainty shading values over range [0,10] as a function of 
distance from measured line segment. Note the valley shaped stretch of intensity values. 

It should be noted that the obvious drawback of such a representation is the recurrence of equal 

intensity values. For instance, figure 23 illustrates a case where the same values represent 

distances both less than and greater than 1 6 A point at a distance of 0.50 from the measured 

line segment has an uncertainty shading of approximately 5. Meanwhile, a point at 1.750 will 



have a similar intensity shading. Using a peak or valley approach for uncertainty shading 

prevents the field from representing a positive linear correlation between uncertainty and distance 

from segment. This particular representation therefore cannot be used as a stand-alone measure 

of positional uncertainty of a line segment. A user must first be aware that the uncertainty field 

has been altered to emphasize a target uncertainty value, and as a result, shading values do not 

always correspond to uncertainty. 

The uncertainty field allows diverse visualization of error boundaries because of freedom when 

selecting tolerances and intensity stretching. Figures 24 through 26 illustrate some possible 

uncertainty fields based on varying combinations of intensity stretches. The three major 

examples are labeled based on the shapes of their intensity stretch graphs. These are: a 

"staircase" representation, a "peak-valley" stretch, and a "plateau" stretch. The staircase stretch 

is based on distinct contours within the uncertainty field; the "peak" or "valley" stretch is typified 

by the example in figure 23; the plateau stretch levels at a target value. In fact, the names should 

be self-explanatory with respect to their intensity stretch. The advantages and disadvantages of 

each representation are outlined in table 2. 
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Figure 25. More examples of "peak-valley" intensity stretching 





Representation 

Staircase Field 

Basic 
Uncertainty 

Field 

Peak or Valley 
Stretch 

Plateau Stretch 

Advantages 

Approximate linear correlation between 
distance and uncertainty shading 

Intuitive - uncertainty contours easy to 
understand 

Continuous, smooth transition - visually 
appealing 

Positive linear correlation between 
distance and uncertainty shading 

Basic, intuitive - needs less explanation 

Continuous, smooth transition is visually 
appealing 

Allows emphasis of target uncertainty 
while still displaying field to a larger 
extent 

Positive linear correlation between 
distance and uncertainty shading, up to a 
target uncertainty 

Capable of smooth transition to target 
distance, while providing larger extent 

Disadvantages 

Lack of continuous transition less 
appealing 

Abrupt edges not in accordance with 
uncertainty approximations - may be 
disadvantageous when extracting 
continuous uncertainty boundaries - see 
Section 4 

Abrupt edges not in accordance with 
uncertainty approximations -may be 
disadvantageous when extracting 
continuous uncertainty boundaries - see 
Section 4 

No positive correlation between distance 
and uncertainty shading 

Not intuitive - requires extra information 

Lack of smooth transition less visually 
appealing - difficult to judge distance 

Table 2: Advantages and disadvantages of uncertainty field representations and intensity stretches 

The benefits of improving an error band with an uncertainty field can be demonstrated through 

improved communication and content, as well as increased understanding by the user. Yet there 

are still two important issues that need to be addressed. The first, accessibility to the user, will be 

discussed here; the second, modeling the interactions of continuous uncertainty boundaries, is the 

topic of Section 4 and will be touched upon here. 

Due to the diverse combinations of intensity shading capable with the uncertainty, it easily lends 

itself to be stored as an image. This format has many potential advantages for both user 



interaction and estimation of continuous uncertainty boundaries. There are numerous image 

formats (TIFF, JPG, bitmap, etc.. .) available to store uncertainty fields. The simple grayscale 

shading of uncertainty fields combined with the efficient compression of popular image formats 

allows uncertainty fields to be stored in relatively small format size (10-40KB). The widespread 

use of the most popular image formats (compatible with virtually any image viewer) allow easy 

user access. In other words, uncertainty fields do not need to be restricted to an obscure accuracy 

file compatible only with a proprietary software. Small file sizes, universal compatibility, and 

ever-expanding network capabilities place no restriction on the accessibility of uncertainty fields 

in image format. 

Additionally, representing uncertainty fields as images opens them up to the techniques and 

opportunities of the media and digital processing communities. Powerful digital processing 

algorithms exist to automatically alter and enhance virtually any attribute of an image. 

Automated processes can quickly and efficiently perform complex functions for acquisition, 

storage, processing, communication, and display. Images can be improved through 

transformations, enhancements, restoration, and compression. More importantly, images can be 

segmented, represented, recognized, and interpreted automatically. Section 2.3 discusses digital 

processing techniques used for spatial data. Among the most important are automated 

segmentation of images, classification of features, object recognition and extraction. 

Image processing techniques can automatically identify spatial characteristics (which humans 

excel at) as well as spectral characteristics (where human perception is lacking). These methods 

allow complex problems to be solved and provide in-depth analysis in a fraction of the time it 

would take a human operator. Based on our representation of uncertainty through an uncertainty 

field stored as an image, and with the help of digital processing techniques, Section 4 will 

demonstrate a method to estimate the positional uncertainty of continuous line segments. 



Furthermore, uncertainty fields will be used to model the interactions between uncertainty 

boundaries of adjacent features, and digital image processing techniques will be applied to extract 

a boundary of influence. 



4.0 Modeling Uncertainty Field Interactions Among Adjacent Features 

As discussed in Section 3, an error band is a region of uncertainty around a geometric feature; in 

this case, a line segment. The most advanced of the error band models, the G-band, is still only a 

measure of positional uncertainty for single line segments. Errors of multiple line segments are 

modeled by generating error regions for ,each line segment and overlaying them endpoint to 

endpoint. This process creates a composite of line models seemingly molded into a continuous 

entity with smooth error propagation. 

Figure 27. Overlaid G-bands (including error ellipses) of two adjacent line segments 

Simply overlaying the G-band creates a visually smooth and successful model. However, the 

statistical assumptions for a G-band are based on a stochastic process and indicates that a line 

segment be represented as a four-dimensional random vector. Essentially, this representation can 

effectively model dependencies between two endpoints of a line. However, since the line 

segment is viewed as a random object, its uncertainty cannot be examined with relation to 

neighboring objects. For instance, while the G-band smoothly models a field of uncertainty from 

endpoint to endpoint of a feature, it is useful to know how this field is affected by a neighboring 

G-band overlapping its area. Yet as a result of the G-band's stochastic nature, a measured line 

segment is viewed as an independent entity, which is rarely the case for GIs data, especially that 

derived from image-based applications. For example, current techniques of spatial data 

measurement extract complex objects as separate entities made up of nodes and line segments. 

As the methods of data extraction advance, so too must the methods of estimating the associated 

uncertainty within the data. Not only will objects' uncertainties be modeled, but the connections 



between these uncertainties will also be estimated. This precludes limiting features (and their 

uncertainties) to a model of independent units. Such a representation ignores the complex 

interrelationships between the uncertainties of neighboring features that arise through a feature 

extraction process. A more integrated approach will account for the connections that exist 

between spatial features due to automated production methods. As a result of modeling 
I 

interactions between object uncertainties, propagation of error through an entire scene can be 

better represented. 

This section will examine uncertainty boundary interactions between neighboring features using 

uncertainty fields to model and snakes to estimate. We will frrst examine uncertainty fields 

representing the error of continuous line segments, and extracting their boundaries with 

deformable contour models. Section 4.2 will then model the interaction between neighboring 

uncertainty fields, and apply deformable contour models to extract a boundary of influence 

between the two fields. These results will then be applied to a more complex scene of uncertainty 

in Section 4.3. 

4.1 Extracting Continuous Uncertainty Boundaries Using Snakes 

As we have noted, an uncertainty field can be used to effectively communicate and model the 

continuity of a line segment's errors. The uncertainty field is derived from the G-band, a rigorous 

statistical approximation of a line segment's positional uncertainty. However, modeling single 

line segments is of limited use within a GIs; of more value is an estimation of composite line 

features. A G-band represents continuous line segments by overlaying the adjacent G-bands of 

independent line segments. Figure 28 provides an illustration of the G-band's modeling of an 

extracted line feature. Each pair of points connects a line segment, and the boundary of 

uncertainty around each segment is modeled independently. Each line segment shares a node 



with an adjacent line segment, and the G-bands cumulatively link to form a boundary of 

uncertainty around the composite line feature. 

Figure 28. G-band overlays of five connected line segments. 

We will examine the use of defom~ble contour models to estimate the continuous boundary 

represented by G-band (and subsequent uncertainty field) overlays. More important to our 

purposes, however, is the snake's ability to model interactions between uncertainty boundaries of 

adjacent features. Just as an uncertainty field can model an individual G-band, multiple 

uncertainty fields can be connected to model a composite of G-bands. These multiple uncertainty 

fields combine to represent a map of an object's continuous uncertainty boundaries. Uncertainty 

maps for a linear object are given in figures 29 and 30. 



Figure 29. Uncertainty map overlay, consisting of five connected line 
segments' individual uncertainty fields 

Figure 30. Uncertainty maps; a) staircase representation, b) peak-valley 
representation 

These figures illustrate a few of the uncertainty field representation options outlined in table 2. 

The selection of uncertainty field representation may vary depending on the uncertainty being 

communicated and the method of extracting the uncertainty boundary. Section 3.2 discussed the 

advantages of storing uncertainty fields as digital images. Expanding upon this notion, the edges 

present in these uncertainty maps allow deformable contour models to be a useful digital 

processing tool for extracting uncertainty boundaries. As detailed in Section 2.3.4, the snake 

model employs an external edge constraint along with internal continuity and curvature 



constraints. A gradient measure is used to push or attract the snake to an edge. The larger the 

gradient, the more likely the snake will attach to the edge. It is sometimes advantageous to 

increase the likeness between the initial (feature) and secondary (uncertainty) extraction 

procedures; this can be done using various uncertainty field representations. The choice of 

uncertainty field can reflect the nature of the image clarity, or that of particular features within an 

image. For instance, if an image has little noise and there exists sharp contrast between road 

edges and surrounding features (forest, field, etc.), the snake process will have little difficulty 

finding the road edge. In such an example, it may be more appropriate to use the staircase or 

plateau representation of uncertainty fields, which exhibit distinct edges between bands of 

uncertainty (see table 2). On the other hand, an image degraded by noise or possessing indefinite 

feature edges would be better to use the peak-valley representation, which is characterized by a 

constant gradient peaking at a target uncertainty value. The lack of an extreme gradient allows 

the snake more flexibility in its extraction process. 

In addition, a peak-valley representation can communicate a target uncertainty boundary while 

providing a larger extent of uncertainty. A staircase representation is useful for displaying 

varying contours of uncertainty, while the basic uncertainty field provides a linear correlation 

between distance from segment and degree of uncertainty. Such characteristics of the various 

representations are compiled in table 2 of Section 3. Figure 31 offers examples of gradient 

images of the four uncertainty field representations for a target uncertainty distance of 1 a The 

basic uncertainty field is shown in 31(a); the gradient is constant until reaching its target value of 

1 4  hence its uniform interior and sharp edge. Figure 31(b) displays a staircase representation 

with uncertainty contours at 0 . 5 ~  la, 1.50, and 2 a  The staircase creates steps of constant 

uncertainty shading, meaning a gradient exists only at contour edges. The gradient of a plateau 

stretch can be viewed in 31(c); there is a constant gradient until the target distance is reached, 



followed by no gradient until the 2aboundary, where there is a large gradient. As figure 31(d) 

illustrates, the peak-valley uncertainty field has a symmetric gradient throughout the range a E 

[0,2]. As discussed in Section 3.2, the intensity shading increases to a maximum (or falls to a 

minimum) as it reaches a target uncertainty level. In this case, the target uncertainty level is 1 a .  

After reaching the target level, the shadipg reverses its trend back to its initial intensity. In this 

manner, a continually changing field, and therefore constant gradient, represents the uncertainty 

values. The target uncertainty is still distinguished from its surroundings because it is at this 

value that the gradient reverses its trend, i.e., from increasing to decreasing, or vice versa. On the 

other hand, the basic uncertainty field, staircase field, and plateau-stretch representations all 

possess well-defined edges at the target value of 1 a. 

n 

Figure 3 1. Example gradient images; a) basic uncertainty field, b) staircase field, c) plateau stretch, 
d) peak-valley stretch 

This results in a large gradient value, which will most certainly cause a marked bias in the snake's 

edge-seeking trends. The slowly changing intensity values of the peak-valley representation 

allow the snake to find a continuous path along a defined edge while maintaining flexibility not 



available with the other uncertainty field representations. However, it will be seen that the other 

representations have value for sharply angled linear features. 

A sample snake extraction from a continuous uncertainty map is presented here. A linear feature 

of five connected line segments was given an uncertainty map with a peak-valley representation. 

The snake was then given approximation points to extract the 1 a boundary from the continuous 

uncertainty map; these approximations are viewed in figure 32. 

Figure 32. Sample point approximations for figure 33 

These initial seed point approximations are supplied by the calculations of the G-Band. In the 

case of figure 32, a minimum number of points are taken in order to minimize the approximation 

stage and force the snake to find it way based on its internal and external constraints. The 

resulting linear snake extraction can be seen in figure 33. An adequate representation, this snake 

is based on minimal point approximation, a high gradient weight, and a medium curvature term. 

The snake proceeds from the first point, extrapolating segment by segment according to the edge 

it is following and the constraints on its shape. An arrow in figure 33 points out an edge anomaly 

caused by the large spacing between approximation points. 



Figure 33. Snakes extraction using only endpoint approximations, as seen in figure 
32; high weight on gradient, minimal weight on continuity 

Figure 34 employs a slightly different approach; only one uncertainty boundary is extracted, and 

it is done so after providing many initial approximation points, with the weighting reduced to a 

minimum. As such, the approximations and gradient component guide the snake very accurately. 

There are no obvious irregularities, and it appears that the snake performed well in extracting a 

continuous uncertainty boundary. However, these results are to be expected with many seed 

points; an ideal case minimizes the number of constraining points used, in order to allow the 

snake freedom to minimize itself based on its energy functions. 

Figure 34. Many G-band approximation points used, minimal weighting 



The snake approach and use of the "peak-valley" stretch of uncertainty fields works very well for 

extracting smooth, continuous linear features. However, when encountering sharp angles and 

sudden shifts in direction, the snake struggles to adjust. Decreasing the curvature weight and 

increasing the gradient coefficient helps to this end, but often the integrity of the snake's shape is 

compromised to account for isolated cases such as extreme angles. The peak-valley 

representation handles sharp angles rather poorly, but other uncertainty field representations can 

improve the snake's extraction performance. For instance, the snake failed to accurately extract a 

1 a uncertainty boundary based on the peak-valley stretch for the segment geometry in figure 35. 

By substituting a staircase representation into the extraction process, the snake was able to make 

use of the sharper gradients exhibited by that uncertainty field representation. The sharp edges 

defined by the uncertainty contour bands of the staircase representation create a large gradient for 

the snake to be attracted to. With such strong gradients, it is not necessary to heavily weight the 

component in the energy minimizing functions. The accuracy of the extraction process is largely 

dependent on initial approximations and the continuity weighting. Figure 36 illustrates an 

extraction using sparse initial approximations located at segment endpoints and midpoints. The 

continuity weight is high, while the gradient is medium and curvature is minimally weighted. 

Having a heavily weighted curvature term will tend to straighten the shape of the snake; with 

such sharp angles present in the uncertainty map, the straightening is not a trait that should be 

emphasized. 



Figure 35. Sample overlaid uncertainty fields, staircase representation 

Figure 36. Segment endpoint and midpoint G-Band approximations used, snake 
interpolates points based on weighted continuity, medium gradient and curvature 

Figure 37. Many G-band approximation points used, heavy weighting on continuity, 
minimal weighting on curvature and gradient 



The arrows in figure 36 make it apparent that the sharp angles are a source of conflict for the 

snake. The snake attempts to smooth the angle despite the minimally weighted curvature term. 

The same geometry is run through the snake process again, this time with ample approximation 

points as guides. The resulting extraction is highly accurate, which can be attributed to the sharp 

edge contrast and the initial approximations. The approximation points anchor the snake's 
I 

position close to the appropriate edge, and the strong gradient (due to lack of a continuous 

boundary) keeps the snake attached tightly. However, the use of such a dense set of 

approximation points detracts from the snake's freedom and flexibility. If too many points 

constrain the snake, it is unable to extract a border in a manner that minimizes its energy function 

to produce a continuous boundary. It becomes apparent that choosing the weights and constraints 

of the snake is a process that rarely has a flawless solution. 

A distinct advantage of using uncertainty fields connected via snakes is that it can be a fully 

automated process. Deformable contour models are often referred to as a semi-automated 

approach because they require initial approximations (points andlor direction) to proceed. The 

extraction of uncertainty fields can therefore be fully automated by supplying these initial 

approximations. The G-band of Shi and Liu (2000) is the basis of the uncertainty fields that have 

been developed for individual line segments. The G-band is a rigorous statistical error model to 

determine the positional uncertainty of individual line segments. By sampling points from 

segment G-band boundaries, the snake can be supplied with the initial approximations necessary 

to commence the process. Subsequently, error analysis can commence immediately after the 

feature extraction process is complete, with no need for human input. 

The deformable contour model provides a diverse tool that can be tailored to extract many 

varying line feature types. The dynamic nature of snakes is based on adjustable components that 

can help format the snake to behave in a variety of ways. The coefficients weighting continuity, 



curvature, and the edge gradient can be modified to navigate a snake through smooth, loping 

uncertainty fields or a sequence of sharp angles. It has been demonstrated that deformable 

contour models can be used to extract a continuous uncertainty boundary for a feature from a 

composite of its uncertainty fields. It is now worthwhile to examine how neighboring fields of 

uncertainty interact and whether a similar uncertainty boundary can still be obtained. 

4.2 Modeling and Estimating Lnteractions Between Uncertainty Fields 

We have shown that uncertainty fields of individual segments can be combined to form a 

continuous uncertainty field of a composite line feature. Furthermore, we have demonstrated that 

deformable contour models can successfully extract the boundaries of uncertainty from these 

fields. While the correct shape and extent of 'zones' to model positional uncertainty is subject to 

varying opinions, less work has been dedicated to studying the interactions between neighboring 

zones of uncertainty. Rather than view object uncertainty fields as stand-alone objects, it is more 

useful to handle them as individual objects interacting within a scene or framework. This allows 

a more realistic and comprehensive view of spatial data, as uncertainties can be analyzed within 

the context of their given framework, rather than as independent values. As a result, we achieve a 

better understanding of the relationships that exist between members of differing datasets. The 

G-band's independent boundaries do not take into account connections between areas of 

uncertainty. Therefore, we will use the continuous nature of uncertainty fields to model complex 

interactions between boundaries of uncertainty between objects. 

The uncertainty fields of a line segment and a composite line feature are shown in figure 38. 

Such representations allow one to ask, for instance: "At a confidence of 1 a, where could the 

measured line be?% uncertainty field acts as an isolated object whose uncertainty distribution 

extends outward ad infiniturn; such an object is usually constrained to a target uncertainty 

boundary (e.g., 20). Uncertainty field representation works well to convey the extent of such a 



boundary and how it varies along the length of the line feature. However, since this 

representation is based on an independent error model, it does not provide any indication of the 

influence of neighboring objects within a scene. Suppose the two linear features of figure 38 are 

located in close proximity within the same scene (see sample geometry in figure 39). 

Figure 38. Uncertainty fields of (a) an individual line segment and 
(b) a composite line feature 

Figure 39. Sample geometry of two adjacent line features 

At a particular uncertainty boundary, the extent of one feature's uncertainty band will coincide 

with the adjacent feature's uncertainty band. Such a situation can be viewed in figure 40, which 

shows two probability distributions for the positional uncertainty of two spatial features. These 



two features are in close proximity in space, and both show a distribution extent past their 1 a 

uncertainty boundary. If uncertainty fields for the two features were to be displayed for a target 

uncertainty of 1 a, their nearness would result in an intersection between the two fields. Using the 

uncertainty fields to derive an area of confidence around a feature therefore results in a region of 

conflict. The question of where a line segment can be located with a given confidence in turn 

becomes an observation of where the line segment cannot be at that confidence, despite what an 

independent error model may indicate. Consequently, it is useful to derive the intersection of the 

distribution of two uncertainty fields. If the uncertainties in a scene are normalized (with respect 

to varying data sources, production, resolution, etc.) then the intersection of distribution curves 

can be determined by examining the confidence region of overlap. The resulting model is a more 

complete definition of a feature's uncertainty, and is the first step towards modeling interactions 

between object uncertainties. Ultimately, an interactive scene of uncertainty can develop from 

the estimation of uncertainty field intersection. 

Object B 

Figure 40. Intersection of uncertainty distributions for neighboring features 



An example situation can be visualized in figure 41, which illustrates two overlapping uncertainty 

bands of adjacent features. Uncertainty fields, based on the independent G-band model, do not 

recognize such areas of interaction between uncertainty regions of objects and provide no method 

of analyzing their connections. As evidenced by figures 40 and 41, one would expect the 

encroachment of an adjacent uncertainty field to narrow the extent to which the afflicted 

uncertainty field can be determined. This is not to imply that an adjacent uncertainty field will 

lower the uncertainty of a given line feature. Rather, the confidence width with which we can 

extract an uncertainty boundary for a given feature is narrowed. This concept will be clarified by 

the following example. 

Figure 41. Overlapping uncertainty bands of neighboring line features 

While overlapping G-bands or uncertainty fields do not provide a study of field interaction, 

uncertainty fields stored as images possess attributes that are conducive to combination and 

interpolation techniques. Digital image processing techniques can use the continuous nature of 

uncertainty bands to derive a boundary of interaction between the two fields. One simple image 

processing technique for combining two images is designed to display the minimum pixel value 



within the union of both images. Such a minimum operation will compare each pixel location 

within the two images and store whichever location has the lower gray value. A typical gray 

value scale increases in intensity from 0 to 255; hence black pixels values are close to 0, and 

white pixel values are close to 255. In the instance of overlapping images, the minimum 

operation stores the lowest value (i.e., darkest pixels) within the area of intersection. In the 

representation of figure 38, the darker pkels indicate higher uncertainty, while the lighter pixels 

indicate lower uncertainty. The minimum operation is therefore a detection of the darkest pixels, 

i.e., highest uncertainty. In areas where the images do not overlap, the pixels are preserved. 

Figures 41 and 42 display the result of such a minimum operation applied to the overlapping 

uncertainty fields of figure 38. Note that the result of the operation is a darker band of 

intersection between the two fields. This section is where the minimum operation sought the 

lowest pixel values, resulting in the area of highest uncertainty that the two fields share. The 

result of the minimum operation allows the extent of interference between two uncertainty fields 

to be viewed Figure 42 also indicates a residual line approximately down the center of the area 

of interference that is relatively brighter to its surroundings. This line indicates the positions of 

lowest uncertainty within the area of intersection, and will be very useful in extracting a boundary 

of interaction. However, a separate operation is needed to emphasize this boundary. 

*Minimum operation indicates a bright 

splitting the difference 

Total extent of inregerenee 

Figure 42. Result of minimum operation between two uncertainty field images 



While a minimum operation can be used to denote areas of highest uncertainty, in the same 

manner a maximum operation can highlight areas of lowest uncertainty. Figure 43 illustrates the 

result of applying the maximum operation to the two uncertainty fields. It shows only the area of 

intersection denoted by the minimum operation. The maximum operation favors high gray 

values; since neither image occupies the same pixel location outside of their area of intersection, 

any pixel location not within this area will be replaced with white. 

Maximum operation produces a dark 
boundary near the center of the area of 
intersection.. .this boundary is the inverse of 
that seen in the minimum operation 

Figure 43. Result of maximum operation between two uncertainty field images 

The advantage of the maximum operation is that it displays those locations within the area of 

intersection which possess the lowest uncertainty. For a measured feature, the uncertainty 

increases in a direction away from the feature (a higher avalue). Refemng back to the model of 

intersecting probability distributions in figure 40, there exist two uncertainty values, high and 

low, at each position within the area of intersection. However, it is obvious that at one point the 

decreasing distribution curves meet. It is at this point that the uncertainty field of one feature 

gains emphasis over another uncertainty field; instead of traveling outward within an uncertainty 

field, the direction is now inward within the adjacent uncertainty field. Using the minimum 

operation, this point will remain the brightest feature within the intersection, because there is only 

one value existing as the minimum and the maximum. All other locations within the area of 

intersection have two uncertainty values; the higher uncertainty is stored, and the position appears 

darker. Within the maximum operation, the opposite occurs. The point with a single uncertainty 



value has no maximum gray value (lowest uncertainty) to choose from, therefore this point of 

intersection is the darkest feature within the area of intersection. If a line is drawn approximately 

parallel to the two uncertainty field boundaries, this point would become the bright line viewed in 

the resulting minimum operation. The line marks the boundary of influence, where one 

uncertainty field ends and another begins. 

By utilizing the maximum operator, we can replace the area of intersection between the two 

features with the least uncertain pixel value at each location. This serves to highlight a 

continuous distribution that models the errors from one uncertainty field to another. Figure 44 

illustrates such an operation, which is essentially an overlay of the result of the maximum 

operation on the two uncertainty fields. Since the lowest uncertainty is stored, each location is 

represented with the uncertainty of the feature it most likely represents. Additionally, the 

maximum operator denotes the border of interaction between the two fields as the darkest line 

within the area of intersection. It is obvious that this border of interaction encroaches on the 

position of either uncertainty field. With respect to the larger line feature, the uncertainty field of 

the smaller feature alters the extent of its own uncertainty field. As a result, the sag of the 

uncertainty field around the segment midpoints appears to slump even more towards the 

measured line feature. It is therefore worthwhile to extract a more precise position of this 

boundary of influence. Once again, we will use snakes to extract an uncertainty boundary, this 

time from a composite of interacting uncertainty fields. 



Figure 44. Overlaying the result of the maximum operation ( figure 41) on the 
two uncertainty fields.. .note the dark boundary produced within the area of 
intersection 

The result of a snake extraction of the original line feature can be seen in figure 45. The 

uncertainty field's upper 1 a boundary is approximated by the underlying G-band calculations. 

The sharpness of this representation's boundary edge requires only sporadic sampling at the 

endpoints and midpoint of each segment to be adequate. Therefore, the approximations are 

automatically supplied to the snake by the G-band, and an excellent estimation of the uncertainty 

band's boundary is derived. 

Figure 45. Snake extraction of original line feature 

9 1 



Before performing the snake extraction on the composite uncertainty field image, we will first 

perform an image enhancement technique to further emphasize the boundary of intersection. 

Since the area of intersection decreases in gray value towards a dark boundary in its center, 

scaling the pixels within the area can auvent  the darkness of the feature. Figure 46 displays the 

enhanced composite image of the two uncertainty fields, with the area of intersection 

emboldened. Enhancing the area of interest allows the snake to perform a more accurate 

extraction within the nebulous area. 

Figure 46. Enhancement of area of intersection 

The result of the subsequent snake operation can be seen in figure 47. The snake is given the 

same point approximation pattern that it received when extracting the original uncertainty field of 

figure 45. The line feature's original 1 a uncertainty field boundaries (based on the G-band 

calculations) supply the points that drive the extraction process. The main difference for this case 

is that the point approximation sampling is denser. This is to account for the 'tangled' area of 

interaction which features multiple boundaries at varying angles. The snake does an excellent job 

of modeling the boundary of influence between the two uncertainty fields, as represented in 

figure 44. Furthermore, the original uncertainty field is preserved in those areas where the single 



segment had no influence. The snake essentially splits the difference of the field of intersection, 

accurately modeling the boundary that was accentuated by the maximum operation. As a result, 

the inherent shape of both objects' uncertainty fields is pushed inward toward each measured line 

segment. However, this should not be interpreted as decreasing the uncertainty of a given line 

feature. The boundary of interaction is simply updating the current independent uncertainty 
I 

model with outside information, a form of contrary evidence to the existing statistical measure. 

The statistical measures still hold up until reaching the boundary of influence. The amended 

model then indicates that at this point, the field of uncertainty for a given confidence can no 

longer be calculated at that particular location, as an adjacent uncertainty field now is just as 

likely to hold the given point. 

Figure 47. Snake extraction of the boundary of influence between two 
uncertainty fields 

Having shown that snakes can model the interaction between two line features' uncertainty fields, 

we will now examine the suitability of applying this process to a more complex scene. 



4.3 Modeling Interactions of Uncertainty Boundaries Within Complex Scenes 

We have shown that deformable contour models can be used to extract continuous uncertainty 

boundaries from uncertainty fields. It has been demonstrated that uncertainty fields are capable 

of modeling the interactions between their regions for neighboring features, and snakes were 

further used to extract the boundary of interaction. It is worthwhile to examine the use of snakes 
I 

to extract boundaries of influence within complex scenes. Based on advancing techniques for 

deriving geospatial data as objects, the methods used to model uncertainty must also advance and 

adapt in order to be relevant. Complex scenes of uncertainty may result, depicting uncertainty in 

terms of the objects themselves. Such scenes of uncertainty should also convey the interactions 

between object uncertainties. One way to represent such behavior is through regions of influence 

for each object within a scene. As such, we are concerned with modeling how an object's 

uncertainty field is influenced by those uncertainty fields around it. 

Figures 48 and 49 display the uncertainty fields of a line feature and three adjacent building 

outlines. Using the same maximum operation overlay techniques from Section 4.2, a complex 

scene of uncertainty can be produced, as viewed in figure 50. Notice that within the regions of 

overlap, the boundary of influence is accentuated by darker pixels (lower gray values). The 

previous image enhancement techniques can heighten the disparity between these pixels and their 

surroundings, as seen in figure 51; the snake extraction can then be applied. The goal of the 

snake extraction is to produce the line feature's updated uncertainty field, one which now depicts 

the influences on it from neighboring uncertainty fields. 



Figure 48. Uncertainty field of a line feature 

Figure 49 Uncertainty fields of 3 adjacent building outlines 



Dark 
of in1 

Figure 50. Result of minimum operation showing extent of interactions between uncertainty fields 

Figure 5 1 .  Following maximum operation, complex scene of uncertainty combining 
building uncertainty boundaries with that of the line feature's 



Figure 52. Snake extraction of boundary of influence of original line feature's 
uncertainty field within complex scene. Arrow denotes section where snake poorly 
extracts the influenced boundary. 

Based on the complexity of the tangled scene, the snake procedure was given a dense sampling of 

initial approximations, generated from the boundaries of the original line feature's uncertainty 

field. The snake does a suitable job of extracting the boundaries of influence within the 

composite of line features. The arrow in figure 52 indicates a section where the snake does not 

accurately model the boundary of influence between two uncertainty fields. This particular 

anomaly is due more to the snake behavior than the unsuitability of the representation. Adjusting 

components of the snake's energy terms or including a denser sampling of initial approximations 

may produce a more smooth and accurate boundary extraction. Otherwise, the line feature's 

uncertainty field is correctly modeled in areas where there is no interference from neighboring 

uncertainty fields. Where uncertainty fields meet, the snake properly deforms to accommodate 

the introduction of outside uncertainty. The shape of the line feature's uncertainty field is 

therefore no longer a smooth curve constantly sagging towards its middle. Rather, the uncertainty 

field reflects the outside influences that its neighboring uncertainty fields impose upon it. 



Applying uncertainty fields to model and defonnable contours to estimate proves a suitable 

combination of procedures to extract these relationships. It allows the user to see not just how 

well a feature is defined by its measurement, but also to what degree the feature is defined by its 

neighbors. 



5. CONCLUDING REMARKS 

5.1 Summary 

Within a GIs environment, the proper use of information requires the identification of the 

uncertainty associated with it. As such, there has been a substantial amount of research dedicated 

to describing and quantifying spatial d a t ~  uncertainty. 

Recent advances in sensor technology and image analysis techniques are making image-derived 

geospatial data increasingly popular. Along with development in sensor and image analysis 

technologies have come departures from conventional point-by-point measurements. Current 

advancements support the transition from traditional point measures to novel techniques that 

allow the extraction of complex objects as single entities (e.g., road outlines, buildings). As the 

methods of data extraction advance, so too must the methods of estimating the uncertainty 

associated with the data. Not only will object uncertainties be modeled, but the connections 

between these uncertainties will also be estimated. 

The current methods for determining spatial accuracy for lines and areas typically involve 

defining a zone of uncertainty around the measured line, within which the "actual" line exists 

with some probability. The latest positional error models, such as the epsilon band, error band, 

and G-band, are rigorous statistical models for estimating independent linear features. However, 

there remain problems in the effectiveness with which these models communicate uncertainty and 

model interactions among neighboring uncertainties. Uncertainty fields, based on G-band 

calculations, may be more appropriate for communicating the distribution of uncertainty around a 

feature. An uncertainty field allows diverse visualization of error boundaries based on tolerances 

and intensity stretching, which consequently allows easy storage in image format. Like the G- 

band, uncertainty fields can be linked node-by-node to form a continuous boundary of uncertainty 

around a feature. Storing uncertainty fields as images makes them accessible to image processing 



techniques, such as deformable contour models, which can be used to estimate these continuous 

uncertainty boundaries. In addition, image processing algorithms can be used to model 

interactions between the fields. Such interactions occur as uncertainty field distributions of 

neighboring features intersect and overlap. Applying image filtering techniques can extract high 

or low pixel values at each point, producing an image boundary between the two uncertainty 
I 

fields. This boundary of influence denotes the transition where one feature's uncertainty field 

claims higher precedence than a neighboring uncertainty field. Again making use of deformable 

contours, these boundaries can be extracted to produce an accurate estimation of the fields' 

boundary of influence. Modeling such interactions between object uncertainties shifts the focus 

from independent objects within a dataset to the more useful view of single objects interacting 

within a scene or framework. This allows a more realistic and comprehensive view of spatial 

data, as uncertainties can be analyzed within the context of their given framework, rather than as 

independent, absolute values. 

5.2 Future Research Issues 

Further examination of uncertainty boundary interaction should cover comparisons of separability 

and accuracy among uncertainty fields. By analyzing snake energy through intersection areas, 

some qualitative measures can be produced which indicate the degree of interaction among 

uncertainty fields. Different object extraction techniques should be applied, such as template 

matching, snake variations, and splines. Due to the evident connection between uncertainty fields 

and fuzzy regions, fuzzy set theory can be employed to explore whether its techniques and 

methods can be used to enhance the modeling of interaction boundaries. Ultimately, research 

should be directed towards the goal of advancing in stride with data production methods, which 

currently indicate the need for uncertainty estimates on the object level. 
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APPENDICES 



APPENDIX A. MODELS FOR ESTIMATING .4ND ASSESSING POSITIONAL 

UNCERTAINTY 

As mentioned in Section 2.2.1, there are numerous methods and models for determining the 

positional uncertainty of spatial features, be they points, lines, or polygons. An in-depth 

examination of all methods is beyond the scope of this paper, but a table outlining some recent 
l 

and noteworthy positional accuracy models is provided. This table is an introductory piece to the 

more detailed review of statistical methods found in Section 3.1 and Appendix B. 

The table is designed to outline significant models for estimating and assessing positional 

uncertainty. The first column provides the sources or authors of the model. This column also 

includes a description of if the model has been developed and tested through rigorous 

mathematics and statistics, or whether it is a conceptual method. The second column gives a brief 

description of the model, while the third column addresses the suitability of the model for visual 

representation. The fourth cblumn indicates whether the model is based on a Normal distribution. 

The fifth column details how accuracy point indicators are provided, and whether correlation 

between the errors of feature points is assumed. Finally, any other noteworthy details or other 

assumptions the model makes are included. 



Sources 

I 
Model Type 

[Rigorous] 
[Conceptual] 

I Epsilon Band 
Perkal, 1966 I Chrisman. 1982 

1 Blakemore, 1984 / Alai, 1993 
1 Alesheikh and Li, 1996 
I 

' I Error Band 
Dutton, 1992 
Caspary and Scheuring, 

1992 

1 Zd!:; and Li, 1996 
I 
i I [Conceptual] 

G-Band 
Shi, 2000 
Shi, 1998 

I [Rigomus] 

Description 

Approach for modeling positional error 
of linear features. A line feature 
connecting two points is surrounded on 
each side by an area of constant width, 
epsilon. Result represents a buffer zone 
of error around the measured line 
feature. Model was designed to provide 
users with a measure of error associated 
with digitizing cartographic lines. 

An extension of the epsilon band model; 
rather than a band of constant width, the 
error band model proposes a band that 
becomes narrower in the middle of the 
line segment. 

More generic description of the error 
band model, allowing for interrelation 
between two endpoints. 2-D normal 
distributions of endpoint errors allow for 
varying shape and size of G-Band, 
determined by error ellipses of endpoints 
and its spatial density distribution 
surface. 

Assume a Gaussian 
(Normal) Distribution? 

Assumes circular normal 
distributions of error at 
endpoints, but provides 
no error distribution 
inside band. 

Assumes circular normal 
distributions of error at 
the endpoints (no 
directional bias). 

Assumes errors of line 
segment endpoints 
follow two-dimensional 
normal distributions. 

Compute or provide 
accuracy indicators? 
Correlation between 

points? 

Assumes point 
3ccuracy measures are 
provided. 

Assumes point 
accuracy measures are 
provided. 

Assumes errors of the 
two endpoints are 
independent of each 
other. 

Assumes point 
accuracy measures are 
provided. 

Takes in to account 
correlation between 
two endpoints. 

Notes andlor 
assumptions made 

Epsilon band is a popular 
model for positional 
uncertainty of lines, and 
many interpretations exist. 
Probabilistic interpretation 
proven inconsistent. 

- 

Introduced the notion that a 
segment's centerpoint, 
though fictional, is more 
reliable location than its 
known endpoints. 

Based on stochastic process 
theory. 
G-Band is not symmetrical, 
error ellipses possess varying 
axes and rotations. 



APPENDIX B. METHODS FOR DERIVING POSITIONAL UNCERTAINTY OF 

DIGITAL SPATIAL FEATURES 

Developing methods to express the accuracy or uncertainty of spatial information has been the 

focus of much research within the spatial data community. With regards to positional 

uncertainty, these methods have been continually developed and extended over the last twenty 
I 

years. Within our discussion, the terms 'error' and 'uncertainty' will be used almost 

interchangeably. The spatial data community, while recognizing the inherent differences between 

the terms, is often at odds when trying to define or separate them. This confusion is due, in part, 

to the similar concepts the terms are meant to convey. In order to achieve the goals of this paper, 

we must analyze and apply previous research on positional error (and uncertainty). For the sake 

of simplicity we will assume that the terms 'uncertainty', and 'error' both indicate a deviation 

from the true value. In addition, the term accuracy can be considered the complement to the two 

terms, i.e., the "closeness" to the true value. 

As previously noted, spatial objects ate comprised of points, W s ,  -and polygons. As the most 

fundamental geometric element, points and their error models have long been studied in the fields 

of geodesy, surveying, and mapping (Shi 2000). Section 2.1.3 stated that all observations and 

measured values contain errors, and Section 2.3 indicated sources of error or uncertainty within 

positional measurements. The uncertainty of digital spatial databases is typically expressed 

through point error measurements. Point errors can be quantified using standard deviations of 

points in the x, y, and z directions. Due to the two-dimensional nature of maps and imagery, error 

is typically quantified as either a single directionally independent measure ( 0 )  , or as a standard 

deviation in two directions (0,  ,o,). One important measure of error that utilizes standard 

deviations is the root-mean-square positional error, or RMSP. The RMSP for a point can be 

calculated accordingly: 



RMSP = ,/= (Caspary and Scheuring, 1992) 

A visual indicator of error or uncertainty of points is an error ellipse. An error ellipse uses 

standard deviations in two directions (e.gbx and y) to define its semi-major and semi-minor axes 

and rotation. The ellipse's axes are defihed in the following manner: 

.:o; 
Semi-major axis = --- 

2 

Semi-minor axis = --- 
2 

Along with the rotation of the ellipse (angle t in figure B. l), these axes provide useful visual 

information regarding a point's positional uncertainty. The shape and orientation of error ellipses 

can provide information on the precision of points and allows visual comparisons among multiple 

points. The semi-major axis defines the weakest direction in which a point's position is known 

(i.e., the direction of maximum uncertainty). Consequently, the semi-minor axis defines the 

point's direction of least uncertainty, or the strongest direction in which the point's position is 

known (Wolf and Ghilani, 1997). 

Figure B. 1 : Error ellipse and its components 

t 1 1 1  



If the uncertainties in both directions are equal (i.e., ox = o, ) and independent, the ellipse's 

shape is an error circle. Yet another measure of positional uncertainty is Circular Error Probable 

(CEP). The CEP is defined to be CEP = 0.589 (0~0, ) , where the probability of the point's 

true position lying inside a circle with radius CEP is 50 percent. The RMSP, error ellipse, and 

CEP are common methods of quantifying point positional error. 

While point error models provide information regarding positional uncertainty, it is more useful 

to obtain uncertainty measures for lines and objects. Despite solid point modeling theory, lines 

and polygons have proven more problematic for visualizing and modeling their associated errors. 

The complexity arises from the need to take independent error models of individual points and 

combine them to form a more complex, dependent model. Just as a line is composed of two 

endpoints, the line's error is derived from the error of its endpoints. In like manner, a polygon's 

error is derived from the error of its boundary line segments. By designing error models for 
5 

spatial objects based on the error models of their more basic components, it is hoped that a 

building-block approach can be used to formulate uncertainty indices for complex objects. 

B.1 Chrisman and Perkai's Epsilon Band 

Chrisrnan (1982), expanding on the work of Perkal(1966), investigates the idea of providing an 

uncertainty boundary surrounding a line segment. The uncertainty boundary, called an epsilon 

band, is based upon a constant radius (epsilon) around the line's true or most likely position. The 

quantity epsilon ( E )  is derived from the radius of the line's endpoint error circles, assuming a 

digitization process that yields random coordinate error in a circular normal distribution. The 

circular normal distribution is two-dimensional (bivariate) and varies normally, meaning that it 

consists of errors in two directions that are equal and uncorrelated. As fi@re B.2 demonstrates, 



the epsilon band's width is contingent on a single error quantity. The main drawback of this 

model is that it provides no interpretation of error distribution inside the band. 

c 
Figure B.2: Chrisman's E - band (Adapted from Chrisman, 1992) 

B.2 Dutton's Error Band Simulations 

Dutton (1992) tested the method Chrisman and Perkal used to derive vector representations of 

digitized map features. Similar to their work, Dutton assumes that digitizing points produces 

error that follows a circular normal distribution. Likewise, his analysis characterizes feature 

uncertainty by constructing regions of "constant Iocatioilal probability around the edges of 

polylines" (ibid.). However, Dutton's result describes concave curvilinear error bands along the 

most likely line segment position. An underlying basis for study of digital spatial feature 

uncertainty is that every feature is made up of points that are uncertain to some degree. Dutton 

assigns each point a circular "locus of uncertainty", within which "any location can be considered 

a reasonable alias" (ibid.). This uncertainty area is simply an error circle, with each error circle 

possessing equal radii. Since any location within the circle can represent the actual point, Dutton 

postulates that a multitude of line segments can connect two uncertain points. In order to 

determine a most likely segment position, Dutton performs an experiment involving multiple 

realizations of possible segment positions. 

Figure B.3 illustrates Dutton's experiment and results. A line (representing a median) is drawn 

and equal error circles are assigned around each endpoint, within which the true endpoints may 



lie. Endpoints are then generated from a circular normal distribution within each error circle, 

representing possible endpoint positions. 

Random endpoints are connected to form line segments that fall left, right, or across the median 

line. The distance from each segment to the median line it represents is calculated at regular 
I 

intervals along the line. The standard deviation for these distance residuals are then calculated at 

each interval along the median line. As a result, Dutton finds that the displacement error from 

each segment to the median line it represents is greatest near the measured points and least 

halfway between them. Dutton finds the results "odd at first" because the midpoint error is at a 

minimum despite the lack of a coordinate measurement (ibid.). The conclusion is that despite the 

precision of a segment's endpoint positions, its centerpoint is the most reliable location. 

Based on the standard deviation at eleven evenly-spaced locations along the baseline, Dutton is 

further able to derive a probability contour one standard deviation (o) in width. In the same year, 

the work of Caspary and Scheuring (1992) helps verify that Dutton's simulations are right on 

target. 



b) A line segment is drawn with equal error circles around 
each endpoint 

b) Possible endpoint locations are drawn via circular normal distributions 

C) Random endpoints are connected to form line segments; 
standard deviation is less at midpoints than at endpoints 

d) Probability contours of one standard deviation may be abstracted at 
intervals along the median line 

Figure B.3: Dutton's experiment simulating line segments (Adapted from Dutton, 1992) 



B.3 Caspary and Scheuring's Error-Band 

Caspary and Scheuring (1992) refine Chrisman's idea to describe the accuracy of lines derived 

from positional errors of endpoints. Like Chrisman and Dutton, they assume equal endpoint 

coordinate errors following a circular normal distribution. However, the authors use error 

propagation and Monte Carlo simulation to derive their own error-band that sags at the midpoint 
I 

of the line segment. 

Caspary and Scheuring define the coordinates of an arbitrary point along a line as a function of its 

endpoints and a parameter. The parametization is expressed as a function of the point's position 

along the line (L,) and the length of the line (L): 

~ , = x ~ + ( x ~ - x , ) ~ A ,  y i = y , + ( y , - y l ) L A ,  O S L i I 1  (ibid.) 

The parametizations still follow a normal distribution because they are linear transformations of 

normally distributed variables (Mikhail and Ackermann, 1976; Shi and Liu, 2000). By applying 

error propagation law and the independent-and-equal error assumption, the authors are able to 

predict how the uncertainty varies along the length of the line. 

Using this formula, Caspary and Scheuring show that points towards the middle of straight lines 

have smaller RMSP values than those at the endpoints. More precisely, the midpoint error proves 

to be a factor of 1/42 less than the endpoint error, while the error-band is 0.8 times smaller than 

the area of the epsilon-band. The authors propose that the more accurate error-band is an area 

determined by the error circle boundaries of all points along the line, rather than strictly the error 



of the endpoints. However, it should be noted that applying error propagation law still requires 

the inner error circles to be dependent on the endpoint error. 

As a result of smaller error at a line's midpoint, Caspary and Scheuring's error-band curves 

towards the center, similar to Dutton's. Despite the admitted difficulties of analytically 
I 

expressing the shape of their error-band, the authors are able to approximate the shape and area of 

the region according to figure B.4. 

Figure B.4: Approximation of the error-band 
(Adapted from Caspary and Scheuring, 1992) 

Caspary and Scheuring further observe that a straight line can be viewed as a random object 

defined by four random variables (four coordinates of two endpoints), forming a four- 

dimensional random vector. The authors wish to describe a region of constant probability around 

this four-dimensional random vector, while avoiding a rigorous derivation of two-dimensional 

probability contours. Instead, they verify their work using Monte-Carlo simulation similar to that 

of Dutton's (1992). 

i 
i 

By generating random coordinates for two endpoints based on a circular normal distribution, the 

authors derive random positions of a median straight line. By placing the random lines within a 

cell array, each line's intersection with a cell can be tabulated (see figure B.5). The cells and the 

frequencies with which they are intersected are used to produce lines of constant probability 

density. An area with a fixed probability of containing the true line segment can be found by 

calculating the frequencies of cells along profiles perpendicular to the expected line. The 



resulting area is the representation of the correct error-band (ibid.). The authors briefly relate the 

one-directional probability density of the line to the probability distribution functions of the 

endpoints. The same Monte Carlo method is also used to analyze the error-band around the 

vertices, where the bands overlap. 

Figure B.5: Cell array and random lines (schematic) 
(Adapted from Caspary and Scheuring, 1992) 

The authors conclude that the error band's area can be used as a measure of accuracy of the 

digital representation of a line. In addition, they make the distinction bet ween the standard 

deviation of area computed from error propagation and the area of a polygon boundary's error- 

band. The error-band is said to contain "the uncertainty of the area of the polygon and of its 

position", while standard deviation of area "expresses the accuracy of the (polygon's) area only" 

(ibid.). 

Caspary and Scheuring's work is important for positional accuracy of objects within spatial 

databases because it: 

5. Uses the error propagation law to derive positional errors along the line. 

6. Concludes that an appropriate error-band is determined by the error circle boundaries of 

all points along the line, rather than strictly the error of the endpoints. 

7. Views a straight line as a four-dimensional random vector. 

8. Compares the marginal density of a line to the distribution function of an endpoint. 



B.4 Shi and Tempfli's Error Model 

These observations are employed by Shi and colleagues (Shi and Tempfli, 1994; Shi and Liu, 

2000) to expand on Caspary and Scheu~g ' s  work to model positional errors of line features in 

GIs. Again, it is assumed that coordinate errors follow a normal distribution and are 
I 

uncorrelated. In addition, the positional'error and distribution of an arbitrary point on a line 

segment are dependent on the errors and distribution of the endpoints. Using these assumptions, 

Shi and Tempfli (1994) define the probability distribution and confidence region of a line 

segment. Shi and Liu (2000), however, use the more general case of interrelation between two 

endpoints to generate a modified error-band. It should be noted that within the context of this 

paper the probability distribution of a line is more relevant than a confidence region. A 

probability distribution describes how a measured segment composed of four random variables 

can deviate from a true location. Confidence regions are used more for generating a region of 

certainty around a measured segment within which the true location lies. The difference is subtle, 

but a probability distribution for a line is better suited when the true location of a line is unknown. 

Shi and Tempfli (1994) define two endpoints as stochastic vectors following a normal 

distribution, a more explicit characterization of Caspary and Scheuring's (1992) idea of a four- 

dimensional random vector: 

The equal variances and covariances indicate independent endpoint errors, which the authors 

admit, "may not be realistic in case of a multi-source GIs" (Shi and Tempfli, 1994). The line 

2 1 2 2  connecting the two endpoints is expressed as a linear, normally distributed function of 2 1  

and 2 2  through pararnetization. Drawing from Caspary and S c h e u ~ g ' s  (1992) investigation of 



the marginal density of a line, Shi and Tempfli derive the probability distribution of a point in a 

direction perpendicular to the line. A marginal density allows a study of the distribution of a 

single variable within a multi-variable distribution. In this case, the marginal density allows a 

study of a point's distribution in a single direction within a twedimensional distribution. 

Consequently, the marginal distribution of X or Y can be derived from the joint distribution of 
I 

(X, 0. 

Figure B.6: The probability density function (bivariate) of the point (x,y) 
(Adapted from Shi and Liu, 2000) 

By calculating the probability distribution of a point in a direction perpendicular to the line, a 

boundary can be formed indicating how the point's position can vary from its true or mean 

position. The probability distribution of the line segment can therefore be characterized by the 



perpendicular density of any point along the line and the density at the two endpoints. The line 

segment's probability distribution describes how the segment can deviate from its expected or 

mean location (Shi and Tempfli, 1994). This concept is expanded upon in Shi's later work with 

Liu (2000) and will be examined shortly. 

Figure B.7: The probability density function of a line 
(Adapted from Shi and Templi, 1994; Shi and Liu, 2000) 

Shi and Tempfli (1994) also develop a set of indicators for segment errors based upon the 

probability density of a line segment. Among the suggested indicators are segment standard 

error, segment near certainty error, segment map accuracy standard, and probable segment error. 

In addition, the authors briefly investigate features made up of multiple line segments where the 

segment probability distributions overlapped. The probability distributions of both segments can 

determine the probability that a point belongs to the feature using fuzzy theory. 

B.5 Shi and Liu's G-Band Model 

Shi and Liu (2000) further develop the ideas of Caspary and Scheuring (1992) and Shi and 

Tempfli (1994) by producing a more general model of the error band, called the G-band model. 

The main improvement of the G-band model being that it allows for correlation between two 



endpoints, a condition not handled by previous models. In addition, the authors specifically 

target cases with differing errors between the endpoints. Endpoint errors are once again assumed 

to follow twedimensional normal distributions. Many of the same procedures of Shi and 

Tempfli (1994) are employed with modifications to allow for the more general case of endpoint 

error variation and dependency. That is, the authors statistically derive the distribution and 
I 

density functions of a line segment to further define errors of arbitrary points on the line. 

A line segment Z&, being the composite of two endpoints (& and Z1), can be represented as a 

four-dimensional random vector &I. Consequently, follows a four-dimensional normal 

distribution (Yu and Lu, 1983; Shi and Liu, 2000): 

zoI - N, Gzol 7 ~ z o 1 z o l  1 

with mean and variance-covariance matrix: 

The authors offer a parametization similar to the one presented by Caspary and Scheuring (1992), 

and indicate that a line segment is a "composite of.. .infinite stochastic variables X(t) and Y(t)": 

x (t) = (1 - t)Xo + tXl 
( O I t  5 1 )  (Shi, 1994 and Shi and Liu, 2000) 

Y (t) = (1 - t)Yo + tYl 

The authors prove that the twedimensional vector Z(t) composed of {X(t), y(t)lT can fully 

described the statistical characteristics of line segment -1. This is accomplished by expanding 

Shi and Tempfli's (1994) work with a line's distribution and density functions. These functions 



can describe the stochastic variables X(t) and Y(t) as well as the correlation between them. Again, 

X(t) and Y(t) follow a normal distribution because they are linear transformations of normally 

distributed variables (Mikhail and Ackermam, 1976; Shi and Liu, 2000). Accordingly, an 

arbitrary point Z,(X(t), Y(t)) on the line segment will follow the line segment's two-dimensional 

normal distribution: 
I 

Z(t)  = ( X  ( t ) ~  (t))T - N2 ( p Z  ( t ) ,  Cz ( t ) )  (Shi and Liu, 2000) 

The point's positional variation can thus be predicted, yet the model still lacks estimates of pdt) 

and &&). While the distribution and density functions provide complete statistical 

characteristics of a line segment, due to practical complexity it cannot be used to describe the 

positional uncertainty of the segment (Shi and Liu, 2000). Therefore, the authors derive an 

uncertainty information matrix & of a line as an extension of the covariance matrix of a point. 

The matrix is a non-stochastic function of tl and t2 used to describe the linear correlation of the 

points on a tine segment and their coordinates. By combining the parametization of X(t) and Y(t) 

with tl and t2 of Zzz, an explicit uncertainty information matrix can be derived. In a similar 

manner, the line's mean value vector pdt) can be estimated: 

(ibid.). 

A single evaluation of the'uncertainty matrix for two points can provide the linear correlation 

between those two points and their coordinates. The uncertainty information matrix explains 

relationships between varying errors for two different points in two directions, resulting in a 



rather complex 2-by-2 array. However, the matrix is simplified when handling the condition of 

directional independence among the error components (i.e., for any point, a = ay). This is often 

the case within GIs vector data production operations, such as digitizing or automated feature 

extraction. 

I 

Based on work with distribution and density functions and their uncertainty information matrix, 

Shi and Liu derive a generic error band model. Named the G-band, its boundaries are defined by 

the error ellipses of arbitrary points on the line segment and the error ellipses of the endpoints. 

While based on conclusions previously drawn by Caspary and Scheuring, the G-band has distinct 

properties not before articulated. The G-band is directly linked to the distribution and density 

functions of a line segment, which completely describe a line's statistical characteristics. As 

such, it is able to handle correlation between endpoint errors, as well as inequality between these 

errors. Figure B.8 illustrates the definition of the generic error band according to Shi and Liu 

(2000). By slicing the spatial density distribution surface parallel to the X-Yplane, an infimite 

number of twedimensional bands can be obtained. Of these parallel slices through the density 

surface, the G-band is described by the plane passing through the error ellipse of the endpoints 

(ibid.). 



Figure B.8: The probability density function of a line [enlarged] 
(Adapted from Shi and Templi, 1994; Shi and Liu, 2000) 

Similar to previous band models, the G-band's shape is described by the error ellipses of all 

points along the line segment. The error ellipses at the endpoints describe the extreme ends of the 

the band, while the error ellipses of the inner points construct the boundary lines of the band. The 

error ellipses are described by their semi-major axis, semi-minor axis, and direction to the semi- 

major axis, defined by Shi and Liu (ibid.) to be: 

1 
~ ~ ( f )  = ~,p(t )~=~{oi  (f) + 0: (f) - o} } where o = ,/(a: ( f )  - o: ( o ) ~  + 4oiy (0 . 



As mentioned previously, if the errors in the coordinate components are independent and equal to 

each other (i.e., for any point, @ = cry), the uncertainty information matrix is greatly simplified. 

Under this condition of directional independence, the error ellipses become error circles with a 

radius of uncertainty equal to: 

z, = [ (1-t)'CT,' + t2CT; ] (ibid.) 

While Caspary and Scheuring's (1992) error band relies on the assumption of directional 

independence, this condition is only a special instance of the G-band. Figure B.9(a) illustrates 

this special case of the G-band, when endpoint errors are independent and equal. Under these 

conditions, the G-band reduces to the error band models of Caspary and Scheuring (ibid.). Figure 

B.9(b) illustrates the more general case of the G-band, which allows each endpoint to have 

varying errors in both dimensions. In this case, the endpoint errors in the two directions are 

correlated and of varying magnitudes. 

Figure B.9: G-bands under varied conditions: (a) equal, uncorrelated errors; 
(b) unequal, correlated errors (Adapted from Shi and Liu, 2000) 



Similar to previous error band models, the G-band sags as the error ellipses along the line 

decrease. However, due to the G-band's ability to handle unequal endpoint errors, the minimum 

error ellipse is not necessarily located at the center of the line segment. The minimum error 

ellipse location is dependent on the relative endpoint error magnitudes; its position will be closer 

to the endpoint with less error. Figure B. 10 demonstrates this property with error circles, where 
I 

point &, has error 6, point Z1 has error q, and the minimum error circle is centered on Z. Note 

the minimum error circle is located nearest the endpoint with least error. 

Figure B. 10: Location of minimum error circle: (a) o,, < o,, t < 112 ; 
(b) Ob > o,, t > 112; 

Shi and Liu's G-band is the most advanced positional error model of linear GIs features to date. 

It is a flexible model that can handle unequal and uncorrelated errors between endpoints. 



Figure B. 11:  Visualization of G-band as composite of error ellipses (circles) 
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