
The University of Maine
DigitalCommons@UMaine

Electronic Theses and Dissertations Fogler Library

8-2004

A Data Model for Exploration of Temporal Virtual
Reality Geographic Information Systems
Jorge Alberto Prado de Campos

Follow this and additional works at: http://digitalcommons.library.umaine.edu/etd

Part of the Geographic Information Sciences Commons, and the Graphics and Human
Computer Interfaces Commons

This Open-Access Dissertation is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in
Electronic Theses and Dissertations by an authorized administrator of DigitalCommons@UMaine.

Recommended Citation
Campos, Jorge Alberto Prado de, "A Data Model for Exploration of Temporal Virtual Reality Geographic Information Systems"
(2004). Electronic Theses and Dissertations. 570.
http://digitalcommons.library.umaine.edu/etd/570

http://digitalcommons.library.umaine.edu?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F570&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.library.umaine.edu/etd?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F570&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.library.umaine.edu/fogler?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F570&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.library.umaine.edu/etd?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F570&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/358?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F570&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/146?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F570&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/146?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F570&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.library.umaine.edu/etd/570?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F570&utm_medium=PDF&utm_campaign=PDFCoverPages

A DATA MODEL FOR EXPLORATION OF TEMPORAL VIRTUAL REALITY

GEOGRAPHIC INFORMATION SYSTEMS

BY

Jorge Alberto Prado de Campos

B.S. Universidade Federal da Bahia - Brazil, 1986

M.S. Pontificia Universidade Cat6lica do Rio de Janeiro - Brazil, 1991

A THESIS

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

(in Spatial Information Science and Engineering)

The Graduate School

The University of Maine

August, 2004

Advisory Committee:

Max J. Egenhofer, Professor of Spatial Information Science and Engineering, Advisor

M. Kate Beard-Tisdale, Professor of Spatial Information Science and Engineering

Marcelo Gattass, Professor of Computer Science, PUC-Rio, Brazil

Kathleen Stewart Hornsby, Assistant Professor, National Center for Geographic

Information and Analysis

Michael F. Worboys, Professor of Spatial Information Science and Engineering

A DATA MODEL FOR EXPLORATION OF TEMPORAL VIRTUAL REALITY

GEOGRAPHIC INFORMATION SYSTEMS

By Jorge Alberto Prado de Campos

Thesis Advisor: Dr. Max J. Egenhofer

An Abstract of the Thesis Presented
in Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy
(in Spatial Jiformation Science and Engineering)

August, 2004

Geographic information systems deal with the exploration, analysis, and presentation of

geo-referenced data. Virtual reality is a type of human-computer interface that comes

close to the way people perceive information in the real world. Thus, virtual reality

environments become the natural paradigm for extending and enhancing the

presentational and exploratory capability of GIs applications in both the spatial and

temporal domains. The main motivation of this thesis is the lack of a framework that

properly supports the exploration of geographic information in a multi-dimensional and

multi-sensorial environment (i.e., temporal virtual reality geographic information

systems).

This thesis introduces a model for virtual exploration of animations. Virtual

exploration of animations is a framework composed of abstract data types and a user

interface that allow non-expert users to control, manipulate, analyze, and present objects'

behaviors in a virtual-reality environment.

In the model for virtual exploration of animations, the manipulation of the dynamic

environment is accomplished through a set of operations performed over abstractions that

represent temporal characteristics of actions. An important feature of the model is that the

temporal information is treated as first-class entities and not as a mere attribute of

action's representations. Therefore, entities of the temporal model have their own built-in

functionality and are able to represent complex temporal structures.

In an environment designed for the manipulation of the temporal characteristics of

actions, the knowledge of relationships among objects' behaviors plays a significant role

in the model. This information comes from the knowledge base of the application domain

and is represented in the model through constraints among entities of the temporal model.

Such constraints vary from simply relating the end points of two intervals to a complex

mechanism that takes into account all relations between sequences of intervals of cyclic

behaviors.

The fact that the exploration of the information takes place in a virtual reality

environment imposes new requirements on the animation model. This thesis introduces a

new classification of objects in a VR environment and describes the associated semantics

of each element in the taxonomy. These semantics are used to direct the way an object

interacts with an observer and with other objects in the environment.

DEDICATION

To Teca, Lucas, and Rodrigo.

ACKNOWLEDGEMENTS

This thesis was completed with the contribution of many people to whom I would like to

express my gratitude.

I would like to acknowledge the members of my advisory committee Max Egenhofer,

Kate Beard, Kathleen Hornsby, Marcelo Gattass, and Michael Worboys. I would like to

thank specially my advisor Max Egenhofer for believing in this project.

I would like to thank the staff and faculty members at the Department of Spatial

Information Science and Engineering and specially Alfred Leick, Harlan Onsrud, Peggy

Agouris, and Karen Kidder.

I would like to acknowledge the support of the staff members at the Fogler Library

and the Graduate School.

I would like to thank all my friends at the Department of Spatial Information Science

and Engineering and specially Jim Farrugia, Fred Fonseca, and Mike Hendricks.

I would like to thank the financial support of the Conselho Nacional de

Desenvolvimento Cientifico e Tecnologico - CNPq, under grant number 200020/00-5.

Finally, I would to say thank to my family both in Brazil and in Maine and specially

Teca, Lucas, and Rodrigo, to whom I dedicate this thesis.

TABLE OF CONTENTS

. . .. DEDICATION 11

... ACKNOWLEDGEMENTS .. ill

LIST OF TABLES ... ix

LIST OF FIGURES .. x

Chapter

... 1 . INTRODUCTION 1

1.1 Virtual Reality Geographic Information Systems ... 3

1.2 Temporal VRGIS .. 4

1.2.1 Presentation .. -5

1.2.2 Spatial Interaction ... 7

1.2.3 Temporal Interaction .. -8

... 1.3 Motivation 10

1.4 Goal and Hypothesis ... 13

1.5 Research Approach .. 1 5

1.6 Scope of the Thesis ... 18

1.7 Major Results 19

1.8 Intended Audience .. -20

1.9 Organization of Remaining Chapters ... 20

2 . MULTI-DIMENSIONAL GIs .. 22

. . . .
2.1 Geograph~c Visualization ... :22

iv

2.2 Computer Animation ... -24

2.2.1 Image-Based Animations 24

2.2.2 Content-Based Animations .. -26

2.2.3 Animations for GIs ... 30

2.3 Data Models for Temporal VRGIS ... 31

2.3.1 Three-Dimensional and Interactive Graphics .. -32

2.3.2 A Framework for Animated Three-Dimensional Graphics 33

2.3.2.1 Geometric Models .. 34

2.3.2.2 Action Models .. 38

2.3.2.3 Temporal Model ... 42

2.4 Summary ... 44

3 . ACTIONS 45

3.1 Structure of the Action Model .. 46

3.2 Acts ... 47

3.2.1 Changing Attributes Types ... 51

3.2.2 Changing Attributes Key Values and Interpolator Factory 52

3.2.3 The Act Specification ... 55

3.3 Course of Actions ... 56

3.4 Animations .. 60

3.5 Summary .. 63

4 . TEMPORAL CHARACTERISTICS OF ACTIONS .. 64

4.1 Temporal Domains .. 64

4.2 Structure of the Temporal Model .. 71

... 4.2.1 Act Interval 73

4.2.2 Course of Actions Interval79

.. 4.2.2.1 Transformation Operations 82

.. 4.2.2.2 Cyclic Behaviors 86

... 4.2.3 Animation Interval -91

... 4.3 Summary 94

5 . TEMPORAL CONSTRAINTS ... 96

5.1 The Role of Representing Relationships between Temporal Intervals 97

5.2 Representing Temporal Constraints .. 104

5 .2.1 Temporal Constraints between Intervals ... -105

5.2.2 Extending Temporal Constraints between Cycles .. 111

5.2.2.1 Temporal Relations between Cycles ... 112

5.2.2.2 Constraints between Occurrences of Cycles .. 115

5.3 Summary .. 117

6 . TEMPORAL COMPOSITION ... 119

6.1 Composition Operations ... 120

6.2 Composition Operations between Two Intervals .. 121

6.3 Composition Operations Between Intervals ... 124

6.3.1 Changing the Structural Elements of the Cycle .. 124

6.3.2 Changing the Start Point of Cycle's Occurrences ... 126

6.4 Summary ... 135

7 . SEMANTICS OF VR OBJECTS .. 137

7.1 Characteristics of VR Objects' Semantics .. 1 3 8

vi

7.2 Taxonomy of VR Objects .. 1 4 1

7.2.1 Existent VR Objects .. 141

7.2.2 Non-Existent VR Objects ... 144

7.3 Semantics Operations .. 145

7.4 Evolution of VR Objects' Semantics ... 148

7.5 Modification of VR Objects' Semantics ... 150

7.6 Summary ... 155

8 . PROTOTYPE IMPLEMENTATION AND ASSESSMENTS : 157

8.1 An Example .. 158

8.2 A Possible Graphical User Interface ... 160

8.2.1 The Virtual Exploration of Animations Editor ... 160

8.2.2 The Virtual Exploration of Animations Browser .. 164

8.3 Animation Operations ... 1 6 6

8.3.1 Compositions Operations .. 167

8.3.1.1 Compositions Operations Between Intervals ... 167

8.3.1.2 Compositions Operations Between Cycles Intervals 172

8.3.2 Transformation Operations .. 1 7 8

8.3.3 Combination Operations .. 181

8.4 Hypothesis Evaluation .. 182

8.4.1 What Can Be Done with Operations of the Individual VCR Model 183

8.4.2 What Cannot Be Done with Operations of the Individual VCR Mode1 188

8.5 Summary .. 191

9 . CONCLUSIONS AND FUTURE WORK .. 192

... 9.1 Summary of Thesis 192

9.2 Results and Major Findings .. 194

.. 9.3 Future Work 196

9.3.1 Anticipation of Mutual Interference ... 196

.. 9.3.2 Incorporating Knowledge 197

. . .. 9.3.3 Support for Causalities.. 197

....................................... 9.3.4 Cycles Behaviors at Different Levels of Granularity 198

.. 9.3.5 Uncertainties -199

... REFERENCES -200

.. BIOGRAPHY OF THE AUTHOR 213

viii

LIST OF TABLES

Table 2.1. Classification of types of changes based on the object changing

and the agent that causes the change .. 38

Table 5.1. Temporal constraints between a pair of intervals 107

Table 6.1. Composition operatio'ns between intervals and possible temporal

relations holding between the intervals after the execution of the

operation ... -122

Table 8 . 1 . Operations of the extended VCR control and the equivalent set of

operation in the virtual exploration of animation model 187

LIST OF FIGURES

Figure 1 .I .

Figure 1.2.

Figure 2.1.

Figure 2.2.

Figure 2.3.

Figure 2.4.

Figure 2.5.

Figure 3.1.

Figure 3.2.

Figure 3.3.

Figure 3.4.

Figure 3.5.

The convergence of presentation media and devices. spatial

interaction and temporal interaction yields the model of Temporal

VRGIS .. 5

A model for virtual exploration of animations in the context of a

.................................. model that supports Temporal VRGIS applications 1 1

... Different types of image-based animations 26

Graphical realization of a clown and a box based on geometric

primitives ... 36

Representation of geometric primitives in a scene graph structure 37

Two behaviors of the dynamic model and their associated visual

objects of the geometric model .. 41

A temporal object representing the temporal characteristics of two

behaviors .. 43

Class diagram representing the general structure of the action

... model -47

A car traveling between two locations ... 48

Class diagram of the act and its components ... 49

The car changes its color when traversing an unpaved segment of

the road ... 49

Object diagram of a car making a turn and getting dirty 50

Figure 3.6.

Figure 3.7.

Figure 3.8.

Figure 3 .9 .

Figure 3.1 0 .

Figure 3.11.

Figure 3.12.

Figure 3.13.

Figure 3.14.

Figure 4.1.

Figure 4.2.

Figure 4.3.

Figure 4.4.

Figure 4.5.

Figure 4.6.

Figure 4.7.

Figure 4.8.

Figure 4.9.

Specification of the class ChangingAttributeTypes 52

................. Key states of the position and direction of a car making a turn 54

.................................. Two possible configurations of a car making a turn 55

... Specification of the class Act 56

.................. A Course of Actions of a car traveling between two locations 57

....................... Object diagram of the car traveling between two locations 58

... Specification of the class Course of Actions 59

Object diagram of a possible configuration of Animations and

............ Course of Actions of all vehicles running on a university campus 61

... Specification of the class Animation 62

Mappings among valid, animated. and user time domains 65

Mapping of temporal information among different temporal

domains .. 67

Mappings among valid times. different elements of the animated

time domain. and user time .. 70

Class diagram of the dynamic. temporal. and geometric parts of the

framework for virtual exploration of animations 72

Specification of the class Act Interval ... 74

An act of a car moving in a straight line .. 75

Different shapes the normalize function .. 78

Specification of the class Course of Actions Interval 80

Representations of the course of actions of a car moving between

two locations .. 81

xi

Figure 4.10.

Figure 4.1 1.

Figure 4.12.

Figure 4.13.

Figure 4.14.

Figure 4.1 5.

Figure 4.16.

Figure 4.17.

Figure 5.1.

Figure 5.2.

Figure 5.3.

Figure 5.4.

Graphical representations of two versions of a car's movement. 84

Graphical representations of the operation setorder over the entire

behavior of the car. .. 85

Class diagram showing a Cycle Interval as a specialization of the

class Course of Actions Interval. ... 87

An interval of activity followed by an interval of inactivity

representing the temporal extent of a single occurrence of the cycle

of a geyser. .. -8 8

Specification of the class Cycle Interval .. 89

Different patterns of repetitions of cyclic behaviors 90

Specification of the class Animation Interval. ... 92

Graphical representation of Animation Intervals 92

Graphical representations of the spatial and temporal

characteristics of the movement of two vehicles on the campus. 98

A relationship between two intervals representing some knowledge

. .
from the apphcation domain. .. .99

Different configurations of an animation where the start point of

the red interval is redefined.. ... -100

Graphical representations of the spatial and temporal

characteristics of the movement of two buses with a cyclic

behavior. ... 1 0 1

xii

Figure 5.5.

Figure 5.6.

Figure 5.7.

Figure 5.8.

Figure 5.9.

Figure 6.1.

Figure 6.2.

Figure 6.3.

Figure 6.4.

Figure 6.5.

Figure 6.6.

Graphical representations of the temporal characteristics of the

buses' behavior in which the bus of the blue route has a new

driver.. .. 103

Temporal constraints between a Course of Actions Interval and

different kinds of cycles. ... 1 0 8

Temporal constraints between a non-cyclic behavior and cyclic

... behavior and between two cyclic behaviors. 1 1 1

................... Temporal representations of the occurrences of two cycles. 1 13

Temporal representations of subsets of occurrences of two cycles

covering the extended period of the cycle. .. 1 15

Two different configurations of the animation for the operation

makecross. ... 1 2 3

Cycles compositions. .. -126

The linear and cyclic representations of occurrences of the

reference (outer) and target (inner) cycles needed to capture the

smallest subset of correlations. ... 127

Possible temporal configuration between the reference (outer) and

target (inner) intervals and the smallest set of correlations for each

configuration. ... 128

Conceptual b-neighborhood structure for temporal relations

between occurrences of cycles. .. 1 3 0

Different configuration of two cycles with a temporal relation

disconnected. ... 1 3 2

...
Xll l

Figure 6.7.

Figure 7.1.

Figure 7.2.

Figure 7.3.

Figure 7.4.

Figure 7.5.

Figure 7.6.

Figure 8.1.

Figure 8.2.

Figure 8.3.

Figure 8.4.

Figure 8.5.

Figure 8.6.

Topological distances associated with relations of the loose group

of temporal relations in the conceptual b-neighborhood structure.I33

Classification of VR objects accordingly to their existence, activity

.
and visibility character~stics.. -14 1

Mappings of semantics operations.. 1 4 7

Class diagram with the History and other related data abstractions

* .
of the ammation model. ... 148

Graphical representations of the History and Course of Action

Intervals of a performer object ... 149

Graphical representation of the original configuration of the course

of action and history of the storm and ship. ... 15 1

Manipulation of the temporal configuration of the ship's activity

and the modified version of the ship's history. .. 154

Trajectories and key states of the objects moving in the room. 159

An editor for virtual exploration of animations. 160

The graphical representation of the structure of action objects and

their temporal characteristics. .. 16 1

User interface representing operations to manipulate the temporal

. .
charactenstics of animations. .. 163

A browser for virtual exploration of animations 165

The seven linear composition operations between convex intervals. 168

Figure 8.7.

Figure 8.8.

Figure 8.9.

Figure 8.10.

Figure 8.1 1.

Figure 8.1 2.

Figure 8.13.

Figure 8.14.

The effect in the temporal configuration of the animation by

applying a makeStartTogether operation with the box and the

yellow ball used as arguments. .. 168

Snapshots of an animation where the balls and the box start to

move at the same time. The balls collide with the box and stop

their modeled behaviors. ... 1 7 0

The effect in the temporal configuration of the animation by

applying a makeStartTogether operation with the box and the red

ball used as arguments. This configuration violates a temporal

constraint introduced in the model ... 170

Snapshots of an animation where only the red ball start to move

with the box. The red ball has a non-existent status during the

period when the temporal constraint is violated. 17 1

The group of composition operations between cycle intervals 173

Snapshots of the instants in which the cone and the cylinder are at

a closest distance. .. 1 7 4

Linear representation of occurrences of cone and cylinder's cycles

interval in the modeled animation. ... 174

Summary of temporal relations, linear and cyclic representation of

a temporal configuration that maximizes containments between the

cone and the cylinder. .. 175

Figure 8.1 5. Snapshots of the instants in which the cone and the cylinder are at

a closest distance in a modified version of the animation that

. maxmzes containments. 176

Figure 8.16. The effect in the temporal configuration of the animation by

applying a makeconcurrent operation with the cylinder as a target

.. interval. 177

Figure 8.17. Snapshot of the first instant when the cylinder and the cone touch

each other in the modified version of the animation where the

cycle intervals are concurrent. ... 177

Figure 8.18. The group of transformation operations. ... 178

Figure 8.19. The effect in the temporal configuration of the animation by

changing the instant when the balls start to move and inverting the

order of the red ball. ... 180

Figure 8.20. Snapshots of an animation where only the red ball performs its

movement in a reverse chronological order. .. 181

............... Figure 8.2 1 . The group of composition operations between cycle intervals. 1 8 1

Figure 8.22. Snapshots of an animation with the difference between the

behaviors of the box and the cone. The cylinder does not move

... during the period when the box is moving 182

Figure 8.23. Operations of the extended VCR control. .. 184

Figure 8.24. A view of the animation produced by different operations of the

VCR control for each object's behavior. ... 185

Figure 8.25. A view of the animation produced by the combination of the

operations order, flow and duration. .. 187

xvii

CHAPTER 1

INTRODUCTION

Virtual Reality (VR) is a type of human-computer interface (Brodlie et al. 2002) that

comes close to the way people perceive information in the real world (Jacobson 1991).

Because VR communicates information to a user by exploiting every sensory channel,

VR promises to reduce the impedance between the representation of information and

people's mental conceptualizations of space and time (Raper 2000). It gives a user the

impression of being part of a synthetic environment and the ability to interact with this

environment in a more natural way. These characteristics are particularly useful for

exploring natural environments.

Geographic information systems (GISs) deal primarily with the exploration, analysis,

and presentation of geo-referenced data. Traditional user interfaces, which are static and

present only a two-dimensional view of the data, have proven to be difficult to use in

situations that require the analysis of an increasing amount of three-dimensional data

changing over time (Verbree et al. 1999). In this sense, VR becomes the natural paradigm

for extending and enhancing the presentational and exploratory capability of GIs

applications in both spatial and temporal domains. In the spatial domain, for instance, the

use of irnmersive VR environments in applications of the oil and gas industry has

suggested that VR interfaces can help geoscientists to analyze in more detail geophysical

and geological data (Lin et al. 2000). In a field where the process of gathering data is

always very expensive, the advantage of using VR becomes a strategic issue. In the

temporal domain, the visualization of information through animations has been

recognized as a natural means to explore and analyze time-varying information and

processes (DiBiase et al. 1992). Animation is a powerful mechanism that enhances the

understanding of the data under investigation and fosters new insight into the underlying

processes (Brodlie et al. 1992).

The use of animations as an exploratory tool and the advances of computational

resources raise many challenges for the GIs community. On the one hand, the complexity

of time and the diversity of geographic phenomena and their behaviors represent barriers

for the conceptualization of data models that better capture the richness of temporal

geographic information. On the other hand, the development of more cognitive

computational environments, which explore a user's sensory channels and the sense of

immersion in the communication process, demands the development of new metaphors

and methods for exploration of the information.

This thesis focuses on the exploration of geographic spaces in VR settings. The main

motivation for this thesis is the current lack of a theory that properly supports exploratory

analysis of spatio-temporal data sets using VR technology. This research presents a data

model that supports manipulation, analysis, and presentation of dynamic geographic

objects in VR environments, giving attention to the representation of interactions between

the user and the data set in the spatial and temporal domains.

1.1 Virtual Reality Geographic Information Systems

GIs can be roughly defined as a combination of database management systems, a set of

operations for examining data, and a graphic display for spatial analysis (Rhyne 1997).

For presentation and analysis purposes, GIs applications have been relying on two-

dimensional displays. The increasing amount of multi-dimensional and geo-referenced

data, however, demands a more cognitive computational environment (i.e., hardware and

software) to handle this kind of information (Kraak et al. 1999). In this sense, VR is a

natural candidate to fill such a position.

The combination of VR with GIs becomes known in the literature as VRGIS (Faust

1995). In a first attempt to combine VR with GIs, some GIs applications simply provide

VR as an alternative interface for the presentation of three-dimensional geographic

information. The second generation of VRGIS applications increased the level of

integration by incorporating some GIs functionality into the VR interface. These

applications have been reported in many areas such as urban planning (Verbree et al.

1999; Zlatanova 2000), environment and ecology (Raper 2000), data visualization (Kraak

et al. 1999), terrain visualization (Koller et al. 1995; Neves el al. 1999; Reddy et al.

1999), animations (Dollner and Hinrichs 1997; Luttermann and Grauer 1999; Hardisty et

al.), archaeology (Ogleby 2002), military recognition and training (Macedonia 2002),

simulation (Wenzel and Jensen 2001), navigation, orientation, and usability issues

(Fuhrmann and MacEachren 1999; Kraak et al. 1999; Verbree et al. 1999; Chitaro and

Scagnetto 2001), and education (Dykes et al. 1999).

The increasing number of VRGIS applications and the acknowledgment of the

potential of this integration encourage the search for a more formal definition for the term

VRGIS. Williams (1999) defined VRGIS as "a multi-dimensional, computer-based

environment for the storage, modeling, analysis, interrogation of, and interaction with,

geo-referenced spatio-temporal data and processes." This definition depicts a strong

connection between the general goals of VR and GIs applications. From the VR

perspective, the VR definition (Kalawsky 1993) is extended to incorporate geo-

referenced data and to highlight the exploratory nature of GIs applications. On the GIs

side, the traditional GIs's definition (USGS 2003) is simply complemented with the term

multi-dimensional.

The integration of VR and GIs, however, is more than a simple combination of two

different disciplines. This integration has the potential of enhancing the functionality of

both fields in a way that surpasses the sum of each field separately. When VR and GIs

are combined in a single application, new possibilities and opportunities arise, helping to

solve old problems and address new questions not attempted yet. These features are

enhanced when the temporal dimension is added to the VRGIS framework, producing

what became known as temporal VRGIS (Williams 1999). In this way, Temporal VRGIS

represents a new tool in the GIs arsenal to be used wherever the cartographic view of the

world is no longer adequate or sufficient to support spatio-temporal reasoning.

1.2 Temporal VRGIS

Temporal VRGIS is the symbiotic convergence of the advances in three salient features

of a GIs application: presentation, spatial interaction, and temporal interaction (Figure

1 . 1) . Presentation deals with formats and devices used to display the information (e.g., a

digital image in a computer screen). Spatial interaction is concerned with the interplay

between the observer and the data (e.g., changing the scale of an image or selecting an

object for deletion). Temporal interaction refers to the control and presentation of the

dynamic information (e.g., playing an animation).

Presentation Spatial Lnteraction Temporal Interaction

I 2D Graphics I I Space Manipulation
I I
f f

Projected 3D Graphics I Camera Control I I Animated Graphics
I I I + +

I Irnrnersive VR I I space-user Interaction
I I
f f

I Temporal Virtual Reality Geographic Information Systems I
Figure 1.1. The convergence of presentation media and devices, spatial interaction and

temporal interaction yields the model of Temporal VRGIS.

1.2.1 Presentation

The presentation of information can be accomplished in a wide combination of formats

and devices. The most rudimentary set is a digital image or two-dimensional graphic

rendered on a flat computer screen. This configuration has been used for decades and

represents the traditional cartographic view of the world in a digital environment.

The second stage of presentation of spatial information is the display of three-

dimensional information in a two-dimensional media. This transformation is

accomplished through a mapping from the three-dimensional to the two-dimensional

space (e.g., a perspective projection). This mechanism produces more realistic views and

allows an observer to perceive volume and distinguish objects located at different

distance. The major drawback of perspective projections is that geometric properties are

not preserved under such a mapping. In this way, the user cannot extract any metric

information from the display (e.g., distance and area). Since topological properties are

preserved, it is still possible to extract qualitative information about the environment.

This approach is used in traditional 3D graphics and non-immersive VR applications.

A more sophisticated form of presentation of three-dimensional graphics is imrnersive

VR. h this environment, the computer generates two slightly different views of the

three-dimensional space and a special device (e.g., a pair of goggles) coordinates the

presentation of these images for the observer. This stereo view produces a strong depth

cue and allows an observer to "see" in three-dimensions (Foley et al. 1997). If in

addition, an observer is surrounded by stereographic displays, it gives an observer the

illusion of full immersion in the environment. The sense of immersion experienced by a

user exploring such environments constitutes a communication medium that cannot be

simulated by any other computational resource. In this sense, VR can be seen as the

leading edge of computer-generated environments that starts with a simple digital version

of an image (Haklay 2002).

Despite the differences in the level of sophistication and the computational effort

involved in each visualization technique, there is no better form to present the

information. Each technique has its own characteristics and serves different purposes.

Verbree et al. (1999) suggest the combination of different visualization techniques in a

single application. The application provides different views of the environment (i.e., 2D,

projected 3D, and VR) that may be used either simultaneously or intermittently. In this

approach, the decision of the appropriate form of visualization is left for the observer.

The observer decides which view is more adequate based on the task at hand and the

functionality available for each view. Moreover, the observer can select a view that he or

she feels is more comfortable for performing the desired task. Some users are not trained

to read two-dimensional maps, while others get lost in navigating VR environments. The

combination of different views can help the observer to understand more symbolic

representations and enhance the orientation in large environments.

1.2.2 Spatial Interaction

Spatial interaction is usually discussed under the perspective of an active observer

changing his or her view of the environment, manipulating an objects' appearance or

spatial location, and performing some kind of request about geometric characteristics of

the image. In this sense, a zoom or pan of a map, the selection of an object for deletion,

and a request about the distance between two points are all types of spatial interaction.

The increasing support of the media for richer forms of representation and the

imrnersive characteristic of the observer in the data extends the number of possibilities of

spatial interactions. The presentation of three-dimensional graphics together with the

ability to interactively and continuously define the vantage point of the observer allow for

a new type of spatial interaction. The observer, immersed in the environment, can now

perform a walk-through and analyze the data from different perspectives.

In VR environments the observer becomes increasingly part of the data set (Kraak

2002). The ability of existing computer devices to output sensory feedback makes

interactions an even more complex topic. Interaction in VR can include constraints

7

imposed by the data on an observer's actions (e.g., a building that blocks the path of the

observer or a heavy object that cannot be moved). This type of spatial interaction needs

further investigation. In the GIs context, it is important to identi@ the type of constraints

imposed by geographic objects on the objects themselves and on the observer acting in

VR environments. It is also important to determine which kinds of constraints need to be

represented and to evaluate the cognitive impact of imposing such constraints on a user

who is exploring the environment.

1.2.3 Temporal Interaction

Temporal interaction is related with the exploration and presentation of information that

changes over time. The portrayal of static images is the paradigm of applications that

offer only a limited support for the presentation of the time-varying information. Ln these

applications the user is constrained to explore snapshots of different configurations of the

information in which each snapshot represents the state of the environment at a certain

instant in time. The user can alternate the display and analyze a single state of the

environment at a time. If the application supports the presentation of a coherent sequence

of images in an automatic fashion and in a way that gives the observer the illusion of

movement, the application provides animations.

The most rudimentary animation mechanism is animated graphics. This mechanism

presents a coherent sequence of images giving a user the illusion of movement.

Animated graphics, however, does not give the user the ability to control the flow of

information. Some VRGIS applications that support animations use animated graphics as

the only mechanism to present time-varying information. Thus, the level of interactions

with the temporal domain is limited to a passive and contemplative observation of the

flow of dynamic objects in the environment. In these settings there is no way to pause,

rewind, or fast-forward the animation. It is equivalent to the mechanism of animated gifs

used with raster images in two-dimensional displays. By giving a user the ability to

control the flow the animation constitute a stepforward towards a "truly" temporal

interaction mechanism.

The set of operations used to control the animation defines the level of interaction that

can be accomplished in the temporal domain. In the majority of applications that support

animations, users control the presentation of the animation using a small set of operations

that resembles operations of a video-cassette recorder (VCR) control (e-g., play, stop,

rewind, and fast forward). The use of the VCR metaphor to control animations has pros

and cons. Its main advantages are the reduced number of operations and the fact that

almost everybody is very familiar with the functionality of such a set of operations. The

main drawbacks of this set of operations are the limited number of different views of the

dynamic environment that can be created and the fact that the user is constrained to

control the animation as a whole, without any means to address the behavior of an

individual or a set of individuals. With a VCR-like metaphor, for instance, it is

impossible to observe the behavior of an object been performed in a chronological order,

while other objects are observed performing their activity in a reverse chronological

order. A user controlling the animation as a whole cannot generate this interesting and

possibly insightful view of the dynamic environment.

1.3 Motivation

The basic requirements of a temporal VRGIS application include the support for the

representation of time, behavior evolution, and processes (Williams 1999). Moreover,

this kind of application needs to support operations that allow a user to observe, distort,

and modify the temporal dimension, to gain insights and discover relationships among

geographic phenomena. Existent temporal VRGIS applications do not accomplish these

requirements.

While the integration of VR and GIs in the spatial domain is growing fast, this

integration in the temporal domain is still incipient. The multi-dimensionality of VRGIS

applications cannot be reduced to the representation, perception, and analysis of the

three-dimensional space. The temporal dimension and other semantics dimensions of the

geographic space require the same support and investigation effort as experienced by that

of the spatial dimensions.

This thesis pursues a model for virtual exploration of animations. The model of

virtual exploration of animations covers specific aspects of the more general model that

supports Temporal VRGIS applications (Figure 1.2). Virtual exploration of animations is

a framework composed of abstract data types and a user interface that allow non-expert

users to control, manipulate, analyze, and present objects' behaviors. The term

exploration suggests that the interface and methods used to control the animation move

beyond the mere presentation of the animation. The exploratory nature of an interface for

virtual exploration of animations must afford users the ability to create their own view of

the dynamic environment. Thus, the user can learn from the act of creating and not just

by the result of the creation. The term virtual suggests that the exploration of the

animation takes place in a VR environment. Thus, objects in the environment interact

with other objects and the observer and this interaction may modify the progression of the

animation.

Temporal VRGIS

Virtual Exploration of Animations

Figure 1.2. A model for virtual exploration of animations in the context of a model that

supports Temporal VRGIS applications.

The model for virtual exploration of animations addresses a major research topic for

the scientific visualization community that has not been given the deserved attention in

the context of temporal VRGIS applications. Animation is an important mechanism for

the visualization and analysis of dynamic phenomena; therefore, it is helpful in the

cognitive process of exploration of the environment.

Computer animations have been used for decades to present time-varying phenomena

or information (Tobler 1970). The low-level of abstraction of existent animation models

makes it diff~cult to isolate pieces of the animation (e.g., the behavior of a single object)

and, therefore, limits the user's ability to produce a view of the dynamic environment that

is appropriate for the task at hand. An animation model that supports entities representing

different granularities of the dynamic environment and presentation operations that have

such entities as argument provides the foundation for finer control over the animation.

This approach is equivalent to extending the traditional set of operations used to control

11

the animation of each object's behavior in the environment (i-e., to have a VCR control

attached to each dynamic object). Such a hypothetical model pushes the VCR metaphor

to its limits. This model is called individual VCR.

In an animation model that supports presentation operations over individual objects'

behavior (i.e,, the individual VCR model) the number of different views that can be

accomplished by a user grows exponentially. In the context of GIs, however, this

extended version of the animation model is still not expressive enough to support virtual

exploration of animations. First, the representation of individual object's behaviors is not

necessarily the best abstraction for a user work with. Sometimes the user is more

interested in analyzing and manipulating a small piece of the behavior of an object, the

behaviors of a group of objects, or the behaviors of all objects in the environment.

Second, the VCR-like style of operations aims at the presentation of the animation. These

operations, even when performed over individual objects' behavior, constitute a limited

mechanism to compose different views of the environment. These operations, for

example, do not support any kind of selection, filtering or grouping mechanism over the

set of dynamic objects. In most GIs applications the number of dynamics objects in the

environment can easily become unmanageable for a person. Third, the conceptualization

of the temporal domain in current animation models does not properly capture the

complexity of time in the GIs field. In such models, the representation of temporal

information is usually accomplished by an absolute and quantitative representation of

time. This simple temporal representation does not explore qualitative representation of

time and the temporal relation between objects' activities and does not support the

representation of more elaborate temporal structures (e-g., the temporal structure

associated with objects that have a cyclic behavior). Fourth, in existent animation models,

objects' behaviors are not related through temporal constraints. This information is

important to prevent unrealistic views of the environment due to the manipulation of the

animation (e.g., a cause that happens after its effect). Fifth, in existent animation models

for VR environments, the semantics of the objects are not represented. These semantics

are almost always assumed by the observer and derived from the context of the

application. The semantics of the object, however, play a significant role in directing

interaction between the object and the observer, as well as in directing the interaction

among the objects themselves.

1.4 Goal and Hypothesis

The main goal of this thesis is to develop an animation model to support exploratory

analysis of dynamic VR environments. In order to accomplish such a goal we need an

animation kamework in which (1) the level of abstraction of the model's entities is rich

enough to allow a non-expert user to perform qualitative spatio-temporal reasoning about

the patterns of VR object's behaviors at different levels of granularities, (2) the set of

operations are small, intuitive, and sufficient to give a user effective control over the

presentation, combination, and manipulation of objects' behavior, (3) the temporal model

is rich enough to support the representation of complex geographic phenomena over time,

(4) temporal constraints among objects' behaviors are captured, and (5) the semantics of

each object in the environment is explicitly represented. These requirements lead to

major research questions that direct this thesis:

1. What are the levels of abstraction needed to represent objects7 behaviors?

2. What are the operations over objects' behaviors needed to combine and

manipulate different configurations of the dynamic environment?

3. What are the temporal structures needed to capture the richness of geographic

phenomena?

4. What types of temporal constraints are needed to capture known dependencies

among geographic phenomena?

5. What are the semantic characteristics of an object in VR environments?

6 . How do objects' semantics interact with the behaviors of others objects and with

an observer immersed in a VR environment?

The answer of these questions yields a model for virtual exploration of

animations, which is used to support the hypothesis of this thesis:

The model of virtual exploration of animations produces views of an

animation that cannot be accompIished by any combination of operations of the

individual VCR model.

In the context of this thesis, we consider a view as an animation in which an observer

perceives the progression of objects' behavior. Thus, an animation with two objects

performing their behavior in the normal temporal order and an animation in which only

one object performs its behavior in the reverse temporal order are different views of the

animation. The number of different views of the animation is directly proportional to the

number of dynamic objects in the environment. Since the user cannot create new objects

or behaviors, but only modifL the temporal configurations of existent behaviors, the

14

number of possible views of the animation is finite. In this thesis we assume that all

views are equally important and have the same weight in the exploration of the

animation.

The method used to support the hypothesis of this thesis is the comparison of the

number of views of an animation produced by two different animation models.

Animations produced with the first model extend the traditional VCR control to every

dynamic object in the environment (i.e., the user produces animations through a VCR-

like control that affects each object individually). The second model produces animations

based on the abstractions and operations of the model for virtual exploration of

animation.

1.5 Research Approach

The scientific-visualization community has proposed many different data models to

represent time variation of information through animations. Among the great number of

animation models, keyframe animation is still the dominant paradigm (Chandru et al.

2000). In this kind of animation, representative scenes (called key frames), together with

the instant at which a scene should be presented, are explicitly stored. The computer uses

interpolation functions to automatically generate intermediate frames of the animation.

The low level of abstraction of existing implementations of keyframe animations limits

the manipulation of animations and the scalability of the model. The conceptualization of

an animation model with different levels of abstraction and a reasonable set of operations

can easily overcome this deficiency. Users working with different levels of abstractions

of objects' behaviors can construct and manage efficient, meaningful, and huge

animations.

This thesis proposes an animation model based on the keyframe paradigm. The

conceptualization of the model conceives a framework composed by four main logical

parts (i.e., geometric, action, temporal, and semantics).

The geometric model describes the geometry and appearance of the objects (i.e., the

static content of the animation). There exist many data models to represent the static

content of an animation. Some of these data models are standards and have a wide

acceptance while others are very specific and used for a certain task. The main

characteristic of such data models is that they are relatively decoupled fiom the dynamic

content of the animation and, therefore, they can be used interchangeably with minor

efforts.

The action model encompasses different granularities of the objects' behaviors. Such

granularity is modeled through a hierarchical structure that represents increasing

abstractions of the animated environment. The animation is built-up constructively from

the lowest to highest level of abstraction in the model. Entities at a low-level of

abstraction represent the building blocks of an object's activity. These entities model

different pieces of the object behavior. At a mid-level of abstraction, entities representing

a collection of small pieces an object's activity model the entire behavior of an object. At

a high-level of abstraction, individual behaviors are combined forming groups of objects'

behaviors. Entities of this level of abstraction represent the behaviors of semantically

related groups of objects. The action model encapsulates all information needed to

generate the time variation information of an object's attributes, except time itself.

16

Different from many animation models, in which time is treated as a simple attribute,

entities of the action model do not cany temporal information. In this thesis time is an

abstract dimension that deserves its own model.

The temporal part of the framework is modeled by data abstractions that represent a

hierarchical structure of time. Entities of the dynamic and temporal part of the framework

are strongly related (i.e., the structure of the temporal model follows the structure of the

action model). This tight connection between the dynamic and temporal parts of the

framework enforces the user's understandings and facilitates the implementation of the

model. Moreover, this coupled representation allows the depiction of an object behavior

as time interval, representing the period when the object is performing its associate

activity. The set of operations used to combine and manipulate objects' behaviors having

temporal intervals as arguments are effective abstractions even for naive users and have

the convenience of being easily represented with a simple graphical user interface

(Schmitz 2002). This abstract representation also has the advantage of hiding information

that cannot be manipulated by a user, such as type and values of objects' attributes,

interpolations functions, and so on.

The semantic part of the framework models the evolution of VR objects' semantics

over time. In the context of GIs, the interaction with virtual geographic objects is a

critical issue. The irnrnersive nature of the observer in the data requires that the objects

embody semantic information that directs its response in a VR environment. This thesis

identifies individual semantic characteristics of VR objects and proposes a classification

of such objects based on an exhaustive combination of their semantic characteristics.

Objects with different combinations of characteristics carry distinct semantics in the

model (i.e., the object interact with the observer or with other object in the environment

in a different way).

This thesis presents a prototype implementation for the model of virtual exploration

of animations. This prototype is implemented using the Java programming language. A

possible graphical user interface for the model is also introduced. This interface carries

all functionalities of the model that employed in the production of new views of the

animation. Thus, it is used to compute the expressive power of the model of virtual

exploration ofanimations.

1.6 Scope of the Thesis

This thesis is concerned with the conceptualization of an animation model tailored for

users of multidimensional GISs. The major concern of this work is the conceptualization

of an animation model with high-level abstractions and operations that allow a user to

manipulate objects' behavior in VR environments, getting insights and discovering

relationships among dynamic phenomena.

This thesis does not treat the production of the animation. The user can manipulate

pre-orchestrated behaviors of objects by selecting pieces of the movement, changing the

temporal order or speed, or modifying the instant when an object performs its activity.

We assume that the animation is generated in an automatic fashion by a simulation

application, by an application that translates the information stored in a spatial-temporal

database, or by a human using any authoring tool that supports the proposed model.

This work is not about behavioral animations or those animations found in interactive

computer games. The animation framework requires that the entire behavior of an object

18

be known ahead of time. In this way, this model can act as a post-processor of a

simulation application or as a fiont-end of a spatio-temporal database.

The thesis does not treat film-based animation. We do not work with the presentation

of a sequence of snapshots of the environment or raster representation of the information.

Entities of the animation framework represent the three-dimensional geometry and

appearance of the data set and the behavior of dynamic objects.

1.7 Major Results

The major result of this thesis is a fiarnework that can be used for exploratory analysis of

multidimensional environment. The framework has the following advantages over

existent animation models:

The representation of objects' behavior at different levels of granularity allows a non-

expert user to control elements of a single object's behavior, the entire behavior an

object, the behavior of groups of object, or all objects in the environment.

The separation of spatial and temporal characteristics of objects' behaviors and a set

of operations over temporal representations give a user an intuitive framework to

manipulate the animation, creating new views of the dynamic environment.

The representation of more elaborated temporal structures captures complex

geographic phenomena and support temporal reasoning over cyclic behaviors.

The representation of temporal constraints among objects' behaviors. These

constraints are used to preserve some known relationships among objects behavior

during the manipulation of the animation by a user.

19

The representation of the evolution of the VR objects' semantics over time. The

semantics associated with VR objects provide valuable information in the process of

the virtual exploration of an environment and play a significant role in interactions

with observers and the data.

1.8 Intended Audience

The intended audience of this thesis is any person interested in the conceptualization,

representation, and visualization of three-dimensional dynamic objects. This thesis

addresses especially users, analysts, designers, and implementers of systems that support

three-dimensional graphics and animations, as well as researchers from the fields of

geographic information science, visualization, computer animation, virtual reality, and

software engineering.

1.9 Organization of Remaining Chapters

The remainder of the thesis is organized into seven chapters structured as follows.

Chapter two reviews related work of multi-dimensional geographic information

systems. This review includes topics related with geographic visualization and animation

models. These topics are analyzed in the context of an exploratory tool of geographic

phenomena and processes.

Chapter three introduces the action part of a fi-amework for virtual exploration of

animations. Tn this chapter we introduce data abstractions and relevant operations

associated with the spatial characteristics of objects' behaviors.

Chapter four presents a conceptualization of the temporal part of a framework.

Different conceptualizations of time are discussed. A structure of classes representing the

temporal characteristics of actions was presented and attributes and methods of these

classes were discussed in an informal way.

Chapter five discusses the temporal constraints mechanism. This mechanism is used

to represent in the animation model some known relationships among the temporal

characteristics of entities of the real world.

Chapter six introduces compositions operations. Compositions operations allow an

observer to modifjr the temporal configuration of the animation and create different views

of the dynamic environment.

Chapter seven presents the semantic model. This chapter introduces a new

classification of VR Objects and discusses the semantics associated with each class of

object in the taxonomy. This chapter presents also a model to represent the evolution of

the objects' semantics over time and outlines the rationale used to modify such semantics

during the manipulation of the object behavior.

Chapter eight presents a user interface of a prototype implementation of the model

and provides an evaluation of the expressive power of the model.

Chapter nine draws conclusions and indicates further work.

CHAPTER 2

MULTI-DINIENSIONAL GIs

This chapter reviews relevant research topics and literature concerned with the

representation of dynamic geo-referenced information in multi-dimensional

environments. The next section discusses the role of visualization of geographic

information and the use of new visualization devices in GIs applications. Subsequently,

we discuss some important data models used to represent three-dimensional and dynamic

information. Finally, we highlight the major strengths and weakness of current animation

models in supporting exploratory analysis of dynamic information in a VR setting.

2.1 Geographic Visualization

Visualization has been defined as the mapping of data to representations that can be

perceived by a person using any sensorial channel (Foley et al. 1997). Geographical

Visualization (GVis) focuses on representations of geographic spatio-temporal data and

their applications in supporting all tasks of geographic analysis (Buckley et al. 2000;

Gahegan 200 1 ; MacEachren and Kraak 200 1).

Two important research topics for the GVis community and of special interest for this

thesis are related to the use of animations as a tool for exploratory analysis (Fairbain et

al. 2001) and the incorporation of technological advances in GIs applications

(MacEachren and Kraak 200 1).

The first topic investigates the role and effectiveness of animations in communicating

geographic phenomena and processes. The majority of GIs applications use animations

as a simple mechanism to depict time-varying information. In these applications the

observer becomes a mere spectator of previous modeled behaviors. The exploratory

nature of GIs, however, requires an environment where the observer has full control over

the content and flow of the animation (Fairbain et al. 2001; Kraak 2002).

The second topic looks into technological advances in hardware and software and

their cognitive significance for GIs applications. While two-dimensional displays are still

the dominant paradigm among GVis applications, the next generation of GISs will

certainly benefit fiom the increasing capability of hardware and software to support and

output more sophisticated data representations. In the visual domain, for instance, the

presentation of stereoscopic three-dimensional scenes explores the sense of immersion of

the user into the data to better communicate information derived or not fiom the physical

world (Jacobson 1991 ; Brodlie et al. 2002). In the non-visual domain, the use of sound

(Krygier 1994) and haptic feedback (Neves et al. 1997) promise to enhance the cognitive

gain of the observer in exploring and analyzing spatial information (Raper 2000).

Although these topics have been an active research area among the GVis community,

the combination of animations as an exploratory tool and VR environments is still

lacking. The synergetic integration of these disciplines launches many research questions

that can greatly benefit each other and are beyond the scope of each topic individually.

2.2 Computer Animation

Animation is the process of creating, storing, and presenting a sequence of different

images that gives the observer the illusion of motion (Thalmann and Thalmann 1985).

The term computer animation refers to a technique in which the computer is used in at

least one phase of the animation process. Different computer techniques are used in each

phase of the animation. The creation of the animation, for instance, ranges from a person

using the computer to produce every image of the animation to the production of the

animation by a computer in an automatic fashion. The storage of the animation varies

from recording a linear sequence of every image of the animation to storing a description

of the evolution of three-dimensional objects. The presentation of the animation can be

accomplished by any visual display, ranging from the small screen of a personal device to

the set of large displays of a CAVE system (Dam et al. 2000). To simulate motion, the

computer presents a new, slightly different image many times per second (Foley et al.

1997).

One salient characteristic of computer animations is related with the data model used

to store and process the imagery. Based on this characteristic, the animation can be

classified as image-based or content-based (Lee 1998a).

2.2.1 Image-Based Animations

Image-based data models store a sequence of images (Gall 1991; Miller 1993; Chen

1995). Each image is called a frame or a scene of the animation. In these models the

computer stores matrices of picture elements (pixels) representing frames of the

animation. The position of each element in the matrix corresponds to a spatial position in

24

the image and the value of the element represents the pixel's brightness (Gonzalez and

Woods 1992).

Image-based data models can be used to store both recorded digital videos and

computer-generated images. In the former case, the level of realism of the animation can

only be compared to the one achieved by the human visual system (Raper 2000). In the

latter case, the level of realism may vary, and only in few cases can be compared to those

of digital videos (Cosatto and Graf 2000). Computer-generated images, however, have a

significant advantage over recorded videos. The computer can generate images of objects

that do not exist in the physical world (i.e., the object no longer exists, will be created, or

represents the graphical realization of a concept). The computer also can generate images

of objects that cannot be captured by a digital camera (e.g., objects of the size of an atom

or located at an astronomic distance).

The elementary data structure of image-based animations imposes some limitations

on interactions between the user and the information depicted in the screen. In this model,

interactions are usually restricted to the presentation of the animation. At the presentation

phase, an application (i.e., a player) reads the information stored in a file and renders the

correct sequence of images on a computer screen. The functionality of each player

defines the level and type of interactions that can be accomplished with the animation.

This functionality depends on the organization of the frames in the model, which can be

ordered in a linear (Miller 1993) or non-linear (Chen 1995) fashion. A player for linear

models (Figure 2.la), for instance, allows the observer to set some playback parameters

and watches the flow of animation with the selected configuration. With this type of

player the observer, using a VCR metaphor to interact with the information, can play or

25

stop the animation, watch the animation at different speeds, and examine, step by step,

each frame of the animation. A player for non-linear models (Figure 2.lb) allows the

observer to change his or her vantage point, simulating a "walk through" or "looking

around" the environment. Controls associated with these players allow the observer to

perform a complete turn of the camera along the principal directions (i.e., horizontal and

vertical), zoom in, zoom out, or jump to a "hot spot" (i.e., a recorded configuration of the

camera highlighting some feature of the image). These players are used mainly to present

panoramic images (i.e., they support only still objects). Thus, the illusion of movement

comes from the movement of the camera in a static environment.

P O 4c Yrr Fjn Fmalrs n - - ~1

a> b)

Figure 2.1. Different types of image-based animations: a) A linear player with controls to

manipulate the flow of the animation and b) a non-linear player with controls that directs

the movement and position of the camera.

2.2.2 Content-Based Animations

Content-based data models store a description of a scene, behaviors of animated objects,

and the position and direction of a camera. The computer uses this information to

generate and render each image of the animation. The manipulation of any piece of

information stored in the model produces a new animation. In content-based data models

the level of interaction between the observer and the information is potentially high. The

observer, for instance, can continuously change the position of the camera while other

objects are performing their associated behaviors. This configuration corresponds to the

combinations of the functionalities of linear and non-linear image-based animations. The

observer can also hide a group of objects or direct the computer to generate only the

movement of certain objects. This configuration cannot be accomplished in image-based

animations where the content of the animation is fixed.

There are many different content-based data models. Some of them have been

designed to accomplish a specific task and are used in a narrow context. Others are

generic and experience a wide acceptance. Unlike image-based models (Gall 1991), there

is no standard among them yet. Content-based data models differ mainly in the strategy

used to structure and process the information of each scene. Based on the methods used

to control the motion, the animation model can be classified as geometric, physical, or

behavioral (Thalmann and Thalmann 1994).

Geometric models (Zeleznik et al. 1991; Koved and Wooten 1993; Strauss 1993;

Elliott et al. 1994; Najork and Brown 1995; Green and Halliday 1996; Dollner and

Hinrichs 1997; Lee 1998b) are based on the description of the evolution of the

objects' geometry and appearance (e.g., position, shape, or texture). These models

"know" relevant states of the objects in the scene (e.g., the initial and final positions

of the object) and, through some internal mechanisms, they compute intermediate

states of the movement. These mechanisms are based solely on the knowledge of the

evolution of objects' behavior and do not consider any force that drives the

movement. Geometric models sacrifice the realism of the scene for the sake of a fast

computation of the animation. Thus, these models are suitable for real-time

animations with pre-orchestrated objects' behavior (i-e., behaviors completely known

before the presentation of the animation).

Physical models (Pentland and Williams 1989; Cohen 1992) compute the evolution of

an object behavior based on the physical laws that govern the movement or

deformation of the object. These models produce very realistic results and rely on the

support of external applications to solve differential equations or non-linear systems.

Physical models have applications in engineering, medicine, and realistic animations

of characters for the cinematography industry.

Behavioral models (Reynolds 1987; Funge 2000) emphasize the information and

rationale used to represent objects' behaviors. In this model objects are capable of

adapting to social and physical constraints. These models are strongly based on

concepts from artificial intelligence and behavioral science and have the game

industry as their major target audience.

Geometric data models are usually the most suitable representation for GIs

applications. In a typical GIs application the behaviors of the objects are known ahead of

time. They are customarily stored in spatio-temporal databases (Erwig et al. 1998;

Chornicki et al. 1999; Forlizzi et al. 2000) or outputted from a simulation application

(Lieberman 1 99 1 ; Wenzel and Jensen 200 1).

A number of GIs application use VRML (Web3D 2003) as the mechanism to encode

and present three-dimensional and sometimes animated graphics. VRML is an

28 .

interchange format for the representation and presentation of animated three-dimensional

graphics. The data model behind a VRML file (Strauss and Carey 1992) was designed

aiming at an efficient and interactive presentation of the information in VR environments.

VRML, however, has critical limitations in interacting with temporal information. VRML

does not have any native support for controlling the animation or changing the temporal

configuration of the objects' behavior.

The presentation of animation with commercial VRML players does not allow a user

to manipulate the content of the animation. Thus, users are constrained to seeing

animations in which the number of animated objects in a scene can easily exceed the

users' capacity to understand the dynamic environment. In order to overcome this

deficiency some applications are extending the VRML syntax and exploring the potential

offered by the manipulation of the temporal domain (Dollner and Hinrichs 1997;

Luttermann and Grauer 1999; Reddy et al. 2000; Hardisty et al.). These applications

extend the set of operations to control the animation with operations that allow the user to

perform a selective view of the animation (Manoharan et al. 2002). This selection,

however, is solely based on the users' judgments and does not consider temporal

constraints among the objects. In this way, some important behaviors can be

inadvertently hidden so that they are not taken into account in the exploration of the

animation. In such a model, users should have the opportunity to explore the rich set of

relations that exists among objects.

Although the specification of VRML contemplates a mechanism to extend the

language, this mechanism is insufficient to accommodate all requirements of temporal

VRGIS applications. VRML lacks the extensible power of an object-oriented data model.

Thus, VRGIS applications based on VRML are restricted to offer only a few basic GIs

functionalities. The implementation of a "true" temporal VRGIS application requires the

conceptualization of a data model that incorporates the GIs functionality in both spatial

and temporal domains.

2.2.3 Animations for GIs

Animations in GIs serve different purposes. The task involved and the target audience

are critical for determining the appropriate type of animation. In an explanatory approach,

for instance, the animation is used to communicate the information for a broad audience

with distinct backgrounds and different degrees of expertise. In this context, image-based

animations, with realistic images and embedded in multimedia documents, have been

used successfully (Cartwright 1999; Peterson 1999). The use of realistic and animated

representations of geographic phenomena avoids considerations about previous

knowledge or training of the observer. Moreover, the use of a VCR metaphor to control

the presentation of the animations provides an effective user interface with a limited but

universal set of operations.

The simple use of realistic animations, however, is insufficient for supporting an

exploratory analysis of time-varying information (Andrienko et al. 2000). In an

exploratory approach, the observer needs a more interactive environment that gives the

observer complete control over the flow and the content of the animation (Kraak 2002).

These requirements need investigations on data models that better represent multi-

dimensional geographic information and a set of operations that control the flow and the

content of the animation. In this sense, geometric content-based animations with a

coherent representation of geographic phenomena and high-level abstractions

representing the dynamic environment can be used to move the user interface beyond the

VCR metaphor and support an exploratory analysis of animations.

2.3 Data Models for Temporal VRGIS

The representation of information is a fundamental issue for the integration of VR and

GIs applications. The major problem with current temporal VRGIS applications is

related with the data model used to support the VR interface. An appropriate data model

of the conceptualized world is the foundation of an efficient storage, management, and

presentation of geographic information (Fairbain et al. 2001). These basic functional

units, however, have different requirements in a GIs application. For storage and

management purposes, the focus is on the form, structure, and properties of geographic

phenomena. In this context, the aim is a data model that captures the complexity of

geographic phenomena and processes, and supports a wide variety of GIs functions. For

presentation purposes, the objective is an effective exploration of the information. In this

context, the goal is a data model that supports different media (e.g., three-dimensional

graphics, sound, and dynamic imagery), real time feedback, and interactions. Due to

these different and sometimes conflicting goals, it is very difficult to achieve efficiency

using a single data model for VR and GIs domains. Thus, GIs, like other graphic-

intensive applications, needs to deal with two different data models: one for the

application domain and another for the presentation domain.

For the application domain, the discretisation of the spatial and the temporal domains

(discrete or continuous) and the integration of spatio-temporal structures (integrated or

3 1

hybrid) are critical factors in determining the appropriate data model (Raper 2000). The

integrated approach assumes a world that is fully four-dimensional in nature. The hybrid

approach recognizes differences in the nature of space and fime and treats them

differently. Due to the diversity and conceptualizations of the GIs domain, a single data

model that accommodates all abstractions or functional requirements is unlikely (Herring

1991).

For the presentation domain, the type of information to be visualized (e.g., raster,

two-dimensional or three-dimensional geometric representations) and types of

interactions with the data are major requirements in specifying the appropriate data

model. The conceptualization of a data model for the presentation domain must be robust

and extensible to support the wide variety of conceptualizations of the application domain

and incorporate the desired functionality for an exploratory analysis of the information.

In this thesis we are interested in the presentation and exploration of three-

dimensional objects and their dynamics. It thus excludes fiom this review data models for

the application domain, as well as two-dimensional and raster representations of the

presentation domain.

2.3.1 Three-Dimensional and Interactive Graphics

Prior to the early 1990s, almost all three-dimensional applications were based on some

kind of graphic package such as GKS (ANSI 1985), PHIGS (ANSI 1988), and OpenGL

(OpenGL 1992) to produce visual representations of two and three-dimensional objects.

These graphical packages were attempts to create a device-independent model for the

developers of graphic applications. In this way, these packages can be positioned in an

intermediate level between the application program and the graphic hardware (i.e., they

act as the data model of the presentation domain).

Despite the success experienced by some graphics packages, they have critical

limitations. First, the level of interaction with the model is limited. Most applications rely

on programmers' skills and hard-coding to achieve the required interactivity. Second, the

level of abstraction of the presentation domain is very low and keeps no relation with the

modeled application domain. The internal structure of these packages is based on a list of

drawing commands representing polygons and faces to be rendered by the graphic

engine. Third, these packages have no explicit notion of time. Time can be specified only

implicitly, as a sequence of operations on the display-list representation (Foley et al.

1997).

In order to overcome the limitations of these graphic packages, the scientific-

visualization community has proposed many different data models to represent

interactive and dynamic three-dimensional graphics (Zeleznik et al. 1991; Strauss and

Carey 1992; Koved and Wooten 1993; Elliott et al. 1994; Najork and Brown 1995; Green

and Halliday 1996; Dollner and Hinrichs 1997; Lee 1998b; Java-3D 2004). These models

are presented in the form of object-oriented toolkits or high-level API, which give

developers an abstract and extensible representation to construct presentation

applications.

2.3.2 A Framework for Animated Three-Dimensional Graphics

Although there are some differences in the architecture and functionality of three-

dimensional toolkits and APIs, the majority of proposed data models partitions the

presentation domain into three main logical parts. This framework models the animated

objects (who), the actions these objects undergo (what), and the times during which the

objects undergo the actions (when).

The who-part refers to the geometric model, representing objects that compose the

scene. The what-part of the framework represents the object's behavior and is called the

action model. Entities of the action model represent the evolution of an object's attributes

with the passage of time. The when-part of the framework represents the temporal model.

Entities associated with such part of the framework model the temporal configuration of

objects' behavior.

2.3.2.1 Geometric Models

The geometric model describes the geometry, position, and appearance of visual objects

that populate the environment. Objects of the geometric model are instances of classes

provided by the toolkit or sub-classes inherited by the developer of the application. These

objects are collected and organized in a direct acyclic graph structure called a scene

graph (Strauss and Carey 1992; Koved and Wooten 1993; Najork and Brown 1995;

Dollner and Hinrichs 1997; Lee 1998b; Java-3D 2004). In this tree-like structure, each

object represents a node and performs some specific function in the model. Links

between nodes represent a parent-child relationship. These links draw the structure of the

graph; grouping related objects and directing how operations and properties are

propagated along the structure.

A scene graph is a powerful graph-based construction paradigm for three-dimensional

applications. The hierarchical structure of the scene graph and the grouping mechanism

34

allow for the representation of meaningful structures, which can be used to incorporate

the semantics of the application domain. Nodes in the scene graph have instances data

called fields. Values associated with fields define the state of an object. These values can

be either a simple value or a reference to another object. Some models use a "pure"

object-oriented approach and encapsulate all information of the object in itsfields (Koved

and Wooten 1993; Java-3D 2004). In other models, object'sfields capture only attributes

that are strictly related with the class of the object (Strauss and Carey 1992; Najork and

Brown 1995; Dollner and Hinrichs 1997; Lee 1998b). In this model, objects inherit other

attributes from their parents or share a common attribute with their siblings.

The organization of a scene graph is constrained by the structural role of the node.

Based on its structural role, a node can be classified as a root, a group, or a leaf node. The

root node is the unique node in the structure without a parent. This node marks the start

point of the graph and it is used to define default characteristics of the environment. A

branch-group node is a node that supports children. This type of node creates new

branches in the scene graph and it is used to group semantically related objects, imposing

a meaningful and coherent structure on the tree. A leaf node is a terminal node in the

structure (i-e., a leaf node does not admit child nodes). Leaf nodes are responsible for the

visual content of the scene.

Although the structure of scene graphs is preserved among different toolkits, the

semantics of the nodes may have slight variations. As a rule, leaf nodes are divided into

four basic categories: shape, property, camera, and light. Shape nodes represent

geometric objects (e-g., volume primitives, boundary representation primitives, and

texts). Property nodes are objects that represent all visual aspects of the object that are not

related to its geometry (e.g., color, texture, location). The camera node defines the

position and orientation of the camera in the environment. This node models the vantage

point of the observer in the environment. Lights nodes illuminate the environment,

creating more realistic scenes.

Consider, for instance, an application depicting some geometric objects (Figure 2.2a).

In the application domain context, these objects represent a clown and a box. In the

presentation domain context, these objects are geometric primitives provided by virtually

all three-dimensional toolkits (i.e., sphere, cones, and cube).

Figure 2.2. Graphical realization of a clown and a box based on geometric primitives

The geometric primitives that model the clown and the box are stored in a scene

graph. There are different strategies to organize these primitives in a scene graph

structure. The simplest way is to add the geometry of each object directly to the scene

graph structure without using any grouping mechanisms (Figure 2.3a).

A presentation application, however, can take advantage of the grouping mechanism

of the scene graph and impose a meaninghl structure on the graph, that is, a structure that

incorporates semantics of the application domain (Figure 2.3b). The strategy used does

not change the content of the model nor the information perceived by an observer.

IJ LeafNode

texture cone color cone color sphere color cube

texture cone color cone color sphere color cube

b)

Figure 2.3. Representation of geometric primitives in a scene graph structure: a) a scene

graph without the grouping mechanism, and c) a scene graph with primitives grouped

accordingly the semantics of the application domain.

2.3.2.2 Action Models

The action part of the framework represents behaviors of objects. Behaviors are any

modification in the state of an object that can be perceived by an observer. A behavior

can be directed either by a user action or by the passage of time. Based on the type of

object that is experiencing the action and the agent that causes the change, behaviors can

be classified into four categories: interaction, navigation, guided navigation, and

animation (Table 2.1).

Table 2.1. Classification of types of changes based on the object changing and the agent

that causes the change.

Cause of Change

User

Time

Navigation and Guided Navigation are behaviors that change the position and

orientation of the camera, thus defining the vantage point of the observer in the

environment. The difference between these two behaviors is the agent that causes the

change. Navigation is a type of behavior entirely controlled by the observer. The observer

using some navigation mechanisms directs the movement of the camera, performing a

walk-through or a fly-by in the environment. Guided Navigation performs the same kind

of movement, but does not dependent on the observer action. In this kind of behavior, the

movement of the camera is previously defined or recorded in the model and can be

Object Changing

Camera

Navigation

Guided Navigation

Shapes, Properties,
Transforms, and Lights

Interaction

Animation

played at any time, giving the observer a tour around the environment. Time in Guided

Navigation is implicitly represented by the evolution of the movement of the camera.

Interactions and Animations are behaviors associated with visual objects or objects

that change the appearance of the scene. Interactions are triggered and fed directly by

user actions. The act of an observer examining an object by continuously rotating it

around a specific axis, for example, is supported by a rotate behavior. This kind of

interaction is called active, since it depends on the user's desire to execute the action.

Other types of interactions are performed in automatic fashion by the application and are

called passive. Passive interactions are transparent for the observer and do not depend on

the intention of the user to perform the action. The level of detail behavior is a type of

passive interaction, which is based on the position of the observer in the environment.

The level of detail behavior loads different versions of the object based on the distance

between the observer and the object. The idea is to present a refined version of the object

only when the observer can perceive details, thus eliminating the computational cost of

rendering pieces of the object that cannot be seen. Other types of interactions are

constraints imposed by the objects on an observer action. The collision detection

mechanism is an example of such kind of interaction. This mechanism limits the

movement of the observer in the environment (e.g., prohibiting the observer to walk

through a wall). The collision detection mechanism can be extended to treat interactions

among the objects in the environment as well (e.g., an object that blocks the passage of a

moving object).

Animations are behaviors directed by the passage of time. Animation behaviors define

how some objects' visual attributes change their values as time passes. The action that

3 9

triggers animation behaviors can be a direct user action, another behavior, or an instant in

time. Once triggered, however, the only external stimulus that keeps the animation

running is time.

The mechanisms associated with each kind of object's behaviors (i.e., interaction,

navigation, guided navigation, and animation) are not mutually exclusive. Lnstead, it is a

desired characteristic of presentation applications that they support all types of behaviors.

In this thesis, however, we are interested in animations behaviors. These behaviors

represent the dynamic characteristics of application domain's objects.

The approach used to implement animation behaviors varies among different toolkits.

Some toolkits implement these behaviors as member functions of the visual objects

(Koved and Wooten 1993), as a list of commands representing the evolution of an

object's action (Zeleznik et al. 1991), or as an object behavior connected to a visual

object (Strauss and Carey 1992; Koved and Wooten 1993; Najork and Brown 1995;

Green and Halliday 1996; Dollner and Hinrichs 1997; Lee 1998b; Java-3D 2004). The

latter approach has the advantage of isolating the action and geometric parts of the

framework. This characteristic enhances scalability and facilitates the implementation of

the model.

The toolkits that model animation behaviors as first class entities provide a set of

built-in classes that represent basic behaviors (e.g., position, color, and orientation).

These classes carry information and functionality to produce an object behavior, that is,

an attribute specifying visual objects to be animated, the end states of the object's

behavior, and an interpolation function to generate intermediate values (Figure 2.4). The

object behavior based on stimuli received from objects of the temporal model makes

computations and informs the visual object of its new state.

Geometric Model Action Model

behavior
visual objects

I initial state
final state I

initial state
final state

Figure 2.4. Two behaviors of the dynamic model and their associated visual objects of

the geometric model. The object behaviors continuously inform the new state of their

associate visual objects.

Since animation behaviors are directly connected with an object of the scene graph,

they are highly specialized classes (i.e., each object behavior models the evolution of a

specific type of visual object). If an object changes its color, position, and shape, for

instance, it is necessary to assign one behavior for each changing characteristic of the

object.

A simple list of objects is the traditional approach used to structure the collection of

behavior objects that forms the dynamic part of the framework (Strauss and Carey 1992;

Najork and Brown 1995; Green and Halliday 1996; Java-3D 2004). In this approach, the

position of the behavior in the list is irrelevant. This highly unstructured organization has

several drawbacks. First, the structure of the dynamic domain does not follow the

structure of the geometric domain. There is no entity in the model that aggregates groups

4 1

of related behaviors. Second, this list of object behaviors is neither semantically nor

temporally indexed. These characteristics make it diff~cult, for instance, to retrieve a

temporal sequence of behaviors of a certain object. Third, the unstructured nature of this

list of objects makes the resulting code hard to parallelize and difficult to manage as the

complexity of the animation increases.

In order to overcome these drawbacks some toolkits impose a more structured

organization of the dynamic domain (Dollner and Hinrichs 1997; Lee 1998b). These

models propose an entity with a high-level abstraction encompassing the activity of a

certain object (e.g., an activity object). The activity object stores a collection of behaviors

associated with a visual object. Although activity objects represent a step forward in the

organization of the action model, these entities fail to support the representation of

complex behaviors. If an object has a period of inactivity, for instance, its behavior is

modeled using different activity objects (i.e., one activity for each period when the object

is performing some movement). In this way, it is impossible to aggregate the entire

behavior of the object in a single representation. Thus, activity objects transfer the

problems found in other data models to a high-level of abstraction.

2.3.2.3 Temporal Model

In existent three-dimensional graphics toolkits, the temporal model is by far the least

abstract part of the framework. The simple temporal structures of such models permit

only the representation of quantitative and absolute conceptualizations of time. In these

models non-linear representation of time (e.g., cyclic time) is a weak approximation, and

qualitative and relative representations of time are difficult to accomplish.

Data abstractions of the temporal part of the framework are critical in a model for

exploratory analysis of animations. The conceptualization of this part of the framework

needs to support the richness and complexity of the temporal structures of the application

domain. Failing to satisfy these requirements means that information of the application

domain is lost or represented only by an approximation in the data model that supports

the presentation application.

The majority of temporal models have a unique type of object that carries all temporal

characteristics of an objects' behavior (Strauss and Carey 1992; Najork and Brown 1995;

Green and Halliday 1996; Java-3D 2004). In these models, a temporal object has an

associate behavior, the duration and the condition that trigger the behavior (e.g. a certain

instant in time), and a mechanism to feed the behavior with information that translates the

passage of time (Figure 2.5).

Behavior Temporal Object

4
Start Condition

Behavior r v 1 Duration 1
I
I Internal Clock
I

Figure 2.5. A temporal object representing the temporal characteristics of two behaviors.

The temporal object continuously sends messages to its associated behavior.

A temporal object can have more than one associated behavior. The behaviors

associated with a temporal object, however, share the same temporal characteristics (e.g.,

start condition and duration) and receive the same set of messages from the temporal

object. Temporal objects have a link to a system clock. As a consequence, all behaviors,

even those based on different temporal objects, are synchronized.

The major problem of existent toolkits for animated three-dimensional graphics is

that they were designed for efficient running of the animation and not the user of virtual

exploration of animations. Some models have suggested extensions for the temporal part

of the framework to incorporate qualitative and relative representation of time and

temporal relations (Dollner and Hinrichs 1997; Lee 1998b). These models, however, are

limited by a poor conceptualization of the action domain and they still are not concerned

with the user of the animation. The exploration of an environment's dynamic content is

based on the ability of a user to change the temporal configuration of modeled behaviors.

Therefore, the user needs a more abstract representation of the object behavior and a set

of operations that allows him or her to combine these behaviors to create new views of

the dynamic environment.

2.4 Summary

This chapter reviewed related work on representation of multi-dimensional GIs.

Different types of animations and their use in GIs applications were investigated. In the

context of temporal VRGIS, basic requirements for the integration of VR and GIs and

animated three-dimensional data models were discussed.

CHAPTER 3

ACTIONS

In a virtual environment, objects are roughly classified in two major categories: static and

dynamic. This classification is based on the capability of the object to change the values

of its sensorial attributes. Dynamic objects are those objects that allow the modification

of their sensorial attributes with the passage of time. Sensorial attributes are attributes

that can be communicated to a user by exploiting any user's sensorial channels. Thus,

sensorial attributes include visual attributes such as shape and texture, as well as non-

visual attributes such as sound, weight, smell, or temperature. Dynamic objects have

associated objects that inform how their sensorial attributes evolve over time. These

objects are collectively called action objects. Action objects represent the behavior of

dynamic objects in the environment.

The mechanism that directs the evolution of dynamic object's attributes with the

passage of time is called animation. A critical issue in exploring an animation is the

user's ability to manipulate dynamic objects. This ability depends on the level of

abstraction used to represent objects' behavior (i.e. actions), as well as on the set of

operations available to manipulate this information. This chapter presents a

conceptualization of the action part of a framework for virtual exploration of animations.

In the next section we discuss the major requirements of the model and introduce its

general structure. Then we present some characteristics of each element in the model

through an informal specification.

3.1 Structure of the Action Model

In order to allow the user to manipulate and control the presentation of animations, the

animation model needs to address two major requirements (Carnpos et al. 2003a). First,

the model needs to support the representation of pre-orchestrated behaviors (i.e.,

behaviors that are completely known ahead of time). The fact that behaviors are known in

advance gives the user the possibility of manipulating the dynamic environment. Second,

the model needs a reasonable structure representing different granularities of objects'

behaviors. Such a structure gives the user the ability to manipulate the dynamic

environment. A model based on the keyframe paradigm, using cognitively plausible

representations of objects' behaviors, addresses these requirements.

The conceptualization of the action part of the framework considers distinct

granularities of the dynamic environment. Elements at different granularities represent

increasing abstractions of the animated objects' behaviors, which are built from the

highest to the lowest level of granularity (Figure 3.1).

Act and Course of Actions represent different granularities of the behavior of a single

object. Acts represent pieces of an object's behavior. For example, a car making a turn or

moving beteween two locations. Course of Actions aggregates Acts forming the entire

behavior of an object. Each Course ofdctions has an associated Performer. Performer is

an abstraction that represents the geometry and appearance of the dynamic object. At the

coarsest level of granularity, Animation aggregates pairs of Course of Actions and

46

Performer representing the behavior of groups of objects. Animations can also aggregate

other Animations forming complex Animations.

Low

t Animation I . .*

1 1

I. .*

High Act

Figure 3.1. Class diagram representing the general structure of the action model.

The next sections present an informal specification of each class of the action part of

the framework. These specifications discuss only fundamental operations used to define

the structure of the model and to impose constraints on the association of their instances.

A more detailed definition of these classes is presented together with a prototype

implementation in chapter 8.

3.2 Acts

Acts are the building blocks of an object's behavior. The behavior of an object can be

represented by a single Act or by any combinations of Acts. The number of Acts needed

to represent the behavior of an object depends on the complexity of the behavior and on

the requirements of the application domain. Consider, for instance, the behavior of a car

traveling between two locations (Figure 3.2a). The behavior of the car can be divided in

small pieces of information representing different segments of the trip. Each segment

corresponds to an Act of the object's behavior. The movement of the car making a turn,

for example, represents one act of the entire trip (Figure 3.2b).

Figure 3.2. A car traveling between two locations: a) the entire behavior of the car and b)

the act of the car making a turn.

From the user's perspective, an Act is the smallest piece of an object's behavior that

can be manipulated. As far as a user is concerned, Acts represent the finest granularity of

an object's behavior. The manipulation of Acts by a user is accomplished through the

manipulation of their temporal characteristics discussed in chapter 4.

From the modeling perspective, an Act is an abstraction that encapsulates all the

information needed to generate the evolution of an object's attributes with the passage of

time. Each Act has four components: (1) a list of types of attributes being interpolated, (2)

a list of key values for every attribute being interpolated, (3) interpolators to compute the

intermediate attribute values, and (4) temporal information about the Act. These

components are modeled as a separate classes and associated with the main class Act

(Figure 3.3). The class diagram shows a dependency (dashed arrows) among some

components of the Act. These dependencies will be discussed later in this chapter.

Changing Attribute Types

+ ~

I
I
I

I I

Changing Attribute Key Values
I

Act I
I
I

Interpolator Factory ----------'

\
Act Interval

Figure 3.3. Class diagram of the act and its components.

In order to understand the role of each component in the model, consider the act of a

car making a turn. Consider yet that the bend of the road is unpaved. Thus, cars get dirty

when going through this segment of the road. The dirt is modeled by gradually darkening

the color of the car (Figure 3.4).

Figure 3.4. The car changes its color when traversing an unpaved segment of the road.

The Act of the car making a turn and getting dirty involves the evolution of three

types of attributes (i.e., position, direction, and color). In this example, the car, originally

with a yellow color, becomes gradually brown as it moves along the bend. Suppose in

addition, that the car decelerates in the first half of the bend, accelerates in the second

half, and takes 5 seconds to complete the turn. All these pieces of information are

encapsulated in an Act object. The state of this Act and its associated components can be

depicted in an object diagram (Figure 3.5).

49

Act Interval t

duration, acceleration, .. .

\ J

hanging Attribute Key Value

' Position Key Values '
m m m

(XI ,Y 1 (~ 2 , ~ 2 , ~ 2) (x3,y3,z3)
\ 1

I f Rotation Key Values] (

1 Color Key Values

Figure 3.5. Object diagram of a car making a turn and getting dirty.

An instance of Changing Attributes Types class carries the types of attributes being

interpolated. An object Changing Attributes Key Values stores a list of relevant values of

each attribute listed in the previous object. An object Act Interval encapsulates all

temporal-related information of the act (e.g., duration, and acceleration). An object

Interpolator Factory takes all this information into account and produces the object

Interpolator that, when properly executed by a system clock, produces the "continuous"

movement of the car.

One important characteristic of an Act is that all attributes have an active state during

the entire act (i.e., at any instant each attribute specified by the Changing Attributes

Types object has a different value from the value it had in the previous instant of

observation). If the car changes its color only during a fraction of the duration of the Act

(e.g., only half of the bend is unpaved), the color attribute cannot be used together with

attributes representing the position and direction of the car making a turn. To handle this

situation, the evolution of the color attribute must be modeled as a separate Act and

combined with other Acts at a higher level of abstraction.

The next sections discuss some components of the Act (i.e., Changing Attributes

Types, Changing Attributes Key Values, and Interpolator Factory). The class Act Interval

is discussed together with other temporal characteristics of actions, presented later in this

thesis.

3.2.1 Changing Attributes Types

The class Changing Attributes T p e s represents a collection of attributes types that

change during the Act. These types correspond to any sensorial attribute of the Performer

(e-g., color and position). For the sake of simplicity, we deal in this thesis only with

sensorial attributes that have a graphical realization. This fact, however, does not

constitute a limitation of the model. The model is robust enough to accommodate all

types of sensorial attributes.

Figure 3.6 shows the specification of the class Changing Attributes Types. Lnstances

of this class can be seen as .a set of strings in which each element of the set represents a

type of attribute. One important operation shown in the specification is

h a s I n t er sect ion. This operation checks if two sets of attributes (i.e., two instances

of ChangingArtributeTypes) have at least one element in common. The operation

h a s Intersect i o n is used in the context of coordination of multiple changes,

discussed later in this chapter.

class ChangingAttributeTypes {

Overview: An unbounded and non-empty set of strings. A typical
ChangingAttributeTpes is {S,,. .., S,), where Si is a string with the
name of the type of attribute (e.g., position and color).

11 Constructors
...

// Methods
boolean hasIntersection(ChangingAttributeTypes cat)

Effects: Returns true if the argument has at least one common type of
attribute with this object.

. . .

Figure 3.6. Specification of the class ChangingAttributeTypes.

The class Changing Attributes T p e s deals only with types of attributes being

interpolated. Thus, there is no information in this class about the key states of these

attributes or how to generate the evolution of these attributes with the passage of time.

These functionalities are part of the Changing Attributes Key Values and Interpolator

Factory objects associated with the Act.

3.2.2 Changing Attributes Key Values and Interpolator Factory

In an animation model based on the keyframe paradigm the information needed to

generate the evolution of an object's attributes over time are: (1) some representative

states (key states) of the attribute, (2) an interpolator function to compute intermediate

states between key states, and (3) temporal information (e.g., the duration of the act). In

our model, an instance of the class Changing Attributes Key Values stores representative

states of the Act. An Interpolator object generates intermediate state values. The

Interpolator Factory object builds the appropriate Interpolator based on the type of

attribute and the number of key states. Finally, an Act Interval object carries out the

temporal characteristics of the Act.

Changing Attributes Key Values is a class that encapsulates key states of the Act.

These states are stored in a list for each type of attribute being interpolated in the act.

There are as many lists of values as there are types of attributes being interpolated. This

characteristic is represented by a dependency between the classes Changing Attributes

Key Values and Changing Attributes Types in the class diagram (Figure 3.3). Elements of

each list store the value of a certain attribute and its relative position inside the act (i.e.,

each state is associated with a number between 0 and 1, inclusive). These numbers are

called normalized times. Normalized times represent the relative position of key states of

an object inside the act. The first and last states of the attribute hold at the normalized

time 0 and 1 , respectively. Other key states, if they exist, hold in the interval between 0

and 1, exclusively. Normalized times allow the representation of an object's behavior

without an explicit reference to time. This characteristic allows the encapsulation of all

temporal information and temporal related operations in a single object (i.e., Act

Interval).

Figure 3.7 depicts some key values and normalized times for the example of the car

making a turning. This example shows that there is no constraint that the number of

elements in the lists be equal. The attribute position, for instance, has three key states,

while the attribute direction has only two.

) : " Key Shte Position ({x,y,z),l)
, o Key State Rotation (alpha, 1)
I

I

Key State Position ((x,y,z),O)
Key State Rotation (alpha,O)

Figure 3.7. Key states of the position and direction of a car making a turn.

The Interpolator Factory object is responsible for building Interpolator objects for

the Act. There is a wide variety of Interpolators that can be used to generate intermediate

states of an act. The best option depends on the type of attributes being interpolated and

the number of key states available. This characteristic is represented by a dependency

between the classes Interpolator Factory and the classes Changing Attributes Types and

Changing Attributes Key Values (Figure 3.3) .

Depending on the requirements of the application domain, the level of realism can

also be taken into account by the Interpolator Factory Object. Figure 3.8 shows two

possible configurations of a car making a turn. The first configuration has two key states

and a non-linear interpolation hnction (Figure 3.8a). The second configuration has a

sequence of key states and a linear interpolation function (Figure 3.8b). The graphical

realization of these two Acts represents different approximations of the real movement.

The first one generates a more realistic movement of the car, while the second generates a

coarse approximation of the real movement.

Intermediate
values

Intermediate
values

Figure 3.8. Two possible configurations of a car making a turn: a) a non-linear

approximation of the movement, and b) a linear approximation of the movement.

Interpolator Factory and Changing Attributes Types Values are powerful abstractions

for both users and implementers of the model. On one hand, the user "sees" each act as a

single object, and there is no need for the user to think about types of attributes or

interpolation functions. On the other hand, implementers can use the Interpolator Factory

abstraction to build interpolators that generate the desired act of an object. It means that

the complexity of the act does not require irnplementers to artificially break acts with a

complex behavior in more simple acts. Implementers must use the Interpolator Factory

class to provide the code to generate complex acts. The act of an object must be defined

by the application domain only, and not constrained by limitations of the implementation.

3.2.3 The Act Specification

The components of the Act object encompass almost all hctionalities of this small piece

of an object's behavior. In this sense, the specification of the Act class itself becomes

very simple. The class Act has four attributes, each one representing a specific component

of the Act (Figure 3.9).

class Act {

Overview: acts represent a piece of a performer's behavior.
I/ Attributes

ChangingAttributesTypes cat;
ChangingAttributesValues cav;
ActInterval ai;
Interpolator i;

N Constructors
...

I1 Methods
boolean isRelated(Act a)

Effects: Returns true if the component ChangingAttributesTypes of this object
has a non-empty intersection with the same component of the act used
as argument.

Figure 3.9. Specification of the class Act.

For the effort of coordination of multiple changes, the Act implements the operation

isRelated. This operation defines whether two Acts are related, that is, if two Acts

have at least one attribute in common. Objects of a higher level of abstraction use this

operation to avoid certain combinations of Acts.

It is important to emphasize that there is no operation that allows a user to manipulate

the types of attributes and their key states, or to define the Interpolator used in the Acf.

All manipulation of an object's behavior is accomplished through the manipulation of the

objects' temporal characteristics, which is discussed in Chapter 4.

3.3 Course of Actions

The Act abstraction represents the finest granularity of an object's behavior. In a virtual

exploration of an animation, however, a user needs the flexibility to explore coarser

representations of the dynamic environment as well. Sometimes a user is more interested

5 6

in knowing if an object starts its behavior before or after another object's behavior or if

two objects are performing their associated behavior simultaneously. In this sense, it is

important for a user to reason over abstractions that represent the behavior of the object

as a whole and not its constituent parts.

Course of Actions is an abstraction that represents the entire behavior of an object. A

Course ofActions is a combination of Acts. Consider, for instance, the entire behavior of

the car moving between two locations (Figure 3.10). This behavior is modeled with five

individual Acts that capture "representative" segments of the trip. Those Acts are

combined forming the Course of Actions of the car. The second Act of the car's trip, for

example, corresponds to the case in which the car is traveling an unpaved segment of the

road discussed earlier in this chapter.

r - Axt, A:? !a w' "'' e,..::
b- -- ----------

"I" ,,,,,,,...... ..,....'.'

Figure 3.10. A Course of Actions of a car traveling between two locations.

The object diagram in Figure 3.1 1 depicts an instance of the class Course of Actions

representing the behavior of the car traveling between two locations. This object has an

association with individual Acts, a Performer, and a Course Of Actions Interval Objects.

The later object is not depicted in the structure of the action's conceptual model (Figure

57

3.1). For the sake of simplicity, the class diagram in Figure 3.1 does not show the

association between entities of the action part of the framework and their temporal

characteristics. This class is discussed in details in Chapter 4.

Figure 3.11. Object diagram of the car traveling between two locations.

/course Of ~ c t i o n s ~

The Specification of the Course Of Actions class (Figure 3.12) shows the attributes

used to store its components (i.e., a Performer, a Course of Actions Interval, and a list

representing a set of Acts objects).

The process of building a Course of Actions is accomplished by instantiating an

object with its associate Performer and Course of Action Interval objects. This process

continues with the addition of Acts to the Course of Actions set of Acts. Individual Acts of

an object's behavior, however, cannot be arbitrarily added to the set of Acts. The

coordination of multiple changes prohibits that two Acts that "compete" be stored in the

set. The operation compete of the Course ofActions class handle this task.

/ Performer
/Course Of Actions ~ i m >

\ 1

$O----." ; &f$,
\

' Actl ' / Act2 '
8

mb===m

I. /_--- QI

i
I
I
I

I
/

class CourseOfActions {

Overview: Course of actions represents the entire behavior of a performer's
behavior.

I/ Attributes
Performer p;
CourseOfActionsInterval coai;
Acts[] acts;
...

/I Constructors
...

/I Methods
boolean compete(Act a, Act al)
// Effects: If a compete with a1 returns true else returns false.

Return a.isRelated(a1) A coai.isConcurrent(a,al)
...

Figure 3.12. Specification of the class Course of Actions.

The operation compete identifies when two Acts are competing to interpolate the

same attribute. Two Acts "compete" if they are "related" a d their Acts Intervals objects

are "concurrent". The first requirement is verified by the operation i sRelated of the

Act class. The second requirement is checked by the operation isconcurrent of the

Course of Actions Interval class. This operation is discussed in the next chapter.

Intuitively, the operation isconcurrent informs if the temporal intervals representing

the periods of time when each Act occurs overlaps along the animation timeline. In the

case of the car traveling between two locations, for example, all Acts are related (i.e.,

every Act interpolates at least the attribute position of the car). These Acts, however, can

be combined forming the desired Course of Actions of the car. This combination is

possible only because in such a Course ofActions of the car one Act follows the other and

they do not overlap in the temporal domain (i-e., the Acts are not concurrent).

Although the Course of Actions abstraction represents already a coarser granularity of

an object's behavior, this representation is not always suitable for a real application. In a

typical animation the number of Performer objects can easily overcome the user's

capability to analyze the dynamic environment. An environment composed of hundreds

or thousands of animated objects requires increasing coarse representations of objects'

behaviors. In this way, we need to extend the model with abstractions that represent

groups of possibly semantic-related Course of Actions objects.

3.4 Animations

The coarsest level of granularity of the dynamic environment is modeled by means of the

abstraction Animation. An Animation can represent the behavior of a single object, a

group of objects, or all the objects in the environment. Consider, for example, an

application running an animation of all vehicles traveling between the two locations.

Based on the semantics of the application domain, it is possible to build increasing

abstractions of the dynamic environment. Objects with related semantics can be grouped

in a single Animation. Animations can also be grouped forming an even more abstract

collection. Consider, for instance, that the vehicles are traveling between two buildings in

a university campus and that the vehicles belong to students, faculties, and staff personal.

In this scenario, it is possible to have one Animation for every vehicle, different

Animations for each class of vehicle owner, or an Animation with all vehicles in the

environment. The first option is often unmanageable for humans, giving a large number

of objects in the environment. The second option gives rise to a more reasonable number

of objects (Animations), which can be manipulated by users. The last option is the

approach used by existing applications (Strauss and Carey 1992; Najork and Brown

1995; Green and Halliday 1996; Java-3D 2004) and has the disadvantage of limiting

users to exploring the animation as a whole. An object diagram with the second option is

shown in the Figure 3.13.

I i l l vehicles 1

Figure 3.13. Object diagram of a possible configuration of Animations and Course of

Actions of all vehicles running on a university campus.

>

Animations objects are formed by a combination of pairs of Course of Actions and

Performers or by a combination of Animations, creating an even more complex

animation. Thus, an Animation can be seen as a multi-sort collection of Course of Actions

and Animation objects.

Animation

employee

Figure 3.14 shows some details of the of the Animation specification. An attribute of

this class represents a set of Actions objects. Due to the heterogeneous characteristic of

the set, some operations of the animation specifications are overloaded (i.e., they have the

same name but different types of attributes). Consider, for example, the operation

i n s e r t . This operation has two versions, one adds a Course of Actions object and the

Animation

students

f \ f \
Animation Animation f~ourse Of Action2 f~ourse Of Actions'

.famlty
\ J \ 1 \ 1 \ 1

staff Vehicle, -.- Vehicle,

other adds an Animation object in the set of Action objects. Although the Act abstraction

is also of the type Action, this type of object is not allowed in the set of actions of the

Animation class.

class Animation {

I/ Attributes
Actions[] actionset;

11 Constructors
. * .

11 Methods
void insert (CourseOfActions ca)
// Effect: Insert a Course ofActions object in the set of actions.

void insert (Animation a)
// Effect: Jnsert an Animation object in the set of actions.
...

Figure 3.14. Specification of the class Animation.

The operation insert does not specify any constraint for the inclusion of Animation

or Course of Actions objects in the set. The coordination of multiple changes (i.e., an

attribute of a Performer object being interpolated at the same time) does not apply at this

level of granularity. The behavior of a single object is completely encapsulated in the

Course of Action abstraction and each Course of Action participate only once in the set of

actions of the Animation object.

The conceptualization of the action part of the framework for virtual exploration of

animation with increasing abstraction of objects' behaviors gives a user a cognitively

plausible representation of the dynamic. environment. The ability of the user to

manipulate this representation, however, is strongly dependent on the configuration of the

animation produced by the application that converts the information stored in the

database to the internal representation of the animation model. Here, the maxim

"garbage-in-garbage-out" is still valid. The configuration of the animation does not

change the content of its presentation, but a poor configuration of the animation limits

users' creativity and flexibility for manipulating the dynamic environment.

3.5 Summary

This chapter introduced the structure of the action part of a framework for virtual

exploration of animations. Data abstractions of the model were presented and relevant

operations were discussed through an informal specification.

Although the data abstractions of the action part of the framework does not allow a

user to direct the presentation of the animation, these classes represent the foundation of

the animation framework, which serves as the basis of all manipulations that can be

accomplished by a user. All manipulations of the dynamic environment are accomplished

by the modification of the temporal characteristics of actions objects (i.e., through

operations of classes of the temporal part of the framework). These classes carry all

temporal information about the behavior of dynamic objects. The next chapter introduces

data abstractions that represent the temporal characteristics of Actions objects.

CHAPTER 4

TEMPORAL CHARACTERISTICS OF ACTIONS

In a model for virtual exploration of animations, the manipulation of the dynamic

environment is accomplished through a set of operations performed over abstractions that

represent temporal characteristics of actions. Hence, the exploration of dynamic

environment is strongly dependent on the way that the observer perceives and

manipulates time. This chapter presents a conceptualization of the temporal part of a

framework for virtual exploration of animations. The next section discusses different

temporal domains related with exploration of animations. Subsequently, we present

relevant abstractions of the temporal model and discuss their characteristics.

4.1 Temporal Domains

Applications that support animations deal with information that has a temporal

component. Such information is typically represented at different temporal granularities

and based on distinct calendars (e.g., hours, days, academic terms, or geologic eras). In

order to present these data in a way that is suitable for a user to analyze the temporal

evolution of the information, it is necessary to perform mappings among different

temporal domains.

In some GIs application @ollner and Hinrichs 1997; Luttermann and Grauer 1999;

Hardisty et al.), the presentation of temporal information through animations requires

mappings among three temporal domains (Figure 4.1).

User Time

Figure 4.1. Mappings among valid, animated, and user time domains.

Valid time represents the time when the fact is true in the modeled reality (Jensen et

al. 1992). For example, valid time is time generated by a simulation application or stored

in a spatio-temporal database. This kind of information cannot be modified through

operations of the animation model, but only observed by a user at a special and

ephemeral point along the user time domain (i.e., the user present).

User time is the time in which the user senses the facts. Thus, user time is time as

experienced by a user. This experience of time by the user can only be in the present and

"going forward" at a fixed rate. Since valid times are fixed and user time cannot be

manipulated, a direct mapping from the valid time domain to the user time domain

constrains the user to explore the information as it "happened" or "will happen" in the

modeled world. In order to allow the user to control the flow of information coming from

the valid time domain, we need to represent such information in an intermediate temporal

domain that can be manipulated. This intermediate temporal domain is called animated

time.

The mapping from valid times to animated times is made by an application in an

automatic fashion. These mappings are performed during the production of the animation

without the involvement of the user. The mapping from animated time to user time,

however, is controlled by a user through a set of operations that modifies animated time.

The simplest mapping between these time domains aligns the user present with a certain

instant in the animated time domain, allowing the user to sense a single snapshot of the

modeled reality. By continuously mapping subsequent animated times to the unfolding

user's present, that user can sense the evolution of the modeled reality. We call this

continuous process an animation.

Consider, for example, the behavior of two objects, as these behaviors are stored in a

spatio-temporal database. The activity of each object can be represented as a temporal

interval spanning the valid time tirneline (Figure 4.2a). The temporal structure of the

valid time space is linear, discrete, and unbounded at both ends. In this thesis we adopted

the former representation. This choice is motivated by the fact that discrete time is the

usual representation of both animations and GIs applications.

Valid time intervals are mapped onto the animated time domain by converting time

units of the former temporal domain to time units of the animated time domain (usually

milliseconds). The animated time domain, however, is bounded on the start and,

eventually, bounded on the end. An arbitrary point (i.e., the start point of the animation)

defines the origin of the animated time space (Figure 4.2b). It means that activities

occurring before the animation start point are not mapped onto the animated time space

and, therefore, cannot be seen. Finally, the animation start point is mapped to the user

present. As time goes by, all subsequent animated time instants are mapped to the ever-

evolving user present (Figure 4.2~). This mapping allows the user to perceive the

temporal evolution of all activities of the animated time domain. Such a mapping

continues until animated time instants reach the upper bound of the animated time space,

or indefinitely, in the case where no end point is specified.

object1 's object2's
1, activity J 1, activity J

a> 1' I' r b
- 00 start 3 d start end Valid Tune + W

object2's

Animated Tlme
start point

objed's
I
I 1, activity J

c> ' v b - 00
I
I I sdrt eid t 00
I

User Tune

Figure 4.2. Mapping of temporal information among different temporal domains.

In the previous example, the evolution of animated time and user time spaces are

synchronized (i.e., both temporal spaces evolve at the same pace and in the same

direction). In this way, a user becomes a spectator of an animation of the modeled reality

(i-e., a user is merely observing an animated version of the information stored in a

database). The manipulation of the animated space gives a user the opportunity to play a

more active role in the exploration of the animation. Thus, a user can create more

appropriate views of the dynamic environment (i.e., views more suitable to the task at

hand).

In existing animation models (Strauss and Carey 1992; Koved and Wooten 1993;

Elliott et al. 1994; Green and Halliday 1996; Hardisty et al. 200 I), the user's control over

the presentation of the animation is limited to the manipulation of the animated space.

This manipulation is accomplished by means of three basic operations. First, a user can

slow down or speed up the evolution of the information by directing the animated time to

evolve at a different pace from the user time. This operation allows the user to adjust the

pace of the evolution of the information to be presented in a reasonable time frame (e.g.,

a geological phenomenon that took millions of years to evolve can be explored in a few

minutes in a user time scale). Second, a user can change the temporal order of the

animation by inverting the evolution of the animated time space. This operation allows a

user to explore the environment where the evolution of the information is observed in the

reverse chronological order (e.g., instead of seeing glaciers receding, seeing glaciers

advancing). Third, a user can explore a single snapshot of the dynamic environment by

stopping the evolution of the animated space. This operation allows the user to

investigate the configuration of the environment at a certain instant in time. Other

operations can be defined as a combination of these basic operations (e.g., by combining

the first and second operation, a user can speed up the presentation of an animation in the

reverse chronological order).

The manipulations of the animated time space are usually presented to a user through

a graphical interface that mimics operations of a VCR control. The use of the VCR

metaphor has a cognitive appeal, that is, it has a small number of operations and many

users are very familiar with the semantic of this set of operations. The main disadvantage

of the VCR-style of operations, however, is that the user is constrained to control the

animation as a whole, without any means to address the behavior of an individual or

group of objects. Moreover, these operations manipulate only the temporal space. The

VCR metaphor, for example, does not provide operations that change the temporal

organization of the animation.

Consider, for example, a scenario where a user needs to explore the behavior of two

phenomena that occur at different times (i.e., there is a temporal gap between the

occurrence of these phenomena in valid time). In a typical animation environment, a user

can start the animation with the behavior of the first object, wait a certain amount of time,

and continue to explore the behavior of the second object. In order to minimize the

temporal gap between these behaviors, a user can speed up the evolution of the

animation. By doing so, however, all dynamic objects in the environment move faster,

which it is not necessarily the best pace to explore the dynamic information. Using VCR-

like operations, the user cannot generate an animation where one phenomenon follows

the other with no temporal gap, or where both phenomena occur at the same time,

facilitating the comparison of their behaviors.

The exploratory nature of GIs applications, requires an environment where the

observer has full control over the content and flow of the animation (Fairbain et al. 200 1 ;

Kraak 2002). These requirements can be accomplished with a data model that captures

different granularities of both the temporal space and of objects' behaviors. The first

characteristic allows the manipulation of the temporal space associated with pieces of the

animation. This characteristic gives a user a finer control over the flow of the animation.

It is equivalent to having a VCR control attached to different components of the

animation (e-g., part of an object behavior, the entire behavior of an object or the

behavior of a group of objects). The second characteristic allows the modification of the

temporal organization of pieces of the animation. This characteristic gives a user the

ability to change the temporal arrangement of an object's behavior or of groups of

objects' behaviors. The conceptualization of such a data model provides the means to

move the user interface beyond the VCR metaphor and supports an exploratory analysis

of dynamic geographic phenomena.

h the model for virtual exploration of animations the presentation of the temporal

information is still done by mappings among valid, animated, and user time domains. In

order to give a user finer control of the temporal space, however, a more elaborate

conceptualization of the animated time domain is necessary. Thus, the animated time

space is partitioned into a hierarchical representation of time (Figure 4.3). Each element

in the structure works as a local temporal coordinate system for representations that

embody the temporal characteristics of action's objects (e.g., an object carrying the

temporal characteristic of an Act are represented over the act time space).

Animation Time

v
Valid Time Course o f Actions Time

v
Act Time 1

Figure 4.3. Mappings among valid times, different elements of the animated time

domain, and user time.

In this setting, the process of mapping the information available in a database (valid

time) to an application that presents the information to an observer (user time) becomes

more elaborate. The mapping from valid time to animated time is spread among different

elements of the animated time domain. Since valid times have all temporal information

70

about an object's behavior, there is no simple abstraction in the model that incorporates

all information coming from the valid time domain. The dotted arrows in the figure 4.3

represent a dependency among elements of the animated time domain. Thus,

transformations of an element of the animated time space are consistently propagated for

all elements in the hierarchy.

The next section discusses the data abstractions represented over each element of the

structure of the animated time space. These abstractions capture temporal information

about certain pieces of the dynamic environment. The specification of each data

abstraction describes operations to combine these pieces of information and to

manipulate their temporal characteristics. The specification describes also operations that

modify the underlying temporal space of each representation (i.e., the elements of the

structure of the animated time domain).

4.2 Structure of the Temporal Model

The conceptualization of the temporal model deals with abstractions that represent the

temporal characteristics of action objects (Figure 4.4). This fact is modeled through a

one-to-one association between classes of the temporal and action parts of the framework

(i.e., each object of the action model has an associated representation in the temporal

model).

The structure of the temporal model is similar to the structure of the action model

(i.e., the temporal characteristic of entities representing a coarser granularity of objects'

behaviors aggregates the temporal characteristics entities representing a finer

granularity). The aggregation between classes of the temporal model, however, is

7 1

redundant. This information can be retrieved through the association between entities of

the temporal and action models and the same type of aggregation between classes of the

action model. We replicate the aggregation in the temporal part of the framework to

enhance the structural characteristic of the model and facilitate the model

implementation.

Temporal Model Action Model Geometric Model

Figure 4.4. Class diagram of the dynamic, temporal, and geometric parts of the

framework for virtual exploration of animations.

1
Animation Interval

The next sections present the specification of each class of the temporal model (i.e.,

Act Interval, Course of Actions Interval, and Animation Interval). Operations of these

classes build the hierarchical structure of the model and allow the manipulation of

temporal characteristics of their instances. Each class of the temporal model encapsulates

operations that simulate some kind of transformation of the underlying temporal space

(i.e., an operation that inverts the act time space is part of the Act Interval class).

Animation

1 1 10 1

* *
1 I Performer

*
1 Act

4.2.1 Act Interval

Act Interval refers to the temporal characteristic of acts. The Act Interval abstraction

captures the duration of its associated Act object. Each Act Interval is defined over its

own temporal space (i.e., act time). The temporal structure of the act time space is linear,

discrete, and bounded at both ends. Act Interval is a finite subset of integers defined as

{n E Z 1 0 I n I d), where d is the duration of the act.

The specification of the Act Interval abstraction (Figure 4.5) shows a constructor

method with two arguments (i.e., an Act object and a duration). The first argument (an

Act) links objects of the temporal model with their associated representation in the action

model. The second argument (an integer) represents the duration of the Act converted

from Valid Time units to Act Time units (i.e., the duration of the act as stored in the

database). The Act Interval specification does not provide any operation to designate the

start point of the interval. This information is defined at a high level of abstraction in the

model and will be discussed later in this chapter.

Other important temporal characteristics of the act are modeled through operations

that simulate some kind of transformation of the underlying temporal space (i.e., the act

time space). The operations s e t D u r a t i o n , s e t o r d e r , s e tF low, and s e t p a c e

perform such transformations. These operations affect the way that an observer perceives

the evolution of objects' states with the passage of time. Taken together, these operations

direct the mechanism that links each state of an object's behavior with an instant in the

act time domain. Changing the order an object's states are presented to the user, for

example, simulate a transformation that inverts the act time space.

class ActInterval {

overview: represents the temporal characteristics of Acts objects.

11 Constructors
Act Interval (Act a, int duration)
11 Effects: initializes this with the duration of its associated Act.

I1 Methods
void set Durat i o n (int duration)
void setorder (String o)
void setFlow (String f)
void set Pace (String p)

Figure 4.5. Specification of the class Act Interval.

In order to understand the effect that each transformation operation has in the way

that a user perceives the evolution of the act, it is important to review the mechanism

used to generate states of an object with the passage of time introduced in chapter 3.

Consider, for example, the act of a car traveling in a straight line between two locations

(Figure 4.6a). This Act is modeled with three key states (i.e., the initial, intermediate, and

final position of the car). Although the intermediate state of the car is redundant for this

act, we introduce it here to enhance the understanding of some concepts discussed in this

section.

Each key state of an object Act is associated with a normalized time value. A

normalized time is a real number in the interval [0,1]. The lower and upper bound of the

normalized time interval are associated with the state of an object at the beginning and

end of the act, respectively. An Interpolator object takes into account key states of the

movement, and, upon request, returns the state associated with a given normalized time

(Figure 4.6b). The continuous arrow in the figure represents an incoming message to the

Interpolator object with a normalized time value of 0.25 as argument. The dashed arrow

represents an outgoing message carrying out the result of the computation.

Key States

Interpolator ri
Key states Values

a) b)

Figure 4.6. An act of a car moving in a straight line: a) Key states of the position of the

car and b) an interpolator object computes the position of a car for a given normalized

time value.

Interpolator objects accept only normalized time values as input. In order to evaluate

the state of an object at a certain instant in time, it is necessary to map instants in the act

time space to values in the normalized time space. A normalize function performs such a

mapping. The domain of this function is act time values (i.e., values in the interval [0,

duration]) and its range is normalized time values (i.e., a value in the interval [O, 11).

Based on the output of the normalize function, the object Interpolator returns the

respective state of the object (i.e., the car's position) at the instant used as argument.

The combination of transformation operations (s e t Dura t i o n , set Order ,

s e tF low, and set Pace), depending on the value of their arguments, produces

different shapes of the normalize function (Figure 4.7). The semantics of each operation

and the effect that each kind of argument has on the shapes of the normalize function

follow.

The set Dura t ion operation changes the duration of Act Intervals. This operation

has as an argument the new duration of the act. Changing the duration of the Act

Interval slows down or speed up the movement of an object.

The operation set Order defrnes the temporal order of the presentation of the act.

This operation has two kinds of arguments: reverse and normal. The reverse

argument, for example, causes the movement of the car to be perceived in the reverse

chronological order, while the argument normal preserves the modeled evolution of

the car.

The operation setFlow alternates the shape of the normalize function between a

constant function and a non-constant function. The setFlow operation has two

kinds of arguments: stepwise and continuous. The argument stepwise constrains the

range of the normalize function to normalized time values associated with key states

of the act. In this way, only the discrete movement of an object's act is presented. The

stepwise argument is used to highlight key states of an object behavior. The argument

continuous indicates that the range of the normalized function is any value between 0

and 1. In this way, any increment in the act time space produces a different state from

the previous instant of observation. It causes the illusion of the car moving

continuously between two locations.

The operation se tpace alternates the shape of the normalize function between a

linear and a non-linear function. This operation has five kinds of argument:

constant - speed, accelerated, decelerated, accelerated - decelerated, and

decelerated - accelerated. The argument constant-speed defines a linear normalize

function. Such a function produces an animation where the car is seen moving at a

constant speed along the entire act. The arguments accelerated, decelerated,

accelerated - decelerated, and decelerated - accelerated define different shapes of non-

linear normalize functions. A non-linear normalize function implies that different

unitary increment in the act time space represents a different increment in the

normalized time space. Non-linear normalize functions produce an animation where

objects' states are perceived changing at different speeds during the act. In the case of

the car, the car is seen moving at variable speeds (e.g., accelerating or decelerating).

The argument accelerated defines a non-linear function where an unitary increment

of the act time space cause a small increment in the normalized time space in the

beginning of the act and a large increment in the normalized time space near the end

of the act. Such a function causes the illusion of the car moving initially at a low

speed and gradually increasing its speed with the passage of time. The argument

decelerated defines a function that produces the opposite effect. The argument

accelerated - decelerated produces an accelerated movement in the first half of the act

and a decelerated movement on the second half of the act. The opposite effect is

accomplished through the decelerated-accelerated argument.

setDurat ion(d) setOrder(normal)
set Flow(continuous) s e t Pace(constant)

0 dl2 d at
set Dura t ion(d) setOrder(reverse)
s e t Flow(continuous) s e t Pace(constant)

0 d 2
se tDurat ion(d) setOrder(normal)
s e t Flow(conlinuous) setPace(accebrate)

s e t D u r a t i o n (4 setOrder(normal)
s e t Flow(continuous) setPace(acc/dec)

se tDurat ion(d ') setOrder(normal)
set Flow(continuous) set Pa ce(coastant)

0 1
0 dl2

b
d t

setDurat ion(d) setOrder(norma[)
s e t F l ow(continuous) setPace(decebrate)

0

s e t Durat ion(d) setOrder(norma0
s e t Fl ow(continuous) setPace(de&c)

di2

Figure 4.7. Different shapes the normalize function.

0
-b

d at
setDurat ion(d) setOrder(normal)
setFlow(stepwbe) s e t Pace(c0nstant)

Transformation operations are high-level abstractions used to define the shape of the

normalize function. In a GIs context, these operations simulate the most usual

manipulations of the temporal space that can be accomplished by a user at the act level of

granularity. If an application of a specific domain needs even more control of the

temporal space, however, the set of transformation operations or their arguments can be

extended to incorporate such requirements.

4.2.2 Course of Actions Interval

Course of Actions Interval represents the temporal characteristics of Course of Actions.

Each Course of Actions Interval is defined over its own temporal space (i.e., course of

actions time). The temporal structure of this temporal space is linear, discrete, and

unbounded at both ends (i.e., isomorphic with the set of integers ordered by the "less

than" relation).

Course of Actions Intervals are modeled as a collection of Act Intervals positioned

along the course of actions timeline. Instances of this class are built in the same fashion

as their associated objects of the action part of the framework. A constructor method

instantiates a Course of Actions Interval and adds the first Act Interval in the collection

(Figure 4.8). The constructor also specifies the start point of such an interval. This

argument (an integer) represents the start point of the Act converted from valid time units

to course of actions time units (i.e., the modeled start point of the Act as stored in the

database). Acts Intervals are positioned along the course of actions tirneline by mapping

the origin of the act time space to a point in the course of action space. This point

corresponds to the start point of the act. The process of building the Course of Actions

Interval continues with the method i n s e r t . This method is similar to the constructor

method in the sense that it adds an Act Interval to the collection and defines the Act

Interval start point in the course of actions time space.

class CourseOfActionsInterval {

11 Overview: represents the temporal characteristics of Course of Actions objects.

11 Constructors
CourseOf A c t i o n s I n t e r v a l (ActInterval ai, int start)
// Effects: initializes this with the first act interval in the set and specifies the
// start point of the interval in the course of actions temporal space.

11 Methods
void i n s e r t (ActInterval ai, int start)
/I Effects: inserts an act interval in the collection and specifies the start point
N of the interval in the course of actions temporal space.

Figure 4.8. Specification of the class Course of Actions Interval.

In order to illustrate the process of building the temporal characteristic of an object's

behavior consider, for example, the Course of Actions of a car traveling between two

locations (Figure 4.9a). The entire behavior of the car is modeled with five Acts. Each Act

object has an associated Act Interval in the temporal model. Consider, also, that the car

completely stops for a few seconds before traveling the unpaved bend of the road. Since

the lack of activity is not modeled as an act of the object, this information does not have

an associated representation on the action model. The Course of Actions Interval

representing such a behavior is instantiated with the first Act Interval of the car and

complemented with a sequence of calls to the i n s e r t method with other Act Intervals

of the object's behavior. The resulting Course of Action Interval can be seen as an

aggregation of Act Intervals spanned over the course of actions timeline (Figure 4.9b).

8 0

Temporal Model Action Model

Act

b)
Figure 4.9. Representations of the course of actions of a car moving between two

locations: a) Entities of the action model and b) entities of the temporal model.

The graphical representation of the Course of Actions Interval in the Figure 4.10b is

depicted at two different levels of granularity. At the finest level of granularity, the

Courses of Actions Intewal is seen as a collection of convex intervals (i.e., Act Intervals).

At the coarsest level of granularity the Course of Actions Interval is represented by the

smallest convex interval that encompasses all associated Act Interval in the collection. h

this way, at a high level of abstraction periods of inactivity are incorporated in the

graphical representation of the Course of Actions Interval.

Act Intervals are congruent with the intuitive notion of intervals, a duration of time

associated with some event occurring in the world (Allen and Ferguson 1997). Course of

Actions Intervals, on the other hand, do not fit well with this notion. We can have a

Course of Actions Interval composed of Acts Intervals, which do not meet or overlap,

implying a period of inactivity inside the Course of Actions Interval. The advantage of

reducing such entities to a simple interval is that operations at different levels of

abstractions become very similar (i.e., these operations have the same name and a convex

temporal interval as argument). This characteristic enhances the understanding of the

model and facilitates the user's assimilation of the functionalities of different versions of

many operations that are used throughout the model at different levels of granularities.

Due to the fact that Course of Actions Intervals represent the temporal characteristics

of the entire behavior of an object, the set of operations used to manipulate their instances

increases in number and in complexity. A set of transformation operations similar to

operations performed at the Act Interval level of granularity is used to simulate

transformations of the course of actions time space. Other operations allow a fmer control

over an object's behavior by changing the temporal organization of its constituent parts

(i.e., their associated Act Intervals). The later group of operations is introduced in the

context of temporal constraints, discussed in chapter 5.

4.2.2.1 Transformation Operations

A set of transformation operations modifies the underlying temporal space of Course of

Actions Interval. At the Course of Actions Interval level of abstraction, the set of

transformation operations consist only of the operations s e t Du r a t i on, s e t Fl ow, and

se torder . The operation set Pace is not available at this level of abstraction. The

acceleration/deceleration of an object behavior can be specified only for individual pieces

of the movement (i.e., at the Act Interval level of abstraction). This constraint is due to

the difficulty of identifying the precise semantics of the set Pace operation when this

82

operation is performed over an abstraction that represents the entire behavior of an object.

The behavior of an object can be composed of multiple periods of acceleration,

deceleration, and constants speeds, which is hard to model with a single argument.

Syntactically, transformation operations at the Course of Actions level of abstraction

are identical to their version performed over a finer granularity (i.e., they have the same

name and accept the same kinds of arguments). Semantically, these operations are

similar, but with more elaborate functionalities. Intuitively, the operation

setDuration changes the duration of the Course of Actions Interval, the operation

set Flow alternates between continuous and stepwise presentation of the behavior, and

the operation setorder changes the temporal order of an evolution of the object's

behavior. The hierarchical structure of the animated time space, however, imposes that

the manipulation of the temporal space at a certain level of granularity be consistently

propagated to its associated temporal spaces at a lower level of granularity. In this way,

manipulations of the course of action time space affect all Acts Intervals associated with

the Course of Actions Interval.

In order to understand the semantics of each transformation operation consider, for

example, the Course of Actions Interval representing the behavior of the previous

example of the car moving between two locations (Figure 4.10a). Consider yet, that a

user wants to create a new view of the environment where the car is seen performing its

modeled behavior twice as fast. In this way, the user can reduce the duration of the

Course of Actions Interval to half of its original duration (Figure 4.1 Ob).

cai
-00 +00>

tcat

I

I

+00

tcat

Figure 4.10. Graphical representations of two versions of a car's movement: a) the

modeled configuration of the car and b) the effect of changing the duration of the trip.

Changing the duration of an object Course of Actions is equivalent to performing a

scale operation over Course of Actions Interval with respect to the start point of the

interval. Thus, the start point of the Course of Actions Interval remains the same and its

duration is multiplied by a scale factor. The ratio between the previous and the new

duration defines the scale factor. A scale operation with the same scale factor and same

reference point (i.e., the start point of the Course of Actions Interval) is performed over

every Act Interval in the collection. It means that not only are the durations of Act

Intervals affected, but also all Act Intervals' start point that do not coincide with the

reference point of the scale operation.

The set Orde r operation allows the user to produce an animation where a certain

object is seen performing its behavior in a reverse chronological order while the other

objects are seen performing their behaviors in the chronological order. If a user wants to

produce such animation with the car of the previous example, a setorder operation

with a reverse argument performed over the car temporal characteristics can handle the

task. Figure 4.1 l a shows the graphical representation of the modeled behavior of the car

while the Figure 4.1 1 b depicts the graphical representation of the car moving backwards.

cai
-00

Figure 4.11. Graphical representations of the operation setorder over the entire behavior

of the car: a) the modeled configuration of the car's behavior and b) the effect of

inverting the evolution of the entire behavior of the car.

The se t O r d e r operation does not change the modeled duration or start point of the

Course ofActions Interval. At a finer level of granularity, however, the start points of the

Act Intervals are affected. Graphically, the setorder operation with a reverse

argument is equivalent to perform a mirror transformation with respect to the midpoint of

the Course of Actions Interval. A mirror transformation over temporal intervals changes

the endpoints of the interval. The new position of these points are the ones in which the

distance from the new position to the reference point is the same as from the old position

to the reference point. Thus, at a coarse granularity, the Course of Actions Interval

remains the same (i.e., the new position of the interval end point coincides with the old

position of the interval start point). At a finer granularity, however, the start points of all

Act Intervals in the collection change. The process of updating the start points of Acts

Intervals is accomplished by mirroring each Act Interval with respect to the midpoint of

8 5

the Course of Actions Interval (Figure 4.12b). In addition to that, a set Orde r operation

with a reverse argument is performed over every Act Interval in the collection.

The set Flow operation allows the user to select between a continuous evolution of

the movement of the car or an animation where only representative states of the car's

position are shown. The setFlow operation performed over a Course of Actions

Interval is equivalent to performing the same version of this operation over all Act

Intervals in the collection. In this case, the duration and start point at all temporal

intervals at both levels of granularity remain the same. Thus, the graphical representation

of the outcome of this operation is similar to the original configuration of the Course of

Actions Interval at both levels of granularity.

4.2.2.2 Cyclic Behaviors

One important requirement of an animation model is that its data abstractions need to

capture the temporal structure of the application domain. Failing to satisfy this

requirement means that information coming from the valid time domain is only

approximate or gets lost when mapped onto the animated time domain. The

conceptualization of different granularities of objects' behaviors position along a timeline

and powered with operations to modify their temporal organization is not robust enough

to capture the richness of temporal geographic information. These abstractions do not

capture, for example, objects' behaviors that repeat themselves in a cyclic fashion.

Current animation models do not properly capture cyclic behaviors. In these models

cycles are simulated through a mechanism that repeats portions of the animation a certain

number of times or indefinitely. Moreover, in these models the behavior of the object

represents the entire period of the cycle. It means that there is no interval of inactivity

between two occurrences of the cycle. In order to support more sophisticate kinds of

cyclic behaviors, we extend the animation model with a new class called Cycle Interval.

This class is modeled as a specialization of the class Course of Action Interval (Figure

4.12). The temporal characteristics of cyclic behaviors are represented by instances of the

class Cycle Interval. At this point we support only cyclic behaviors of the entire behavior

of an object (i.e., Course of Actions). We leave for future extensions of this model the

support of cycles at the Act level of abstraction.

Course of Actions Interval

Cycle Interval

Figure 4.12. Class diagram showing a Cycle Interval as a specialization of the class

Course of Actions Interval.

In order to understand the structural elements of objects that represent cycles,

consider, for example, the spray of hot water from a geyser. The water is sprayed out

from the ground in a cyclic pattern (Figure 4.13). In the action domain, there is no

abstraction that specifically represents different occurrences of the cycle. Every

occurrence of the cycle is modeled through a single Course of Actions that repeats itself

accordingly to the temporal characteristics of the Cycle Interval object. In this example,

the object spillage represents the Course ofActions of the geyser.

In the temporal domain each hot spring is represented by a single interval (i.e., the

temporal extent of one occurrence of the geyser's activity). We call this interval the

period of activity. In this cyclic phenomenon, the time necessary to warm up the

underground water to a certain temperature and cause the next spray of the geyser is

represented by an interval under the relation meets with the period of activity. We call

this interval the period of inactivity. The period of inactivity represents the period of time

when the associated action is not happening, or that what is happening is not modeled in

the action domain. Thus, there is no action associated with the period of inactivity of the

geyser. The interval of inactivity represents the temporal extent between two consecutive

occurrences of the cyclic behavior. The set union of the interval of activity and the

interval of inactivity defines the period of the cycle.

period? cycle ,
period of activity period o f inactivity

Temporal Domain

ctt

Action Domain
----J---- --. <-> spillage < w m u P - _ i
---___-- --#'

Figure 4.13. An interval of activity followed by an interval of inactivity representing the

temporal extent of a single occurrence of the cycle of a geyser.

Similar to the Course of Actions Interval representation, a Cycle Interval can be

depicted at different levels of granularity. At a fine level of granularity, a Cycle Interval

object is represented by two intervals (i.e., the periods of activity and inactivity). At a

coarse level of granularity, a Cycle Interval is represented by a single interval (i-e., the

period of the cycle). The later representation encompasses the representation of both

intervals at the fine level of granularity.

The class Cycle Interval inherits from its super-class Course of Actions Interval all

structural elements related with the cycle's period of activity (i.e., the associated action

and the start point and duration of the period of activity). The class Cycle Interval

complements the structure of the cycle by adding an attribute that defines the duration of

the period of inactivity of the cycle (Figure 4.14). Other structural elements of the Cycle

Interval (e.g., duration of the period of the cycle) can be easily derived from the existing

structural elements (Cuckierman and Delgrande 2000; Terenziani 2003).

class CycleInterval extends CourseOfActionsInterval {

Overview: represents the temporal characteristics of cyclic behaviors.
I/ Attributes

int dpi
. . .
/I Constructors

...
N Methods

int setDurationPeriodInactivity (int dpi)
...

Figure 4.14. Specification of the class Cycle Interval.

The structural elements of the class Cycle Interval capture the temporal characteristic

of a single occurrence of the cycle. We call this occurrence the occurrence of reference.

Other occurrences of the cycle can be retrieved based on occurrence of reference.

In order to represent other occurrences of the cyclic behavior we need to define the

pattern of the repetition of the cycle. This information is modeled through the operation

set P a t t ernsOf Repe t i t ions. This operation has four kinds of arguments: in$nite,

finite, until, and porn. The semantic associated with each kind of argument determines

the temporal characteristics of all occurrences of the cycle and which instance of the

cycle the occurrence of reference refers to. The semantics of each argument follows:

The argument infinite represents endless cyclic behaviors (Figure 4.1 5a). This type of

cycle implies that the object is always observed performing some activity. The

occurrence of reference of this cycle can be any occurrence of the cyclic behavior.

The argument Jinite represents behaviors that repeat themselves a certain number of

times after the occurrence of reference (Figure 4.15b). The number of cycles needs to

be provided in this case. An operation se t Numberof Repe t i o n s informs the

number of times that the cycle repeats.

The argument porn models cycles that start with the occurrence of reference and

repeats the associated action indefinitely (Figure 4.15~).

The argument until models cycles that finish with the occurrence of reference but the

object is observed performing its behavior at every instant before that (Figure 4.15d).

tcat
a) infinite

tcat
b) finite

bat
c) from

tcat
d) until

Figure 4.15. Different patterns of repetitions of cyclic behaviors.

It is important to note that the representation of the cycle' occurrences in the Figure

4.16 is depicted using an interval representing the period of the cycle (i.e., an interval that

encompasses the periods of activity and inactivity of the cycle).

In this section we treat only the extended functionality and semantics of the class

Cycle Interval. This class inherits all operations of its super-class (i.e., Course of Actions

Interval). Some operations, however, are overriden to accommodate specificities of the

cycle's representation. Other temporal operations involving cycles are introduced in

chapter 5.

4.2.3 Animation Interval

The main purpose of an Animation object in the action domain is to serve as a grouping

mechanism. Courses of Actions are combined to form Animations and Animations are

combined forming complex Animations. Animation Intervals represents the temporal

characteristics of these objects.

Each Animation Interval is defined over its own temporal space (i.e., animation time).

The temporal structure of animation time is identical to the temporal structure of course

of actions time (i.e., linear, discrete, and unbounded at both end).

Animation Intervals are similar to Course of Actions Intervals in the sense that they

are modeled as a collection of intervals positioned along a temporal axis. Thus, the

process of building Animation Intervals is accomplished by adding temporal intervals to a

collection of intervals. Different fiom Course of Actions Intervals, however, the elements

in the collection of intervals can be of different sorts (i-e., the elements can be either

Animations Intervals or Course of Actions Intervals). This characteristic is represented in

9 1

the specification of the Animation Interval, for example, by two versions of the method

insert, one for each sort of object allowed in the collection (Figure 4.1 6).

class AnirnationsInterval {

Overview: represents the temporal characteristics of animations objects.

11 Constructors
11 Methods

void i n s e r t (AnirnationsInterval ai)
void i n s e r t (CourseOfActionsLnterval cai)

Figure 4.16. Specification of the class Animation Interval.

From the users perspective an Animation Interval is the smallest convex interval that

encompasses all temporal intervals in its collection. Figure 4.17 shows a graphical

representation of Animation Interval composed of one Animation Interval and two

Courses of Actions Intervals.

Figure 4.17. Graphical representation of Animation Intervals.

At the Animation Interval level of abstraction, a set of transformation operations (i.e.,

set Dur a t i o n , s e t Order , and set low) simulates some kind of transformation of

the animation time space. These operations allow a user to manipulate the behavior of a

group of objects or all objects in the environment. The semantics and syntax of

transformation operations over Animation Intervals are similar to the same set of

operations at the Course of Actions Interval level of abstraction and they are not repeated

here.

Users are not restricted to manipulate Animations Intervals only by simulating

transformation of the underlying temporal space. At the Animation Interval level of

abstraction, a group of operations that resembles operations over sets (i.e., intersection,

difference, and union) can also be used to produce a new view of the dynamic

environment. We call this group of operations combinations operations.

The intersect ion of two animations generates an animation defined over an

interval obtained from the intersection of the intervals used as the arguments. The

result is an animation defined over an interval when only the simultaneous

occurrences of both animations will be presented. With this operation a user can

verify, for instance, mutual interference between the movements of different objects.

The difference of two animations generates an animation defined over an

interval when the second animation is not defined (i.e., an interval when only the first

animation occurs). This operation permits the user to isolate the behavior of the first

object during the period when the second object does not occur.

The union of two animations is a simple combination of two animations while

preserving the temporal configuration of individual arguments. This operation is

useful for combining animations to form complex animations.

Despite the modeled configuration of the dynamic environment (i-e., the number and

configuration of all ~nimations, Course of Actions, and Act objects), the model for virtual

exploration of animation creates a special Animation object that combine all action

objects in the environment. We named this special object All Animations. The temporal

93

representation of the entity All Animations is an interval that spans from the instant that

the first object starts to perform some action until the last movement in the environment.

Operations performed over the object All Animations affect all objects uniformly. In

this way, an operation se tDura t ion , for example, allows the user to specify the

desired duration of the entire animation, while preserving the relative duration of all

actions in respect to each other. There are some operations, however, that are applied

only over the object All Animations. We call this group of operations presentation

operations.

The group of presentation operations is formed by the operations st art , p 1 a y, and

s top . These operations direct the flow of information coming from the animated time to

the user time domain. The operation start aligns a. point in the animation timeline

with the user present. This operation has the effect of defining the point of insertion of

the user in the animated temporal domain (i.e., this operation defines the start point of the

animation). The operation p l a y performs a continuous mapping from the animated time

domain to the user time domain, allowing the user to sense the evolution of the modeled

dynamic environment (i-e., allowing the user to explore the animation). The operation

s t o p suspends the flow of information coming from the animated time domain, which

allows a user to observe a static version of the environment.

4.3 Summary

This chapter discussed the conceptual model of the temporal part of the framework of

virtual exploration of animations. A structure of classes representing the temporal

characteristics of actions was presented and attributes and methods of these classes were

discussed in an informal way.

The conceptualization of the action and temporal parts of the animation model

framework gives a user a cognitively plausible representation of the dynamic

environment at different levels of granularity of objects' behaviors. A user can, through

operations associated with each level of granularity, create new views of the dynamic

environment. This process is accomplished by manipulating the object's underlying

temporal space through transformation operations or by combining objects Animalions

through combination operations. These operations, however, do not allow a user to

change the temporal arrangement of the dynamic objects in the environment. This

functionality is accomplished through operations called compositions operations.

Composition operations allow a user to change the animation by rearranging the

temporal characteristics of the object's behaviors at different levels of granularity (e.g.,

changing the start point of an Act Interval or the end point of a Course of Actions

Interval). Giving a user the possibility of manipulating this kind of information, however,

allows a user to create views of the environment that make no sense in the context of the

application domain (e.g., a cause happening after the effect). In this way a mechanism to

avoid "unrealistic" views of the dynamic environment and keep the modified version of

the animation coherent with some requirements of the application domain is necessary.

The next chapter introduces composition operations and the mechanism used to

represent temporal constraints among entities of the temporal part of the animation

framework.

CHAPTER 5

TEMPORAL CONSTRAINTS

The basic unit of time in the animation model is an interval. Intervals are ubiquitous in

the model and used to represent the temporal extent of objects' behaviors at different

levels of granularity. Abstractions of the animation model, however, does not capture any

qualitative relationship among the intervals, which is a valuable piece of information to

represent constraints among temporal entities and treat temporal information that is

available only as the relative order between objects' behavior (Frank 1998).

This chapter introduces a mechanism to incorporate into the animation model

qualitative information about the organization of the temporal characteristics of objects'

behavior. This information comes fiom the knowledge base of the application domain

and it is represented in the model through temporal constraints among intervals. The next

section discusses the role of representing such temporal relationships among entities of

model. Subsequently, the mechanism to represent temporal constraints is discussed in the

context of temporal relationships between two intervals and among a sequence of

intervals of cyclic behaviors.

5.1 The Role of Representing Relationships between Temporal Intervals

In existing animation models (Fiurne et al. 1987; Dollner and Hinrichs 1997), the

"knowledge" about the temporal organization of the animation's components is used

mainly for performance purposes. Considering the order in which behaviors occur, for

example, these models can perform a temporal indexation of objects' behavior and

optimize the information sent to the graphic engine. This "knowledge", however, plays a

significant role if the application allows the user to manipulate the temporal configuration

of the elements that form the animation. In an animation model that supports the

manipulation of the temporal characteristics of objects' behavior, it is important to

"know" if there exists any temporal relationship among their constituent parts. Thus, the

modification of the temporal characteristic of a single interval allow the animation model

to modifj the temporal characteristics of all related intervals in a way that preserves some

"known" characteristics of the modeled animation.

Consider, for example, the animation of two vehicles from the University of Maine's

maintenance department. These vehicles travel between two locations in response to two

different requests. The blue and red lines in the Figures 5.la represent the spatial

characteristics of such vehicles' behavior (i.e., the path of each vehicle on the campus).

The temporal characteristics of the vehicles' behavior (i.e., the instant when they start to

move and the duration of the trip) are represented as temporal intervals positioned along a

timeline (Figure 5.1 b).

-- --

IL.~ r w r I \trarrrrr ot

MAINE

4-.

a) b)

Figure 5.1. Graphical representations of the spatial and temporal characteristics of the

movement of two vehicles on the campus: a) the paths of the vehicles and b) the temporal

characteristics of each movement.

Analyzing the spatial and temporal characteristics of the vehicles' behavior, an

observer can infer that each trip corresponds to a request from different locations on the

campus and that these requests are responded in a timely manner (i.e., they are responded

at different periods). If the animation model provides the means to an observer to change

the temporal characteristics of the vehicles' behavior, an observer can produce, for

example, an animation in which the trip of the second vehicle occurs before the trip of the

first vehicle or an animation in which both vehicles are traveling at the same time. Since

there is no information in the model relating the behaviors of the vehicles, the

progression of the animation in both cases is obvious. If there exists any relationships

between these behaviors, however, the progression of the animation may vary.

Consider, for example, that is known fiom the application domain that the trip of the

first vehicle (the red interval) is due to a request fiom the President's office and the trip

of the second vehicle (the blue interval) is due to a request fiom the library. Due to the

nature of the problem of each request (i.e., the library has a problem with the roof and the

President's office has a problem in the sewer), the vehicle used in each response is

different. Consider yet that requests from the President's office have a higher priority

than requests from other departments of the University and that the same employee

responds to both requests. This information can be represented in the animation model

through a relationship that captures that the red interval always occurs before the blue

interval (Figure 5.2). This relationship models the fact that a high priority is given to the

President office's requests as well as the fact that a person cannot drive the same vehicle

at the same time.

Figure 5.2. A relationship between two intervals representing some knowledge from the

application domain.

In this scenario, an observer can change the temporal characteristic of the interval that

represents the response to the President's office (the red interval) and make it start at the

instant when the blue interval starts. Since there is a temporal relationship between these

intervals, two possible temporal configurations of the animation are possible. First, the

application can redefine the start point of the blue interval in a way that the original

temporal relationship between the intervals still holds (Figure 5.3a). In this case, the

modified version of the animation is similar to the original version and differs only by the

fact that the maintenance department starts to respond the requests later. The rationale

used to update the temporal characteristics of the animation when a temporal relationship

99

is in place is discussed in chapter 6 together with the operations that allow an observer to

manipulate the animation. Second, the application can ignore the temporal relationship

between the intervals and keep the original configuration of the blue interval (Figure

5.3b). In this case, the modified version of the animation shows both vehicles traveling at

the same time. Since the modified version of the animation violates some knowledge

from the application domain, the animation model responds to this fact by changing the

way in which the object interacts with other objects in the environment (i.e., the

animation reflects the fact that the same person is driving two vehicles at the same time).

The rationale used to modify the way that objects interact with other objects is discussed

in chapter 7 together with the mechanism used to represent the semantics of the objects in

VR environments.

a) b)
Figure 5.3. Different configurations of an animation where the start point of the red

interval is redefined: a) a configuration in which the relative temporal relationship is

preserved and b) a configuration in which the temporal relationship is violated.

Using a certain temporal relation between two intervals to capture some known

relationship between objects' behavior does not cover some cases in which the behavior

of the objects have a cyclic pattern of repetition. The temporal relation between such

behaviors requires a richer representation (i.e., a representation that considers the set of

relations among elements in a sequence of intervals). Consider, for example, the behavior

of two buses running on the campus. Each bus has a different route on the campus (i.e.,

they serve different locations). The blue and red lines in the Figures 5.4a represent the

spatial characteristics of the buses behavior (i.e., the buses route). Due to the difference in

the length of each route, the amount of time for each bus to perform each run is different,

but between each run the buses rest for the same period of time. Thus, the temporal

characteristics of the buses' behavior are represented by a sequence of intervals

intercalated with gaps of the same duration (Figure 5.4b). Each interval in the sequence

corresponds to a run of the bus and the gaps represent periods when the buses are not

running.

I,,, ,.,,,..,#\ Cl,
MAINE

- -1

.<

Figure 5.4. Graphical representations of the spatial and temporal characteristics of the

movement of two buses with a cyclic behavior: a) the routes of the buses and b) the

temporal characteristics of each run.

The graphical representation of the temporal characteristics of the buses' behavior

(Figure 5.4b) allows an observer to reason about the buses' schedule. An observer can

infer, for example, when the buses start to run, the duration of each run, and so forth. This

representation, however, does not tell the observer the reason that the bus of the blue

route starts its first run when the bus of the red route finishes its fust run. It can be either

a coincidence or an imposition between the buses' schedule.

Consider that is known fiom the application domain that the schedule of the buses is

set up in a way that enforces a policy of the University that states that "whenever possible

there is at least one bus running on the campus". Due to the duration of the periods of

activity and inactivity of the buses, the temporal configuration shown in Figure 5.4b

guarantees that there is always one bus running on the campus. This information can be

registered in the model through a temporal relationship between the first run of each bus

(e.g., the interval representing the first run of the bus on blue route is "met by" the

interval representing the first run of the bus on the red route). The temporal relationship

between the first run of each bus, however, is not robust enough not capture the

knowledge from the application domain (i.e., the university policy concerned the

schedule of the buses). This relationship reflects only a solution found by a person that

sets up the schedule of the buses based on the duration of each run.

In this scenario, the animation model is not always capable of preserving the

knowledge from the application domain. Depending on the manipulation made by an

observer, the modified version of the animation may not reflect a "known" or "desired"

temporal relationship between entities of the "real" world. Consider, for example, that an

observer wants to create an animation where each run the bus on the blue route takes

more time to complete each run. This situation can be motivated, for example, by the fact

that the bus mming on the blue route has a new driver and for security reasons the speed

limit of the bus is be reduced by 5 mph during the driver's training period. Thus,

changing the duration of each run of the bus on the blue route and preserving the

temporal relationship between the first run of the buses generates a temporal

configuration where sometimes both buses are not running (Figure 5.5).

Figure 5.5. Graphical representations of the temporal characteristics of the buses'

behavior in which the bus of the blue route has a new driver. The oval highlights the

period in which neither bus is running.

When dealing with cyclic behaviors, a new set of temporal relationships is needed to

relate these more complex structures. These relationships have to be less restrictive and

able to address temporal relations that must hold between all intervals of the cycle. A

temporal relationship of the kind "maximize the occurrence of periods of non-concurrent

activities", for example, gives the animation model the information needed to find a new

temporal configuration with always at least one bus running on the campus. There is no

guarantee, however, that it is possible to find such a temporal configuration, but the

application can find a configuration in which simultaneous periods of inactivity are

distributed evenly during the day, minimizing the occurrence of long periods with no bus

running on the campus.

The next section discusses the mechanism used to represent relationships among the

temporal characteristics of objects' behavior and to update such characteristics when an

observer changes the temporal configuration of the modeled animation.

5.2 Representing Temporal Constraints

In the model for virtual exploration of animations, Course of Actions Interval and

Animations Interval are abstractions that deal with collections of time periods. These

classes have an attribute to represent some known temporal relationship among elements

in their collections of intervals. This attribute is called temporal constraints.

The attribute temporal constraints is implemented as a list of triples of the form

(temporal object, temporal object, constraint). Temporal object is any instance of the

classes of the temporal model introduced in chapter 4 (i.e., Act, Course of Actions,

Cycles, and Animations Intervals). The element constraint is any information that

represents a dependency between temporal objects. The types of temporal objects in the

triple vary accordingly the class that the attribute belongs. For example, a Course of

Actions Interval is composed of Act Intervals. Thus, the temporal objects in the triple are

always instances of Act Intervals and the value of the element constraint is some

information that relates two temporal intervals, for example, a temporal relation metBy

between two Act Intervals informs that one act of the object follows the other.

The class Animation Interval is more complicated. Animation Intervals handles a

multi-sort collection of intervals. Objects in t h s collection can be of the sort Course of

Actions Interval, Cycle Interval, and Animation Interval. Thus, the range of values of the

element constraint varies fiom values that relate two intervals to values that relate

sequences of intervals of cyclic behaviors.

The implementation of attribute temporal constraint is straightforward. An operation

called Insert Temporalcons t ra int s adds elements in the list of the attribute

temporal constraint. This operation registers all known dependencies among entities of

the model. The operation Insert Tempora lCons t ra in t s is polymorphic and

available to all classes that deal with collections of intervals (i.e., it can be used to relate

any sort of temporal objects). Thus, two major issues concerned the temporal constraint

mechanism are the definition of possible values associated with the element constraint

and the definition of the rationale used to keep modified versions of the animation

coherent with the temporal constraints introduced in the model. The next sections discuss

these issues in the context of temporal constraints between two intervals and between two

cycles.

5.2.1 Temporal Constraints between Intervals

The first task to handle in the temporal constraints mechanism is the characterization of

the elements in the list of triples of the attribute temporal constraints. Firstly, its need to

characterize which kinds of temporal structure we are relating. Secondly, we need to

identify which kind of constraint we intend to capture. Thirdly, we need to define the

rationale used to update the temporal characteristics of all related temporal structures

when an observer changes the temporal characteristics of an object's behavior.

The kinds of temporal structure that we dealing in this section are intervals and the

constraint that we intend to capture are some temporal relation between two intervals. In

105

this way, the major issue concerning the functionality of the temporal constraints

mechanism becomes the characterization of the object constraint.

The range of values of the element constraint is strongly dependent on the kind of

temporal relation that the model is able to express (i.e., we cannot define values of

constraint without knowing the type of temporal relations that can be represented in the

model). In this thesis we adopted the Allen's set of relationships between intervals (Allen

1983). This set is composed of thirteen temporal relations (i.e., before, meets, overlaps,

starts, contains, finishes, equals, and their converse) and captures any relationship that

may hold between two intervals.

Based in the Allen's set of temporal relations, we propose a set of fifteen values of

constraints to relate two intervals (Table 5.1). Although it is natural to think about

instances the element constraint representing only the basic set of temporal relations

between intervals, we decide to represent the constraint where two intervals start together

or finish together without having to constraint the duration of the related interval. The

semantic of the constraints makeStartTogether and makeFinishTogether are

discussed later in this section.

Based on the rationale used to update the temporal characteristics of related intervals,

instances of the constraint element can be divided in two sub-groups: tight and loose

(Table 5.1). The tight group of instances constrains at least one point of the interval

involved in the relation. The constraint ma keEquals represents the strongest constraint

in the set since it defines the position of the start and end points of the related interval.

The loose group of instances of constraint limits the range of possible values of the

related interval end points, but does not unambiguously define the position of any end

points.

Table 5.1. Temporal constraints between a pair of intervals.

Tight

Loose

Once populated the list of triples of the attribute temporal constraints, the model has

incorporated all knowledge fiom the application domain concerned temporal

relationships among entities of the animation (i.e., intervals representing the temporal

extend of object's behavior). Thus, any modification made by an observer in the temporal

characteristic of an interval present in the list of the attribute temporal constraint causes

the modification of all related intervals in a way that preserves known relationships

stored in the model. Intervals that are not related in the list of the attribute temporal

constraint keep their original temporal characteristics.

Values of the element Constraints

ma keMeet

ma keMet By

makeStartTogether

makeFinishTogether

makeEquals

makeBefore

makeAfter

makestart

makeStartBy

makecontain

makeContainedBy

makeFinish

makeFinishedBy

makeoverlap

makeOverlappedBy

Possible Temporal Relations

Meets

MetBy

Starts or StartedBy

Finishes or FinishedBy

Equals

Before

Ajler

Starts

StartedBy

Contains

ContainedBy

Finishes

FinishedBy

Overlaps

OverlappedBy

Consider, for example, an animation composed of the behavior of four objects. The

temporal characteristics of these objects' behavior are represented by four Course of

Actions Intervals (i.e., c l , c2, c3, and c4). Triples in the attribute temporal constraints

captures known relationships among the temporal characteristics of these behaviors (i.e.,

[(cl ,c2, s t a r t T o g e t h e r) , (c2,c3, s t a r t s) , (c3,c4, over laps)]) . Given certain

duration for the intervals, figure 5.6a shows a graphical representation of the Course of

Actions Intervals and the temporal constrains register in the model.

<: C2>f j
7 s t a r t s

c2 ,
F

s t a r t s

o v j r l a p L 4 o v e r l a p L .I&
t l

b b
t2 t l t2

a) b)

Figure 5.6. Temporal constraints between a Course of Actions Interval and different

kinds of cycles.

Consider that an observer wants to simulate a situation where the behavior of the

second object takes longer (i.e., the observer changes the duration of the yellow interval).

If the yellow interval represents the behavior of a car moving between two locations, for

example, an observer wants to slow down the movement of the car. Figure 5.6b shows a

graphical representation of the modified version of the animation. In this version of the

animation, the duration of the yellow interval is the one specified by the observer. Since

there exist temporal constraints among the intervals, however, the application redefines

the temporal characteristics of other intervals in a way that preserves all information

stored in the list of the attribute temporal constraints. The first triple of the attribute

temporal constraints captures the fact that blue and yellow intervals start together. In the

modified version of the animation the temporal characteristic of the blue interval remains

the same. The new duration of the yellow interval does not change this fact. The second

constraint in the list captures the fact that the yellow interval starts the red interval. It

means that the intervals have the same start point but the duration of the yellow interval is

shorter. The new duration of yellow interval violates such a constraints (i.e., the temporal

relation becomes startBy). Thus, in the modified version of the animation, the duration of

the red interval is redefined in order to preserve the temporal constraint. The third

constraint informs that red interval overlaps the green interval. Considering the new

configuration of the red interval, the application changes the start point of the green

interval and preserves the temporal relations overlaps between these entities.

The rationale used to update the temporal characteristics of the intervals related by a

constraint fiom the group of tight constraints (e.g., ma keS t a r t Toge t her) is

straightforward. The temporal characteristics of the interval are completely defined in

terms of the temporal characteristics of the related interval and the intended constraint.

The group of loose temporal constraints is more flexible in the sense that it gives

implementers of the model more room to specify the best configuration of the related

interval. For example, the decision about the new duration of the red interval and the new

position of the green interval is left to implementers. In this chapter we abstract the

implementations details.

The model of virtual exploration of animation supports other temporal structures that

cannot be represented as a single interval. In the class Animation Interval, for example,

some temporal objects can be of the sort Cycle Interval. It means that Cycle Intervals

objects can be also elements in the triple of the attribute temporal constraints. In this

way, it is possible, for example, to relate a Course of Actions Interval with a Cycle

Interval or to relate two Cycles Intervals with constraints that relates two intervals (Table

5.1).

Consider, for example, the behavior of three objects. The first object has a non-cyclic

behavior (i.e., the temporal characteristic of the object's behavior is represented by a

single interval). The second and the third objects have a cyclic behavior with an infinite

and finite pattern of repetition, respectively. The temporal characteristic of the cyclic

object's behavior is represented by a sequence of intervals. Consider also that is known

from the application domain that a certain occurrence of the infinite cyclic behavior starts

when the non-cyclic behavior stops and that this same occurrence of the infinite cycle

starts together with the first occurrence of the finite cyclic behavior. Figure 5.7 shows the

graphical representations of the temporal characteristics of these objects' behavior and

the temporal constraints introduced in the model. The yellow interval represents the

temporal characteristics of the non-cyclic behavior and the red and blue intervals

represent the related occurrences of the Cycle Intervals. In this scenario, the modification

of any characteristic of an object's behavior makes the application to redefine the

temporal characteristics of all related intervals using the same rationale discussed early in

this section. In the case of the cyclic behaviors, the application considers only the colored

occurrences of the cycles. Other occurrences of the cycles are redefined based on the

structural elements of the Cycle Intervals (i.e., the periods of activity and inactivity, and

the pattern of repetition), but they are not taken into account in the temporal constraints

mechanism.

Figure 5.7. Temporal constraints between a non-cyclic behavior and cyclic behavior and

between two cyclic behaviors.

Imposing a temporal constraint between a Course of Actions Interval and an

occurrence of a Cycle Interval or between two occurrences of Cycle Intervals is

meaningful only because a single temporal relation is in place. When two cycles are

involved, however, a temporal relation between two occurrences is not always the most

representative. Other occurrences of the cycles will have different temporal relations and

with the possibility that the imposed relation is the less relevant (i.e., is the relation that

occurs less frequently). The next section discusses an extension to values of constraints

to be used when the temporal objects are cycles and when the knowledge that we want to

capture involves temporal relations between all occurrences of the cycles.

5.2.2 Extending Temporal Constraints between Cycles

A sequence of intervals that do not overlap is the temporal representation of cyclic

behaviors. In this way, the mechanism used to constraints pairs of intervals is no longer

sufficient to be used by an application that deals with cycles.

111

A critical issue in the extension of the temporal constraint mechanism is the

representation of the set of temporal relations among the basic units of time that comprise

a cyclic behavior. Previous studies have addressed the issue of temporal relations

between collections of intervals. These studies can be divided into three main groups.

The first group (Ladkin 1986; Leban et al. 1986; Balbiani et al. 1988; Morris and Khatib

1997) considers relations among generalized sequences of recurring events, that is, these

studies do not consider any constraints among elements of the sequence. The second

group (Frank 1998; Hornsby et al. 1999; Osmani 1999) takes into account the cyclic

pattern of the sequence of intervals but limit their scope to the particular case in which

the cycles have the same period. The third group considers cycles with different periods

(Cuckierman and Delgrande 2000; Terenziani 2003) but limit the representation of

temporal relations to a disjunction of Allen's set of temporal relations (Allen 1983). This

thesis is more related with the second and third groups of study but our reasoning process

depends on a more detailed representation of temporal relations that is not addressed in

any previous studies. This more detailed representation considers cycles with different

periods and includes the frequency in which each temporal relation between occurrences

of the cycles occurs. The next section discusses the representation of temporal relations

between cycles with different periods.

5.2.2.1 Temporal Relations between Cycles

A temporal relation between occurrences of cycles is called correlation (Morris et al.

1996). The number of correlations, depending on the temporal characteristics of the

cycles, can be infinite. After, a certain amount of time, however, the pattern of

correlations repeats in a cyclic fashion. Thus, a finite subset of correlations can be chosen

112

to represent all possible correlations that may hold between occurrences of these cycles.

In this thesis we are interested in the smallest subset of correlations that captures also the

frequency in which each correlation occurs. Consider, for example, two cycles in which

pairs composed of one occurrence of each cycle are either under a temporal relation

startBy or contains. Consider yet that the temporal relation contains occurs two times

more frequently than the temporal relation startBy. Thus, the smallest subset of

correlations must reflect this fact. In this case, an instance of the smallest subset of

correlation between these cycles would be: {contains, contains, startBy) .

In order to compute the smallest subset of correlation between two cycles we need to

take into account some quantitative information about the cycles (i.e., the duration of

each cycle period). Consider, for example, animated objects that have a cyclic behavior

with an infinite pattern of repetition. The first cycle has a period of twelve time units

(nine units for its period of activity and three units for its period of inactivity). The

second cycle has a period of eight time units (three units for its period of activity and five

units for its period of inactivity). Figure 5.8 shows a small portion of a timeline with

some occurrences of these cycles. A set of correlations can be retrieved from this sample.

This set, however, do not necessarily represent the smallest subset of correlations

between these cycles.

Cycle 1 t

Cycle 2

Figure 5.8. Temporal representations of the occurrences of two cycles.

The minimum amount of time required to capture the frequency of all correlations

that may hold between occurrences of two cycles is determined by the duration of the

periods of the cycles involved in the process. This amount of time is called extended

period of the cycle (E). The duration of the extended period equals the least common

multiplier between the duration of the cycles. Thus, the duration of the first cycle's period

(DL) and the duration of the second cycle's period (D2) are used in the computation of the

duration of the cycles' extended period (DE) as follows: D E = ~ C ~ (D I , D2). LCM is an

operation that returns the least common multiplier of two integers. The duration of the

extended period determines the number of occurrences of each cycle needed to cover the

entire extended period. In the cycles depicted in the Figure 5.8, for example, the number

of occurrences of cycles 1 and 2 needed to compute the smallest subset of correlations are

two and three, respectively.

Once the number of occurrences for each cycle has been determined, an application

can select two subsets of occurrences of each cycle and compute all temporal relations

that hold between pairs of these occurrences (Figure 5.9a). Since these subsets of

occurrences do not represent any specific set of occurrence of the cycles, they can be also

depicted using a cyclic representation (Figure 5.9b). In the cyclic representation the

circumference of the circle equals the extended period of the cycles.

The smallest subset of correlations is obtained by comparing the period of activity of

the set of occurrences of the cycles 1 and cycle 2. Elements of the subset of correlations

are one out of twelve possible temporal relations between intervals in a cyclic

representation, that is, relations before and after are collapsed in a single relation called

disconnected (Frank 1998; Hornsby et al. 1999). Thus, the smallest subset of correlation

between the cycle 1 and 2 are composed of the temporal relations startedBy, overlaps,

and contains.

11-

Cycle 1 1

I I I I ~ I I I I ~ , I I I I I I
Cycle 2 1

a) b)

Figure 5.9. Temporal representations of subsets of occurrences of two cycles covering

the extended period of the cycle: a) a linear representation and b) a cyclic representation.

Based on the representation of temporal relations between two cycles (i.e., the

smallest subset of correlations), we propose an extension of the range of values of the

element constraint. These values of constraints can only be used when temporal objects

in the triple of the attribute temporal constraints are of the sort Cycle Interval. We call

this set of values cyclic constraints.

5.2.2.2 Constraints between Occurrences of Cycles

The role of temporal constraints between cycle intervals is the same as the temporal

constraints between intervals (i.e., to represent some known relationships among entities

of the model and keep these characteristics in modified versions of the animation). Cyclic

constraints, however, are less rigid than the set of constraints between two intervals and

the rationale used to maintain the modified version of the animation coherent with the

constraint introduced in the model is more complicated. In order to represent some

known relationship between cycles we propose a set of eighteen values for the element

constraint. hstances of constrains are values of the form maximizeRelation and

minimi zeRel a t ion, where Re1 a t ion assumes one of the following values:

Meets, MetBy, StartTogether, FinishTogether, Equals, Disconnected,

Contain, Overl aps, or Overl appedBy.

The set of values of cyclic constraints does not refer to all kinds of temporal relations

individually. We collapse certain temporal relations into a single temporal relation that

does not depend on the duration of the intervals. In this sense, the pairs of temporal

relations start and startedBy, finish and finishedBy, and contains and containedBy are

represented by the constraints maximize or minimize s tartTogether,

finishTogether, and contain, respectively. This is motivated by the fact that the

mechanism used to modify the temporal characteristics of the cycles while keeping the

modified version of the animation coherent with cyclic constraints does not change the

duration of the cycles involved in the process.

Consider, for example, the case of the buses introduced earlier in this chapter. The

original configuration of the buses was defined based on the knowledge from the

application domain that requires, whenever possible, that buses run at the same time. This

constraint between the behaviors of the buses can be represented in the model through an

instance of cyclic constraints of the type max imi z e Di s conne c t ions. The temporal

relation disconnected means that when one object is performing its associated behavior

the other object is at rest. In this way, when an observer changes the temporal

characteristics of one cycle, the application can look for a temporal arrangement of the

cycle intervals in which the smallest subset of correlations has the largest number of

relation disconnected.

116

The rationale used to redefine the temporal arrangement of Cycle Intervals and

enforce a cyclic constraint is very different from the rationale used for non-cyclic

temporal structures. First, the redefinition of the temporal characteristics of the cycles is

limited to redefinition of the of the start point of the cycles' occurrences. Thus, this

mechanism never changes the duration of the cycles' occurrences. Second, cyclic

constraints do not impose a certain temporal relationship or a set of temporal

relationships between the Cycle Intervals, but requires that a certain temporal relation

hold more or less frequently between occurrences of the cycles. Moreover, the temporal

relation that an instance of cyclic constraints refers to does not necessarily holds between

any pair of occurrences. In the case of the buses, for example, it is impossible to achieve

a temporal configuration for the schedule of the bus in which a temporal relation

disconnected holds. The duration of both periods of activity of the buses is larger than

their periods of inactivity.

The algorithm used to find the best temporal configuration of the cycles (i.e., the start

points of occurrences of the cycles) that reflects a cyclic constraints is the same as the

algorithm used by operations that allow an observer to modify the temporal

configurations of cyclic behaviors. This algorithm is discussed in next chapter.

5.3 Summary

This chapter discussed a mechanism to represent temporal constraints among entities of

the animation model. This mechanism captures all known temporal relations among the

elements in a collection of intervals maintained by entities at different levels of

abstractions. Thus, any modification in the temporal characteristics of an interval in the

list of temporal constraints, cause the redefinition of the intervals in the list in a way that

preserves all constraints introduced in the model. These modifications occur during the

manipulation of the temporal characteristics of the elements of an animation performed

by a user in order to produce new views of the environment.

Temporal constraints is a robust mechanism to incorporate knowledge from the

application domain in a form of temporal relationships between intervals. The complexity

and computational effort to maintain such a mechanism, however, are useless if the

temporal configuration of the animation is fixed (i-e., cannot be modified by a user). In

order to allow an observer to interfere with the temporal configuration of the animation,

classes of the temporal model have a set of operations that allow a user to modifL the

temporal organization of the components of the animation. These operations are called

composition operations.

CHAPTER 6

TEMPORAL COMPOSITION

Classes representing high-level abstractions of objects' behavior deal with collections of

time periods. In these abstractions intervals are positioned along a temporal axis by

specifying their start points. In an environment tailored for users to manipulate

animations, however, this mechanism is time consuming, susceptible to errors, and hard

to maintain.

Using temporal relations between time periods (Little and Ghafoor 1993; Weiss et al.

1995) is a more natural way to position temporal intervals. Existing animation models

have explored the use of temporal relations between intervals (Fiume et al. 1987; Dollner

and Hinrichs 1997). These models, however, are primarily concerned with the production

of the animation. The set of operations of such models acts over low-level abstractions of

the objects' behavior. Thus, they are not suitable for manipulation by users. Moreover, a

critical problem of these models is that they do not consider cyclic behaviors, a recurrent

type of behavior in GIs applications.

This chapter introduces a set of operations to redefine the arrangement of temporal

characteristics of objects' behavior taking into account the temporal relationship between

their arguments. This set of operations is called composition operations.

6.1 Composition Operations

Composition operations are used by an observer to manipulate the configuration of the

animation at different levels of abstractions creating new views of the dynamic

environment. These operations have two temporal objects as arguments: a reference and

a target object. The observer is responsible for identifying the reference and the target

objects. The main functionality of these operations is that the temporal characteristics of

the target object are redefined to satisfy a certain temporal relation between the reference

and target objects. The resulting temporal configuration is given by the semantics of each

operation.

The sorts of the reference and target objects are any classes of the temporal model.

Thus, it is possible for an observer to redefine a new temporal configuration of the

animation manipulating the temporal characteristics of objects' behavior from different

levels of granularity. For example, an observer can impose a temporal relation between

an interval representing the behavior of a group of objects (i.e., an Animation Interval)

and an interval representing a single act of an object (i.e., an Act Interval). Some

compositions operations, however, are specific for cycles and do not accept other sort of

temporal objects as arguments than Cycles Intervals. Thus, the set of composition

operations can be divided in two main groups. The first group of operations is used to

compose animations by redefining the temporal characteristic of a single interval. Cycles

can be used as arguments for this group of operations but only the occurrence of

reference (a single interval) of the cycle is taken into account. The second group of

operations is specific for cycles. Next sections discuss these groups of operations.

6.2 Composition Operations between Two Intervals

The goal of composition operations is similar to the goal of the temporal constraint

mechanism (i.e., to impose temporal relationships among temporal characteristics of

objects behavior). In the context of the temporal constraints mechanism, the imposed

temporal relationship informs a known dependency between entities of the animation. In

the context of composition operations, the imposed temporal relationship reflects an

observer intention to manipulate the temporal configuration of the animation to gain

insights and discover relationships among geographic phenomena. Despite the similarity

of their goals, these mechanisms have different requirements. The temporal constraint

mechanism requires a sophisticated functionality to keep the modified temporal

configuration of the animation coherent with constraints introduced in the model. It

includes the redefinition of temporal characteristics of all related intervals or the

modification of the semantics of associated objects. The latter requirement is discussed in

chapter 7. Major requirements of composition operations are that this set of operations

needs to be small, intuitive, and have the same functionality across different levels of

granularities. These requirements facilitate the assimilation of the functionalities of these

operations by a user.

Composition operations are part of the user interface. These operations represent the

bridge between the user and instances of the model's abstractions. Thus, these operations

are strongly dependent on the way that the user perceives such abstractions. In this thesis

we propose a graphical interface (chapter 8) in which the representation of the temporal

characteristics of objects' behaviors are depicted as intervals positioned along a timeline.

In order to make the set of composition operations intuitive to .the user, it is essential to

12 1

associate the operations' functionality with the graphical representation of their

arguments (i.e., operations used to modify the position of intervals along a timeline need

to have a graphical appeal). Thus, we borrowed from the drawing packages that deal with

geometric objects some of operations used to align graphics objects (Table 6.1). These

operations have a well-known functionality in the graphical domain that can be easily

extrapolate to the temporal domain. In the context of an animation interface, these

operations impose a temporal relationship between two intervals selected as arguments.

makeAl ignLef t I starts, startedBy, or equal

makeTouch

makeAl ignRight I fnishes, fnishedBy, or equal

1
meets or metBy

makeAl ignCenter I contains, containedBy, or equal

makec ross 1 overlaps or overlappedBy

m a keEqual I equal

Table 6.1. Composition operations between intervals and possible temporal relations

holding between the intervals after the execution of the operation.

The temporal relationship that holds between the intervals after a composition

operation depends on the order in which the intervals are selected by the user and on the

configuration of the intervals prior to the execution of the operation. The operation

ma keTouch, for example, makes the start point of the target interval coincide with the

end point of the reference interval or vice-versa, depending on which is closer. Thus,

possible temporal relations between the reference and target intervals would be the

temporal relations meets or metBy. The operation makeMirror changes the position of

the midpoint of the target interval to a new position where the absolute value of the

distance from the midpoint of the reference interval is preserved. This operation acts as a

converse for the other operations in the set. If the temporal configuration resulting from

the operation makeTouch is the relation meets, for example, the observer can turn the

temporal configuration to a relation metBy via the operation ma keMi rro r. We believe

that the semantics of the other operations are self-explanatory. The amount of

overlapping in the operation makecross is the only issue that deserves further

consideration. We define this value as half of the smallest duration of the reference and

target intervals. For example, if the target interval is shorter than the reference interval,

the start point of the target interval coincides with the mid point of the reference interval

(Figure 6.la). If the target interval is longer than the reference interval, the mid point of

the target interval coincides with the end point of the reference interval (Figure 6.1 b).

Figure 6.1. Two different configurations of the animation for the operation makecross:

a) a configuration in which the reference interval is shorter than the target interval and b)

a configuration in which the reference is longer than the target interval.

These set composition operations takes two temporal objects as arguments. It means

that Cycle Intervals can also be used as arguments of these operations. In this case, the

composition operation considers only a single occurrence of the cycle (i.e., the cycle's

occurrence of reference). Changing the start point of a cycle's occurrence of reference

changes the start point of all occurrences of the cycle, but only the occurrence of

123

reference is under the temporal relation specified by the observer through a certain

composition operation.

Similar to the temporal constraints mechanism, there are some composition

operations specific for cycles and do not accept other sort of objects as arguments. These

operations are discussed in next section.

6.3 Composition Operations Between Intervals

Cyclic compositions are operations that change the temporal characteristics of cyclic

behaviors taking into account the temporal relation that must hold between all

occurrences of the cycles used as arguments (i.e., the reference and target cycles). These

operations are divided into two groups. The first group changes the durations of periods

of activity and inactivity of the target cycle in a way that a particular temporal relation

holds between all occurrences of the cycles. The second group of operation preserves the

duration of target cycle but changes the start point of its occurrences in a way that a

certain temporal relation among occurrences of the reference and target cycles occurs

more or less frequently. These groups of operations are discussed in next sections.

6.3.1 Changing the Structural Elements of the Cycle

The first group of composition operations between cycles is composed of the operations

makeconcurrent and makeAlternate. These operations change the values of

the structural elements of the target cycle (i.e., the periods of activity and inactivity of the

cycle) based on the values of the structural elements of the reference cycle.

The operation makeconcurrent is the cyclic version of the operation

makeEqual between two intervals. This operation redefines the start point and the

duration of the target cycle in a way that their occurrences and occurrences of the

reference cycle are concurrent (i.e., they start at the same time and have the same

duration). The operation makeAlternate redefines also the start point and the

duration of occurrences of the target cycle but in a different way. For this operation the

start point of the target cycle's occurrences coincide with the end point of the reference

cycle's occurrences and the duration of the target cycle coincides with the period of

inactivity of the reference interval. In this way, the behavior associated with the reference

cycle is seen only when the behavior associated with the target cycle is not happening,

and vice-versa. Consider, for example, the temporal configuration of the cycles depicted

in Figure 6.2a. Blue intervals represent occurrences of the refirence cycle and red

intervals represent occurrences of the target cycle. The temporal configurations of the

cycles after the operations makeconcurrent and makeAlternate are shown in

Figures 6.2b and 6.2c, respectively.

The operations makeconcurrent and makeAlternate produce a temporal

configuration in which the cycles have the same period (the sum of the durations of the

period of activity and period of inactivity is the same). Thus, there exists a single

temporal relation between all occurrences of the cycles. The first case is the temporal

relation equals and the second case is the temporal relation meetsTwice (Hornsby et al.

1999), that is, a conjunction of the temporal relations meets and metBy.

Figure 6.2. Cycles compositions: a) the original temporal configuration, b) the temporal

configuration after the operation makeconcurrent, and c) the temporal configuration after

the operation makeAlternate.

6.3.2 Changing the Start Point of Cycle's Occurrences

The second group of composition operations between cycles changes the position of the

start point of the occurences of the target cycle in a way that maximizes or minimizes a

certain correlation between their arguments. These operations preserve the duraton of

periods of activity and inactivity of the cycles used as arguments.

The algorithm used to find the position of the target cycle that best represents the

intended temporal configuration between the cycles is identical to the algorithm used by

the temporal constraint mechanism cycles to enforce a cyclic constraint.

The first task of this algorithm is to identifj all possible temporal configurations

between two cycles obtained by changing the start point of all occurrences of one cycle.

The number of possible configurations depends on the number of cycles' occurrences

needed to cover the period of equivalence (i.e., the amount of time needed to capture all

correlations between two cycles). Consider, for example, the occurrences of the reference

and target cycles during the period of equivalence (Figure 6.3)

reference
11-

t

target
I I I I ~ ~ I I I I I

1

a) b)

Figure 6.3. The linear and cyclic representations of occurrences of the reference (outer)

and target (inner) cycles needed to capture the smallest subset of correlations.

In order to obtain all possible temporal configurations between these cycles, the

algorithm increments and decrements by one unit of time the start point of target cycle.

For each increment or decrement the algorithm computes the smallest subset of

correlations. Figure 6.4 depicts the four possible temporal configurations between the

reference and target cycles and their respective smallest set of correlations.

startedBy overlappedBy overlappedBy metBy
overlaps, overlaps, finishedBy, contains,
contains contains contains contains,

meet

Figure 6.4. Possible temporal configuration between the reference (outer) and target

(inner) intervals and the smallest set of correlations for each configuration.

Once computed all possible configurations between the cycles, the algorithm can

select the configuration that maximizes or minimizes the occurrence of a certain temporal

relation in the smallest set of correlations. Consider, for example, that the temporal

relation to be maximized is meets, metBy, contain, StartTogether, or FinishTogether. In

these cases, the algorithm can unambiguously select a certain temporal configuration

from the set of all possible configurations. If the intention is to maximize the relation

meet, metBy, or contains, for example, the fourth configuration is selected. If the

intention is to maximize the relations startTogether or finishTogether, the first and the

third configurations is selected, respectively.

If the intention is to maximize the relation equal, disconnected, overlap, or

overlappedBy, however, the criterion of frequency of occurrences is not enough to select

a unique configuration. The criterion of maximizing the temporal relation overlap or

overlappedBy, for example, is satisfied by two different configurations each (i.e., the

criterion of maximizing overlap is satisfied by the first and second configurations and the

128

criterion of maximizing overlappedBy is satisfied by the second and third configuration).

The criteria of maximizing equal or disconnected are satisfied by every configuration.

Since the relations equal and disconnected do not hold between occurrences of the

reference and target cycles, all configurations have the same frequency of these temporal

relations (i.e., no occurrence of such relations).

This scenario is worst when the intention is to minimize a certain temporal relation.

In this case, the algorithm can identify only the configuration that satisfies the criterion to

minimize the temporal relations overlap and overlappedBy (i.e., the fourth configuration).

The limitation of the frequency of relation criterion requires the definition of

additional criteria that can be used to break the tie when more than one configuration

satisfy the intended relation. The second criterion is qualitative and considers the

frequency of closest temporal relations (in a topological sense) that occur in the set of

correlations. The third criterion is quantitative and considers the topological distance of

the temporal relation.

In order to compute frequencies of closest relations we used the idea of conceptual

neighborhood introduced by Freksa (Freksa 1992). A conceptual neighborhood of a

temporal relation between two intervals is a different temporal relation obtained by

atomic deformations of one of the intervals. Such a deformation can be 1) the redefinition

of the interval's start or end point, 2) the redefinition of the interval's start and end points

in a way that preserves the duration of the interval, or 3) the redefinition of the interval's

start and end points in a way that preserves the location of the midpoint of the interval.

Depending on the type of deformation, the structure of conceptual neighborhood changes.

Freksa called these structures A-, B-, and C-neighborhood, respectively.

129

The second type of deformation is the only method that preserves the duration of the

intervals. This deformation is equivalent of sliding an interval along the temporal axis.

Since it is the same mechanism used to obtain different configurations of the smallest set

of correlation between two cycles, we adopt the structure of b-neighborhood.

Figure 6.5 depicts the structure of the conceptual neighborhood of the set of relations

between occurrences of cycles. This structure differs from the structure proposed by

Freksa (Freksa 1992). In our case we are dealing with a representative set of intervals that

captures temporal relations between two cycles. These occurrences do not represent any

specific occurrence of the cycle. Thus, in the conceptual neighborhood diagram the

temporal relations before and after are collapsed in a single relation disconnected.

Figure 6.5. Conceptual b-neighborhood structure for temporal relations between

occurrences of cycles.

Based on the structure of the b-conceptual neighborhood, we define as the second

criterion to be used by the algorithm the configuration of the smallest set of correlations

with the largest or smallest frequency of conceptual neighborhoods of the intended

relation.

Consider, for example, the intention of maximizing the temporal relation

disconnected between the cycles of the previous example. Since the temporal relation

disconnected does not occur in the set of correlation, the intention of maximize

disconnected is satisfied by all different configurations. Considering the frequency of

conceptual neighborhoods of the relation disconnected (i.e., met and metBy), however,

the fourth configuration is the "closest" one that satisfies the intended relation (Figure

6.4). Therefore the fourth configuration is selected.

The process of breaking a tie with conceptual neighborhoods is recursive in the sense

that it can be extend for different degree of conceptual neighborhoods. Thus, if the

immediate conceptual neighborhood is not sufficient to distinguish among different

configuration, the second-degree conceptual neighborhood can be used. Consider, for

example, the intention of maximizing the temporal relation overlaps. The first and second

configurations satisfy the first criterion (i.e., they have the same frequency of the relation

overlaps). Considering the conceptual neighborhood of the relation overlaps (i-e., the

relations meet, starts,$nishedBy, and equal), the first and the second configurations are

still undistinguishable. These configurations have no occurrences of conceptual

neighborhood relations. At the second degree of conceptual neighborhood, however, the

second configuration is chosen since it has an occurrence of a conceptual neighborhood

in second degree (i.e., the relation overlappedBy).

Considering only the criterion of frequencies of relations at different levels of

conceptual neighborhood, however, does not give the "best" configuration when the

131

relations under consideration are disconnected, contains, containedBy, overlapps, and

overlappedBy.

Consider, for example, two cycles with the same period and different periods of

activity (i.e., the smallest set of correlation has a single temporal relation). If the intention

is to maximize the relation disconnected, for example, three temporal configurations are

possible (Figure 6.6). Using only frequency of temporal relations and conceptual

neighborhood, however, the algorithm is unable to select a configuration among the set of

possible configurations. Because the temporal relation to maximize is disconnected, the

second configuration should be chosen. It can be interpreted as that the occurrence of the

target cycle in the second configuration is "more diconnected" than it is in the first and in

the third configuration.

Figure 6.6. Different configuration of two cycles with a temporal relation disconnected.

In order to distinguish a certain configuration among set of correlations with the same

frequency of temporal relations, we introduce a weight for each temporal relation. A

measure for such a weight takes into account the topological distances between the

relation and its closest neighborhoods. We define as a topological distances the number

of unitary increments and decrements in the target interval needed to change the

underlying relation. Figure 6.7 shows the representations of the topological distances in a

132

conceptual b-neighborhood structure for the relations disconnected, contains,

containedBy, overlapps, and overlappedBy. The arrows in the figure represent the

number of atomic increments or decrements in the target interval needed to change the

relations (i.e. their topological distances). We do not consider the topological distances

of the temporal relations meets, starts, Jinish, equal, and their converses. For these

relations, any unitary increment or decrement changes the underlying temporal relation.

Thus, they are not useful in our reasoning.

CFb (c > C

OFb

Figure 6.7. Topological distances associated with relations of the loose group of

temporal relations in the conceptual b-neighborhood structure.

Each relation has two topological distances: the distance obtained by incrementing

the target interval (D') the distance obtained by decrementing the target interval (D-). For

the relation contains, for example, the topological distance D' is represented by the arrow

CFb and the topological distance D- is represented by the arrow CSb. In the case of the

relation overlaps, the topological distance D' is represented by the arrow OM and the

topological distance D- is represented by the arrows OFb, OE, or 0s. The exact relation

133

obtained by the decrementing the target interval under the relation overlaps depends on

the duration of the reference and the target intervals, but the topological distances OFb,

OE, or OS are the same.

Based on the pair of topological distances of each relation we define the index of

topological distance (ITD). The ITD is computed as follows:

A characteristic of the topological distances D' and D- is that the sum of these

distances is constant for a given reference and target interval. In this way, the index of

topological distance ranges between 0 and 1, inclusive. For relations of the loose group of

temporal relations, however, the ITD7s capture the number of increments needed to change

the underlying relation. ITD7s close to 1 mean that the relation is about to change due to an

increment or decrement of the target interval. ITD7s close to 0 represent a configuration

where the relation will remain the same considering the largest number of increments and

decrements of the target interval.

The index of topological distance is used as a quantitative criterion wherever the

qualitative criterion of frequency of temporal relations fails to distinguish identical

configurations (i.e., sets with the same of number of correlations).

The criterion of topological distances is different if the intention is to maximize or

minimize the occurrence of a temporal relation. If the intention is to maximize a certain

temporal relation the criterion is to select the set that has the smallest ITD for the intended

relation. If the intention is to minimize a certain temporal relation the criterion is to select

the set that has the greatest ITD for the intended relation. If we reach the highest level of

conceptual neighborhood without discerning a unique configuration, we consider that

these configurations are undistinguishable with respect to b-neighborhood and

topological distances, and everyone satisfies the intended relation.

The algorithm used to find a configuration of the target interval considering the

frequency of each temporal relation is adequate only for the temporal constraint

mechanism. For the user of the animation, this mechanism generates a large number of

operations in the graphical interface, which can become very confused. In order to keep

the set of composition operation between cycles small and intuitive, we collapse some

temporal relations in a single composition operation. Thus, the types of correlation that

can be enforced are to maximize or minimize the temporal relations disconnected,

touching, overlappings and containement. The temporal relation touching encompasses

the relations met and metBy, the temporal relation overlapping encompasses the relations

overlaps and overlappedBy, and the temporal relation containment encompasses the

relations start, finish, contains, equals, and their converses. The functionalities of these

compositions operations are discussed with a prototype implementation of the model in

chapter 8.

6.4 Summary

This chapter introduced the set of composition operations. This set of operations gives a

user the opportunity of changing the temporal arrangement of the elements of the

animation at different levels of granularity. These operations are divided in two groups: a

group that deals with two intervals and a group that deals with cycle intervals.

This chapter also introduced an algorithm to redefine the temporal configuration of

cycle intervals in a way that maximize or minimize occurrences of a certain temporal

relation. This algorithm is used in the context of temporal constraints between cyclic

behaviors and in the context of composition operations between cycle intervals.

The next chapter introduces the semantics part of the framework of virtual

exploration of animations. The semantics model extends the traditional animation model

by introducing entities that explicitly represent the semantics of VR objects. The

semantics direct the interaction of the objects with the observer and other objects in the

environment.

CHAPTER 7

SEMANTICS OF VR OBJECTS

The conceptualization of data model with high-level abstractions of objects' behaviors

and a rich set of operations to manipulate such behaviors provides the means for an

observer to produce and investigate new views of the environment. During the production

phase, an observer uses operations over temporal intervals positioned along a timeline as

a framework to create new temporal configurations of objects' behavior. During the

investigatory phase, an observer has a wide variety of devices to support the exploration

of the environment. The most usual device is a computer screen presenting projections of

the four-dimensional world (i.e., a sequence of projections of the three-dimensional

space). An increasing number of GIS applications (Kraak et al. 1999; Neves et al. 1999;

Reddy et al. 1999; Verbree et al. 1999; Raper 2000; Zlatanova 2000)' however, are

extending their representational capability to present their information in virtual reality

environments.

The ability of the user to manipulate objects' behavior and the fact that the

exploration of the information takes place in an immersive environment imposes new

requirements on the data model that supports the presentation application. First, the

manipulation of the temporal characteristics of the behavior of an object may produce a

situation where two objects originally dissociated, start to interact. For example, two

objects that were at different positions at a certain instant in time may compete for the

137

same location in the modified version of the animation. Second, in an irnrnersive

environment there is a presence of a new actor (i.e., the observer) interacting with other

objects in the environment. Different from non-irnrnersive environments, interactions

between the observer and the objects become an important issue in VR environments

(Kraak 2002). The key point in both cases is interactions that involve constraints imposed

by an object on other objects or an observer's actions (e.g., a building that blocks the path

of the observer, an obstacle that hides another object, or a heavy object that cannot be

moved).

The type of constraints imposed by the objects depends on their associated semantics.

In current data models for VR environments, the semantics of the objects are almost

always assumed by the observer and derived from the context of the application. These

semantics, however, play a significant role in the interaction between VR Objects, as well

as in the interaction between observers and the environment.

This chapter introduces a new classification of VR Objects and describes the

associated semantics of each element in the taxonomy(Campos et al. 2002; Campos et al.

2003b). This chapter introduces also a model to represent the semantics of VR objects

over time and the rationale for modifying such semantics under the effect of a

manipulation by the observer of the object behavior.

7.1 Characteristics of VR Objects' Semantics

The semantics of VR objects directs the way that these objects interact among themselves

and with an observer. These semantics are based on three salient characteristics of all

objects in the environment: activity, existence, and visibility.

138

Activity is a characteristic of an object that describes periods when the object is

performing an associated action. Based on its activity an object can be considered active

or inactive. An active object has the value of at least one of its attributes different from

the value perceived in the previous time of observation (e.g., an object that changes

continuously its position or shape at different instants in time). An inactive object, on the

other hand, refers to the case where all the values of an object's attributes equal the

values of the attributes from the previous time of observation.

Data abstractions of the animation model describe the activity of a special kind of

object in a VR environment (i.e., a performer). Performer was defined as an abstraction

that represents the geometry and appearance of dynamic objects. Performer objects,

however, do not have an active state all the time. Instead, the behavior of these objects is

quite distinct. Some objects are always performing some kind of activity, others have a

very short period of activity, and others perform the same activity in a repetitive fashion.

The evolution of a performer's activity is depicted as time intervals representing

periods when the object has an active state. This representation allows an observer to

carry out qualitative temporal reasoning about the patterns of VR Objects behaviors,

identifying fiequency, durations, and synchronization between objects' activities (Blok et

al. 1999). A model that captures only the activity-related characteristics of an object,

however, is not rich enough to model all the semantics of such objects in a VR

environment. In such an environment it is also important to be aware of the visibility and

existence of the object. In current VR data models, the evolution of an object's visibility

and existence states are not modeled. The existence of the object is almost always

assumed (Luttermann and Grauer 1999) and is strongly related with its visibility.

Visibility is the characteristic of an object that determines if an observer can see the

object. Based on its visibility, an object can be classified as visible, invisible, or non-

visible. A visible object is an object that the user can see. An invisible object is an object

inside the field of view of the observer that the observer cannot see, although there are no

obstacles between the object and the observer. Invisible objects reflect either an intrinsic

characteristic of the object or a characteristic that can be manipulated by observers for

analysis purposes. A non-visible object, on the other hand, is an object outside the field of

view of the observer, behind a visible object, or so distant that it cannot be seen. In this

thesis we deal only with visible and invisible objects. The non-visible state of an object

can only be verified at run-time considering both the observer and the object's positions,

therefore it is not something that is worth modeling.

Existence refers to the physical presence or occurrence of an object or, for conceptual

objects, the belief in or perception of an object (Hornsby and Egenhofer 2000). Based on

its existence state, an object can be classified as non-existent or existent. The non-existent

state describes the case where an object does not exist at the instant of observation. The

object has been destroyed, will be created, or simply does not exist in the physical world

at any time. The existence of an object is almost always associated with the notion of its

appearance (i.e., the graphical realization of the object). However, the existence of an

object does not imply a particular graphical realization and vice-versa (Egenhofer and

Hornsby 1998). Some objects do not have an associated visual representation.

Alternatively, an observer can manipulate object visibility, turning the object into an

invisible object, for instance for analysis purposes. Other objects do not exist at the

instant of observation (e.g., a building that will be constructed in the future). The

visualization of non-existing objects is likely to occur as the result of a temporal

manipulation of the object existence or activity, discussed later in this chapter.

7.2 Taxonomy of VR Objects

Existence, activity, and visibility are orthogonal characteristics of a VR Object. The

combination of these three characteristics gives rise to eight possible statuses for an

object at a certain time. Objects with different combinations of characteristics carry

different semantics in the model. We classify each object in a VR environment based on

the combination of these characteristics (Figure 7.1).

Figure 7.1. Classification of VR objects accordingly to their existence, activity and

visibility characteristics.

7.2.1 Existent VR Objects

Actor, scenery, spy, and camouflage objects are elements of the subset of existing VR

Objects. These objects exist and are performing the activity, if any, that they are

supposed to be performing at the instant of the observation.

Actor is an object with an existent, active, and visible state. An actor represents an

existent and visible object performing its associated activity, for example, a car traveling

between two cities in a non-stop trip. Scenery refers to an object that is existent, inactive,

and visible. A car that is stopped at a gas station, or a building that always maintains the

same size and appearance are examples of scenery objects. The semantics associated with

actor and scenery require their visual realizations and that both the observer and other

objects be sensitive to the presence of these objects (e.g., an actor or a scenery object can

block the path and the sight of the observer).

Spy and camouflage refer to an existent and invisible object. A spy represents an

object during the performance of its associated activity, while a camouflage represents an

object during periods of inactivity. The semantics associated with spy and camouflage

objects are similar to the semantics associated with actor and scenery objects, except that

spy and camouflage objects are invisible. Spy and camouflage represent objects that do

not have a graphical representation or objects that are intentionally hidden by an observer

to facilitate the analysis of the environment.

Consider, for instance, a scenario where an urban traffic analyst explores a virtual

environment representing a city. Streets, buildings, and vehicles compose the virtual

environment. The analyst knows ahead of time that the traffic on some roads will be

significantly affected due the construction of a new business complex. The goal of the

analyst is to analyze the projected flow of vehicles in some critical intersections of the

city. The analyst can walk or fly through the multi-dimensional representation of the

information, observing the dynamic behavior of vehicles via animations. The evolution of

the state of the objects reveals the semantics of each object over time. Some objects are

always scenery (e.g., roads and buildings), others are always actors (e.g., a bus that runs

continuously in the environment), and others alternate their state between actor and

scenery (e.g., a car that parks along the road for a while and then drives off away). As far

as the analyst is concerned, vehicles and roads are essential objects. Buildings, on the

other hand, have a secondary role in the environment, at least for the purpose of a traffic

analysis. The presentation of the buildings provides a more realistic representation of the

city and can be eventually used as landmark, helping the navigation of the observer in the

environment. During the exploration of the dynamic environment, however, some

buildings can steal the attention of the analyst or block the visualization of an interesting

configuration of the traffic's flow. Thus, the analyst can hide a group of buildings to

clean up hisfher field of view facilitating the observation of phenomena of interest. These

buildings, originally scenery objects, are transformed into camouflage objects when

hidden by the analyst. A camouflage building permits the visualization of every object

behind it, while the environment remains sensitive to the physical presence of this object

(i.e., a camouflage building still blocks the path of the analyst). One can conceive also a

situation where the analyst decides to hide certain class of vehicles (e.g. buses or trucks).

These hidden vehicles become camouflage or spy objects, depending on their current

state, scenery or actor, respectively. The semantics associate with a spy vehicle, for

instance, is that the vehicle continues to change its position despite the fact that it cannot

be seen, and, eventually, can collide with or block the passage of another vehicle in an

intersection of the roads.

A model that has only existent objects is not yet rich enough to represent the

semantics of all objects in the VR environment. The buildings of the business complex,

for instance, do not yet exist as well as some of the vehicles representing the projected

flow of vehicles. Including additional semantics that treat non-existent versions of objects

gives us an additional group of VR Objects.

7.2.2 Non-Existent VR Objects

Ghost, mirage, fable, and myth compose the non-existent subset of VR Object statuses.

Ghost refers to an object with a non-existent, active, and visible state, while mirage is an

object with a non-existent, inactive, and visible state. Ghost and mirage share some

semantic characteristics with their existent versions (i.e., actor and scenery, respectively);

the only difference is that the observer and other objects are not sensitive to the physical

presence of ghost and mirage objects. Ghost and mirage are useful for visually

comparing existent and non-existent objects while avoiding the interference of the non-

existent ones in the environment.

Consider, for instance, the example of the traffic simulation in the neighborhoods of

the new business complex. The existent buildings are modeled as scenery objects, while

the status of the buildings of the business complex are modeled as a mirage objects. The

semantics associated with mirage buildings requires their visual realizations, but does not

impose physical constraints on the environment (e.g., the observer can walk through

mirage buildings). The vehicles representing the projected flow of vehicles become a

mirage or ghost objects, depending on their activity's state. The semantics of a ghost

object also does not impose physical constraints on the environment, but requires the

visualization of the object while it performs its associated activity.

Fable and myth represent the non-existent versions of spy and camouflage objects or

the hidden version of ghost and mirage objects. Fable is a non-existent, active, and

invisible object, while myth refers to a non-existent, inactive, and invisible object. The

semantics associated with fable and myth objects are that the environment and the

observer are not sensitive to the presence of these objects and the observer cannot see

them. For example, if the traffic analyst decides to explore the actual configuration of the

environment, he or she can hide the mirage and ghost objects, transforming them into

myth and fable objects, respectively. This kind of manipulation generates an environment

where only existent objects are visible.

7.3 Semantics Operations

The status of VR Objects can change over time. Some objects constantly change their

status, others change it only a few times, and others have a particular status during their

entire lifetime. The change from one status to another is accomplished through a set of

semantic operations (i.e., a p p e a r , d i s a p p e a r , a c t i v a t e , d e a c t i v a t e , k i l l ,

and r e s u s c i t a t e) . These operations can be arranged in three different groups (Figure

7.2). Operations of each group act only over a specific characteristic of the object (i-e.,

visibility, activity, or existence). Each group has exactly two operations where one

operation is the inverse of the other. The domain of each operation is a subset of the set

of VR Objects' statuses (e.g., actor, scenery, spy, and camouflage). The range of each

operation is the complimentary subset of its respective semantic domain (e.g., ghost,

mirage, fable, and myth).

The visibility-related operations are appear and its inverse, di s appe a r. Appear

and disappear model the transition of the visibility state of an object to visible or

invisible, respectively. These operations direct the application to start or to stop

rendering the graphical representation of the object (Figure 7.2a).

Activate and deactivate form the group of activity-related operations.

Activate indicates that the object starts to perform its associated activity. After the

activate operation, the object becomes an active object, implying that the value of at

least one of its attributes for which the observer can sense the variation will change at the

next instant. The deactivate operation indicates that the object stops performing its

associated activity. Figure 7.2b shows the result of these operations over their respective

semantic domains.

The existence-related operations are k i 11 and resuscitate (Figure 7.2~). Ki 11

models the case where the object ceases to exist. Resuscitate indicates that an object

comes to an existent state.

The domain and range of each operation limit possible transitions between different

statuses. Thus, it is not possible to model the transition fiom a myth to an actor using a

single operation. The combinations of the semantics operations, however, can model all

possible transitions among elements of the set of VR Objects statuses. For instance, a

composition of operations (denoted by e) that turn a myth into an actor could be:

activate appear resuscitate(myth) = actor

Visible Invisible Active Inactive

a)

Existent Non-existent

scenery mirage

camouflage

c)

Figure 7.2. Mappings of semantics operations: (a) visibility-related operations, (b)

activity-related operations, and (c) existence-related operations.

7.4 Evolution of VR Objects' Semantics

In order to keep track of a VR Object's semantics throughout its lifetime, we introduce

History. History is a data abstraction that models the evolution of the status of every VR

Object with respect to existence, visibility, and activity characteristics.

Figure 7.3 shows the relationships of the class History with other data abstractions of

the animation model. Each VR Object has its own History. VR Object is an abstraction

that represents the geometry and appearance of all objects in the environment. The class

Performer represents a special type of VR Object. Object performer has associated

Course of Actions and Course of Actions Interval objects modeling the spatial and

temporal characteristics of its behavior. There exists a dependency between the temporal

characteristics of an object performer and its History. This dependency is due to the fact

that the periods of activity of the performer define the activity-related status of the object.

History VR Object Course of Actions c
I

Course of Actions Interval
I

Figure 7.3. Class diagram with the History and other related data abstractions of the

animation model.

The functionality of the class History is completely defined by its constructor method

and the set of semantics operations (i.e., a p p e a r , d i s a p p e a r , a c t i v a t e ,

d e a c t i v a t e , k i 11, and r e s u s c i t a t e) . The constructor method instantiates a

History object a myth status. If it is not the case, the initial status of the object can be

changed through an appropriate combination of semantic operations. Semantic operations

model the evolution of an object's status over time. Thus, each operation has as argument

the instant in time when it is introduced in the object's history. If the time attribute is

null, it means that the semantic operation is changing the initial status of the VR Object;

otherwise, the operation is changing the status of the VR Object fiom that instant on.

The representation of the history of an object is accomplished by an attribute that

stores a list of all semantics operations and the instant when these operations occur in the

model. Thus, a status of a VR object can be retrieved at any instant based of the elements

of this list. Figure 7.4 shows the graphical representation of history of a VR Object. The

VR Object is of the type performer, which means that it has an associated behavior. The

graphical representation of such a behavior is also shown in Figure 7.4 to highlight the

dependency between these two representations.

object's
activity

Course of Actions Interval

scenery actor I scenery
object's A A C b

I I L history resusc i ta te(nu1l) a c t i va t e (tl) deactivate(t2
appear(nul1)

Figure 7.4. Graphical representations of the History and Course of Action Intervals of a

performer object.

The graphical representation of the object's history shows the evolution of the

objects' statuses over time. The object's history is instantiated as myth, but the operations

resuscitate and appear with a null argument changes the initial status of the

149

object to a scenery object. This object keeps the scenery status until the first occurrence

of a semantic operation. At the instant tl, an activate operation changes the status of

the object to an actor. This operation reflects the fact that the object has an associated

activity that starts at the instant t, (e-g., if the performer object is a car, the car starts to

move). At the instant t2, a deactivate operation transforms the object back into a

scenery object, reflecting the end point of the course of action (e.g., the car stops its

movement). The object remains as scenery indefinitely since there are no other operations

to be performed in the model. From the instant t2 on, the car can be seen parked

somewhere in the virtual environment.

7.5 Modification of VR Objects' Semantics

Some important manipulations of VR objects involve the redefinition of the time when

the object performs its associated activity. Phenomena that have occurred at different

times can be manipulated and observed at the same time, facilitating the comparison of

their behavior. Allowing observers to interfere with the original flow of the objects'

dynamics, however, requires the modification of an objects' history in an automatic and

consistent way.

Consider, for instance, a scenario where an analyst explores a virtual environment

involving a storm and a ship traveling from Boston, Massachusetts to Portland, Maine.

The storm system developed a path somewhere between Boston and Portland. Figure 7.5

depicts the graphical representation of the storm and ship activities (i-e., their associated

course of actions intervals) and the evolution of their statuses (i.e., their histories). The

exact path and size of the storm and the path of the ship are modeled by their respective

courses of action.

Course of Actions
Storm's
Activity

Storm's myth I actor myth
History -03 /I\ 4 tb

Ship's
Activity

Course of Actions
Interval

Ship's myth scenery I actor I scenery myth
History -03 tb

resusc?tate(t2) act i t t e (b) deactTvate(t5) disa!pear(ta)
a ~ ~ e a r (t 2) k i 1 l(k)

Figure 7.5. Graphical representation of the original configuration of the course of action

and history of the storm and ship.

The history of the storm reveals that the object starts as a myth and remains with this

status until the instant t,, when a sequence of operations (i.e., a c t i v a t e ,

r e s u s c i t a t e , and a p p e a r) changes its status to an actor. The semantics associated

with an actor object indicates that the object exists, is visible and is performing the

activity modeled by its course of action (e.g., the storm is changing its position and size).

The storm remains as an actor until the instant t3, when another sequence of operations

(i.e., d e a c t i v a t e , k i l l , and d i s a p p e a r) transforms it back into a myth, modeling

the end of the storm. The simultaneous occurrence of one operation of each group in the

history of the storm is not a coincidence. A storm is a phenomenon in which the

15 1

visibility, existence and activity states are strongly related. Thus, is reasonable to think

that a storm object has a history with only myth or actor statuses.

The history of the ship shows that the object starts as a myth, implying that the

environment and the observer are not sensitive to the presence of the ship and the

observer cannot see it. The ship retains this status until the instant t*, when a sequence of

operations (i.e., r e s u s c i t a t e and a p p e a r) transforms it into a scenery object. The

semantics associated with a scenery object is that the object can be seen and the

environment is sensitive to the presence of the object. The position of the ship is a dock at

the port of Boston. This information is available as the initial value of position's attribute

of the ship. The ship remains docked at Boston until the instant t4, when the occurrence of

an a c t i v a t e operation transforms its status into an actor, indicating that the ship starts

its trip to Portland. A d e a c t i v a t e operation at the instant t5 denotes that the ship

finishes its trip and becomes a scenery object at the Portland's port (i.e., the ship no

longer is performing an associated activity). At the instant ts, another sequence of

operations (i.e., k i l l and d i s a p p e a r) turns the ship's status into a myth. The ship

keeps the myth status indefinitely. The status of the ship as a myth in the start and end of

its history can be interpreted as a lack of knowledge about the ship during these periods.

The analysis of the storm and ship history discloses that the ship was safely anchored

during the occurrence of the storm. However, an observer can manipulate the original

flow of the object behavior and explore the virtual environment with hypothetical

c ~ ~ g u r a t i o n s . Consider, for instance, a situation where the observer makes the ship start

its trip at the same instant as the formation of the storm. This configuration can be

accomplished with an operation that changes the start point of the ship Course of Actions

152

Interval (e.g., the operation m a keS t art Toge t her). In such a manipulation the history

model of the storm is not affected but the evolution of the semantics of the ship needs to

be updated accordingly to reflect the new spatio-temporal configuration of the object.

Figure 7.6 shows the process of manipulating the ship's activity and the resulting history

of such an object. For the sake of clarity semantic operations are represents by the first

three initials in the figure.

The modified history of the ship shows that the ship starts as a myth and keeps its

status until the instant of the formation of the storm. At this instant the ship appears at

the port of Boston and immediately starts its trip to Portland as a ghost object. The ghost

semantic implies that the ship can be seen performing its associated activity, but its

presence does not interfere with the environment. The ship finishes its trip at the instant

t,, becoming a mirage at the port of Portland. The mirage semantics implies that the ship

still can be seen and its presence does not interfere with the environment, but there is no

activity associated with the ship. The ghost and mirage semantics associated with the ship

reflect the fact that the ship is not supposed to be doing its trip or to be docked at the

Portland's port during these periods. The ship remains as a mirage until the instant t~

when it becomes a scenery object at the Portland's port. After the instant ts, the ship

continues with its original history.

Course of Actions
Storm's Interval

Activity

Modified
Ship's
Activity

I Course of Actions

:" /... "1,.,,,,,,.......... ?.. ...:,,,;I. _..' .

Ship's m9th Scenery I actor : scenery myth
-00 History tb

Modified myth I ghost mirage i scenery myth
Ship's -02 tb

History r e%t2) dTs(W
app(t2) kil(t6)

Figure 7.6. Manipulation of the temporal configuration of the ship's activity and the

modified version of the ship's history.

The modified history of the ship illustrates the rationale used to update the evolution

of VR objects' statuses when its activity is manipulated. In this case, the course of action

of the ship is translated to a new position in the temporal domain. The translation of the

course of action implies the reposition of the a c t i v a t e and d e a c t i v a t e operations

in the object's history. The temporal displacement between these two operations is kept

the same as the original configuration (i.e., tn-tl=t5-t4). This constraint guarantees the

original pace of the ship's trip. All operations occurring in the ship's history between the

original and the new position of the activate operation are positioned at the same time

(i.e., at the new position of the a c t i v a t e operation) forming a long sequence of

operations. The order of the operations in the sequence reflects the order that they occur

in the original model. A k i 11 operation is added at the end of this sequence to represent

the fact that the object's activity was manipulated. Finally, a resuscitate operation is

introduced at the original position of the deactivate operation, restoring the original

semantics of the object.

A graphical representation of the history the VR Objects can be presented in a

graphical user interface together with commands representing semantic operations. Such

an interface allows the user to manipulate the status of the objects by changing one of its

semantics characteristics. Giving the observer the ability to manipulate such

characteristics is not treated in this thesis. We used the modeled semantics of the objects

to capture types of interactions that may occur among objects and between an observer

and the objects in the environment and to modify the status of the objects due to a

manipulation of the temporal configuration of the animation.

7.6 Summary

This chapter introduced a model to represent VR Objects' semantics. Based on this

model, a new classification of VR Objects was presented, and the semantics associated

with each class of object was described. VR Objects were categorized with respect to

existence, activity, and visibility. A set of operations, acting upon individual

characteristics of the object, models the object's semantics. In order to capture an object's

changing semantics, we introduced History, an extension of the animation model that

represents the evolution of the semantics of VR Objects over time. Finally, this chapter

outlines the rationale used to modify the evolution of an object's semantics during the

manipulation of the object behavior.

The next chapter introduces a graphical user interface for the virtual exploration of

the animation model and discusses some interface's operations.

CHAPTER 8

PROTOTYPE IMPLEMENTATION AND ASSESSMENTS

The Virtual exploration of animations is a framework composed of abstract data types

and a user interface that allow non-expert users to control, manipulate, analyze, and

present objects' behaviors. Previous chapters discussed the conceptualization and

functionalities of a model for virtual exploration of animations. This chaptei introduces a

graphical user interface for the model and also assesses the model's expressive power.

The next section introduces a simple example. Subsequently, we present a prototype

implementation and discuss the functionality of a representative subset of the interface's

operations. The prototype was written in the programming language Java (Horton 1999)

and relies on the support of the Java 3D application programming interface (Java-3D

2004) to render four-dimensional information. Finally, we use the example introduced in

the first section as a reference in the computation of the number of different versions of

the animation that can be accomplished by a user with the proposed model and with a

model that extends the set of operations of a VCR control to each object's behavior in the

environment. The analysis of these results is used to test the hypothesis that is:

The model of virtual exploration of animations produces views of an animation that

cannot be accomplished by any combination of operations of the individual VCR model.

8.1 An Example

The example discussed here was conceived to highlight all features of the model for

virtual exploration of animations and does not intend to represent any real world

scenario. In an abstract way, however, this example can be compared with a simulation of

the movement of equipment on a factory floor.

Our virtual world is composed of the floor of a square room and five moving objects

(Figure 8.1). The moving objects are a cone, a cylinder, a box, and two balls. The cone

follows a triangular path in the room. The object starts to move at the instant t=Os and

takes 12 seconds to complete its entire behavior. The cone returns to its original position

at the end of the movement and rests for 3 seconds before starting to move again. The

cone repeats the same behavior in a cyclic fashion indefinitely.

The cylinder object also moves in a triangular path in the room. The spatial and

temporal characteristics of the cylinder's movement, however, are different from those of

the cone. The trajectory of the cylinder, for example, has only some spatial locations that

coincide with the trajectory of the cone. These locations are potential points of contact

between the cone and the cylinder. The temporal characteristic of the cylinder's

movement also follows a cyclic behavior. The cylinder starts to move at the instant eOs

but takes only 8 seconds to complete its movement. The cylinder rests for 2 seconds

before starting its movement again.

The red and yellow balls move from the center to the border of the room in a straight

line. The balls start their movement at the instant t=Os, and since the duration of their

movements is the same, they finish their behavior together at the instant t=3s. There

exists a temporal constraint in the model between the red and yellow balls (i.e., the red

ball always starts when the yellow ball starts to move). Thus, changing the instant when

the yellow starts to move causes the changing of the instant when the red ball starts to

move as well.

The box also moves in a straight line, but its trajectory is perpendicular to the

trajectories of the balls. The temporal characteristic of the movement of the box is that the

box starts its movement when the balls stop moving. There is no temporal constraint in

the model representing this fact. The box takes 2 seconds to complete its movement and

stops somewhere along the path of the balls.

Figure 8.1. Trajectories and key states of the objects moving in the room.

8.2 A Possible Graphical User Interface

The model for virtual exploration of animations requires two graphical user interfaces: an

animation editor and an animation browser. The animation editor presents the modeled

configuration of objects' behavior and their temporal representations. This interface

allows the user to manipulate the temporal characteristics of object's actions and some

parameters of the animation's presentation. The animation browser allows the user to

explore the three-dimensional representation of the environment in which objects can be

seen performing their behaviors. The next sections present two possible graphical user

interfaces for the editor and browser of the model for virtual explorations of animations.

8.2.1 The Virtual Exploration of Animations Editor

The virtual exploration of animation editor is comprised of two main sections. The first

section presents the organization of action objects and their temporal characteristics. The

second section presents the operations used to manipulate the structure and the temporal

characteristics of objects' behaviors (Figure 8.2).

Figure 8.2. An editor for virtual exploration of animations.

160

In the first section of the animation editor, action objects are depicted in a tree-like

structure and their temporal characteristics are depicted as intervals positioned along the

animation timeline (Figure 8.3). The structure of the tree is defined by the application that

converts information from the application domain to the virtual exploration of animations

domain. The tree in the Figure 8.3 represents the structure of action objects of the

example introduced early in this chapter.

~ I I J I I I I ~ ~ I ~ . ~ . ~ . . ~ I ~ J ~ . ~ ~ I I ~ ~ I I ~ ~ ~ ~ I ~ ~ I ~ I ~ I ~ ~ I I ~ ~ ~ I I ~ ~ ~ I ~ ~ ~ ~ I ~ ~ I ~ I ~ ~ I ~ I ~ L ~ ~ I ~ I I ~ I ~ ~ ~ ~ I

I 6 $$ Qilndsr
. ~ I ~ ~ I I I ~ ~ n I I n ~ t a ~ a ~ m n m I ~ n < < n ~ I a I o ~ t t ~ u ~ t t t r ~ t r l t ~ t ~ t t ~ t r t a ~ t t t ~ ~ t v t n ~ t 1 ~ ~ ~

Q & B ~ I , ~ ~ , , , , I , , , , I , , ~ , I , , , , I , , , , I , ~ , , I , , , , I , , , , I ~ ~ ~ , I ~ , , , I , , , , I ~ , , , I , , , , I ~ ~ ~ ~ I ~ ~ ~ ~ I
9 &b Balls ~ ~ ~ , , I , , , , I , , , , ~ , , , , ~ , , , , I ~ ~ ~ , ~ , , , , ~ , , ~ . , I I , , , ~ , , , , ~ , , , ~ I , , , , I ~ , ~ , I , ~ , , I ~ , , ~ I ~ ~ ~ < ~
, * & ello ow all I ~ , I , , , , I , , , , I , , ~ ~ I , , , , I , , , , I , , , , I , , , , I , , , , I ~ , , , I ~ , , , I , , , , I , , , , I , , , , l ~ n ~ ~ l , , ~ ~ l
I Q & ~ o d all ~ , , I , , , , I , , , , I , , , , 1 , , , , 1 , , , , 1 , , , , 1 , , , , I , , , , I , , , , I , , , , l , , , , l , , , , I , , , , I , , , , l , D , , l

Figure 8.3. The graphical representation of the structure of action objects and their

temporal characteristics.

Elements of the tree are objects of the action part of the framework for virtual

exploration of animations (i.e., Animations, Course ofActions, and Acts). The root of the

tree is an object of the sort Animation and represents the collection of all objects'

behaviors in the environment. Branches of the tree are Animations or Course of Actions

objects. Animation represents a collection of Course of Actions or Animations objects.

Course of Actions represents the behavior of a single object. The leaves of the tree are

always Acts objects. Acts objects represent the finest granularity of an object's behavior.

Since all Course of Actions nodes in the tree are collapsed, the Acts objects are not

depicted in Figure 8.3.

The temporal characteristics of action objects are represented as black rectangles on

the right side of the interface. Each action has an associated convex temporal interval

representing the start point and duration of the behavior. If an object has a cyclic

behavior, however, the representation of its temporal characteristics is slightly different.

The temporal characteristics of cycles are depicted with one black rectangle and some

gray rectangles. The black rectangle represents the occurrence of reference of the cycle.

The gray rectangles represent other occurrences of the cyclic behavior. The number and

positions of gray rectangles depend on the pattern of repetition, the period of inactivity,

and for finite cycles, the number of repetitions. In the example shown in the Figure 8.3,

the cone and the cylinder have a cyclic behavior of the type porn. It means that the

objects start their behavior with the occurrence of reference and repeat the same behavior

indefinitely.

The hierarchical structure of the model imposes the constraint that any modification

in the temporal characteristic of an action object be consistently propagated up and down

in the tree structure (i.e., changing the start point of a Course of Action Interval changes

the start point of all Act Intervals associated with the Course of Actions and may change

the temporal characteristics of the Animations Interval located higher up in the

hierarchy). This process is repeated until the application reaches the root of the tree (i.e.,

the node all animations). It was a design decision to not incorporate the duration of all

occurrences of cyclic behaviors in the temporal characteristics of their parents in the tree

structure. In this way, only the occurrence ofreference is used in the computation of the

start point and duration of the Animation Interval that has Cycle Intervals as children.

This decision allows the model to extend the operations performed over convex intervals

to Cycle Intervals.

The second section of the animation editor shows a graphical interface for operations

used by an observer to manipulate the content of the animation (Figure 8.4). These

operations are divided in five main groups (i.e., linear compositions, cycle compositions,

combination operations, transformation operations and presentation operations).

--

Figure 8.4. User interface representing operations to manipulate the temporal

characteristics of animations.

Linear compositions, cycle compositions, combinations operations, transformation

operations, and their effects in the outcome of the animation are discussed latter in this

chapter. Presentation operations allow an observer to specify some parameters of the

animation's presentation and link the information of the animation editor with the

animation browser.

Presentation operations are s t art point , end point , and play. The operation

s t a r t p o i n t defines an instant in the animation temporal space when the application

starts to map animation times to the user time domain. This operation has the effect of

defining the instant of insertion of the observer in the virtual world. The operation end

p o i n t defines the instant in the animation temporal space when the application stops

mapping animation times to the user time domain. This operation has the effect of

stopping the movement of all objects in the environment from the specified instant on. In

this chapter we assume that the start point of the animation is the instant that the first

object starts to move and the endpoint is not defined, that is, the mapping from animation

time to user time domain never stops.

The operation p l ay aligns the present of an observer with the start point of the

animation and directs the application to start mapping animation times to user times. This

operation allows an observer to perceive objects' behaviors. The operation p l a y opens a

window to the virtual world. This window is presented as a browser that allows the

observer to navigate in the virtual environment and explore objects' behavior. The next

section introduces the browser used for the virtual exploration of animations.

8.2.2 The Virtual Exploration of Animations Browser

The graphical realization of the objects and the outcome of the manipulations of the

animation are explored in a virtual reality environment. In such an environment an

observer can walk through the three-dimensional representation of the information,

interact with the objects, and examine the objects performing their modeled behavior. In

our prototype we use an application that renders such pieces of information on the screen

of a desktop computer. In such a computer environment, the user does not experience full

immersion in the virtual world.

In order to control the position and orientation of the observer's vantage point in the

environment, the browser offers a set of buttons (Figure 8.5). These buttons allow the

observer to move along the principal directions (i.e., up, down, right, leJt, forward, and

backwar4 and to change the direction of his or her vantage point by rotating around the x

axis (turn up and turn down) and by rotating around they axis (turn right and turn ZeJt).

In this application, the xy plane always coincides with the plane of the screen and the

positive direction of the z axis is pointing toward the observer.

Figure 8.5. A browser for virtual exploration of animations.

One salient characteristic of the animations' browser is that all objects carry semantic

information (i-e., the status of the object's visibility, activity and existence). This

information is used by the application to direct the way that an object is rendered and the

way it interacts with other objects in the environment and with the observer. An object

with an existent status, for example, blocks the path of the observer or other objects in the

environment with a similar status.

The navigational functionality of the animation browser is straightforward and does

not need further explanation. The way that the application processes semantic

information, however, is discussed in the next section together with operations of the

virtual exploration of animations editor.

8.3 Animation Operations

Animation operations allow an observer to manipulate the modeled animation (i.e.,

information of objects' behavior converted from the application domain to the animations

domain). The animation model carries information about the spatial characteristics of the

behavior (e.g., the key states of an object), the temporal characteristics of the behavior

(e.g., the instant when the behavior starts), temporal constraints (e.g., the fact that an

object always starts its behavior when other objects are performing their activity), and

semantic information (e.g., whether the object exists at the instant of observation).

Among all pieces of information captured by the animation model, only the temporal

characteristics of behaviors can be directly manipulated by an observer. At this stage of

development, the prototype does not provide the means to introduce temporal constraints

or to manipulate the semantics of the objects and the spatial characteristics of object's

behavior. The application, however, uses all these pieces of information to keep the

modified version of the animation coherent with the original configuration. The

application, for example, does not limit the observer to generating versions of the

animation where all temporal constraints are satisfied, but the application does change the

semantics of the object to reflect the fact that the modified version violated a temporal

constraint from the application domain. The next section discusses some animation

operations and their effects on the outcome of the animation.

8.3.1 Compositions Operations

Composition operations are used to change the temporal arrangement of objects'

behavior. These operations have two temporal intervals as arguments: a reference interval

and a target interval.

Depending on the sort of their arguments, composition operations can be divided into

two main groups: linear compositions and cycle compositions. Linear composition

operations accept any sort of temporal interval as arguments. Cycle composition

operations are more specific and accept only Cycles Intervals as arguments. The next

sections introduce the representations of these operations on the graphical user interface

and discuss some relevant details.

8.3.1.1 Compositions Operations Between Intervals

Linear compositions are used to position an interval (i.e., a target interval) with respect to

the position of another interval (i.e., a reference interval). Depending on the operation,

the start point and/or duration of the target interval are modified to satisfy a certain

temporal relation between the target and reference intervals.

Linear compositions operations are ma keTouch, ma k e A l i gnLe f t,

makeAlignRight , makeAl ignCenter , makecross , makeEqua1, and

makeMirror . Each operation is associated with a button in the graphical user interface

(Figure 8.6). The semantic of each operation was discussed in chapter 6.

167

Figure 8.6. The seven linear composition operations between convex intervals.

In order to illustrate the use of linear composition operations, consider the movement

of the balls and the box in the room. In the modeled configuration, the box starts to move

at the same instant when the balls finish their movement. Since the box crosses the path

of the balls, there is a potential interference between these objects.

An observer may be interested in analyzing an animation where the balls and the box

start to move at the same time. Such a configuration can be accomplished, for instance,

by changing the start point of the balls. One possible strategy is to select the box's

temporal interval as the reference interval and the yellow ball's interval as the target

interval and apply the linear composition operation m a k e S t a r t Tog e t he r . From the

knowledge base of the application domain, it is known that the red ball always starts its

movement when the yellow ball starts to move. Thus, the start point of the red ball is also

redefined by the application to satisfy the temporal constraint. Figure 8.7 shows the

temporal configuration of the intervals before and after the execution of this operation.

Figure 8.7. The effect in the temporal configuration of the animation by applying a

makeStartTogether operation with the box and the yellow ball used as arguments.

9 & Balls

o& GIL san

Q $$ Red Ball

I,c~L1_,C~ 'k
C

I J r I c L l J -' - Il ,*IJl I Ll I
11111~111,1

'
* & ~ e d Ball

The analyses of the graphical representation of the periods when the box and the balls

are performing their activities do not allow an observer to reason about interactions

among these objects. The observer does not have any spatial information about the

objects' behaviors but only information about the qualitative state of the object (i.e., the

object is moving or not). In this way, the observer cannot infer if the object interacts with

other object simply by analyzing this kind of information. Although the animation model

does have all necessary information that allows an application to anticipate any kind of

interaction, we decide to leave to the observer the task of exploring the environment and

verifying all interactions among the objects. For example, by exploring the dynamic

environment with the balls and the box, the observer can verify that the box blocks the

path of the balls; that is, due to a collision with the box, the yellow and the red balls stop

their modeled behavior sooner than expected. Figure 8.8 shows some snapshots of

representative instants of the animation. The vantage point of the observer was positioned

to facilitate the analysis of the behavior of the objects of interest. During the first 2

seconds of the animation only the cone and the cylinder objects are moving in the

environment. At the instant t=3s, the balls and the box start to move. By the instant t=5s

the box finishes its movement but the balls are still on their way to the border of the

room. Between the instants t=5s and t=6s the balls collide with the box and finish their

movement without reaching their final destination.

Figure 8.8. Snapshots of an animation where the balls and the box start to move at the

same time. The balls collide with the box and stop their modeled behaviors.

The outcome of the animation in the previous example would be different if an

observer chose the red ball as the target interval instead. By doing that, we assume that

the observer is intentionally violating a temporal constraint introduced in the model.

Thus, the start point of the movement of the yellow ball remains the same and only the

start point of red ball is redefined (Figure 8.9).

*p em j l 1 7 , 1 1 , J

9 & Balls

1 b & yellow 8a11

Figure 8.9. The effect in the temporal configuration of the animation by applying a

makeStartTogether operation with the box and the red ball used as arguments. This

configuration violates a temporal constraint introduced in the model.

In order to capture the fact that a temporal constraint was violated, the application

change the status of the red ball during the time period when the object is violating the

temporal constraint. Thus, the status of the red ball changes from an existent to a non-

existent object. Figure 8.10 shows representative snapshots of this animation with the

modified status of the red ball. In this version of the animation, the yellow ball starts to

move in the beginning of the animation and the red ball becomes a mirage in the

environment (i.e., an object with a inactive, visible, and non-existent state). At the instant

t=3s the red ball and the box start to move. Since the red ball still has a non-existent

status, it moves as a ghost object. At the instant t=5s the yellow ball and the box had

finished their behaviors but the red ball is still moving as a ghost object. Between the

instants t=5s and t=6s the red ball passes through the box and reaches its destination.

Although the box has an existent status, the box is not able to block the passage of non-

existent objects. From the instant t=6s on, the red ball recovers its existent status and

becomes a scenery object in the environment (i.e., an existent, inactive, and visible

object). We have decided to present non-existent objects with a semi-transparent

graphical representation. This mechanism gives the observer visual feedback about the

existent status of the object.

Figure 8.10. Snapshots of an animation where only the red ball start to move with the

box. The red ball has a non-existent status during the period when the temporal constraint

is violated.

All composition operations but makeEqua1 preserve the duration of the target

interval. For these operations, the application needs only to deal with the existent status

of objects when changing the position of reference interval violates a temporal constraint

introduced in the model. If the duration of the target interval changes, however, the

existent status of the object always changes. In the model for virtual exploration of

animations the duration of the interval is considered a implicit temporal constraint. The

rationale used to modify the status of an object when the duration of its behavior is

discussed later in this chapter.

Since composition operations accept any sort of temporal intervals, these operations

can also be used to modify the temporal characteristics of Cycles Intervals. When at least

one of the arguments is of the sort Cycle Interval, the reference and/or the target intervals

of the operation are always the occurrence of reference of the cyclic behavior.

8.3.1.2 Compositions Operations Between Cycles Intervals

Cycle compositions are operations that modify the temporal characteristics of Cycle

Intervals. Operations of this kind are performed only when both of the intervals used as

arguments are cycles. Depending on the semantics of the operation, the start point,

duration of the period of activity, and/or the duration of the period of inactivity of the

target cycle is modified to satisfy a certain temporal configuration among all occurrences

of the cycles.

The group of cycle compositions operations is composed of ten operations:

makeconcur ren t , m a k e A l t e r n a t e , max imizeRe la t ion , and

m i n i m i z e R e l a t i o n , where R e l a t i o n can assume one of the following values:

disconnections, touchings, crossings, or containments. The graphical

user interface provides a set of buttons representing such operations (Figure 8.11). The

first button in the group allows an observer to select between operations that maximize or

minimize the number of incidences of certain temporal configurations between

occurrences of the cycle. The following four buttons in the group represent two

operations each. These buttons can either represent a max imi z eRe 1 at ion operation

or a minimizeRelation operation. The relations are in the order:

disconnections, touchings, crossings and containments. The last two

buttons represent the operations ma keconcurrent and ma keAl ternate,

respectively.

- . - -. -

Figure 8.11. The group of composition operations between cycle intervals.

The main difference among operations that maximize or minimize the incidence of a

certain temporal configuration and the operation ma keC oncu r r en t and

ma keAl t ernate is that in the former case the target cycle preserves the duration of its

periods of activity and inactivity and in the later case both durations are redefmed.

In order to illustrate the use of operations of the group of cycle compositions,

consider the original configuration of the animation of the cone and the cylinder object in

the room. By exploring this version of the animation, an observer can verify that the

movements of the cone and the cylinder have two spatial locations where they almost

collide. The closest distance between these objects occurs at the instants t=4.7s and

173

t=16.7s. At these instants the distance from center to center of each object is only 1.5

units of distance. To give an idea of the magnitude of such a distance, the radius of the

cylinder and the cone have 0.5 unit of distance.

- --
Figure 8.12. Snapshots of the instants in which the cone and the cylinder are at a closest

distance.

By analyzing the original configuration of the occurrences of the cone and cylinder

behaviors (Figure 8.13), an observer can verify that there exist some periods when the

cone is moving and the cylinder is during its period of inactivity, and vice-versa. Since

the spatial location in which one object stops is not part of the path of the other object, it

is reasonable to think that increasing the periods when both objects are moving will

increase the possibility of collision between the objects.

I -*- r n , . I , , , . I , , . . I . , . . I I I , . . , . I . . , . I I . . , . I I . . . , , I I [

Figure 8.13. Linear representation of occurrences of cone and cylinder's cycles interval

in the modeled animation.

In order to maximize the periods when both objects are performing their activities, an

observer can select the temporal characteristics of the cone and the cylinder and perform

a maximi zecont a inement s operation. The observer makes the decision of which

174

object will be the reference interval and which object will be the target interval. This

decision is based mainly on which interval the observer wants to preserve the original

temporal characteristics. This interval must be the reference interval.

Based on the temporal characteristics of the reference and target cycles, the

application computes all possible different configurations and selects the best

configuration that satisfies the intended temporal relation. The selection of the best

configuration is based on the number and kinds of temporal relations that hold between

occurrences of the cycles and on the topological distance of these relations as detailed in

Chapter 5. Before changing the position of the target interval, the application provides a

summary of all temporal relations and a cyclic graphical representation of the cycles'

occurrences (Figure 8.14). In this way, an observer has the opportunity to verify the

proposed temporal configuration before applying it to the target interval. Figure 8.14

shows also the temporal configuration of behavior of the cycles after the observer had

accepted the proposed configuration.

I I

Figure 8.14. Summary of temporal relations, linear and cyclic representation of a

temporal configuration that maximizes containments between the cone and the cylinder.

An observer can analyze the animation of the modified version the cone behavior and

verify if his or her assumption about maximizing containments cause the collision of the

objects. The outcome of the animation, however, shows that the effect is opposite the one

175

expected by the observer. In the modified version of the animation, the closest distance

between the objects occur at instants t=21 s and the t=26s. These distances are 4.5 and 1.5

units of distances, respectively (Figure 8.15). In this way, by maximizing containments

between the behavior of the cone and the cylinder, the observer actually minimized the

possibility of collisions between these objects.

Figure 8.15. Snapshots of the instants in which the cone and the cylinder are at a closest

distance in a modified version of the animation that maximizes containments.

Since the operation maximi zecon t a inement s did not violate any temporal

constraint, the application does not have to deal with the existent status of the objects

involved in the operation. This fact, however, is not true when the operations are

m a keconcur ren t and ma keAl t e r n a t e. These operations may change the duration

of both the period of activity and the period of inactivity of the target cycle. If it occurs,

the application changes the status of the object associated with the target cycle from

existent to non-existent.

Consider, for example, that an observer wants to analyze an animation where the

cylinder and the cone have the same period and start together (i.e., they are concurrent).

By selecting the cylinder as the target interval and performing the ma keconcur ren t

operation (Figure 8.16), the temporal configuration of these cycle intervals change to a

176

configuration where a single temporal relation holds between all occurrences of the

cycles (i.e., the temporal relation equal).

Figure 8.16. The effect in the temporal configuration of the animation by applying a

uwm f , , , , $, , , , E , , , P , , , , P , , o , ~ , , , ,
An AnlmaArms t , ~ D ~ l ! ~ ~ , l ~ , , , l , , , t l , , , , l , ! ~ ~

e- & cone I ~ ~ o ~ r , , , , l , l 1 8 ~ ~ r ~ , ~ ~ I L t ~ I I ~ I 01
e$&vhd.r m,,I,,o,I,,,,I,,,,I,,,,
*&Box 1 ~ ~ ? , , ~ , 1 , , ~ , 1 , ~ , , ! , , , , I ~ ~ , ~
Q& Ball8 Pt . .c~tI IL~I I , I~t181~1.L,L~1.Ltt

makeconcurrent operation with the cylinder as a target interval.

LCMUS P,,,,P,,,,E,,tF,,,tP,,,,Pl,lb
All Anlmsllons l ~ r , , l , l , ~ l o , ~ . ~ l ~ , l ~ l , ~ , ~ L ~ ~ . ~ ,

I&= I ~ ~ ~ I I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I ~ ~ ~ ~ I ~ ~ ~ ~

r e & t , , D , l l r , ~ l ~ , L , l ~ , , , l , , ~ ~ l ~ ~ ~ ,
I ~ I I ~

F ~ , I ~ ~ ~ ~ I ~ ~ ~ ~ I ~ ~ ~ ~ I ~ ~ ~ ~ I ~ ~ ~ ~

By analyzing the animation with the concurrent behaviors of the cylinder and cone,

an observer can see the cylinder moving in the environment as a ghost object or resting in

its initial position as a mirage object during. Making the behavior of the cylinder

concurrent with the behavior of the cone, however, produces an animation where these

objects collide many times. Since the cylinder has a non-existent status, these objects

never stop performing their activities. Figure 8.17 shows a snapshot of the first instant

when the cylinder and the cone touch each other. The application does not provide any

mechanism to modify the semantics of the object. Thus, there is no way to make these

objects stop due to a collision detection.

Figure 8.17. Snapshot of the first instant when the cylinder and the cone touch each other

in the modified version of the animation where the cycle intervals are concurrent.

177

8.3.2 Transformation Operations

Transformation operations simulate some kind of transformation of the objects'

underlying temporal space. These operations have a single temporal interval as argument.

Transformation operations modify the way that an observer perceives the evolution of an

object's behavior.

The set of transformation operations is composed of the operations O r d e r , Flow,

Pace and D u r a t i o n (Figure 8.18). The operation S t a r t P o i n t and E n d P o i n t

appear in interface in the group of transformation operations for a convenience in the

interface's design. Rigorously, these operations do not produce any transformation of the

object's temporal space. These operations are used by an observer for a finer adjustment

of the temporal configuration of the animation or to accomplish a configuration that

cannot be produced by the set of combination operations.

- - . . - . .

Figure 8.18. The group of transformation operations.

The operation P a c e allows an observer to adjust the evolution of an object's

behavior to a more realistic presentation. This operation is available only the Act Interval

level of abstraction. In the example of the objects in the room, all objects have a pace of

the kind constant. Modifling the pace of an object's act does not alter the existent status

of the object.

178

The operation O r d e r allows an observer to change the chronological order of the

presentation of object's behavior. The operation Flow allows observer to suspend the

execution or to present only representative states of an object's behavior. The operation

D u r a t i o n allows an observer to change the duration of an object's behavior, slowing

down or speeding up the presentation an object's behavior. The operations Order,

Flow, D u r a t i o n always alter the semantics of the associated object from a existent to

a non-existent status. In the case of the O r d e r operation, for example, the change in the

object status reflects the fact that the object is performing its behavior in a reverse

chronological order. For the Flow operation, the non-existent status of the object

reflects the fact that the object was supposed to be performing some kind of activity. In

the case of the D u r a t i o n operation the change in the object's status is due to a violation

of an intrinsic temporal constraint (i-e., the duration of an object's behavior).

Consider, for example, a more elaborate manipulation of the temporal characteristics

of the animation. An observer applies a m a k e M i r r o r operation between the temporal

characteristics of the box (the reference interval) and the temporal characteristic of the

yellow ball (the target interval). Thus, the movement of the balls starts after the

completion of the movement of the box. Due to a temporal constraint between the red and

the yellow ball, the start point of the red ball is also redefined. In addition, the observer

changes the order of the movement of the red ball (i.e., the red ball performs its

movement in a reverse chronological order). Figure 8.19 shows the temporal

configuration of the animation and a transformation operation performed over the red

ball interval in the interface of the animation editor.

Figure 8.19. The effect in the temporal configuration of the animation by changing the

instant when the balls start to move and inverting the order of the red ball.

By analyzing the temporal configuration of the animation, an observer can verify that

the rearrangement of the balls' temporal characteristics does not violate any temporal

constraint in the model (i.e., the red ball start its movement as the yellow ball starts to

move). The fact that the red ball is not supposed to be performing a reverse movement,

however, forces the application to change the status of the red ball from an existent to a

non-existent status.

Figure 8.20 shows snapshots of the animation of the red ball performing its

movement in the reverse chronological order. Between the instants t=3s and t=5s only the

box, the cone, and the cylinder are moving in the environment. The red ball, however,

occupies its start location (i.e., its end location in the modeled animation) with a non-

existent status. At the instant t=5s, the box has already finished its movement and it is

positioned somewhere along the path of the balls. Between the instant t=5s and t=8s, the

balls can be seen performing their behaviors (i.e., the yellow ball as an actor object and

the red ball as a ghost object). Since the red ball has a non-existent status, it is capable to

pass through the box. This fact is not true for the yellow ball. Thus, the yellow ball stops

its modeled behavior earlier due to a collision with the box. After the instant t=8s on, the

red ball keeps its non-existent status and remains in the environment as a mirage object.

180

Figure 8.20. Snapshots of an animation where only the red ball performs its movement in

a reverse chronological order.

8.3.3 Combination Operations

Combinations operations are similar to operations over mathematical sets. These

operations are union, difference, and intersection (Figure 8.21).

r Combination 0peratims7

Figure 8.21. The group of composition operations between cycle intervals.

Combinations operations allow an observer to manipulate the structure of the tree and

the content of the animation. In this implementation, Combinations operations are

implemented only for objects of the sort Animation Interval (i-e., these operations are

applied only at the coarsest level of granularity of objects' behavior).

The union of two Animation Intervals produces a new node in the tree that has both

arguments as children. Thus, this operation does not change the outcome of the animation

and it is used only as a grouping mechanism. The difference and intersection

181

have the effect of performing a Flow operation with the argument none in pieces of an

object's behavior. Thus, the application changes the existent status of the objects during

periods in which its behavior is disabled. Consider, for example, the difference

between the animation of the box and the cone. The cone performs its modeled behavior

until the box starts to move and then the cone stops its movement during the period of

activity of the box. The cone becomes a mirage object during this period. This change

reflects the fact that the cone is not supposed to be at its actual position in the

environment. After the completion of the behavior of the box, the cone recovers its

existent status, "jumps" to its modeled position, and continues to move as an actor object

(Figure 8.22).

Figure 8.22. Snapshots of an animation with the difference between the behaviors of the

box and the cone. The cylinder does not move during the period when the box is moving.

8.4 Hypothesis Evaluation

The use of the VCR metaphor to direct the way in which a sequence of images is

presented to an observer has been the dominant paradigm for the analysis of time-varying

information in the GIs field. Clear advantages of the VCR metaphor are that the number

of operations is small and the functionality of each operation is widely known. A major

drawback of such a mechanism, however, is that the information is treated as whole,

which makes it impossible to control individual pieces of the information. Thus, the

number of different views that can be created by a user is limited.

Extending the set of VCR-like operations to each object's behavior in the

environment enhances the user's ability to produce more views of the information. In a

scenario where all objects in the application have an associated VCR control, the number

of different views of the dynamic environment is large. We call this model Individual

VCR. Despite the large number of views that can be produced using the Individual VCR

approach, this thesis postulates the hypothesis that the model of virtual exploration of

animations allows an observer to produce views that cannot be produced by any

combination of operations of an animation model in which each dynamic object has an

associated VCR control. The next sections highlight limitations of the Individual VCR

model when compared with views that can be produced by a user with the model of

virtual exploration of animations.

8.4.1 What Can Be Done with Operations of the Individual VCR Model

In order to illustrate the number of different versions of animation that can be produced

with operations of the individual VCR model, we use the example of objects moving in a

room introduced earlier in this chapter. In the example of the room there are five objects

with associated behaviors.

In the individual VCR model, each object's behavior in the environment has an

extended VCR control attached to it and each control has exactly one of the operations

selected. The number of controls in a VCR-like interface varies according to the

application. There is no standard specifying the number and kind of controls. These

183

characteristics depend on the requirements of the application domain. In our hypothetical

model of individual VCR we propose an interface with a large number of buttons Figure

8.23). It is very unusual for an application to require such a number of operations. We use

it here only for comparison purposes.

Figure 8.23. Operations of the extended VCR control.

The extended set of VCR controls has 13 buttons The functionality of each button is

in the order: frame by frame fast backward, frame by fiame slow backward, frarne by

frame backward, fast backward, slow backward, backward, stop, forward or play, slow

forward, fast forward, Ji-ame by frame forward, frame by JFame slow forward, and pame

by frame fast forward. Operations with the modifier frame by frame show only key

frames of objects' behavior. Thus, if the object is moving between two locations and only

the initial and final position of the object is stored in the model (i.e., the object's key

states), the animation shows the object in its initial position during the duration of the

movement and at its final position at the end. These operations have the effect of showing

the object "jumping" from one location to another without passing through intermediate

locations. Operations with the modifier fast and slow show objects performing their

behavior twice as fast or slow.

Consider, for example, that a user of the individual VCR model wants to produce an

animation in which different operations of the extended VCR control are selected for

each object's behavior (Figure 8.24). The analysis of the progression of this version of

the animation shows that the cone is moving backward, the cylinder is moving forward,

184

the box is not moving, the yellow ball is moving forward twice as fast and the red ball is

seen only at its initial or final position (i.e., the animation does not show intermediate

positions of the red ball). This animation represents only one possible configuration of

the animation that can be accomplished by a user with the individual VCR model.

Selecting a different operation for any object's behavior produces a new version of the

animation.

Figure 8.24. A view of the animation produced by different operations of the VCR

control for each object's behavior.

Animations produced by operations of the individual VCR model can be simulated by

the combination of three operations of the model for virtual exploration of animations

(i.e., Durat ion, Order, and Flow). These operations are part of the group of

transformation operations. This group of operations affects the way that an observer

perceives the evolution of objects' states with the passage of time and can be used over

abstractions of the model that represent the entire behavior of an object.

Transformation operations take two arguments: the first argument is an object's

behavior and the second argument is a value for the temporal characteristic of the object

behavior that the operation modifies. The number and kinds of values of the second

argument varies according to the transformation operation. The operation Order, for

example, has two kinds of arguments: reverse and normal. The reverse argument causes

185

the behavior of the object to be perceived in the reverse chronological order, while the

argument normal preserves the modeled evolution of the object's behavior. The operation

Flow has three kinds of arguments: none, continuous, and stepwise. The argument none

indicates that the object is not performing its associate behavior. When the Flow

operation has the argument none, the values of the arguments of other operations are

irrelevant. This operation is equivalent to the operation stop of a VCR control. The

arguments continuous or stepwise indicates that the object is performing its associated

behavior but in a different way. The argument continuous causes the illusion of the object

moving continuously between two locations, while the argument stepwise shows only key

states of an object movement. The operation Duration does not have a fixed range of

values for the second argument of the operation (i.e., the duration of an object's

behavior). The user can specify any value for this argument. It makes the number of

views produced by this operation infinite. In order to be compatible with the operations

available in a VCR control we limit the range of the second argument to the following

values: (Ix , 03x, and 2x). The first value keeps the modeled duration of the object's

behavior, the second argument reduces the modeled duration by half, and the third

argument increases the modeled duration by a factor of 2.

In order to produce the same versions of the animation created by operations of the

individual VCR model it is necessary to select appropriate values for the arguments of the

operations Order, Flow and Dura t ion . Figure 8.25 shows the previous version of the

animation produced with the individual VCR model using a combination of

transformation operations of the model for virtual exploration of animations.

Figure 8.25. A view of the animation produced by the combination of the operations

order, flow and duration.

For each operation of the extended VCR control there is a unique combination of the

operations Order, Flow and Dura t ion that produces the same result. Table 8.1 shows

the values of the arguments of transformation operations for every operation of the

individual VCR model.

Table 8.1. Operations of the extended VCR control and the equivalent set of operation in

the virtual exploration of animation model.

Operations of Individual VCR
Model

fiame by fiame fast backward

fiame byfiame slow backward

fiame byfiame backward

fast backward

slow backward

backward

stop

forward or play

slow forward

fast forward

fiame by fiame forward

fiame byfiame slow forward

fiame byfiame fast forward

Operations of the Virtual Exploration of Animation
Model

O r d e r(reverse) F l ow(stepwise) Du r a t i on(O.5~)

Order(reverse) F l ow(stepwise) Dur a t i on(2x)

Order(reverse) Flow(stepwise) Dura t ion(1x)

Orde r(reverse) F l ow(continuous) Dura t i on(O.5~)

Order(reverse) F l ow(continuous) Dura t i on(2x)

Order(reverse) Flow(continuous) Durat ion(1x)

Order(any) Flow(none) Duration(any)

Orde r(normal) Flow(continuous) Dura t ion (l x)

Orde r(normal) Flow(continuous) Dur a t ion(2x)

Orde r(normal) Flow(continuous) Dur a t i on(2x)

Order(normal) Flow(stepwise) Duration(1x)

Orde r(normal) Flow(stepwise) Dura t ion(2x)

O r d e r(norma1) F l ow(stepwise) Du r a t i on(O.5~)

The set of operations of the model for virtual exploration of animation is richer than

the set of operations composed of Order, Flow, and D u r a t i o n . Other operations of

the model produce different versions of the animation that cannot be accomplished by

any operation of the individual VCR model. The next section discusses such operations.

8.4.2 What Cannot Be Done with Operations of the Individual VCR Model

The number of different versions of the animation produced by transformation operations

Order , Flow, and Duration offer the same capabilities (measured in terms of views)

as the Individual VCR model. What is more, in the model for virtual exploration of

animations these capabilities are provided by a more compact interface. The group of

transformation operation, however, has an additional operation (i.e., Pace) that changes

the way that an observer perceives the evolution of an object's behavior. Thus, this

operation also produces different views of the animation. The operation Pace has five

kinds of arguments. This operation allows the representation of object's behavior at

variable speeds (e.g., accelerating or decelerating). This effect cannot be accomplished by

any operation of the individual VCR model. The operation Pace is used to give a more

realistic presentation of an object's behavior. For a large number of applications,

however, the effect of the Pace operation does not give any additional insight into the

analysis of the information. In this way, this operation is irrelevant for most applications

and does not constitute a significant advantage of the virtual exploration of animations

model over the individual VCR model. The main difference between the virtual

exploration of animations and individual VCR models is defined by two groups of

operations: composition and combination operations.

Composition operations give a user the opportunity of changing the temporal

arrangement of the elements of the animation in order to gain insights and discover

relationships among geographic phenomena. These operations take two behavior objects

as arguments. Depending on the order of the arguments, the operation produces a

different view of the animation.

The group of composition operations is composed of two groups of operations (i.e.,

linear and cyclic compositions). Linear compositions are operations that change the

temporal characteristics of object's behavior by imposing a temporal relationship

between their arguments. Cyclic compositions are operations that change the temporal

characteristics of cyclic behaviors taking into account the temporal relation that must

hold between all occurrences of the cycles used as arguments.

The group of combination operations is composed of three operations: un ion ,

d i f f e r e n c e , and i n t e r s e c t i o n . The u n i o n operation allows an observer to

rearrange the structure of the tree in a more suitable structure based on the task at hand.

This operation is useful in a real-world scenario where the number of animated objects is

large. The d i f f e r e n c e and i n t e r s e c t i o n of two animations change the outcome

of the animation by limiting the periods of time when the objects are seen performing

their activities. The d i f f e r e n c e of two animations, for example, defines an animation

where the objects associated with the second argument have an inactive state during the

periods in which the objects associated with the first arguments are moving. This

operation reduces the number of active objects in the environment that are not of interest

to an observer, thus, facilitating the analysis of phenomena of interest and reducing the

computational cost of rendering the animation. The i n t e r s e c t i o n operation

189

generates an animation where the objects associated with its arguments are seen

performing their activities only when both objects have an active state. This operation

allows an observer to isolate pieces of animations where all objects of interest are moving

simultaneously.

The unique views created by composition and combination operations supports the

hypothesis of this thesis. These operations create views of the animation that cannot be

accomplished by operations of the individual VCR model. The simple accounting of the

number of views of such operations, however, does not represent the importance of these

operations in the cognitive process of exploring and analyzing dynamic environments. An

observer cannot simulate the functionality behind this group of operations simply by

manipulating the start points of the objects' behaviors. The group of cycle compositions is

the most significant example of the importance and complexity behind the operations of

the model. For example, an operation that maximizes the incidence of a certain temporal

relation takes into account temporal relations among the occurrences of the cycle at

different levels of conceptual neighborhood and the topological distances of these

relations. Moreover, the mere calculation of the number of views does not consider

additional qualitative advantages of the model for virtual exploration of animations.

Operations of this model are performed across different levels of granularity of object's

behaviors. In the example discussed in this thesis, however, we consider for the sake of

comparison only the number of operations performed over the behavior of individual

objects. The number of different views produced by manipulating individual pieces of an

objects' behavior or the behavior of groups of objects, increases the number of views

produced by the model. Additionally, we assume that all views are equally important and

have the same weight in the comparison of the models. This assumption does not

consider, for example, the possibility of the Individual VCR model to produce a view that

is not coherent with the constraints holding in the application domain.

8.5 Summary

This chapter introduced a graphical user interface for the model of virtual exploration of

animations. The user interface is composed of an animation editor and an animation

browser. The animation editor implements all operations that allow a user to manipulate

the content of modeled animations. The animation browser allows an observer to analyze

the modified version of the animation in a non-irnmersive virtual reality environment.

An illustrative example was introduced and used to discuss the animation editor and

animation browser user interface. The example was also used to compare views that can

be produced by the models for virtual exploration of animations and individual VCR and

to test the hypothesis of this thesis.

The next chapter summarizes major contributions and highlights the major findings of

this thesis. Future work is also discussed.

CHAPTER 9

CONCLUSIONS AND FUTURE WORK

This thesis focuses on the presentation and analysis of geographic spaces in VR settings.

The research presents a data model that supports the manipulation, analysis, and

presentation of dynamic geographic objects in VR environments, giving attention to the

representation of interactions between the user and the data set in the spatial and temporal

domains.

9.1 Summary of Thesis

The main motivation of this thesis is the lack of a framework that properly supports the

exploration of geographic information in a multi-dimensional and multi-sensorial

environment (i.e., temporal virtual reality geographic information systems). More

specifically, this thesis is concerned with a data model and a user interface that allows

non-expert users to analyze, explore, and produce different views of the data in order to

gain insights and discover relationships among geographic phenomena.

Five research issues drove the search for a model that supports the exploratory

analysis of dynamic objects in Temporal VRGIS applications. The first issue is that

multiple levels of abstractions are needed to represent objects' behavior. The second

issue is that complex temporal structures are needed to capture the richness of geographic

phenomena. The third issue is that known dependencies among geographic phenomena

192

must be represented to incorporate knowledge from the application domain. The fourth

issue is that the semantics of geographic objects in a multi-sensorial environment need to

be represented. The fifth is that new operations are needed to support the manipulation of

objects' behavior. The conceptualization of the model for virtual exploration of

animations addresses these issues.

Entities of the action and temporal parts of the model considered two major

requirements of a GIs application. These entities are both abstract enough to allow a non-

expert user to perform qualitative spatio-temporal reasoning and robust enough to support

a wide variety of geographic applications. Moreover, the organizations of these entities

are similar. This characteristic gives a user a coherent representation across different

domains and allows a quick assimilation of the model's structure.

In the model for virtual exploration of animations, the manipulation of the dynamic

environment is accomplished through a set of operations performed over abstractions that

represent temporal characteristics of actions. An important feature of the model is that the

temporal information is treated as first-class entities and not as a mere attribute of

action's representations. Therefore, entities of the temporal model have their own built-in

functionality and are able to represent complex temporal structures.

In an environment designed for the manipulation of the temporal characteristics of

actions, the knowledge of relationships among objects' behaviors plays a significant role

in the model. This information comes from the knowledge base of the application domain

and is represented in the model through constraints among entities of the temporal model.

These constraints are used to keep the modified version of the information coherent with

the information available in the application domain. The complexity of these constraints

193

increases with the complexity of the temporal structures being represented. Such

constraints vary from simply relating the end points of two intervals to a complex

mechanism that takes into account all relations between sequences of intervals.

The fact that the exploration of the information takes place in a virtual reality

environment imposes new requirements on the data model that supports the presentation

of the information. In such an environment, the observer becomes an increasing part of

the data. This thesis introduces a new classification of objects in a VR environment and

describes the associated semantics of each element in the taxonomy. This thesis also

introduces a mechanism to represent such semantics over time and the rationale to alter

object's semantics characteristics under the modification by a user of the object's

temporal characteristics. These semantics are used to direct the way an object interacts

with an observer and with other objects in the environment.

This thesis also introduces a prototype implementation for the model of virtual

exploration of animations. The prototype is composed of an animation editor and an

animation browser. The animation editor implements all functionalities of the model and

presents, through a graphical user interface, all operations that allow an observer to

manipulate the content of modeled animations. The animation browser allows the

exploration of the information in a virtual reality environment.

9.2 Results and Major Findings

This thesis introduced a data model and a user interface that give users a cognitively

plausible fiamework to analyze, explore, and produce different views of dynamic

environments. The major advantages of the model of virtual exploration of animations

over existing data models are:

The model supports the representation of objects' behavior at different levels of

granularity. This characteristic allows a non-expert user to control the pieces of the

behavior a single object, the entire behavior an object, the behavior of groups of

object, or all objects in the environment.

The model supports the representation of more elaborate temporal structures. These

structures are able to represent complex geographic phenomena and support temporal

reasoning over cyclic behaviors.

The model incorporates temporal constraints among entities at different levels of

abstractions. These constraints are used to preserve some known relationships among

objects' behavior during the manipulation of the animation by the user. A salient

contribution of this thesis is a novel mechanism to represent temporal constraints

between cyclic phenomena.

The model supports the representation of the evolution of the VR objects' semantics

over time. The semantics associated with VR objects provide valuable information in

the process of the virtual exploration of an environment and play a significant role in

interactions with observers and the data.

The model has a set of operations that allow a user to create new views of the

environment. It was demonstrated that the number of different views that can be

produced by a user is greater than in a model where each object's behavior has an

associated VCR control.

9.3 Future Work

This thesis addresses specific research questions concerning a framework for the

presentation and analysis of multi-dimensional geographic information. Although the

model of virtual exploration of animations represents a step forward for a truly temporal

VRGIS framework, there are some research questions that need to be addressed in future

work.

9.3.1 Anticipation of Mutual Interference

The user interface to manipulate the content of animations presents the organization of

action objects in a tree-like structure. The temporal characteristics of these objects are

depicted as temporal intervals positioned along the animation timeline. In such a

representation, an observer does not have any spatial information about the objects'

behaviors. Thus, the fact that two objects interact in the temporal domain (e-g., the

objects move at the same time) does not mean that the objects interact in the spatial

domain (e.g., the objects collide). In order to verify spatial interactions, the observer need

to explore the environment.

The model of virtual exploration deals with pre-orchestrated object's behaviors (i.e.,

the behavior of the object is known ahead of time). Thus, the model has all information

needed to allow an application to anticipate any kind of spatial interaction.

Allowing the application to process spatial interactions before the presentation of the

animation has two main advantages. First, an observer knowing that the manipulation of

the animation causes the collision of two objects can change the temporal configuration

to avoid the collision or keep the temporal configuration and analyze the way in which

196

these objects interact. In the later scenario, an observer also knows when the interaction

occurs. Thus, he or she can focus only on small segments of the animation. Second,

developers of the model can implement a more elaborate algorithm to treat collisions

between complex geometries and to bring the collision detection mechanism to the

animation editor. This approach alleviates the computational demand of the animation

browser, allowing the presentation of complex four-dimensional environments.

9.3.2 Incorporating Knowledge

The knowledge from the application domain is represented in the model through temporal

constraints among the entities of the temporal part of the framework. This knowledge is

sometimes incomplete or wrong. In our model, however, an observer cannot change this

kind of information. An observer exploring the dynamic environment can gain insights

and discover new relationships among geographic phenomena. In this way, it is necessary

to incorporate in the model a mechanism that allows an observer to add or remove

information from the knowledge base of the application domain. The insights and

understandings achieved by observers exploring the modified dynamic environment must

be used to re-feed the knowledge base of the application domain, creating a virtuous

cycle.

9.3.3 Support for Causalities

The model for virtual exploration of animations has no explicit notion of causality.

Causality can be treated only implicitly, as a temporal relationship between objects

behavior. In order to capture the complexity of geographic phenomena and their

relationships, the set of temporal constraints need to be extended with a formal

197

representation of causal constraints and a richer set of causal predicates (e.g., cause,

prevent, enable, help, and hinder). This kind of information allows the extension of the

rationale used to update the semantics and temporal characteristics of object's behavior

during the manipulation of the animation in a way that more complex feedbacks can be

presented to an observer. Thus, the support of causalities may increase an observer

capability to get insights from the animated environment.

Consider, for example, the behavior of two objects (01 and 02) related through the

causal predicate help, that is, help(ol,o2). One possible rationale to change the behavior

of the object 02 when the user disables the behavior of 01 is to slow down the movement

of the second object. Thus, an observer can perceive that something that was "helping"

the movement of the object 02 is not in place anymore.

9.3.4 Cycles Behaviors at Different Levels of Granularity

Cyclic behaviors are allowed only at the level of granularity representing the entire

behavior of an object (i.e., an object Course of Actions). It is important to extend the

model to support the representation of cycles at both a finer and a coarser level of

granularity. At a finer level of granularity, it is important to represent pieces of an

object's behavior with a cyclic pattern of repetition. This feature avoids the duplication of

certain pieces of information in the model, thus minimizing sources of errors. At a coarse

level of granularity, cycles can be defined qualitatively in terms of other cyclic behaviors

(e.g., a phenomena that occurs only between occurrences of other cyclic behaviors, or

only when occurrences of others cycles overlaps in time).

9.3.5 Uncertainties

The temporal characteristics of objects behavior are defined with attributes that can

assume only a single value. Thus, it is impossible to deal with uncertainties in the model.

Possible approaches to incorporate uncertainties in the model are to allow the temporal

attributes to deal with an interval of values or a triple with a minimum, a maximum, and a

likely value. Either approach has a tremendous impact on the hctionality of the model

an on the interface used to treat these representations.

Incorporating uncertainties in the model also has an impact on the temporal constraint

mechanism. This mechanism needs to be extended to support imprecise and complex

constraints (e.g., a certain behavior meets or overlaps another behavior).

REFERENCES

Allen, J. F. (1983) Maintaining Knowledge About Temporal Intervals. Communications

of the ACM. 26(11): 822-843.

Allen, J. F. and G. Ferguson (1997) Actions and Events in Lnterval Temporal Logic. in:

0. Stock (Ed.) Spatial Temporal Reasoning, Kluwer Academic, 205-245.

Allen, J. F. and P. J. Hayes (1990) Moments and Points in an Lnterval-Based Temporal

Logic. Computational Intelligence. 5: 225-238.

Andrienko, N., G. Andrienko and P. Gatalsky (2000) Supporting Visual Exploration of

Object Movement. in: Advanced Visual Interfaces, Palermo, Italy, 21 7-220.

ANSI (1985) Ansi (American National Standards Institute), American National Standard

for Information Processing Systems - Computer Graphics - Graphical Kernel

System (Gks) Functional Description, Ansi X3.124- 1985. New York, ANSI.

ANSI (1988) Ansi (American National Standards Institute), American National Standard

for Information Processing Systems - Programmer's Hierarchical Interactive

Graphics System (Phigs) Functional Description, ANSI X3.144- 1988. New York,

ANSI.

Balbiani, P., A. Osmani, J.-F. Condotta and L. F. d. Cerro (1 988) A Model for Reasoning

About Generalized Intervals. in: Sixth International Conference on Principles of

Knowledge Representation and Reasoning - KR'98, Trento, Italy, 124- 130.

Blok, C., B. Kobben, T. Cheng and A. A. Kuterama (1999) Visualization of

Relationships between Spatial Patterns in Time by Cartographic Animation.

Cartography and Geographical Information Science. 26(2): 13 9- 15 1.

Brodlie, K., J. Dykes, M. Gillings, M. Haklay, R. Kitchin and M.-J. Kraak (2002)

Geography in Vr: Context. in: P. Fisher and D. Unwin (Eds.) Virtual Reality in

Geography, New York, Taylor & Francis, 7-16.

Brodlie, K. W., L. A. Carpenter and R. A. Earnshaw (1992) Scientific Visualization,

Techniques and Applications, Berlin, Springer-Verlag.

Buckley, A., M. Gahegan and K. Clark (2000) Geographic Visualization as an Emerging

Research Theme in Giscience. Technical Report UCGIS.

Campos, J., M. Egenhofer and K. Hornsby (2003a) Animation Model to Support

Exploratory Analysis of Dynamic Environment. in: SCSC'03 Summer Computer

Simulation Conference, Montral, Canada, 76 1-766.

Carnpos, J., K. Hornsby and M. Egenhofer (2002) A Temporal Model of Virtual Reality

Objects and Their Semantics. in: 8th International Conference on Distributed

Multimedia System (DMSr02)- Workshop on Visual Computing, San Francisco, CA

581-588.

Carnpos, J., K. Hornsby and M. Egenhofer (2003b) A Model for Exploring Virtual

Reality Environments. Journal of Visual Languages and Computing. 14(5): 47 1 -

494.

Cartwright, W. (1 999) Extending the Map Methaphor Using Web Delivered Multimedia.

International Journal of Geographical Information Science. 1 3 (4): 335-3 53.

20 1

Chandru, V., N. Mahesh, M. Manivannan and S. Manohar (2000) Volume Sculpting and

Kefiarne Animation System. in: Computer Animation 2000, Philadelphia, PA,

134-139.

Chen, S. E. (1995) Quicktime Vr: an Image-Based Approach to Virtual Environment

Navigation. in: Siggraph, Los Angeles, CA, 29-38.

Chitaro, L. and I. Scagnetto (2001) Is Semitransparency Useful for Navigating Virtual

Environments. in: Virtual Reality Software and Technology (VRST), Banff,

Canada, 159-166.

Chomicki, J., Y. Liu and P. Revesz (1999) Animating -Spatiotemporal Constraint

Databases. in: M. H. Bohlen, C. S. Jensen and M. 0. Scholl (Eds.) STDBM199,

Edinburgh, Scotland, 224-240.

Cohen, M. F. (1992) Interactive Spacetime Control for Animation. Computer Graphics.

26(2): 293-302.

Cosatto, E. and H. P. Graf (2000) Photo-Realistic Talking-Heads from Image Samples.

Transactions on Multimedia. 2(3): 1 52- 163.

Cuckierman, D. and J. Delgrande (2000) A Formalization of Structural Temporal Objects

and Repetitions. in: TIME'2000, Cape Bleton, Canada, 13-20.

Dam, A. v., A. Forsberg, D. Laidlaw, J. LaViola and R. Simpsom (2000) Irnrnersive Vr

for Scientific Visualization: A Progress Report. IEEE Computer Graphics and

Applications. 20(6): 26-52.

DiBiase, D., A. MacEachren, J. Krygier and C. Reeves (1992) Animation and the Role of

Map Design in Scientific Visualization. Cartography and Geographical

Information Systems. 19(4): 201 -2 14,265-266.

Dollner, J. and K. Hinrichs (1997) Object-Oriented 3d Modeling, Animation and

Interaction. Journal of Visualization and Computer Animation. 8(1): 33-64.

Dykes, J., K. Moore and J. Wood (1999) Virtual Environment for Student Fieldwork

Using Networked Components. International Journal of Geographical

Information Science. 1 3 (4): 397-4 16.

Egenhofer, M. and K. Hornsby (1998) Spatio-Temporal Reasoning About Identity and

Visibility. Integrating Spatial and Temporal Databases. Schloss Dagstuhl,

Germany, November 1998: (Presentation).

Elliott, C., G. Schechter, R. Yeung and S. Abi-Ezzi (1994) Tbag: A High Level

Framework for Interactive, Animated 3d Graphics Applications. in:

SIGGRAPHf94, Orlando, FL, 42 1-434.

Erwig, M., R. H. Giiting, M. Schneider and M. Vazirgiannis (1998) Abstract and Discrete

Modeling of Spatio-Temporal Data Types. in: 6th International Symposium on

Advances in Geographic Information Systems, Washington D.C., 13 1 - 136.

Eynde, F. V. (1987) Iteration, Habituality, and Verb Form Semantics. in: Third

Conference of European Chapter of the Association for Computational

Linguistics, Copenhagen, Denmark, 270-277.

Fairbain, D., G. Andrienko, N. Andrienko, G. Buziek and J. Dykes (2001)

Representations and Its Relationships with Cartographic Visualization.

Cartography and Geographical Information Science. 28(1): 1 3 -28.

Faust, N. L. (1995) The Virtual Reality of Gis. Environment and Planning B: Planning

and Design. 22(3): 257-268.

Fiume, E., D. Tsichritzis and L. Dami (1 987) A Temporal Scripting Language for Object-

Oriented Animation. in: Eurographics 1987, Holland, Elsevier Science

Publishers, 283-294.

Foley, J., A. V. Dam, S. Feiner and J. Hughes (1997) Computer Graphics Principles and

Practice. Reading, MA, Addison-Wesley.

Forlizzi, L., R. H. Giiting, E. Nardelli and M. Schneider (2000) A Data Model and Data

Structures for Moving Objects Databases. in: International Conference on

Management of Data and Symposium on Principles of Database Systems, Dallas,

TX, 3 19-330.

Frank, A. U. (1998) Different Types of "Times" in Gis. in: M. J. Egenhofer and R. G.

Golledge (Eds.) Spatial and Temporal Reasoning in Geographic In@mation

Systems, New York, Oxford University Press, 40-62.

Freksa, C. (1992) Temporal Reasoning Based on Semi-Lntervals. ArtiJicial Intelligence.

54: 199-227.

Fuhrrnann, S. and A. MacEachren (1999) Navigating Desktop Geovirtual Environments.

in: IEEE Information Visualization 99, San Francisco, CA, 1 1 - 14.

Funge, J. (2000) Cognitive Modeling for Games and Animations. Communications of the

ACM. 43(7): 41 -48.

Gahegan, M. (2001) Geovisualization. in: CSISS Workshop, Ann Arbor, MI.

Gall, D. L. (1991) A Video Compress Standard for Multimedia Applications.

Communications of the ACM. 34(4): 46-58.

Gonzalez, R. and R. Woods (1992) Digital Image Processing. Reading, MA, Addison-

Wesley.

Green, M. and S. Halliday (1996) A Geometric Modeling and Animation System for

Virtual Reality. Communications of the ACM. 39(5): 46-53.

Haklay, M. (2002) Virtual Reality and Geographical Information Systems: Analysis and

Trends. in: P. Fisher and D. Unwin (Eds.) Virtual Reality and Geography,

London, Taylor & Francis, 47-57.

Hardisty, F., A. MacEachren, M. Gahegan, M. Takatsuka and M. Wheeler (2001)

Cartographic Animation in Three Dimensions: Experimenting with the Scene

Graph. in: 20th International Cartographic Conference, Beijing, China.

Herring, J. R. (1991) The Mathematical Modeling of Spatial and Non-Spatial Information

in Geographic Information Systems. in: D. Mark and A. U. Frank (Eds.)

Cognitive and Linguistic Aspects of Geographic Space, Dordrecht, Kluwer, 3 13-

350.

Hornsby, K. and M. Egenhofer (2000) Identity-Based Change: A Foundation for Spatio-

Temporal Knowledge Representation. International Journal of Geographical

Information Science. 14(3): 207-224.

205

Hornsby, K., M. Egenhofer and P. Hayes (1999) Modeling Ciclic Change. in: P. Chen, D.

Embley, J. Kouloumdjian, S. Liddle and J. Roddick (Eds.) Advances in

Conceptual Modeling, Paris, France, Springer-Verlag, 98-1 09.

Horton, I. (1999) Beginning Java 2. Birmingham, UK, Wrox Press.

Jacobson, R. (1991) Virtual Worlds, Inside and Out. in: D. M. Mark and A. U. Frank

(Eds.) Cognitive and Linguistic Aspects of Geographic Space, Netherlands,

Kluwer Academics, 507-5 14.

Java-3D (2004) Java 3D Application Programming Interface (API).

L~:http://java.sun.com/products/java-mediat3Dl.

Jensen, C. S., J. Clifford, S. K. Gadia, A. Segev and R. T. Snodgrass (1992) A Glossary

of Temporal Database Concepts. in: International Workshop on an Infrastructure

for Temporal Databases, Arlington, TX, 25-29.

Kalawsky, R. S. (1993) The Science of Virtual Reality and Virtual Environments: A

Technical, Scientific, and Engineering Reference on Virtual Environments.

Reading, MA, Addison-Wesley.

Koller, D., P. Lindstrom, W. Ribarsky, L. F. Hodges, N. Faust and G. Turner (1995)

Virtual Gis: A Real-Time 3d Geographic Information System. in: IEEE

Visualization195, Worcester, MA, 94-1 00.

Koved, L. and W. Wooten (1993) Groop: An Object-Oriented Toolkit for Animated 3d

Graphics. in: Conference on Object-Oriented Programming Systems, Languages,

and Applications-00PSLA '93, Washington, DC, 309-325.

Kraak, M.-J. (2002) Visual Exploration of Virtual Environments. in: P. Fisher and D.

Unwin (Eds.) Virtual Reality in Geography, New York, Taylor & Francis, 58-67.

Kraak, M.-J., G. Smets and P. Sidjanin (1999) Virtual Reality, the New 3-D Interface for

Geographical Information Systems. in: A. S. C2mara and J. Raper (Eds.) Spatial

Multimedia and Virtual Reality, London, Taylor & Francis, 1 3 1 - 1 36.

Krygier, J. (1994) Sound and Geographic Visualization. in: A. MacEachren and D. R. F.

Taylor (Eds.) Visualization in Modern Cartography, Oxford, Pergarnon Press,

149-166.

Ladkin, P. (1986) Time Representation: A Taxonomy of Interval Relations. in: Fifth

National Conference on Artificial Intelligence (AAAI'86), Philadelphia, PA, 360-

366.

Leban, B., D. McDonald and D. Forster (1986) A Representation for Collections of

Temporal Intervals. in: F$h National Conference on Artificial Intelligence

(AMIf86), Philadelphia, PA, 367-37 1.

Lee, G. S. (1998a) A Classification of File Formats for Animation. in: Western

Symposium on Computer Graphics, Whistler, Canada.

Lee, G. S. (1998b) A General Specification for Scene Animation. in: International

Symposium on Computer Graphics, Image Processing, and Vision - Sibgrapi198,

Rio de Janeiro, Brazil, IEEE, 1-8.

Liebennan, E. (1991) Integration Gis, Simulation, and Animation. in: B. L. Nelson, W.

D. Kelton and G. M. Clark (Eds.) Winter Simulation Conference, Phoenix, AZ,

771 -775.

207

Lin, C.-R., R. B. Loftin and J. H. Roice Nelson (2000) Interaction with Geoscience Data

in an Irnmersive Environment. in: Virtual Reality 2000 Conference, New

Brunswick, NJ, E E E Computer Society, 55-62.

Little, T. D. C. and A. Ghafoor (1993) Interval-Based Conceptual Models for Time-

Dependent Multimedia Data. IEEE Transactions on Knowledge and Data

Engineering (Special Issue on Multimedia Information System). 5(4): 55 1-563.

Luttermann, H. and M. Grauer (1999) Vrml History: Storing and Browsing Temporal 3d-

Worlds. in: ACM Fourth Symposium on VRML, Paderborn, Germany, 150-163.

MacEachren, A. and M.-J. Kraak (2001) Research Challenges in Geovisualization.

Cartography and Geographical Information Science. 28(1): 3- 12.

Macedonia, M. (2002) Games Soldiers Play. IEEE Spectrum: 32-37.

Manoharan, T., H. Taylor and P. Gardiner (2002) A Collaborative Analysis Tool for

Visualization and Interaction with Spatial Data. in: 7th International Conference

on 3 0 Web Technology - Web3D102, Tempe, AZ, 75-83.

Miller, S. (1993) The Quicktime How-to Book. San Francisco, CA, Sybex.

Morris, R. A. and L. Khatib (1998) Quantitative Structural Temporal Constraints on

Repeating Events. in: TIME'98, Sanibel Island, FL, 74-80.

Morris, R. A., W. .D. Shoaff and 1;. Khatib (1996) Domain Independent Temporal

Reasoning with Recurring Events. Computational Intelligence. 1 2(3): 450-477.

Najork, M. and M. Brown (1995) Obliq-3d: A High-Level, Fast-Turnaround 3d

Animation System. IEEE Transactions on Visualization and Computer Graphics.

Neves, J. N., P. Gongalves, J. Muchaxo and J. P. Silva (1999) A Virtual Gis Room:

Interfacing Spatial Information in Virtual Environments. in: A. S. C h a r a and J.

Raper (Eds.) Spatial Multimedia and Virtual Reality, London, Taylor & Francis,

147-156.

Neves, N., J. P. Silva, P. Gongalves, J. Muchaxo, J. M. Silva and A. C h a r a (1997)

Cognitive Spaces and Metaphors: A Solution for Interacting with Spatial Data.

Computers & Geoscience. 23(4): 483-488.

Ogleby, C. (2002) Virtual World Heritage Cities: The Ancient Thai City of Ayutthaya

Reconstructed. in: P. Fisher and D. Unwin (Eds.) Virtual Reality in Geography,

New York, Taylor & Francis.

OpenGL (1992) Opengl Reference Manual : The OJJcial Reference Document for

Opengl, Release I , Opengl Architecture Review Board. Reading, MA, Addison-

Wesley.

Osmani, A. (1999) Introduction to Reasoning About Cyclic Intervals. Lecture Notes in

Artificial Intelligence. 161 1 : 698-706.

Pentland, A. and J. Williams (1989) Good Vibrations: Modal Dynamics for Graphics and

Animations. Computer Graphics. 23(3): 2 15-222.

Peterson, M. (1999) Active Legends for Interactive Cartographic Animation.

International Journal of Geographical Information Science. 13(4): 375-383.

Raper, J . (2000) Multidimensional Geographic Information Science. London, Taylor &

Francis.

Reddy, M., L. Iverson and Y. G. Leclerc (2000) Under the Hood of GeoVRML 1.0. in:

Web3D-VRML 2000 FiJth Symposium on Virtual Reality Modeling Language,

Monterey, CA, 23- 28.

Reddy, M., Y. Leclerc, L. Yverson and N. Bletter (1999) Terravision 11: Visualizing

Massive Terrain Databases in VRML. IEEE Computer Graphics and

Applications. 19(2): 30-38.

Reynolds, C. W. (1987) Flocks, Herds, and Schools: A Distributed Behavioral Model.

Proceedings of SIGGRAPHr87. 2 l(4): 25-34.

Rhyne, T. M. (1997) Going Virtual with Geographic Information and Scientific

Visualization. Computer & Geosciences. 23(4): 489-491.

Schrnitz, P. (2002) Multimedia Meets Computer Graphics in Smi12.0: A Time Model for

the Web. in: WWW 2003, Honolulu, HW, 45-53.

Strauss, P. (1993) Iris Inventor, a 3d Graphics Toolkit. in: Conference on Object-

Oriented Programming Systems, Languages, and Applications-00PSLAr93,

Washington, DC, 341 -349.

Strauss, P. and R. Carey (1992) An Object-Oriented Graphics Toolkit. Computer

Graphics. 26(2): 341-349.

Terenziani, P. (2003) Towards a Comprehensive Treatment of Temporal Constraints

About Periodic Events. International Journal of Intelligent Systems. 18(4): 429-

468.

Thalmann, N. M. and D. Thalmann (1985) Computer Animation: Theory and Practice.

Tokyo, Springer-Verlag.

210

Thalmann, N. M. and D. Thalmann (1994) Computer Animation: A Key Issue for Time

Visualization. New York, Academic Press.

Tobler, W. (1970) A Computer Movie Simulation Urban Growth in the Detroit Region.

Economic Geography. 46(2): 234-240.

USGS (2003) U.S. Geological Survey. URL:http://www.ucgs.org.

Verbree, E., G. V. Maren, R. Germs, F. Jansen and M.-J. Kraak (1999) Interaction in

Virtual World Views - Linking 3D GIs with VR. International Journal of

Geographical Information Science. 13(4): 385-396.

Web3D (2003) Web3d Consortium, URL:http://www.web3d.org.

Weiss, R., A. Duda and D. Gifford (1995) Composition and Search with a Video

Algebra. IEEE Multimedia. 2(1): 12-25.

Weisstein, E. (2002) CRC Concise Encyclopedia of Mathematics, New York, CRC Press.

Wenzel, S. and U. Jensen (2001) The Integration of 3-D Visualization into the

Simulation-Based Planning Process of Logistics Systems. SIMULATION. 77(3-

4): 114-127.

Williams, N. A. (1999) Four-Dimensional Virtual Reality Gis (4d Vrgis): Research

Guidelines. in: B. Gittings (Ed.) Innovations in Gis 6, London, Taylor & fiancis,

201-214.

Zeleznik, R., D. Conner, M. Wloka, D. Aliaga, N. Huang, P. Hubbard, B. Knep, H.

Kauhan, J. Hughes and A. v. Dam (1991) An Object-Oriented Framework for

Integration of Interactive Animation Techniques. Computer Graphics. 25(4):

Zlatanova, S. (2000) 3D for Urban Development. Thesis, Graz University of Technology,

Graz, Austria.

BIOGRAPHY OF THE AUTHOR

Jorge was born in Salvador, Bahia, Brazil on July 1, 1962. He graduated with a Civil

Engineering Degree from Universidade Federal da Bahia - Brazil in 1986. He received

his Masters Degree in Civil Engineering ffom Pontificia Universidade Catblica do Rio de

Janeiro - Brazil in 1991. Jorge has worked in the academic and in the public sectors. In

the academia, Jorge worked as an Assistant Professor in the Civil Engineering

Department of the Universidade Federal da Bahia, and as an Associate Professor in the

Computer Science Department of Universidade Salvador. At the Universidade Salvador,

Jorge also joined the Computer Network Group, where he developed research in

Geographic Information Systems, Virtual Reality, and Scientific Visualization. In the

public sector, Jorge worked as a consultant on systems development and computer

network administration. In the fall of 2000, he entered the Ph.D. program of the

Department of Spatial Information Science and Engineering at the University of Maine.

Jorge Campos is a candidate for the Doctor of Philosophy degree in Spatial

Information Science and Engineering from The University of Maine in August, 2004.

	The University of Maine
	DigitalCommons@UMaine
	8-2004

	A Data Model for Exploration of Temporal Virtual Reality Geographic Information Systems
	Jorge Alberto Prado de Campos
	Recommended Citation

	tmp.1326824277.pdf.qVjKh

