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With the recent explosion of information availability in geospatial datasets, query 

complexity has increased. Multiple users access the same data collections with highly 

diversified needs. Information retrieval goals can vary significantly due to the large 

number of potential scenarios/applications, a common problem in geospatial data 

collections. The current approaches are deterministic and do not allow the incorporation 

of user preferences in the query process. The approach developed in this thesis adjusts 

query returns using a preference-based similarity modeling and therefore expresses more 

accurately user anticipation of results. 

In this thesis we present a machine learning approach to express user preferences within 

one-dimensional, quantitative attributes. Training is performed in multiple stages and is 

based on a training dataset provided by the user. Depending on the provided preference 

complexity our algorithm adjusts the learning process. Several families of functions are 

used progressively, from simple planar to complex sigmoidal functions. The design of the 



algorithm allows previously interpolated functions to act as approximations for more 

complex ones that follow, thereby decreasing training time and increasing robustness. 

A customized neural network, a Multi-Scale Radial Basis Function (MSRBF) network, is 

also developed specifically to express the characteristics of the problem. We model 

potential errors that result from the interpolation of the fuzzy functions; we do not want 

our neural network to expand to portions of the input space without significant evidence. 

Therefore, our network design forces the network to operate in a localized manner and 

only where necessary. At the last training stage fuzzy functions are combined with the 

MSRBF into one solution and if found appropriate, the fuzzy functions go through a self-

organizing process, where they adjust further to the overwhelming preference. 

The proposed neuro-fuzzy system outperforms the currently used distance-based nearest 

neighbor methods. It does so by design because it recognizes and supports distance 

dependent user preferences, while simultaneously offering advanced modeling 

capabilities. Our system also exhibits high robustness as statistical simulations 

demonstrate. This is partially due to the ability of the algorithm to adjust its complexity 

as the user preference complexity increases. 
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Chapter 1 

Introduction 

The development of novel sensors and innovative data acquisition methods, and 

advancements in computer storage and access capabilities are resulting in tremendous 

increases in the amount of geospatial datasets that are currently available to the 

corresponding user community. Parallel to these developments, the user community itself 

is undergoing an expansion and transformation, with growing numbers of users and 

applications that need access to geospatial information. This increased usage is affecting 

geospatial information retrieval (IR) as the same geospatial data collections may be 

accessed by users with diverse needs and interests. Advanced communication processes 

should be established to capture and express user preferences in such environments as 

basis for similarity models. This preference can result from a variety of 

scenarios/applications, a common problem in geospatial data collections. It is context-

specific, therefore many users can exhibit comparable preference, and the same user can 

demonstrate various preferences based on task requirements. Consequently, the goal of 

this work is to develop a novel similarity model that is preference-based and therefore 

improving appropriateness accuracy of the retrieved geospatial information in the query 

process. 

In this chapter we provide a description of the problem and the motivation behind 

it. We discuss how our algorithm fits in the overall query process framework. A general 

idea of the expected contributions follows along with the thesis organization. 
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1.1 Problem statement 

1.1.1 In simple words 

With the recent explosion of information availability, query complexity has increased. 

Multiple users access the same data collections with highly diverse needs. A 

deterministic approach cannot facilitate the varying scenarios and applications. 

Establishing and expressing user information requests requires formulation of advanced 

communication processes. A learning component should be added to capture user 

preference and incorporate it into a similarity model. This is the goal of the dissertation. 

In some cases relational operations like equality or inequality can handle a query 

request, like for instance "return all aerial photographs taken after 1999". In many 

advanced database applications though, users would expect a more detailed answer, one 

that will not just return the results but will rank them based on some similarity metrics. 

Such a request might be "find me the 10 most appropriate aerial photographs taken at 

11/12/1999". In our work we attempt to model these most appropriate criteria and 

express them through a mathematical model so the returned answers are adjusted to user 

preferences. A user preference example would be "I would prefer aerial photographs 

from 1999, but 1998 will be OK too, but I do not want anything after 2000". 

The above example is a fairly simple case. In more complex preference 

expressions, non-linearity and non-monotonic behaviors might exist. Non-linearity refers 

to the way user interest degrades as the candidates are further away from the query 

request. Non-monotonic decline means that if candidate A is further away from the query 

than candidate B that does not necessarily translate into candidate B being more suitable 

than A. Examples of such cases are described in the next section. 
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1.1.2 In mathematical terms 

In the context of this work, a geospatial information object O is an autonomous entity 

with a specific database record. Examples may include a map, a DEM, a satellite image, 

or the record of a building in a cadastre database. Within a database, such objects are 

typically described by a set of attributes. For example, a satellite image may be described 

through its coverage, resolution, time, and type of sensor, among others. Certain 

attributes may be conceptually related and thus may form distinct conceptual groups, for 

example metric and qualitative attributes may be grouped separately. This hierarchical 

arrangement is visualized in figure 1.1. 
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Figure 1.1: Hierarchical object attribute representation 

The comparison of an information object O stored in a database to a query request Oq 

entails the comparison of their corresponding attribute values. This may be a straight 

forward issue if the attributes used to describe both O and Oq are the same, or may 

require advanced translation methods (e.g. using ontologies) to establish correspondences 

among two different sets of attributes. Assuming similar representations, the comparison 



of a stored object to a query request involves the use of matching functions to produce a 

similarity metric S as: 

s = gfa(tll(fuj<),tM2jl^ ( i . i ) 

In the above equation: 

• Function tik expresses the similarity between the database attribute value fik and the 

corresponding query value request/,*. 

• Function /z, combines similarity results from each separate attribute to provide a 

similarity metric for each conceptual attribute grouping. 

• Function g is the overall similarity measure combining similarity from each 

conceptual group to one total metric. 

The overall goal of intelligent database queries is to define functions tik, hL and g so they 

express user perceptions of similarity. 

For example, let us consider a query of a geospatial database. Assume that global 

similarity is calculated based on three attribute groups, namely F = [Metric attributes, 

Qualitative attributes, Dataset accessibility]. The "Metric attributes" group may be 

represented by two attributes, namely time and scale (F = [Time, Scale]). An example of 

a query request may be F1'1 =(f['{,fi
q
2) = [10am, 50cm], aiming for the recovery of 

datasets depicting an area at 10am, with a scale (resolution) of 50cm. After this query is 

presented to the system, similarity within each attribute is calculated using functions tik 

that explain how similar stored values are to the query request. For example, function ti, 

would calculate the similarity in time between query request and a database candidate, 

and function tl2 would calculate the similarity in the scale attribute. 

At the next step, function h, aggregates these similarity results from different 
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attributes to provide a similarity metric for the corresponding attribute group (e.g. 

producing an aggregate similarity value for "Metric attributes" group from the similarity 

results obtained from attributes Time and Scale). In the last step, function g integrates 

similarity values from different attribute groups to derive an overall similarity metric 

expressing similarity between query request and a database record. In many cases 

functions /i, and g are treated as one function depending on the attribute organization. 

Now let us examine similarity preference users can exhibit in the above example 

F1'=[10am, 50cm], and assume a request for aerial photography for parking load 

estimation. We focus on the first step of the process, i.e. calculation of similarity 

preference within each attribute (time, scale) using functions tik (in this case functions tn, 

tl2). User experience from the area suggests that photographs between 7-9am would not 

be appropriate due to early morning fog that diminishes the analysis potential of aerial 

photography. Also the user might not want photographs taken during lunch break as they 

may provide misleading information. In addition to that even if the initial target is 10 am, 

any other daylight photograph would be acceptable but as the sun goes down, visibility 

decreases rapidly and the temporal preferences of the user. 

The scale of the imagery is also important. User interest may decrease gradually 

(but not necessarily linearly) as scale decreases to the degree that cars would not be 

identifiable. Furthermore, the user may have additional considerations (such as cost, 

storage and processing time) associated to a higher resolution acquisition. This translates 

to a preference expression that can also be non-linear as resolution improves. 

The above example is typical in geospatial applications and offers evidence that 

currently used distance-based linear similarity functions do not describe adequately user 
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preferences. Asymmetrical, non-linear, non-monotonically decreasing functions that 

support user preference can model similarity more precisely in each attribute comparison 

(function tik). Currently, the focus of database queries has been on the development of 

complex non-linear models for functions /z; and g. In contrast, functions tik have received 

little attention and are typically modeled in relatively simple manner. It is easily 

understood though that if functions tik fail to describe adequately the corresponding 

similarity relationships, the resulting metrics of similarity will be significantly 

compromised. In geospatial queries user preferences may be much more complex than 

general queries (e.g. text queries), while the diversity of users and applications is further 

emphasizing the need for efficient modeling of tik functions. Thus, modeling user 

similarity preference within each attribute can substantially help geospatial queries. 

Motivated by these observations, the focus of our work is to investigate the application of 

complex functions for user preference within each attribute. 

1.2 Motivation and applications 

The major motivation behind this research is the lack of a query model for geospatial 

environments that has the ability to adjust results based on varying user preference. 

Nowadays, information volumes increase at high rates. This information makes users 

more demanding in their information requirements and information retrieval expectations 

in the query process. 

Unfortunately, there is a disproportionate amount of research done on adaptable 

systems in information retrieval from geospatial databases than in other areas (e.g. text 

retrieval). Specifically, large distributed information source repositories are created and 

several issues related to storing and accessing these databases are investigated. 
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Ontologies are created to compensate for different field descriptions, as well as multi-

node architectures and theoretical database models to support them. Query languages and 

indexing mechanisms for faster information retrieval are developed. 

Surprisingly, similarity learning has not yet received significant attention. The 

similarity measures used to rank potential candidates are defined by the system designer 

and remain the same for all scenarios and applications. These models represent a 

deterministic approach, which might or might not facilitate user needs. We believe that 

the query process should be adaptable to user preferences in order to achieve high 

ranking accuracy. Consequently, this is the issue we address in this thesis. 

Our method interacts with but is independent of the query process itself, and thus 

a variety of GIS applications can benefit from it. Repositories of GIS source information 

for environmental, remote sensing, transportation, multimedia and monitoring 

applications could experience a significant information retrieval accuracy improvement. 

The improvement would be especially evident in cases where the same source collection 

is accessed by highly diverse groups of users, where diversity translates to different 

similarity preferences. Even though our method is designed to facilitate geospatial needs, 

either parts or our whole methodology could be applied on other data collections with 

similar characteristics, depending on the problem at hand. 

1.3 Scope of thesis 

We have already presented the problem that we focus on in this thesis. Here we provide 

the general framework of the query process in order to make it easier for the reader to 

understand our contribution. We also explain in more detail what we do and do not 

address in our work. 
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1.3.1 Focus within the general picture 

In a geospatial environment the following steps take place in a query process (fig 1.2): 
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Visualize 
Results 

» 0 i ' o a, 
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Figure 1.2: Query process of a geospatial source collection 
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i. Users request an information object from the database (or more than one). 

ii. Their request is translated into a structured query that the system understands and 

that is compatible with the database collection (e.g. using ontologies). 

iii. A query language is used as a mediator between user and database (e.g. SQL). 

iv. Based on their request an indexing mechanism is used to return all potentially 

similar objects, in essence filtering dissimilar ones to speed up the process. 

v. On this filtered object collection a similarity algorithm with properties extracted 

from a knowledge base is applied. The output is either a certain number of best 

answers (e.g. 10 best datasets) or answers within a specific similarity range (e.g. 

higher than 80%). 

vi. The results are presented to the users to assess their similarity accuracy. 

In the above information flow there are several areas of interest that the database 

community is working on. Various disciplines are involved in the process and many 

different approaches have been proposed. Our work concentrates on step number v on the 

previous list. Our goal is to develop a similarity algorithm that will rank the results in an 

accurate way. Therefore our main focus is information retrieval accuracy. Retrieval speed 

is not a primary target even though we optimize our system whenever possible. Issues 

such as multi-dimensional indexing that are related to the process in the general sense are 

not addressed. 
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1.3.2 Approach specifics 

As mentioned above our goal is to develop a preference-based similarity learning system. 

This issue has been previously tackled by a variety of disciplines like artificial 

intelligence, statistics, computer science, cognitive science and psychology. Several 

machine learning general methodologies have been used like genetic algorithms, decision 

trees, neural networks and non-parametric algorithms. 

In this thesis we develop a learning system to optimize query returns of geospatial 

information. Some clarifications leading to the focus of this work follow. 

• Applicability within the geospatial domain 

Geospatial information has certain characteristics that differentiate it from other types of 

information when it comes to user preferences. Of primary interest to this thesis is the 

fact that (one-dimensional) geospatial parameters are quantifiable and continuous. Thus a 

user may easily express his/her preference as functions of such quantifiable and 

continuous parameters. Considering for example resolution, a user may state and quantify 

preferences along the lines of the following: / am interested in imagery with a resolution 

of 50cm, and my interest drops linearly/exponentially as resolution decreases. In this 

manner, a GIS user can quantify expressions of preference in terms of resolution, making 

e.g. an aerial photograph with 2m resolution twice as suitable for his/her application than 

another with 4m resolution. Relations among these properties are not only ordinal, but 

metric as well. 

This richness and metric structure of geospatial information (and corresponding 

user preference patterns) is a very important aspect that differentiates geospatial from 

other types of information collections (e.g. text databases, stock prices). Of course, there 

still exist a number of properties that may be contained in a GIS but do not have such 
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structure (e.g. land use, ownership), but these attributes are beyond the scope of this 

thesis. Our focus is on one-dimensional quantitative attributes (e.g. scale, resolution, area, 

azimuth) and on handling complex user preferences that deviate from the above 

mentioned linear or exponential models. 

Furthermore, our intention is not to develop a global technique that would be 

applicable to any domain as a traditional artificial intelligence approach is expected to do. 

We focus on the characteristics of queries performed on geospatial information and 

optimize performance based on these. Subsequently, when evaluating the performance of 

our approach we do so by comparing our methodology to existing solutions in geospatial 

information retrieval and we do not extend to additional algorithms developed for other 

machine-learning tasks. Of course, certain ideas and approaches from this dissertation 

may eventually find applications in other domains. 

• Support but not investigation of cognitive assumptions 

Similarity assessment has attracted attention from cognitive scientists due to the human 

factor presence. In our work, we support some basic assumptions that scientists have 

determined (e.g. exponential decrease of similarity the further away from the target value) 

and we build our mathematical model on that. We do not question these principles, 

therefore no human testing is performed. We see our work as a regression optimization 

issue and we address it within that context. Evaluation is based on statistical error 

measures to show good generalization, solution stability and high adaptability capabilities. 

• Object similarity vs. scene similarity 

We address the issue of similarity learning in queries requesting specific geospatial 

information objects and not a combination of them. Spatial relations expressing topology, 
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cardinality and distance measures between objects are outside the scope of this work. 

Another important distinction should be made as to the types of attributes that our 

learning algorithm supports, leading to three additional clarifications: 

• Measurement scale 

Many taxonomies have been introduced based on different measurement scales. Such 

examples include counts versus measurements, qualitative versus quantitative, and 

metrical versus categorical measurements (Hand et al., 2001). For our categorization we 

make use of the four scales of measurement as introduced by Stevens (1946), namely 

nominal, ordinal, interval and ratio measurement types. 

o Nominal: Data that do not have a natural ordering fall in this category. They can be 

numbers or text and they are used as labels or names, such as for instance owner 

names of land parcels. 

o Ordinal: These attribute types are ordered but do not express information about the 

differences between the ordered values. An example would be the values of "black", 

"gray", and "white" for color. 

o Interval: An interval attribute has numerical distances between any two levels of the 

scale. However, they do not have a measurement origin though. A typical example 

would be a temperature reading (Fahrenheit, Centigrade, etc.). 

o Ratios: When attribute values have an origin in addition to being interval, then they 

belong to the ratio type. An example would be distances. 

From the similarity perspective, interval and ratio scales of data require similar 

learning techniques. Their only difference relies on having an origin of measurement or 

not. This can be rectified through appropriate normalization, a common preprocessing 
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step in data preparation for machine learning algorithms. It is important to mention that 

even though the type of data in this category is common with other non-geographic data 

collections preference might not be. For example, the "Ground Pixel Size" thematic 

attribute can demonstrate diverse preference based on the application usage. 

Photogrammetrists may be less flexible than oceanographers with respect to larger pixel 

sizes, just as non-profit organizations might be more stringent towards smaller pixel size 

due to acquisition costs. 

Ordinal data do have some relative order, but because this distance between 

ordered values is not quantifiable, regression techniques (e.g. neural networks) are not 

easy to apply. Other methods such as decision trees might be more appropriate. As for the 

last scale category, the nominal, it is a textual matching process. Learning involves 

identification of possible relations between nominal values (e.g. synonyms, same root). A 

thesaurus is often used and learned domain knowledge is incorporated to represent these 

relations. Many methods used in this category overlap similarity learning in textual 

databases. 

The methodologies developed in this thesis apply to measurements in the interval 

and ratio scales. The proposed learning algorithm focuses on user preference modeling in 

quantitative attributes that describe geospatial information (e.g. time, scale, azimuth), 

Qualitative attributes require a different treatment for similarity assessment and this issue 

is reserved for future work. It should be noted that within the context of this work, 

quantitative attributes should fall into the interval or ratio scale. Even if an attribute is 

represented by a metric that does not necessarily mean that it is quantitative (e.g. postal 

code is treated as a qualitative one). 
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• One-dimensional vs. multi-dimensional attributes 

Our approach concentrates on one-dimensional attributes. It does not extend to multi­

dimensional attributes where dependencies might exist among dimensions. For example, 

we do not examine the spatial attribute where X and Y are heavily dependent, and color 

attribute where Red, Green and Blue also exhibit high correlation. We should clarify that 

even in one-dimensional attributes independence should exist among attribute values. An 

attribute value should not be a combination of two or more original attributes, stored for 

instance in the same field for indexing or storage purposes (e.g. using a Peano-Hilbert 

transformation). We also do not access the content of the geospatial objects, so one-

dimensional queries that cannot be answered by a metadata descriptor are beyond the 

scope of this work. Such an example would be a query for an aerial photograph with a 

building having an area of 100 m . If that information is pre-extracted and supplied with 

the object then our approach is applicable, but if this information requires an object-

extraction operation on the photograph this is not supported in this work. 

• Single attribute vs. combination of attributes 

A last remark involves the applicability level of our algorithm. We calculate similarity 

within each attribute but do not aggregate similarity results between attributes into one 

total metric. Nonetheless, our approach can be easily incorporated into a multi­

dimensional similarity assessment approach (e.g. a weighted nearest neighbor), which in 

fact is the general framework under which our method operates. Correlation between 

attributes mandates a complex approach that is the next logical extension of our work in 

the future. 
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1.4 Research questions and objectives 

The goal of this work is to enhance the existing information retrieval methods in 

geospatial applications. Within the context of our preference-based similarity learning 

algorithm several issues arise, namely: 

Model adaptability/accuracy. First and foremost, the investigated technique has to show 

high adaptability to various cases that may be present. A flexible model is required with 

high degree of freedom to compensate for unusual behavior. The model should present 

good generalization over a variety of training sample cases. The results should 

outperform existing techniques in terms of retrieval accuracy currently used for 

geospatial information retrieval. 

Model convergence/robustness. An important goal of any learning system is not only to 

have the potential to behave well, but also to do so in a consistent manner. This is an 

extremely challenging task when it comes to complex non-linear systems. Optimization is 

achieved through minimization of an appropriately chosen statistical error measure. 

Sometimes local minima misguide the solution to undesired results. Therefore, caution 

should be exercised when designing and training the system. 

Model control. Another issue that relates to complex systems is that as complexity 

increases it becomes more difficult to control system behavior, and contribution of each 

processing element to the overall solution might be hard to identify. Thus, erroneous 

results are difficult to investigate and correct. Furthermore, this "transparency" of the 

system would allow user interpretation of the behavior of each processing element. So 

our system should be complex enough to model the underlying problem but simple 

enough to train and analyze. 
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In accordance to the above the hypothesis of this thesis is: 

"The proposed neuro-fuzzy preference learning system outperforms the distance-based 

nearest neighbor algorithm in geospatial attributes". 

In the remaining parts of the thesis we demonstrate the benefits of our approach over 

existing methods. We also show how our system identifies the nearest neighbor as a sub­

case during the learning process and supports it. At the same time more complicated user 

preferences are modeled if necessary. Therefore, our approach by design is superior to 

the nearest neighbor. 

An important factor in our evaluation process is the robustness of our method. A 

more complex method than the nearest neighbor can be proposed but it would be a 

mediocre one without ensuring a good, consistent performance. Our statistical 

simulations will confirm our method's robustness. 

We should mention here that "performance" is measured in terms of relevancy 

accuracy in the obtained results and not associated with computational retrieval speed. 

Naturally our approach is more computationally expensive than the nearest neighbor. The 

exact retrieval speed cost depends on underlying complexity of our identified similarity 

preference. It should be kept in mind though that because of the gradual complexity 

increase in our training process, complex functions are used only where necessary. Also, 

the more complex the preference model is, the more complex user preference is (that 

created that complex model), and consequently, the less appropriate the distance-based 

nearest neighbor is. So eventually a database designer will evaluate based on task 

requirements and computational resources the trade-off between our more accurate and 

computationally expensive approach and the faster but not so accurate nearest neighbor. 

16 



1.5 Major results and contribution of thesis 

The major contribution of this thesis is the development of a learning system to express 

user preference of similarity within geospatial environments. Experiments on simulated 

datasets demonstrate robustness and advanced modeling capabilities of the proposed 

technique. Our system has the ability to adapt to different scenarios and express them 

successfully through its mathematical model. It supports a variety of cases, and modeling 

accuracy through statistical simulations was found to be high and consistent. Therefore, 

users accessing geospatial environments will have the option of a query system that 

adjusts to their preference. 

In order to achieve our goal, some desired characteristics of our algorithm were 

outlined in the previous section, namely high accuracy and convergence rate, and also 

transparency in the system design. Here is how these issues are addressed from the 

perspective of our system and the novel methodologies used leading to that. 

Development of a novel learning system architecture. To achieve our goal to model 

user similarity preference we developed a neuro-fuzzy system. Its modular design allows 

a variety of knowledge rules to be incorporated and shows flexibility in the complexity 

addressed within each processing element. Our system supports advanced modeling 

capabilities due to its ability to distinguish expected similarity behavior from localized 

unusual similarity preference. The expected behavior is captured by a global fuzzy 

membership function whose complexity grows with the problem difficulty, and 

unexpected behavior is described by a customized multi-scale radial basis function 

(MSRBF) neural network. Our multi-stage training ensures adaptability and control in 

our system performance. 
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Development of a novel multi-scale RBF neural network. Our innovative neural 

network design combines local (i.e. within node receptive fields) and global fit accuracy 

metrics to produce an architecture that can identify and model various trends in user 

preferences without expanding to undesired areas of the input space. Highly localized 

trends are identified first and this exposes larger scale trends that may otherwise have 

remained hidden. In doing so, our MSRBF outperforms traditional RBF architectures in 

generalization accuracy, and by using less number of nodes it accelerates simulation. 

1.6 Intended audience 

The intended audience of this thesis includes researchers and developers working on 

database systems, especially in the communication process, and on intelligent systems. 

Fields like computer science and GIS can benefit from the implementation of our model. 

Also techniques developed for our learning process can be extracted and implemented in 

other tasks of similar requirements and constraints. Therefore, scientists in the artificial 

intelligence discipline concerned with machine learning can find interest in this work. 

1.7 Thesis organization 

In this chapter we provided a brief introduction of the problem and the motivation behind 

it. Characteristics of the proposed solution were identified and a preliminary discussion 

of our contribution took place. A short description of the remaining chapters follows: 

Chapter 2. Background work related to this thesis is introduced. The general framework 

of data mining and some challenging tasks within its community are described. As the 

chapter progresses so does the depth of analysis focusing on methodologies closely 

related to our approach. Throughout the literature review the reader can see where our 

work fits with respect to existing methods and categories. 
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Chapter 3. The purpose of this chapter is twofold, namely to discuss the concerns and 

limitations of the research presented in chapter 2, and to build our model based on those. 

Some additional existing research such as neuro-fuzzy techniques is reserved for this 

chapter rather than the previous one, due to its direct relation to our model. Theoretical 

justification of our model is provided, as expressed through its potential modeling and 

control capabilities. 

Chapter 4. This chapter presents the fuzzy membership functions used to model similarity 

within various geographic information dimensions (attributes). Explanation of the chosen 

functions takes place. Also, the training process based on progressively increasing 

complexity is discussed. Furthermore, the framework where a more simple function acts 

as approximation for more complex ones is described. 

Chapter 5. Fuzzy functions can model user similarity to some degree, but cannot adjust to 

local unexpected behavior. Therefore, we developed a customized radial basis neural 

network to capture errors from the previous process. Specific properties of the networks 

are discussed in this chapter, limitations of current networks are presented and solutions 

to address them are shown. Thus, a novel multi-scale network is developed to facilitate 

our needs. 

Chapter 6. Following the fuzzy functions and the neural network of the previous two 

chapters, chapter 6 shows how these are combined to form our neuro-fuzzy system. 

Chapter 7. This chapter provides evidence of the benefits produced by our approach. 

Statistical testing, functionality examples, and accuracy assessment are presented in this 

section, demonstrating that our system outperforms existing techniques. 

Chapter 8. Major findings, a brief summary and future directions are outlined. 
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Chapter 2 

Literature review 

The approach employed in this thesis is the result of a convergence of influences from a 

number of different fields. The goal of this chapter is to review the pertinent literature 

from these diverse fields and to provide the necessary background for the remainder of 

the work. 

Traditionally analysts have performed the task of extracting useful information 

from recorded data. As datasets have grown in size and complexity there has been an 

inevitable shift away from direct hands-on data analysis towards indirect, automatic 

techniques using more complex, sophisticated tools. Modern technologies of computers, 

networks, and sensors have made data collection and organization an almost effortless 

task. However, the captured data needs to be converted into information and knowledge 

to eventually become useful. Data mining is the entire process of applying computer-

based methodologies, including new techniques for knowledge discovery, on data. 

Here we should mention that there is no clear difference between mining and 

information retrieval when multimedia data is dealt with (Boca Raton, 1999). As cited in 

(Natsev et al., 2004) "applications requiring content-based querying and searching of 

images abound and can be found in a number of different domains that include data 

mining...". So from the above we can see that the traditional line separating data mining 

and information retrieval does not exist any more. For the purposes of this review we use 

the term "data mining" as an umbrella incorporating some well-known traditional mining 

tasks such as pattern identification, and our task of intelligent information extraction. 
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Therefore we begin this review with a short introduction to data mining and its multi-

disciplinary history. Major tasks performed within data mining are introduced and our 

method is categorized among them. A discussion on data mining progress on 

geographical datasets is offered. Key algorithms in machine learning are outlined and a 

detailed description of the inductive and deductive learning approaches is presented 

followed by a classification of our algorithm among these approaches. We focus on 

nearest neighbor techniques and its variants and we discuss the variety of similarity 

functions they employ. We also give a brief literature review on user preference learning. 

This chapter does not provide details on all the background material used but 

discusses broad-spectrum research that supports most of the later work. Background 

material specific to particular proposed methods will be presented in later chapters. 

Examples include a detailed comparison of selected techniques that led to the design of 

our system (Chapter 3), and an in depth look of Radial Basis Function neural networks 

(Chapter 5). 

2.1 Data mining and knowledge discovery in databases 

In recent years an explosive growth of many business, government and scientific 

databases is notable. This increase of data availability has far outpaced the ability to 

interpret and digest this data creating the need for advanced tools and techniques for 

automated and intelligent analysis. Development of such tools and methods is the subject 

of the rapidly growing field of knowledge discovery in databases (KDD). 

The terms KDD and data mining are often used interchangeably. Additional terms 

used include knowledge extraction, information discovery, exploratory data analysis, 
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information harvesting and unsupervised pattern recognition. These terms can be 

characterized by the following (Dunham, 2002): 

• Knowledge discovery in databases is the process of finding useful information 

and patterns in data. 

• Data mining is the use of algorithms to extract the information and patterns 

derived by the KDD process. 

According to (Fayyad et al., 1996) the KDD process is composed of the following 

five steps shown in figure 2.1. 

Initial Target Preprocessed Transformed Model Knowledge 
data data data data 

Figure 2.1: Knowledge discovery process 

Selection: In this first step the data needed for the data mining process is obtained 

from many different and heterogeneous sources. These sources might collect data from 

various databases, files, and non-electronic sources. 

Preprocessing: The data to be used by the process may have incorrect or missing 

data. There may be anomalous data from multiple sources involving different data types 

and metrics. Many different activities might be performed at this stage. Erroneous data 

may be identified and removed, whereas missing data must be supplied or predicted. 

Transformation: At this step, data from different sources are converted into a 

common format for processing. Some data may be encoded or transformed into more 

usable formats. Data reduction may be used to decrease the number of possible data 

values under examination. 
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Data Mining: This step applies algorithms to the transformed data to generate the 

desired results. Our algorithm falls in this category. 

Interpretation/evaluation: Various visualization and GUI strategies are used at 

this last step. This is an important step because the usefulness of the results obtained 

through the data mining is dependent on it. 

2.2 Data mining multi-disciplinary history 

The current evolution of data mining algorithms is the result of years of influence from 

different disciplines. A major trend in the database community is to combine results from 

these seemingly different disciplines into one unifying algorithmic approach. This is the 

underlying idea of our approach as well so it is interesting to examine how data mining 

evolved through the years. The extensive variety of data mining problems combined with 

different research fields often leads to different perspectives based on the background of 

the researcher. We may find that similar problems and sometimes even similar solutions 

are described differently. For example, statisticians often raise concerns over the use of 

approximations with results being generalized where they should not be. Database 

researchers may doubt the efficiency of AI algorithms, especially in large datasets. 

Information retrieval scientists may complain about the lack of applicability of data 

mining algorithms in textual databases since they concentrate on numeric values. 

Table 2.1 (Dunham, 2002) shows developments in the areas of Artificial 

Intelligence (AI), Information Retrieval (ER), Databases (DB) and Statistics (Stat) leading 

to the current view of data mining. For an extended review of the statistical methods 

developed over the past 40 years and their contribution to KDD the reader is advised to 

check (Elder and Pregibon, 1996). 

23 



Time 

Late 1700s 

Early 1900s 

Early 1920s 

Early 1940s 

Early 1950s 

Early 1950s 

Late 1950s 

Late 1950s 

Early 1960s 

Early 1960s 

Mid 1960s 

Mid 1960s 

Late 1960s 

Early 1970s 

Mid 1970s 

Late 1970s 

Late 1970s 

Early 1980s 

Mid 1980s 

Early 1990s 

1990s 

1990s 

Area 

Stat 

Stat 

Stat 

AI 

AI 

Stat 

AI 

DB 

Stat 

IR 

IR 

Stat 

DB 

IR 

AI 

Stat 

Stat 

AI 

AI 

DB 

DB 

DB 

Contribution 

Bayes theorem of probability 

Regression analysis 

Maximum likelihood estimate 

Neural networks 

Nearest neighbor 

Single link 

Perceptron 

Resampling, bias reduction, 

jackknife estimating 

ML started 

Batch reports 

Decision trees 

Linear models for classification 

Similarity measures 

Clustering 

Exploratory data analysis 

Relational data model 

SMART IR system 

Genetic algorithms 

Estimation with incomplete data 

(EM algorithm) 

K-means clustering 

Kohonen self-organizing map 

Decision tree algorithms 

Association rule algorithms 

Web and search engines 

Data warehousing 

Online analytic processing 

(OLAP) 

Reference 

(Bayes, 1763) 

(Fisher, 1921) 

(McCulloch and Pitts, 1943) 

(Fix and Hodges, 1951) 

(Floreketal., 1951) 

(Rosenblatt, 1958) 

(Feigenbaum and Feldman, 

1963) 

(Huntetal., 1966) 

(Nilsson, 1965) 

(Codd, 1970) 

(Salton, 1971) 

(Holland, 1975) 

(Dempster et al., 1977) 

(Kohonen, 1982) 

(Quinlan, 1986) 

Table 2.1: Time line of data mining development 

24 



2.3 Data mining tasks and similarity learning 

Data mining is one of the fastest growing fields in the computer industry. Once a small 

interest area within computer science and statistics, it has quickly expanded into a field of 

its own. One of the great strengths of data mining is reflected in the wide range of 

methodologies and techniques that can be applied to a host of problem sets. It is a 

cooperative effort of humans and computers. Best results are achieved by balancing the 

knowledge of human experts in describing problems and goals with the search 

capabilities of computers. 

In practice, the two "high-level" primary goals of data mining tend to be 

prediction and description (Fayyad et ah, 1996; Dunham, 2002; Kantardzic, 2002). 

Prediction involves using some variables or fields in the dataset to predict unknown or 

future values of other variables of interest. Description focuses on finding human-

interpretable patterns or relationships in the data. Thus we can categorize data mining 

activities into one of the two categories: 

• Predictive data mining which produces the model of the system described by the 

given dataset, or 

• Descriptive data mining that produces new, non-trivial information based on the 

available dataset. 

Several grouping schemas have been proposed in the literature, especially in books and 

introductory tutorials on data mining. There is a significant overlap between them and 

sometimes their distinction is based solely on terminology. For our review we use the 

rather complete task representation of figure 2.2 as presented in (Dunham, 2002). 
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Figure 2.2: Data mining primary goals and tasks 

2.3.1 Predictive tasks 

The following tasks are categorized as predictive based on their functionality: 

classification, regression, time series analysis and prediction. Here we should mention 

that borderlines along these tasks are not crisp since one task might borrow techniques 

developed for another. Nonetheless, each of the four tasks has its distinct methodologies 

so this categorization can hold true. 

Classification is learning a function that maps a data item into one of several 

classes (Hand, 1981; Weiss and Kulikowski, 1991; McLachlan, 1992). It is often referred 

to as supervised learning because the classes are determined before examining the data. 

Pattern recognition is a type of classification where an input pattern is classified into one 

out of several classes based on its similarity to these predefined classes. For example in 

face recognition a feature vector is produced describing facial characteristics (distance 

between eyes, size and shape of mouth, shape of head, etc.). This is then compared to the 

entries in a database to see if there is a successful match. 

Regression is used to map a data item to a real-valued prediction value. This is 

done by learning a function that does this mapping. Regression assumes that the target 
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data fit into some known type of function (e.g. linear, logistic, etc.) and attempts to 

identify the best function that models the given data. This identification is done using 

error analysis techniques. An example of regression is the calculation of recovery 

probability of a patient based on a set of diagnostics. 

Time series analysis examines the value of an attribute as it varies over time. 

There are three basic functions performed. Distance measures can be used to evaluate 

how similar different time series are. Furthermore, the time series can be examined to 

determine its behavior based on its structure. Finally data from historical time series can 

be used to allow prediction of future values. 

Prediction allows the estimation of future states based on past and current data. It 

has many real-world data mining applications such as flooding, speech recognition and 

earthquake prediction. Even though prediction can be seen as a type of classification or 

sometimes time series analysis or application of regression methods, it should be 

recognized as a distinct task since other techniques may be used as well. 

2.3.2 Descriptive tasks 

In the descriptive tasks the properties of the data are examined as a way to explore the 

properties themselves and not to predict new properties. Clustering, summarization, 

association rules and sequence discovery are usually viewed as descriptive in nature. 

Clustering is a common descriptive task where one seeks to identify a finite set of 

categories or clusters to describe the data. It is similar to classification except that the 

groups are not predefined but rather defined by the data alone. Therefore, clustering is 

alternatively portrayed as unsupervised learning or segmentation. Clustering is usually 

accomplished by determining the similarity among the data based on predefined 
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attributes. The most similar data are grouped together. The clusters may be mutually 

exclusive and exhaustive or consist of a richer representation such as hierarchical or 

overlapping categories. A clustering example in KDD would be the identification of sub-

populations of consumers in marketing applications. 

Summarization involves methods for finding a compact description for a subset of 

data. It is also called characterization or generalization. It extracts or derives 

representative information from a database. Summarization techniques are often applied 

to interactive exploratory data analysis and automated report generation. A simple 

example would be the representation of fields based on their mean and standard 

deviation. 

Association rules refer to the data mining task of uncovering relationships among 

data. It is also called link analysis, affinity analysis or dependency modeling. They try to 

find a local model that describes significant dependencies between variables or between 

the values of a feature in the dataset or in parts of it. A frequent application of this task 

involves its use in the retail sales community, for example to identify items that are 

purchased together. 

Sequence discovery is used to determine sequential patterns in data. These 

patterns are based on a time sequence of actions. They are similar to association rules in 

the sense that data are found to be related, but the relationship is based on time. An 

example would be the discovery of sequence within which goods are purchased (e.g. 

people who purchase CD players may purchase Audio CDs within one week). 
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2.3.3 Similarity learning within data mining 

The similarity learning task can utilize methods from the wide range of data mining tasks. 

Similarity learning involves the classification of an input into one of several classes, 

based on its similarity to these predefined classes. Several methodologies can be 

borrowed from classification, when the output of the similarity learning algorithm is 

discrete (i.e. categorical). If the output is continuous then regression techniques are more 

appropriate. These techniques are used to map a data item to a real-valued prediction 

value by learning a function that does this mapping. An important trend in recent years is 

the incorporation of temporal information in GIS. Time series analysis examines the 

value of an attribute as it varies over time, therefore useful techniques can be borrowed. 

The above tasks explicitly help in a similarity learning process. In addition to 

these there are some others that can optimize the learning process, without affecting the 

similarity learning per se. Association rules is one such example, where relationships are 

uncovered among data. Such analysis can help for example to learn dependencies 

between successive similarity queries, in other words project future queries. Clustering 

can also contribute by determining the similarity among the data based on predefined 

attributes. It can be used as a pre-processing step. Summarization techniques are often 

applied to interactive exploratory data analysis and automated report generation and can 

be integrated with the input/output of a similarity learning algorithm, but not the learning 

process itself. 
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2.4 Geographic data mining 

Data mining techniques have been applied to a variety of real-life applications and new 

applications continue to drive research in the area. To date most data mining research 

concentrates on relational and transactional data. Despite the importance and proliferation 

of geospatial datasets, work in this field has appeared only recently (Gunopulos, 2001). 

Nonetheless, temporal and spatial data mining continue to grow rapidly as exciting 

subfields of data mining. There are many reasons for this, including the following 

(Roddick et al., 2001): 

• Growth in the volume of data being collected and requiring analysis. 

• Increase in data availability through the Internet and as a result of electronic 

commerce and inter-enterprise applications. 

• Recognition of the value and commercial advantage that the results of geographic 

data mining can provide. 

• The realization that temporal and spatial data are special and need to be explicitly 

accommodated. 

In the next section we examine the distinction of geospatial data from others for data 

mining purposes. This distinction is important as it propagates to our similarity learning 

algorithm datasets and requirements. We also provide a brief summary of current 

geospatial mining issues under investigation, where the lack of research in similarity 

learning algorithms tuned for geospatial data is notable. 

2.4.1 Special characteristics of geographic data mining 

The recent digital geographic data explosion is not different from other areas such as 

marketing, biology and astronomy. But is there a difference between geographic data 
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mining and data mining in other fields? Several papers were recently published 

addressing this issue (Yuan et a]., 2001; Miller and Jiawei, 2001; Gahegan, 2001) and are 

used in the following review. 

Many of the challenging issues arise from the fact that geography is an integrative 

discipline. Geographic data span a wide range of perspectives and interests from the 

social to the physical aspects of the problem. This mixture of perspectives coupled with 

the growing infrastructure for gathering information pose the following obstacles: 

Complexities associated with data volume. Like many disciplines where data mining is 

applied, geography is rich in data. Many of the large consumer, medical and financial 

transaction databases now being constructed contain spatial and temporal attributes and 

hence offer the possibility of discovering or confirming geographical knowledge (Miller 

and Jiawei, 2001). Explicitly, geographical datasets of terabyte proportions are now in 

existence and traditional retrieval methods have a hard time to keep up. 

Complexities associated with the domain itself. Interesting and relevant signals in data 

are often entirely hidden by stronger patterns that must first be removed. Many of these 

complexities originate from spatial and temporal codependence that occurs across a 

variety of scales and from a variety of causes (Roddick and Lees, 2001). For example, the 

cyclic nature of many geographical systems (daily, seasonal, annual, circulatory, El-Nino, 

sunspot) imposes a heavy signal on data that will overshadow more localized variance. 

Complexities caused by local variation. Earth systems are so intrinsically 

interconnected that it is difficult to isolate an analysis conducted on some part of a system 

from the affects of other unmodeled aspects. Measured geographic attributes often exhibit 

the properties of spatial dependency and spatial heterogeneity. The former refers to the 
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tendency of attributes at some locations in space to be related; typically, these are 

proximal locations. The latter refers to the non-stationarity of most geographic processes, 

meaning that global parameters do not reflect well the process occurring at a particular 

location. While these properties have been traditionally treated as nuisances, 

contemporary research fueled by advances in geographic information technology 

provides tools that can exploit these properties for new insights into geographic 

phenomena (e.g. Anselin, 1995; Brunsdon et al., 1996; Fotheringham et al., 1997; Getis 

and Ord, 1992; Getis and Ord, 1996). Some preliminary research in geographic 

knowledge discovery suggests that ignoring these properties affects the patterns derived 

from data mining techniques (Chawla et al., 2001). More research is required on scalable 

techniques for capturing spatial dependency and heterogeneity in geographic knowledge 

discovery. 

Complexity of spatiotemporal objects and patterns. Another unique aspect of 

geographic information in knowledge discovery is the complexity of spatiotemporal 

objects and patterns. In most non-geographic domains, data objects can be meaningfully 

represented discretely within the information space without losing important properties. 

This is often not the case with geographic objects: size, shape and boundaries can affect 

geographic processes, meaning that geographic objects cannot necessarily be reduced to 

points or simple line features without information loss. Relationships such as distance, 

direction and connectivity are also more complex with dimensional objects (Egenhofer 

and Herring, 1994; Okabe and Miller, 1996; Peuquet and Zhang, 1987). 

Transformations among these objects over time are complex but information-bearing 

(Egenhofer and Hornsby, 2000). The scales and granularities for measuring time can also 
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be complex, preventing a simple "dimensioning up" of space to include time (Roddick 

and Lees, 2001). Developing scalable tools for extracting patterns from collections of 

diverse spatiotemporal objects is a critical research challenge. Also, since the complexity 

of derived spatiotemporal patterns and rules can be daunting, a related challenge is 

making sense of these derived patterns, perhaps through "raeta-mining" of the derived 

rules and patterns (Roddick and Lees, 2001). 

Complexities caused by data gathering and sampling. Although data are available in 

increasing volume, it is still often the case that we must resort to surrogates for the 

phenomena of interest, rather than direct measurements. Furthermore, data are often 

provided in spatially and temporally aggregated forms that themselves give rise to many 

interpretation problems (e.g. in cluster detection algorithms). 

Difficulty in formalizing the geographic domain. One of the main difficulties with 

knowledge discovery activities within the geographical domain is the complex 

conceptualization necessary. There is, as yet, no universally accepted conceptual model 

of geography (e.g. Goodchild, 1992), and the models that are currently implemented in 

commercial GIS vary significantly one from another, often in quite fundamental, 

philosophical ways. This leads to three distinct problems (Yuan et al., 2001): 

a. Data are often intrinsically non-commensurate; they cannot be directly compared 

or combined. 

b. It is difficult to apply formal geographical knowledge to the process of knowledge 

discovery, since such knowledge is not readily available. 

c. When new knowledge is uncovered it is difficult to represent that knowledge 

formally. 
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To summarize, the development of data mining and knowledge discovery tools 

must be supported by a solid geographic foundation that accommodates the unique 

characteristics and challenges presented by geospatial data. The emergence of national 

and global geospatial data infrastructures to date has been ad-hoc. Contributed data has 

not been coupled with contributed tools for data analysis and modeling. Data mining and 

knowledge discovery methods have not been implemented to deal effectively with 

geospatial data, whose sensitivities are known widely to geographers. As our 

understanding of the nature of geographic information and its sensitivities to spatial, 

temporal and spectral measurement improve, it is probable that refinement of data mining 

algorithms will prove insufficient; therefore design of new procedures and knowledge 

validation procedures will begin to emerge. We see intelligent information extraction as 

a new important issue within geospatial data mining. Context-specific knowledge 

expressing user/application preferences should be incorporated using intelligent systems. 

2.4.2 Tasks within geographic data mining 

Over the past four years there has been a substantial increase in temporal, spatial and 

spatio-temporal data mining applications and a variety of papers have been published. In 

this section we introduce some general categories of tasks performed within geographic 

data mining. Despite much research stretching across these categories, their 

categorization has been retained for continuity reasons. This section provides a useful 

guide rather than an exhaustive classification. According to (Roddick and Spiliopoulou, 

1999; Roddick et al., 2001) there are some general areas of interest: 

• Frameworks. This category includes research dealing primarily with models for 

spatial and temporal knowledge discovery. 
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• Temporal and spatial association rule mining. This category combines 

contributions to the problem of discovering association rules from temporal or spatial 

data. 

• Discovery of temporal patterns. This research is concerned with the discovery of 

patterns or trends over time. The data itself need not be temporal but ordering is 

required. 

• Time series mining. This category includes research on occurrence of events over 

time. 

• Discovery of causal and/or temporal rules. This category contains works that 

search for temporal relationships between (sets of) events. 

• Spatial data mining. Relevant work to spatial and geo-referenced data mining is the 

subject of this general task category. 

• Spatial and spatio-temporal clustering techniques. This category includes 

research on algorithms or frameworks for spatial and spatio-temporal clustering. 

• Spatio-temporal data mining. This category contains works that accommodate the 

special semantics of both space and time. 

An extensive list of papers classified in the above categories is presented in (Roddick et 

al, 2001). Similarity learning falls into the last category, that of spatiotemporal data 

mining. We do not discover patterns from data in the strict sense, but we discover user 

preference patterns when requesting data. Spatial similarity preference tied together with 

temporal and other thematic attributes is a challenging task that a complete preference 

learning algorithm for geospatial information should address. 
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2.5 Machine learning and similarity learning 

Machine learning as a combination of artificial intelligence and statistics has proven to be 

a fruitful area of research, spawning a number of different problems as well as algorithms 

for their solution. These algorithms vary in their goals, training datasets, learning 

strategies and representation of data (Kantardzic, 2002). Similarity learning is one of 

many machine learning applications in databases. Before we discuss some representative 

algorithms we provide an insight to a machine learning approach based on the different 

types of learning systems and we position our similarity learning task within them. 

2.5.1 Positioning similarity learning in the general machine learning categories 

If we relate the problem of learning from data to the general notion of inference in 

classical philosophy, two main phases are identified: 

i. Induction: Learn or estimate unknown dependencies in the system from a given 

training set. 

ii. Deduction: Use the above dependencies to predict new outputs for future input 

values in the system. 

The two phases are shown graphically in the next figure. 

Induction / 

Training Data 

A priori knowledge 

i r 

Estimated Dependencies 

\ Deduction 

Predicted Output 

Figure 2.3: Types of inference: induction and deduction 
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Induction can be seen as the progress from particular cases (training data) to a 

general mapping or model. On the other hand, deduction starts with a general model and 

using given input values it progresses to particular cases of output data. Clearly, 

similarity learning is an inductive task since the model is not known in advance; it is 

identified through the training process. 

There are two types of inductive learning methods, the supervised and the 

unsupervised approaches. Supervised learning is used to estimate an unknown 

dependency from known input-output samples. A supervised approach learns by 

example. A training input should be provided together with some correct answers 

(output). The term "supervised" denotes that the output values are known, in essence 

provided by a teacher. Based on its ability to handle the provided input-output dataset the 

goal for the model is to learn the correct behavior and be able to expand (generalize) to 

any potential entry. A schema of supervised technique is shown in figure 2.4. 
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Learning 
System 
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Calculated Response Y" 

Propagate Error Signal 

Figure 2.4: Supervised learning 

Under the unsupervised learning scheme only input values are provided to the 

learning system. There is no notion of the output during the learning process. 

Unsupervised learning does not require a teacher; the learner forms and evaluates the 
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model on its own. The goal is to uncover the structure of the input data. This happens 

after the system adapts to the regularities of the input data. It forms internal 

representations for encoding features of the input examples either in a local or a global 

level. Clustering, summarization and association rules are typical unsupervised tasks. 

Figure 2.5 shows a simplified version of an unsupervised learner. 

Environment X 
• • -

Figure 2.5: Unsupervised learning 

Since most similarity learning algorithms learn from example they can be 

categorized as a supervised inductive task. The user is required to provide a similarity 

evaluation to a presented example, acting as a teacher for the algorithm. Popular machine 

learning methods that could be used for supervised learning include neural networks, 

decision trees, instance-learners, genetic algorithms and others. 

2.5.2 Machine learning methods and their applicability for similarity learning 

In this section we briefly present some popular machine learning methods and discuss 

their applicability for our similarity learning task. 

2.5.2.1 Decision trees 

An efficient method for predicting classifiers from data is to generate decision trees. The 

decision tree representation is a widely used logic method. In the machine learning and 

applied statistics literature a large number of decision-tree induction algorithms can be 

found. They belong to the supervised learning category since they create trees from a set 

of input-output samples. 
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A typical decision tree learning system adopts a top-down strategy that searches 

for a solution in a part of the search space. It is a flow-chart type structure, where each 

internal node denotes a test on an attribute, each branch represents an outcome of the test, 

and leaf nodes represent classes or class distributions (Han and Kamber, 2001). In order 

to classify an unknown sample the attribute values of the sample are tested against the 

decision tree. A path is traced from the root to a leaf node that holds the class prediction 

of that sample. Therefore decision trees can be easily converted to classification rules. 

There are many advantages to the use of decision trees for classification. They are 

easy to use and efficient. Generated rules are easy to interpret and understand. They scale 

well for large databases because the size of the tree is independent of the database size 

(Dunham, 2002). On the other hand disadvantages also exist, with the most important one 

from the similarity learning perspective being their inability to handle easily continuous 

data. In order to do so these attribute domains must be divided into categories. The 

domain space is divided into hyper-rectangles. Handling missing data is difficult and 

overfitting may occur. The latter can be overcome via tree pruning. Finally another 

important drawback is the lack of incorporation of correlations among attributes in the 

decision tree process. 

Some well-known examples of decision trees include the ED3 algorithm (Quinlan, 

1986), the C4.5 (Quinlan, 1993), which extends the domain classification from 

categorical attributes to numeric ones, and PRISM (Cendrowska, 1987) that allows 

individual testing of each attribute to support an attribute importance ranking. Other types 

of trees are the classification and regression trees (CART) and the scalable parallelizable 

induction of decision trees algorithm, also known as SPRINT. 
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2.5.2.2 Genetic algorithms 

Genetic algorithms are derivative free, stochastic optimization methods based loosely on 

the concepts of natural selection and evolutionary processes. The basic idea of genetic 

algorithms was developed by a number of biologists that used computers to perform 

simulations of natural genetic systems. In general, genetic learning follows these steps. 

An initial population is created consisting of randomly generated rules. Each rule can be 

represented by a string of bits. As a simple example, suppose that samples in a given 

training set are described by two boolean attributes Ai and A2, and that there are two 

classes, C, and C2. The rule "IF A, AND NOT A2 THEN C2" can be encoded as the bit 

string "100", where the two leftmost bits represent attributes Ai and A2, respectively, and 

the rightmost bit represents the class. Similarly, the rale "IF NOT A, AND NOT A2 THEN 

CT can be encoded as "001". If an attribute has k values where k> 2, then k bits may be 

used to encode the attribute's values. Classes can be encoded in a similar fashion. 

Based on the notion of survival of the fittest, a new population is formed to 

consist of the fittest rules in the current population. Typically, the fitness of a rule is 

assessed by its classification accuracy on a set of training samples. The new population 

(or generation) is created by applying genetic operators such as crossover and mutation. 

In crossover, substrings from pairs of rules are swapped to form new pairs of rules. In 

mutation, randomly selected bits in a rule's string are inverted. 

Genetic algorithms have been used in data mining for classification, clustering 

and generating association rules as well as other optimization problems. Other research 

areas include scheduling, robotics, economics, biology and pattern recognition. Genetic 

algorithms are popular because they do not depend on functional derivatives, they are 

easily parallelizable and are applicable to both continuous and discrete data. However, 
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they suffer some shortcomings that would significantly impact their selection for a 

similarity learning task: 

• They are complicated to understand and to explain to end users, therefore it is 

difficult to do an error assessment when the model is not performing well. 

• Crossover and mutation are hard to determine exactly how to perform them. 

• Best fitness function is another difficult and challenging task. 

• The coding of the problem often moves the algorithm to operate in a different space 

than the one of the problem. 

For more information on genetic algorithms a comprehensive book is (Goldberg, 1989). 

2.5.2.3 Case-based reasoning 

Case-based reasoning methods do not measure similarity between cases numerically. 

Instead they form a model in memory of the relationships between examples. These 

relationships may either be induced (Kolodner, 1984; Lebowitz, 1987) or supplied by 

expert users. New examples are compared to stored ones by determining how closely 

they match these relationships. Case-based reasoning has been used extensively in the 

cognitive science community. Their underlying basis is that humans try to recall past 

cases when solving new problems. Therefore case-based reasoning is considered a 

plausible model for this process (Bareiss and Porter, 1988). Examples of this method 

include CYRUS (Kolodner, 1984), UNIMEM (Lebowitz, 1987) and PROTOS (Bareiss 

and Porter, 1988). The first two infer generalization hierarchies from examples. The third 

one maintains a complex set of user-supplied relationships that are continually refined as 

new examples are added. Even though we did not choose to follow a case-based 

reasoning approach it would be interesting in the future to investigate possible 

applications to similarity learning. 
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2.5.2.4 Regression 

The prediction of output values can be modeled by a statistical technique called 

regression. The objective of regression analysis is to determine the best model that can 

relate the output variable to the various input variables. If we would like to formalize that 

then the regression analysis is the process of determining the dependency of the output Y 

to a set of inputs X. Y is usually called the response output or the dependent variable and 

Xs are called inputs, regressors, explanatory variables or independent variables. Common 

reasons for using regression techniques include the following (Kantardzic, 2002): 

• The inputs are less expensive to measure than the output. 

• The values of the inputs are known before the output. 

• Controlling of the input can predict behavior of outputs. 

Need for identification of casual links between some inputs and the output. 

Linear regression with one input variable is the simplest form of regression. It 

models a random variable 7 as a linear function of another random variable X. 

Mathematically the regression function is expressed as: 

Y = a+bX (2.1) 

Parameters a, b are the regression coefficients and are usually calculated based on some 

given points of X,Y. A least squares solution takes place and tries to minimize the 

difference between the actual data points as given by the sample set and the calculated 

ones from the regression function. 

Multiple linear regression takes place when the output variable is related to more 

than one input. In that case the regression function would be: 

Y = a + b/Xi + b2X2 + ...+ bnXn (2.2) 
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for n number of input variables. The solution follows the same least squares minimization 

process as before. However, the solution is going to be a (hyper) plane instead of a line. 

Linear regression techniques, while easy to understand and implement they are 

not applicable to most of the complex data mining applications. They do not work well 

with non-numeric data. They also assume that the underlying relationship between 

input(s) and output is linear which of course might not be the case. 

Non-linear regression takes place if the inputs in the regression function are 

modified by a nonlinear function (e.g. exponential). The regression function would be: 

Y= a +f,{Xl) +f2(X2) + ...+/„(*„) (2.3) 

where f, is the function being used to transform the predictor. Examples of these 

advanced regression models include polynomials functions and neural network 

techniques. The latter is the method of choice for our similarity learning algorithm. We 

treat our problem as a function-approximation one based on the training input provided 

by the user and we follow regression-based training methods. For a more detailed 

discussion on the selection of neural networks and other functions (large scale fuzzy 

membership ones) please see chapter 3 and chapter 5 where a direct comparison with our 

proposed method is presented. If the reader is interested in an in depth analysis of 

regression models a valuable starting book would be (Hastie et ah, 2001). 

2.6 Nearest neighbor in databases and machine learning 

The existing methodology used to retrieve information from geospatial databases is the 

nearest neighbor (NN) one. In the following sections we explain how the NN operates 

and present popular distance functions used in the database community for information 

extraction. We also discuss some advanced NN methodologies in machine learning, the 
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Instance-Based (IB) family of algorithms. The main distinction between NN as applied in 

databases and EB is that the NN algorithm keeps all the examples in memory, since each 

example can be seen as a unique class. In IB approaches each class is described by more 

than one sample, therefore some generalization methods can be applied. 

2.6.1 Nearest neighbor and K-nearest neighbor 

The nearest neighbor method originated in statistics. It was first considered for rule 

production by Fix and Hodges (1951), who performed an initial analysis of the properties 

of /c-nearest neighbor systems, and established the consistency of the method as k varies 

from one to infinity. They also numerically evaluated the performance of ^-nearest 

neighbor for small samples, under the assumptions of normal distribution statistics (Fix 

and Hodges, 1952). It was subsequently adopted as a Bayesian approach to non-

parametric classification for two-class problems (Johns, 1961), and has been widely used 

in the field of pattern recognition since 1963 (Kanal, 1963). 

A nearest neighbor learner uses a metric that measures the distance between a 

new example and a set of exemplars in memory. The new example is then classified 

according to the class of its nearest neighbor. A pure nearest neighbor system stores all 

examples in memory verbatim, which is the case for database information retrieval. It 

then classifies new examples by finding the most similar case in memory and adopting its 

class. A distance function is used to determine similarity. For numeric attributes this is 

usually based on Euclidean distance, where each example is treated as a point in an n-

dimensional feature space. It assumes that for a given point in the feature space the 

surrounding area will share the same class. The Euclidean function further assumes that 
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all features are equally important, and so share the same scale in feature space, and that 

this scale is linear along each axis. 

Symbolic features are more problematic as they do not fit the Euclidean feature 

space model. To overcome this, similarity between symbolic features is determined by 

counting the matching features. This is a much weaker function as there may be several 

concepts based on entirely different features, all of which match the current example to 

the same degree. For domains containing a mixture of numeric and symbolic features the 

Euclidean distance function is adopted, with the distance between two symbolic values 

trivialized to zero if the features are the same and one if they are not. This mismatch 

between Euclidean feature space and symbolic features means that pure nearest neighbor 

systems usually perform better in numeric domains than in symbolic ones. 

A successful variation of nearest neighbor is ^-nearest neighbor (Kibler and Aha, 

1987). This is an alternative method mostly developed to address noise. The most popular 

class of the k nearest examples is used for prediction. This prevents a single noisy 

example from incorrectly classifying the new one, and has met with much success. Note 

that this variation of the NN does not apply in information retrieval from databases, due 

to the fact that each example is considered a separate class as we discussed previously. A 

problem, however, is determining the value of k; the more noise included in the input set, 

the larger k should be. As the system does not have this information a priori, a popular 

method is to use cross validation. The user trains and then tests the system using a variety 

oik values, and the one that produces the best result is subsequently adopted. 

45 



2.6.2 Nearest neighbor similarity functions used in databases 

The approach described in this thesis can be seen as a nearest neighbor approach with the 

distance functions substituted by a complex neuro-fuzzy system. Therefore the following 

review focuses on existing NN techniques and their corresponding distance functions and 

is based on previous reviews (Martin, 1995; Kibler and Aha, 1987; Kantardzic, 2002). 

The choice of distance function to calculate the NN can influence the bias of a 

learning algorithm. Bias is defined as a rule or method that causes an algorithm to choose 

one generalized output over another (Mitchell, 1980). In order for a learning algorithm to 

be able to generalize, a bias must exist. The problem is that there is no algorithm that 

would generalize better than others on all possible problems (Schaffer, 1994). 

Subsequently no distance function is going to be better than others in all applicable 

problems. This led to a variety of functions over the years, some more general, some 

others more application specific. The most popular ones are presented in table 2.2. 

Distances are often normalized by dividing the distance for each attribute by the 

range (i.e. maximum - minimum). To avoid outliers it is also common to use standard 

deviation or to reduce the range by removing the highest and lowest percent of the data 

under consideration for defining the range. In addition to normalization, attribute weights 

(e.g. see quadratic distance metric) and other weighting schemes have been incorporated 

in the learning process (e.g. Wettschereck et al., 1995; Atkeson et al., 1997). 

Additional distance functions include the context-similarity measure (Biberman. 

1994), the contrast model (Tversky, 1977) and the hyper-rectangle distance functions 

(Salzberg, 1991; Domingos, 1995). Popular similarity measures for documents are the 

cosine measure, the Pearson correlation and the Jaccard similarity function. For nominal 

attributes the Value Difference Metric (VDM) was introduced by Stanfill and Waltz 
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(1986) and variants were developed later (Cost and Salzberg, 1993; Rachlin et al., 1994; 

Domingos, 1995). In (Wilson and Martinez, 1997) three more functions were introduced, 

namely the Heterogeneous VDM, the Interpolated VDM and the Windowed VDM. 

Name Equation 

Minkowsky (Batchelor, 1978) 

Euclidean 

(Created for r=2 at Minkowsky function) 

Manhattan or city-block 

(Created for r=\ at Minkowsky function) 

Quadratic 

(Created by adding a weight matrix to the 

Euclidean function) 

Mahalanobis (Nadler and Smith, 1993) 

Camberra 

Chebychev 

Correlation 

Chi-square (Diday, 1974) 

Table 2.2: Popular distance functions and their equations 

The x,y are two input vectors, one from the stored instance and the other from the one 

waiting to be classified and m is the number of input variables. Matrices Q and V are of 

size mxffl and they represent a problem-specific positive definite weight matrix and a 
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covariance matrix, respectively. Variables x,, y; are the average values for attribute i 

occurring in the training set. Variable sumj is the sum of all values for attribute i occurring 

in the training set and sizex is the sum of all values in the vector x. 

2.6.3 Nearest neighbor in machine learning (instance-based systems) 

Nearest neighbor algorithms, also known as instance-based (IB) in machine learning 

literature, have as their goal to learn new concepts by storing past cases in such a way 

that new examples can be directly compared with them. On the basis of this comparison 

the system decides the class of the new example. Once again, we should emphasize here 

that the methods presented below go beyond the applicability to information extraction 

from databases due to multi-sample existence per class. It is interesting though to see the 

broader picture for NN methods and more specifically some drawbacks that are identified 

through this more detailed analysis that propagate to the typical NN approach. These 

drawbacks are further discussed in chapter 3, where we propose our novel model. 

Nearest neighbor methods regained popularity after Kibler and Aha (1987) 

showed that simple nearest neighbor models could produce excellent results for a variety 

of domains. They tested three simple algorithms, named PROXIMITY, GROWTH, and 

SHRINK. All three used a normalized Euclidean distance function to classify each new 

example, with the class being decided according to that of the single nearest neighbor. 

PROXIMITY is a pure nearest neighbor algorithm, retaining all examples and 

using an unweighted Euclidean distance function to perform classification. This system 

gave the best performance of the three. GROWTH accepts examples incrementally, and 

only stores those that the current exemplar database misclassifies. This reduces the 

number of examples stored by up to 80% with only a small reduction in classification 
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accuracy. SHRINK accepts all exemplars at first, and then weeds out those that the rest of 

the database classifies correctly. This algorithm produces impressive compression of the 

exemplar database (up to 80%), but at the expense of classification accuracy. 

Kibler and Aha (1987) tested the above algorithms on several benchmark 

domains, and reported very good results for all of them. In particular, GROWTH 

produced excellent results for a relatively small final database. However, the results were 

misleading. A later study shows that the choice of domains for the initial study was 

fortuitous, and that in general performance of the three algorithms is much poorer than 

other classification methods (Aha, 1992). In comparisons with C4.5 (Quinlan, 1993), 

PROXIMITY performs quite well for four domains but very badly for another two, 

showing that the simple nearest neighbor approach has problems to overcome. A series of 

improvements was introduced in the algorithms H31 to IB5, showing how the standard 

Euclidean distance metric is inadequate in many domains. The aim of the study was to 

overcome five objections to nearest neighbor systems (Brieman et al., 1984), namely that: 

• they are expensive due to their large storage requirements; 

• they are sensitive to the choice of similarity function; 

• they cannot easily work with missing attribute values; 

• they cannot easily work with nominal attributes; 

• they do not yield concise summaries of concepts. 

Below follows a brief discussion on these experimental systems (FBI through IB5). 

IB1: nearest neighbor. FBI uses an Euclidean distance function that classifies 

according to the nearest neighboring example, saving all examples as they are introduced 

to it. The only variations from a pure nearest neighbor system such as PROXIMITY are 
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that attribute values are linearly normalized before examples are processed, and that 

missing values are handled by assuming that a missing feature is maximally different to 

that feature in all other examples. Like PROXIMITY, IBl performs well in four out of 

six of the domains tested, and very poorly on the other two. These two are characterized 

by noisy values, missing values, and irrelevant features. 

IB2: save only misclassified instances. IB2 differs from TBI in that it saves only 

instances that it misclassifies. This reduces the number of exemplars required by storing 

only a single exemplar for each important region of feature space, and proves to be an 

effective way to prune the exemplar database. Accuracy decreases because early in the 

learning process important examples may be discarded because there were not enough 

examples of conflicting classes to accurately portray the differences between the new 

example and the nearest neighbor. As the number of stored exemplars increases, the 

accuracy of the model improves, and so the system makes fewer mistakes. There are 

problems though when the input data is noisy. Because the classification of noisy 

examples is poor, IB2 is more likely to store them, leading to an exemplar database 

where a disproportionate number of the examples contain noise. Aha (1992) observed 

that the performance of IB2 degraded more sharply with increased noise than IBl, and 

that the amount of noise in the exemplar database containing noise was higher than the 

percentage of noise in the input data. This confirms that IB2's method of choosing which 

examples to store leads to a bias towards noisy examples. 

IB3: retain only good classifiers. Noisy exemplars will impact the performance of 

any system that does not detect them, because they will repeatedly misclassify new 

examples. EB3 overcomes this by pruning bad classifiers. It monitors the classification 
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performance of each exemplar to determine whether or not they should be used. A record 

is kept of the number of correct and incorrect classifications each exemplar makes. If the 

closest exemplar does not have an acceptable performance record, its statistics are 

updated but it is ignored in favor of the closest acceptable neighbor. IB3 bases this 

decision on the exemplar's performance relative to the observed frequency of its class. If 

an exemplar correctly classifies new examples to a significantly higher degree of 

accuracy than the observed frequency of its class, it is accepted for classification. If it 

classifies to a significantly lower degree, it is deleted from the database. This 

modification dramatically improves the performance of IB3, resulting in comparable 

performance to IBl in most domains, and improvements in two. Both storage 

requirements and the amount of noise in the database are substantially reduced compared 

to IBl andD32. 

IB4: weight attribute values. The Euclidean distance function works well for 

numeric domains where all attributes have similar relevance. In most domains this is not 

the case. The relevance of each attribute may be learned incrementally by dynamically 

updating feature weights. Aha (1992) proposes that these weights should be concept-

specific, in that an attribute may be important to one class but not to the others. IB4 

weights attributes dynamically, and performs much better than IBl, IB2 and IB3. In 

particular, the introduction of irrelevant attributes has very little effect on IB4 while for 

EB3 the exemplar database grows exponentially as the number of irrelevant attributes 

increases. 

IB5: handle novel attributes. IBl handles missing values by assuming maximal 

distance for an attribute if it is missing in either the new example or the exemplar being 
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tested. However, sometimes an attribute is missing because it is not relevant to the 

current example. Also, the value of an attribute may not be available when the first 

examples are being collected, but become so later. IB1 will incorrectly penalize those 

examples for which the attribute value was not available or not relevant. IB5 overcomes 

this problem by assuming that the distance between a missing and present attribute is 

zero. Therefore, sometimes-present attributes affect the distance function only when the 

value of that attribute is known for both examples. EB5 was tested using a domain that 

contained six boolean attributes, of which only one is relevant to classification. For the 

first 100 examples, the relevant attribute is missing, and so classification accuracy is 

approximately 50%. When the relevant attribute is added, IB5 quickly adapts to the new 

situation and classification accuracy improves. In contrast, IB4 reacts very slowly to the 

introduction of the new attribute. 

2.7 Preference learning approaches 

Since the goal of decision support systems is to assist users with making decision, it is 

especially important for them to accurately model the user preferences. The preferences 

of a user can be expressed in a variety of ways, either explicitly, for example in the form 

of preference statements, or implicitly through the way of acting in different situations. 

The problem of finding out about an individual's preferences, or about those of a group of 

individuals, is referred to as preference elicitation. This requires, among other things, 

models for the formal representation and methods for the (automatic) acquisition of 

preferences. Touching on various aspects of Artificial Intelligence, both theoretical and 

practical, preference elicitation is a recent and interesting research topic. 
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If no information is available at the start of interaction, preference elicitation 

techniques must attempt to collect as much information on user preferences as possible so 

that the systems can help users working toward their goals. Because user preferences are 

always incomplete initially, and tend to change in different contexts, in addition to user's 

cognitive and emotional limitations of information processing, preference elicitation 

methods must also be able to accommodate preference reversals, discover hidden 

preferences, and assist users making tradeoffs when confronting competing objectives. 

Traditional elicitation methods include the value or utility functions (Chen and Pu, 

2004). The value function reflects the preferences on a particular outcome (Keeney and 

Raiffa, 1976). In case of uncertain decision scenarios, where the outcomes are 

characterized by probabilities, a more complex function, utility function, is need to 

evaluate the "utility" of a decision. The utility function represents the user's attitudes 

about risk as well as the value of outcomes, so it induces a preference ordering on the 

probability distributions over the outcome space. The Analytic Hierarchy Process (AHP) 

(Satty, 1994) is an example of a decision support tool to solve multi-criteria decision 

problems. It uses a multi-level hierarchical structure of objectives, criteria, subcriteria. 

and alternatives. 

Since the traditional methods are sometimes too time consuming and tedious, the 

computer aided decision support systems have appeared to simplify the task by making 

the assumption of additive preferential independence (mutually preferentially 

independence exists among attributes). Several representative systems were described, 

including: 
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• FindMe (Burke et al., 1997) that uses knowledge about users and products to 

provide advice to users about items they might wish to purchase or examine. 

• Automated Travel Assistant (ATA) (Linden et al., 1997) is a recommender system 

that focuses on the problem of flight selection. In ATA, user preferences are 

described in terms of soft constraints on the values of attributes. 

• The Apt Decision agent (Shearin and Lieberman, 2001) learns user preferences in 

the domain of rental apartments by observing user's critique of apartment features. 

• The ExpertClerk (Shimazu, 2001) is an agent system imitating a human salesclerk. 

It interacts with shoppers in natural language and narrows down matching goods by 

asking effective questions. 

In order to improve the accuracy of preferences elicited as well as save decision 

maker's effort, another research branch on preference elicitation has aimed at releasing 

all assumptions on preference structure by matching new user preferences to other users 

preference models (Chen and Pu, 2004). Typical research works are (Chajewska et al., 

1998) and (Ha and Haddawy, 1998), where the concrete procedure can be summarized as 

follows (Carenini and Poole, 2002): 

• Using "complete and reliable" elicitation techniques to elicit a sufficient number of 

users preference models. 

• Grouping these models into qualitatively different clusters. 

• Given the clusters, a new user's preference model is elicited by two sub-processes: 

find the cluster to which the new user more likely belongs and refine the preference 

model associated with that cluster for the new user. 
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The rationale is that finding and refining a matching cluster would require significantly 

less elicitation steps than building a preference model from scratch. The Video Advisor 

(Nguyen and Haddawy, 1999) is a representative system applying this methodology, 

which uses the case-based technique described in (Ha and Haddawy, 1998) to elicit the 

value function representing the user's long term preferences. 

Collaborative filtering is based on an analogous idea, but the preferences matched 

are item ratings provided by different users. The recommender system will match these 

ratings against ratings submitted by all other users of the system, find the "most similar" 

users based on some criterion of similarity, and recommend items that similar users rated 

highly but the user has not rated (presumably not familiar with). The user can further rate 

the recommended items. Therefore, over time, the system can acquire an increasingly 

accurate representation of user preferences. 

Examples of this methodology include the MovieLens (Rashid et al., 2002) that 

collects movie preferences from users and groups users with similar tastes. Based on the 

movie ratings expressed by all the users in a group, it attempts to predict for each 

individual his opinion on movies he has not yet seen. Other seminal collaborative 

filtering systems include GroupLens (Resnick et al., 1994), Bellcore Video 

Recommender (Hill et al., 1995) and Ringo (Shardanand and Maes, 1995). The systems 

vary in how they weighted the ratings of different users (i.e., determined who the similar 

users were and how close they were) and how they combine the ratings. There are also 

many applications of collaborative filtering on the web (Schafer et al., 2001). 
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2.8 Summary 

In this chapter we presented literature review related to our work. We positioned our task 

within general data mining tasks. Subsequently, we focused on geographic data mining 

and discussed challenges within that field. Representative methods in machine learning 

followed, tied together with a discussion of appropriateness for similarity learning. We 

then focused on nearest neighbor techniques and variants and we discussed preference 

learning methods. This discussion serves as the basis for our system design motivation. 

Additional review material is reserved for the next chapter for direct comparison to our 

chosen approach. 
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Chapter 3 

System design 

In previous chapters we provided a definition of the problem at hand and the goals of our 

approach. In addition to that we presented literature related to the general framework of 

this thesis. This chapter introduces the architecture of our system that will be employed in 

the remaining chapters. Our system is used to prevail over the traditional, non-adaptable 

similarity models leading to a preference-based model that supports adaptable and 

context-specific information retrieval. We should note that the term "system" 

encapsulates both theoretical and applied investigation performed in this thesis. We 

provide an in-depth analysis of the problem and we investigate specific solutions 

proposed in the literature. We concentrate on neuro-fuzzy techniques due to their 

relevance to our system. Thereafter, we identify the desired characteristics of our model 

and we proceed to implementing them. The overall design including the corresponding 

information flow that will act as the basis for the chapters to follow is also shown. 
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3.1 Problem revisited 

3.1.1 Nearest neighbor shortcomings 

The nearest neighbor (NN) algorithm is intuitive and easy to understand. It has been 

successfully applied to a variety of real world problems. However, in its basic form the 

NN method has several weaknesses, with the most important ones presented below. 

• Dimensionality curse. As the number of dimensions grows the data become so 

sparse that local neighborhoods are empty and non-empty neighborhoods are not 

local any more (Scott, 1992). Also nearly every point behaves as an outlier with 

respect to the rest of the training set and becomes closer to an outer boundary than 

to its next nearest neighbor (Friedman, 1995). Thus techniques and experience 

gained in low dimensions are hard to propagate in high-dimensional cases. 

• Irrelevant attributes influence. With the introduction of irrelevant attributes in the 

dataset retrieval accuracy declines. 

• Large storage requirements. The whole training set has to be stored in the model in 

order to obtain an answer. 

• Noise intolerance. Accuracy decreases with the introduction of noise in the model. 

• Slow execution. All the training instances must be searched to classify a new vector. 

• Distance functions selection. The choice of appropriate functions to calculate the 

nearest neighbor to a query vector has been an important drawback. Some functions 

work well with some datasets but fail on others. Also, quantitative approaches are 

hard to extend to nominal data. Furthermore, the assumption that similarity between 

a training set and a query solely depends on their distance and not the actual values 

does not hold true in every domain. 
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• User preference. Once the distance functions are chosen they remain fixed 

throughout the process. There are not able to adapt to specific users/scenarios that 

might require fine-tuning of the function properties. Therefore similarity results are 

not adaptable to user needs. 

Here we should mention that the above list is not exhaustive but representative of the past 

and current research challenges to improve the NN performance. 

3.1.2 Issues addressed in this thesis 

Some efforts have focused on one or more of the above problems without addressing 

them all in a comprehensive system. Others have presented solutions to some of the 

problems that were not as robust as those by others. In addition to that, techniques 

applied to one domain do not guarantee success in other domains. 

From the perspective of this work the NN algorithm can be seen as a classifier, 

where every data belongs to its own class. This is not though the traditional classification 

task where the number of classes is significantly lower than the training sets. Therefore 

two drawbacks are not usually addressed in communication processes like ours, namely: 

• The storage requirements cannot be avoided since the elimination of a training set 

would correspond to elimination of a class/possible answer to our problem as well. 

So all training sets have to be kept and be available. 

• The problematic existence of noise does not apply in our approach because every 

class is represented by a single training set so the notion of noise does not exist. 

Noisy data would be related to imprecision issues resulting from the creation of the 

source metadata (e.g. temporal footprint). Imprecision issues are beyond the scope 

of this thesis. 
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The other issues are directly related to the formulation of a complete environment 

for intelligent geospatial information extraction. Dimensionality is an important issue that 

has attracted a lot of attention since storage limitations have decreased and databases are 

able to store more and more information. Higher dimensionality translates into higher 

number of possible dependencies between dimensions, and potentially different influence 

(attribute relevance) of each dimension to the overall similarity calculation. These are 

two issues that have to be addressed in the context of aggregating similarity results 

between dimensions. Our work concentrates on similarity assessment within each 

dimension therefore such investigation is not performed. Keep in mind though that in the 

future this analysis will be necessary for the next logical extension of our work, the 

similarity aggregation between dimensions. 

A significant performance boost can be achieved by selecting an appropriate 

subset of the candidate objects instead of the whole set. This is a particularly active area 

in the database community often referred to as multi-dimensional indexing. These 

approaches can be grouped in two general categories, the space-partitioning and data-

partitioning ones. In the first one the data space is divided in predefined subspaces 

regardless of data clusters. Some examples include the grid-file, the K-D-B-tree and the 

quadtree. In the latter category, index trees such as the B-trees, R-trees and their variants 

divide the data space according to the distribution of data objects inserted or loaded into 

the tree. A variety of surveys and papers have been published on indexing methods. A 

comparative study can be found in (Weber et al., 1998) and up-to-date references in 

(Korn et al., 2001). Indexing issues are not examined in our work since we propose 

enhancements on retrieval accuracy rather than retrieval speed. 
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This thesis focuses on the last two drawbacks of the traditional NN by aiming at 

the improvement of distance functions through incorporation of user preference in the 

query process. Thus we substitute these functions with a machine learning system that 

adapts to user/problem requirements, therefore achieving higher retrieval accuracy. 

3.2 Machine learning using neural networks and fuzzy logic 

Several machine learning methods were presented in chapter 2. We intentionally omitted 

discussion of neuro-fuzzy methods. We chose to present them here since our system falls 

into that category and some benefits of our system structure are tied together with the 

underlying general methodologies. 

Over the last few decades neural networks and fuzzy systems have established 

their reputation as successful approaches to information processing (Klose et al., 2001). 

They both offer certain advantages especially when vague data or prior knowledge is 

involved in the process. Neural networks incorporate learning capabilities in their 

process. They also provide the developed system with "memory", which allows the 

system to store the results of learning. On the other hand fuzzy inference systems can 

provide a structured knowledge representation in the form of if-then rules. They are easy 

to interpret and analyze. 

However, each of these two methods suffers from several weaknesses. To 

overcome such limitations several systems were proposed where both models 

complement each other. These so called neuro-fuzzy systems address some of the 

individual weaknesses and offer some appealing features. In the following sections we 

discuss briefly each method, present the reasoning behind the combination of them and 

show some applicable examples. 
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3.2.1 Neural networks 

Artificial neural networks also known as connectionist models are systems that try to 

mimic the organization of the human brain. Initially, research in this area was driven by 

neurobiological interests. Modern interest from the data mining perspective considers the 

development of architectures and learning algorithms that will be applied in information 

processing tasks. 

In the literature, a large amount of information exists on the network types, 

learning methodologies and applications of neural networks. Good starting books would 

be (Haykin, 1994; Bishop, 1995). At this stage we provide a brief description of the most 

popular architecture, the feedforward multilayer one. A more detailed examination can be 

found in chapter 5. Neural networks consist of a number of independent, simple 

processors called neurons. Neurons communicate with each other through weighted 

connections, the synaptic weights. After the design of the network is chosen a dataset is 

presented to the network and the learning process begins. The goal is to optimize the 

network behavior by adjusting the weights appropriately so the network output is close to 

the expected output. In other words the network creates a mapping of the input data to the 

desired output using the presented examples. 

The most important advantage of neural networks is that they are universal 

approximators, meaning they have the ability to approximate any arbitrary function 

(Haykin, 1994). They do not need a mathematical model describing the problem and no 

prior knowledge is necessary. On the other hand neural networks are black boxes, 

meaning they are hard to interpret in terms of rules. Also prior knowledge is hard to 

incorporate in the process because they usually learn from scratch. The learning process 

can take a long time and the success is not guaranteed. The author's experience suggests 
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that this type of network might work where every other technique fails, but unfortunately 

it could also fail where most techniques would succeed. And even if the modeling is 

successful, it is really hard to figure out why it worked. 

3.2.2 Fuzzy methods 

Fuzzy set theory supports a large number of applications and has become a popular 

method for dealing with complexity, uncertainty and imprecision in various systems. 

Fuzzy sets arise from an extension of the classical (Boolean) sets for representing 

concepts that exhibit a gradual transition from membership to non-membership. There is 

a large number of concepts in which an element can have partial membership in a set. 

Fuzzy (and crisp) sets may be represented by a mathematical formulation known as the 

membership function. This function gives a degree or grade of membership within a 

fuzzy set. Interpretations of membership degrees include similarity, preference and 

uncertainty (Dubois et al., 1996). They can show how similar an object is to a prototype, 

they can indicate preferences between sub optimal solutions to a problem or they can 

model uncertainty by using imprecise terms. 

Based on the fuzzy sets theory fuzzy inference systems are created using if-then 

rules and fuzzy reasoning. Their goal is to derive conclusions from a given set of fuzzy 

rules. A typical system is composed of five functional blocks (fig. 3.1). The input is 

transformed from crisp outputs to degrees of match in the Fuzzification block. Then it 

propagates in the Decision Making module where the inference operations take place. 

The decision is based on rules from the Rule Base and membership functions retrieved 

from the Function Database. In the last stage Defuzzification transforms the fuzzy results 

of the inference into a crisp output. A more detailed example of this fuzzification-
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Figure 3.1: Fuzzy inference system 

defuzzification process can be found in chapter 7, where we explain the training of our 

algorithm. There is extended literature on fuzzy sets applications; close to our task we 

can mention visual retrieval systems (Santini and Jain, 1999) and fuzzy integrals for 

similarity approximation (Ishii and Wang, 1998). 

3.2.3 Neuro-fuzzy techniques 

The description provided in the previous sections of neural networks and fuzzy methods 

can lead to an intuitive combination of the approaches. The fuzzy system can be used to 

represent knowledge and the neural network techniques can provide a learning 

mechanism to determine membership values. The drawbacks of both individual methods, 

the black box behavior and the non-adaptable membership functions, could thus be 

avoided. The combination can constitute an interpretable model, with learning and prior 

knowledge incorporation capabilities (Klose et al., 2001). Therefore, neuro-fuzzy 

methods are especially suited for applications, where user interaction in model design or 

interpretation is desired. 

Most of the existing neuro-fuzzy models are motivated by fuzzy control systems. 

In fuzzy control the main idea is to build a model of human control expert that will 

control the system without thinking in terms of a mathematical model. The control 
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actions should rather be specified in a linguistic form of rules. However, due to 

uncertainties in specifying the fuzzy controllers, a manual tuning is often necessary to 

overcome initial design errors. The role of a neural component in this case would be to 

automate this tuning process. 

In the data analysis field there is also a number of neuro-fuzzy techniques. 

However, there are some differences in the characteristics of the problem. The learning 

can be done off-line as generally the data are available in a database. Efficient learning 

from scratch is more frequent than in control applications. Also the interpretability of the 

resulting rule base is often more important than in control where a working controller is 

often satisfactory enough. Nonetheless, the underlying motivation to combine human 

accessible fuzzy rule approach and learning capabilities of neural networks still exists in 

every neuro-fuzzy approach. 

3.2.3.1 Neuro-fuzzy models 

The term neuro-fuzzy systems is often used to describe all kinds of combinations of fuzzy 

systems and neural networks. In order to make it more specific we present the 

categorization presented in (Nauck et al., 1997), where the following categories are 

introduced: 

Fuzzy neural networks: In some cases fuzzy methods have been used to enhance 

learning capabilities or performance of a neural network. Examples in this category can 

be found in fuzzy rule based adaptation of the learning rate (Halgamuge et al., 1994) or 

by fuzzy additions to allow support for fuzzy inputs (Ishibuchi et al., 1995; Narazaki and 

Ralescu, 1991). These approaches should not be confused with neuro-fuzzy ones, at least 

in their narrow sense. 
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Concurrent "neural/fuzzy systems": A neural network and a fuzzy system work 

together on the same task but without influencing each other, in other words neither 

system is used to determine the parameters of the other. A frequent example is the 

application of a neural network in order to pre-process the inputs or post-process the 

outputs. These kinds of models are not strictly speaking either real neuro-fuzzy 

approaches or fuzzy neural networks. 

Cooperative neuro-fuzzy models: A simple form of neuro-fuzzy systems, this 

term is used when a neural network is adopted to determine the parameters of a fuzzy 

system. The neural network is involved only in the training of the fuzzy system. After the 

training is done the fuzzy system works independently. Cooperative models can be 

further divided into approaches that learn fuzzy sets offline, fuzzy rules offline, fuzzy sets 

online and rule weights. The last one is quite popular in commercial fuzzy development 

tools. 

Hybrid neuro-fuzzy models: This architecture describes a homogenous blend of a 

neural network and a fuzzy system. Depending on the characteristics of the design the 

system can be seen as a special neural network with fuzzy parameters or as a fuzzy 
l 

system implemented in a parallel distributed form. 

The majority of neuro-fuzzy approaches fall in the hybrid category. Especially in 

data analysis, this architecture is predominant due to the characteristics of the relevant 

problems. Our proposed neuro-fuzzy system falls in the hybrid category as well. The 

fuzzy functions are blended together with the neural network and even if training happens 

independently at some stages the final training stage readjusts parameters from both the 

fuzzy functions and the neural network. 
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3.2.3.2 Mapping fuzzy rules to networks 

In order to convert the fuzzy rules to a neural network and vice versa a mapping scheme 

should be developed between the rule elements and the network elements. The usual 

approach is a feed-forward network with at least three layers. The first layer represents 

the inputs from the domain attributes. The second layer represents the fuzzy rules. It is 

the hidden layer and each node corresponds to a specific rule. The antecedents of the 

rules are modeled as connections from the input to the hidden (rule) layer, the 

consequents as connections from the rule layer to the output one. Depending on the 

model the membership functions are represented as either fuzzy valued weights or as 

additional layers with special activation functions and parameterized weights. 

Assuming the above structure, the propagation of a stimulus would be as follows 

(Klose et al., 2001). The input values would be selected according to the tuple values, 

Then the membership values of the fuzzy sets would be calculated. This can be done 

either in the hidden layer or by applying fuzzy weights. The membership values are then 

introduced in the rule layer. The rule nodes combine their participating inputs to activate 

the rules. This can be seen as conjunction or disjunction of the antecedents. Finally in the 

output layer an aggregation of the corresponding rules for each class takes place and the 

highest activation unit provides the result (winner-takes-all method). 

3.2.3.3 Learning process 

The learning process can be divided into two major tasks. The first one involves the 

choice of the structure and the second the optimization of the given structure. The choice 

of the structure reflects the rules we want to impose on the system. This has been a 

challenging task for neural networks and a lot of work remains to be done. In our work 
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we do not address this issue, namely to find heuristic solutions to modify the structure, so 

further discussion is omitted. 

What we focus on, as most of the learning algorithms for neuro-fuzzy systems do, 

is the optimization of the membership functions. The membership functions can be easily 

described by the parameters of their mathematical formulation. In this case optimization 

would involve calculation of these parameters with respect to a global error measure. 

There are some issues involved in the learning face. First of all, the model can be 

only as good as the membership functions used. For example, if we would try to 

interpolate a non-linear problem with a linear approach, the degree of adaptation freedom 

of the function would not allow us to model the problem in an appropriate manner. 

Therefore the mathematical formulation of the membership functions should be chosen 

with caution based on the specific rule requirements. 

Another problem comes from the fact that a standard fuzzy system uses non-

differentiable functions (like min, max) in the inference process. Differentiation though is 

a prerequisite for the gradient descent learning methods in neural networks like error 

backpropagation. So these functions would need to be replaced by differentiable 

functions with similar properties. 

In addition to the above challenges, the traditional learning techniques do not take 

under consideration the semantics of the underlying fuzzy system. Suitable constraints 

should be imposed to assure that certain properties would remain and therefore their 

semantic meaning is kept throughout the learning and consequently the implementation 

process. Further discussion and an overview of current approaches can be found in (Lin 

and Lee, 1996; Nauck et al., 1997; Klose et al., 2001; Liu and Miyamoto, 2000; 
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Tettamanzi and Tomassini, 2001). Neuro-fuzzy approaches directly relevant to our 

system design and functionality will be presented later in this chapter after we portray our 

own system to facilitate comparisons. 

3.3 System design 

In this section we begin with some assumptions for our system applicability. Then we 

present the proposed system architecture and identify some important characteristics of it. 

Thus, we compare it with other neuro-fuzzy systems and directly related methodologies 

to distinguish our approach from them. 

3.3.1 Applicability assumptions 

In the following section we discuss assumptions related to the use of our method. 

3.3.1.1 Class-based vs. instance-based similarity 

Each information object stored in a database is described by a set of attributes. The class 

of an attribute is a template definition of the variables for a particular kind of object. 

Thus, an attribute instance is a specific value of a class; it contains real values consistent 

with the class definition. Similarity assessment can be performed in these two levels, the 

class and the instance level. Attribute class level similarity assessment provides an 

evaluation of the degree to which two different classes resemble each other semantically. 

For example if a user queries on "Image Scale" and the database has an attribute class 

described as "Ground Pixel Size", the question to be addressed is whether these two 

terms are similar, and if so by how much. Similarity assessment at the class level is not 

addressed in this thesis. 

Attribute instance similarity assessment aims at the evaluation of the degree to 

which two different values of the same attribute are similar. We assume that there is a 
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one-to-one mapping relation at the class level of the query attribute and the 

corresponding database attribute class. This is the similarity level we concentrate on. 

3.3.1.2 Attributes under consideration 

Before we proceed and describe the architecture of our similarity learning algorithm, we 

should identify the kind of attributes that our algorithm supports. In general, a geospatial 

information object can be represented by quantitative and qualitative attributes (fig. 3.2). 

For example "Time" is a quantitative attribute as opposed to "Owner Name" that is a 

qualitative one. This work focuses on quantitative attributes, therefore qualitative 

attributes are not analyzed any further. Some examples of qualitative similarity functions 

can be found in (Wilson and Martinez, 1997). A very active field of research addressing a 

similar problem is the one of document retrieval. Correlation between terms is 

established through a combination of thesaurus and ontologies. 

Geospatial Information 

Quantitative 

One 
Dimensional 

Time 
Resolution 

Area 
Azimuth 

Qualitative 

Two 
Dimensional 

Three 
Dimensional 

X,Y (Spatial) X,Y,Z (Spatial) 
R,G,B (Color) 

N 
Dimensional 

Figure 3.2: Geospatial attributes organization 
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Quantitative attributes can be further classified based on the number of 

dimensions that represent each attribute. For example, "Time" is represented by a single 

dimension, in contrast to "Space" that is composed of a set of 2 (X,Y) or 3 (X,Y,Z) 

potentially highly dependent dimensions. The algorithm focuses on one-dimensional, 

quantitative attributes. Attributes with more than one dimension are not examined. For 

similarity in space (shape similarity) a good overview is presented in (Veltkamp and 

Hagedoorn, 2001). Similarity in other correlated dimensions such as color has attracted 

attention from computer and cognitive scientists, with an overview of many color spaces, 

their definition and usability given in Chapter 1 of (Plataniotis and Venetsanopoulos, 

2000). 

It should also be mentioned that we do not aggregate similarity metrics from each 

attribute to produce a total similarity metric. This is left for future work, which is the next 

logical extension of this thesis. In addition to that, we deal with single objects and not 

scenes, where multiple objects exist and possibly interact with each other. 

3.3.1.3 Database design independence 

An important characteristic of our learning system (as most of database learning systems) 

is that it is independent of the chosen database design. In order to assess similarity, 

objects can be stored in any structured information format, where specific attribute values 

for each object can be easily extracted. Therefore our algorithm supports Object-Oriented 

designs (e.g. XML) or Relational Database designs. In addition to that, the user query can 

be in any language and format as long as the required "translator" exists so that the 

attribute values for the requested object can be extracted and a one-to-one mapping can 

be produced between the query request and the database value. 
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3.3.2 General framework 

The general system framework is described in figure 3.3. The inputs to the process are 

two multi-dimensional vectors, one representing the request to the database (query 

vector) and another expressing an existing object in the database (database vector). These 

two vectors are compared to each other within the system and the output shows the 

degree of similarity between them. As we mentioned before, we assume that a one-to-one 

mapping can be established between the query and the database vector, in other words the 

classes of the corresponding attributes are considered identical. Also a common 

measurement system and scale is assumed for instance values in each vector. 

Query= [XQdi, X Q ^ , . . . , XQdi] Database= [XDBdi, XDBd2,.--> XDBdi] 

Figure 3.3: General similarity framework 

The information flow is as follows. First each attribute from the query vector is 

paired with the corresponding attribute from the database vector. Then for each pair a 
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similarity metric is calculated using our proposed modules fi, if it is a one-dimensional 

quantitative attribute or externally in any other case. The similarity results from each of 

our modules Bl are combined with possible external similarity results for dimensions that 

our system does not support individual similarity computation (e.g. nominal values, 

spatial coverage, color). This multi-dimensional aggregation takes place at the last step 

and the total similarity metric is returned as the process output. 

So from figure 3.3 our contribution is modules 5,. We expect others to develop 

similarity assessment methods for non-supported attributes and also find a way to address 

the difficult task of combining all individual attribute similarity metrics to one total 

similarity object metric. 

3.3.3 Architecture 

We combine the query and a stored object's values for a specific quantitative dimension 

to produce a similarity metric that will correspond only to the under examination 

dimension. The training takes place in two sequential steps. First we use a 

backpropagation algorithm to train the fuzzy membership functions (FMFs) that act as 

global similarity function approximation (fig. 3.4). In other words, fuzzy functions 

describe the "anticipated" behavior of the similarity signal throughout the input space. 

FMFs Training 

Expected Behavior 

Similarity Function «-e 
FMFs Training Errors 

Unexpected Behavior 
MSRBF Training 

Figure 3.4: Neuro-fuzzy training flow 
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In the second step, we capture highly localized deviations from this (statistically) 

average behavior that could not be represented by the global function. For these cases we 

developed a custom multi-scale RBF network (MSRBF). The training sample of our 

network contains the similarity error vectors as obtained from the FMFs training. 

After the training is complete the module will have the structure of figure 3.5 that 

acts as a guide for the remainder of the thesis. This feedforward neuro-fuzzy network will 

calculate the similarity metric based on a cumulative contribution from the fuzzy function 

and the neural network. 

Database 
Value 

XDB Fuzzy 
Membership 

Query 
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Figure'3.5: System architecture 

3.4 Characteristics and uniqueness 

Based on the architecture presented previously we can identify some system 

characteristics. These specifics constitute our novel approach as a competitive solution in 

the theoretical aspect that involves the design process. A comprehensive evaluation 

through functionality examples and statistical simulations is presented in chapter 7. 

Learning adaptability. The nearest neighbor techniques do not incorporate learning 

techniques in most of their applications. They usually utilize distance-based similarity 
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functions that cannot compensate either for non-linearity or for more complex cases 

where a distance is not a representative metric for comparison within dimensions. In our 

approach, by expressing similarity through fuzzy functions we support asymmetrical, 

non-linear similarity metrics that express user preference, in other words they adapt to the 

specifications of the problem, and do not remain constant. In addition to that, they are not 

distance dependent but they are able to identify that dependency and model it if 

necessary. 

Modular design - independent training. The system might be composed by a large 

number of processing nodes, but there is a conceptual and practical organization in the 

system design. This offers a significant advantage, the easy assessment of the 

contribution of every node. In doing so, nodes can be trained easier, error can be captured 

and interpreted more successfully, and the overall transparency of our system makes it 

intuitive for non-expert users. 

Expected and unexpected similarity modeling. We identify two kinds of similarity 

behavior, expected and unexpected. This is a major contribution of our system since this 

separation is not supported in current similarity algorithms. This distinction is supported 

by the choice of a neuro-fuzzy architecture. 

The fuzzy part, as expressed through the fuzzy similarity functions, has the ability 

to adapt to some "expected" similarity rules (e.g. exponentially monotonically decreasing 

behavior the further away from the target value) as investigated by cognitive scientists. 

The rules are incorporated in the method and are adaptable through a back-propagation 

training that adjusts the fuzzy functions expressing these rules to the given training set. 

This way our system incorporates prior knowledge in the process. 
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The neural network acts as an error correction function. It is only triggered when 

"unexpected" behavior is identified. Since no explicit general behavior rules apply in 

such a case, the choice of a neural network for modeling something "unknown" comes 

naturally. A considerable drawback of some neuro-fuzzy architectures is their inability to 

control the influence of the neural network to the overall input space. To compensate for 

that, as we will show in chapter 5, a novel multi-scale radial basis function network is 

developed. By doing so the fuzzy functions act as global approximators of the similarity 

signal and the neural part is restricted to controlled localized areas. 

3.5 Comparable work 

Now that the design of our system is presented we proceed to examine theoretical support 

and comparable work in the literature. To the best of our knowledge no method exists 

that supports similarity learning within attributes in geographic object queries, where the 

objects are presented through a feature vector that does not describe the actual content of 

the object. On the other hand, methodologies for similarity learning that query the content 

of objects, especially when these are images, exist in a disproportional ratio. 

Probably one of the most representative works in content-based retrieval is the 

one in (Ma and Manjunath, 1996). A learning based approach is presented to retrieve 

similar image patterns (textures) from aerial photographs. They use self-organizing maps 

to achieve coarse labeling and learning vector quantization to fine-tune their process. A 

variety of other techniques exists, techniques that lately have gathered a lot of attention 

due to their application in security and surveillance, especially those addressing face 

recognition issues. 
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3.5.1 Applications of neural networks and fuzzy logic in similarity learning 

Our approach is based on a neuro-fuzzy network, therefore we should first discuss 

applications of neural networks and fuzzy logic specifically for similarity learning. Later 

we will expand to neuro-fuzzy systems where a larger variety of applications will be 

introduced. 

Neural networks have been used effectively in content-based retrieval systems 

(e.g. Carkacioglu and Vural, 2002; Lim et al., 2001). Another example would be the 

NeuroRule data mining system (Lu et al., 1995) where several classification problems are 

solved using neural methods. In categorical perception the goal is to find how similar 

things look depending on whether they are in the same or different categories. An 

example of backpropagation network applied for these purposes is (Tijsseling and 

Harnad, 1997). Also another active field that has drawn a lot of attention as the Internet 

has exploded is information retrieval (IR). The name is much more general than the 

actual content of the databases under investigation. Similarity is calculated in textual 

databases (e.g. databases containing documents). Neural networks have been successfully 

applied there as well (e.g. Rumelhart and Todd, 1993; Mandl, 2000). For an extended 

review the reader is referred to (Chen, 1995). 

Fuzzy methods have also been employed for similarity learning in databases. A 

fuzzy integral has been proposed in (Wang and Ishii, 1997) to act as a non-linear 

similarity function that will later be incorporated in a genetic algorithm. In (Klawonn and 

Keller, 1997) the authors have provided a modified version of the fuzzy-c means 

algorithm to substitute for Euclidean distance. It has higher modeling capabilities but it is 

still a distance-based similarity algorithm. Montesi and Trombetta (1999) have developed 

a fuzzy relational algebra to model queries in multimedia and web applications and 
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provide a framework to study similarity issues. In (Santini and Jain, 1999) a similarity 

measure was presented based on fuzzy logic. Their model is based on the Feature 

Contrast model (Tversky, 1977) from the psychology domain and is mostly concerned 

with identifying dependencies among properties. In the IR field an overview on fuzzy 

methods and neural network applications can be found in (Crestani and Pasi, 1999). 

3.5.2 Neuro-fuzzy architectures 

In section 3.2.3 we discussed the underlying idea behind a neuro-fuzzy (NF) approach, 

namely to combine the best of both techniques (neural and fuzzy). Here we present some 

popular neuro-fuzzy architectures as developed in the last decade. 

FuNe network. This NF network is based on an architecture of five layers. The first 

layer consists of the inputs. The second one contains sigmoidal functions expressing 

membership. In the next layer specialized units exist to represent fuzzy sets and the forth 

layer consists of the units that express the fuzzy rules. The last layer is the output layer. 

This kind of network is special mostly because it supports rules with only one variable as 

antecedent. More information can be found in (Halgamuge and Glesner, 1994). 

Sugeno-type. In this case the NF system simulates a Sugeno-type system of weighted 

rules. It can be interpreted as a special RBF network. The only difference would be the 

expansion of activation functions from gaussians to logistic ones. This network was 

employed to predict the German DAX stock index (Siekmann et al., 1997). 

NEFCLASS. For the NEFCLASS NF network (Nauck and Kruse, 1995) the main 

characteristic is the incorporation of linguistic rules in the hidden layer. The membership 

functions are represented by fuzzy valued weights on the connections between the input 

and the hidden layer. Instead of a summation of all inputs to create the output of each 
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hidden node the membership values are kept. An application of this network was on 

object reconstruction from lines previously extracted from remotely sensed imagery. 

ANFIS. ANFIS stands for Adaptive Network-based Fuzzy Inference System and it is 

presented in detail in (Jang, 1993). This network can also be seen as a Sugeno-type fuzzy 

system with learning capabilities. All functions should be differentiable to accommodate 

the backpropagation learning algorithm. Its learning is based on a combination of 

gradient descent and least squares. ANFIS has been applied successfully in non-linear 

function modeling and time series prediction. 

Fuzzy ARTMAP. This network is based on a combination of modules called Fuzzy ART 

(Adaptive Resonance Theory). It is a self-organizing neural network capable of clustering 

collections of arbitrarily complex patterns via unsupervised learning (Carpenter et al., 

1991). Approaches of Fuzzy ART have been used for autonomous robot guidance and 

navigation. 

Fuzzy Gated neural networks. In (Chandrasekaran et al., 1995) another approach to 

neuro-fuzzy computing was proposed. It is a topology-constraint free feature map with a 

controlled input-output "gate". It requires only one epoch for learning. This property 

makes it suitable for real-time applications where low levels of noise exist. The authors 

have demonstrated its applicability on a pattern recognition example. 

None of the above mentioned NF architectures has been applied to similarity 

learning to the best of our knowledge. We chose to develop our own system to facilitate 

the specific requirements of our problem and to have a better understanding of the 

underlying complexity. 
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3.5.3 Explicit related work 

A NF network built for similarity learning is presented in (Mitaim and Kosko, 1997). 

Although they calculate similarity in content-based applications (images) their genera] 

approach is the same: they use a neuro-fuzzy system to create a profile of user 

preferences based on a relevance feedback training. This profile should be based on 

specific rules that will be fine-tuned by the training process. After training the profile can 

be called by an agent so query results will be adaptable to specific user preference. Our 

general approach might look similar to theirs, but in reality the two architectures are 

significantly different to accommodate different specifications of similarity. 

Another application similar to ours is shown in (Frayman et al., 1999). Their 

dynamically constructed fuzzy neural networks are used to correct the problem of small 

disjuncts in decision trees. The problem of small disjuncts relates to the fact that rules 

which cover very small portion of the training set can cause large classification errors. 

While these rules might represent individually only a small portion of the input set, they 

may collectively account for a much higher percentage of errors (Clarke and Niblett, 

1987). Our system design addresses this issue with the introduction of a multi-scale RBF 

network to absorb this localized unexpected behavior. Additional work on small disjuncts 

can be found in (Weiss, and Hirsh, 2000). 

From the cognitive science point of view our model supports similarity behavior 

as identified through human experiments. In (Shepard, 1987) it was shown that similarity 

decreases exponentially as we get further away from the target. Therefore previously 

performed human testing supports the choice of sigmoidal functions as fuzzy 

memberships. This realization is also discussed in (Santini and Jain, 1997). 
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In other related work to our research, the user can examine (Griffiths and Bridge, 

1997) for a nice discussion on fixed and adaptive similarity functions. Local use of 

weights can be found in (Howe and Cardie, 1997) and a good review on local versus 

global weights in (Wettschereck et al., 1995). An example of error correction technique 

for classification improvement is shown in (Dietterich and Bakiri, 1995). 

3.6 Summary 

The focus of this chapter was to provide an overview of the system that we designed for 

similarity learning. In order to justify the proposed architecture, an overview of nearest 

neighbor weaknesses was presented. We built our system to address some of these issues. 

Neuro-fuzzy methods were discussed in depth and our system design was introduced. 

Some significant characteristics of our system are presented, namely its learning 

adaptability and modular design, and ability to distinguish expected from unexpected 

similarity behavior and model them in separate processes. Works similar to ours are 

outlined after the system is established to facilitate comparisons. 
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Chapter 4 

Preference learning in one-dimensional attributes using fuzzy 

functions of adaptable complexity 
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In the next chapters we will examine how our system leams preference behavior within 

each dimension. Our method follows conceptually a wavelet paradigm. A variety of 

mathematical functions are used corresponding to different frequencies with different 

operational range on the input space. By doing so we generate two families of similarity 

functions, the global and the localized ones. 

Global functions attempt to model the similarity signal throughout the input space. 

They can also be presented as the mother-type functions introduced in the wavelets 

literature. Their application range is defined by the limits of the input space. These 

functions increase gradually in complexity until a specified goal (e.g. accepted error) is 
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reached. In order to do so we make use of fuzzy membership functions of adaptable 

complexity, which is the focus of this chapter. 

While the global functions attempt to model a fairly expected preference behavior, 

there are cases where user-feedback will divert locally due to personal preferences and/or 

application specifics. To model this unexpected local deviations a second type of 

functions is introduced, namely the localized functions. This family of functions is used 

to capture the high frequency components of the similarity preference signal. These 

functions are applied on the whole input space but their active/operational segments are 

only a subset of this space. They are represented by a customized multi-scale radial basis 

neural network, which is the subject of chapter 5. 

4.1 Approach overview 

In this section we present a short description of the problem and we discuss the process 

flow of the developed system using fuzzy functions. 

4.1.1 Introduction 

In recent years there is a significant increase in geospatial information availability. New 

sensor technologies together with, enhanced data capturing techniques have created 

extensive geospatial collections. Users that access these collections have diversified 

information needs based on their past experience and/or task at hand. In such complex 

environments a communication process should be established with the ability to 

encapsulate user preferences. Similarity parameters should not be predetermined but 

rather adaptive to different scenarios and requirements even for the same dataset 

collections and/or users. 
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Relational operations like equality or inequality have been used in the past, but in 

complex database applications a similarity matching approach is incorporated. In order to 

perform the similarity match efficiently an information object O stored in a database is 

compared to a query request Oq using their corresponding database attribute values fik 

and the query value request/Vi'. A database object O is compared to a query description 

Oq by using matching functions to produce a similarity metric S as follows: 

( 4 . 1 ) 

In the above equation function tik expresses the similarity between each attribute, 

hi combines similarity results from each attribute to provide a metric for each conceptual 

attribute grouping and g is the overall similarity measure (see section 1.1.2 for more 

details). The focus of this work is function tlk. It is often described by a Euclidean 

distance (difference). Functions fy and g have so far received more attention in the 

literature and numerous models have been proposed through the use of complex non­

linear functions. However, if function tik fails to describe the corresponding similarity 

relationships adequately, its errors propagate in the overall solution making it hard, if not 

impossible, for the aggregation functions hi and g to correct this. 

A common example of such similarity preference in GIS is when asymmetric, 

non-linear user behavior is exhibited during the direct comparison of attributes. For 

example, let us consider a geospatial database and a user request for an aerial image of 
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specific ground pixel size for building extraction. User interest decreases gradually (but 

not necessarily linearly) as pixel size increases to the degree that buildings would not be 

identifiable. Furthermore the user may have cost considerations (e.g. cost, storage and 

processing time) associated with a higher resolution acquisition. This translates to a 

similarity relation that can also be non-linear as resolution improves. So it is easily 

understood that we need asymmetrical, non-linear relations to model user preference 

within each attribute comparison (function tik). 

4.1.2 Process flow 

In order to adapt similarity models to user preferences we developed a relevance 

feedback algorithm. Users are presented with a variety of pairs of requested and returned 

values and are asked to provide a preference metric for each pair. The corresponding 

training dataset is created and used as input for our preference learning method. An 

example of this dataset creation is described in chapter 7. 

For our training we make use of several preference models as expressed through a 

variety of fuzzy membership functions (FMFs). Our approach is simple yet effective: 

gradually increase the complexity of the underlying FMF until an acceptable solution is 

reached. We begin the process by interpolating a set of planes to the training dataset (fig. 

4.1). We examine the resulting accuracy and if it is within the predefined specifications 

we end the process. These predefined specifications are in essence thresholds describing 

the maximum acceptable error between the interpolated functions and the training points. 

They can be preset by the database designer or adjusted in real-time by the user. If the 

results are not within these thresholds, we examine the obtained plane parameters. This 

analysis leads to a decision whether similarity is dependent on the query value, their 
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Figure 4.1: Fuzzy functions training flow 

difference metric or the actual database and query values. We continue by interpolating 

two sigmoidal functions whose initial approximations are calculated from the plane 

properties. If required accuracy is not achieved, we provide further modeling capabilities 

by parameterizing further the FMFs parameters. At the last stage we obtain the best 

possible set of FMFs that express user preference as presented through the training set. 
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One common characteristic of our FMFs is that they take into consideration 

asymmetric similarity behavior that might exist. Asymmetry refers to different preference 

expression when two candidate values are equally away from the target value but from 

different sides (i.e. +V same distance). For simplicity we examine one side in the rest of 

the chapter but the same process is applied for the other side (half) as well. In the next 

sections we introduce the training of different functions, how one acts as a basis for the 

next more complex one and their corresponding modeling capabilities. 

4.2 Piecewise planar similarity function 

4.2.1 Mathematical formulation 

Our simplest set of functions is composed of two piecewise planar solutions to support 

asymmetrical cases. Let function Simpianar (•) represent an FMF mapping of the two-

dimensional input space to the one-dimensional similarity space: 

SimPlanar: <K2 -> [0,1] (4.2) 

The function inputs are query and database values [XQ, XDBI- Depending on which half 

plane the input parameters rely on (XQ > XDBox XQ < XDB), two separate training datasets 

are created. Each half plane solution is independent of the other one. The similarity 

function Simpianar (•) expressing the relation between a database value XQB compared to a 

query value XQ is: 

(4.3) 

Parameters au a2 and a3 define the planes used for the corresponding half (left and right). 

Index / specifies the current plane under examination for each half. Our solution is 
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composed of a number of planes in each half plane. Specifically, five planes are used to 

model similarity in each half plane (i.e. / e {1,2,3,4,5}). Each plane expresses similarity 

within a certain similarity (output) range. An example of the plane configuration for the 

left half is shown in figure 4.2. Axes X and Y correspond to the inputs of our process, 

namely XQ and A7«. The Z axis represents the similarity output and is calculated based on 

the plane similarity function. A 2D section of the 3D function is presented in figure 4.3. 

This section shows the similarity function for a specific query value XQ (the white line of 

figure 4.3). Such sections of the planes are used after the system is trained to calculate 

similarity of candidate database values to a specific user query. 

Similarity 

Xdatabase 

Figure 4.2: Piecewise planar similarity function 
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' Similarity 

Figure 4.3: 2D section for specific query request 

Within our process we use exactly five planes in each half of the input space. This 

is done for two reasons, namely: 

• To address ranges where similarity function is almost parallel to the XQXDB 

plane. The tb threshold expresses a similarity range of values close to 1 and 0 that 

will be mapped on planes #5 and #1 respectively. The use of tb allows the 

exclusion of non-active XQ) XDB pairs in terms of similarity gradient. Very small 

variations that might exist in similarity values close to 0 or 1 could lead the terms 

ay and A2 to become very small with an unstable solution. We also use this 

threshold as a backup for cases where we might not obtain a solution so we can 

assign a direct value. Furthermore, we want to be able to handle cases where the 
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expected similarity might follow a linear behavior but be active only in a portion of 

the [XQ,XDB\ space (fig. 4.4). The tb value defines the starting and ending point of 

planes #2 and #4 respectively (fig. 4.2). 
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Figure 4.4: Partially active linear similarity function 

To provide approximations; for more complex functions that follow. The m 

threshold defines the range above and below the 0.5 similarity value that is used to 

define the similarity modeling range of plane #3. The role of this threshold will be 

explained in the sigmoidal function family, where it is used as a parameter 

approximation. Planes #2 and #4 are used to model similarity in-between planes #1, 

#3 and #5, bringing the total number of planes to five. 
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4.2.2 Mathematical solution 

The solution of this system can be found by using least squares. Our planes have some 

specific properties that we want to propagate in the solution. These properties result from 

the fact that we would like to enforce continuity between successive planes so there 

would be no similarity discontinuities. The continuity requirement provides the following 

constraints for each half of the solution: 

• The footprints of each plane on the XQXDB plane should be parallel to each 

other. In other words the slope should be the same, which is expressed as a 

constant ratio between parameters a\(i), a.2{i). 

• Successive planes should intersect at the specific similarity value as defined by 

thresholds tb and m. This is performed by using specifically targeted training 

samples and through a 3D line interpolation as we will further explain in section 

7.1.2. 

In order to make our system efficient first we perform a fast linear interpolation 

for each plane separately. To calculate the linear solution we use the A*X=L formula 

where A is the matrix containing the partial derivatives with respect to the unknowns, X 

contains the unknowns and L is the observation matrix. The solution is given by 

X = (Ar WA)"1 A rWL , where W is the weight matrix as explained below. 

4.2.3 Weight manipulation to express training samples prioritization 

Another interesting modification involves the formulation of the weight matrix W in the 

least squares solution. If we assume independence between the samples of the training 

dataset then all non-diagonal elements of W would be zero. Each diagonal element of W 
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corresponds to a specific training sample that is presented as a [XQ,XDB, Sim] point. This 

element can express one or more of the following: 

Wconfldence: User confidence in the specified response Sim of the presented inputs 

XQ,XDB- For example, users might return a similarity value of 40% while being 80% sure 

for their response. 

Winput: Users/database designers desire the capability to prioritize the training set 

based on how important a part of the input space is. In essence, based on the XQ, XDB 

value a metric is assigned showing the influence/significance of that section of the input 

space to the overall solution. For example, if users are requesting satellite imagery they 

might want the system to adapt more accurately to years close to 2000 than 1985 due to 

information availability. 

Woutput: Users/database designers might also want to guide the solution to be more 

accurate in specific parts of the output (similarity) space. This weight metric is solely 

dependent on the output value provided. For example a better fitting might be desired to 

the higher range of similarity (close to 100%) rather than the lower one (close to 0%). 

The overall effect of the above three cases is expressed in the calculation of the W 

matrix by: 

W = Wconfidence »»input " o u t p u t w - v 

If any of the three intermediate weight matrices is not a factor then it can be substituted 

by the identity matrix. If none of them is specified, W can be omitted from the least 

squares solution. 
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4.3 Similarity dependence on input values 

After the plane parameters are calculated we compute the average rotation angle {(pp) 

over the Z (similarity) axis. For each plane p it is given by: 

-a,(i) 
(pp = arctan( ^ ) (4.5) 

a2(i) 

Angle (pp should be the same for all planes in every half because we enforced the 

condition of having parallel footprints on the XQXQB plane. In figure 4.5 we show a 

piecewise planar similarity function. A contour plot representing similarity isolines is 

presented in figure 4.6. The calculated angle cpp is the angle between the footprints (or the 

isolines since they are parallel) and the Xdatabase axis. Here we should mention that we 

also examine the error associated with the calculated angle. This way we avoid situations 

where the angle might be expressing an average of highly deviating values. Therefore, we 

proceed with the method described next only if the associated error is within a predefined 

margin (e.g. 1-3 degrees). Our interest in this angle comes from the fact that based on its 

value similarity dependency on the input values can be extracted. Two special cases are 

identified and presented hereafter. 
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Figure 4.5: Asymmetric planar similarity function 
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Figure 4.6: Planar function contour plot 
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4.3.1 Distance dependent case 

In some cases the calculated angle might be close to the 45 degrees (<pP « 45°) (fig. 4.7). 

This translates in the plane equation as a\(i)K-ai{i). By substituting that to the plane 

equation we have for each half plane: 

(4.6) 

(4.7) 

So we can conclude that similarity is not dependent on the actual values of XQ,XOB but 

only on their Euclidean distance [Dist-XQ -XDB\- This is a significant advantage of our 

design since our algorithm recognizes the currently used distance-based nearest neighbor 

case and provides support for it. Equation 4.8 shows that the planes can be replaced by 

lines providing a significant computational gain since a 3D problem is reduced to a 2D. 

Figure 4.7: Rotation angles » 45° 
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4.3.2 Database value dependent case 

For the case that angle (pP approaches the 90 degrees markup «90° (fig. 4.8) the 

calculation formula of the angle provides a\(i) « a2(i). With proper substitution in the 

Figure 4.8: Rotation angle <pP « 90° 

plane equation we have: 

(4.9) 

(4.10) 

This translates into similarity dependence only on the XDB value. So our system has the 

ability to recognize that user preference is not dependent on the actual request. But they 

still have a preference to the returned dataset that is expressed by equation 4.10. 

An example of preference of this nature might involve cases where different users 

access the same dataset and only their combined knowledge of the problem could express 

similarity in a comprehensive manner. Each user based on his/her expertise might 
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provide part of the solution without necessarily being able to identify either the overall 

similarity trend or the "ideal" dataset that they might want. This might be the case in a 

remote-sensing application. Different experts might examine several images of different 

wavelengths looking for a specific temporal instance of the phenomenon under 

investigation (e.g. iceberg separation). None of them knows the exact time and they al) 

express their temporal preference based on their expertise on the training datasets. 

Our system design overcomes this problem based on a combined training dataset 

from a variety of users. If all users are looking for the same dataset the plane angle has a 

high possibility of being close to 90°. In this case their similarity behavior should be 

expressed by a 3D surface similar to the one of figure 4.8. Since their preference revolves 

around a specific query value and only that, a 2D line can replace the 3D planes, which is 

consistent with the formulation of equation 4.10. 

4.4 Sigmoidal similarity function 

4.4.1 Mathematical formulation 

After the plane interpolation is performed, an accuracy assessment through a fitting error 

takes place. For our application we use the Root Mean Square Error (R.M.S.E.). If the 

error is high a more complex function is triggered. To capture non-linear similarity 

relations between a query and a stored metric attribute we use a modified sigmoidal fuzzy 

relationship function. Sigmoidal functions are popular in the neural network community 

and have been used in the GIS field as predefined similarity functions for spatiotemporal 

trajectory matching (Vlachos et al., 2002). Our similarity function is composed of two 

separate sigmoidal functions to compensate for asymmetrical cases. The similarity 

function Sim(») for a database value XDB compared to a query value XQ is: 
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(4.11) 

The parameters cR and cL specify the translation along the database axis. The slope of 

each sigmoidal function is expressed through aR and ^respectively. 

An important characteristic of the sigmoidal function is the large range of 

modeling capabilities. Efficient manipulation of the slope can result in representing a 

variety of cases, ranging from a linear up to a step-like behavior (fig. 4.9). This 

diversified capability together with the large operational range on the input space and the 

mathematical continuity of the function (first derivative exists everywhere) establishes 

the sigmoidal as the appropriate solution to express preferences from a variety of fuzzy 

membership functions. 

i Similarity 

Input Signal 

Figure 4.9: Slope and spread influence on sigmoidal's shape 
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4.4.2 Initial approximations and parameter calculation 

In a non-linear solution such as this there is always the problem of initial approximations. 

This is where the fast plane interpolation becomes multipurpose. We use the angle <p as 

calculated before for the initial value of the rotation angle of the sigmoidal (for 

computational consistency (p-g>P -45°). Also from the mathematical properties of our 

sigmoidal function we know that spread c corresponds to the value where the sigmoidal 

similarity function will return 0.5 as output (fig. 4.10). That is the main reason we 

introduced plane #3 earlier and the threshold m. We want m to be as small as possible but 

Figure 4.10: Calculating sigmoidal initial parameters based on planar solution 

at the same time include enough samples to have an accurate result. So using the 

properties of plane #3 we calculate: 

c=-(°-5-a^ (4.12) 
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The slope parameter cannot be calculated accurately directly from the planes. So 

in order to get an initial value we use the temporary values for <p and c, and an equal (in 

number) random subset of the training data for each of the five planes. A least square 

solution gives an approximation for a with <p and c being fixed. 

After all three temporary values are calculated a final refinement takes place with 

the whole training set. In order to calculate the sigmoidal parameters a least squares 

solution is implemented through an iterative process. We use the A*8X=L formula where 

A is the matrix containing the partial derivatives with respect to the unknowns, 8X 

contains the unknowns and L is the observation matrix. 

Specifically if we have n training points [XQ, XDB ,Sim] to calculate the sigmoidal 

parameters a, tp and c the formulation of the matrices would be: 

(4.13) 

where: (4.14) 

(4.15) 

(4.16) 

(4.17) 

The solution is given by 5X = (ArWA) ' A r W L . W is the weight matrix as defined 

previously in the planar solution (equation 4.4). 
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4.5 Advanced fuzzy similarity functions 

When the underlying complexity of preference is high, the already presented similarity 

functions might not be able to model it adequately. For these cases we present a more 
t 

adaptable set of functions with higher modeling capabilities. We do so by introducing 

functions with higher input dependency. Later in this section we also present the 

theoretical framework for similarity function convolution. Even though this is not part of 

our training process, its significant applicability is noticeable. 

4.5.1 Parameter substitution by input-dependent functions 

In more complex behavior function parameters might not be independent of the query 

and/or database value. For example spread parameter c of a sigmoidal fuzzy membership 

function may depend on the query value XQ so c will not be constant throughout the input 

space (e.g. c=c0 + tXQ2, c0 and t are constants). Such a case might exist when users are 

more tolerant (in a non-linear fashion) towards query deviations as the query value 

increases. 

Mathematically this can be expressed as follows: Let function F(») represent a 

FMF mapping of our two-dimensional input space to one-dimensional similarity space: 

F:<K2^[0,1] (4.18) 

The function inputs are query and database values XQ, Xm. Let P be the set of the n 

parameters that formulate this function: 

P=[pi,p2,..-,Pn} (4.19) 

In this case the arguments of function F(») can be expressed as: 

F(Xe,XOBIP) (4.20) 
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Now let us assume that each parameter p, in equation 4.19 is not constant. Instead, it is 

expressed through a function P,(») and it is dependent on values XQ, XDB. Also function 

P,(«) with i = {1,2,..., n) has its own set of parameters Ki. This leads to the general 

expression for inputs to function F(») which is : 
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(4.21) 

For example, let us examine the sigmoidal function of equation 4.12. Similarity function 

F(«) will be represented as: 

(4.22) 

The number of parameters is three, namely a, c, and q> (n=3). Let P = {/?/, p2, ps) be the 

corresponding functions of these three parameters. For simplicity let's assume that ps, p3 

are constants and only p2 is substituted by function P2(XQ, XDB\ K2). An example of such 

a function could be: 

(4.23) 

In this case we would have K2 = {c0, C], c2). So instead of trying to solve for 

parameters {a, c, q> } our new more complex system would have higher modeling 

capabilities and would be expressed by a new set of parameters [a, ca, c/, c2, <p]. The new 

set of parameters would be approximated initially by the solution obtained in the previous 

less complex solution, which in this example would happen if we set as initial 

r new new new „ new .. new-. r old old p. p. ,„old-i 

approximations [a , c„ ,ct , c2 , (p J = [a ,c , (J, (J, cp J. 



4.5.2 Convoluting function output 

We further enhance the operational range of our FMFs by introducing another important 

operation. This time we do not alternate the properties of a function. Instead we combine 

more than one function to compose the underlying similarity signal. Such cases facilitate 

more complex user preferences than a single function could express. An example would 

be periodicity combined with gradual decreasing interest (section 4.6.1). Combination of 

functions has another potential application that does not necessarily coincide with user 

perception of similarity. It rather expresses database system requirements and/or 

constrains that might exist. They can be static or adjust in real time depending on system 

sources. They can also vary depending on user position in the hierarchy (e.g. restricted 

access systems). 

We allow the combination of functions by convolving their signals in the input 

space. Let function F(») represent an FMF mapping and function G(«) be for instance an 

administrative constraint. We have: 

F: 9\2-*[0,l] , G: 9\2->[0,l] (4.24) 

Inputs for these functions are query and database values XQ, XDB. We define the 

convolution of functions F(»), G(») as their multiplication throughout the input space 3l2 

If function H(«) is the resulting new function it can be represented as: 

H {XQ, XDB) = F (XQ, XDB) * G (XQ, XDB) (4.25) 

This new mapping function would also project the two-dimensional input space into the 

one-dimensional similarity space: 

H : 9 x 2 ^ [ 0 , l ] (4.26) 
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Here we should note that we do not support training of function G(«) and/or 

retrain function ¥(•). Such a task would be extremely difficult due to the higher amount 

of parameters and the correlations in-between them. At this point we present the 

theoretical framework behind it and we investigate possible applications of it. Such 

training is reserved for future work. 

4.6 Functionality examples 

In this section we introduce a few examples using our method. Increasingly challenging 

similarity tasks are presented showing our model adaptability. Our applications are 

inspired by common but complex user preferences within geospatial environments. We 

provide two examples of similarity preference in the temporal dimension and the 

connection speed dimension. A more comprehensive example with a step by step 

explanation of the algorithm is presented later in chapter 7. 

4.6.1 Temporal similarity 

A typical geospatial request can involve the temporal footprint of a geospatial object. One 

task might require the investigation of periodical phenomena. Such scenarios can 

incorporate dual preference. For example, the main focus might be a specific year, but 

years close by would be acceptable too. This can be expressed by a sigmoidal function 

for each half (fig. 4.11 dotted line). Another preference could result from the specifics of 

the problem which might require information only during specific months (seasons). A 

sinusoidal function can be used to model such preference (fig. 4.11 solid line). 

Users would like though to combine both of the above requirements in the overall 

similarity computation. In order to do so, we convolve the sigmoidals with the sinusoidal 

function which results in the similarity surface of figure 4.11. A specific example is 
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shown in figure 4.12. A user wants to study a disease associated with the leaves of 

deciduous trees that appeared in 2000. The two asymmetrical sigmoidal functions express 

his/her preference for datasets before and after 2000, respectively. Note the different 

similarity gradient that shows datasets of earlier dates would be more suitable than 

datasets of later dates. Also, this query requires datasets only through the summer months 

since in the winter time the trees lose their leaves. This is expressed through the 

sinusoidal function with a periodicity of a year. The combined result of the sigmoidal and 

sinusoidal functions models user preference for this task (fig. 4.12). 

Figure 4.11: Sigmoidal with sinusoidal similarity functions convolution 

105 



Similarity 
2001 2002 

Summer Summer Summer Winter Sumner Winter Summer Summer Sum 
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Figure 4.12: Time periodicity example 

4.6.2 Server connection similarity 

In this example we examine the application of constraints to user similarity functions. 

These constraints can be imposed by the database administrator or by the system design, 

and they can be fixed or adaptable based on real-time monitoring of the database system. 

Due to the large volume of geospatial datasets, data warehouses might be created 

leading to dataset availability through a variety of connected servers. Let us assume that 

GIS users request information in such a distributed environment. Depending on their 

connection speed they might query for servers of analogous speed. Because of high 

demand at some point all fast servers might be overloaded. Then the system administrator 

might exclude these servers from the candidate ones being afraid that this might result 

into denial of service. So he/she creates a function such as the sigmoidal of figure 4.13 

with solid black line. Then the user similarity preference (dotted line) will be convolved 

with the system constraint and would provide a new similarity surface, the one of figure 
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4.13. In figure 4.14 a contour plot shows the exact effect of the filtering function that was 

imposed. Servers with connection much faster than 10Mbit would not be accessed while 

they would have been under normal circumstances. 

Figure 4.13: Sigmoidal with sigmoidal similarity functions convolution 

Figure 4.14: Connection speed example with similarity isolines 
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4.7 Conclusion 

In this chapter we proposed a novel method for preference modeling within dimensions. 

Our approach accommodates gradual complexity increases in response to increased 

preference complexity. We use a variety of fuzzy membership functions to model 

preference expression. The training of the fuzzy similarity functions is performed using a 

backpropagation algorithm. Initially, planes are interpolated and an analysis of the 

similarity dependence on the input space is performed. Based on the plane angle, the 

system identifies cases where similarity is independent of the query value or dependent 

only on the distance metric between query and database values. This way the process is 

simplified and a significant computational gain is achieved. Also, formulation of the 

weight matrix can enforce more accurate fitting in specific areas of the input space or 

specific similarity outputs, as well as incorporation of user confidence in the provided 

response. 

The gradual complexity increase is expressed through different sets of functions. 

Their specific design allows the use of properties from initial less complex functions as 

approximations for the following, more complex ones. By doing so, a high convergence 

rate is achieved in the least squares solution. Through advanced functions we enhance 

complexity by adding non-constant behavior to the function parameters. In addition to the 

gradual training, we presented a theoretical framework for preference function 

combination through mathematical convolution. We also describe examples preferences 

in geospatial information retrieval and how modeling these preferences is achieved using 

this mathematical convolution. 
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Chapter 5 

Preference refinement using a multi-scale radial basis neural 

network 

In this chapter we examine the application of a customized neural network to capture 

erroneous preference results obtained by the fuzzy method described in the previous 

chapter. Our approach is inspired by function approximation techniques. Preference 

modeling is achieved through a multi-scale neural network developed especially to 

accommodate the characteristics of our problem. 

After providing a brief overview on neural networks and their applications, we 

justify the chosen general model that is based on radial basis functions. We investigate 

possible weaknesses of the general case and progressively build our novel network 

architecture by finding solutions. The final architecture is presented, accompanied by an 

information flow description during the algorithm training. 
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5.1 Why neural networks? 

The basic idea of artificial intelligence (AI) is to plant human reasoning in a computer so 

the computer can behave intelligently. Artificial neural network (ANN) is a generic form 

of artificial intelligence for emulation of human thinking and tends to mimic biological 

neural networks with the help of computational electronics or software. It is often defined 

as emerging technology that mostly depends on soft or approximate computing. So would 

an ANN be appropriate for our problem? 

The answer is yes. The investigation presented in this chapter will provide 

sufficient evidence. But what makes ANNs such a prominent tool to use? First of all, the 

common aspect of our task and the ANN definition: "emulation of human thinking that 

tends to mimic biological neural networks with the help of computational electronics or 

software". We deal with a signal reconstruction issue where the signal expresses how 

humans perceive similarity among database values, in other words it encapsulates human 

thinking. Without getting too explicit, biological and AI researchers have identified a 

common parallel processing structure in the human brain and ANNs. Some might even 

claim that ANNs resulted from the study of the human brain. There exists extensive 
i 

literature from different disciplines on the connection of human brain and ANNs. From 

an engineer's point of view a ANN simulates a human brain to some degree by trying to: 

• Examine inputs (stimulus) to provide a response in a forward-transmission manner. 

• Extract salient features and model them through processing nodes (neurons in the 

human brain). 

For further reading on that relation from the perspective of the neural network 

community the reader is referred to (Haykin, 1999). 
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5.2 Why neural networks with radial basis functions? 

The analysis in this section justifies the choice of the general ANN model category based 

on our problem characteristics. Among dozen of different networks, there are two general 

classes: ones that provide function approximation and ones that simulate pattern 

classification problems. In the function approximation category, two are the commonly 

used types of feedforward networks, the Multilayer perceptrons (MLPs) and Radial basis 

function (RBF) networks. In the following sub-sections, first we provide a brief 

introduction on each network, and then a comparison through our task viewpoint is 

presented that leads naturally to our network type selection. 

5.2.1 Multilayer perceptron networks 

This kind of network typically consists of a set of source nodes that create the input layer, 

one or more hidden layers that represent the computation nodes and an output layer of 

these computation nodes (fig. 5.1). The input signal propagates through the network in a 

forward direction on a layer-by-layer basis. A MLP network has three distinctive 

characteristics (Haykin, 1999): 

Figure 5.1: Multilayer perceptron network structure 
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• The activation functions of the computation nodes are nonlinear and differentiable 

throughout the input space. Typically the activation function is a logistic or tangent 

function. Hence the formula for the activation is: 

1 
Vj= (5.1) 

where us is the weighted sum of all synaptic units connected to node j plus the bias. 

• The network contains one or more layers of hidden neurons that are not part of the 

network input or output. By using this structure, the network is able to learn 

progressively more meaningful features from the input patterns that are presented. 

• There is a high degree of connectivity determined by the synapses of the network. 

Change in the connectivity requires the network to be trained back from scratch. 

5.2.2 Radial basis function networks 

The MLP network described above can be seen as the application of a recursive 

technique that in statistics is defined as stochastic approximation. An alternative approach 

would be to design an ANN that would act as a curve-fitting hypersurface of the high-

dimensional space, in essence attempting to find the best fit to the training dataset. The 

hidden units of such a network would be an arbitrary basis for the input patterns when 

they are expanded in the hidden space (Haykin, 1999). These functions are called radial 

basis function and the corresponding network a Radial basis function (RBF) network. 

There are many types of radial basis functions. Gaussian RBFs seem to be the most 

popular in the ANN literature. In the statistical literature, thin plate splines are also used 

(Green and Silverman 1994). 
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RBFs are usually a combination of an input layer, a single hidden layer with the 

radial basis functions and a linear output layer (fig. 5.2). The activation functions of the 

hidden layer are based on the Euclidean distance between the input vector and the weight 

vector. Then a nonlinear transformation is applied from the input space to the hidden 

space. Finally the output is calculated by a weighted summation of the hidden layer 

response. 

Figure 5.2: Radial basis function network structure 

5.2.3 Similarities and differences 

First let us examine the similarities between MLPs and RBFs. Similarities are not as 

important though because the chosen model is based on the exclusive characteristics of 

the winning ANN type. Keeping that in mind, we can summarize as follows: 

• The RBF Networks and the Multilayer Perceptrons are layered feedforward 

networks that produce nonlinear function mappings. 

• They are both proven to be universal approximators. By using this theorem we can 

mathematically prove that they have the ability to approximate an arbitrary 

continuous function. 

On the other hand these are the main differences between them: 
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• The way in which hidden units combine values coming from preceding layers in 

the network: MLPs use inner products, while RBFs use Euclidean distance. 

• The methods for training MLPs and RBF networks, although most methods for 

training MLPs can also be applied to RBF networks. 

• The nodes in the hidden and output layers of MLP use the same activation function, 

while RBFs use different activation functions at each node (Gaussians 

parameterized by different centers and variances). 

• The hidden and output layers of MLP are both nonlinear, while only the hidden 

layer of RBFs is nonlinear (the output layer is linear). Also an RBF network has 

only one hidden layer, while MLP networks have one or more hidden layers 

depending on the application task. 

• MLPs construct global approximations while RBF construct local approximations. 

• MLP is harder to train but RBF might require more computational nodes to 

achieve the same accuracy. 

5.2.4 Chosen network type 

In the previous sections we introduced the available options for our neural network 

structure. To support our final decision we revisit our problem and using the problem 

specifications and requirements the selected model is justified. 

Our neuro-fuzzy system builds a preference model based on user feedback. We 

use a backpropagation algorithm to train the fuzzy membership functions that act as 

global function approximations as presented in the previous chapter (fig. 5.3). In other 

words fuzzy functions describe the "anticipated" behavior of the preference expression 

throughout the input space. But there are also localized behaviors that a global function 
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cannot represent. And there is also some inherent noise that should be decreased. In 

figure 5.4 the resulting error from the fuzzy function of figure 5.3 is presented. If we 

examine the error function we can see that there is one high value in the middle where the 

user expressed a highly unexpected similarity choice. There are also errors of smaller 

amplitude that need to be modeled. 

Similarity Similarity (x6| 

Database Values 

Figure 5.3: Fuzzy membership function Figure 5.4: Resulting error from fuzzy 
interpolation membership function 

We claim that our solution should be: 

"A local-nature artificial neural network" 

The rational behind this comes from the fact that we expect the majority of the preference 

expression to be modeled by the fuzzy function. In other words, this is the behavior that 

results by training on specific rules/knowledge. We trust this fuzzy function to carry on 

the preference where not enough training data exist - a good generalization is anticipated. 

So our neural network should be limited to localized neighborhoods of the input space -

appear only where it is necessary. 

This leads us to the choice of a Radial basis function network. RBF architectures 

have local receptive fields, meaning that changing the hidden-to-output weights of a 
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given unit will affect the output of the network only in a neighborhood around the center 

of the hidden unit, where the size of the neighborhood is determined by the spread of the 

hidden unit. This satisfies the requirement of a localized solution. 

Local receptive fields have an advantage compared to the distributed architecture 

of MLPs, since local units can adapt to local patterns in the data without causing 

unwanted side effects in other regions. In a distributed architecture such as a MLP, 

adapting the network to fit a local pattern in the data can cause spurious side effects in 

other parts of the input space. For our application this means that a modular node 

structure can be implemented. By adding or dropping a node we know the neighborhood 

of the input space that will be affected. So as new training data might arrive, our network 

can be updated without having to retrain it (assuming no significant changes). 

Another desirable feature comes from the training of the network. The 

dimensionality of the input space is low (2D) so visualization is an option. Problematic 

areas can be identified and improvements should be made in the network structure. If a 

MLP would be chosen it would be extremely hard to identify the nodes causing errors 

because MLP activation functions have a broad activation range in the input space. On 

the other hand RBFs can be easily analyzed and corrected due to their local receptive 

fields. In figure 5.4 an RBF is applied on the error function. The combined result of the 

fuzzy function and the RBF is shown in figure 5.5. 
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Figure 5.5: Fuzzy membership function with RBF 

5.3 Radial basis network for the non-expert 

In this section we provide an inside look on how RBFs work. Special consideration is 

given to non-expert users through a step-by-step walk through. We also examine the 

simplest version of RBF, an exact one (number of nodes = number or training points). 

Advanced users should proceed to the next section. 

Let's assume that we have a function approximation problem. The input to our 

network is one-dimensional and so 'is the output. We also choose to use 3 hidden nodes 

and that these nodes are Gaussian distributions (fig. 5.6). Each Gaussian has a pre­

defined width (sigma) of value s and specific mean as well. 

& - ^ 

Figure 5.6: Simple RBF example - 1 input, 3 hidden nodes and 1 output 
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Now let's attempt with the above network to approximate the three points of 

figure 5.7. First here is how the network works (information flow is shown with 

connectivity arrows in figure 5.6). Each point is presented to the network. The signal 

goes from the input layer to the hidden one. Over there the output of each Gaussian node 

is calculated based on the distance between the point and the center of each Gaussian. 

These are the bottom three Gaussians in figure 5.7 represented with dark shadowed 

fillings. Then the output is multiplied with a weight, in other words scaled up or down. 

The corresponding three new Gaussians are shown with dotted line. Finally the weighted 

output of each node is added in the linear node. That is the output of the network as 

presented with a solid black line. 

Weighted Sum of Radial Basis Transfer Functions 

Node #1 Node #2 Node *8 
Input 

Figure 5.7: Inside look at RBF operation 
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5.4 Multi-scale RBF network 

In the previous section we discussed the merits for our application coming from an RBF-

type network. In this part we address issues related to the built-in properties of a multi-

scale RBF that facilitates our needs. First, we investigate the selection of node centers 

and activation functions. A discussion follows on how a variable width (multi-scale) 

approach would improve performance and affect the formulation of the activation 

functions. To facilitate visualization purposes the investigation is based on an one-

dimensional input even though our task has a 2D input. Only where it is necessary, a 

reference to the second dimension will be provided. 

5.4.1 Selection of node centers 

In the literature two general approaches exist for center selection of RBF nodes. They can 

either be fixed or calculated during the training process of the network. We provide a 

brief introduction for each and then assess their possible benefits for our network. 

The first category requires the centers to be fixed throughout the training process. 

The centers are preselected: 

• in a random fashion from the training dataset, or 

• based on a self-organized learning technique. 

The first method is simple to implement, just center the nodes on the training 

dataset points and then train the network from there. The second choice requires a 

clustering algorithm that would divide the dataset into homogenous subgroups and use 

those subgroups as centers. Examples of such approaches include the k-means clustering 

algorithm, the enhanced k-means by (Chen, 1995) and the self-organizing maps 

(Kohonen,1990). 
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In the second category, the RBF takes its most generalized form where centers 

are not predefined but are computed as additional parameters during training. A study 

that compared fixed and parameterized solutions performed by (Wettschereck and 

Dietterich, 1992) showed that the parameterized solution outperforms the non-adaptable 

one, which is expected since the model has higher flexibility with added parameters. 

Projecting the above techniques to our task we would have to choose a fixed-

center approach with the centers based on a subset of the training dataset. This results 

from the following constraint we apply on our network: 

• Activate only at neighborhoods when there is substantial evidence of error and do 

not generalize outside these neighborhoods of the input space. 

• Trust the fuzzy membership function to generalize outside the neighborhoods. 

Two interrelated reasons can cause the network to expand beyond the desired 

limits: the selection of centers and the selection of width. Here we examine the former. 

the latter is presented afterwards in the chapter. The main problem with the self-

organized and parameterized methods is that there is not much control on node center 

location. Neighborhoods and other constrains can be applied but there is no warranty that 

the network will generalize in the desired fashion. In most cases this lack of control 

would be disregarded, it would be interpreted as higher adaptability of the system, but 

that is not our case. An example is shown in figure 5.8. The training points can be seen 

with black diamonds. The former two methods would probably lead to the choice of the 

high-amplitude Gaussian at the center (dotted line). Our choice would result in the two 

low-amplitude Gaussian left and right (solid line). During the training process the high-

amplitude solution would provide a better error estimation. But when the generalization 
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would take place the results would be erroneous. An example is presented in figure 5.9. 

Output signal 

Input signal 

Figure 5.8: Node center selection 

Input Signal 

Figure 5.9: Node center selection generalization example 
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5.4.2 Selection of activation functions 

Inside every node of an RBF network there is an activation function, a function that maps 

an input signal to an output one. This function is non-linear and should belong to a 

Green's function category (Haykin, 1999). Such a function has two properties: 

• Its linear differential operator is invariant to translation and rotation. 

• Its response depends only on the Euclidean norm of the difference of the center 

vector and the presented input pattern. 

Under these conditions a chosen function is a radial-basis function. A large class of 

radial-basis functions has been introduced in the past, with Gaussian ones dominating the 

literature. Other types include thin-plate splines, logistic basis functions, multiquadrics 

and inverse multiquadrics (Hardy, 1971). In our approach we use two non-linear function 

classes, the predominant Gaussian and a symmetrical Sigmoidal class. 

5.4.2.1 Gaussian activation functions 

The first class of activation functions used in our MSRBF is based on a Gaussian 

distribution. Gaussian functions are popular activation functions because they satisfy the 

radial-basis function conditions mentioned above, and at the same time they support 

traditional statistical analysis, a consequence of their Bayesian form. 

For a uniform standard deviation oa activation function <£(•) of node j (fig. 5.10) 

Output Signal 

Input Signal 

Figure 5.10: Gaussian function 
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can be expressed as: 

(5.2) 

where x is the d-dimensional input vector with elements xt and ft is the vector 

determining the center of basis function <pj and has elements ///,. 

The Gaussian radial-basis functions can be generalized to allow for arbitrary 

covariance matrices E7. In this case the equation 5.2 takes the following form: 

(5.3) 

The current problem we examine involves two inputs and one output. The inputs 

are the Database value and the Query value and the output in the similarity metric. 

Depending on the formulation of the covariance matrix S/ the resulting Gaussian 

activation function can have equal axes scale (fig. 5.11a,d) or unequal axes scale (fig. 

5.11 b,e) and can be rotated (fig. 5.1 lc,f). 
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d. Equal axes scale e. Unequal axes scale f Unequal scale with 
2D footprint view 2D footprint view rotated axes 2D footprint 

view 
Figure 5.11: Different 3D Gaussian activation functions 

5.4.2.2 Sigmoidal activation functions 

During the initial development of the MSRBF, we realized a limitation of using Gaussian 

activation functions. Their highly active receptive field is rather small compared to the 

total receptive field of the function as seen in figure 5.11. This results into limited 

modeling capabilities when a uniformly highly stimulated area exists. To overcome such 

a problem we would have to use a large number of nodes. Another approach that 

traditional RBF networks follow is the introduction of an external bias. But in our case 

we cannot use a global bias because that would overturn the goal of this network as 

defined previously: 

Allow network activation only where there is substantial evidence of error. 
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The role of a global bias is placed upon the non-linear fuzzy membership function. So we 

introduce another class of radial-basis functions that act as localized bias, namely the 

symmetric Sigmoidal one. The activation function <£>(•) of node; can be expressed as: 

.Output Signal 

Input Signal 

Figure 5.12: Sigmoidal function 

this case the equation 5.4 takes the following form: 
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(5.4) 

where x is the d-dimensional input vector with elements jt,- and fi is the vector 

determining the center of basis function (ps and has elements ///,-. Parameters aa and c„ 

define slope and spread characteristics of the function (fig. 5.12). The Sigmoidal radial-

basis functions can be also generalized to allow for arbitrary covariance matrices E,-. In 

(5.5) 

By manipulation of the covariance matrix S, we can introduce different scales along each 

axis and introduce rotation along the output axis (fig. 5.13). 
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a. Equal axes scale b. Unequal axes scale c. Unequal scale with 
rotated axes 

d. Equal axes scale e. Unequal axes scale f. Unequal scale with 
2D footprint view 2D footprint view rotated axes 2D footprint 

view 

Figure 5.13: Different 3D Sigmoidal activation functions 

5.4.3 Supporting a multi-scale analysis 

This section introduces issues related to spread definition within an RBF. This is essential 

to our model since we want to incorporate variable spreads and produce a multi-scale 

RBF. First, we explain how spread affects the outcome of a network using a simple one-

dimensional input example. Building on that, we discuss available techniques to 

overcome arbitrary spread selection. Our chosen method concludes the assessment. Note 

that spread refers to the definition of parameters aa and ca of the Gaussian and Sigmoidal 

activation functions, respectively. 
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5.4.3.1 Spread influence in RBFs 

In most RBF networks the node functions are predefined and the goal is to find the 

optimal set of weights. This implies that the parameters of each activation function will 

be constant throughout the iterations. In the case of a Gaussian activation function 

standard deviation oa and center vector/2y are predefined in equation 5.2. But how does 

the choice of these two parameters affect the result? The node center selection was 

discussed in section 5.4.1. The influence of standard deviation (spread) is our focus here. 

To help us with the investigation a set of training points is presented to three identical 

networks. Their only difference is the spread used in the Gaussian activation functions. 

The resulting mapping is displayed for <Ja={0.03,10,12} in figure 5.14. 
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Figure 5.14: Spread influence in a RBF network 

For cra=0.03 the network output is relatively accurate on the training data. But when we 

try to generalize it we obtain poor results. This is due to the choice of a small spread that 

results in a narrow receptive field. This leads to a less "smooth" mapping since the 
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functions are too localized. On the other hand, when oa was set to 12 the mapping was 

more "smooth" than desired. This is caused by large receptive fields used for the 

Gaussian functions, constraining their ability to capture details in an appropriate manner. 

The last value tested was for <Ja= 10. This value seems to describe the problem 

adequately. It provides good training accuracy and good generalization at the same time. 

Judging from the above an important conclusion is that the spread parameter should be: 

"large enough so neurons respond to overlapping regions of the input space, but not so 

large that all the neurons respond in essentially the same manner". Thus, depending on 

the problem small deviations in the spread value can have a significant effect to the 

overall outcome of the training. 

5.4.3.2 Spread assessment in our MSRBF 

So the big question now is how we define the optimal spread value for the task at hand. 

There are two general methodologies; one requires the spread pre-defined and another 

that treats it as an additional network parameter. 

The first one defines the spread before the training of the network, then during the 

training process an evaluation of the chosen spread is provided. A common approach is to 

follow a trial-and-error technique by presenting the same training input to a variety of 

RBF networks with different standard deviations each time, and then evaluate the 

resulting accuracy after all spread candidates are presented. The area around the best 

width is then tested in more detail, and so on until the desired accuracy is achieved. 

Another solution would be to use the generalized cross-validation (Craven and Wahba, 

1979). But this approach does not work in all cases as shown in (Wahba, 1990). 
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In the second category, the spread is not pre-defined but it acts as an additional 

parameter for the network in addition to the weights solution. Theoretically this is a more 

powerful solution due to the higher adaptability that comes from a flexible spread. But in 

practice this also increases the complexity of the training. Convergence of the network is 

not guaranteed due to the non-linear solution that is required and sometimes 

generalization issues appear. More specifically, in our application we impose some 

constraints on the network, on the receptive fields of the nodes. We desire a more 

"controlled" solution that would converge in a frequent manner, without any unexpected 

behavior. For example, if spread is an independent variable, this could generate large 

values that would contradict with our motivation of having the network act locally only 

when necessary and trust the fuzzy membership function to generalize beyond that. 

Based on the above analysis, there is a trade-off between model adaptability and 

convergence/control degree. Since our network is a performance improvement and not 

necessarily the only means to successfully model the similarity signal we chose 

convergence and control at the spread specification. So the selected method is a trial-and-

error approach where several spreads are tested and the best "statistical" solution is 

retrieved. At the same time though, model adaptability is significantly improved by using 

different "statistical" criteria as introduced hereafter. 
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5.5 Customized network training 

Initial statistical experiments demonstrated that the use of traditional RBF networks 

increase accuracy. At the same time several problematic scenarios were identified that 

needed attention leading to new techniques and a customized multi-scale RBF. This 

section discusses limitations and concerns that rose during testing and solutions to 

overcome them. We should point out that throughout this section theory and applications 

will be used interchangeably. We follow a problem-solution approach while we increase 

the complexity rather than using the final algorithm flow as a guide. Information flow is 

presented in a subsequent section (5.7). 

5.5.1 Traditional RBF training 

Up to this stage we have established the network type, node activation functions and 

center/spread selection methodology. The next step concentrates on the RBF training, 

which takes place with a sample dataset. The dataset is divided randomly into two sets; 

one having 60-80% of the points formulating the training dataset and another set with the 

rest of the points that is used for evaluation purposes. Training and evaluation sets are 

different sets to ensure good generalization of the network, otherwise overfitting cases 

like fig 5.14 for <7a=0.03 might appear. 

During the network training we try to minimize error, the difference between the 

network actual and desired response. First, we have to make the network adjust (fit) to 

the training set and then estimate its final performance with the evaluation set. At this 

stage the evaluation set is ignored, we will assume that the training set is sufficient 

enough to provide good generalization. 
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Let's assume that a training set of n points is provided. The input dimension of the 

training set is 2 (xj, x2). There is also a one-dimensional output (y) describing the desired 

response for each input vector. An example of such a training set is given in table 5.1. 

Xl 

1.3 
2.5 

9.7 
17.3 

x2 

8.3 
5.2 

5.3 
-11.4 

y 
0.14 
0.12 

0.19 
0.05 

Table 5.1: Example of a training set 

In a multi-scale approach we would like to test several different spread values. A 

range [(Tinin, <Jmax\ is defined showing the minimum and the maximum spread value. 

Based on that a set of candidate spread values is produced. Also, a set of candidate 

centers jUj is created. Since all points can act as activation function centers the //,• set is the 

same as the input part of the training set. 

After the parameters of the activation functions are defined all possible 

combinations of spread and centers are created. RBFs can be treated as high-dimensional 

curve-fitting approximations. In order to compute the best solution some statistical 

measures should be used. The most popular one is the Mean Square Error (MSE). The 

MSE is given by the following equation: 

t(y-y)2 

MSE = ^ (5.6) 
n 

where y is the network response, y is the expected response from the training set and n is 

the number of points in the dataset. The MSE is calculated for every combination of 

spread/center as shown in table 5.2. 
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Spread aa 

4 
4 
4 
4 
6 
6 
6 
6 

14 
14 
14 
14 

Center jOj (x!,x2) 
(2,4) 
(3,5) 

(9,12) 
(2,4) 
(3,5) 

(9,12) 

(2,4) 
(3,5) 

(9,12) 

MSE 
0.12 
0.17 

0.09 
0.07 
0.03 

0.08 

0.07 
0.10 

0.22 

Table 5.2: Node selection with MSE 

The activation function with the lowest MSE is selected. If this MSE is better than a 

predefined threshold (that expresses the desired accuracy of the fitting) then the network 

stops there. If not, then all the training inputs are corrected based on the last activation 

function and the process is repeated. The training stops when either a predefined number 

of nodes is reached or the desired accuracy is achieved. 

5.5.2 The multi-scale overlapping problem 

A multi-scale approach is significantly more powerful since it has the ability to model the 

similarity signal at multiple resolutions without the drawbacks of a pre-defined single 

spread. In existing multi-scale RBF networks a multi-scale capability might exist but is 

hindered when there is an overlap of receptive fields. They can still capture the signal in 

multiple resolutions but they lack a fundamental functionality, namely: 

Distinguish and isolate signals of different resolution in overlapping receptive fields. 

To better understand the significance of this, let's examine the training case of 

figure 5.15a. All points in the figure belong to the same dataset. In order to visually 
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distinguish them, the solid circle points belong to a Gaussian with a large spread and the 

open circles belong to a smaller spread Gaussian. If these two Gaussians would not 

overlap then existing approaches would be able to mode) them appropriately. But in this 

case the receptive fields overlie each other. 

. O u t p u t n O u t p u t 

Gaussian »1 Gaussian VI 

.i 

Before 1! 

iteration 

» * » • * • * » , 
"" , Input 

t 
After Is' 
iteration 

Input 
Gaussian ((1 Gaussian *2 

a. Original dataset b. Dataset after first iteration 

Figure 5.15: Gaussian overlapping problem 

In order to train the network we apply the traditional MSE criterion. We use a 

variable set of spreads including the ones that formulated this statistical training set so we 

would expect the model to identify them. The minimum MSE would identify Gaussian #2 
i 

as the winner in the first iteration. This is logical since that Gaussian would minimize the 

overall error. The problem comes thereafter. After the first iteration the training dataset is 

corrected (basically subtract dataset's response to the first Gaussian node). The resulting 

dataset is shown in figure 5.15b. Two remarks can be made after the first iteration: 

• Gaussian #2 is correctly modeled since all its points are absorbed providing a close 

to zero network output. 

• BUT Gaussian #1 has lost its original form now. 
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The latter is a constraint that traditional RBFs could not overcome with the 

addition of one node. If a bias would be used that would not work because it would have 

to operate in the whole input space. In order to operate within a specific range the 

linearity of the second layer would be resolved. But even if a linear bias could be 

introduced it would not always be able to capture the non-linear output modification (in 

our figure the up or down non-linear shifting). So traditional RBFs have to use a 

significant number of additional nodes with relatively small widths and it would be 

questionable if the sufficient accuracy would be achieved. 

5.5.3 Incorporate local behavior into node evaluation 

To compensate for the problematic case mentioned above we perform some 

modifications in the node selection criteria used through the iterations. First, we introduce 

the influence of a local statistic in the node selection process in addition to the traditional 

MSE. Then we present a method to allow multi-scale overlapping receptive fields. We do 

so by blocking parts of the input space that are successfully mapped. A discussion on 

some related issues such as node center selection (revisited) and local density 

requirement concludes this section. 

5.5.3.1 Customized node selection statistics 

In section 5.5.2 we defined the problem. Here we provide an answer to the overlapping 

issue of figure 5.15a. The underlying idea is to create a technique that we will choose 

these two Gaussian distributions over other candidates. With this network we argue that 

the answer is: 

Examine local behavior in addition to global MSE. 

By global MSE we mean the traditional MSE, the one that results by using all the 
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points in the dataset. Local behavior reflects how well the chosen activation function fits 

the dataset points that are within its' receptive field. 

Since a prerequisite for a RBF activation function is to be localized the 

corresponding receptive field within which the function is active can be easily calculated. 

During each candidate examination a subset of the dataset is created including only 

points that fall within this activation field. A local MSE is calculated using this subset 

according to the formula: 

±(y-5)2 

MSElocal=^— (5.7) 
k 

where y is the network response, y is the expected response from the training set and k is 

the number of points in the subset dataset (k<ri) representing the points that fall within the 

node's receptive field. 

Our next step in the investigation is to find a method that combines both local and 

global MSE in an appropriate manner. The selection of a node should be based on 

minimizing both global and local MSEs. But this minimization usually does not happen 

for the same activation function. An activation function with smaller spread might fit 

better the data locally (e.g. Gaussian #1 of figure 5.15a) while another one with larger 

spread/receptive field could provide a better global error reduction (e.g. Gaussian #2 of 

figure 5.15a). 

So is there a way to combine both in one solution? The answer relies on creating a 

membership function to choose all possible candidates. This function is presented in 

figure 5.16. The X axis is the local MSE for all the candidate functions and the Y axis 

represents their global MSE. By mapping functions on the [MSE[0cai, MSEslobai\ 2D space 
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Figure 5.16: Combination of global and local MSE 

we allow a ranking process based on these two values. There are four parameters that are 

essential to define the graph: 

i. Best global MSE: All the MSEglobai values are calculated and ranked. The one with 

the minimum value is assigned here. 

ii. Local MSE of best global solution: This value corresponds to the MSEiocai for the 

candidate function that provided the minimum MSEgiobai. 

iii. Desired MSE: This is the cut-off, the threshold value for the MSEghbai. If this value 

is reached then the iterations stop because the desired accuracy is achieved. 
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iv. Maximum Global MSE: This value expresses the maximum MSE^bd allowed for 

a specific iteration number. It is calculated based on the membership function of 

figure 5.17. The equation for the membership function is the following: 

< Maximum Global MSE 

Iteration Number 

Figure 5.17: Maximum global MSE 

(5.8) 

where MSEsummg is the MSEKi0bai before the iterations. The role of this parameter is 

to ensure that if the best MSE^gi0bai candidate is not chosen, the selected activation 

function will capture a significant amount of global error. In other words, it 

expresses how flexible we can be between the chosen and the minimum value of the 

MSEgi0bai- This flexibility decreases though as we progress through the iterations, 

The decrease rate is presented through the spread ag of equation 5.8. Larger as 

allows potential acceptance of more activation functions with better local than 

global performance. On the other hand if that value is too high there is the risk of 

not achieving the desired final global accuracy. So there is a trade-off in the 
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definition of <jg. A suggested value is C7g=maximum_nodes_allowed/(2*3). This way 

we allow potential candidates of high local accuracy to be included but only up to 

half the total number of total iterations (nodes). Then the analysis will only include 

MSEgi0bai criterion to ensure high final accuracy. 

After these four parameters are defined points A, B and C can be represented on the 

graph. We define a membership function Q(») that connects these points. This 

membership function restricts the acceptable solutions by establishing a correlation 

between local and global MSE. It is given by the equation: 

(5.9) 

All the candidate points have a calculated MSEgiobai. If their MSEgiobai is smaller than the 

membership Q(MSEiocai) based on their MSEloC(d value then these points are accepted 

(points with a circle on the graph). Otherwise they are rejected (points represented with a 

cross). If no accepted points are found then the solution with the best MSEgiobai remains. 

Also, if the MSEUjCai value of the best MSEgiobai is smaller than the MSEDesired then it 

automatically accepted without going through this process. From all the accepted points 

(m) the one with the minimum MSEU)ca[ value is the winner. Formally: 

MSE;Z;e[MSE';:hal,...,MSEgZJ , where MSE'^ satisfies the condition: 
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Let's examine the reasoning behind each of the three segments of Q(»). Keep in 

mind that for a candidate to be accepted its' global error (i.e. the Y axis value) should be 

smaller than Q(»). 

• MSEiocai e [0, MSEDeSjied]. In this segment we chose a linear constant function. This 

way we accept any candidates that have local accuracy better than the desired one and 

global accuracy better than the one allowed based on the iteration number (fig. 5.16, dark 

shaded area). This makes sense because any candidate with really good local behavior 

should be included as long as it contributes acceptably in the global error minimization. 

• MSEhcai E {MSEDesired,MSE';1
oJ

esl'g,ohal). For this segment we use a transition function 

from point B to C. This function expresses the rate at which we are willing to sacrifice 

global accuracy for a better local solution. The magnitude is defined by the maximum 

MSEgigbai allowed as calculated earlier. The last constant together with the MSEoesired 

provide a scaling on the global MSE axis. In the X axis, the local MSE one, scaling is 

adjusted based on the MSEiocai value of the best MSEglobai solution and the MSEDesired 

value. In this example we chose a Sigmoidal transition function. Constants O.Q and CQ are 

predefined. Constant UQ expresses the slope of change. Constant CQ makes sure that the 

Sigmoidal response in the middle of the segment is half between points B and C. The 

selected points range can be seen in fig. 5.16 with a light shaded area. Alternatively a 

different transition function can be used if another rate of change is preferred (e.g. linear). 

• MSEiocai e [MSE'llJ"1-*10''0',+°°). This value is set to zero because we do not want to 

accept any candidates that have a worse MSEiocai than the one of the initially chosen 

candidate with the best MSEgi„bai-
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5.5.3.2 Blocking successfully mapped neighborhoods 

In the previous section we introduced a training criterion that would allow the system to 

choose a better local-fitting activation function (fig. 5.15a Gaussian #1) with good 

MSEgiobai over one with a better MSEgi„bai but not so good MSEi0CU\, But this criterion 

alone does not make sure that Gaussian #2 of fig 5.15a will be eventually chosen. Let's 

examine again the same example. But assume that our local criterion is applied and the 

Gaussian with a smaller spread is selected. In the next iteration all the original points of 

Gaussian #1 (open circle on the graph) will be downscaled to almost zero. The new 

dataset for the next iteration will have the form of figure 5.18 with the solid circle points. 

If we would then apply any MSE criterion (traditional or ours) the Gaussian with a solid 

line (fig. 5.18) instead of Gaussian #2 would be selected. This happens because the 

corrected points of Gaussian #1 remain in the solution influencing the result. 

To overcome this we introduce the notion of blocking functions. These functions 

are applied on the input space of the RBF network when the previously chosen activation 

function has a MSElucai< MSEDesired. By doing so we exclude local (small-scale) signals 

that are sufficiently captured. This way we allow the multi-scale network to unfold over a 

larger input space neighborhood without being misguided by localized noise. If we apply 

a blocking function in figure 5.19 we exclude points in the shaded area so in the next 

iteration the correct large-scale Gaussian is selected. Another advantage of this exclusion 

is that the original dataset is getting smaller speeding up the process for coming iterations. 

The blocking function can be a binary one or a close to binary. For our application 

we chose an inverted symmetrical Sigmoidal function B(«) given by the equation: 

fij(x) = l - [ l / l + exp{-aB [a^ | |x- /2 J | -c s ] j | (5.10) 
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nput 

Figure 5.18: Chosen activation function after Figure 5.19: Chosen activation function 
first iteration selected a local-fitting one after blocking part of input space 

for node j . x is the d-dimensional input vector with elements x, and /2. is the vector 

determining the center of function's symmetry. Parameter cB defines the spread and 

parameter aB the slope (fig. 5.20). They are both directly related to the receptive field of 

^Blocking Function 

Input 

Figure 5.20: Using an inverted symmetrical Sigmoidal as a blocking function 

the activation function they are blocking. In the case of a Gaussian activation function 

spread cB should be set approximately to (3*Gaussian_spread) while in a case of a 

Sigmoidal activation function, cB can have the same value as the spread of the activation 

Sigmoidal. Slope aB should be set to a relatively small value to lead to a close binary 
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function. We do not want the blocking function to expand further than the receptive field 

of the activation one so attention should be showed. Also parameter aB will effect the 

signal output smoothness so a too small value is not recommended either. 

If we would follow the same notion as the one of equation 5.10. we can apply the 

above blocking function to a 2D input. An example of three such functions (A,B,C) is 

shown in figure 5.21. 

Input 2 

Figure 5.21: 3D blocking example 

5.5.3.3 Keeping blocked points as center candidates 

While an evaluation of the algorithm was taking place we noticed a drawback of the 

local-based solution. Localized functions might be able to reveal a global function by 

excluding local noise, but at the same time might degrade its signal so it is not detectable 

any more. This is illustrated in figure 5.22. The training set is represented with solid 

points. During our localized solution the algorithm chooses Gaussian #2 because the two 

neighboring points are not close enough to be in the receptive field and introduce errors. 

In addition to that the noise of Gaussian #1 is not strong enough to be chosen since it is 

represented by a single point. 
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So what would happen is that point A would be eliminated from the dataset by a 

blocking function. This way Gaussian #3 would not have the opportunity to be selected in 

the next iteration since its' center would be out. This can be corrected by eliminating 

points from solution but still use them as center candidates for the nodes to follow. At the 

end Gaussians #2 and #3 would coexist in the final solution. A simple node elimination 

process is triggered and the redundancy of Gaussian #2 will be picked up and substituted 

just by #3. 

it Output Signal 
~i r 

Gaussian #3 

Gaussian #1 

Input Signal 

Figure 5.22: Degrading signal problem 

5.5.3.4 Checking for local density 

In previous sections we mentioned that an important characteristic of the MSRBF should 

be idleness unless sufficient evidence exists. The problem of using a multi-scale approach 

is that sometimes low-error points cause undesired extensive spread choice for the 

activation functions. Such an example is seen in figure 5.23. We have two input points 

and we try to model them with our RBF. If the maximum spread is large enough then the 
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network will pick the Gaussian with the larger spread (dashed gray line). That contradicts 

though the purpose of the MSRBF, since there is not sufficient evidence to justify such a 

large spread of the receptive field. Instead, we would rather have two nodes with much 

smaller spread (solid black lines). 

^Output 

^ L 
Input 

Figure 5.23: Local distribution problem 

In order to assure that Gaussians with large receptive fields are only employed 

where necessary, we analyze the points that are included within the receptive field, the 

same points that we used to calculate the MSEhcai. We establish buffer zones at the output 

values and count the points within that (fig. 5.24). When designing the MSRBF, the 

number of zones, their output threshold values, and the minimum number of points per 

zone should be defined. These parameters can also be spread-specific, to allow for 

example more strict criteria in large-spread nodes. Then this density criterion returns a 

positive response only if some (or all) of the zones restrictions are met. By doing so the 

density criterion makes sure that only when satisfied the candidate Gaussian is chosen. 
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For example, in figure 5.24 we have 3 zones. Their output threshold values 

(relative portion of the Gaussian amplitude) are [0.8,1] for zone #1, (0.2,0.8) for zone #2, 

.Output 

D»n«!ty^on» 13 

Input 

Figure 5.24: Density zones at the output 

and [0, 0.2] for zone #3. If we assume a point count per zone as [2, 2, 2] for zones 1,2, 

and 3 respectively the density criterion would fail because there is only one point in zone 

#1, when a minimum of two is required. If the point count per zone would be [1,3,2] then 

we would have a successful density result. 

This approach has the advantage that it is independent of the input dimensionality 

because the analysis is performed at the output level. Lack of analysis at the input level is 

highly desirable to achieve fast processing times. At the same time though there are some 

inherent restrictions in our method because we do not examine spatial distribution of 

points within zones. For example, there are no warranties that symmetry will exist. In 

figure 5.24 all points could have been at the left of the Gaussian's center and still give a 

successful density result. However, the trade-off in computational speed combined with 

our localized metrics for node evaluation compensate for these undesired cases. 
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5.6 Mathematical formulation 

In the general case, an RBF network presents a mapping from an m-dimensional input 

space to a single-dimensional output space. If we assign s as the mapping function it can 

be described as: 

s:9T->SR' (5.11) 

Mapping s results in a hypersurface of dimensionality m+1. 

Input Non-linear Blocking Output 
Layer Layer 

Figure 5.25: Multi-scale RBF network architecture 

Because of the addition of blocking functions a change in the traditional network 

architecture takes place by adding another layer (fig. 5.25). This layer acts as a filtering to 

make sure that successfully mapped neighborhoods are excluded from later node 

influence. Each activation function is connected with the corresponding blocking 

function in a linear unweighted manner. Then the outcome of the blocking layer is 

weighted and the summation provides the network output. 

For the general case let n be the number of data in the training set and k the final 

number of selected nodes. The value of k is usually required to be smaller than n for 

storage purposes. In this case the network does not have an exact solution but some 
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optimization technique should be used. One major advantage of RBF networks is the 

linear dependence of the network mapping function on the weight layer. This means that 

we can use a simple least-squares solution to calculate the weights without worrying 

about non-linear optimization and going through iterations. 

The following matrices are involved in the least squares solution: 

Matrix <E> (nxk): It contains the response of the nodes to the training dataset. Each 

column describes the response of a specific node to the dataset. This means that the 

function remains the same for each column element, just the input changes. On the other 

hand each row presents the response of a specific training input to all the nodes. The 

response is calculated by applying the same input to the corresponding activation 

function for that node. 

<b{nxk) 

<D 

O 

O 

(5.12) 

Matrix B (nxk): This matrix presence allows or prevents the signal of a node to 

propagate in the final solution depending on the input pattern position. It shows the 

response of the input to the blocking functions used in the training process. Values of 1 

allow propagation while 0 values do not. Each row corresponds to the blocking of a 

specific pattern to all nodes. Each column reflects the result of a specific blocking 

function to the input set. 

B(nxk) = 

1 Bt 

Bi 

B 

B: 

(5.13) 

It is important to clarify the purpose of a blocking function, which is to "secure" that 
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neighborhood for the next iterations. So a blocking function that is caused by node j , will 

not have any effect on itself but will interfere with all the next nodes {j+\,...,k}. Now if 

another blocking function is necessary for example caused by node j+3, then it should 

apply for nodes {j+4,...,k}. But at the same time the first blocking function is active. The 

form of the chosen functions is such that their accumulative action is calculated by 

multiplication. If we formalize multiple blocking functions for node r we have: 

(5.14) 

with Bj(x) = \-\i/l + &xp\-aB[absVix - fijj-cB]\\ and x is the input vector, and ft j , as, cD 

are predefined parameters. If node j does not trigger blocking then we assign 5. (x) = 1. 

Matrix H (nxk): The matrix H represents the filtered response to the nodes of the dataset 

(after blocking). It is calculated by an element-by-element multiplication of matrices $ 

andB. 

Matrix P (nxn): The elements of this diagonal matrix express users confidence on the 

dataset they provided. Each element corresponds to a specific set of input and output 

values. A more detailed explanation of this confidence within the provided training set 

was provided in section 4.2.3. 

(5.15) 

Matrix Y(nxl): Matrix Y has the output values of the training set of the network. 

(5.16) 
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Matrix W(fcri): This is the unknown matrix, the one containing the weights that we are 

solving for: 

W(fccl) -
w, 

wb 

(5.17) 

W=(HTPH) ^EfPY 

The solution to the problem is given by a least-squares minimization and the equation: 

(5.18) 

To avoid singularity problems due to the possible ill-conditioning of matrix H the above 

equation is solved using singular value decomposition. Thus, we can see that the weights 

can be found by fast, linear matrix inversion techniques. 

After the network weights are found a pruning method takes place. Every weight 

is set to zero and change in the error is evaluated (Reed, 1993). In some cases the other 

nodes will be able to pick up a specific nodes' contribution. Because of our network 

architecture this might happen if a large-scale signal is degraded by local solutions (fig. 

5.22). Network pruning will eliminate localized nodes if the large-scale nodes can pick 

up their involvement and reveal the original signal. 
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5.7 Network pseudo code 

In this section we provide the process flow for the MSRBF. A more detailed discussion 

on network parameters in presented in the training and evaluation part of chapter 7. 

[XQUery,XDatabase, Similarity] // 2D input pattern, output vector 

[min(aa), max(aa)] // Gaussian Activation Functions (GAF) 

[min(ca), max(ca), aa] // Sigmoidal Activation Functions (SAF) 

[Total number of GAF, Total number of SAF] 

[aQ, CQ] // MSE local/global weight transfer function parameters 

[as, CB] // Blocking function parameters 

[Zone_output_limits, Minimum_points_per_zone] // Density criterion 

[MSEoesired] // Stopping criterion 

[Min_Nodes, Nodes_Step, Max_Nodes] // Number of Nodes 

[Min_Gg, ag_Step, Gg_Max] // Maximum MSE global parameters 

Table 5.3: MSRBF inputs and parameters 

Our network training process can be seen in table 5.4. The process will create not a single 

RBF like the traditional method but a set of candidate RBF networks. The one that shows 

the best generalization based on a testing dataset will be chosen. The number of created 

RBF networks is pxd, where p is the number of candidate nodes, and d is the number of 

candidate spreads for the Maximum MSE global calculation. 
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[aa] = calculate_GAF_spreads [min(aa), max(aa), Total number of GAF] 

[cj = calculate_SAF_spreads [min(ca), max(ca), Total number of SAF] 

FOR i=[Min_Nodes, Nodes_Step, Max_Nodes] // Number of Nodes 

max_number_of_nodes_a!lowed = i 

FOR k=[Min_ag, ag_Step, ag_Max] // Maximum MSE global parameters 

current_ag = k 

FOR j=[ 1,2,..., max_number_of_nodes_allowed] 

Calculate MSEgioba! for every GAF and SAF 

IF min(MSEgloba|) < MSEDesired then add node and exit loop ENDIF 

Calculate maximum MSEglobai allowed using current_og 

Select GAFs and SAFs with MSEg|0i,ai < maximum MSEgiobai allowed 

Calculate MSE|0ca, for selected AFs 

Compute Best_candidate GAF or SAF using MSE local/global transfer 

function Q(«) 

Check for local density of Best_candidate 

IF failed choose next best Q(») winner, else Best_candidate = winner, ENDIF 

Simulate training set with winner AF and correct output vector y 
i 

IF winner's MSEiocai < MSEDesircd //initiate blocking 

Add corresponding blocking function Bj (•) 

Eliminate training points within winner's receptive field from training set 

ENDIF 
END 

END 

END 

Table 5.4: MSRBF Network training process 
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5.8 Conclusion 

In this chapter we concentrated on improving the accuracy of our fuzzy method by using 

a local-nature artificial neural network, the Radial Basis Function one. Our Multi-Scale 

RBF is modified accordingly to capture the errors of the fuzzy functions. There are two 

important characteristics in our network: 

• Extensive multi-scale modeling capability, and 

• Constrained application to highly active parts of input space. 

The following table summarizes the modifications made and their result in order to adapt 

to the above two requirements: 

Adjustment from traditional RBF 

Variable spread for activation functions 

Symmetric Sigmoidal activation functions 

Customized training criteria that combine local 

(within receptive field) and global fitting 

accuracy metrics. 

+ 
Blocking functions over successfully mapped 

regions 

+ 
Additional layer in network architecture 

Efficient training point elimination from the 

training set when successfully modeled 

Density check metrics 

Adjustment effect 

=> Support multi-scale analysis 

=> Introduction of localized bias 

=> Capture small-scale signals first 

which exposes large-scale signals 

that would otherwise remain hidden 

=> Computational gain 

=> Minimization of receptive field 

to high stimulus areas. 

Table 5.5: Summary of the modifications on the traditional RBF 
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Chapter 6 

Combining fuzzy functions and neural network into a global 

solution 

Database v 
w ADB # 

Vaue w 

Query 
Value 

XQ 

SimfXDB. XQ) 

Previous chapters discussed individually the fuzzy membership function and the MSRBF 

neural network. We also investigated the characteristics of our MSRBF while keeping in 

mind their combined result. Here we make our case for an optimization technique for the 

fuzzy membership function based on MSRBF properties. Their combined operation and 

corresponding mathematical solution are presented. 
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6.1 Self-organization of global similarity functions 

Experiments on the fuzzy membership function (FMF) showed that the identification of 

the parameters in the solution is influenced by outliers. An example is shown in figure 

6.1. After the FMF training is finalized the chosen sigmoidal function is calculated (solid 

line). This is the best solution in a statistical sense, based on least squares minimization. 

In the next step we take the residuals of that solution and try to capture them with the 

MSRBF (fig. 6.2 solid line). Unfortunately original outliers cause the FMF to adjust to 

them and introduce high residuals. 

1L Output signal 

Original FMF 

/ FMF after self-organization 

Input signal 

Figure 6.1: Outlier effect on fuzzy membership function 

To correct this, we introduce an additional step in the training process for the 

FMF. The goal of this process is to uncover the dominant signal, even if this means a 

higher final error {MSE). The underlying idea is that whatever causes the additional error 
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would be an outlier that should be mapped with the MSRBF locally and not influence the 

whole input space. This assumption of course requires a successful initial training of the 

FMF, in other words we expect the FMF to have a reasonable interpolation error. 

Output signal 

(0,0) 

^ Residuals of FMF after self-organization _ 

Input 

\ 
Residuals of original FMF 

signal 

Figure 6.2: Residuals of original and weighted-distance fuzzy functions 

The additional training is clone the same way as the initial training with one 

difference. A weight manipulation is used to enforce the desired fitting. Assuming that 

points representing the majority signal will have a smaller output (similarity) error than 

possible outliers we adjust the weights of each point by using a linear and then gaussian 

transfer function (fig. 6.3). The transfer function is: 
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(6.1) 

where d is the output error of the point at the previous iteration and WFMF is the weight of 

that point in the current iteration. Variable GWFMF specifies the width of the gaussian 

function used. It is usually assigned the value of 

0 . 5 ' (6.2) 

A Fuzzy Weights 

SQRT(MSEDesired) Maximum Error 

Figure 6.3: Weights manipulation 

This way based on the maximum distance of outliers the high weights interval is 

stretched/shirked. The reason for having the linear segment for d < ^MSEDesiml relates to 

the expected result accuracy. If points are within that interval they should all have the 

maximum possible contribution in the solution. 
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The example of figure 6.1 is revisited. After the additional weights solution the 

resulting FMF is presented with a dashed line. There we can see that the overwhelming 

signal is captured leading to the conclusion that: 

"the weight manipulation acts as a self-organizing optimization technique to the 

overwhelming signal." 

If we examine the residuals of the new FMF (fig 6.2 dashed line) we can comment that: 

The total MSE is higher. 

• BUT the residuals are now easily captured by our MSRBF than before the self-

organization technique. 

So the combined effect of the FMF and the MSRBF can be facilitated better at times if a 

self-organization method is applied in the FMF before the MSRBF training starts. 

6.2 Architecture 

In figure 6.4 the final architecture of our system is presented. In addition to the custom 

neural network structure (as presented in the previous chapter) we have the fuzzy 

functions as an additional node added at the top. Two important characteristics of this 

node are: 

• No blocking nodes interfere with the output of the fuzzy function. This is consistent 

with our motivation to have the fuzzy function carry the signal throughout the input 

space and we expect good generalization for it. 

• The weight of the fuzzy function in the summation node is one. We do so because a 

choice of a different weight would scale the function in intervals smaller or larger 

than the desired similarity output [0,1]. 
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Input Non-linear Blocking Output 
Layer Layer 

Figure 6.4: Neuro-fuzzy network architecture 

After the establishment of the system parameters the information flow in our system 

is as follows: 

i. The two inputs of the process are a Database Value with a corresponding Query 

Value of a one-dimensional object attribute. 

ii. The inputs propagate to the non-linear layer. One node output is calculated from the 

fuzzy function and a response is also returned from every hidden layer of the neural 

network. 

iii. The outputs of the neural network hidden layer go through the blocking layer. 

Depending on the training some signals are down-scaled while others pass freely. 

iv. The outputs of the blocking layer together with the fuzzy function response are 

accumulated through a weighted summation at the last layer. 

v. The weighted summation is returned as the calculated similarity value between the 

two input values. 
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6.3 Mathematical solution 

The training of the algorithm follows a progressive approach as higher complexity is 

identified. At the first stage fuzzy functions are interpolated to capture the similarity 

preference. Then, if necessary, our MSRBF network is used to increase accuracy. At this 

section we describe the last training stage that is triggered whenever the neural network is 

incorporated. The training, in this case, involves calculation of the parameters of the 

fuzzy functions and the neural network within the same solution. 

The solution to the problem is given by a least-squares minimization and the 

equation: 

W=(CTPC)"1CTPY (6.3) 

For the general case let: 

n be the number of data in the training set, 

r the number of parameters describing the fuzzy function , and 

k the final number of selected nodes in our MSRBF. 

The matrices in equation 6.3 are formulated as follows: 

Matrix P (nxn): This diagonal matrix expresses users confidence on the dataset. Each 

element corresponds to a specific set of input and output values. A more detailed 

explanation was provided in section 4.2.3. 

P(nxn) -

P, ... 0 
(6.4) 

0 ... Pn 

Matrix Y(nxl): Matrix Y has the output values of the training set of the network. 
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(6.5) 

Matrix W((r+&)xl): This is the unknown matrix, the one containing the parameters we 

are solving for: 

(6.6) 

Parameters for the fuzzy function are: 

WFuzzy={w1,w2,...,w,.} 

Parameters for the MSRBF neural network are: 

(6.7) 

Matrix Cpuzzy expresses the derivatives of the parameters associated with the fuzzy 

function and has size rxn. An explanation of the formulation of this matrix was described 

in chapter 4. A specific example of how this matrix gets the values assigned for a 

sigmoidal function is presented in equations 4.13 through 4.17. The corresponding 

derivative matrix in these equations is matrix A. 

Matrix CMSRBF contains the derivatives of the neural network solution with size 

kxn. This matrix was investigated in detail in chapter 5. It is the product of an element-

by-element multiplication of two matrices, the <E> and B ones. Matrix O contains the 
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(6.8) 

Matrix C((r+k)xn): This matrix contains the derivatives of the unknowns. For simplicity 

let us decompose matrix C to two matrices Cpuzzy and CMSRBF, where: 

(6.9) 



response of the nodes to the training dataset and an example of its formulation is given by 

equation 5.15. Matrix B is a new matrix we have added to control whether or not the 

signal of a node propagates in the final solution depending on the input pattern position. 

It shows the response of the input to the blocking functions used in the training process. 

Equation 5.16 demonstrates the contents of such a matrix. 

To avoid singularity problems due to the possible ill-conditioning of matrix C 

equation 6.3 is solved using singular value decomposition. We should also mention that 

this solution is a not always a linear one. Matrix CMSRBF does not require any temporary 

values for the unknowns since there is a linear correlation of the MSRBF parameters and 

the overall solution. On the other hand CFuzzy matrix contains the derivatives of the fuzzy 

functions. If the planar solution gives acceptable results then the overall solution will be 

linear. But if more complex non-linear functions are used (e.g. sigmoidal) then 

formulation of matrix CFuzzy would require temporary values for the unknowns. In this 

case the solution would have to be an iterative non-linear one, but as we showed we 

resort into this more computationally expensive solution if more simple ones fail to 

capture the complexity of the similarity preference. 

6.4 Conclusion 

In this chapter we showed how to combine the fuzzy approach of chapter 4 with the 

MSRBF of chapter 5 creating a neuro-fuzzy system. We presented an optimization 

technique for the fuzzy functions through a self-organization process that adjusts to the 

overwhelming signal. This way our neural network can adapt easier to the remaining 

signal. We also showed how information propagates in our feed-forward neuro-fuzzy 

network. Using the fuzzy membership function the two inputs create an output describing 

161 



the global bias/overwhelming signal. Simultaneously, the same inputs produce a localized 

correction to the signal as they propagate through the MSRBF. At the final stage, both 

signals, the large-scale and the local one, are combined with a summation to provide the 

overall similarity result. The mathematical formulation for the system solution during 

training was also provided. 

Our system incorporates high modeling capabilities using the combined neuro-fuzzy 

method because of an important semantic relationship between the system design and the 

similarity preference under investigation, which dictates that: 

• Expected behavior is modeled by a global fuzzy membership function whose 

complexity grows as the problem. 

• Unexpected behavior is captured using the MSRBF in a localized fashion. 
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Chapter 7 

Training and system evaluation 

This chapter provides evidence of the benefits produced by our approach. It will help 

proving our hypothesis that our neuro-fuzzy system returns more accurate results than the 

existing method used in geospatial queries, the distance-based nearest neighbor (NN). We 

should mention again that by design our system outperforms the distance-based nearest 

neighbor, since our system recognizes it as a subcase. The combination of the non-linear 

fuzzy functions with the neural network provides advanced modeling capabilities 

compared to the NN, something that results from the mathematical equations used and 

the fact that neural networks are universal approximators, meaning that they can describe 

any function to arbitrary accuracy. Furthermore, our system has the capability to 

recognize distance-based similarity preference and model it without proceeding to more 

complicated processes as shown in chapter 4 and further discussed later in this chapter. 

Our focus here is twofold, namely to present our system's training and perform a 

system evaluation. First, we show 'how the training process takes place and demonstrate 

the idea behind the progressive training. By doing so, additional training samples are 

requested from the users only when necessary, starting from a low number of training 

samples and gradually requesting more information as modeling demands. 

For our system evaluation we present functionality examples and statistical 

simulations. The first show the advanced modeling capabilities our similarity preference 

learning algorithm exhibits. The latter examines whether these modeling capabilities can 

be established in a consistent manner and without undesirable erroneous results. 
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7.1 Training 

In this section we present issues regarding the training of our algorithm. First we examine 

the training input provided by the user and then we provide a detailed analysis of our 

progressive training methodology. 

7.1.1 Similarity input/output discussion 

In order to train our system we present users with a set of a Query and a Database values 

and request a similarity assessment. This assessment is performed in the form of a ranked 

classification by choosing a class describing their perception of similarity. User 

preference is expressed through a crisp set of n classes {classj, class2,..., classn} that 

represent similarity within the [0,1] interval. These classes can be linguistic terms, also 

known as linguistic hedges (Zadeh, 1972) or expressed by a numerical descriptor. In 

order to facilitate users with various similarity assessment capabilities (novel to expert) 

numerous classification schemes can be used. Our algorithm's applicability is not 

dependent on the chosen classification scheme but its accuracy is. A linguistic 

classification scheme for a novice user could be: 

Similarity Classes = {No Similarity, Very Low Similarity, Low Similarity, Average 

Similarity, High Similarity, Very High Similarity, Identical Similarity}. 

A more expert user could use a higher number of classes (e.g. 13), following for example 

a university grading scheme such as this one: 

Similarity Classes = {F, E, D , D, D+, C, C, C+, B , B, B+, A", A}. 

For the purposes of our application we assume a linear ordering of these classes, since we 

are modeling similarity preference of each specific user (we do not combine preferences 

from different users). Partial ordering is not examined because all similarity values 
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correspond to a single attribute evaluation (we do not combine attributes), therefore all 

similarity values are directly comparable to each other. Of course there exists 

incomparable information in the real world within which there are linguistic terms that do 

not correspond to a linear ordering on the universe (Xu et al., 1999) but such research is 

outside the scope of this work because we constrain the user to choose from one of our 

predefined classes. 

Our algorithm translates the ranking provided through the set of n classes into a 

quantitative similarity value. As we mentioned, we assume linear ordering between the 

classes chosen. If the nature of the class selection is such that linear ordering does not 

hold true, then we expect a conversion method to be provided externally to our algorithm. 

For linear ordering a similarity value is assigned to each class using the following 

equation: 

Vi= 100* (M)/(«-!) (7.1) 

In the above equation n represents the total number of classes, i the current class under 

examination and Vj the quantitative similarity representation for class /. The algorithm 

performs the necessary training based on these quantitative values. 

7.1.1.1 Class identification after simulation 

After a successful solution is found the model is used for simulation, during which the 

system calculates the corresponding similarity value for a new case. We compare this 

calculated similarity value with the pre-defined quantitative similarity representations of 

each class (from equation 7.1). In most cases an exact match will not exist between these 

values to assign automatically a single class as a return. Our system then can follow one 

of these two approaches: 
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1- Use a minimum distance criterion to match the calculated similarity value to a 

single class. 

2- Return not a single class, but both classes that the value is closest to. 

An example can be seen in figure 7.1. Let us assume that the number of similarity 

classes is 5, namely Classes = (No Similarity, Low Similarity, Average Similarity, High 

Similarity, Identical Similarity) and their corresponding quantitative transformation using 

equation 7.1 is Classes = (0%, 25%, 50%, 75%, 100%). Now let us examine the case 

where the system calculates a similarity value of 42% (or 0.42) for a set of inputs, which 

is a value that does not match any of the 5 quantitative values representing the classes. 

Inputs 

I Simulation Process 
100% 

r 
Calculated Similarity Value 

-> 42% 

75% 

50% 
V 

25% 

Identical Similarity 

i High Similarity 

Average Similarity 

Low Similarity 

0%y— No Similarity 

Similarity Return = "Average Similarity" 

OR 

Similarity Return = Between "Low Similarity" and "Average Similarity" 

Figure 7.1: System return values 
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The system could return the class that is closest to the quantitative value, which in this 

case would be "Average Similarity" class. Alternatively, the system could return not a 

single class, but both classes that the quantitative value is inbetween, in this example 

classes "Low Similarity" and "Average Similarity". 

Here we should also point out that, strictly speaking, a direct class identification 

would be incorrect. The minimum distance criterion used to identify the winning class is 

based on the assumption that a metric distance has been established between classes 

during training. However, this is not the case; the user has provided only a ranking 

(ordering) of classes, not an exact metric relationship between them. For the above 

example, we know that class "Low Similarity" expresses a smaller similarity degree than 

the "Average Similarity" class, but we do not know that "Low Similarity" is twice worse 

than "Average Similarity" as the quantitative values might imply. So the distance 

criterion should be used with the understanding of the underlying assumptions involved. 

The transformation from qualitative to quantitative values (and the inverse) is 

shown in figure 7.2. We should distinguish this fuzzification - defuzzification process 

from the fuzzy functions used within the system. The fuzzification - defuzzification 

TRAINING 

Input 

^ Fuzzification 

"High 
Similarity" 

-> "75%" 

SIMULATION 

Similarity System 

Defuzzification 

Output 

"30%" 

"Low 
Similarity" 

Figure 7.2: Classification translation to quantitative values during training and 
vice-versa during simulation 
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process acts as an additional pre-processing step for training and post-processing step for 

simulation. The fuzzy functions are part of the system to model the expressed preference. 

7.1.1.2 Influence of total class number 

The approach described earlier requests a classification from the user at the training stage 

and returns a classification at the simulation stage. The number of classes chosen does 

not affect the applicability of the algorithm. Based on user expertise and modeling 

accuracy demands, several classification schemes can be used. However, the higher the 

number of classes the more detailed the input is and more advanced modeling capabilities 

can be reached. This can be easily understood by examining figure 7.3. This graph 

represents a 2D section of inputs with different number of classes (0% and 100% are 

omitted). With blue squares we can see the training set that 3 classes would provide and 

with red circles the corresponding set from 10 classes. It is evident that the higher the 

number of classes, the more accurately similarity preference can be modeled. We can see 

that a very limited number of classes would lead to generalization at parts of the output 

space (similarity) that no information exists. Therefore a number of at least 7 classes is 

suggested. 

Similarity 

Figure 7.3: Effect of number of classes on training set 
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7.1.2 Progressive training 

One of the major characteristics of our system is that modeling complexity increases as 

preference gets more complex. This propagates to our training of the algorithm as well. 

We do not want to overwhelm the user by requesting a large amount of training samples 

at the beginning of the process. Instead, we gradually increase the request for sample data 

as we carry on the modeling and we still identify high errors. 

Figure 7.4 is a diagram representing the modeling process. In the first step we 

attempt to get an idea of the underlying complexity that might exist between Inputs and 

User Feedback •=} 
Fast Similarity 

Dependence Assessment 

Query Value 
Independence 

Distance Value 
Dependence 

2D Solution (1 Input, 1 Output) 

Linear Solution 

2D Sigmoidal Solution 

I 
2D Neural Net Solution 

2D Neuro-fuzzy Solution 

No 
Dependence 

F 
3D Solution (2 Inputs, 1 Output) 

Planar Solution 

I 
3D Sigmoidal Solution 

I 
3D Neural Net Solution 

3D Neuro-fuzzy Solution 

Figure 7.4: Progressive training 
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Output. Depending on the obtained dependency result we proceed to a 2D (1 Input, 1 

Output) or 3D (2 Inputs, 1 Output) solution. In the 2D case interpolation of lines takes 

place at the next step (or planes for the 3D case). Then, if necessary a non-linear solution 

is performed using simple sigmoidal functions. If accuracy is still not achieved, more 

complex sigmoidal functions are implemented. As a last resort, our customized neural 

network is triggered together with a neuro-fuzzy solution. In the remainder of this section 

we examine how training takes place in each of these steps, focusing on the more 

complex 3D solution, since the 2D one is a simpler derivative of it. Throughout this 

section we examine only one half of the solution and before we start examining the other 

half we interpolate our developed model from the first half to see if symmetry exists and 

avoid further training. 

User Feedback. Users are providing the input for the training process. Pairs of sample 

values within each dimension are presented and their similarity assessment is requested. 

For example, we ask them: "If you request a geospatial object from Time=l 1/12/2003, 

and we return an object from Time=02/04/2001, how similar is that?". This way the 

training set is created, composed by a set of {Query, Database, Similarity} points (two 

inputs, 1 output). More information on the user similarity assessment is provided in 

section 7.1.1. We should also mention that our training is progressive, meaning that a 

small number of initial training points is required and based on the underlying complexity 

more samples are requested when necessary. 

Similarity Dependence Assessment. The first processing step involves the identification 

of Input/Output dependencies that would simplify our solution. More specifically, we try 

to identify whether the given similarity preference is: 
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• Independent of the Query Value. 

• Dependent solely on the distance between Query and Database Value and not the 

actual Query and Database Values. 

In either of the above results we proceed with a two-dimensional solution (1 Input, 1 

Output). If independence of the Query Value is recognized that would mean the input is 

only the Database Value. In the case that similarity is solely distance-dependent, then this 

distance is the only input to the algorithm. If no dependence is detected, the algorithm 

proceeds with the more computationally expensive (but necessary) three-dimensional 

solution with 2 Inputs (Query and Database Values) and 1 Output (Similarity Preference). 

An important aspect of the algorithm design is that it can switch from a two to three-

dimensional solution and vice versa in real time, in other words identify or dismiss 

dependencies (therefore the dotted arrow in figure 7.4). The function equations are 

formulated such that based on the detected angle (p (see equation 7.3) the two dependency 

subcases are easily identified. On the other hand, if increased errors are detected, then the 

3D solution is triggered. 

In order to calculate the angle (p we interpolate a single plane in the active output 

space. We make this distinction between active and inactive output space in terms of 

similarity gradient. Areas with high similarity gradient are considered active and 

appropriate for measuring angle (p. Inactive areas are not included in the solution due to 

almost independence of the angle value since the interpolated planes are almost parallel 

to the XY plane. In figure 7.5 there is an example of an active area in green and the two 

inactive areas in red. Axes X and Y correspond to the inputs of our process, namely XQ 

and XDB. The Z axis represents the similarity preference output. 
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Similarity 

Xquery 

Xdatabase 

O Active Points 

• Inactive Points 

Figure 7.5: Calculating dependency angle 

In practice, this is achieved during training by assigning part of the similarity classes to 

be inactive and the rest active. An example would be (fig. 7.6): 

- • Inactive <-

{(F, E)^- , D, D+ , C , C, C+, B-, B, B+J^ AJ 

Active 

Figure 7.6: Active and inactive classes 

This active/inactive categorization will vary based on the chosen classification scheme 

but the structure of having the inactive parts at the two ends of the categorization 

spectrum will remain the same. 

The calculation of the angle is based on the solution obtained for the plane 

parameters (the green active plane in figure 7.5). If the database value is XDB, the query 

value is XQ, and the quantitative representation of the similarity value is Sim, then the 

plane equation would be: 
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To calculate the three parameters at, a2, and a3 we need at least three training samples 

(assuming that all three samples do not belong to the same line). For higher stability in 

the results a higher number of points is suggested (>5) with the use of least squares for 

this overdetermined solution. The angle can then later be calculated using: 
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(7.3) 

Based on the angle value we decide to proceed to a 2D or 3D solution as explained earlier. 

Planar Solution. At the next step the simplest set of fuzzy membership functions (FMFs) 

is used, the one composed by a piecewise planar solution. The similarity function 

Simpianar expressing the relation between a database value XQB compared to a query value 

Xeis: 

(7.4) 

Parameters ai, a2 and a? define the planes and index / specifies the current plane under 

examination. Our solution is composed by a collection of five planes as we explained in 

chapter 4. An example of the planes configuration is shown in figure 7.7. 

During training and in order to identify the plane parameters an important 

constraint should be imposed, the one of continuity between planes. In order to avoid a 

computationally expensive least squares solution with this added constraint, we define the 

plane characteristics and operational output space in a specific manner: 

1- All planes have the same angle cp as calculated before. In other words the ratio 

ai(i)/a2(i) remains constant. 



Figure 7.7: Training points for planar solution 

2- The intersection of successive planes should correspond to an exact quantitative 

representation of a class. 

Using the above the solution can be easily obtained by finding the equations of the four 

lines where the planes intersect (fig 7.7). Each line corresponds to a specific Z value, 

therefore it is a two dimensional solution. In addition to that, the angle remains constant, 

so the only parameter we are solving for is the shift d along the XDB axis (fig. 7.8). Using 

the equations of the two lines that define the upper and lower bounds of a plane we can 

calculate the plane parameters as follows: 

Assume that the two line equations are: 

XDB=kXQ+dA forZ = ZA (7.5) 

XDB=kXQ+dB forZ = ZB
 ( 7 6 ) 
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Similarity 

Xdatabase 

Figure 7.8: Calculation of plane parameters 

Parameter k (slope of the line) is known from the angle <p (k = tan(<p)). So for every line 

we solve with all the points that correspond to that specific class to calculate parameter d 

(shift of the line). When the parameters for the two lines are found (k, d^, ds) then the 

plane parameters are calculated using the following equations: 

a2 = dA-dB 

ax = ka2 

a3 =ZA-dAa2 

(7.7) 

(7.8) 

(7.9) 

So to calculate the parameters for the five planes we need to calculate the parameters for 

the four intersecting lines. Since all lines have common slope k we only need a single 

training sample for each line, so four training samples in total. It is understandable though 

that a number of points larger than this minimum set (4) would provide a more robust 

solution. 
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An observation is that we are not using all the training points provided by the user, 

only the ones that are classified to one of the four classes that define the intersecting 

planes. For example in the classification used before we may use the following classes 

for our lines calculation: 

Line #1 Line #2 Line #3 Line #4 

(F, I D\ D, D+, ft, C, C+, B\ B, B+, A", A) 

Figure 7.9: Assignment of classes to intersecting lines 

The training points in the remaining classes will be used for accuracy evaluation of the 

interpolated planes. Here we should mention that the number of planes is not fixed but at 

least five. We need two planes to describe the inactive similarity ranges, one for the 

lower and another for the higher similarity values (close to 0 and 1). We also need 

another plane with a relatively short range describing the center of the similarity range 

(close to 0.5). Inbetween the inactive planes and the center plane we need at least one 

plane at each side of the center plane. So the number of interpolated planes is 2w+3, the 

2n is to ensure symmetry. For «=1 we get the minimum plane number which is 5. 

Sigmoidal Solution. Following the plane interpolation, an accuracy assessment through a 

fitting error is performed. If the results are not as desired, a more complex function is 

necessary. To capture non-linear similarity relations between a query and a stored metric 

attribute we use a modified sigmoidal fuzzy relationship function. The similarity function 

Simsigmoidai for a database value XDB compared to a query value XQ is: 
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SimSigmoiilal (XQ,XDB)-< 

] + e~ 
(X) 

X =(XQ-XDB-c )cos<p + {XQ + XDB +c )s\n<p 

(7.10) 

The parameters we solve for are the angle <p, the shift c, and the slope a. The initial 

approximations for the parameters are as follows: 

• Angle <p is the same angle calculated from the dependency analysis. 

Shift c is calculated from the parameters of the center plane using c 
(0.5 - a 3 ) 

• Slope a cannot be calculated directly from the planes. Instead an indirect value is 

assigned through a fast least squares solution with four points each belonging to one 

of the lines used to calculate the planes. 

The importance of the good initial approximations that our system offers is further 

examined in the statistical section of this chapter. After the initial parameters are set, a 

least squares solution follows to calculate the final values. If the underlying complexity is 

high, the simple sigmoidal similarity functions might not be able to adequately model it. 

For these cases we showed how a more adaptable set of functions with higher modeling 

capabilities can be incorporated. The solution for these functions will depend on the 

chosen functions, but the central idea remains the same: use the simple sigmoidal 

function solution as the initial approximation for the more complex ones to follow and 

perform an evaluation of the fitting error after each interpolation until you achieve 

maximum desired accuracy. 

Neural network solution. A significant modeling constraint of the fuzzy functions is 

their monotonically decreasing behavior. To compensate for this, a novel neural network 
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solution was developed as introduced in chapter 5. Its purpose is to capture possible 

errors of the fuzzy functions and model them accurately. From the modeling perspective 

these errors are created by unexpected preference expression, therefore the applicability 

of a neural network is appropriate. 

Before the input vectors are created for our multi-scale radial basis function 

(MSRBF) network, a self-organization of the fuzzy function to the dominant signal takes 

place. This process was explained in chapter 6. Then the MSRBF is trained based on the 

output errors of the fuzzy functions. A detailed description of the training is provided in 

section 5.7. 

Neuro-fuzzy solution. At the final stage, and whenever the MSRBF is used, a merging 

of the fuzzy functions and the MSRBF is performed creating a neuro-fuzzy system. The 

weights are re-adjusted to achieve even higher modeling accuracy. The mathematical 

solution behind the least squares training is described in section 6.3. 
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7.2 Functionality examples 

In this section we demonstrate the advanced modeling capabilities of our method. Our 

application is inspired by common but complex user preferences within geospatial 

environments. We begin with a walk-through example with similarity learning in the 

resolution dimension using the fuzzy membership functions. We continue with a cadastre 

example using GIS and conclude with temporal preference example to show applicability 

of our neural network with the fuzzy functions. Additional examples of our system's 

applicability can be found in section 4.6. 

7.2.1 Walk-through training example for the resolution attribute 

Let us consider users who query a geospatial data collection and specifically request 

imagery of a particular resolution (ground pixel size) that will be used for object 

extraction. Their interest decreases gradually (but not necessarily in a linear fashion) as 

resolution increases to the degree that objects would not be identifiable. This expectation 

holds true for XQ < XDB (i-e. when the returned pixel size is larger than the requested one). 

Furthermore, the user may have a cost function in mind associated with a better (smaller 

pixel size) than requested resolution (e.g. due to price, storage, and processing time). This 

translates to a similarity relation that can also be non-linear as pixel size improves (XQ > 

XDB)- Depending on the query pixel size, the user expresses the associated cost by 

allowing a larger range of 100% similarity as query value increases. In other words, if 

they ask for 50m resolution they will consider that a 40m resolution does not add any 

additional cost so they assign similarity to be 100%. But if they ask for much finer 

resolution this tolerance range may be smaller due to for example higher price or 

manipulation cost. 
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User Feedback ^ > Fast Similarity 
Dependence Assessment 

3D Solution (2 Inputs, 1 Output) 

Planar Solution 

3D Sigmoidal Solution <• 

3D Advanced Sigmoidal Solution 

Figure 7.10: Resolution attribute profile training 

Figure 7.10 shows the process followed to capture the above similarity preference with 

our fuzzy membership functions: 

• Creation of training dataset by providing the user with different pairs of pixel size 

(query and return) and request a similarity assessment. 
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• Interpolate planes on each half (XQ > XDB and XQ < XDB) and calculate the 

corresponding plane parameters. 

• Examine if the interpolation error is better than the desired accuracy. 

• If not, calculate angle (p and its associated error. 

• If angle (p is close (closeness range predefined by user) to 45 or 90 degrees then 

eliminate the third dimension. 

• Interpolate two sigmoidal functions each applied on the corresponding half. 

Calculate the initial approximations of the sigmoidals using the plane parameters. 

• Examine if the interpolation error is again better than the desired accuracy. 

• If not, allow the so far constant sigmoidal parameters to be expressed by more 

complicated functions as preselected by the user. 

• Solve for the parameters including the additional variables. 

• Return the best possible solution from the above functions. 

In figure 7.10 the contour plots of the resulting similarity surface from each fuzzy 

function are presented. After training for our resolution example, the resulting function in 

the right half is a sigmoidal one with a variable slope a (fig. 7.10 bottom contour graph). 

The variable slope is able to express user alterable tolerance depending on requested 

pixel size. The larger the requested pixel size the more flexible they are about additional 

pixel size. That does not happen in a linear fashion so a gradual decrease of a (slope) can 

model that. 

In the left half, the rate of similarity decrease does not change so slope a remains 

the same (i.e. the isoline distance). What changes is the spread value c. By doing so, this 

complex fuzzy function has the ability to express user similarity tolerance as the query 
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value increases. In figure 7.11 the final similarity surface is presented. 

Similirity 

Xqutry 

Xdatabase 

Figure 7.11: Advanced sigmoidal fuzzy similarity function 

After successful training the mathematical parameters of the functions are stored to be 

used later during simulation, creating user preference profiles. A profile example 

describing user similarity preference as identified by the above functions is shown in 

figure 7.12. Profile ID is a unique key number to identify the profile. For each of the two 

asymmetrical solutions a separate function is provided. The Class ID refers to the type of 

function used and the relationship between the parameters and the function's output (i.e. 

the similarity equation). The calculated parameters after training are stored thereafter. 

Profile ID: 52368 

Left Side-Class ID: 12 Right Side-Class ID: 17 

a = -0.07 
c0 =-60.04 
ci - -0.08 
9=1.57 

c = 85.17 
ao=-0.21 
a, = -0.01 
9=1.57 

Figure 7.12: Profile example 
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7.2.2 Additional example using the fuzzy functions 

Here we demonstrate a representative example of their functionality on a cadastre/real 

estate apphcation. Let's investigate user preference of a geospatial attribute expressing 

parcel value per square meter. The function is composed of two sub-functions, each one 

applicable in half of the input space (e.g. XQ > XDB) to compensate for asymmetrical cases. 

A major factor for choosing a sigmoidal function comes from its superior modeling 

capabilities. The parameters CR and CL specify the translation along the X^^se axis, 

which is especially useful in specifying the highly active portion of the function (close to 

100%). Efficient manipulation of the slope of each sigmoidal function can result in 

representing a variety of cases, ranging from a linear up to a step-like behavior. A result 

of this trained function can be seen in figure 7.13. 

Xdatabase 

Figure 7.13: Example of a user preference function 
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Figure 7.14: Contour plot and query examples of this preference function 

In figure 7.14 we have the corresponding contour plot of the above figure. We also 

included two sections for specific user requests, for parcel value per square meter (PVSM) 

of 500$/m2 and 3000$/m2. By examining these two sections we can conclude the 

following: 

i) In the XQ > XDB half (left side at the graph) the dependency of shift on the XQ input is 

able to express the gradual decrease of user's interest as the returned PVSM is smaller 

than the requested. Note in figure 7.14 how user flexibility increases as the PVSM 

request Xuser gets larger. No normalization could encapsulate this dependency. Analyzing 

the reasons of such a preference pattern could lead to the conclusion that the higher the 

requested PVSM, the more flexible the user is as to the range of highly similar results 

when XQ > XDB-
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ii) At the right half more complicated modeling is necessary. A dependency on the XQ 

input exists for both slope and shift. This powerful combination expresses user decrease 

of interest when the returned PVSM is larger than the requested one. It is dependent on 

the XQ input since the larger the requested value is, the larger the range of highly 

acceptable values increases (through shift manipulation) and the interest decrease rate is 

smaller (done through slope modification). In other words, when users request 500$/m2 

PVSM they are less flexible in accepting larger values than when querying for a 

3000$/m2 one (for a return value higher than the requested) and this is what mainly we 

express with the displayed function. 

7.2.3 Neuro-fuzzy example 

In this example we demonstrate the combined application of the fuzzy functions and the 

MSRBF. Let's assume that a user is querying for satellite imagery from a specific 

temporal instance. At the initial stage, the fuzzy function captures the majority of the 

similarity preference using a sigmoidal function (we only examine the left side). Because 

the fitting error is still high the MSRBF is used. The fuzzy function is self-organized to 

the overwhelming signal and the errors of this new function are the inputs for the 

MSRBF. After the training of the neural network a global solution follows to fine-tune 

the weights. 

The resulting user preference is shown in figure 7.15. We can see the effect of the 

MSRBF acting as localized error-corrector with the small amplitude variations. But also 

there is a large-scale correction when the returned value (XDB) is close to January/2001. 

For some reason the user does not prefer results from that period of time and the MSRBF 

is able to express that. This preference can relate to additional knowledge that the user 
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might have, for example that the optics of a specific satellite were not calibrated correctly 

at the beginning of January, therefore the quality of the images might not be up to par. 

The above example is indicative of our system's modeling capabilities when 

complex user similarity preference is present. Such preference is not currently supported 

in geospatial query systems, but the necessity of its incorporation is obvious.. 

Mar/2001 
Xdatabase 

Figure 7.15: Similarity preference captures with our neuro-fuzzy system 
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7.3 Statistical testing 

Our statistical tests aim at establishing the robustness of our neuro-fuzzy system. First we 

examine the fuzzy functions and then the MSRBF neural network performance. 

7.3.1 Fuzzy functions assessment 

Our complex functions have advanced modeling capabilities as we already showed. An 

important question that often rises when dealing with complex non-linear function 

approximations is the stability of the algorithm. In other words what is the influence of 

factors such as initial approximations, noise, and number of training samples to the least 

squares solution. A thorough investigation is offered to assess algorithm's performance. 

7.3.1.1 Influence of initial approximations 

A repetitive problem in non-linear least squares solutions is caused by the fact that if the 

initial approximations are far away from the target values there is the possibility that 

convergence to the desired solution will not always be achieved. To address this, within 

our system we have developed a method of calculating accurate initial approximations 

from previously interpolated less complex functions (Mountrakis and Agouris, 2003). In 

this section we investigate the relationship between convergence and the distance 

between initial and target values for each of the three parameters: shift, angle, and slope. 

All tests were performed with 10 training points, with the initial values of the other two 

parameters having the same value as their corresponding target values so they would not 

influence the solution. However, each solution was performed by solving for all three 

parameters simultaneously each time to ensure overall stability. Convergence is achieved 

when solution parameters are within these (strict) thresholds +/-1% of target value for 

shift, +/- 0.3 degrees for angle, and +/- 0.005 for slope. 
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Shift parameter. The influence of shift initial approximations can be seen in figure 7.16. 

The X axis represents the value of the initial approximation and the Y axis shows the 

target value. We can see that for a specific range (+/- 0.33 *C for that graph) of difference 

between the initial and target value convergence is achieved consistently. On the other 

hand, solution is sparingly achieved beyond that range. This shows the importance of 

having good approximations in the shift parameter. 

Shift Starting Temporary Values 

* Convergence Success 
Shift Target Values ' Rate(%) 

Figure 7.16: Influence of shift's initial approximations to convergence 

Angle parameter. Another parameter we evaluated was the angle, with the results shown 

in figure 7.17. The X axis represents the value of the initial approximation in the angle 

parameter and the Y axis shows the target value. Angles are measures in degrees. The 

behavior is the same as the shift parameter. The range for convergence is approximately 

+/- 8 degrees. Values further away from that range do not always ensure a successful 

solution, at least not within our strict thresholds as previously defined. 
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Angle Starting Temporary Values 

» Convergence Success 
Angle Target Values Rate (%) 

Figure 7.17: Influence of angle's initial approximations to convergence 

Slope a. The most intriguing parameter in our assessment was the slope of the sigmoidal 

function. The obtained results are presented in figure 7.18. The X axis represents the 

value of the initial approximation in the slope parameter and the Y axis corresponds to 

the target value. The results do not exhibit the same behavior as the previous two 

parameters. For small slope target values (<0.15) there is a gradually increasing range of 

convergence. Beyond the 0.15 target value mark convergence is achieved consistently 

almost independently of the initial approximation. This is an exceptional result for our 

algorithm's design because the slope parameter is the only parameter that we cannot 

calculate a good initial approximation from previous fuzzy functions. So this higher 

tolerance on the initial values is desired and actually motivated part of the algorithm's 

design. Given the result of figure 7.18 we assign slope starting values close to zero to 

achieve high convergence rate independently of the target value. 
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Slope Starting Temporary Values 

0.3 

0.1 

0.2 

0.3 

Slope Target Values 
Convergence Success 

Rate (%) 

Figure 7.18: Influence of slope's initial approximations to convergence 

The explanation for slope's unusual behavior is found in figure 7.19, where sigmoidals 

with different slope values are presented. We can see that a 0.01 change in the slope 

value will have a much more drastic influence as the slope gets closer to 0. Therefore 

changes beyond the 0.15 mark are almost insignificant, which explains the unusually high 

convergence rate and its independence from the initial value. 

Figure 7.19: Influence of slope to sigmoidal's shape 
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7.3.1.2 Influence of noise and training sample size for convergence 

The experiments of this section examine the influence of noise combined with the 

number of training points to a successful solution. Noise was inserted in the training 

dataset by altering the similarity value of a single point. This alteration varied from 0 to 

+/-0.5 and was imposed on a randomly selected point. The absolute value of similarity 

change is represented in the X axis of figures 7.20, 7.21, and 7.22. The Y axis shows the 

percentage difference from the desired target value in each parameter before noise was 

added. We should mention that all iterations started with a value 20% away from the 

target. Experiments were performed for a variety of training size n= {10, 20, 30, 40, 50) 

to assess the stability of the algorithm. Also 1000 iterations took place for each result and 

their average is presented at the graphs. 

The overall impression from the three figures is that the higher the number of 

training samples the more tolerant the solution is to noise. This was an expected outcome 

of our statistical simulations. Furthermore, slope parameter seems to be the one mostly 

affected with the introduction of noise. This does not necessarily translate to unsuccessful 

modeling, since as explained in figure 7.19, the influence of slope differences is in some 

parts significant and in others negligible. For this specific test, slope was set to 0.07. The 

other two parameters, shift and angle, appear to be more tolerant to noise with the shift 

showing a slightly better performance. There is a significant gain when the training size 

is increased from 10 to 20 points. We should mention of course that we want to keep this 

number as low as possible to avoid overwhelming the user with an excessive training set. 
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Figure 7.20: The influence of noise in slope calculation 

Figure 7.21: The influence of noise in shift calculation 

Figure 7.22: The influence of noise in angle calculation 
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7.3.1.3 Influence of noise and training sample size for convergence 

An additional test we performed to test the stability of the algorithm is the one in figure 

7.23. The X axis shows noise amplitude added and the Y axis represents the total number 

of training points used. We examine what effect noise and training size have on the 

convergence rate. From the graph we can see that in most cases low convergence failure 

exists. For the top right part where high failure is present, it is attributed to limiting 

thresholds combined with increased inserted noise. Especially for high noise values and 

low sample sizes the convergence failure rate reflects that values within thresholds cannot 

be achieved, not due to a least squares solution error but because of limited modeling 

capabilities of the sigmoidal function (e.g. it is a monotonically decreasing function). The 

variability within values is caused by the randomness of the selected point to which the 

noise was added. 
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Figure 7.23: Influence of noise and training sample size for convergence rate 
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7.3.1.4 Influence of noise and training sample size for iteration number 

Even though the overall approach aims at improving retrieval accuracy, the influence of 

noise and training sample size on the required iteration number was a concern. Therefore, 

we performed the experiment below to assess how the average iteration number for 

convergence changes as noise increases. The results are presented in figure 7.24. Noise is 

again inserted randomly to a single point of the training set as an error in the similarity 

value (X axis). We also included various training sizes (Y axis). We can see that the 

number of iterations increases when the number of training points decreases, as expected, 

but not to a prohibitive number, since the difference is only one additional iteration. The 

same conclusion applies to noise introduction, the single iteration difference, when going 

from noiseless to noisy training sets. The above remarks show that our algorithm's 

training speed is not significantly affected by noise. 
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7.3.2 Neural network assessment 

In this section we present the statistical evaluation performed on our novel Multi-Scale 

Radial B asis Function (MSRBF) neural network. In order to exhibit the benefits of our 

algorithm, we compared it to the currently used solution. We begin the assessment with 

an explanation of the training sets used, and then we proceed with presentation and 

interpretation of the results. 

7.3.2.1 Simulation training dataset 

The testing dataset used for our evaluation process was created using a combination of 

gaussian distributions. An example of a training set can be seen in figure 7.25. We 

distinguish two kinds of gaussian distribution, the global and the local ones. The global 

gaussians do not overlap each other in the input space and are presented with orange 

color in figure 7.25. The local gaussians (green color of fig. 7.25) always overlap a global 

gaussian. Their purpose is to degrade the signal "clarity" of the global gaussian they 

overlap, therefore causing modeling errors. Some characteristics of the gaussians are: 

• In our experiments the number of global gaussians varied from 2 to 40. The number 

of local gaussians was dependent on the global's number ranging from 1 to twice 

the amount of global gaussians used, with a maximum of 2 local gaussian 

overlapping a single global gaussian. 

• The centers for the global gaussians were chosen to cover completely the given 

input space. The centers of local gaussians were selected so the formulated local 

gaussians would overlap a randomly selected global gaussian but not within +/- one 

spread of the global's center, otherwise globals would be unrecoverably modified. 

• The spreads of the global gaussians were chosen to overlap completely the input 
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space and be within 10% of each other. The locals spreads were within 1/3-1/4 of 

the spread values for the global gaussians. 

Each global gaussian was represented by 14 points, and each local by 10 points. 

Higher number of points was used for the globals to ensure they are represented 

adequately within the whole input sample. 

Output 

Global Gaussians 

Figure 7.25: Creation of the simulations training dataset 

For the error evaluation using the same gaussian distributions a testing sample was 

created with 6 times the number of points used for testing. A more clear representation of 

the training set of figure 7.25 is shown in figure 7.26. Black points shows samples 

resulting from local gaussians and light blue correspond to globals. 
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Figure 7.26: Training points of the simulations dataset 

7.3.2.2 Configuration of compared neural networks 

Three neural networks were evaluated based on the training set described above. We used 

a traditional single spread radial basis function network (RBF), a variable spread radial 

basis function network (VRBF), and our multi-scale radial basis function network 

(MSRBF). The properties of each network are as follows: 

• RBF. The traditional RBF was tested. We used Matlab's code and spreads were 

assigned as {1:1:60}. Each spread resulted to an RBF network (60 in total). The one 

that had the best testing MSE (Mean Square Error) was reported. Iterations would 

stop if a maximum number of 100 nodes would be reached, except in the case of 30 

and 40 global gaussians that a maximum of 200 nodes was allowed. 

" VRBF. This network was different from the RBF. Instead of creating 60 network 

candidates based on a single spread that changed from one network to the other, we 

created a single network that tested variable spreads within each of its training 

iterations. The minimum spread used was 1 and the maximum spread value was 
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based on the spreads of the globa] gaussians used to create the training set. A step of 

1 was assigned. 

• MSRBF. Our novel neural network had the following input parameters: i) candidate 

spread values were the same as the VRBF to facilitate comparisons, and ii) for our 

density metrics we used three zones with {0.2, 0.8} threshold values, requiring a 

minimum of at least one point per zone to accept a local MSE solution candidate. A 

minimum of one point only in zone one was required for global MSE solution 

candidate. The MSRBF training process is attempting to find the best balance 

between global and local candidates. In order to do so two variables were adjusted. 

The number of total nodes had a minimum of the summation of global and local 

gaussians used in the training set and such a step that a maximum of 5 total node 

values would be examined. For each of the total nodes value the network was setup 

to test different sigmas used to calculate the Maximum global MSE (see equation 

5.8). The sigmas values varied from 0.3 to twice the number of total nodes, with a 

maximum number of 8 sigmas examined. So for every candidate dataset that was 

composed using a specific number of global and local gaussians, we would create a 

number of networks to test. To make this more clear, if we had 4 global gaussians 

and 3 locals, we would test for total nodes = {7, 10, 13, 16, 19}. For each of these 

nodes we would test for sigmas = {0.30, 2.30, 4.30, 6.30, 8.30, 10.30, 12.30}. Note 

that for sigma = 0 our MSRBF turns into the VRBF since automatically all local 

solutions would be rejected. 

All networks had their node centers chosen from the training sample values and the goal 

MSE was set to 0.001. 
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7.3.2.3 Interpretation of simulation results 

A detailed representation of the results obtained from the comparison of the three 

networks is presented in the Appendix, at the end of the dissertation. Here we summarize 

the key points and discuss the results. 

Overall Assessment. A summary of the three neural networks comparisons can be seen 

in table 7.1. In addition to the mean value, we calculated the median value, to compensate 

for the effect of possible outliers in the results. The mean and median values show 

Mean 
Median 

MSE Training 
RBF VRBF MSRBF 

0.00323 0.02022 ( 
0.00283 0.01934 

MSE Testing 
RBF VRBF MSRBF 

0.01620 0.02210 ( 
0.01435 0.02369 ( 

Nodes 
RBF VRBF MSRBF 
105.4 65.3 
100 

Table 7.1: Median and median values for MSE Training, MSE Testing and Nodes 

explicitly that our MSRBF outperformed RBF and VRBF consistently and by a large 

margin. Outperformance is mostly inferred through the MSE testing values. A more 

explicit comparison is displayed in tables 7.2 and 7.3. 

MSE Training 
MSE Testing 

Nodes 

MSRBF vs. RBF 
387% • 
915% 
170% 

MSRBF vs. VRBF 
2941% 
1285% 
67% 

RBF vs. VRBF 
525% 
36% 
-38% 

Table 7.2: Improvement percentage of the mean values 

MSE Training 
MSE Testing 

Nodes 

MSRBF vs. RBF 
56124% 
2248% 
223% 

MSRBF vs. VRBF 
384159% 
3777% 

65% 

RBF vs. VRBF 
583% 
65% 
-49% 

Table 7.3: Improvement percentage of the median values 
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The MSRBF provided is at least 10 times more accurate results than the other two 

methods while at the same time it uses a significant less number of nodes, a significant 

advantage for faster simulation times. Here we should mention that we do not expect 

such a vast accuracy gap between the MSRBF and the rest of the methods when dealing 

with real data. Our dataset was biased to show cases that the existing modeling 

techniques fail and this experiment verified that. Also our network requires more training 

time, which might be a constraint for some applications. Nonetheless, our network's 

focus was accuracy and we have showed that explicitly through our simulations. 

Generalization. Another important factor for the networks evaluation is how well they 

generalize from the training to the testing values. The testing size was 6 times larger than 

the training to make sure that the generalization evaluation was very detailed. 

In order to quantify the generalization behavior of each network we compared the 

average difference between MSE training and MSE testing together with their standard 

deviation. The results are revealing: the MSRBF had 10 times better generalization than 

the VRBF and 100 times than the traditional RBF. This is mostly attributed to the 

complexity of the training set, that the other two methods were not able to capture. 

Mean 
Standard Deviation 

RBF MSE 
Testing - Training 

0.01296 
0.01102 

VRBF MSE 
Testing - Training 

0.00187 
0.00986 

MSRBF MSE 
Testing - Training 

0.00093 
0.00213 

Table 7.4: MSE differences between training and testing 

We also investigated the consistency of convergence of the networks and how it 

propagated from training to testing. Figure 7.27 shows the ratio between successful 
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solutions and unsuccessful, where success is measured in terms of having the MSE being 

Figure 7.27: Convergence success rates for training and testing 

less than a specific value. Each bar at the graph has three percentages that sum to 100%. 

The part in red shows the percentage of unsuccessful solutions in training, in essence all 

the times that the network did not converge to the desired MSE during training. The 

green and yellow parts correspond to the times it actually converged during training. The 

green parts show that not only training was below our MSE goal (0.001) but the testing 

was below this (or a multiplier of this) threshold as well. Yellow parts correspond to 

successful training but unsuccessful testing. The leftmost five bars correspond to the 

RBF solution and the five rightmost ones to the MSRBF. The VRBF converged in 

training only 3% of the time so we did not include it in this evaluation. From the five bars 
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for each network all of them were created using an MSE goal for training equal to the 

original MSE goal of 0.001. Going from left to right, the five bars show different 

convergence rates based on different testing MSE goal values. These five values were 

based on {1,2,3,5,10} times the original MSE target value (i.e. {0.001, 0.002, 0.003, 

0.005, 0.010}). The different MSE testing values were used to show when even though 

strict convergence (1* MSE original goal) was not achieved, how far away from it was 

the obtained solution. 

The results show that a successful solution in training and testing for the RBF was 

achieved 3-5% of the time with the testing MSE goal ranging from 0.001 to 0.01. For the 

MSRBF convergence was achieved 56% of the time for MSE testing = 0.001, climbing 

fast to 70% for MSE testing = 0.002, end finishing to 85% for MSE testing = 0.01. This 

shows that even when strict convergence was not achieved the MSRBF was close to the 

desired MSE, while the RBF was never in that range. 

Noise stability. A final analysis on the results was aiming at discovering the effect of 

noise in the achieved testing MSE. Noise is expressed in our dataset in the form of the 

local gaussians, overlapping the global ones. Figure 7.28 shows the effect of the number 
l 

of local gaussians to the MSE testing for a global number of gaussians ranging from 20 to 

30 and 40. All three networks were included in this comparison. The average of each 

network's MSE over the three global gaussian values is presented in figure 7.29. 

The results verify the benefits of our approach. The MSRBF exhibited a small 

additional error as noise increased. In contrast to that, the RBF and VRBF showed to be 

significantly influenced by the introduction of noise. The MSRBF outperformed the 

others, even when minimal noise (i.e. low number of local gaussians) was present. Also, 
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this additional noise was not addressed in our MSRBF with an exponential increase in the 

number of nodes. There seems to be a more linear relationship between them instead. 

Local Gaussians Gradual Increase 

- • - RBF - 20 Global 
Gaussians 

-VRBF- 20 Global 
Gaussians 

•MSRBF-20 
Global Gaussians 

-•— RBF - 30 Global 
Gaussians 

- • - V R B F - 3 0 Global 
Gaussians 

-A-MSRBF - 30 
Global Gaussians 

- • - RBF - 40 Global 
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KVRBF - 40 Global 
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*- MSRBF- 40 
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Figure 7.28: Local gaussians effect in the testing MSE 
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Figure 7.29: Summarized local gaussians effect in the testing MSE 
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7.4 Conclusion 

In this chapter we presented the training process of our system. We a]so discussed the 

idea behind the progressive training. The similarity input/output presentation aimed at 

facilitating users with various levels of expertise as they interact with our system at the 

training input and simulation output. 

Our system evaluation was based on functionality examples and statistical 

simulations. The functionality examples showed the advanced modeling capabilities our 

similarity preference learning algorithm exhibits. The statistical simulations were 

performed in the two parts of our system, the fuzzy functions and the MSRBF neural 

network. The fuzzy functions showed stability in convergence and also exemplified the 

importance of good initial approximations that our system provides through the 

progressive training. The MSRBF neural network was compared with two other 

approaches, the traditional radial basis function (RBF) with single spread, and a variable 

spread RBF. The results showed that our network outperformed consistently the other 

two methods in terms of modeling accuracy, and also in simulation times as it requires 

less number of nodes. 
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Chapter 8 

Conclusions and future work 

This chapter provides a brief overview of the techniques developed to address our 

problem. A more specific discussion follows on the research contributions of this work 

and the overall benefit of this thesis. Future work that will enhance applicability and 

performance of our system is also presented. 
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8.1 Thesis synopsis 

In this thesis we addressed a common problem in geospatial queries, the lack of relevance 

of results based on user/application needs. The current approaches are deterministic and 

do not allow the incorporation of user preference in the query process. In contrast to that, 

our proposed algorithm adjusts query returns based on similarity profiles that express 

more accurately user anticipation of relevant returns. 

Our work focuses on learning preference within one-dimensional, quantitative 

attributes. The learning process is based on a training dataset provided by the user. 

Depending on the provided similarity preference complexity our algorithm adjusts the 

learning process. At the first stage, fuzzy membership functions are interpolated to 

capture the dominant preference (signal). Several families of functions are used 

progressively, from simple planar functions to complex sigmoidal ones. The design of the 

algorithm allows previously interpolated functions to act as approximations for more 

complex ones that follow, therefore decreasing training time and increasing robustness. 

During the next stage of our training, a customized neural network is used, 

specifically developed to express the characteristics of the problem. We attempt to model 

potential errors that resulted from the interpolation of the fuzzy functions; we do not want 

our neural network to expand to portions of the input space without significant evidence. 

Therefore, our network design forces it to operate in a localized manner and only where it 

is necessary. The idea behind this is that we trust the fuzzy functions to carry the signal 

throughout the input space with a more predictable modeling, and let the neural network 

capture more unpredictable user behavior. Our neural network, called Multi-Scale Radial 

Basis Function (MSRBF) network, offers an innovative design and training by inserting 

local accuracy metrics (i.e. within node receptive fields) in the traditional global ones (i.e. 
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throughout the input space). 

At the last training stage, the fuzzy functions are combined with MSRBF into one 

solution. Weights are readjusted to facilitate even higher accuracy in this neuro-fuzzy 

system. In some cases, if found appropriate, the fuzzy functions go through a self-

organizing process, where they adjust even more to the overwhelming signal, expecting 

the MSRBF to provide the localized corrections. 

The proposed neuro-fuzzy system outperforms the currently used distance-based 

nearest neighbor methods. It does so by design, since it recognizes and supports distance 

dependent preference, but at the same time, offers advanced modeling capabilities as we 

have seen in the examples of chapters 4 and 7. Also in chapter 7 we demonstrated the 

robustness of the system through statistical simulations and how our algorithm adjusts its 

complexity as the similarity preference is getting more complicated. 

8.2 Research contributions 

The neuro-fuzzy similarity learning system offers a significant improvement in the query 

process of geospatial information. By using our system, complex preference expression 

can be modeled and incorporated when users perform queries on geospatial information. 

The results are customized to specific user/application needs and restrictions, and thus, 

more accurate information retrieval is achieved. 

During the development of the neuro-fuzzy system several novel methodologies 

were introduced: 

• A collection of fuzzy membership functions that not only express user preference 

in a successful way (as examples showed) but which also allow the interaction 

between successive functions. The less complex functions act as an approximation 
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for more complex ones. By doing so the number of iterations is reduced, while the 

convergence rate is higher. 

A novel customized version of the traditional Radial Basis Function neural 

network. Even though our initial intention was to use the original RBF network, as 

the investigation on the desired characteristics of the network progressed, some 

significant modifications were made, leading to our Multi-Scale RBF. The distinction 

of our developed method is twofold. Firstly, the training process uses different criteria 

to accept node candidates. In addition to the traditional global error fit measure, we 

use a local error fit metric. This allows some smaller scale (but still strong) signals to 

be absorbed first and potential larger scale signals to reveal themselves in subsequent 

iterations. Secondly, the architecture of the MSRBF is different with the addition of a 

blocking layer to make sure that these local scale signals do not influence the overall 

solution. 

The semantic basis of our neuro-fuzzy architecture for similarity preference. The 

fuzzy functions are used to model "expected" user preference and they propagate it 

throughout the input space. The MSRBF neural network is used whenever 

"unexpected" behavior is identified during training and as an error improvement 

method. The idea behind this comes from the original motivation behind the 

combination of fuzzy and neural methods. The fuzzy methods are easy to interpret but 

not adaptable, and neural networks are adaptable but hard to interpret. Our adaptable 

fuzzy functions using a back-propagation algorithm and our easier to interpret 

MSRBF (due to its localized use) coupled together produce a powerful model. 
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8.3 Future work 

Future directions of this research can be classified in two major categories. The first one 

includes the development of modules not treated in this thesis in order to have a complete 

similarity learning system for geospatial information retrieval. The second category 

involves the applicability of the methodologies used for similarity learning to various 

machine learning tasks. 

8.3.1 Extensions of our learning system 

Our algorithm calculates similarity in one-dimensional, quantitative attributes. A logical 

extension of this work would be the calculation of similarity in other non-supported 

attributes, and then, the combination of these techniques with ours to produce a total 

similarity metric. It is interesting to see whether our method can be scaled up to more 

than one-dimensional, quantitative attributes. For example, similarity learning in space 

would be a challenging task. Also other highly dependent attributes such as color could 

be a potential candidate for our system. Furthermore, similarity learning in qualitative 

attributes should be addressed. There are already successful examples of algorithms used 

for text retrieval that could be extended to facilitate geospatial qualitative attributes. 

The most challenging task remains the combination of similarity results from each 

individual attribute to one total metric. This increased difficulty is attributed to two main 

reasons: 

i) The dimensionality can be high and most importantly not predetermined, which 

means that the algorithm should be able to easily scale up in dimensions without 

being prohibitively slow and require retraining when a new attribute is added. 

ii) Dependencies might exist between dimensions, making this task even harder. 
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8.3.2 Application of our learning methods to other domains 

Another appealing future investigation would be to see whether our system can be 

applied towards machine learning tasks in different domains. The idea that you have a set 

of functions describing an expected signal and then another set to model unexpected 

behavior is easily extendable to other domains. Our neuro-fuzzy system does support that 

separation; it is actually built on that. 

The application of the MSRBF to other signal modeling tasks can also yield some 

interesting results. We see our neural network as an improved version of the traditional 

RBF networks. It can be transformed into the traditional version with the appropriate 

selection of input parameters, or at the same time, it can investigate additional node 

selections based on their local errors in addition to the global ones. A good example of 

such implementation would be analysis of time-series data. 
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Appendix: Statistical simulations results 
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10 
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1 
3 
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1 
3 
5 
7 
9 
11 
13 
15 
17 
19 

MSE Training HOT6 

RBF 
21.2 
15.4 
3.1 
13.7 
14.3 
9.5 
11.0 
9.9 
8.0 
8.5 
6.5 
2.0 
9.2 
6.2 
7.3 
19.0 
6.4 

2929.2 
7.7 
58.8 

658.2 
161.7 
240.0 
958.6 
8060.8 
2420.1 

28.0 
6.2 
53.4 

2467.5 
4150.3 
3860.0 
1545.5 
1169.7 
6344.2 
6267.6 

VRBF 
12097.0 
3209.0 
23404.0 
50443.0 
22848.0 
78690.0 
41339.0 
37015.0 
8814.8 

43383.0 
32179.0 
28136.0 

958,8 
21529.0 
11849.0 
12351.0 
15602.0 
32344.0 
1467.4 
11288.0 
13358.0 
6570.2 
I612I.0 
34830.0 
16051.0 
24920.0 
11750.0 
3530.3 
12993.0 
30219.0 
12154.0 
13507.0 
24730.0 
21411.0 
22689.0 
44040.0 

MSRBF 
2.3 
3.3 
55.1 
5.8 
0.6 
2.6 
0.6 
4.6 
9.7 
9.8 

8855.6 
4.1 
0.4 
1.0 
5.3 

8892.0 
2227.8 

7.5 
1.2 
1.9 
2.2 
3.5 

6626.6 
4 1 ' 

491.4 
2.7 
0.5 
1.1 
2.8 
2 1 
3.0 

5009.3 
4089.5 
1727.4 

2.8 
4.9 

MSE Testing *1(T* 
RBF 

46061.0 
11148.0 
17917.0 
14957.0 
31740.0 
14963.0 
24901.0 
19155.0 
13977.0 
44976.0 
12118.0 
23356.0 
13414.0 
12225.0 
41988.0 
27894.0 
13370.0 
18743.0 
12404.0 
50911.0 
12532.0 
51496.0 
25066.0 
22085.0 
13122.0 
10863.0 
30206.0 
6615.0 
8338.3 
13862.0 
13784.0 
15230.0 
60113.0 
17254.0 
14783.0 
14233.C 

VRBF 
41803.0 
6885.9 
37912.0 
35456.0 
7539.3 

23699.0 
38242.0 
37100.0 
12430.0 
28314.0 
33117.0 
27814.0 
1682.7 
17392.0 
16540.0 
16099.0 
24515.0 
42417.0 
2635.7 
19471.0 
26213.0 
17369.0 
30930.0 
35580.0 
27936.0 
37446.0 
7720.5 
8668.2 
9609.8 
28894.0 
22586.0 
16574.0 
22044.0 
20185.0 
38798.0 
41089.0 

MSRBF 
47.2 

2579.4 
1731.2 
50.2 
2.0 
2.4 

3718.8 
4.0 
12.4 

6187.9 
3286.9 

7.2 
2.5 
3.3 
9.9 

4014.5 
761.4 

3793.3 
2.3 
2.9 
6.7 
8.0 

10400.0 
9.1 

1224.2 
10202.0 

2.6 
4.2 
4.1 
5.7 

611.2 
7812.7 
2725.8 
2451.4 

14.9 
9.8 

Nodes 
RBF 

19 
34 
44 
49 
45 
45 
59 
64 
81 
89 
90 
94 
59 
72 
97 
99 
99 
100 
95 
46 
57 
46 
49 
52 
100 
100 
41 
43 
48 
100 
100 
100 
100 
100 
100 
100 

VRBF 
3 
12 
13 
12 
6 
13 
11 
12 
21 
23 
26 
23 
15 
17 
25 
13 
45 
17 
16 
15 
25 
39 
45 
51 
57 
63 
12 
19 
45 
31 
51 
57 
53 
75 
49 
51 

MSRBF 
3 
4 
5 
6 

6 
7 
8 
9 
11 
31 
14 
7 
9 
11 
13 
29 

9 
11 
14 
16 
24 
21 
24 
28 
II 
13 
15 
18 
22 
39 
53 
35 

35 

Table Al: Detailed results of statistical simulations 
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12 
12 
12 
12 
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14 
14 
14 
14 
14 
14 
14 
14 
14 
14 
16 
16 
16 
16 
16 
16 
16 
16 
18 
18 
18 
18 
18 
18 
18 
18 
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L 
1 
4 
7 
10 
13 
16 
19 
22 
1 
4 
7 
10 
13 
16 
19 
22 
25 
28 
1 
5 
9 
13 
17 
21 
25 
29 
1 
5 
9 
13 
17 
21 
25 
29 
33 

MSE Training nO"6 

RBF 
20.0 
206.1 
3694.1 
5113.5 
4650.9 
4112.2 
5371.7 
8493.8 
202.4 
1414.0 
7505.1 
2271.6 
3226.4 
6674.1 
5583.1 
2753.9 
7091.7 
4790.4 
267.2 
663.2 
3540.4 
3878.1 
4824.6 
3984.1 
7725.1 
4781.8 
407.6 
3442.7 
2831.1 
2434.9 
6450.5 
7365.3 
3429.9 
5348.4 
6905.0 

VRBF 
29382.0 
17641.0 
20031.0 
24815.0 
18278.0 
19349.0 
22069.0 
26908.0 
15598.0 
31421.0 
10712.0 
11894.0 
21726.0 
14277.0 
22201.0 
20514.0 
25542.0 
33267.0 
6647.3 
1775.1 

16404.0 
18266.0 
24571.0 
19797.0 
15049.0 
30451.0 

843.4 
9927,9 
9675.5 
35800.0 
29675.0 
29091.0 
26532.0 
26018.0 
31142.0 

MSRBF 
1.3 
1.8 
1.6 
7.3 

867.0 
4268.5 

8.7 
8.3 
0.1 
1.8 

353.8 
2.8 
3.3 

1333.8 
682.3 
946.6 
1529.4 

3,2 
0.6 
1.1 

671.5 
847.9 
856.5 
7.2 

1910.9 
1149.7 

0.4 
1.0 
1.7 

2635.2 
1.3 

956.3 
3.3 

994.2 
5.2 

MSE Testing HQf4 

RBF 
2982.4 
8497.6 
7319.7 
10184.0 
11948.0 
18784.0 
16899.0 
16226.0 
18537.0 
4975.3 
10648.0 
13237.0 
12943.0 
12615.0 
14353.0 
17173.0 
19324.0 
17336.0 
8736.2 
6616.9 
12219.0 
8016.9 
14319.0 
14363.0 
15920.0 
18293.0 
1449.9 
4586.8 
10439.0 
14197.0 
11726.0 
17624.0 
18663.0 
17594.0 
16202.0 

VRBF 
1681.0 

21965.0 
14494.0 
33187.0 
22179.0 
28614.0 
28112.0 
32003.0 
1030.3 
17654.0 
11488.0 
25634.0 
23643.0 
22261.0 
29032.0 
26643.0 
30575.0 
42355.0 
3960.6 
6967.2 
15334.0 
27302.0 
30442.0 
23807.0 
20933.0 
32798.0 
1253.1 

13599.0 
9453.9 
13173.0 
24953.0 
30942.0 
31907.0 
26128.0 
29578.0 

MSRBF 
5.7 
4,3 

1106.0 
11.2 

1708.5 
7337.6 

10.6 
42.3 
2,4 
4.2 

1256.1 
7210.0 
7033.7 
1184.3 
3981.4 
1953.3 
1906.2 
903.0 

3.1 
5.9 

709.8 
616.4 
6031.0 
320.4 
2924.0 
1521.8 

2.6 
4.3 
4.3 

3571.9 
1598 9 
1594.5 
12.4 

1550.1 
1980.2 

Nodes 
RBF 

33 
37 
100 
100 
100 
100 
100 
100 
33 
100 
100 
100 
100 
100 
100 
100 
100 
100 
38 
42 
100 
100 
100 
100 
100 
100 
48 
100 
100 
100 
100 
100 
100 
100 
100 

VRBF 
17 
16 
35 
49 
75 
64 
57 
62 
31 
28 
39 
34 
63 
42 
61 
51 
87 
110 
23 
30 
65 
41 
61 
52 
92 
63 
20 
33 
38 
73 
90 
95 
79 
104 
93 

MSRBF 
13 

21 
23 
29 
40 
33 
37 
15 
18 
24 
28 
31 
42 
38 
45 

55 
50 
17 
21 

32 
36 
40 
109 
63 
19 
23 
28 
70 
41 
48 
49 
58 
64 

Table Al: Continued 
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20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
40 
40 
40 
40 
40 
40 
40 
40 
40 
40 

L 
1 
5 
9 
13 
17 
21 
25 
29 
33 
37 
1 
7 
13 
19 
25 
31 
37 
43 
49 
55 
1 
9 
17 
25 
33 
41 
49 
57 
65 
73 

MSE Training *10^ 
RBF 
568.5 

2776.8 
2170.8 
2314.7 
5849.9 
4879.6 
6338.6 
8970.3 
10287.0 
7973.1 
184.7 

2641.4 
1471.6 
3021.5 
5468.0 
5976.4 
6467.6 
6993.6 
8224.3 
7495.3 
277.1 
1293.3 
1666.0 
3204.9 
4673.8 
4087.1 
4973.5 
5693.4 
5988.7 
12035.0 

VRBF 
6272.6 
20260.0 
6357.5 
22815.0 
17577.0 
11201.0 
24597.0 
26689.0 
17382.0 
56114.0 
372.7 

3223.7 
7282.3 
19910.0 
12846.0 
26495.0 
22811.0 
26493.0 
18805.0 
34381 0 
2402.6 
6481.3 
15266.0 
16218.0 
11999.0 
14305.0 
12820.0 
15843.0 
20522.0 
30038.0 

MSKBF 
0.5 

862.9 
206.7 
2.2 
1.7 
5.9 

559.9 
1055.7 

5.5 
2.7 
2.9 
0.6 
1.7 
2.7 

997.7 
8735 
3.1 

470.5 
340.3 
341.3 
0.1 
1.2 
2.6 
5.0 
3.5 

424.5, 
1823.4 
436.1 
6.4 

597.3 

MSE Testing *W* 
RBF 
820.3 

5215.4 
6492.9 
11267.0 
12929.0 
16725.0 
16644.0 
15427.0 
19571.0 
15005.0 
645.9 

3726.9 
9366.6 
10109.0 
16718.0 
14233.0 
12040.0 
17624.0 
19024.0 
16836.0 
387.5 
5543.9 
7613.8 
12627.0 
20950.0 
18466.0 
25623.0 
16966.0 
20543.0 
27014.0 

VRBF 
2737.1 
15778.0 
10820.0 
28082.0 
16398.0 
18470.0 
24758.0 
34086.0 
28659.0 
41627.0 
2642.9 
5706.0 
13768.0 
25141.0 
23839.0 
29768,0 
26602.0 
34085.0 
24446.0 
37931.0 
738.3 

2943,7 
14895.0 
19223.0 
15998.0 
17057.0 
18593.0 
21628.0 
25221,0 
33340.0 

MSRBF 
2.6 

1206.7 
1598 ! 

8.1 
271.0 
5941.6 
934.2 

2292.7 
8.2 

34.8 
3.3 
3.7 
5.4 
8.0 

3629.7 
3244.2 
6710.5 
974.7 
2185.3 
3470.8 

3.2 
4.4 

1477.3 
168.0 
179.2 
379.4 
2482.8 
2773.2 
150.0 
1243.3 

Nodes 
RBF 
56 
100 
100 
100 
100 
100 
100 
100 
100 
100 
172 
200 
200 
200 
200 
200 
200 
200 
200 
200 
168 
200 
200 
200 
200 
200 
200 
200 
200 
200 

VRBF 
27 
25 
41 
75 
82 
109 
117 
129 
97 
140 
31 
37 
61 
69 
55 
161 
175 
103 
207 
255 
51 
85 
80 
179 
133 
114 
233 
253 
147 
293 

MSRBF 
21 
25 
31 
36 
42 
44 
53 
69 
63 
70 
31 
39 
46 
53 
76 
74 
80 
86 
94 
106 

50 
61 
69 
81 
92 
125 
110 
124 
132 

Table Al: Continued 

In the above table, the first column titled G stands for the number of global gaussians and 

the second column named L shows the number of local gaussians. For comparison 

purposes we should mention that MSE target for stopping iterations was 1000* 10^. 

224 



Biography of the Author 

Giorgos Mountrakis is a Ph.D. candidate in the Department of Spatial Information 

Science and Engineering and a research assistant for the National Center for Geographic 

Information and Analysis at the University of Maine. He holds a Dipl.Eng. degree from 

the National Technical Univ. of Athens, Greece in 1998 and a M.S. degree from the 

University of Maine in 2000. In the past he has worked on spatiotemporal GIS modeling 

and image processing applications. His current focus includes applications of machine 

learning and artificial intelligence in the GIS field. Mr. Mountrakis has published papers 

in journals, books and refereed conferences. More information about him is available at 

www.aboutgis.com. Giorgos is a candidate for the Doctor of Philosophy degree in Spatial 

Information Science and Engineering from The University of Maine in December, 2004. 

225 

http://www.aboutgis.com

	The University of Maine
	DigitalCommons@UMaine
	12-2004

	Context-Specific Preference Learning of One Dimensional Quantitative Geospatial Attributes Using a Neuro-Fuzzy Approach
	Georgios Mountrakis
	Recommended Citation


	tmp.1326823302.pdf.WQ8Ha

