
The University of Maine
DigitalCommons@UMaine

Electronic Theses and Dissertations Fogler Library

5-2006

Object Tracking in Distributed Video Networks
Using Multi-Dimentional Signatures
Sabeshan Srinivasan

Follow this and additional works at: http://digitalcommons.library.umaine.edu/etd

Part of the Computer Sciences Commons

This Open-Access Thesis is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Electronic
Theses and Dissertations by an authorized administrator of DigitalCommons@UMaine.

Recommended Citation
Srinivasan, Sabeshan, "Object Tracking in Distributed Video Networks Using Multi-Dimentional Signatures" (2006). Electronic Theses
and Dissertations. 564.
http://digitalcommons.library.umaine.edu/etd/564

http://digitalcommons.library.umaine.edu?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F564&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.library.umaine.edu/etd?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F564&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.library.umaine.edu/fogler?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F564&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.library.umaine.edu/etd?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F564&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F564&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.library.umaine.edu/etd/564?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F564&utm_medium=PDF&utm_campaign=PDFCoverPages

OBJECT TRACKING IN DISTRIBUTED VIDEO NETWORKS USING

MULTI-DIMENSIONAL SIGNATURES

BY

Sabeshan Srinivasan

B.E. College of Engineering, Guindy,

Anna University, 2003

A THESIS

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

(in Spatial Information Science and Engineering)

The Graduate School

The University of Maine

May, 2006

Advisory Committee:

Anthony Stefanidis, Assistant Professor of Spatial Information Science and

Engineering, Advisor

Peggy Agouris, Associate Professor of Spatial Information Science and Engineering

Silvia Nittel, Assistant Professor of Spatial Information Science and Engineering

OBJECT TRACKING IN DISTRIBUTED VIDEO NETWORKS USING

MULTI-DIMENSIONAL SIGNATURES

By Sabeshan Srinivasan

Thesis Advisor: Dr. Anthony Stefanidis

An Abstract of the Thesis Presented
in Partial Fulfillment of the Requirements for the

Degree of Master of Science
(in Spatial Information Science and Engineering)

May, 2006

From being an expensive toy in the hands of governmental agencies, computers have

evolved a long way from the huge vacuum tube-based machines to today's small but

more than thousand times powerful personal computers. Computers have long been

investigated as the foundation for an artificial vision system. The computer vision

discipline has seen a rapid development over the past few decades from rudimentary

motion detection systems to complex modekbased object motion analyzing algorithms.

Our work is one such improvement over previous algorithms developed for the purpose

of object motion analysis in video feeds.

Our work is based on the principle of multi-dimensional object signatures. Object

signatures are constructed from individual attributes extracted through video processing.

While past work has proceeded on similar lines, the lack of a comprehensive object

definition model severely restricts the application of such algorithms to controlled

situations. In conditions with varying external factors, such algorithms perform less

efficiently due to inherent assumptions of constancy of attribute values. Our approach

assumes a variable environment where the attribute values recorded of an object are

deemed prone to variability. The variations in the accuracy in object attribute values has

been addressed by incorporating weights for each attribute that vary according to local

conditions at a sensor location. This ensures that attribute values with higher accuracy

can be accorded more credibility in the object matching process. Variations in attribute

values (such as surface color of the object) were also addressed by means of applying

error corrections such as shadow elimination from the detected object profile.

Experiments were conducted to verify our hypothesis. The results established the validity

of our approach as higher matching accuracy was obtained with our multi-dimensional

approach than with a single-attribute based comparison.

ACKNOWLEDGEMENTS

I would like to express my sincere thanks and gratitude to Dr. Anthony Stefanidis, for his

constant guidance, support, encouragement, and patience, and to the other members of

my thesis committee, Dr. Peggy Agouris and Dr. Silvia Nittel, for enriching this thesis

with their ideas and suggestions. I would also like to thank Dr. Stefanidis and the

Graduate School for supporting my studies at the University of Maine all throughout and

making my dream of higher studies come true.

I would like to thank the research team of Pete Doucette, Vijay Venkataraman,

and others, whose excellent foundational work on motion detection and tracking forms

part of my research. I would like to thank all my colleagues in the SIE department,

especially, Vijay Venkataraman, Charalambos (Harris) Georgiadis, Caixia Wang,

Hariharan Gowrisankar, and Farhan Faisal for their frequent suggestions and ideas.

Harris and Vijay were especially helpful in capturing video datasets for the experiments I

ran. I would also like b thank the sponsors of this research, the National Science

Foundation and the National GeospatiaLIntelligence Agency for supporting us so far.

I am very grateful to have a loving and supportive family who have always been

with me in all my endeavors and encouraged me to achieve more and more. But for the

numerous sacrifices made by my parents, I would not be where I am. I thank all my

friends in Maine for making my stay here a memorable and enjoyable one. Finally, I want

to thank God for providing me this opportunity. Not many in the world are blessed

enough to pursue their dreams successfully.

TABLE OF CONTENTS

... ACKNOWLEDGMENTS ii

. .
LIST OF TABLES ... v11

... .. LIST OF FIGURES vi~i

LIST OF EQUATIONS .. x

Chapter

. 1 INTRODUCTION .. 1

.. . 1 1 . Background of thesis 2

... 1.2. Statement of objective 3

.. 1.3. Scope of research 4

... 1.4. Intended audience 5

... 1.5. Organization of thesis 5

.. 2 . LITERATURE REVIEW 7

.. 2.1. Motion detection and estimation methods 8

.. 2.1 . 1. Optical flow methods 8

... 2.1.2. Pel-recursive methods 11

... 2.1.3. Bayesian methods 13

... 2.2. Synopsis 16

.. . 3 OUTLINE OF APPROACH 18

.. 3.1. Video sensor networks 18

... 3.2. Analysis of a single video feed 23

... 3.3. Analysis in a multiple-sensor scenario 26

.. 4 . OBJECT TRACKING IN SINGLE FEED 30

... 4.1. Static feeds 30

.. 4.1.1. Pre-processing of data 31

................................... 4.1.1.1. Change spatial resolution and frame rate 32

................. 4.1.1.2. Projection of data based on scale factor, view angle etc 33

.. 4.1.2. Preliminary noise removal 33

........................... 4.1.3. Motion detection by means of fiame differencing 34

... 4.2.4. Shadow removal 38

............................... 4.1.5. Morphological processing of differenced data 41

.. 4.1.6. Object labeling and parameter definition 42

.. 4.1.6.1 . Network parameters 43

... 4.1.6.2. Object spectral attributes 44

.. 4.1.6.3. Object spatial attributes 48

.. 4.1.6.4. Object behavioral attributes 49

.. 4.1.7. Intra- feed object linking 50

.. 4.2. Mobile feeds 50

... 4.2.1. Image warping 52

... 4.2.2. Mosaicking 52

............................... 5 . OBJECT TRACKING IN A NETWORK OF SENSORS 54

.. 5.1. Statement of problem 54

... 5.2. Proposed approach 54

5.3. Object linking ... 56

.. 5.3.1. Intra- feed linking 57

.. 5.3.2. Multi-feed linking 58

5.4. Object indexing ... 58

5.5. Object Clustering .. 59

...................................... 5.5.1. Clustering based on a dominant attribute 61

........................ 5.5.2. Clustering based on membershq to multiple classes 62

.. 5.6. Object comparison 62

... 5.6.1. Comparison of object lists 63

........................... . 5.6.1.1. Optimal comparison vs pairwise comparison 63

............... . 5.6.1.2. Domain-specific comparison vs weighted comparison 64

.. 5.6.2. Hybrid comparison method 65

.. 5.6.3. Trajectory linking 66

.. 6 . EXPERIMENTS 68

.. 6.1. Experiments with data from a single sensor 68

... 6.1.1. Data collection 68

.. 6.1.2. Processing 69

... 6.1.3. Results 70

.. 6.2. Experiments with synthetic data 73

... 6.2.1. Data generation 73

... 6.2.2. Clustering 74

... 6.2.3. Results 75

... 6.3. Experiments with data from multiple sensors 77

... 6.3.1. Data collection 77

6.3.2. Processing .. 79

... 6.3.3. Results 86

.. 7 . CONCLUSIONS AND FUTURE WORK 88

... 7.1. Summary 88

.. 7.1.1. Algorithms 88

.. 7.1.2. Evaluation of the algorithms 90

.. 7.2. Conclusions 91

... 7.3. Deployment scenarios 93

.. 7.4. Future work 95

.. BIBLIOGRAPHY 97

.. BIOGRAPHY OF THE AUTHOR 106

LIST OF TABLES

Table 5.1 : Listing of the object attributes used for building composite

object signature .. 55

... Table 6.1 : Parameter values for scenes 1 and 2 71

Table 6.2. Reference dataset seed values in three domains ... 73

.. Table 6.3. Composition of synthesized datasets 74

Table 6.4. Tabulation of object matches in all dataset pairs ... 76

.. Table 6.5. Parameters used for object detection and tracking 79

Table 6.6. A sample object from the first dataset ... 82

Table 6.7: Dataset-pairs marked by "-" are redundant and are not

involved in the comparison process .. 83

Table 6.8: (a) Match results obtained from color-based comparison

(b) Match results obtained from multkcomponent signature-based

comparison ... 85

Table 6.9. Object matches across eight datasets .. 86

LIST OF FIGURES

Figure 3.1. Significance of view angle of sensor ... 19

.................................. Figure 3.2. Typical video sensor network (courtesy Virginia DOT) 21

Figure 3.3. Analysis of a single video feed ... 24

Figure 3.4. Analysis of multiple video feeds ... 28

...................... Figure 4.1 : Flow diagram describing the object motion analysis algorithm 31

..... Figure 4.2. (a) original noisy frame; (b) noiseless output after applying median filter 34

Figure 4.3: (a) Original frame; vehicle moving in southwesterly direction
. .

(b) Absolute AFD output (c) Positive AFD output

(d) Negative AFD output ... 36

.................................. Figure 4.4. Flow diagram describing frame differencing algorithm 37

Figure 4.5: (a) original video containing a few moving objects

(red truck and two people); (b) raw AFD output of the original

frame (black border artificially added to delimit AFD frame) 38

... Figure 4.6. Object before and after shadow elimination 41

Figure 4.7. Surface color of an object depicted in 3-D RGB colorspace 46

Figure 4.8: Spectral triangles formed by two different surface colors of

the same object ... 47

Figure 4.9: Frames extracted from a video feed. captured by a mobile

sensor. which shows correspondence in background features 53

. .
Figure 6.1 : View~ng field of the sensor ... 69

Figure 6.2: Motion vectors: Low- (a) and High- (b) resolutions 71

Figure 6.3: Results of the comparison (a,b,c) separately and (d) in all

domains together .. 75

Figure 6.4: Map of the University of Maine campus showing the location

of sensors 1 - 8 78

Figure 6.5: (a) Frame from the original video, (b) Scatter plot of object centroids 80

Figure 6.6: (top row) Frames from videos taken at sensors 3,5,7

(bottom row) Trajectory plot for all objects in each video 81

Figure 6.7: Clustering results for the "Area" attribute of the first dataset 82

Figure 7.1 : Possible configuration of a traffic-monitoring system based on

our approach ... 93

LIST OF EQUATIONS

Equation 4.1 ... 35

Equation 4.2 ... 35

Equation 4.3 ... 36

Equation 4.4 .. 36

Equation 4.5 ... 36

Equation 4.6 ... 45

Equation 4.7 ... 45

Equation 4.8 ... 45

Equation 4.9 ... 45

... Equation 4.10 45

... Equation 4.1 1 45

... Equation 4.12 45

Equation 4.13 ... 48

Equation 6.1 ... 84

... Equation 6.1 a 84

... Equation 6.2 84

Equation 6.3 ... 84

... Equation 6.4a 84

Equation 6.4b ... 84

Equation 6.5 ... 84

Chapter 1

INTRODUCTION

The use of sensor networks is revolutionizing the way that geospatial information is

collected and analyzed. In terms of image analysis, traditional satellite- and aerial- based

static analysis is now complemented by the use of distributed video sensors to capture

and monitor dynamic events (like the movements of cars and people). This evolution

towards geosensor networks (Stefanidis and Nittel, 2004) is bringing forward interesting

research challenges, mainly relating to information integration and analysis.

Object detection and tracking techniques from motion imagery have improved

significantly from being exotic automation techniques and are employed in varied fields

like surveillance, human motion analysis, traffic monitoring (Chachich et al., 1996) and

human-machine interfaces (Khan and Shah, 2003), security, missile tracking, and rescue

operations (Eltoukhy and Salama, 2002). Hardware based object tracking systems enable

real-time processing of captured video data. Most approaches to object tracking across a

multisensor video network involve comparison of video feeds based one or a few of

observed physical attributes of objects. While this is feasible for stationary camera

networks and controlled environments, where external errors such as those caused by

illumination can be modeled and accounted for in subsequent analyses of data generated

from these networks, it is difficult to establish the same for mobile camera networks, such

as a battlefield, where network location and topology changes unpredictably. In such

scenarios, it would be unrealistic and impracticable to expect a simple error model to

work. Worse, it is not possible to establish a noise model as the ambient changes are

often sudden and unexpected.

This thesis addresses object tracking in video networks distributed in broader

urban environments, and introduces novel modeling and comparison approaches to

support persistent object tracking within single and across multiple sensor feeds.

1.1. Background of Thesis

Computer vision systems have existed for many years in several applications. The most

fundamental application of an automatic motion detector would of course be a passive

device like a detector based on an infrared beam. This worked on the basis of signal loss

due to interruption by a moving object in the line of sight of the sensor. Automated

detectors have evolved from such a rudimentary past to advanced robotic cameras that

consistently track the motion of an object in their field-of-view. Modern object tracking

systems comprise diverse state-of-the-art sensors like high-resolution video cameras,

onboard GPS units, and mechanized units for panning the camera in response to object

motion in its field of view.

Most common applications for motion tracking are localized surveillance and

security assessment systems in industrial/commerciaI facilities. Numerous commercial

establishments like shopping malls or security-sensitive locations like oil refineries

employ motion monitoring systems that can detect unauthorized intrusion into the

premises and issue an alert once prolonged suspicious activity is detected. In addition to

such localized applications we have applications like traffic monitoring systems that are

network-based, with sensors scattered across a broad geographic area. These applications

are more challenging in that their processing needs are much greater than static

applications. Robust models of object properties would help in the establishment of a

reliable and consistent object labeling mechanism, and the tracking of these objects. Such

applications also require that individual sensors are in constant correspondence with one

another such that an ad hoc area-of-interest can be established where objects are tracked

in greater detail or being followed for studying their activity.

Far more complicated are systems that involve a set of mobile sensors monitoring

a variable region of interest. In this case, the sensors move in response to the motion of

objects in their field of view. Further complication is introduced by the fact that the

configuration of the network changes frequently, so for example, sensor SII which was to

the right of sensor Slz might move to its left in order to continue tracking an object in its

view. Besides, sensors in such systems need to co-operate with one another such that the

network always keeps track of a set of objects the user is interested in. It is much more

difficult to process the video data generated by these systems because of the background

motion in the video caused by sensor movement. A typical application is aerial tracking

of sensitive locations by means of unmanned aerial vehicles (UAV).

1.2. Statement of objective

The aim of this research and, subsequently, this thesis is to establish a method to

enable automatic labeling and linking of objects appearing in video data recorded by

distributed non-overlapping video sensors in a geospatial network. The linking of objects

will ultimately be useful in the description of the motion path of any object as it moved

across the network covered by the video sensors. In addition to defining object

trajectories, other usehl information about detected objects such as their physical

attributes like mean surface color, shape profile and spatio-temporal behavior can be

obtained.

In this thesis, we hypothesize that by extending the currently-used limited

physical attributes of an object into composite object signatures, we improve our ability

to track and link objects in distributed non-overlapping video networks. More specifically,

we propose the use of composite object signatures comprising geometric (e.g. size),

radiometric (e.g. average surface color), and behavioral properties (e.g. spatiotemporal

patterns of movement) of this object. Such attributes are typically considered to be

stochastic values, thus we consider accuracy measures assigned to them, to express their

participation in dissolving object matching ambiguities. In the content of this thesis, the

term object matching refers to the identification of the same object in two non-

overlapping video feeds, at two distinct instances. This is a critical issue for sensor

network, monitoring, and surveillance applications, as it allows us to collect robust and

persistent data rather than instantaneous glimpses of a scene.

1.3. Scope of research

In this research, we address the issue of object tracking in a geosensor network of

distributed video sensors. As mentioned before, past approaches to linking objects were

often based on a single (Saltenis and Jensen, 2002) or limited number of attributes

(Eltoukhy and Salama, 2002; Chachich et al, 1996). In (Venkataraman et al, 2004), the

authors considered an object indexing and retrieval scheme based on color alone. Another

approach deals with indexing objects based on their motion characteristics (Saltenis and

Jensen, 2002). An interesting approach based on Hidden Markov descriptions of

positions and traffic flow was presented in (Ch. Jaynes, 2004). However, we propose

using several object attributes together for the purpose of object matching in different

video streams. Multi-component signatures, comprising geometric, radiometric, and

spatio-temporal properties, are defined for each object detected in a video. These

signatures are used to establish object correspondences and link trajectory segments

across different non-overlapping feeds.

1.4. Intended Audience

This thesis primarily addresses an audience that is related to the domain of geospatial

networks, especially one involved in video sensors. This thesis may also be of interest to

researchers and scientists involved in the implementation of such sensor networks for

applications such as surveillance and monitoring. Image processing-based industries may

find the object detection algorithm useful for developing real-time object tracking

software systems. The department of homeland security is also a potential stakeholder

who could put this research into effective use for monitoring vehicles and troops in

locations where manual surveillance is not possible or risky.

1.5. Organization of Thesis

Chapter 2 describes the various approaches developed by other researchers for addressing

the issue of motion detection and object-linking. Some motion detection models like the

pixel motion, Markov and arithmetic are discussed. A basic outline of the object motion

analysis system described later in the thesis is also discussed. This system is based on the

principle of multi-component object signature, discussed in later chapters. Further

discussion is on sensor as well as network parameters and also upon the environment in

which the system is designed to operate, in terms of internal network configuration as

well the distribution of motion sensors across a geospatial network.

In Chapter 3, the problem of object tracking is explained in detail in terms of how

it is tackled in this research. The core concept of multi-component object signatures is

discussed later in the chapter. The problems involved in processing datasets containing

additional motion induced by a moving sensor are also discussed in the chapter.

Chapter 4 deals with the important concept of indexing objects based on their

parametric signatures. Object indexing is crucial in linking objects correctly across

different video feeds. Two possible clustering methods are discussed. We describe the

method for linking objects in different video sets by means of various comparison

techniques. The chapter also discusses the trajectory linking process which takes place

once objects are linked.

Chapter 5 discusses the results of experiments conducted on a few real-world

video datasets for both static and mobile sensors. The experimental datasets contain a

variety of moving objects of different profiles.

Chapter 6 describes the findings of this research, presents conclusions and sets the

tone for hture work based on this thesis by suggesting possible directions.

Chapter 2

LITERATURE REVIEW

Spatial data has crossed the threshold from being just an exotic form of data into an

everyday necessity in today's networked world. Many applications like facilities

management, manufacturing and agriculture make use of some form of spatial data in

managing their resources. Already mobile GPS units have made their appearance in the

public for aiding activities like hiking, mountaineering, orienteering etc. Spatial data is

touching the everyday life of the common as never before. Experts in the domain (Culler

et al, 2004) predict the large-scale deployment of dense sensor networks that sense all

kinds of phenomena from water quality to industrial equipment health monitoring.

Experimental networks already exist for applications such as mapping glacial

movement (Martinez et al, 2004), pattern learning (Stauffer and Grimson, 2000), and

radiation detection in an urban environment (Brennan et al, 2004). It is not difficult to

imagine that in the near future such spatial networks will have a ubiquitous appeal in

most domains. One such domain involves aggregation of data collected from a multitude

of video sensors over a network comprising highly mobile targets. In order to make

effective use of such networks, theoretical models must be developed which will enable

consistent and accurate representations of actual objects being sensed. Our endeavor is a

small step in representing data from such a network in a generic manner.

2.1. Motion detection and estimation methods

Motion detection and estimation as a computer vision problem has been investigated

since the early 1970s. The earliest techniques were based on the concept of optical flow

in video. They worked by relating the image intensity differences at points of motion to

actual geometric motion. The majority of motion estimation techniques in vogue today

are based upon the original work on the determination of optical flow (Horn and Schunck,

1981) in one way or the other. Most current techniques employ some form of error-

minimization/optimization to the classical optical flow equation. Based on the

optimization technique employed, motion estimation methods are classified broadly into

pure optical flow-based methods, pel-recursive or Bayesian methods.

2.1.1. Optical flow methods

Optical flow is a means for representing object motion, as recorded in a video stream, by

correlating the brightness differences, caused by object motion in the video frames, to the

motion of the actual object. Optical flow is used in the detection of motion as well as to

determine the apparent object velocity in an image sequence. Most optical flow-based

methods detect and estimate object motion by approximating the optical flow field using

spatio-temporal image intensity gradient measurements. Object profiles are then

constructed from the detected motion pixels using templates, region-growing or motion-

constraint-based techniques.

An optical flow-based motion detection and estimation technique is presented in

(Shin et al., 2005). Points in an image detected as possessing motion are constructed into

objects based on feature correspondences using principal component analysis. Objects are

assumed to be deformable and hence feature matches are based on shape changes to the

object being tracked. Salient features of an object are defined as those that are not

generally misclassified. The main objective of (Walker et al., 1998) is to determine the

probability of classification of features in a flow field and those with the highest scores

are less likely to be misclassified by a motion segmenting algorithm. Knowing the

probability of misclassification of an object feature could aid its reclassification in case of

an indeterminate match. In (Amer, 2005), an object detection and classification algorithm

is presented. The algorithm works based on a two-step feature extraction from the flow

field and subsequently classifying the spatial and temporal attributes of objects.

In (Zelek, 2002), the author discusses a technique for computing dense optical

flow using posterior probabilities. A simulator is defined for a set of points perceived to

be in motion and its hture values are based on current motion estimates. By comparing

actual flow vectors with the predicted values, the predictor hnction is refined hrther.

The lack of suitable ground-truth mechanisms for motion data is addressed in (Galvin et

al., 1998). The authors propose generation of complex scenes using ray tracing programs

in order to verify the accuracy and efficiency of optical flow algorithms. A hierarchical

approach to motion estimation is presented in (Bergen et al., 1992). The process consists

of establishing a global model to constrain the structure of motion in a sequence of

images, a local model to define the motion characteristics of objects and a coarse-fine

motion refinement operator that works on a pyramid-collection of datasets. The technique

assumes a rigid body model for objects detected in the video sequence. Often, optical

flow algorithms fail to detect motion in certain limiting situations like analyzing a

localized region where optical flow is not very apparent. This issue is addressed in

(Bergen et al., 1990) where a solution is proposed in the form of a coarse-fine tracker in

order to detect motion in special configurations.

The problem of estimating camera motion is approached in (Shakernia et al., 2002)

from several panoramic views by means of analyzing optical flow. With the knowledge

of the camera's motion, the motion of objects in its field of view can be determined

accurately. The advantages of omnidirectional structure-from-motion (SFM), derived

using optical flow, over conventional SFM are discussed in (Cheng and Hebert, 2000).

The authors argue that the larger field of view of the omnidirectional SFM is more

advantageous in certain applications. (Murray and Basu, 1994) discusses the issues

related to tracking motion using an active camera. Their approach involves estimating

temporal derivatives by means of image subtraction. In (Kate et al., 2004), a motion

detection and estimation technique for detecting vehicles using a mobile camera is

described. The approach consists of detecting vehicles differently based on their distance.

This follows the principle that motion is harder to detect as objects come closer to a

camera's focus of contraction.

A new structure-from-motion algorithm based on optical flow is described in

(Ohta and Kanatani, 1995) which works by refining the linearized solution using a

statistically optimized method. (Camus and Biilthoff, 1995) seeks to optimize a classical

optic flow-based motion estimation algorithm by converting a quadratic objective

function into a linear one, with acceptable levels of accuracy. An algorithm for

computing optical flow in a differential framework is discussed in (Weber and Malik,

1994). Each optical flow vector computed during execution of the algorithm is assigned a

reliability value that can be used for motion segmentation purposes. In (Weber and Malik,

1997), the approach is based on the fact that each distinct object in a video has a unique

epipolar constraint associated with its motion. This property is used in segmentation of

motion rather than detect discontinuities in depth. By exploiting this property in

conjunction with a dense optical flow field, detailed motion estimates can be made. This

technique offers immunity from the errors caused by mistaking occlusions for depth

discontinuities.

In (Thompson, 1998), an algorithm is detailed on estimating optical flow

accurately in the presence of depth discontinuities. While most other flow estimation

methods suffer from the error caused by boundary ambiguities, the algorithm presented

deals with line processes in order to effectively derive optical flow in such a situation. A

technique for estimating structure from motion in the case of an uncalibrated camera is

presented in (Brooks et al., 1998) from instantaneous optical flow. The calibration data is

dependent on the differential epipolar equation for uncalibrated optical flow. The

equation works by relating optical flow to the internal parameters of the camera. In

(Chang et al., 1997), the authors describe a Bayesian framework that combines optical

flow estimation and motion segmentation. The technique produces a piecewise-smooth

motion vector field, which results in simpler and more efficient algorithms.

2.1.2. Pel-recursive methods

Pel-recursive methods work on a predictor-corrector approach. The motion estimated at

each pixel is updated by a correction term which is the motion estimate obtained Gom the

previous frame. The correction term is applied iteratively over each pixel in a frame

recursively. A smoothness constraint is introduced in order to reduce the effects of

changing illumination in causing errors in the estimated motion field by minimizing the

displaced fiame difference.

Instead of computing optical flow directly, the authors in (Pless et al., 2000)

present a solution for estimating background motion by finding out the spatiotemporal

image intensity gradient. This ensures that independently moving small objects are

detected correctly. Motion detection and estimation is performed using spatiotemporal

gradients in (Cohen and Medioni, 1998). Object matching and subsequently, trajectory

building is achieved by means of object templates formed using a dynamic temporal

coherence of the object over a number of fiames. A pure shape-based approach is used in

(Lipton et al., 1998) in order to detect objects and match them to templates. Moving

objects are classified into one of a few groups based on their similarity to a group.

In (Torr, 1996; Torr et al., 2001; Jepson et al., 2002), an improved Estimation-

Maximization technique is presented where objects are treated as closed shapes with

uniform motion properties within the boundary. This results in a constant likelihood

measure for motion estimation for all pixels within an object's boundary. The authors in

(Estrela et al., 2004) describe a technique called spatial adaptation for improving

accuracy of motion estimation using an Expectation-Maximization technique. The

fundamental idea is to make use of templates or "masks" to refine object boundaries in

non-homogeneous image frames. (Soatto et al., 1993) presents a recursive method of

determining the structure of a scene (including any moving objects) and the camera

motion parameters using an Extended Kalman Filter (EKF). An EKF is a modification of

a basic Kalman filter so that it can be applied to non-linear data. In (Irani, 1999), flow-

fields in a video are modeled as a low-dimensional subspace. Instead of imposing spatial

or temporal smoothness constraints, global model constraints are used so that lack of

sufficient local information does not introduce noise in the estimates. A recursive method

for estimation of ego-motion and camera calibration is presented in (Soatto and Perona,

1994). Knowing camera calibration parameters, object motion in a video can be estimated

accurately.

In (Azarbayejani and Pentland, 1995), the authors present an EKF-based

technique for extracting structure from a sequence of images. The technique works by

modeling motion and structural changes of objects recursively until convergence is

reached within a certain number of image frames. A simplified version of the EKF

technique is utilized in (Alon and Sclaroff, 2000) where a planarity constraint is imposed

on the points in the detected object. Three techniques (batch processing, recursive and

bootstrap) for motion estimation using EKF are evaluated in (Hanmandlu et a]., 2003). A

new EKF-based motion estimation technique is presented in (Tziritas, 1992) that uses a

mean square displaced frame difference for better results. A multi-frame approach is

followed in (Oliensis, 1997) for extracting structure from object motion in a video. The

technique requires some camera calibration in order to generate estimates accurately .

Structure and motion parameters of a scene are determined using the Levenberg-

Marquardt algorithm in (Szeliski and Kang, 1993) for its faster convergence.

2.1.3. Bayesian methods

Bayesian methods use probabilistic methods to estimate the displacement field as

opposed to pel-recursive methods which use gradient-based techniques. Most Bayesian

motion estimation methods use posterior probability to determine the motion differences

between subsequent frames of a video.

In (Zhou and Tao, 2003), the authors propose a motion modeling system based on

the concept of maximum a posteriori (M A P) estimation of a Hidden Markov Model

(HMM). Foreground and background layers (Wang and Adelson, 1993) are distinguished

based on whether or not there is consistent motion detected in them. All background

layers are modeled as multivariate Gaussian distributions. The MAP probability is

defined based on the prior probabilities of layer order, shapes, motion and appearance

and the associated likelihood function. Object state is estimated by means of a multi-step

process. The approach presented in the paper presents a means to detect object motion

even in the presence of foreground occlusions. A similar approach is followed in

(Vasconcelos and Lippman, 1997; MacCormick and Blake, 1998; Tao et al., 2002) where

a Gaussian segmentation prior is used as a predictor for estimating object centroids.

Instead of processing video data in groups of two or more, the main focus in the paper is

on recursively estimating object motion. In (Black and Fleet, 2000), object motion is

modeled separately as smooth translational motion (in areas where there is consistent

motion) and motion boundaries (in areas where motion properties vary for adjacent pixels;

e.g. when there is an occlusion).

The problem of motion estimation is formulated using Bayesian inference in

(Cremers and Yuille, 2003; Cremers and Soatto, 2003; Cremers, 2003). Noise in motion

estimates are modeled as additive Gaussian noise. Motion is estimated as a piecewise

continuous fbnction over time. A moving object could thus be represented as a collection

of spatio-temporal regions each of which possesses a consistent motion. Object motion

could also be estimated at the pixel-level, as in (Strehl and Aggarwal, 2000). Instead of

considering regions with consistent motion, object motion a video frame is segmented by

estimating the motion of individual pixels. In (Iannizzotto and Vita, 2002), the authors

propose a motion detection system based on a closed-loop system comprising a predictor

and a controller that detect object profiles in a video as active contours. Object motion is

estimated by f ~ s t predicting an initial object model for the current frame and then

recursively modifying it based on processed information. Object shapes are modeled as

radially varying 2D closed-loops which change shape depending on object motion. A

similar approach is presented in (Peterfreund, 1999), where a Kalman filter is applied to a

spatio-velocity active contour (or velocity snake) in order to be able to detect objects in

the presence of occlusions and image clutter. The technique applies well to real-time

resolution of object motion from the background layer. A maximum likelihood

classification algorithm is used in (Hampapur et al., 2005) to separate moving objects

from their background and to classify them. By using a multiscale representation of target

objects, multiple views of the same object can be used to monitor its movement in a

particular spatial network.

In (Comaniciu et al., 2000), the authors describe a real-time method for tracking

non-rigid objects in video recorded by a moving camera. The method is based on mean

shift analysis of the color distribution of the target object. Based on a distance-based

weighted model, the location and extent of the object in future fiames can be outlined. An

approach for detecting and tracking objects that change size and shape over time using

the mean shift technique is presented in (Collins, 2003). The method incorporates the

principles of Lindeberg's theory of blob-scale detection for successfully tracking such

objects. (Nummiaro et al., 2002) applies a particle filter based on the mean-shift

algorithm to the color distribution of the target object in order to establish a target model

in order to track the object in subsequent frames. A feedback-loop-based system is

described in (Comaniciu and Ramesh, 2000) where a combination of a mean-shift

algorithm with a Kalman filter is used to predict the location of the best possible match of

an object in the future frames of a video. The mean shift operator serves for computation

of the color distribution metric of the target object and prediction of future distributions.

Based on the output of the mean shift algorithm, the Kalman filter tries to predict the

spatial location of the next instance of the target object. The predicted value is then used

to validate the predicted color distribution of hture instances.

2.2. Synopsis

Optical flow methods in general yield a very good estimation of motion in an image

sequence by using pixel brightness changes to indirectly measure actual motion. Optical

flow, however, does not perform very well in such situations where the ambient

illumination varies significantly in a short period of time, e.g., a moving cloud could

cause sudden illumination changes in a scene. Our approach is an optical flow-based

method as it estimates pixel motion directly from image intensity changes. However, in

order to account for illumination changes, we incorporate spectral angles instead of raw

color values. Bayesian methods often tend to be computationally expensive and are

especially unsuitable for real-time applications. The same drawback is true for pel-

recursive systems as well. In our work, we only involve simple subtraction at the pixel

level in order to estimate the frame differences. For most real-world applications, the

temporal relevance of the results of a motion estimation system is important. Hence it is

necessary to avoid complex non-linear computation schemes as they are iterated over

every frame of a video stream. For an application that demands timely results, it would

thus be advisable to keep computational complexity at a minimum at the frame level

without compromising on accuracy.

Chapter 3

OUTLINE OF APPROACH

3.1. Video sensor networks

A video sensor network is defined as a spatial network of video sensors. The location of

the sensors could be on any surface - land, air, water or a mix of all three. Terrestrial

networks usually consist of static cameras (video sensors) placed at well-known locations.

Most terrestrial applications involve tracking of objects in a closed environment, like an

industrial complex, military installation or museum building. The main objective in such

applications is to have an "observation" mechanism for monitoring the movement of

individuals within the environment. Depending on the rules set for the system,

individuals could be identified as authorized or unauthorized. Their movements could be

compared to established motion patterns in a database connected to the monitoring

system and if there is any deviation, alerts could be issued. However, not all terrestrial

applications need be static sensor-based. Some traffic applications may require the use of

sensors on moving platforms (like trucks) to monitor the traffic situation in an area or to

analyze traffic patterns. Most aerial applications belong to the domain of homeland

security and defense, with the sensors mounted on Unmanned Aerial Vehicles (UAVs) or

other similar vehicles.

In order to extract useful information out of a video network, often it is necessary to

know sensor parameters. In most cases, all that is required is the camera coordinates and

view angle. If it is necessary to transform the recorded data to a uniform scale for data

recorded on all sensors, the cameras could be calibrated by first recording a set of known

points before starting to gather data. When camera coordinates are known, it could help

in accurately identifying absolute (with respect to network) coordinates of moving

objects in the network. Using that information, objects could be more reliably matched

across different sensors by placing a check on spatial continuity of observed object

locations. The view angle (with respect to a known reference line) of the sensor would

also be useful in pinpointing object locations in the network.

Figure 3.1 : Significance of view angle of sensor

With just sensor coordinates at hand, it is not possible to locate objects with reference to

network topography. In the Fig. 3.1, let the reference line be taken as East (or to the right

of the diagram). If the actual sensor view angles are not known, it is possible to record

the objects in the two views as moving opposite directions, even though the directions

may be constant in both cases.

Another important parameter is the time at which the data is recorded by the sensor.

While it may not strictly be called a sensor parameter, its significance is nevertheless no

less. For this information to be useful, all sensors need to be synchronized to the same

time. Time-stamped data would be very useful in not only aiding matching objects across

sensors but also in building trajectories of moving objects across the network. It is

important to know the number of sensors that will be used in constructing the sensor

network, as it determines the distribution of the sensors over the network. Further, it

might also be necessary to know the spatial and spectral resolutions of each video sensor

so that the more precise sensors could be placed in high-activity locations.

In most video sensor network applications, it would be desirable to know the topography

of the area where the video network will be setup. This not only is useful in determining

the placement of sensors but also in validating the construction of consolidated object

trajectories. Depending on the application, sensor placement may differ. In the following

figure, a typical video sensor network can be seen. The terrain is represented by the map

(in the background) consisting of roads and the location of sensors is indicated by the red

dots at various road-junctions on the map.

Figure 3.2: Typical video sensor network (courtesy Virginia DOT)

Video sensor networks can be configured in many different ways. Some applications may

require a regular placement of sensors in a grid pattern to identifj activity in blocks of

areas. An example would be a sensitive military installation where it is necessary to

monitor the entire complex for any unauthorized intrusion. Tt would not just be imprudent

but also infeasible to expect a single or a few sensors to monitor a large closed area with

reasonable accuracy. Tn such cases, the target area is divided up into a grid composed of

regular cells of a fixed size (depending on the needs of the application) and a sensor in

every cell. Cells may be defined such that sensors in adjacent cells may have overlapping

views. This ensures a continuous yet consistent view of the area being monitored. Tn

other situations, it might be necessary to install sensors in a clustered fashion. This is true

of many traffic monitoring applications. In a city, more sensors may be clustered around

busy intersections and places where there is a lot of vehicle movement. In residential

zones and suburban centers, fewer sensors may be placed to optimize both cost as well as

volume of data generated by the network.

While video sensor networks present a wide range of opportunities to collect accurate and

temporally continuous information on dynamic phenomena like flowing traffic, the

inherent limitations must also be discussed. Videos recorded in outdoor environments are

always fraught with all sorts of errors. A source of error in the context of video sensor

networks is defined as any entity that either causes data to be recorded with less accuracy

than possible or causes extraneous errors in the data. A most frequently occurring source

is varying ambient illumination. The implication is that the same moving objects may

appear to possess a different surface color in one dataset than in others where they appear

too. Another reason for error would be unwanted background motion caused by wind.

Trees swaying in the wind could be detected as moving objects too and cause needless

system processing. Most errors and noise in recorded video can be removed by using a

variety of techniques. illumination errors could be corrected by normalizing object

surface colors while general background noise can be removed by a combination of

filters. Nevertheless, most errors can be prevented by placing sensors in locations where

there is little chance of ambient factors influencing the recording.

3.2. Analysis of a single video feed

Video processing and analysis is different from conventional image processing in many

ways. A video is not only a collection of frames, most of which are related to their

neighbors in varying amounts. Individual frames cannot be processed in isolation, as in

normal image processing. All processing has to be done keeping in mind the temporal

dimension of video. Hence, information derived from frames has to be correlated to

construct a temporal sequence of results. This aspect of video processing consumes a lot

of computer processing power and also main memory. Therefore, any image processing

operations on video have to be thought out carefully, if timely (if not real-time) results

are to be obtained. In our approach, we use a combination of frame differencing and

morphological image filtering to detect objects.

Human beings can detect moving objects intuitively, whether in real life or in recorded

video. The physical process of detection occurs in a sequence of events. The eye acts as a

video sensor and collects visual information. The information "seen" by the eye is

converted into electrical impulses and transmitted to the brain where it is compared to

existing neural patterns. Familiar objects such as cars are "stored" in the brain and are

recognizable. Even unidentified objects can be detected by the human brain purely on the

basis of difference in motion between the object and its background. Object detection

systems work in a similar fashion, even though their operation is rudimentary at its best,

when compared to the human visual cognition system. In our approach, we detect objects

in a video in a manner very similar to how we perceive motion naturally. The object

detection algorithm works with the technique of frame differencing as the central idea.

The general outline of our approach, as it applies to a limiting condition of a single sensor

in a geospatial network, is presented in Fig. 3.3 below. ARer video data is recorded by a

sensor, it is pre-processed in order to make it suitable for video analysis. Pre-processing

typically involves some form of format (frame dimensions, frame rate or color depth)

optimization or general noise elimination (the more specialized form of noise removal,

namely, shadow elimination is a later step). Once the raw video data is pre-processed,

frames in the video are differenced sequentially and any residue is defined as

representing object motion at the corresponding pixel locations. This is the preliminary

step in motion detection. After difference images are obtained, only motion from objects

must be extracted and the rest (possibly caused by ambient noise or unwanted objects

such as tree leaves or pedestrians) can be ignored.

Record video
data at sensor

Build objects by
morphological

processing

Pre-process
data ~

Frame
differencing

Link same
objects in all

Form object
trajectories

Figure 3.3: Analysis of a single video feed

In order to detect which residual pixels are due to object motion, we must define what

constitutes an acceptable object, in terms of its expected size. All residual pixels in

difference images are outlines of moving objects across two frames. This bit of

information is useful in constructing object outlines from these pixels. A pixel lying in a

certain spatial neighborhood of other pixels can be associated to the other pixels as a

member of the group of pixels which constitute a valid object. A region-growing filter is

applied on a difference image to connect all pixels that lie within a predefined

neighborhood and label them as an object. In this manner, all objects in a sequence of

difference frames are determined and labeled.

Determining objects is only the first step in object motion estimation because the objects

in each frame are independent of their instances in other frames. It is necessary to link all

objects to their instances so that a temporal sequence of objects can be obtained for the

video. In order to link two objects as the same, a more comprehensive means of

comparison must be established than the obvious size and shape-based comparison. This

is because it is possible to have more than one object with the same size and shape

characteristics. Hence, other object attributes must be defined that can effectively link an

object in one frame to itself in another. In our approach, we define multiple object

attributes in the three domains of spectral, spatial, and spatio-temporal properties.

Spectral properties are related to the object surface color. Raw, uncorrected values could

give a preliminary idea of the possible matches an object could have in subsequent

frames, while normalized values would allow a more accurate pinpointing of the matches.

Spatio-temporal properties are crucial only in multiple sensor comparisons. These

attributes can be determined from the original video data. Once objects are defined in

terms of multiple attributes, an index can be built over the three domains. Indexing is

very useful for creating object clusters in the multiple-feed situation. The idea of a multi-

component signature forms the core concept in our approach.

Once objects are linked across frames in a video, we need to construct trajectories based

on their centroid locations in each frame. The trajectories give the user an idea of the

object's motion across the view of the sensor. But its relevance is not limited to that alone;

object matching across different sensors can be performed more accurately by validating

object matches on the basis of their individual trajectories. Checks can be placed in terms

of the maximum distance an object is allowed to travel in between two frames. If the

distance between two consecutive links of an object's trajectory in a video feed is beyond

the set threshold, the link is severed and the resulting two trajectories are assumed to have

been caused by two spatially close objects. A minimum number of links per trajectory

can be defined in order to eliminate random noises which might escape preliminary

filtering.

3.3. Analysis in a multiple-sensor scenario

Processing a single video feed and extracting objects and constructing their trajectories in

space-time is comparatively simpler than it is for multiple feeds. With multiple feeds,

there are several factors that change which are usually assumed to be constant for a single

feed. While in a single feed the ambient illumination is constant (in most cases), in

multiple feeds, it need not be always true. Several factors influence illumination in such a

situation. Changing cloud cover could suddenly cause a drop in illumination in one

sensor while the rest of the video sensors would still be receiving bright sunlight. Unless

calibrated to have a uniform view, multiple sensors will have multiple view parameters.

An object may appear twice its size in one sensor than in another due to different focal

lengths. Factors such as varying sun orientation may cause shadows in one feed and not

in another. View angles could differ too, so this could cause distortion of object shape.

Unless sensor parameters are recorded across the network, accurate matching of objects

might not be possible. Once parameters are known, objects extracted from each video

could be transformed to a uniform frame of reference in the spectral, spatial and spatio-

temporal domains.

In our approach, we first established a flow for the processing of a video dataset obtained

from a single video sensor. This work was initiated as an internal research problem

addressed by the Digital Image Processing and Analysis (DIPA) group at the University

of Maine and culminated in a paper outlining its application for car tracking

(Venkataraman et al., 2004). Our approach continues from there to vastly improve the

process of object motion analysis and afford it a more rigorous generalized model in the

form of the multi-dimensional object signatures and object signature indexing. We

developed a more general motion detection and analysis process which involves multiple

sensors in a geospatial network. As seen in the following figure, the multi-sensor scenario

builds on heavily over the simpler single-sensor case. After object trajectories are formed

in each video stream, object signatures (attributes) are measured in all the defined

domains (spectral, geometric, and spatio-temporal) and multi-component signatures are

formed for each object in each video dataset. An object index can then be constructed for

each video dataset that orders the objects in a particular order in either a single domain or

successively in the three domains based on a set hierarchy.

Single-sensor
data processing

Extrad objed
signatures in all

defined
domains

component
signatures for

all objects

Construd
object index in

Form object 1 *=s 1
Compare object

dusters in all
datasets .
Compare
objects in
matching
clusters

Form complete
trajectories of

matching
objects

Figure 3.4: Analysis of multiple video feeds

Following the establishment of an object index, we proceed to form object classes. Why

this step is necessary before direct object comparison can be seen from the following

reasoning. With multiple videos, it is necessary to avoid a one-to-one object comparison

for all videos. If, for example, there are ten videos covering a geospatial network and

each video contains around 1,000 objects. A one-to-one comparison would cost 1,000

raised to the power ten processor cycles! Instead, objects in each video can be clustered

into several classes in each domain. While comparing datasets, only the relevant classes

of objects need be compared. We can avoid situations like comparing a blue car in one

video vs. a red car in another. Restricting comparisons to only relevant groups of objects

would result in faster results. Once objects are matched, comprehensive trajectories could

be constructed by linking those obtained for the object in question in each video. It is

here that network topology comes to play. If we know the position of each sensor in the

network and also the orientation with respect to a reference line in the network, we can

determine the universal direction of movement of objects. Once the direction is

determined, the trajectories can be linked. Chronological information fiom each sensor

can be used to verify the linking. If the sensors in a network are mobile, it adds hrther

processing complexity. Videos have to be processed in order to eliminate background

motion in mobile videos. This could place additional overhead on processing and results

obtained may not be temporally relevant.

In practice, most video networks have more than one sensor. Motion detection and

tracking is most effective when there are multiple sensors monitoring in parallel, for the

simple reason that a single sensor cannot track multiple objects at the same time.

Chapter 4

OBJECT TRACKING IN A SINGLE FEED

4.1. Static feeds

Stationary video sensors capture static feeds. In such video data, the sensor captures a

fixed portion of the view and the objects moving in the view pass by fiom one end of the

video to another. Most terrestrial video sensors capture static feeds, unless they are

designed to track objects in real-time by rotating across the field of view.

After the video has been captured, the process of object detection and motion

analysis occurs as a three-step algorithm. In the first step, a certain amount of pre-

processing is performed to obtain results in optimum processing times. In the next step,

object detection and identification of object attributes as well as motion characteristics

takes place. After all objects in the video have been identified frame-by-frame, each

object is linked to itself in all frames of the video. The complete trajectories of all objects

in the video are then constructed from the individual centroid locations in all the frames

they appear. Finally, in the third step, all objects are indexed and clustered into different

classes. However, the third step is only important for object tracking in multiple feeds

where comparison of objects across feeds takes place. In the following figure, the

algorithms and software code for the first column and parts of the second column were

conceptualized and developed by the Digital Image Processing and Analysis (DIPA)

group at the University of Maine. The concepts of shadow elimination and multi-

dimensional indexing for object comparison, as shown in the third column, were

developed during the course of our research.

Obtain raw vaeo
data from

different sensors

Reduce frame
dimensions

Reduce frame

1 Remove noise I 1

Rectfy video
based on sensor

correction

Perform
Accumulated

Frame
Differendng

Identify objects
within a spatial
neighborhood .
Obtain object
attributes from
original videos

e
'$

e! Link all objects
P within a feed to

their instances in
all frames

Remove trailing
shadows

Form object
classes ~

Define object
attributes in muttii

dimensional
spa= -

Link object
clusters for
secondary ~
comparison

7

.- F
1

Figure 4.1 : Flow diagram describing the object motion analysis algorithm

m
6
8 > +

4.1.1. Pre-processing of data

Pre-processing is an important step that must be executed before the object detection

process. For a variety of reasons, primarily in the direction of improved response time

from the object detection system, we pre-process the raw video data obtained from the

sensor. In traditional video encoding, which follows a similar approach of motion

analysis and representation but for different reasons, pre-processing has been shown

(Agazi et al., 1995) to be an important step in video processing in order to improve

system performance. On the same lines, it is also important in our application because the

bulk of video processing in our work is very similar to a video encoding application.

4.1.1.1. Change spatial resolution and frame rate

Commercial video sensors capture video at a uniformly high quality with a fixed frame

rate. Commonly, data captured from such sensors need to be scaled down in situations

where a high level of detail is unnecessary, e.g., a situation where the sensor is close

enough to the moving objects in order to allow usage of lower than normal resolutions for

motion analysis. What constitutes as acceptable in a certain situation is dependent on the

application as also the field configuration of the sensors. In many cases, sensors do not

allow for multiple options in resolution. To optimize the video processing in terms of

frame dimensions, the end-user needs to specify the format size they expect to be the

optimum for their application. It is important to set a format size such that the motion

detection algorithm does not incorrectly label the smallest object in the video as

background noise.

It might also be advisable to alter the frame rate of the source video so that only

those frames that are essential need to be retained. This is very useful in situations where

there is not enough movement in the captured scene to warrant processing of the entire

set of frames in the original dataset. For example, in a traffic monitoring setup, it is not

necessary to capture data at the normal rate during peak hours as the traffic will be slow-

moving. If captured at fu l l frame rate, a lot of processing cycles will be wasted in

processing redundant frames, whenever objects move very slowly or even stop.

4.1.1.2. Projection of data based on scale factor, view angle etc.

Data captured by a sensor at an angle to the scene needs to be transformed to an

orthographic view or some uniform frame of reference so that data captured by different

sensors can be compared reliably for geometric properties of the moving objects in those

feeds. Using correspondences in a video frame to another system of coordinates (map

with local coordinate system), we can transform all record object positions and geometry

to a uniform frame of reference. Transformation also needs to take into account any scale

changes due to sensor view angle. If there is a known scale factor for the data captured, it

needs to be incorporated in the process of comparing objects in different video datasets.

Otherwise, geometric size-based comparison will be unreliable. Transformation is usually

only necessary in multi-sensor object tracking. It might be useful in single-feed situations

where either illumination, view angle or view scale change during the process of video

capture.

4.1.2. Preliminary noise removal

Random noise in captured video has to be removed so that it is not detected as a moving

object (or group of objects) by the algorithm. While data is being captured, individual

frames could be passed through a noise filter. However, it must be noted that excessive

filtering could blur the edges of objects or alter their geometric profiles.

Figure 4.2: (a) original noisy fiame; (b) noiseless output after applying median filter

In the above figure, the image on the left shows a fiame from a video containing random

salt-and-pepper noise. In order to remove the noise, we applied a median filter. While the

filter removed the noise, it also blurred the edges of the objects. This could present

difficulties during the process of object matching.

4.1.3. Motion detection by means of frame differencing

The core process involved in motion detection is called Accumulated Frame Differencing

(AFD). AFD is an iterative process that operates over sequences of frames in a video

stream. It determines motion on the basis of change in pixel color by subtracting or

'differencing' a sequence of fiames. In practice, pairs of fiames are differenced to obtain

differenced images and these images are subjected to a threshold to filter out unwanted

objects and any random noise. PID is the difference in color values for the same pixel (x,y)

in the scene grid over time. PJD is computed between the reference and all other frames

in the video stream as follows:

where R(x,y) is the reference image and f(x,y,t$ is the frame at time tk. Usually, the

reference is the first fiame. The Differencing Mode (DM) can be "positive", "negative"

or "absolute". The three modes differ in the manner in which the pixel intensity

difference (PID) is compared with a pre-defined gray level threshold (GLT). GLT is the

minimum gray level change that must occur for an object to be detected as moving across

two fiames. This value is scene-dependent and is empirical. A new value for each pixel in

the currently processed frame is obtained depending on the presencelabsence of motion in

the neighborhood of each pixel. The new value is binary and is allocated as follows:

where : Ik(x,y) is the pixel value at location (x,y) of the current fiame and its value is

dependent on its value in the previous fiame Ik-,(x,y). Pixel values are either incremented

by one or left unchanged from the value in the previous fiame depending on the

differencing mode. In the "positive" AFD mode, the differenced image is incremented by

one at the pixel location (x,y), if PID is greater than GLT. In "negative" mode, the

increment is by one if PID is less than -(GLT). In the "absolute" mode, the increment is

made if the absolute value of PID is greater than GLT. The three modes are described in

mathematical form below:

Absk-, (x, y) + 1 if PIDI > GLT

Abs,-, (x. Y)

otherwise

i POS ,-, (x, y) + i if PID > GLT
Po.3 (x, y) =

pas,-I (x, Y)

otherwise

i Neg,-,(x,y)+l if PID < -(GLT)
Negk(x7~) =

Neg ,-, (x, Y)

otherwise

The following figures illustrate the three modes of differencing:

Figure 4.3: (a) Original frame; vehicle moving in southwesterly direction (b)

Absolute AFD output (c) Positive AFD output (d) Negative AFD output

As illustrated by the above figure, an absolute AFD guarantees complete outline of the

object when the video is subjected to the AFD process, whereas positive and negative

AFD preserve only the leading and trailing edges (with respect to direction of motion) of

the object's shape profile. In addition to the mode, two other parameters influence AFD.

The first, frame accumulation rate (FAR), determined iteratively, is the number of fiames

over which the difference from the reference fiame will be accumulated. The second,

accumulation threshold (AT), is the minimum number of fiarnes across which the object

must exhibit change in order to be detected as moving. This parameter helps in removing

periodic noise. Its value was selected such that noise was removed but slow moving

objects were preserved.

Figure 4.4: Flow diagram describing frame differencing algorithm

In step A, all the frames are differenced in pairs, in accordance to the [eq. on AFD]. For

example, frames F1 and F2 are differenced and the resulting frame is compared with the

GLT. Based on the individual pixel values in Dl, they are assigned either "0" or "1".

Then, the next pair, F2 and F3 is compared and the difference frame D2 is generated.

Likewise, all fiames until F, are subjected to this process. So, for n frames in the original

video, (n-1) difference fiames are obtained. In step B, the difference fiarnes are summed

up according to the value of AT. For example, if AT = 3, frames are added together in

threes and the resulting frame is compared to the AT. In the above diagram, the value of

AT is two and so fiames are added in pairs. All values less than that of AT are assigned

"0" and the rest of the values are retained. In step C, all the filtered frames are grouped

together to form the output of the motion detection process. At the end of the process,

there are (n-AT) fiames in the output video.

Figure 4.5: (a) original video containing a few moving objects (red truck and two people);

(b) raw AFD output of the original fiame (black border artificially added to delimit AFD

frame)

4.1.4. Shadow removal

To identify an object unambiguously across two video feeds, it is important to isolate a

representative object color value that can relate to the object in both video streams. This

is only possible if object shadows are eliminated and pure object surface colors are

identified. lf shadows are not eliminated, they could appear as extensions of the object

being detected by the motion tracker algorithm. This could cause errors in determining

the exact area and shape of the object while comparing with other objects in other video

streams.

The apparent surface color of an object is determined by source illumination,

viewing geometry and camera parameters (Raja et al, 1998). Processing color

information can be expensive and is typically restricted to the pixels that have been

obtained fiom the morphological operations on the object shape profile. It becomes

computationally intensive because of the fact that for the same pixel location, any

computation is on three domains (either R,G,B or H,S,I). Color information can be

operated upon either in the RGB (Red-Green-Blue) domain or in the HSV (Hue-

Saturation-Value) domain depending on the needs ofthe user. In the RGB domain, obtain

color information consistently is not easy since all the three values (R,G,B) change

significantly with illumination.

In the HSV domain, the hue value plays a vital part in object determination since

it does not vary with intensity changes. This is particularly true when the object is subject

to varying illumination levels as under shadows and under bright sunlight. The advantage

of using hue values is that objects can be detected reliably in any kind of illumination

condition. However, they cannot be obtained directly fiom a raw video stream. Most

video sensors acquire video data in the RGB color domain and therefore, a conversion to

HSV would be necessary before any hrther processing. But this could place a processing

overhead on the system. In most situations, illumination is almost constant for a single

sensor. While comparing datasets fiom two different sensors (at different locations), there

is a very good chance that they might have been exposed to different levels of

illumination. Even in such a case, any sort of a conversion from RGB could be performed

after objects have been detected as this could save processing time.

After the objects have been detected as distinct individual groups of pixels in a

frame, a mean representative color value must be obtained for the object. However, this

cannot be done before removing the shadow detected as part of the object. The object

detection process cannot differentiate between an object and its shadow in most cases

because the shadow is often continues from the object perimeter without any intervening

gap and also "travels" at the same speed as the object. Therefore, the pixels representing

the object's shadow must be eliminated; in actuality set to a value or "0" or whatever

value was chosen for the background. To go about this process, we define a bounding

box enclosing the detected object. Pixel values that are outside the object outline but

within the bounding box belong to the surface on which the object traveled, in most cases,

a road. A set of empirical values for the hue value of an average road surface was chosen.

It was assumed that the hue values ofthe shadowed region would be very close to the hue

values obtained from the road pixels as the shadow is merely a region on the road with an

illumination level different from its surrounding areas.

Once the range of hue values corresponding to the shadow was identified, those

pixels in the vicinity of an object with hue values falling in the 'shadow range' were

eliminated. These pixels were identified by the motion tracking algorithm as part of the

object as the shadow moved with the same velocity as the actual object. Once the

shadows were eliminated, object hue values obtained were more relevant to the actual

object surface color. This helps in linking object trajectories across the two datasets with

greater accuracy.

Figure 4.6: Object before and after shadow elimination

. P As can be seen fiom the above figures, the shadow removal algorithm has eroded parts of

the object as well, because of similar hue values found on the surface of the object. To

further increase the accuracy of shadow removal, a simple neighborhood filter could be

used to remove shadows as a connected sub-object, rather than removing individual

"shadow" pixels purely based on their hue values.

4.1.5. Morphological processing of differenced data

Morphological parameters isolate objects that satis@ a certain geometric criteria. These

parameters are essential in detecting just those objects that are needed. The structuring

element is a bounding box use to establish connection between neighborhood pixels with

an object. This element is like a spatial filter that links adjacent object pixels and is the

basic object-building mechanism. Depending on the dimensions of the filter, greater

accuracy can be obtained in defining the extents of an object. However, this comes with a

price as the processing time increases in a geometric progression with each increase in

dimension. The minimum (mOA) and maximum (MOA) object areas (pixels) constrain the

allowable object sizes. These could act as a filter in restricting the objects detected and

retained to only relevant classes. For example, if we are interested in extracting only cars

from a video stream, then any bicycles and trucks would be unwanted information. The

object compactness (C) is a shape metric that defines the elliptical shape ofthe object:

Vector building parameters also control the creation of motion vectors of the

filtered objects. The Maximum link distance specifies the maximum distance in pixels

that the object centroid can change between successive motion frames. This makes swe

that two similar but separate objects in the same video are not linked inadvertently. The

Maximum spectral distance specifies maximum allowable variation in any color metric

between successive motion frames. This ensures that two closely-spaced but differently

colored objects are not seen as the same by the object detector. In a predominantly color

based test, the link distance is set to a large value and the spectral distance becomes the

key linking parameter.

4.1.6. Object labeling and parameter definition

The typical scenario for our work consists of a traffic network monitored by multiple

video cameras at different locations. The cameras that comprise this geosensor network

may be static (e.g. located on buildings or traffic poles) or moving (e.g. attached to

moving vehicles). In either case their instantaneous location and orientation is considered

available, provided, for example, by GPS sensors attached to them. Vehicles moving

within the area of interest monitored by ow network pass through the field of view of one

or more cameras at an instance. In order to model and link activities within this network

we make use of two types of information:

Network parameters allow us to index feeds (datasets) within our network, while

Object attributes are used to index objects extracted fiom individual feeds.

It is important to note here that any two sensors may or may not share a field of view. For

the most part, we work under the latter assumption. When there is no continuity (as a

mosaic of sensor FOVs) in the area being viewed, it becomes more difficult to label and

reliably link objects across feeds. The reason is that there may be some objects that

appear in one sensor view and may not in the others. In any case, the object count in one

sensor need not be equal to that in any other because the sensors are all assumed to have a

disjoint view of the terrain.

4.1.6.1. Network parameters

Global parameters allow us to position different feeds relevant to each other in space and

time. Accordingly, they comprise the spatial coordinates of a sensor's field of view, and

the corresponding temporal information (timestamp). The coordinates of a sensor's FOV

are important in determining the view angle and transformation parameters necessary for

normalizing objects in all feeds before comparing them to one another. Timestamping is

very important because it acts as a validating piece of information. Similar objects that

appear in two disjoint sensor views at the same time could be ruled as the same because it

is not possible for an object to be physically present in two different locations.

Sensor-level parameters are intrinsic (i.e. sensor calibration information) and

extrinsic (i.e. sensor orientation information). The intrinsic parameters may be fixed or

varying. For example, a single sensor may have the capability to fhnction in more than a

single band (e.g. visible and thermal), depending on scene illumination conditions.

Similarly, the spatial resolution of the sensor may be fixed (in the case of a fixed sensor)

or varying (e.g. when a sensor is mounted on-board a moving vehicle). Focal length, on

the other hand, may typically be kept fixed. Extrinsic sensor parameters comprise

information that allows us to position the sensor in space (e.g. altitude, viewing angle).

In situations where the sensor parameters are not known in advance, or if the

sensor is not equipped to report these data, the object transformation parameters could be

derived by calibrating the camera against a measured object in its FOV or by recording

the positions of a set of known points in its view.

4.1.6.2. Object spectral attributes

The surface color of an object in either the RGB (red, green, and blue) or the HSV (hue,

saturation, and value) domain is a fundamental attribute for comparison with other

objects. The representative RGB color is derived in a manner similar to that described in

(Wei, 2002) but we first eliminate noises that are associated with extracted objects such

as shadows. In (Venkataraman et al, 2004) we described a shadow elimination process

used in our approach. In order to index color content, we transform color information into

spectral angles. The concept of spectral angles derives fiom the color indexing scheme

described in (Stefanidis et al., 2003a). The spectral angles that correspond to the

representative color are derived as follows:

2 x s x (s - g)
G = arccos((

r x b
> - 1)

where,

Two angles are sufficient to describe the color. The color components (r,g, b) are square

roots of the sum of the squares of the other two color coordinates. By color coordinates,

we mean the raw coordinates (Rm, Gm, Bm) of the object representative color in the three

color axes.

The figure below describes how the three color components (r,g,b) are related to the three

spectral angles (R,G,B). In essence, the coordinates of an object's surface color form a

triangle in three-dimensional spectral space. Any illumination changes would be reflected

as a change of scale of the triangle's dimensions.

a
Red

J "
Blue

Figure 4.7: Surface color of an object depicted in 3-D RGB colorspace

The advantage of transforming color into spectral angles is in the independence of angles

from the effects of illumination. Varying illumination can 'shift' the surface color of an

object (as recorded by a sensor) in the colorspace in either direction. Hence, the same

object in changing lighting conditions could have several recorded surface colors. The

angles derived from each of these colors would still be the same, regardless of the shift

that the original surface color underwent in the recorded data.

--C

Red

d Blue

Figure 4.8: Spectral triangles formed by two different surface colors of the same object

In the figure above, there are two objects, Vid30bj I (shorthand for Object #1 in Video #3)

and Vids0bj.l. From the spectral profiles, we can see that both represent the same object

but with similar surface colors. They both have been measured under different incident

illuminations and hence, the difference in the profiles. Both their spectral triangles are,

however, similar. The scale difference is due to illumination changes. A way of

numerically comparing two objects subject to different lighting conditions is to check if

the spectral angles derived from their mean surface colors are the same. In reality, there is

a slight amount of variation even in the spectral angles. This could be due to errors in

computing the mean surface color itself. The errors could arise from inclusion of shadow

pixels or pixels from surrounding regions. To accommodate for any unaccountable

random errors in computing the mean surface color, a threshold could be defined within

which the comparison oftwo objects could be made.

4.1.6.3. Object spatial attributes

Compactness describes the 'roundness' of an object in comparison to a circle. It is a

shape metric that compares an object to a circle which has its perimeter equal to the area

of the object.

4m2
Compactness = ,

where a = area of the object, p = perimeter of the object. For a perfectly circular object,

the compactness is 1. Compactness could also be seen as the ellipticity of the shape of an

object.

Object size is another key attribute which could be used to fix matches. It is

approximated by multiplying the size of the object (in pixels) by the scale factor of the

corresponding sensor. This can be used for an approximate comparison of two objects if

the view scales are known for the sensors in question. Object sizes are also important in

discriminating between classes of objects. A motorcyclist could travel at the same speed

as a car and a pure color-based or speed-based comparison could incorrectly link them

both as the same object. A simple size comparison could add more reliability to the

comparison process.

Lastly, geometric information also includes the object's dimensional ratio.

Dimensional ratios are the length-to-height, height-to-width and width-to-length ratios of

an object. These ratios can be used as an auxiliary metric for object comparison. However,

their use in indexing and comparison is only auxiliary due to the low accuracy with

which they can be determined.

4.1.6.4. Object behavioral attributes

These parameters describe the spatio-temporal properties of the object like velocity,

acceleration or motion pattern. They are part of our model of spatiotemporal helix

(Stefanidis et al, 2003b). These properties are useful for identifying objects that behave

erratically or for clustering objects that have a certain kind of behavior. Deng and

Manjunath define motion parameters as a quantitative measure for object indexing and

segmentation in (Deng et al, 1998). Our goal is to utilize the information obtained fiom

spatio-temporal analysis of data in organizing data qualitatively. An example would be a

common traffic scenario composed of vehicles of different sizes and motion

characteristics such as cars, trucks and buses. Based on expected and observed

characteristics, vehicles could be classified as slow moving, fast moving etc. Further,

alerts could be raised when vehicles do not meet their defined characteristics. For

example, a school bus that speeds frequently.

One spatio-temporal attribute of primary importance is obviously the speed of the

object. Speed values usually are dynamic, meaning they change over time and a single

representative value can hardly be consistent even within a few dozen fiames. However,

under the assumption of constant motion (for example, in a traffic scenario) we take the

average value for an object's speed vector in a video stream. In most cases, this is what is

required in identifying objects across different feeds. Another attribute that bears some

relevance is the acceleration. The standard deviations in speed and acceleration could be

used in clustering objects. The direction of movement is also an important attribute. It

validates the matching of objects in two videos. For example, two objects moving in

opposite directions in two video feeds cannot obviously be the same, unless we are

certain that in one of the videos, the object has made an about-turn.

In applications where we need to check for any sudden increases in speed or

frequent stops, a temporal vector of the object's speed and acceleration would be useful.

Further, it could also prove usehl in making a secondary classification of objects as

periodically halting, fast accelerating and so on.

4.1.7. Intra-feed object linking

Once objects are detected in each frame of a video feed, they need to be linked

temporally with their counterparts. This is because objects detected in each fiame are not

automatically connected to themselves in subsequent frames.

4.2 Mobile feeds

Mobile feeds are captured when there is relative motion between the sensor and its FOV.

However, it is the sensor that moves in relation to the ground, whereas the terrain (except

the moving objects being imaged) is stationary all the time. This is true in the case of

sensors mounted on aerial platforms such as balloons or Unmanned Aerial Vehicles

(UAV). Mobile feeds appear as a moving window over a group of objects (also moving).

The goal of obtaining most mobile feeds is to track one (or more) moving object(s).

While in static feeds, the sensor maintains its static state with respect to the terrain on

which the objects are moving, in mobile feeds, the sensor attempts to be stationary with

respect to the objects moving in the terrain. The result is that in static feeds, the same

object never appears twice in the video (unless it takes a U-turn and goes back in the

opposite direction) while in mobile feeds, the same object continues to occupy the FOV

of the sensor. Mobile feeds are increasingly used in defense and security applications

where it is crucial to keep tracking a group of vehicles (maybe a convoy of vehicles

carrying VIPs or a group of enemy tanks in a war) constantly over a period of time.

Processing mobile feeds can be challenging unless special pre-processing is

performed first. The first problem, algorithm wise, in processing mobile feeds, is the fact

that the background of the video is constantly "on the move". In differencing algorithms

like the AFD, the assumption is that of the background being stationary all the time so

that a difference between two successive frames would only yield the object pixels as the

background pixels in both frames would cancel out. But in mobile feeds, at best, only a

large overlap of background between successive frames can be expected. Hence, parts of

or the whole background could be detected as one big moving object. What complicates

it further is that the objects on the ground also move a little bit with respect to the sensor.

In practice, it is not possible for an aerial sensor to maintain perfect synchrony in relative

stationariness with the objects moving on the ground. The ground velocity of the sensor

could either be more or less than that of the moving objects and so the objects in the

mobile feed would move with a small positive or negative velocity. And if a group of

objects is tracked by the sensor, they may all not move at the same speed and therefore, it

is virtually impossible for the objects to be stationary with respect to the sensor. It is also

important to note that when objects change direction of movement, the sensor also

changes its view only after a small delay.

4.2.1. Image warping

Under assumptions of simple linear motion, the video could be "warped" such that the

background is kept fixed in stretches where there is significant overlap between

successive frames. Groups of such frames in a mobile video could be constructed in

which the video could be cropped to only show the area that is common to all frames and

the objects appear as moving from one end of the frame to another. However, the

cropping must not be done at the expense of eliminating a few objects in the extreme

frames of the group. In order to warp the frames, common points must be identified and

their locations could be used as "tie points" to mosaic sets of frames. Once such sets have

been formed, motion trajectories of the moving objects could be formed by connecting

the sub-trajectories obtained from all the groups. The only issue with this method is the

time consumed in manually selecting ties and selecting extents of groups.

4.2.2. Mosaicking

Instead of mosaicking the frames in a mobile feed manually, they could be overlapped

automatically. A feature detection algorithm could be used to identify common

background features in two adjacent frames and they could be grouped as long as some

predefined overlap threshold is met. For example, a 60% overlap could be set as a

possible threshold in binding frames. Anything less than that would automatically form

the start of a new group of frames. In the following set of pictures, the frames have more

than 60% overlap of background area. Hence, these can form part of a "group".

Figure 4.9: Frames extracted from a video feed, captured by a mobile sensor, which

shows correspondence in background features

Chapter 5

OBJECT LINKING IN MULTIPLE FEEDS

5.1. Statement of problem

Linking objects across multiple feeds is a far more complex problem than for a single

feed. In a single feed, there is continuous coverage of an object's motion across the field-

of-view of the sensor. In the case of multiple sensors, more so in the case of disjoint

video networks, there could be gaps in the coverage of the terrain by the sensors. While

this might seem a trivial issue initially, the potential problems are many. When there are

no common areas in the FOVs of two sensors, it is not possible to match object

trajectories purely based on feature correspondence in the two FOVs. A certain degree of

overlap can aid in the transformation of object profiles to a uniform scale based on the

relationship between the two instances, in the two FOVs, of the same background feature.

Whereas, with no overlap, camera parameters must be known explicitly in order to

normalize object attributes for accurate comparison. Further, since multiple disjoint

sensors are located at a considerable distance fiom one another (for getting distinct views

of the terrain), there is a high possibility of local errors due to illumination changes,

weather phenomena such as wind, influencing the quality of data recorded by the sensor.

5.2. Proposed approach

In order to effectively tackle the problems posed by installing multiple sensors with non-

intersecting views, we propose to establish a system of addressing moving objects using

multiple attributes. Using the object attributes extracted fiom a video dataset (based on

the procedure described in Sec. 4.1.6.), we construct a composite object signature that

will effectively create a highly-reliable metric for object comparison across multiple

video feeds. Object matching will be more reliable using multiple object descriptors

rather than a single attribute of varying data quality, e.g. surface color. The following

table outlines the object attributes that will be used for building the multi-dimensional

signature:

Table 5.1 : Listing of the object attributes used for building composite object signature

When a single attribute alone is chosen for indexing an object in a video feed, there is

very less room for flexibility in case the desired accuracy is not available in that attribute.

The proposed multi-component object signatures seeks to solve that issue by affording

flexibility to the user in determining which attribute is to be accorded higher precedence

based on the quality of the data. For example, if surface color is perceived as the most

accurately (in terms of data resolution) descriptive attribute, it could be given a higher

Domain

-
5
w
a
cn

- a
. C) - m
a
cn

A 3 . - * a a
a E *

Attribute

Co1or.R

Co1or.G

Co1or.B

SpAng.R

SpAng.G

SpAng.B

Area

Compactness

AvSpeed

AvAccel

Dir

Description

R component of object mean surface color

G component of object mean surface color

B component of object mean surface color

R component of object spectral angle

G component of object spectral angle

B component of object spectral angle

Area of object profile

Compactness of the object

Average speed of the object

Average acceleration of the object

Direction of the object motion

Unit

(number)

(number)

(number)

radian

radian

radian

pixels

(number)

pixels/sec

pixels/sec2

radian

weight than other attributes in the object signature. The implication is that the object

comparison will be more reliable as the less accurate attributes will receive lower

importance for their matching results. Hence, object matches will be much better than

with using just one attribute.

Various approaches (Cohen and Medioni, 1998; Lipton et al., 1998; Comaniciu et

al., 2000; Pless et al., 2000; Amer, 2005) have been presented in the computer vision

discipline on the detection, classification and analysis of object motion involving just one

or a few object attributes. Our method differs from others in that we seek to solve the

problem of object detection, tracking, and matching by means of a multi-pronged

approach that involves establishment of a comprehensive object definition model by

means of integrating multiple attributes along with their accuracy weights. Our work

proposes a technique for identifying, labeling and analyzing the motion of objects by

constructing a descriptive multi-level signature for the moving objects detected in a video

stream.

5.3. Object linking

In the initial stages of object detection, we do not know the exact relationships between

the objects detected in one frame with those in adjacent frames. While we realize that

most, if not all, objects in two consecutive frames are the same; it is not possible for the

object detector to automatically link the same objects across frames without extra

information on the objects. At this juncture, the detector only knows two attributes of all

objects - their size in pixels and the shape (outline) as derived from difference images.

This might be enough information in a scenario where all objects in a video feed are of

different shapes and sizes. However, in real-world situations, this is rarely the case. For

example, in a traffic video, at least a few cars will look alike in several aspects - color,

shape, or size or all. In such situations, we need to know the attributes of objects in more

than one domain in order to link them reliably within a feed to their counterparts in other

frames. We collect information on objects in three domains - spatial, spectral and spatio-

temporal. Once all the attributes are known for all objects, we order objects over a

possible range of domain-values. While this is not so much to enable intra-feed object

linking, indexing assumes great importance while clustering objects in multiple-feed

object linking (matching). Grouping indexed objects is easier than trying to cluster an

unordered list of objects.

5.3.1. Intra-feed linking

Objects detected in each frame need to be linked to themselves in subsequent frames.

Comparison is based on one attribute to speed up process of generating list of objects in a

single video stream. Color is a suitable candidate for comparison because of the high

level of accuracy with which objects can be labeled. Further, color is not affected by the

sampling quality (spatial resolution) of the data too much because it is a mean measure

over the object's surface as compared to geometric attributes which depend on the

accuracy with which the raster image (frame) represents the actual shape profile of an

object in the video. The reason why single-attribute comparison is used is because the

ambient variations in illumination are almost negligible for frame-to-frame comparison.

Knowing an object's attribute and its location in the frame, it can be compared with other

objects in the next frame. The nearest object that has the same or nearly same attribute-

value is its image in the next frame. In situations where there is a great deal of similarity

of objects in one domain, say color, more attributes from the other domains could be used

in linking objects. Using a single domain in such a situation would result in multiple links

for one object in the next frame. But such a potentially confounding situation can be

resolved by enforcing a proximity parameter that ensures that objects cannot appear at

gaps (between two frames) more than the specified threshold. It is for this purpose that

we define a vector-building parameter called maximum link distance which defines

whether two temporally-adjacent centroid locations represent the same object or not.

5.3.2. Multi-feed linking

Linking (or matching) objects across multiple video feeds is far more complicated than a

simple intra-feed linking. Several factors which are usually constant for a single video

feed become highly variable for a set of video feeds. The view characteristics of the

individual sensor is an important factor which is seldom constant in a video sensor

network. Further, local illumination variations may be pronounced with multiple sensors.

To tackle the problem of multi-feed linking, we propose the additional steps of object

indexing and clustering. Once these processes are complete, actual object comparison can

proceed and matches can be obtained.

5.4. Object indexing

Indexing the moving objects detected in a video feed is important for the purposes of

clustering. Indexing could be a simple ordering of objects in each domain in a particular

order. Such an index could be maintained for each domain. Alternatively, for larger

object databases, it could be important to create a dynamic index (based on a B+ tree

scheme, for example) so that frequent updates to the database are handled in an elegant

manner. However, in our case we consider a simple ordered index of objects as it serves

our purpose well. In a real-time application, objects are always added to the database.

Any deletions or updates would occur only at a separate level. The application itself

would not demand any changes to the data collected over a period of time. However, use

of a special indexing mechanism (like the B+ tree) entails the use of a dedicated database

system. In our case, we have restricted our choice of an index to an ordered list primarily

because including a database system is beyond the scope of this work. However, using a

database would be a tremendous boost in the direction of data management. For a real-

world application involving moving objects, like traffic monitoring, the number of

objects handled in a day would easily run into several thousands. Using a database to

index the detected objects would be more appropriate in such a case. In our application,

we only consider a limited set of objects that appear in a specific dataset, for our testbed.

5.5. Object clustering

Comparing objects across multiple feeds is not a straightforward procedure. Objects

detected in a video possess multiple attributes in three domains. There is added

complexity due to some attributes like mean surface color which are multi-valued. The

main objective is to take an object in one video feed and match it with its instances in

other video feeds. An object may appear in only one video feed in a network of n sensors

or may appear in all of them. A simple solution to the problem would be to compare the

object in question with each and every object in all other feeds. However, this would be a

highly inefficient manner of comparison as for every such object in that video feed, the

same process has to be repeated. This would place enormous processing overhead on the

system. Instead, we propose an intermediate clustering step that will reduce processing

significantly. After all the objects in a video stream are linked so that a minimal number

of objects in that video are arrived at, we need to cluster the objects into logical groups.

This is because when we compare objects in a video stream with those in other video

streams, the comparison process can be performed faster by just evaluating similarities of

objects belonging to relevant clusters. Note on color: instead of storing direct color values,

color shapes can be stored in order to effectively compare the same objects in different

video streams but with different apparent color profiles. Ex: (120,120,120) is the same as

(240,240,240) due to heavy illumination effects in the second dataset.

After clustering objects in a feed, it would be advisable to "normalize" all

attribute values in all video feeds, to a uniform frame of reference. This is because when

two clusters from two video feeds are compared, there is every possibility that local

effects could have introduced errors in one cluster and hence comparisons would not be

totally unbiased. Extreme errors could even cause two actually similar clusters to appear

totally different. Further, even in the absence of ambient errors, there is a good possibility

of distortion of object profiles as different sensors would have different view angles and

scale factors of the scene in front of them. In order to bring all data to a uniform plane,

we need to make use of sensor correction parameters such as transformation parameters,

view angle, altitude, location etc. This process could also be performed before indexing

but normalizing might magnify small errors between frames and intra-feed object linking

might not perform accurately. Hence, any adjustments to object attributes should occur

during the time when actual objects are being compared so that we do not alter the stored

object records.

5.5.1. Clustering based on a dominant attribute

As opposed to single-attribute based linking, single-attribute based clustering does not

rely on accuracy to define the choice for the attribute. Whereas, an inaccurately recorded

attribute could hamper intra-feed object linking, clustering is basically only an arbitrary

grouping of objects in a video stream. The grouping could be based on the variation in

that domain seen in the objects in a video. Even though color is the most accurate

attribute of an object, it need not be the only suitable candidate for clustering. This is

because it is highly likely that in a video stream, the color profiles ofthe objects are very

similar. This could happen if, for example, all the vehicles in a video feed are red or

reddish in color. That would leave very less scope for grouping objects into separate

classes. It would pose a problem while comparing with other video feeds because it

would be necessary to evaluate comparisons with all the objects in the first feed, as they

all belong to one class. To avoid such situations, a variability measure could let us decide

which domain attribute is well-suited for object clustering. One way could be to check

variance of all object attribute values from the mean. If they fell within a certain user-

defined threshold, the domain would be unsuitable for clustering purposes. In such cases,

we could choose another attribute that varies more than the set threshold. In rare cases

where all attributes vary within the preset tolerances, a ranking could help identify the

best suitable candidate for clustering.

5.5.2. Clustering based on membership to multiple classes

An alternative to clustering objects based on just one attribute would be to group them in

many or all domains so that comparisons between video feeds are more accurate. The

disadvantage of relying on one domain for clustering and subsequent inter-feed

comparison is that inherent errors (if uncorrected) in one dataset contribute to mismatches

with objects in another dataset. In using multiple domains for clustering and comparison,

we can be assured that errors in one domain do not alter results. A simple voting system

in which the object that has matches with another object in the maximum number of

domains could make the comparison more accurate. Further refinements could be brought

about by incorporating confidence measures of each domain to introduce a weighted-like

selection scheme.

An object in a video feed could thus belong to several clusters, each

corresponding to a domain. For example, an object could belong to the classes with mean

spectral value of (250, 100, 50), mean size of 400 pixels, mean velocity of 30 pixelslsec.

The only apparent drawback in this method is the time taken to cluster objects into many

classes as they happen to be in different independent domains. This means computation is

essentially repeated for each domain. If the resulting time delay is not a major issue in the

application, it could be used to deliver better results. In our approach, we make use of

multiple attributes to cluster objects and compare clusters in a hierarchical fashion.

5.6. Object comparison

Once all datasets are clustered, the objects in all feeds are ready for comparison to one

another. The motive behind object matching is to establish consolidated trajectories over

the entire network for an object. In mobile applications, it is crucial to know a tracked

object's location from a holistic, regional view as the network can be reconfigured on-

the-fly. Even otherwise, knowing just a fiagment of an object's motion path in a network

is of little practical use, especially when the network has multiple sensors.

5.6.1. Comparison of object lists

When object clusters are determined in each video feed, the comparison of objects takes

place in two steps. First, the clusters in all video feeds are compared to find the closest

neighbors of each cluster in each domain. While individual objects are grouped together

based on their closeness of attribute values in each of the three domains in order to form

object clusters, clusters themselves are in a sense clustered hrther in this step so that

meta-clusters are determined. Meta-clusters can be thought of as clusters of mean domain

values across multiple datasets while object clusters are logical groupings in one dataset.

Once the list of meta-clusters is drawn up, we compare the objects in the constituent

object clusters in a meta-cluster to one another. This ensures that only relevant objects are

compared in the process of forming matches. For example, there are three clusters in the

spectral domain, namely, red, brown, and black objects in four video feeds. Under a

simple comparison, even black objects could be compared to red objects. However, meta-

clustering ensures that only red objects in two video feeds are compared to each other.

5.6.1.1. Optimal comparison vs. painrise comparison

In a multiple-sensor network, it might be enough to compare a few feeds for matching

objects and extending matches logically to other feeds. For example, if there are three

video sensors in a network, it is enough if we compare feed, and feed2; and feed2 and

feed3. It is not necessary to do the redundant feed1:feeds comparison. In most cases, such

a technique would suffice as the accuracy with which data is recorded in common video

sensors is suff~cient enough to allow for small amounts of error propagation. However, in

applications which require a high level of precision, all pairs of feeds may be compared

(except obviously redundant combinations like feed, :feed2 and feed?: feed,) so that there

is no error carried over by inferencing match results. While the first technique has the

advantage of timeliness of producing results in comparison to the second, it suffers from

a potential carry-over of errors from one match to another.

5.6.1.2. Domain-specific comparison vs. weighted comparison

If we consider an atomic comparison step, an object in one video feed is compared to

another in another feed. This comparison could be in terms of measuring how close the

two objects are in domain-space. We consider three domains (spectral, spatial and spatio-

temporal). Within each domain, we have several attributes. For example, spatial domain

has attributes like area, compactness and size. When we determine the distance between

the two objects in one domain, we find the distances of each sub-domain (attribute) and

derive a single distance measure for the domain. If all attributes are assumed to be of

equal importance and accuracy, we can normalize them to percent scores and multiply

them. We would then get three individual scores for the three domains. In cases where

there is not sufficient accuracy in one or more domains, we could choose the domain with

the highest accuracy. However, it would be better to use a weighted score while obtaining

matches in most cases as the accuracy of other domains is not too low to warrant their

exclusion fkom the comparison process. Depending on its importance, each domain value

could be assigned arbitrary weights and consolidated distance measures could be

obtained.

5.6.2. Hybrid comparison method

Our approach towards object comparison and matching follows a mix of the techniques

mentioned above. Object distance measures are obtained in every domain for all the

attributes and normalized. All distance measures in a domain are then consolidated to

obtain a single score for all three domains. Instead of assigning random weights to each

domain, a hierarchy is followed in deciding if a match is suitable. The following

pseudocode gives an idea of how the approach works:

For objects (Objl , 0bj2)

Iff dist-measure in domain1 <= threshold, and

Iff dist - measure in domain2 <= threshold2 and

Iff dist - measure in domain3 <= threshold3

Then (Obj, == 0bj2) is true

Where, Objl and Obj2 are two objects in two distinct video feeds, threshold, is predefined

by the user for domaini, and dist - measure, is the distance measure between both objects

in domaini.

The advantage of using this approach is that it narrows down the match to only

those objects which fulfill the nested condition. In effect, it functions like a three-stage

filter, eliminating unwanted matches along the way. The three-step comparison might not

be restrictive enough to narrow down to the best match. There might still be multiple

matches (though far fewer than obtained using a plain weighted comparison) which can

be minimized by choosing the closest match, in terms of the weighted distance. The

difference between just a weighted comparison and the hybrid approach is the fact that

the filtering of results takes place twice in the latter.

5.6.3. Trajectory linking

Building a complete trajectory of an object's journey across a network basically consists

of linking individual sub-trajectories obtained from video feeds recorded by different

video sensors across the network. When we have enough information on object matches

(or correspondences) across different video feeds (essentially, different sections of the

network), a complete trajectory may be formed by linking sub-trajectories in a certain

sequence. Linking sub-trajectories in a spatial sequence may seem to be a possible way of

achieving it, but it must be noted that at times, objects may travel in complex loops across

a network. For example, an object may travel in one direction for some distance, turn into

a side-road at some angle and after some time may even come back by the same road it

entered the network. A spatial sequence may not be able to capture the complexities of

the object's path unless predictive models are in place.

Using timestamps as a key linking mechanism, we can connect sub-trajectories

reliably without falling prey to simplistic assumptions about an object's possible route

across the network. Trajectory linking using just timestamps is only a rough means to

estimate an object's complete motion path across a network. This is especially true when

sensors are sparsely distributed across the network and there is no overlap between

adjacent sensors. If commonly used routes in a network are known, they could be used to

predict an object's possible path in a blind spot (a location between two spatially-disjoint

sensors).

Chapter 6

EXPERIMENTS

6.1. Experiments with data from a single sensor

In the course of establishing our approach for detecting moving objects in data recorded

by multiple sensors, we tested our motion detection and tracking algorithms on videos

obtained from a single sensor. The aim was to establish the efficacy of the algorithms in

detecting objects correctly based on specified parameters and also to extract object

attributes from the video.

6.1.1. Data collection

Color video was captured using digital video camcorders at 720x480 pixels and a frame

rate of 29.97 @s. The camcorder was focused in such a way that as large as possible a

view of the road below was available. This was to ensure that a significant portion of the

object's trajectory (including turns) was captured as opposed to a closer but incomplete

view of the object's path. This input video was reduced to 320x240 at 8 fps for testing

low-resolution analysis and 720x480 at 3 fps for high-resolution analysis. High frame

rates are not desirable given the nature of intense computations. The digital camcorders

were set atop a three-storied building 50 feet tall. The sensor (camcorder) focused on an

exit road. At the time of recording data, the sensor parameters such as location, focal

length, etc. were not known. The goal of the experiments was to merely establish an

object detection and tracking system upon which support for multi-sensor input could be

built.

Figure 6.1 : Viewing field of the sensor

The algorithms accept preset values for parameters that are derived iteratively. Parameter

values are applied consistently across the video scene and act as global constraints,

establishing a knowledge base for a potential distributed video sensor network.

6.1.2. Processing

The apparent surface color of an object is determined by source illumination, viewing

geometry and camera parameters. Processing color information can be expensive and is

typically restricted to the pixels that have been obtained from the morphological

operations on the object shape profile. Color information can be operated upon either in

the RGB (Red-Green-Blue) domain or in the HSI (Hue-Saturation-Intensity) domain. In

the RGB domain, isolating color information is not easy since all the three values (R,G,B)

change significantly with illumination. In the HSI domain, the Hue value plays a vital

part in object determination since it does not vary with intensity changes. This is

particularly true when the object is subject to varying illumination levels as under

shadows and under bright sunlight. Hence we attempt to track objects based on proximity

in Hue values after shadows are eliminated. In order to get a Hue signature, the median

hue value of pixels in an object blob is used.

A rectangular region enclosing a detected object was first defined. Pixel values

that were outside the object outline but within the bounding box belong to the surface on

which the object traveled, in this case, the road. The frequency distribution of the hue

values of these pixels was studied and a range of hue values which represented the road

surface was chosen. It was assumed that the hue values of the shadowed region would be

very close to the hue values obtained from the road pixels as the shadow is merely a

region on the road with an illumination level different from its surrounding areas. The

basis for this assumption is the premise that hue value of a surface does not vary with

varying incident illumination. Once the range of hue values corresponding to the shadow

was identified, those pixels in the vicinity of an object with hue values falling in the

'shadow range' were eliminated. These pixels were identified by the motion tracking

algorithm as part of the object as the shadow moved with the same velocity as the actual

object. Once the shadows were eliminated, object hue values obtained were more relevant

to the actual object surface color. This helped in linking object trajectories across the two

datasets with greater accuracy.

6.1.3. Results

In the analysis of the video, we used the mean surface color of the object as a comparison

metric for linking objects across frames. Trajectories of each object were formed based

on the recorded centroid location of the object in consecutive frames. Trajectory

formation was subject to the vector-building parameters. Hence, in frames where the

objects stopped, their centroid locations were undetectable (due to absence of motion),

and this caused their trajectories to fragment. The motion trajectories for the objects in in

the scene analyzed based on different resolutions are shown in Fig. 6.2 below. The

trajectories are plotted on the X-Y plane with time along the vertical axis. Shadow

filtering was performed only on the high resolution analysis due to high loss of object

surface pixels when performing the filtration.

(a) 320*240; 8fps (b) 720*480; 3fps

Figure 6.2: Motion vectors: Low- (a) and High- (b) resolutions

MOA
10000
10000

Table 6.1 : Parameter values for scenes I and 2

Resolution
Low
High

C
0
0

mOA
200

4000

Size
320*240
720*480

FR
8 fps
3 fps

In both the output figures (Fig. 6.2), we see that the trajectories of individual objects are

represented by independent lines over the entire duration of the video. The first figure

(Fig. 6.2a) incorrectly links two separate objects as one and hence the "hairpin" trajectory.

It can clearly be seen that even an object making an about turn would have the portion of

the trajectory where it travels in the opposite direction, still pointing in the increasing

direction of the Z-axis (frames, as a representative of time).

In the actual video, the objects do move linearly and hence the first output is

wrong as it connects two objects because they appear to have similar properties. The

same error does not occur in the high-resolution data output. High-resolution data offers

better accuracy whilst entailing significantly longer processing times than lower

resolution data. In this example, the ratio between higher- and lower- resolution data is

4.5 ((720*480)/ (360*240)). This means that the processing time is 4.5 times longer in

the case of the high-resolution data for the same duration of video. This can be somewhat

mitigated by reducing frame rate (by a factor of 2.67 (813) in our case). However,

reducing frame rate can cause linking errors in a high-volume dataset. Hence, a proper

balance has to be struck by studying the potential characteristics of a geospatial network.

Further, in this case two different objects were merged in the first output because of using

only a selection of all possible parameters (color). A more complete description of the

object's properties could help avoid linking errors.

6.2. Experiments with synthetic data

In order to demonstrate our clustering-based object matching approach, we conducted an

experiment based on synthetically-generated data. We generated the datasets to act as

object profiles extracted from real-world video data in a multi-sensor-monitored traffic

network. The aim of the experiment was to generate a large number of objects (M O O) per

dataset in order to simulate a real-world traffic network with a high density of moving

vehicles (e.g., a highway).

6.2.1. Data generation

For dataset generation we used actual signatures of five distinct objects captured with real

cameras in our university campus (see Table 6.2). Their radiometric and geometric

properties (color, area and compactness are reported here) were extracted and served as

seed values to generate our synthetic datasets. These seed values were subjected to the

application of random errors (using a pre-defined standard deviation) in order to generate

multiple object instances within five classes that correspond to the seed objects. Then,

datasets were generated comprising three of these classes and an additional random class,

with randomly generated properties (see Table 6.3).

Table 6.2: Reference dataset seed values in three domains

Class
1
2
3
4
5

Area
2500
4100
5700
9300
7700

Spectral Value (R, G, B)
104 230 240
128 10 10
2221 18
235 55 46
255 206 207

Compactness
0.21
0.36
0.49
0.72
0.59

Table 6.3: Composition of synthesized datasets: '0' refers to randomly generated data

Dataset

The combination of classes in each datasets is such that there is some overlap between

any two datasets, indicating instances where a car moved from the field of view of one

sensor onto the field of view of another. Data that are not common to two datasets but

present in one of them represent objects that crossed the field of view of one sensor only

in our hypothetical network. Randomly generated datasets (represented by '0' in Table

6.3) would be interpreted in such a manner.

6.2.2. Clustering

After the artificial datasets were generated, each dataset was subjected to a clustering

algorithm that grouped objects together based on similarity in a single attribute. The

clustering started with a predefined number of classes. Based on a migrating-means

approach, the clusterer grouped objects whose value in an attribute-domain (say, Area)

fell within a certain threshold. During the second iteration, the class means were refined

by taking the mean of the attribute values of the member objects in each class. The new

mean values were then used to reclassify objects. The same process was repeated once

more and if the class mean values changed little, the clustering process was stopped. The

clustered objects were then compared to those in another dataset based on the closeness

of the classes they belonged to.

Reference classes
(200 objects each)

Deviation from
reference (%)

Total
objects

6.2.3. Results

The objects detected in one dataset were matched to those in another by first clustering

each dataset. The clustering was based on a simple Euclidean-distance based clusterer

that grouped objects into one of a predefined number of classes based on the proximity of

the object. The clustering algorithm is based on the ISODATA algorithm for classifying

digital images. The clustering algorithm worked by iterating over the datasets more than

once in order to first determine initial mean seed values for the clusters and then grouping

objects in subsequent iterations, while refining the mean values. The results of the

comparison are shown in Fig. 6.3.

Ama Compactness

I Dlllolt 7 Dl6111

Cdor

Figure 6.3: Results of the comparison (a,b,c) separately and (d) in all domains together

(a) Object matches with area alone (b) Object matches with compactness

Final

I. 200 3M 4M 500 6M 7M 800 9M

0 6 - 1 1

0

D.UY1 1

(c) Object matches with color alone
2m I_

(d) Object matches with all three domains

Table 6.4: Tabulation of object matches in all dataset pairs

Dataset 1 2 1 3 1 4

In Fig. 6.3, objects in dataset-1 that did not map to any object in dataset-4 lie on the X-

axis. The comparison between two objects is based on a simple computation of percent

change in the parameters from one of the objects. If it fell within an acceptable threshold,

the object was added to a table of 'possible matches'. When all objects in a dataset were

compared to the current object in the other, the matching table was sorted. The object that

had the least change in comparison to the current object was chosen as its match in the

other dataset. Successful matches were eliminated from the pool in order to speed up the

process. In a real-time system where newly detected objects are compared to those that

already exist in the database, time-consuming comparisons could sIow down the system

and will give rise to performance issues. On an average, our system took around 36

seconds to compare 1600 objects in the database. After matches were obtained in

individual domains, they were consolidated by choosing the match that appeared in more

than one domain. In inconclusive cases, the match was determined as 'null'. The system

could be extended by assigning leveIs of confidence to each attribute (color, compactness

etc.). In cases where the matches conflict with one another, the match that is in the

domain with a greater degree of confidence could be chosen over the rest. As of now, all

attributes were assumed to have been measured with the same level of accuracy.

1 1 399 1 181 1 286

6.3. Experiments with data from multiple sensors

To demonstrate the validity of our approach of multi-component object signatures, we

recorded data using eight video sensors with disjoint views of a traffic scene and

processed the data to obtain object information in multiple domains. The object

signatures were then used to build indexes for each dataset that ordered objects according

to the value of their attributes. The objects were then clustered and object comparison

proceeded by comparing object clusters first and then comparing objects in the matching

clusters.

6.3.1. Data collection

Data was recorded at eight different locations on the University of Maine campus using

digital camcorders mounted on tripod. The camcorders recorded data for a period of

nearly 45 minutes starting at nearly the same time of the day. The locations and extents of

their coverage are shown below in the following figure:

Figure 6.4: Map of the University of Maine campus showing the location of sensors 1-8

The sensors were placed in such a way that they covered the flow ofthe bulk oftraffic on

the eastern wing of the university campus. All the sensors had an elevated view of the

terrain below as they were placed at window sills of the buildings in which they were

located. The illumination changed considerably in certain sensor locations due to changes

in weather. The data recorded by each camcorder was of a fiamesize of 720x480 and 30

Qs. When transferred to the computer, the data was reduced to a size of 360x240 and 10

fps as the fiequency of vehicles in each video was not too high and also the size of the

vehicles in the encoded video was adequate enough for the purposes of our experiment.

This conversion of the datasets ensured that processing time was cut down significantly

but at very little compromise on the tracking accuracy.

6.3.2. Processing

The eight videos recorded by the sensors were individually processed in order to derive

motion information. Each video was processed using the motion detector and motion

tracking algorithms. Based on input parameters, a number of objects was extracted, with

multiple characteristic-attributes (area, compactness, R, G, B, average speed and

acceleration), from each video. The input parameters for the processes of motion

detection and tracking were generated from the previous experiments with single feeds.

Absolute mode of AFD was used in order to preserve the shape of the detected object.

The following table lists the values for the input parameters for the motion detection and

tracking algorithms:

Table 6.5: Parameters used for object detection and tracking

79

Figure 6.5: (a) Frame fiom the original video, (b) Scatter plot of object centroids

The above figure (Fig. 6.5a) shows a frame from one of the videos. The adjacent figure

(Fig. 6.5b) shows a scatter plot of all the object centroids in the video. The outline of the

tree as well as the plant in the edge of the frame is visible in the scatter plot. Due to the

windy weather at the time of the video capture, the leaves in the plant and trees moved

for considerable length in the video and hence accumulation of fiames was not

completely successfbl in eliminating unwanted object points due to the plant movement.

Using a higher value for the frame accumulation rate could have resulted in obliteration

of some infrequent but valid objects.

After each video was processed, object signatures (area, compactness, mean

surface color, average speed, acceleration and direction of motion) in the spectral,

geometric and spatio-temporal domains were obtained. 1n addition to that information,

object centroids were obtained for each fiamne in which the corresponding object

appeared. Knowledge of centroid locations helps us to build object trajectories for each

sensor view. A sample output is shown below in Fig. 6.6, where three sensor views and

the trajectory plot for each sensor are shown.

Moving Object Trajectories
...................... 300 . . . '.

Moving Object Trajectories
......................................

y (row pixels) 5

Mov~ng Object Trajectories

Figure 6.6: (top row) Frames from videos taken at sensors 3,5,7 (bottom row) Trajectory

plot for all objects in each video

Object attributes were then used to build indexes for each domain in each video feed. As

already described in Chapter 5, indexing was implemented as a simple ordering of objects.

Once indexes were created for each dataset, clusters were built from analyzing the indices

for similar values. The clustering was based on a K-means algorithm. The software

program used for the clustering algorithm was the public domain Fuzzy Clustering and

Data Analysis Toolbox written by Balms Balasko, Janos Abonyi and Balms Feil,

available from the website of Mathworks Inc. An arbitrary number (four) of clusters was

chosen to be constant throughout all domains. The following figure shows a clustering of

the "Area" attribute of objects detected in the fxst dataset, with five clusters:

Figure 6.7: Clustering results for the "Area" attribute of the first dataset

Table 6.6: A sample object fiom the first dataset

After clusters are generated in each dataset, we begin the process of comparing individual

objects in two datasets. 'The comparison first starts a comparison between the clusters in

each of the two datasets. This step is necessary to ensure that only relevant objects are

compared. This step can be likened to comparing hypothetical objects that possess the

cluster means as their attribute values. Once a correspondence between the clusters in two

datasets is established, object comparison can proceed further. In order to make sure that

object comparisons are unbiased by local errors, we need to bring all object attribute

values to a uniform scale. In the datasets we have captured, the size of objects is one

attribute that varies greatly across datasets. Based on apparent variations between datasets,

weights are assigned to each dataset to scale the size values of each object during the

process of comparison. During object comparison, only those objects are checked whose

clusters are similar. Also, in order to avoid redundant comparisons, only a subset of the

possible pairs of datasets is compared, as seen in the following table:

Table 6.7: Dataset-pairs marked by "-" are redundant and are not involved in the

comparison process. Those marked by "*" were considered.

A single object comparison (Objim == ObjJn) follows the following rule-scheme

The following differences are defined:

A potential match is chosen:

iff (6.1) < thresholdl and iff (6.2) < threshold2 and iff (6.3) < threshold3 (6.5)

If (6.5) is fulfilled, ~ b j , is chosen as a possible match mk for Objim. In order to pick the

most relevant match out of a set of k matches, we choose the object for which (6.la),

(6.4a), and (6.4b) are the least. A list of matches is built in this manner for all objects in

both datasets. The same process of comparison is repeated for each pair of datasets

marked by "*" in Table 6.7.

A sample final match-list is produced below in Table xx. The two videos

compared were short (30 sec.) segments of datasets 1 and 3. The table on the left (Table

xx.a) shows the results obtained by comparing the objects in both videos solely on the

basis of their mean surface color and the one on the right shows the results obtained by

subjecting the objects to a multi-stage comparison based on their signatures.

Table 6.8: (a) Match results obtained from color-based comparison (b) Match results

obtained from multi-component signature-based comparison

Matches with a "0" refer to no possible matches. In the first case, the matching accuracy

is a low 46%. While a pure color-based comparison usually yields good performance, the

reason for the poor match is due to the presence of occlusions (trees) in one of the videos.

Normally, using color information and proximity as an auxiliary measure, a fairly reliable

matching can be obtained. With occlusions, proximity cannot be used as a means to

verify matches as spatial continuity is lost during the period of occlusion. In the case of

the multi-component signature matching, the accuracy for the same pair of datasets is

73%. The main inference fi-om this result is that even with occlusions, a multiple

attribute-based matching scheme offers more scope for accuracy due to the mere fact that

with more information about the ob-iects at hand, a more reliable matching can be

performed.

6.3.3. Results

The results of processing the eight datasets confirm the validity of our approach in

matching moving objects detected in disjoint video streams. The parameters used for

detecting and building objects were chosen so that all valid objects were detected.

However, a lot of unwanted objects (caused by background motion) were also detected as

a result. The breakup of the object matches between the various pairs of datasets is

presented in Table 6.9. The topmost row shows the number of objects detected in each

dataset and the leflmost column shows the dataset to which those in the topmost row are

compared. The number of object matches indicates only the object correspondences

between each dataset, based on multi-component signatures. It does not indicate the

percentage of successful matches as it would be virtually impossible to verify each and

every match, and if so whether it is the best match. Further, the number of objects

common to two datasets may not be the only objects appearing in both. Added to the non-

common objects are unwanted objects that might have crept in due to the relaxed value of

the frame accumulation rate.

Table 6.9: Object matches across eight datasets

On an average, each dataset contained more than 3,000 objects (including valid objects

such as cars and bikes, and unwanted moving objects like pedestrians and background

motion) in an approximate duration of 45 minutes. To compare each object in a dataset

individually in a pairwise comparison over four attributes with those in another dataset

would have resulted in 3,00Ox3,000x4 = 36 million operations. However, by clustering

objects into four classes, only the relevant classes are compared. This brought in a

significant reduction in processing time. For a real-time system operating with constraints

on reporting times, it is essential to eliminate redundant processing cycles. Our

clustering-based object motion analysis approach is well-suited for such an application.

Chapter 7

CONCLUSIONS AND FUTURE WORK

7.1. Summary

In this research, we sought to solve the problem of establishing a semi-autonomous

computer-based system for processing and analyzing video streams obtained from

multiple video sensors having non-overlapping views of a terrestrial network (region).

The problem involved a multitude of parameters and variables. System variables included

location of sensors, sensor intrinsic parameters such as sensor view angle, scale factor,

altitude. The video capturing system was also not assumed to be robust or, in other words,

totally error-free. The design of the system was envisioned to work with error-prone data

and yet produce acceptable and timely results. The major outputs of the system included

location and description of the moving objects in the different video streams. Derived

outputs include trajectories of the object across multiple sensor-views. In the course of

the development of the video analysis system, a limiting case was first considered and

then generalized to hold good for a complex sensor network scenario. Initially,

algorithms were developed for the case of a single video sensor. The aim was to develop

techniques to detect motion in a video and construct objects from the detected moving

regions.

7.1.1. Algorithms

The fundamental algorithm underlying the video analysis system is the object comparison

technique based on multi-dimensional signatures. The preliminary object information is

obtained by means of a frame differencing algorithm. The frame differencing algorithm is

fairly popular in the computer vision domain for the primary reason that it offers superior

accuracy at very little processing cost. Since all video analysis tasks revolve around the

central technique of matrix manipulations, it is very desirable to reduce the fundamental

complexity of the algorithms as an iterative processing of a video using a complex

algorithm could prove to be computationally expensive and also slow in producing results.

The basic differencing algorithm was modified to incorporate a "memory" of sorts to

eliminate false positives from the list of moving regions. The differenced video data was

then processed using pixel-level morphological operators to build objects from moving

regions in the video. These two algorithms constituted the backbone of the single-sensor-

based tests. When a high level of detection accuracy was achieved, the algorithm was

further developed to enable processing of multiple video feeds and match objects

detected in each of them.

The core concept behind the multiple-sensor-suitable system is that of multi-component

object signatures. Using the attribute information derived for each object fiom each video,

a composite signature is constructed which is used for matching the object to its instances

in other video feeds. By means of user-defined weights for rating the quality of the

attribute data, the accuracy can be held consistent even in the face of changing ambient

conditions that adversely influence the quality of data recorded at each video sensor.

Further accuracy in generating results is by bringing all the data values of two

comparable objects to the same scale. Often, local factors such as changing illumination

could seriously affect the accuracy with which two objects can be matched. This issue

was addressed by bringing in the concept of spectral angles (analogous to "spectral

signatures" of physical objects in remote sensing terminology) for defining the instrinsic

color characteristics of detected objects. Another source of error is trailing shadows of

objects caused by the oblique position of the sun in the sky. Shadows cannot often be

removed by differencing because they travel with the same velocity as the object and are

"attached" to the object. We incorporated a shadow removal algorithm in our analysis

system which removed shadow pixels fi-om an object's shape profile by performing a

neighborhood search on "blacklisted" hue values.

7.1.2. Evaluation of the algorithms

For the single-sensor-based tests, we captured datasets with objects undergoing simple

motion. The objects in question followed predetermined paths. The reason for

predefining the motion path was to create a scenario where objects moved back and forth

and in opposite directions at different points of time. Besides, objects of different sizes

(cars, people etc.) were also involved in the video shoot to test for the efficiency of the

motion analysis algorithms in detecting objects of varying sizes. Another added

complexity was the deliberate coverage of areas of different background illuminations to

check for the robustness of the algorithm. With all these constraints, the algorithms

performed very well and produced accurate tracking results. In the multiple-sensor-based

tests, we captured video feeds from sensors distributed at different points on the

university campus. We made sure that each sensor had a totally disjoint view of the scene

as compared to the adjacent sensors. The data capture was started at nearly the same time

to ensure common objects in more than one of the captured video feeds. The video feeds

were processed independently first to obtain lists of objects in each of them, along with

their respective attributes in the three domains - spectral, spatial and spatio-temporal. The

generated data was used to build signatures for each object and consequently, an object

index for each dataset. The index was then clustered on each attribute to reduce the

complexity of matching objects across multiple feeds. The actual object comparison

proceeded after cluster matches were obtained. This ensured that redundant processing

cycles were avoided for performing a direct one-to-one comparison. The results of the

object matching confirm our hypothesis that a multi-dimensional object signature enables

in obtaining better accuracy in object detection and matching.

7.2. Conclusions

Several conclusions were drawn during the course of this research on the characteristics

of the original problem - object matching across multiple feeds. Firstly, the ambient

environment for this problem space is highly variable. Multiple natural factors strongly

influence the way in which raw visual data is recorded on the motion of objects on a

terrain. Any system that seeks to establish an autonomous monitor should be built

keeping this factor in mind. The system has to be designed to withstand the negative

effects of the environmental factors as they influence the basic binary accuracy (passlfail)

of the matching process. Other factors, such as background clutter, subtly influence the

final matching accuracy. An example where they play a role would be where the

trajectories of two similar objects could be "knotted" by the system, due to both of them

traveling very close to each other (because of traffic conditions). The system should, thus,

be able to discriminate two similar (in terms of color, size, shape, or motion) objects.

Another important conclusion is that an object motion analysis system based on video

sensors should be as minimally complex as possible. Video processing is quite different

from conventional image processing in the fact that the process is basically iterative (over

multiple digital images, or frames). This adds a further level of complexity to any

algorithm and basically delays the time by which the results of an image processing can

be obtained. Keeping this in mind, a video analysis system should thus be based on a

simple, though not at the expense of the final accuracy, algorithm. The fundamental

iterative (over all pixels in all frames) algorithm in our system is a subtractive process

that requires the least of system resources for its processing and executes fast compared

to costly filter-based operations such as edge detection.

Further, while some time can be sacrificed for extracting object information from a video,

the process of matching objects must take the least amount of time possible. In the initial

stage, the input is a huge data, basically, a video with multiple frames and each frame

with thousands of pixels. After the process of video analysis completes, the output is a

mere few data records (of object information) per frame which can be analyzed in much

quicker time. An object comparison algorithm cannot waste time on redundant (Objl:0bj2

and 0bj2:0bjl) and/or invalid comparisons (red-colored 0bject:blue-colored object). For a

real-time object detection system, all the above conclusions hold good. As final

concluding note, our system is well-suited for a real-time application as it was designed

keeping all these factors in mind.

7.3. Deployment scenarios

Our experiments were only constructed to act as ''proofs of concept" or validators of our

hypothesis, but we envisage that our approach can be successfully implemented to solve a

variety of practical real-world applications. One representative application is standard

traffic monitoring.

Raw Mso M a

I____
Central ob'pd reparllory

Figure 7.1: Possible configuration of a traffic-monitoring system based on our approach

A typical road traffic network consists of hundreds, if not more, of vehicles of different

sizes and shapes. Furthermore, they also vary in their hues and shades, not to mention

their vastly different motion characteristics. This makes it an ideal situation for

implementing our approach of multi-dimensional object indexing and linking. A real-

time system for monitoring the traffic could be constructed on the lines of Fig. 7.1. The

network shown in this figure comprises four sensor nodes. Each sensor node (shown as

SN,) is an integrated video analysis system which consists of several distinct components

like, video sensor, data pre-processor, video data analyzer, and wireless data transmitter.

The video sensor captures raw video data at a preset spatial resolution, frame rate and

color depth. This data is sent to a pre-processor to optimize the raw video data for hrther

processing. A pre-processor could be an integrated circuit board specifically designed to

downsample video data. The processed video data is then sent to the video data analyzer,

which is basically a dedicated computer/circuit board fabricated for the purpose of

motion detection, object tracking and indexing. The data analyzer takes in the sensor

calibration data as auxiliary input to scale the intermediate object attribute information.

The final output of the analyzer is a list of objects as well as their multi-dimensional

signatures.

The output is transmitted to a central object repository where the information sent

from all the sensors is maintained in a database. The repository, thus, maintains an "index

of indices", meaning that it holds a list of object attribute lists which could be used for

future object comparisons. The advantage of processing captured video at the sensor

node-level is that precious wireless bandwidth need not be wasted in transmitting raw

video data to a central processor. Further, it would be impossible to process the video

data relays of all sensors at the same time by a central processor. For a real-time

application like traffic monitoring, it would be best suited to process data at the node-

level and use the central processor only for the purposes of object signature analysis and

subsequent comparisons. The object database could be used to build a knowledge base of

object classes such as school buses, 4 x 4 trucks, or bicycles. This could improve the

accuracy with which objects can be compared in future comparisons, as knowledge of

object classes would enable the system to instantly label an object instead of subjecting it

to a standard clustering procedure. Our approach was implemented in a MATLAB@

environment which is very fast for the purposes of implementation but is not optimized

for commercial deployment due to the interpretation of user code. Using a compiling

language like C++ could increase the throughput of the system significantly. Best results

would of course be achieved only by a hardware implementation. However, more

research needs to be done in the area of formalizing many of the arbitrarily-held

parameters in our approach so that the algorithm is more suited to a hardware

implementation.

7.4. Future Work

Future research in this domain could proceed in the direction of constructing a real-time

system that works in an encapsulated fashion. In our case, the system was designed to act

as a concept-machine. Further development could be in increasing system throughput by

optimizing the program code. The concept of assigning weights to different object

attributes could be studied in a formal manner and a theoretical basis for the same could

be established. At present, the weights are user-defined and are dependent on the

judgment of the user. By tying down the weights to an intrinsic calibration mechanism,

the object comparison could be made more accurate. Another improvement could be in

the area of object data normalization. Using GPS location data, camera parameters could

be established, using which the normalization could be made more accurate. Another

important enhancement could be in the direction of creating a formal object database.

This could form the basis for a knowledge base, which ultimately would enable definition

of object classes (buses, trucks, cars etc.) with more accuracy.

BIBLIOGRAPHY

V. R. Agazi, G. E. Ford, A. I. El-Fallah, and R. R. Estes, Jr. (1995) Preprocessing for

improved performance in image and video coding, Proceedings of SPIE:

Applications of Digital Image Processing XVIII, Vol. 2564, pp. 22-3 1

J. Alon and S. Sclaroff (2000) Recursive Estimation of Motion and Planar Structure,

IEEE Conference on Computer Vision and Pattern Recognition, South Carolina

A. Amer (2005) Voting-Based Simultaneous Tracking of Multiple Video Objects, IEEE

Transactions on Circuits and Systems for Video Technoloay, Vol. 15, No. 11, pp.

1448- 1462

A. Azarbayejani and A. P. Pentland (1995) Recursive Estimation of Motion, Structure,

and Focal Length, IEEE Transactions on Pattern Analysis and Machine

Intelligence, Vol. 17, No. 6, pp. 562-575

J. R. Bergen, P. Anandan, K. J. Hanna, and R. Hingorani (1992) Hierarchical Model-

Based Motion Estimation, Proceedings of the Second European Conference on

Computer Vision, pp. 237 - 252

J. R. Bergen, P. J. Burt, R. Hingorani, and S. Peleg (1990) Computing Two Motions from

Three Frames, International Conference on Computer Vision, pp. 27-32

M. J. Black and D. J. Fleet (2000) Probabilistic Detection and Tracking of Motion

Boundaries, International Journal of Computer Vision, 38(3), pp. 23 1-245

S. M. Brennan, A. M. Mielke, D. C. Torney, and A. B. Maccabe (2004) Radiation

detection with distributed sensor networks, IEEE Spectrum, pp. 57-59

M. J. Brooks, W. Chojnacki, A. Hengel, and L. Baumela (1998) Robust Techniques for

the Estimation of Structure From Motion in the Uncalibrated Case, European

Conference on Computer Vision, Freiburg, Germany, pp. 28 1-295

T. Camus and H. H. Biilthoff (1995) Real-Time Optical Flow Extended in Time, Max-

Planck Institut f i r biologische Kybernetik, Technical Report No. 13

M. M. Chang, A. M. Tekalp, and M. I. Sezan (1997) Simultaneous Motion Estimation

and Segmentation, IEEE Transactions on Image Processing, Vol. 6 , IVo. 9, pp.

1326- 1333

P. Chang and Martial Hebert (2000) Omni-directional Structure from Motion, IEEE

Workshop on Omnidirectional Vision (OMNIVIS100), pp. 127- 133

I. Cohen and G. Medioni (1998) Detecting and Tracking Moving Objects in Video from

an Airborne Observer, DARPA Image Understanding Workshop, Monterey

R. T. Collins (2003) Mean-shift Blob Tracking through Scale Space, IEEE Conference on

Computer Vision and Pattern Recognition, Madison, Wisconsin

D. Comaniciu and V. Ramesh (2000) Mean Shift and Optimal Prediction for Efficient

Object Tracking, IEEE International Conference on Image Processing, Vol. 3, pp.

70-73

D. Comaniciu, V. Ramesh, and P. Meer (2000) Real-Time Tracking of Non-Rigid

Objects using Mean Shift, IEEE Conference on Computer Vision and Pattern

Recognition, Hilton Head Island, South Carolina

D. Cremers (2003) A Variational Framework for Image Segmentation Combining Motion

Estimation and Shape Regularization, IEEE Conference on Computer Vision and

Pattern Recognition, Madison, Wisconsin

D. Cremers and A. Yuille (2003) A Generative Model Based Approach to Motion

Segmentation, German Conference on Pattern Recognition, Magdeburg,

Germany

D. Cremers and S. Soatto (2003) Variational Space-Time Motion Segmentation,

International Conference on Computer Vision, Nice

D. Culler, D. Estrin, and M. Srivastava (2004) Overview of sensor networks, IEEE

Spectrum, pp. 41-49

A. Chachich, A. Pau, A. Barber, K. Kennedy, E. Olejniczak, J. Hackney, Q. Sun, and E.

Mireles (1996) Traffic sensor using a color vision method, Massachusetts Institute

of Tec hnology, Center of Transportation Studies, Cambridge, Massachusetts

Y. Deng, D. Mukherjee, and B. S. Manjunath (1998) IVeTra-V: Towards an Object-based

Video Representation, Proceedings of SPIE: Storage and Retrieval of Image and

Video Databases VI, pp. 202-2 13

H. Eltoukhy and K. Salama (2002) Multiple Camera Tracking, Stanford image sensors

group, Electrical Engineering Department, Stanford University.

V. Estrela, L. A. Rivera, M. H. S. Bassani (2004) Pel-Recursive Motion Estimation using

the Expectation-Maximization Technique and Spatial Adaptation, International

Conference in Central Europe on Computer Graphics, Visualization and

Computer Vision, Plzen-Bory, Czech Republic

B. Galvin, B. McCane, K. Novins, D. Mason, and S. Mills (1998), Recovering Motion

Fields: An Evaluation of Eight Optical Flow Algorithms, Proceedings of the

Ninth British Machine Vision Conference

A. Hampapur, L. Brown, J. Connell, A. Ekin, N. Haas, M. Lu, H. Merkl, S. Pankanti, A.

Senior, C. Shu, and Y. L. Tian (2005) Smart Video Surveillance, IEEE Signal

Processing Magazine, pp. 3 8-5 1

M. Hanmandlu, S. Vasikarla, and V. K. Madasu (2003) Estimation of Motion fiom a

Sequence of Images using Spherical Projective Geometry, International

Conference on Information Technology: Computers and Communications, pp.

54 1-545

B. K. P. Horn and B. Schunck (1981) Determining Optical Flow, ArtiJicial Intelligence,

. - Vol. 17, pp. 185-203

G. Iannizzotto and L. Vita (2002) On-line Object Tracking for Colour Video Analysis,

Real- Time Imaging, 1 45- 1 5 5

M. Irani (1999) Multi-frame Optical Flow Estimation using Subspace Constraints, IEEE

International Conference on Computer Vision, Corfu

Ch. Jaynes (2004) Acquisition of a Predictive Markov Model using Object Tracking and

Correspondence in Geospatial Video Surveillance Networks, GeoSensor

Networks, pp. 149- 166

A. D. Jepson, D. J. Fleet, and M. J. Black (2002) A Layered Motion Representation with

Occlusion and Compact Spatial Support, European Conference on Computer

Vision (ECCV, Copenhagen, Vol. I, pp. 692-706

T. K. Kate, M. B. Leeuwen, S. E. Moro-Ellenberger, B. J. F. Driessen, A. H. G. Versluis,

and F. C. A. Groen (2004) Mid-range and distant vehicle detection with a mobile

camera, IEEE Intelligent Vehicles Symposium, pp. 72-77

S. Khan and M. Shah (2003) Consistent Labeling of Tracked Objects in Multiple

Cameras with Overlapping Fields of View in IEEE Transactions on Pattern

Analysis and Machine Intelligence, Vol. 25, No. 10, pp. 1355- 1360

A. .I. Lipton, H. Fujiyoshi, and R. S. Patil (1998) Moving Target Classification and

Tracking from Real-time Video, DARPA Image Understanding Workshop,

Monterey

.I. MacCormick and A. Blake (1998) A Probabilistic Contour Discriminant for Object

Localisation, Proceedings of the International Conference on Computer Vision

K. Martinez, J. K. Hart, and R. Ong (2004) Environmental sensor network applications,

IEEE Spectrum, pp. 50-56

D. Murray and A. Basu (1994) Motion Tracking with an Active Camera, IEEE

Transactions on Pattern Analysis and Machine Intelligence, Vol.. 16, No. 5, pp.

449-45 9

K. Nummiaro, E. Koller-Meier, and L. Van Goo1 (2002) A Color-based Particle Filter,

1st International Workshop on Generative-Model-Based Vision, pp. 53-60

N. Ohta and K. Kanatani (1995) Optimal Structure from Motion Algorithm for Optical

Flow, IEICE Transactions on Information and Systems, Vol. E78-D, No. 12, pp.

1559-1 565

J. Oliensis (1999) A Multi-frame Structure-from-Motion Algorithm under Perspective

Projection, International Journal of Computer Vision, Vol. 34, pp. 163- 192

N. Peterfreund (1999) Robust Tracking of Position and Velocity with Kalman Snakes,

IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 21, No. 6,

pp. 564-569

R. Pless, T. Brodsky, and Y. Aloimonos (2000) Detecting Independent Motion: The

Statistics of Temporal Continuity, IEEE Transactions on Pattern Analysis and

Machine Intelligence, Vol. 22, IVo. 8, pp. 768-773

Y. Raja, S. J. McKenna, and S. Gong (1998) Colour Model Selection and Adaptation in

Dynamic Scenes, Department of Computer Science, Queen Mary and Westfield

College, England; Department of Applied Computing, University of Dundee,

Scotland.

S. Saltenis and C. S. Jensen (2002) Indexing of Moving Objects for Location-Based

. - Services, Department of Computer Science, Aalborg University

0 . Shakernia, R. Vidal, and S. Sastry () Infinitesimal Motion Estimation from Multiple

Cameras, IEEE Workshop on Vision and Motion Computing, Orlando, FL, pp.

229-234

J. Shin, S. Kim, S. Kang, S. Lee, J. Paik, B. Abidi, and M. Abidi (2005) Optical Flow-

based Real-Time Object Tracking using Non-Prior Training Active Feature

Model, Elsevier Real-Time Imaging, Vol. 1 1. pp. 204-2 18

S. Soatto and P. Perona (1994) Recursive Estimation of Camera Motion from

Uncalibrated Image Sequences, IEEE International Conference on Image

Processing, Austin, pp. 58-62

S. Soatto, P. Perona, R. Frezza, and G. Picci (1993) Recursive Motion and Structure

Estimation with Complete Error Characterization, IEEE Conference on Computer

Vision and Pattern Recognition, New York

C. Stauffer and W. E. L. Grimson (2000) Learning Patterns of Activity using Real-Time

Tracking, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.

22, No. 8, pp. 747-757

A. Stefanidis, K. Eickhorst, P. Agouris, and P. Partsinevelos (2003) Modeling and

Comparing Change using Spatiotemporal Helixes, ACM-GISJ03, ACM Press, pp.

86-93

A. Stefanidis, Ch. Georgiadis, P. Agouris (2003) Registration of Urban Imagery to VR

Models Through Radiometric Queries, Videometrics VII, SPIE Proceedings, Vol.

5013, pp. 176-1 85, Santa Clara, CA

A. Stefanidis and S. Nittel(2004) GeoSensor Networks, CRC Press, Boca Raton.

A. Strehl and J. K. Aggarwal (2000) A New Bayesian Relaxation Framework for the

Estimation and Segmentation of Multiple Motions, IEEE Southwest Symposium

on Image Analysis and Interpretation, Austin, Texas, USA

R. Szeliski and S. B. Kang (1993) Recovering 3D Shape and Motion fiom Image Streams

using Non-Linear Least Squares, tech. report, Robotics Institute, Carnegie Mellon

University

H. Tao, H. S. Sawhney, and Rakesh Kumar (2002) Object Tracking with Bayesian

Estimation of Dynamic Layer Representations, IEEE Transactions on Pattern

Analysis and Machine Intelligence, Vol. 24, IVo. 1, pp. 75-89

W. B. Thompson (1 998) Exploiting Discontinuities in Optical Flow, International

Journal of Computer Vision, pp. 163- 173

P. H. S. Torr (1996) Geometric Motion Segmentation and Model Selection,

Philosophical Transactions of the Royal Society A, pp 1 32 1-1 340

P. H. S. Torr, R. Szeliski, and P. Anandan (2001) An Integrated Bayesian Approach to

Layer Extraction from Image Sequences, IEEE Transactions on Pattern Analysis

and Machine Intelligence, Vol. 23, No. 3, pp. 297-303

G. Tziritas (1992) A New Pel-Recursive Kalman-based Motion Estimation Method,

European Signal Processing Conference, pp. 1 34 1 - 1 344

N. Vasconcelos and A. Lippman (1997) Empirical Bayesian EM-based Motion

Segmentation, IEEE Conference in Computer Vision and Pattern Recognition,

San Juan, Puerto Rico

- V. Venkataraman, S. Srinivasan, and A. Stefanidis (2004) Object Color Propagation

Across Disjoint Camera Feeds, IEEE International Conference on Image

Processing, Singapore.

K. N. Walker, T. F. Cootes, and C. J. Taylor (1998) Locating Salient Object Features,

Proceedings of the Ninth British Machine Vision Conference

J. Y. A. Wang and E. H. Adelson (1993) Layered Representation for Motion Analysis,

Proceedings of the IEEE Computer Vision and Pattern Recognition Conference,

New York, pp. 361 -366

J. Weber and J. Malik (1994) Robust Computation of Optical Flow in a Multi-Scale

Differential Framework, International Journal of Computer Vision, Vol. 2, pp. 5-

19

J. Weber and J. Malik (1997) Rigid Body Segmentation and Shape Description from

Dense Optical Flow Under Weak Perspective, IEEE Transactions on Pattern

Analysis and Machine Intelligence, Vol. 19, No. 2, pp. 139-143

J. Wei (2002) Color Object Indexing and Retrieval in Digital Libraries, IEEE

Transactions on Image Processing, 1 1 (8), pp. 9 12-922

J. S. Zelek (2002) Bayesian Real-Time Optical Flow, International Conference on Vision

Interface, Calgary, Canada

Y. Zhou and H. Tao (2003) A Background Layer Model for Object Tracking through

Occlusion, IEEE International Conference on Computer Vision and Pattern

Recognition, pp. 1079- 1085

BIOGRAPHY OF THE AUTHOR

Sabeshan Srinivasan was born in the lovely coastal city of Vishakhapatnam,

Andhra Pradesh state, India on June 11, 1981. He was raised in different cities in India.

He spent the first decade of his life in the eastern metropolis of Kolkata, where he

received his elementary and middle schooling. His family moved to the southern metro

Chennai, where he has stayed since 1992. He received his high school diploma there and

went on to pursue his undergraduate degree (Bachelor of Engineering) in Geoinformatics

Engineering at the College of Engineering, Guindy (CEG), Anna University. CEG is one

of the oldest engineering colleges in the world, having been established in 1794.

After completing his B.E. degree, he arrived in the United States in the fall of

2003 when he started on his Master of Science program in Spatial Information Science

and Engineering at the Department of Spatial Information Science and Engineering, the

University of Maine, Orono. After receiving his degree, Sabeshan will be joining ESRI

Inc. as a software developer to kickstart his career in GISIDatabase development.

Sabeshan is a candidate for the Master of Science degree in Spatial Information Science

and Engineering from the University of Maine in May, 2006.

	The University of Maine
	DigitalCommons@UMaine
	5-2006

	Object Tracking in Distributed Video Networks Using Multi-Dimentional Signatures
	Sabeshan Srinivasan
	Recommended Citation

	tmp.1326817314.pdf.4aa6B

