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From being an expensive toy in the hands of governmental agencies, computers have 

evolved a long way from the huge vacuum tube-based machines to today's small but 

more than thousand times powerful personal computers. Computers have long been 

investigated as the foundation for an artificial vision system. The computer vision 

discipline has seen a rapid development over the past few decades from rudimentary 

motion detection systems to complex modekbased object motion analyzing algorithms. 

Our work is one such improvement over previous algorithms developed for the purpose 

of object motion analysis in video feeds. 

Our work is based on the principle of multi-dimensional object signatures. Object 

signatures are constructed from individual attributes extracted through video processing. 

While past work has proceeded on similar lines, the lack of a comprehensive object 

definition model severely restricts the application of such algorithms to controlled 

situations. In conditions with varying external factors, such algorithms perform less 

efficiently due to inherent assumptions of constancy of attribute values. Our approach 



assumes a variable environment where the attribute values recorded of an object are 

deemed prone to variability. The variations in the accuracy in object attribute values has 

been addressed by incorporating weights for each attribute that vary according to local 

conditions at a sensor location. This ensures that attribute values with higher accuracy 

can be accorded more credibility in the object matching process. Variations in attribute 

values (such as surface color of the object) were also addressed by means of applying 

error corrections such as shadow elimination from the detected object profile. 

Experiments were conducted to verify our hypothesis. The results established the validity 

of our approach as higher matching accuracy was obtained with our multi-dimensional 

approach than with a single-attribute based comparison. 
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Chapter 1 

INTRODUCTION 

The use of sensor networks is revolutionizing the way that geospatial information is 

collected and analyzed. In terms of image analysis, traditional satellite- and aerial- based 

static analysis is now complemented by the use of distributed video sensors to capture 

and monitor dynamic events (like the movements of cars and people). This evolution 

towards geosensor networks (Stefanidis and Nittel, 2004) is bringing forward interesting 

research challenges, mainly relating to information integration and analysis. 

Object detection and tracking techniques from motion imagery have improved 

significantly from being exotic automation techniques and are employed in varied fields 

like surveillance, human motion analysis, traffic monitoring (Chachich et al., 1996) and 

human-machine interfaces (Khan and Shah, 2003), security, missile tracking, and rescue 

operations (Eltoukhy and Salama, 2002). Hardware based object tracking systems enable 

real-time processing of captured video data. Most approaches to object tracking across a 

multisensor video network involve comparison of video feeds based one or a few of 

observed physical attributes of objects. While this is feasible for stationary camera 

networks and controlled environments, where external errors such as those caused by 

illumination can be modeled and accounted for in subsequent analyses of data generated 

from these networks, it is difficult to establish the same for mobile camera networks, such 

as a battlefield, where network location and topology changes unpredictably. In such 

scenarios, it would be unrealistic and impracticable to expect a simple error model to 



work. Worse, it is not possible to establish a noise model as the ambient changes are 

often sudden and unexpected. 

This thesis addresses object tracking in video networks distributed in broader 

urban environments, and introduces novel modeling and comparison approaches to 

support persistent object tracking within single and across multiple sensor feeds. 

1.1. Background of Thesis 

Computer vision systems have existed for many years in several applications. The most 

fundamental application of an automatic motion detector would of course be a passive 

device like a detector based on an infrared beam. This worked on the basis of signal loss 

due to interruption by a moving object in the line of sight of the sensor. Automated 

detectors have evolved from such a rudimentary past to advanced robotic cameras that 

consistently track the motion of an object in their field-of-view. Modern object tracking 

systems comprise diverse state-of-the-art sensors like high-resolution video cameras, 

onboard GPS units, and mechanized units for panning the camera in response to object 

motion in its field of view. 

Most common applications for motion tracking are localized surveillance and 

security assessment systems in industrial/commerciaI facilities. Numerous commercial 

establishments like shopping malls or security-sensitive locations like oil refineries 

employ motion monitoring systems that can detect unauthorized intrusion into the 

premises and issue an alert once prolonged suspicious activity is detected. In addition to 

such localized applications we have applications like traffic monitoring systems that are 

network-based, with sensors scattered across a broad geographic area. These applications 



are more challenging in that their processing needs are much greater than static 

applications. Robust models of object properties would help in the establishment of a 

reliable and consistent object labeling mechanism, and the tracking of these objects. Such 

applications also require that individual sensors are in constant correspondence with one 

another such that an ad hoc area-of-interest can be established where objects are tracked 

in greater detail or being followed for studying their activity. 

Far more complicated are systems that involve a set of mobile sensors monitoring 

a variable region of interest. In this case, the sensors move in response to the motion of 

objects in their field of view. Further complication is introduced by the fact that the 

configuration of the network changes frequently, so for example, sensor SII  which was to 

the right of sensor Slz might move to its left in order to continue tracking an object in its 

view. Besides, sensors in such systems need to co-operate with one another such that the 

network always keeps track of a set of objects the user is interested in. It is much more 

difficult to process the video data generated by these systems because of the background 

motion in the video caused by sensor movement. A typical application is aerial tracking 

of sensitive locations by means of unmanned aerial vehicles (UAV). 

1.2. Statement of objective 

The aim of this research and, subsequently, this thesis is to establish a method to 

enable automatic labeling and linking of objects appearing in video data recorded by 

distributed non-overlapping video sensors in a geospatial network. The linking of objects 

will ultimately be useful in the description of the motion path of any object as it moved 

across the network covered by the video sensors. In addition to defining object 



trajectories, other usehl information about detected objects such as their physical 

attributes like mean surface color, shape profile and spatio-temporal behavior can be 

obtained. 

In this thesis, we hypothesize that by extending the currently-used limited 

physical attributes of an object into composite object signatures, we improve our ability 

to track and link objects in distributed non-overlapping video networks. More specifically, 

we propose the use of composite object signatures comprising geometric (e.g. size), 

radiometric (e.g. average surface color), and behavioral properties (e.g. spatiotemporal 

patterns of movement) of this object. Such attributes are typically considered to be 

stochastic values, thus we consider accuracy measures assigned to them, to express their 

participation in dissolving object matching ambiguities. In the content of this thesis, the 

term object matching refers to the identification of the same object in two non- 

overlapping video feeds, at two distinct instances. This is a critical issue for sensor 

network, monitoring, and surveillance applications, as it allows us to collect robust and 

persistent data rather than instantaneous glimpses of a scene. 

1.3. Scope of research 

In this research, we address the issue of object tracking in a geosensor network of 

distributed video sensors. As mentioned before, past approaches to linking objects were 

often based on a single (Saltenis and Jensen, 2002) or limited number of attributes 

(Eltoukhy and Salama, 2002; Chachich et al, 1996). In (Venkataraman et al, 2004), the 

authors considered an object indexing and retrieval scheme based on color alone. Another 

approach deals with indexing objects based on their motion characteristics (Saltenis and 



Jensen, 2002). An interesting approach based on Hidden Markov descriptions of 

positions and traffic flow was presented in (Ch. Jaynes, 2004). However, we propose 

using several object attributes together for the purpose of object matching in different 

video streams. Multi-component signatures, comprising geometric, radiometric, and 

spatio-temporal properties, are defined for each object detected in a video. These 

signatures are used to establish object correspondences and link trajectory segments 

across different non-overlapping feeds. 

1.4. Intended Audience 

This thesis primarily addresses an audience that is related to the domain of geospatial 

networks, especially one involved in video sensors. This thesis may also be of interest to 

researchers and scientists involved in the implementation of such sensor networks for 

applications such as surveillance and monitoring. Image processing-based industries may 

find the object detection algorithm useful for developing real-time object tracking 

software systems. The department of homeland security is also a potential stakeholder 

who could put this research into effective use for monitoring vehicles and troops in 

locations where manual surveillance is not possible or risky. 

1.5. Organization of Thesis 

Chapter 2 describes the various approaches developed by other researchers for addressing 

the issue of motion detection and object-linking. Some motion detection models like the 

pixel motion, Markov and arithmetic are discussed. A basic outline of the object motion 

analysis system described later in the thesis is also discussed. This system is based on the 



principle of multi-component object signature, discussed in later chapters. Further 

discussion is on sensor as well as network parameters and also upon the environment in 

which the system is designed to operate, in terms of internal network configuration as 

well the distribution of motion sensors across a geospatial network. 

In Chapter 3, the problem of object tracking is explained in detail in terms of how 

it is tackled in this research. The core concept of multi-component object signatures is 

discussed later in the chapter. The problems involved in processing datasets containing 

additional motion induced by a moving sensor are also discussed in the chapter. 

Chapter 4 deals with the important concept of indexing objects based on their 

parametric signatures. Object indexing is crucial in linking objects correctly across 

different video feeds. Two possible clustering methods are discussed. We describe the 

method for linking objects in different video sets by means of various comparison 

techniques. The chapter also discusses the trajectory linking process which takes place 

once objects are linked. 

Chapter 5 discusses the results of experiments conducted on a few real-world 

video datasets for both static and mobile sensors. The experimental datasets contain a 

variety of moving objects of different profiles. 

Chapter 6 describes the findings of this research, presents conclusions and sets the 

tone for hture work based on this thesis by suggesting possible directions. 



Chapter 2 

LITERATURE REVIEW 

Spatial data has crossed the threshold from being just an exotic form of data into an 

everyday necessity in today's networked world. Many applications like facilities 

management, manufacturing and agriculture make use of some form of spatial data in 

managing their resources. Already mobile GPS units have made their appearance in the 

public for aiding activities like hiking, mountaineering, orienteering etc. Spatial data is 

touching the everyday life of the common as never before. Experts in the domain (Culler 

et al, 2004) predict the large-scale deployment of dense sensor networks that sense all 

kinds of phenomena from water quality to industrial equipment health monitoring. 

Experimental networks already exist for applications such as mapping glacial 

movement (Martinez et al, 2004), pattern learning (Stauffer and Grimson, 2000), and 

radiation detection in an urban environment (Brennan et al, 2004). It is not difficult to 

imagine that in the near future such spatial networks will have a ubiquitous appeal in 

most domains. One such domain involves aggregation of data collected from a multitude 

of video sensors over a network comprising highly mobile targets. In order to make 

effective use of such networks, theoretical models must be developed which will enable 

consistent and accurate representations of actual objects being sensed. Our endeavor is a 

small step in representing data from such a network in a generic manner. 



2.1. Motion detection and estimation methods 

Motion detection and estimation as a computer vision problem has been investigated 

since the early 1970s. The earliest techniques were based on the concept of optical flow 

in video. They worked by relating the image intensity differences at points of motion to 

actual geometric motion. The majority of motion estimation techniques in vogue today 

are based upon the original work on the determination of optical flow (Horn and Schunck, 

1981) in one way or the other. Most current techniques employ some form of error- 

minimization/optimization to the classical optical flow equation. Based on the 

optimization technique employed, motion estimation methods are classified broadly into 

pure optical flow-based methods, pel-recursive or Bayesian methods. 

2.1.1. Optical flow methods 

Optical flow is a means for representing object motion, as recorded in a video stream, by 

correlating the brightness differences, caused by object motion in the video frames, to the 

motion of the actual object. Optical flow is used in the detection of motion as well as to 

determine the apparent object velocity in an image sequence. Most optical flow-based 

methods detect and estimate object motion by approximating the optical flow field using 

spatio-temporal image intensity gradient measurements. Object profiles are then 

constructed from the detected motion pixels using templates, region-growing or motion- 

constraint-based techniques. 

An optical flow-based motion detection and estimation technique is presented in 

(Shin et al., 2005). Points in an image detected as possessing motion are constructed into 

objects based on feature correspondences using principal component analysis. Objects are 



assumed to be deformable and hence feature matches are based on shape changes to the 

object being tracked. Salient features of an object are defined as those that are not 

generally misclassified. The main objective of (Walker et al., 1998) is to determine the 

probability of classification of features in a flow field and those with the highest scores 

are less likely to be misclassified by a motion segmenting algorithm. Knowing the 

probability of misclassification of an object feature could aid its reclassification in case of 

an indeterminate match. In (Amer, 2005), an object detection and classification algorithm 

is presented. The algorithm works based on a two-step feature extraction from the flow 

field and subsequently classifying the spatial and temporal attributes of objects. 

In (Zelek, 2002), the author discusses a technique for computing dense optical 

flow using posterior probabilities. A simulator is defined for a set of points perceived to 

be in motion and its hture values are based on current motion estimates. By comparing 

actual flow vectors with the predicted values, the predictor hnction is refined hrther. 

The lack of suitable ground-truth mechanisms for motion data is addressed in (Galvin et 

al., 1998). The authors propose generation of complex scenes using ray tracing programs 

in order to verify the accuracy and efficiency of optical flow algorithms. A hierarchical 

approach to motion estimation is presented in (Bergen et al., 1992). The process consists 

of establishing a global model to constrain the structure of motion in a sequence of 

images, a local model to define the motion characteristics of objects and a coarse-fine 

motion refinement operator that works on a pyramid-collection of datasets. The technique 

assumes a rigid body model for objects detected in the video sequence. Often, optical 

flow algorithms fail to detect motion in certain limiting situations like analyzing a 

localized region where optical flow is not very apparent. This issue is addressed in 



(Bergen et al., 1990) where a solution is proposed in the form of a coarse-fine tracker in 

order to detect motion in special configurations. 

The problem of estimating camera motion is approached in (Shakernia et al., 2002) 

from several panoramic views by means of analyzing optical flow. With the knowledge 

of the camera's motion, the motion of objects in its field of view can be determined 

accurately. The advantages of omnidirectional structure-from-motion (SFM), derived 

using optical flow, over conventional SFM are discussed in (Cheng and Hebert, 2000). 

The authors argue that the larger field of view of the omnidirectional SFM is more 

advantageous in certain applications. (Murray and Basu, 1994) discusses the issues 

related to tracking motion using an active camera. Their approach involves estimating 

temporal derivatives by means of image subtraction. In (Kate et al., 2004), a motion 

detection and estimation technique for detecting vehicles using a mobile camera is 

described. The approach consists of detecting vehicles differently based on their distance. 

This follows the principle that motion is harder to detect as objects come closer to a 

camera's focus of contraction. 

A new structure-from-motion algorithm based on optical flow is described in 

(Ohta and Kanatani, 1995) which works by refining the linearized solution using a 

statistically optimized method. (Camus and Biilthoff, 1995) seeks to optimize a classical 

optic flow-based motion estimation algorithm by converting a quadratic objective 

function into a linear one, with acceptable levels of accuracy. An algorithm for 

computing optical flow in a differential framework is discussed in (Weber and Malik, 

1994). Each optical flow vector computed during execution of the algorithm is assigned a 

reliability value that can be used for motion segmentation purposes. In (Weber and Malik, 



1997), the approach is based on the fact that each distinct object in a video has a unique 

epipolar constraint associated with its motion. This property is used in segmentation of 

motion rather than detect discontinuities in depth. By exploiting this property in 

conjunction with a dense optical flow field, detailed motion estimates can be made. This 

technique offers immunity from the errors caused by mistaking occlusions for depth 

discontinuities. 

In (Thompson, 1998), an algorithm is detailed on estimating optical flow 

accurately in the presence of depth discontinuities. While most other flow estimation 

methods suffer from the error caused by boundary ambiguities, the algorithm presented 

deals with line processes in order to effectively derive optical flow in such a situation. A 

technique for estimating structure from motion in the case of an uncalibrated camera is 

presented in (Brooks et al., 1998) from instantaneous optical flow. The calibration data is 

dependent on the differential epipolar equation for uncalibrated optical flow. The 

equation works by relating optical flow to the internal parameters of the camera. In 

(Chang et al., 1997), the authors describe a Bayesian framework that combines optical 

flow estimation and motion segmentation. The technique produces a piecewise-smooth 

motion vector field, which results in simpler and more efficient algorithms. 

2.1.2. Pel-recursive methods 

Pel-recursive methods work on a predictor-corrector approach. The motion estimated at 

each pixel is updated by a correction term which is the motion estimate obtained Gom the 

previous frame. The correction term is applied iteratively over each pixel in a frame 

recursively. A smoothness constraint is introduced in order to reduce the effects of 



changing illumination in causing errors in the estimated motion field by minimizing the 

displaced fiame difference. 

Instead of computing optical flow directly, the authors in (Pless et al., 2000) 

present a solution for estimating background motion by finding out the spatiotemporal 

image intensity gradient. This ensures that independently moving small objects are 

detected correctly. Motion detection and estimation is performed using spatiotemporal 

gradients in (Cohen and Medioni, 1998). Object matching and subsequently, trajectory 

building is achieved by means of object templates formed using a dynamic temporal 

coherence of the object over a number of fiames. A pure shape-based approach is used in 

(Lipton et al., 1998) in order to detect objects and match them to templates. Moving 

objects are classified into one of a few groups based on their similarity to a group. 

In (Torr, 1996; Torr et al., 2001; Jepson et al., 2002), an improved Estimation- 

Maximization technique is presented where objects are treated as closed shapes with 

uniform motion properties within the boundary. This results in a constant likelihood 

measure for motion estimation for all pixels within an object's boundary. The authors in 

(Estrela et al., 2004) describe a technique called spatial adaptation for improving 

accuracy of motion estimation using an Expectation-Maximization technique. The 

fundamental idea is to make use of templates or "masks" to refine object boundaries in 

non-homogeneous image frames. (Soatto et al., 1993) presents a recursive method of 

determining the structure of a scene (including any moving objects) and the camera 

motion parameters using an Extended Kalman Filter (EKF). An EKF is a modification of 

a basic Kalman filter so that it can be applied to non-linear data. In (Irani, 1999), flow- 

fields in a video are modeled as a low-dimensional subspace. Instead of imposing spatial 



or temporal smoothness constraints, global model constraints are used so that lack of 

sufficient local information does not introduce noise in the estimates. A recursive method 

for estimation of ego-motion and camera calibration is presented in (Soatto and Perona, 

1994). Knowing camera calibration parameters, object motion in a video can be estimated 

accurately. 

In (Azarbayejani and Pentland, 1995), the authors present an EKF-based 

technique for extracting structure from a sequence of images. The technique works by 

modeling motion and structural changes of objects recursively until convergence is 

reached within a certain number of image frames. A simplified version of the EKF 

technique is utilized in (Alon and Sclaroff, 2000) where a planarity constraint is imposed 

on the points in the detected object. Three techniques (batch processing, recursive and 

bootstrap) for motion estimation using EKF are evaluated in (Hanmandlu et a]., 2003). A 

new EKF-based motion estimation technique is presented in (Tziritas, 1992) that uses a 

mean square displaced frame difference for better results. A multi-frame approach is 

followed in (Oliensis, 1997) for extracting structure from object motion in a video. The 

technique requires some camera calibration in order to generate estimates accurately . 

Structure and motion parameters of a scene are determined using the Levenberg- 

Marquardt algorithm in (Szeliski and Kang, 1993) for its faster convergence. 

2.1.3. Bayesian methods 

Bayesian methods use probabilistic methods to estimate the displacement field as 

opposed to pel-recursive methods which use gradient-based techniques. Most Bayesian 



motion estimation methods use posterior probability to determine the motion differences 

between subsequent frames of a video. 

In (Zhou and Tao, 2003), the authors propose a motion modeling system based on 

the concept of maximum a posteriori ( M A P )  estimation of a Hidden Markov Model 

(HMM). Foreground and background layers (Wang and Adelson, 1993) are distinguished 

based on whether or not there is consistent motion detected in them. All background 

layers are modeled as multivariate Gaussian distributions. The MAP probability is 

defined based on the prior probabilities of layer order, shapes, motion and appearance 

and the associated likelihood function. Object state is estimated by means of a multi-step 

process. The approach presented in the paper presents a means to detect object motion 

even in the presence of foreground occlusions. A similar approach is followed in 

(Vasconcelos and Lippman, 1997; MacCormick and Blake, 1998; Tao et al., 2002) where 

a Gaussian segmentation prior is used as a predictor for estimating object centroids. 

Instead of processing video data in groups of two or more, the main focus in the paper is 

on recursively estimating object motion. In (Black and Fleet, 2000), object motion is 

modeled separately as smooth translational motion (in areas where there is consistent 

motion) and motion boundaries (in areas where motion properties vary for adjacent pixels; 

e.g. when there is an occlusion). 

The problem of motion estimation is formulated using Bayesian inference in 

(Cremers and Yuille, 2003; Cremers and Soatto, 2003; Cremers, 2003). Noise in motion 

estimates are modeled as additive Gaussian noise. Motion is estimated as a piecewise 

continuous fbnction over time. A moving object could thus be represented as a collection 

of spatio-temporal regions each of which possesses a consistent motion. Object motion 



could also be estimated at the pixel-level, as in (Strehl and Aggarwal, 2000). Instead of 

considering regions with consistent motion, object motion a video frame is segmented by 

estimating the motion of individual pixels. In (Iannizzotto and Vita, 2002), the authors 

propose a motion detection system based on a closed-loop system comprising a predictor 

and a controller that detect object profiles in a video as active contours. Object motion is 

estimated by f ~ s t  predicting an initial object model for the current frame and then 

recursively modifying it based on processed information. Object shapes are modeled as 

radially varying 2D closed-loops which change shape depending on object motion. A 

similar approach is presented in (Peterfreund, 1999), where a Kalman filter is applied to a 

spatio-velocity active contour (or velocity snake) in order to be able to detect objects in 

the presence of occlusions and image clutter. The technique applies well to real-time 

resolution of object motion from the background layer. A maximum likelihood 

classification algorithm is used in (Hampapur et al., 2005) to separate moving objects 

from their background and to classify them. By using a multiscale representation of target 

objects, multiple views of the same object can be used to monitor its movement in a 

particular spatial network. 

In (Comaniciu et al., 2000), the authors describe a real-time method for tracking 

non-rigid objects in video recorded by a moving camera. The method is based on mean 

shift analysis of the color distribution of the target object. Based on a distance-based 

weighted model, the location and extent of the object in future fiames can be outlined. An 

approach for detecting and tracking objects that change size and shape over time using 

the mean shift technique is presented in (Collins, 2003). The method incorporates the 

principles of Lindeberg's theory of blob-scale detection for successfully tracking such 



objects. (Nummiaro et al., 2002) applies a particle filter based on the mean-shift 

algorithm to the color distribution of the target object in order to establish a target model 

in order to track the object in subsequent frames. A feedback-loop-based system is 

described in (Comaniciu and Ramesh, 2000) where a combination of a mean-shift 

algorithm with a Kalman filter is used to predict the location of the best possible match of 

an object in the future frames of a video. The mean shift operator serves for computation 

of the color distribution metric of the target object and prediction of future distributions. 

Based on the output of the mean shift algorithm, the Kalman filter tries to predict the 

spatial location of the next instance of the target object. The predicted value is then used 

to validate the predicted color distribution of hture instances. 

2.2. Synopsis 

Optical flow methods in general yield a very good estimation of motion in an image 

sequence by using pixel brightness changes to indirectly measure actual motion. Optical 

flow, however, does not perform very well in such situations where the ambient 

illumination varies significantly in a short period of time, e.g., a moving cloud could 

cause sudden illumination changes in a scene. Our approach is an optical flow-based 

method as it estimates pixel motion directly from image intensity changes. However, in 

order to account for illumination changes, we incorporate spectral angles instead of raw 

color values. Bayesian methods often tend to be computationally expensive and are 

especially unsuitable for real-time applications. The same drawback is true for pel- 

recursive systems as well. In our work, we only involve simple subtraction at the pixel 

level in order to estimate the frame differences. For most real-world applications, the 



temporal relevance of the results of a motion estimation system is important. Hence it is 

necessary to avoid complex non-linear computation schemes as they are iterated over 

every frame of a video stream. For an application that demands timely results, it would 

thus be advisable to keep computational complexity at a minimum at the frame level 

without compromising on accuracy. 



Chapter 3 

OUTLINE OF APPROACH 

3.1. Video sensor networks 

A video sensor network is defined as a spatial network of video sensors. The location of 

the sensors could be on any surface - land, air, water or a mix of all three. Terrestrial 

networks usually consist of static cameras (video sensors) placed at well-known locations. 

Most terrestrial applications involve tracking of objects in a closed environment, like an 

industrial complex, military installation or museum building. The main objective in such 

applications is to have an "observation" mechanism for monitoring the movement of 

individuals within the environment. Depending on the rules set for the system, 

individuals could be identified as authorized or unauthorized. Their movements could be 

compared to established motion patterns in a database connected to the monitoring 

system and if there is any deviation, alerts could be issued. However, not all terrestrial 

applications need be static sensor-based. Some traffic applications may require the use of 

sensors on moving platforms (like trucks) to monitor the traffic situation in an area or to 

analyze traffic patterns. Most aerial applications belong to the domain of homeland 

security and defense, with the sensors mounted on Unmanned Aerial Vehicles (UAVs) or 

other similar vehicles. 

In order to extract useful information out of a video network, often it is necessary to 

know sensor parameters. In most cases, all that is required is the camera coordinates and 

view angle. If it is necessary to transform the recorded data to a uniform scale for data 



recorded on all sensors, the cameras could be calibrated by first recording a set of known 

points before starting to gather data. When camera coordinates are known, it could help 

in accurately identifying absolute (with respect to network) coordinates of moving 

objects in the network. Using that information, objects could be more reliably matched 

across different sensors by placing a check on spatial continuity of observed object 

locations. The view angle (with respect to a known reference line) of the sensor would 

also be useful in pinpointing object locations in the network. 

Figure 3.1 : Significance of view angle of sensor 

With just sensor coordinates at hand, it is not possible to locate objects with reference to 

network topography. In the Fig. 3.1, let the reference line be taken as East (or to the right 

of the diagram). If the actual sensor view angles are not known, it is possible to record 

the objects in the two views as moving opposite directions, even though the directions 

may be constant in both cases. 

Another important parameter is the time at which the data is recorded by the sensor. 

While it may not strictly be called a sensor parameter, its significance is nevertheless no 



less. For this information to be useful, all sensors need to be synchronized to the same 

time. Time-stamped data would be very useful in not only aiding matching objects across 

sensors but also in building trajectories of moving objects across the network. It is 

important to know the number of sensors that will be used in constructing the sensor 

network, as it determines the distribution of the sensors over the network. Further, it 

might also be necessary to know the spatial and spectral resolutions of each video sensor 

so that the more precise sensors could be placed in high-activity locations. 

In most video sensor network applications, it would be desirable to know the topography 

of the area where the video network will be setup. This not only is useful in determining 

the placement of sensors but also in validating the construction of consolidated object 

trajectories. Depending on the application, sensor placement may differ. In the following 

figure, a typical video sensor network can be seen. The terrain is represented by the map 

(in the background) consisting of roads and the location of sensors is indicated by the red 

dots at various road-junctions on the map. 



Figure 3.2: Typical video sensor network (courtesy Virginia DOT) 

Video sensor networks can be configured in many different ways. Some applications may 

require a regular placement of sensors in a grid pattern to identifj activity in blocks of 

areas. An example would be a sensitive military installation where it is necessary to 

monitor the entire complex for any unauthorized intrusion. Tt would not just be imprudent 

but also infeasible to expect a single or a few sensors to monitor a large closed area with 

reasonable accuracy. Tn such cases, the target area is divided up into a grid composed of 

regular cells of a fixed size (depending on the needs of the application) and a sensor in 

every cell. Cells may be defined such that sensors in adjacent cells may have overlapping 

views. This ensures a continuous yet consistent view of the area being monitored. Tn 



other situations, it might be necessary to install sensors in a clustered fashion. This is true 

of many traffic monitoring applications. In a city, more sensors may be clustered around 

busy intersections and places where there is a lot of vehicle movement. In residential 

zones and suburban centers, fewer sensors may be placed to optimize both cost as well as 

volume of data generated by the network. 

While video sensor networks present a wide range of opportunities to collect accurate and 

temporally continuous information on dynamic phenomena like flowing traffic, the 

inherent limitations must also be discussed. Videos recorded in outdoor environments are 

always fraught with all sorts of errors. A source of error in the context of video sensor 

networks is defined as any entity that either causes data to be recorded with less accuracy 

than possible or causes extraneous errors in the data. A most frequently occurring source 

is varying ambient illumination. The implication is that the same moving objects may 

appear to possess a different surface color in one dataset than in others where they appear 

too. Another reason for error would be unwanted background motion caused by wind. 

Trees swaying in the wind could be detected as moving objects too and cause needless 

system processing. Most errors and noise in recorded video can be removed by using a 

variety of techniques. illumination errors could be corrected by normalizing object 

surface colors while general background noise can be removed by a combination of 

filters. Nevertheless, most errors can be prevented by placing sensors in locations where 

there is little chance of ambient factors influencing the recording. 



3.2. Analysis of a single video feed 

Video processing and analysis is different from conventional image processing in many 

ways. A video is not only a collection of frames, most of which are related to their 

neighbors in varying amounts. Individual frames cannot be processed in isolation, as in 

normal image processing. All processing has to be done keeping in mind the temporal 

dimension of video. Hence, information derived from frames has to be correlated to 

construct a temporal sequence of results. This aspect of video processing consumes a lot 

of computer processing power and also main memory. Therefore, any image processing 

operations on video have to be thought out carefully, if timely (if not real-time) results 

are to be obtained. In our approach, we use a combination of frame differencing and 

morphological image filtering to detect objects. 

Human beings can detect moving objects intuitively, whether in real life or in recorded 

video. The physical process of detection occurs in a sequence of events. The eye acts as a 

video sensor and collects visual information. The information "seen" by the eye is 

converted into electrical impulses and transmitted to the brain where it is compared to 

existing neural patterns. Familiar objects such as cars are "stored" in the brain and are 

recognizable. Even unidentified objects can be detected by the human brain purely on the 

basis of difference in motion between the object and its background. Object detection 

systems work in a similar fashion, even though their operation is rudimentary at its best, 

when compared to the human visual cognition system. In our approach, we detect objects 

in a video in a manner very similar to how we perceive motion naturally. The object 

detection algorithm works with the technique of frame differencing as the central idea. 



The general outline of our approach, as it applies to a limiting condition of a single sensor 

in a geospatial network, is presented in Fig. 3.3 below. ARer video data is recorded by a 

sensor, it is pre-processed in order to make it suitable for video analysis. Pre-processing 

typically involves some form of format (frame dimensions, frame rate or color depth) 

optimization or general noise elimination (the more specialized form of noise removal, 

namely, shadow elimination is a later step). Once the raw video data is pre-processed, 

frames in the video are differenced sequentially and any residue is defined as 

representing object motion at the corresponding pixel locations. This is the preliminary 

step in motion detection. After difference images are obtained, only motion from objects 

must be extracted and the rest (possibly caused by ambient noise or unwanted objects 

such as tree leaves or pedestrians) can be ignored. 
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Figure 3.3: Analysis of a single video feed 

In order to detect which residual pixels are due to object motion, we must define what 

constitutes an acceptable object, in terms of its expected size. All residual pixels in 



difference images are outlines of moving objects across two frames. This bit of 

information is useful in constructing object outlines from these pixels. A pixel lying in a 

certain spatial neighborhood of other pixels can be associated to the other pixels as a 

member of the group of pixels which constitute a valid object. A region-growing filter is 

applied on a difference image to connect all pixels that lie within a predefined 

neighborhood and label them as an object. In this manner, all objects in a sequence of 

difference frames are determined and labeled. 

Determining objects is only the first step in object motion estimation because the objects 

in each frame are independent of their instances in other frames. It is necessary to link all 

objects to their instances so that a temporal sequence of objects can be obtained for the 

video. In order to link two objects as the same, a more comprehensive means of 

comparison must be established than the obvious size and shape-based comparison. This 

is because it is possible to have more than one object with the same size and shape 

characteristics. Hence, other object attributes must be defined that can effectively link an 

object in one frame to itself in another. In our approach, we define multiple object 

attributes in the three domains of spectral, spatial, and spatio-temporal properties. 

Spectral properties are related to the object surface color. Raw, uncorrected values could 

give a preliminary idea of the possible matches an object could have in subsequent 

frames, while normalized values would allow a more accurate pinpointing of the matches. 

Spatio-temporal properties are crucial only in multiple sensor comparisons. These 

attributes can be determined from the original video data. Once objects are defined in 

terms of multiple attributes, an index can be built over the three domains. Indexing is 



very useful for creating object clusters in the multiple-feed situation. The idea of a multi- 

component signature forms the core concept in our approach. 

Once objects are linked across frames in a video, we need to construct trajectories based 

on their centroid locations in each frame. The trajectories give the user an idea of the 

object's motion across the view of the sensor. But its relevance is not limited to that alone; 

object matching across different sensors can be performed more accurately by validating 

object matches on the basis of their individual trajectories. Checks can be placed in terms 

of the maximum distance an object is allowed to travel in between two frames. If the 

distance between two consecutive links of an object's trajectory in a video feed is beyond 

the set threshold, the link is severed and the resulting two trajectories are assumed to have 

been caused by two spatially close objects. A minimum number of links per trajectory 

can be defined in order to eliminate random noises which might escape preliminary 

filtering. 

3.3. Analysis in a multiple-sensor scenario 

Processing a single video feed and extracting objects and constructing their trajectories in 

space-time is comparatively simpler than it is for multiple feeds. With multiple feeds, 

there are several factors that change which are usually assumed to be constant for a single 

feed. While in a single feed the ambient illumination is constant (in most cases), in 

multiple feeds, it need not be always true. Several factors influence illumination in such a 

situation. Changing cloud cover could suddenly cause a drop in illumination in one 

sensor while the rest of the video sensors would still be receiving bright sunlight. Unless 



calibrated to have a uniform view, multiple sensors will have multiple view parameters. 

An object may appear twice its size in one sensor than in another due to different focal 

lengths. Factors such as varying sun orientation may cause shadows in one feed and not 

in another. View angles could differ too, so this could cause distortion of object shape. 

Unless sensor parameters are recorded across the network, accurate matching of objects 

might not be possible. Once parameters are known, objects extracted from each video 

could be transformed to a uniform frame of reference in the spectral, spatial and spatio- 

temporal domains. 

In our approach, we first established a flow for the processing of a video dataset obtained 

from a single video sensor. This work was initiated as an internal research problem 

addressed by the Digital Image Processing and Analysis (DIPA) group at the University 

of Maine and culminated in a paper outlining its application for car tracking 

(Venkataraman et al., 2004). Our approach continues from there to vastly improve the 

process of object motion analysis and afford it a more rigorous generalized model in the 

form of the multi-dimensional object signatures and object signature indexing. We 

developed a more general motion detection and analysis process which involves multiple 

sensors in a geospatial network. As seen in the following figure, the multi-sensor scenario 

builds on heavily over the simpler single-sensor case. After object trajectories are formed 

in each video stream, object signatures (attributes) are measured in all the defined 

domains (spectral, geometric, and spatio-temporal) and multi-component signatures are 

formed for each object in each video dataset. An object index can then be constructed for 



each video dataset that orders the objects in a particular order in either a single domain or 

successively in the three domains based on a set hierarchy. 
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Figure 3.4: Analysis of multiple video feeds 

Following the establishment of an object index, we proceed to form object classes. Why 

this step is necessary before direct object comparison can be seen from the following 

reasoning. With multiple videos, it is necessary to avoid a one-to-one object comparison 

for all videos. If, for example, there are ten videos covering a geospatial network and 

each video contains around 1,000 objects. A one-to-one comparison would cost 1,000 

raised to the power ten processor cycles! Instead, objects in each video can be clustered 

into several classes in each domain. While comparing datasets, only the relevant classes 

of objects need be compared. We can avoid situations like comparing a blue car in one 

video vs. a red car in another. Restricting comparisons to only relevant groups of objects 



would result in faster results. Once objects are matched, comprehensive trajectories could 

be constructed by linking those obtained for the object in question in each video. It is 

here that network topology comes to play. If we know the position of each sensor in the 

network and also the orientation with respect to a reference line in the network, we can 

determine the universal direction of movement of objects. Once the direction is 

determined, the trajectories can be linked. Chronological information fiom each sensor 

can be used to verify the linking. If the sensors in a network are mobile, it adds hrther 

processing complexity. Videos have to be processed in order to eliminate background 

motion in mobile videos. This could place additional overhead on processing and results 

obtained may not be temporally relevant. 

In practice, most video networks have more than one sensor. Motion detection and 

tracking is most effective when there are multiple sensors monitoring in parallel, for the 

simple reason that a single sensor cannot track multiple objects at the same time. 



Chapter 4 

OBJECT TRACKING IN A SINGLE FEED 

4.1. Static feeds 

Stationary video sensors capture static feeds. In such video data, the sensor captures a 

fixed portion of the view and the objects moving in the view pass by fiom one end of the 

video to another. Most terrestrial video sensors capture static feeds, unless they are 

designed to track objects in real-time by rotating across the field of view. 

After the video has been captured, the process of object detection and motion 

analysis occurs as a three-step algorithm. In the first step, a certain amount of pre- 

processing is performed to obtain results in optimum processing times. In the next step, 

object detection and identification of object attributes as well as motion characteristics 

takes place. After all objects in the video have been identified frame-by-frame, each 

object is linked to itself in all frames of the video. The complete trajectories of all objects 

in the video are then constructed from the individual centroid locations in all the frames 

they appear. Finally, in the third step, all objects are indexed and clustered into different 

classes. However, the third step is only important for object tracking in multiple feeds 

where comparison of objects across feeds takes place. In the following figure, the 

algorithms and software code for the first column and parts of the second column were 

conceptualized and developed by the Digital Image Processing and Analysis (DIPA) 

group at the University of Maine. The concepts of shadow elimination and multi- 

dimensional indexing for object comparison, as shown in the third column, were 

developed during the course of our research. 
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4.1.1. Pre-processing of data 

Pre-processing is an important step that must be executed before the object detection 

process. For a variety of reasons, primarily in the direction of improved response time 

from the object detection system, we pre-process the raw video data obtained from the 

sensor. In traditional video encoding, which follows a similar approach of motion 

analysis and representation but for different reasons, pre-processing has been shown 

(Agazi et al., 1995) to be an important step in video processing in order to improve 



system performance. On the same lines, it is also important in our application because the 

bulk of video processing in our work is very similar to a video encoding application. 

4.1.1.1. Change spatial resolution and frame rate 

Commercial video sensors capture video at a uniformly high quality with a fixed frame 

rate. Commonly, data captured from such sensors need to be scaled down in situations 

where a high level of detail is unnecessary, e.g., a situation where the sensor is close 

enough to the moving objects in order to allow usage of lower than normal resolutions for 

motion analysis. What constitutes as acceptable in a certain situation is dependent on the 

application as also the field configuration of the sensors. In many cases, sensors do not 

allow for multiple options in resolution. To optimize the video processing in terms of 

frame dimensions, the end-user needs to specify the format size they expect to be the 

optimum for their application. It is important to set a format size such that the motion 

detection algorithm does not incorrectly label the smallest object in the video as 

background noise. 

It might also be advisable to alter the frame rate of the source video so that only 

those frames that are essential need to be retained. This is very useful in situations where 

there is not enough movement in the captured scene to warrant processing of the entire 

set of frames in the original dataset. For example, in a traffic monitoring setup, it is not 

necessary to capture data at the normal rate during peak hours as the traffic will be slow- 

moving. If captured at fu l l  frame rate, a lot of processing cycles will be wasted in 

processing redundant frames, whenever objects move very slowly or even stop. 



4.1.1.2. Projection of data based on scale factor, view angle etc. 

Data captured by a sensor at an angle to the scene needs to be transformed to an 

orthographic view or some uniform frame of reference so that data captured by different 

sensors can be compared reliably for geometric properties of the moving objects in those 

feeds. Using correspondences in a video frame to another system of coordinates (map 

with local coordinate system), we can transform all record object positions and geometry 

to a uniform frame of reference. Transformation also needs to take into account any scale 

changes due to sensor view angle. If there is a known scale factor for the data captured, it 

needs to be incorporated in the process of comparing objects in different video datasets. 

Otherwise, geometric size-based comparison will be unreliable. Transformation is usually 

only necessary in multi-sensor object tracking. It might be useful in single-feed situations 

where either illumination, view angle or view scale change during the process of video 

capture. 

4.1.2. Preliminary noise removal 

Random noise in captured video has to be removed so that it is not detected as a moving 

object (or group of objects) by the algorithm. While data is being captured, individual 

frames could be passed through a noise filter. However, it must be noted that excessive 

filtering could blur the edges of objects or alter their geometric profiles. 



Figure 4.2: (a) original noisy fiame; (b) noiseless output after applying median filter 

In the above figure, the image on the left shows a fiame from a video containing random 

salt-and-pepper noise. In order to remove the noise, we applied a median filter. While the 

filter removed the noise, it also blurred the edges of the objects. This could present 

difficulties during the process of object matching. 

4.1.3. Motion detection by means of frame differencing 

The core process involved in motion detection is called Accumulated Frame Differencing 

(AFD). AFD is an iterative process that operates over sequences of frames in a video 

stream. It determines motion on the basis of change in pixel color by subtracting or 

'differencing' a sequence of fiames. In practice, pairs of fiames are differenced to obtain 

differenced images and these images are subjected to a threshold to filter out unwanted 

objects and any random noise. PID is the difference in color values for the same pixel (x,y) 

in the scene grid over time. PJD is computed between the reference and all other frames 

in the video stream as follows: 



where R(x,y) is the reference image and f(x,y,t$ is the frame at time tk. Usually, the 

reference is the first fiame. The Differencing Mode (DM) can be "positive", "negative" 

or "absolute". The three modes differ in the manner in which the pixel intensity 

difference (PID) is compared with a pre-defined gray level threshold (GLT). GLT is the 

minimum gray level change that must occur for an object to be detected as moving across 

two fiames. This value is scene-dependent and is empirical. A new value for each pixel in 

the currently processed frame is obtained depending on the presencelabsence of motion in 

the neighborhood of each pixel. The new value is binary and is allocated as follows: 

where : Ik(x,y) is the pixel value at location (x,y) of the current fiame and its value is 

dependent on its value in the previous fiame Ik-,(x,y). Pixel values are either incremented 

by one or left unchanged from the value in the previous fiame depending on the 

differencing mode. In the "positive" AFD mode, the differenced image is incremented by 

one at the pixel location (x,y), if PID is greater than GLT. In "negative" mode, the 

increment is by one if PID is less than -(GLT). In the "absolute" mode, the increment is 

made if the absolute value of PID is greater than GLT. The three modes are described in 

mathematical form below: 



Absk-, (x, y)  + 1 if PIDI > GLT 

Abs,-, (x. Y) 

otherwise 

i POS ,-, (x, y ) + i if PID > GLT 
Po.3 (x, y) = 

pas,-I (x, Y) 

otherwise 

i Neg,-,(x,y)+l if PID < -(GLT) 
Negk(x7~) = 

Neg ,-, (x, Y) 

otherwise 

The following figures illustrate the three modes of differencing: 

Figure 4.3: (a) Original frame; vehicle moving in southwesterly direction (b) 

Absolute AFD output (c) Positive AFD output (d) Negative AFD output 

As illustrated by the above figure, an absolute AFD guarantees complete outline of the 

object when the video is subjected to the AFD process, whereas positive and negative 

AFD preserve only the leading and trailing edges (with respect to direction of motion) of 



the object's shape profile. In addition to the mode, two other parameters influence AFD. 

The first, frame accumulation rate (FAR), determined iteratively, is the number of fiames 

over which the difference from the reference fiame will be accumulated. The second, 

accumulation threshold (AT), is the minimum number of fiarnes across which the object 

must exhibit change in order to be detected as moving. This parameter helps in removing 

periodic noise. Its value was selected such that noise was removed but slow moving 

objects were preserved. 

Figure 4.4: Flow diagram describing frame differencing algorithm 

In step A, all the frames are differenced in pairs, in accordance to the [eq. on AFD]. For 

example, frames F1 and F2 are differenced and the resulting frame is compared with the 

GLT. Based on the individual pixel values in Dl, they are assigned either "0" or "1". 

Then, the next pair, F2 and F3 is compared and the difference frame D2 is generated. 

Likewise, all fiames until F, are subjected to this process. So, for n frames in the original 

video, (n-1) difference fiames are obtained. In step B, the difference fiarnes are summed 



up according to the value of AT. For example, if AT = 3, frames are added together in 

threes and the resulting frame is compared to the AT. In the above diagram, the value of 

AT is two and so fiames are added in pairs. All values less than that of AT are assigned 

"0" and the rest of the values are retained. In step C, all the filtered frames are grouped 

together to form the output of the motion detection process. At the end of the process, 

there are (n-AT) fiames in the output video. 

Figure 4.5: (a) original video containing a few moving objects (red truck and two people); 

(b) raw AFD output of the original fiame (black border artificially added to delimit AFD 

frame) 

4.1.4. Shadow removal 

To identify an object unambiguously across two video feeds, it is important to isolate a 

representative object color value that can relate to the object in both video streams. This 

is only possible if object shadows are eliminated and pure object surface colors are 

identified. lf shadows are not eliminated, they could appear as extensions of the object 



being detected by the motion tracker algorithm. This could cause errors in determining 

the exact area and shape of the object while comparing with other objects in other video 

streams. 

The apparent surface color of an object is determined by source illumination, 

viewing geometry and camera parameters (Raja et al, 1998). Processing color 

information can be expensive and is typically restricted to the pixels that have been 

obtained fiom the morphological operations on the object shape profile. It becomes 

computationally intensive because of the fact that for the same pixel location, any 

computation is on three domains (either R,G,B or H,S,I). Color information can be 

operated upon either in the RGB (Red-Green-Blue) domain or in the HSV (Hue- 

Saturation-Value) domain depending on the needs ofthe user. In the RGB domain, obtain 

color information consistently is not easy since all the three values (R,G,B) change 

significantly with illumination. 

In the HSV domain, the hue value plays a vital part in object determination since 

it does not vary with intensity changes. This is particularly true when the object is subject 

to varying illumination levels as under shadows and under bright sunlight. The advantage 

of using hue values is that objects can be detected reliably in any kind of illumination 

condition. However, they cannot be obtained directly fiom a raw video stream. Most 

video sensors acquire video data in the RGB color domain and therefore, a conversion to 

HSV would be necessary before any hrther processing. But this could place a processing 

overhead on the system. In most situations, illumination is almost constant for a single 

sensor. While comparing datasets fiom two different sensors (at different locations), there 

is a very good chance that they might have been exposed to different levels of 



illumination. Even in such a case, any sort of a conversion from RGB could be performed 

after objects have been detected as this could save processing time. 

After the objects have been detected as distinct individual groups of pixels in a 

frame, a mean representative color value must be obtained for the object. However, this 

cannot be done before removing the shadow detected as part of the object. The object 

detection process cannot differentiate between an object and its shadow in most cases 

because the shadow is often continues from the object perimeter without any intervening 

gap and also "travels" at the same speed as the object. Therefore, the pixels representing 

the object's shadow must be eliminated; in actuality set to a value or "0" or whatever 

value was chosen for the background. To go about this process, we define a bounding 

box enclosing the detected object. Pixel values that are outside the object outline but 

within the bounding box belong to the surface on which the object traveled, in most cases, 

a road. A set of empirical values for the hue value of an average road surface was chosen. 

It was assumed that the hue values ofthe shadowed region would be very close to the hue 

values obtained from the road pixels as the shadow is merely a region on the road with an 

illumination level different from its surrounding areas. 

Once the range of hue values corresponding to the shadow was identified, those 

pixels in the vicinity of an object with hue values falling in the 'shadow range' were 

eliminated. These pixels were identified by the motion tracking algorithm as part of the 

object as the shadow moved with the same velocity as the actual object. Once the 

shadows were eliminated, object hue values obtained were more relevant to the actual 

object surface color. This helps in linking object trajectories across the two datasets with 

greater accuracy. 



Figure 4.6: Object before and after shadow elimination 

. P As can be seen fiom the above figures, the shadow removal algorithm has eroded parts of 

the object as well, because of similar hue values found on the surface of the object. To 

further increase the accuracy of shadow removal, a simple neighborhood filter could be 

used to remove shadows as a connected sub-object, rather than removing individual 

"shadow" pixels purely based on their hue values. 

4.1.5. Morphological processing of differenced data 

Morphological parameters isolate objects that satis@ a certain geometric criteria. These 

parameters are essential in detecting just those objects that are needed. The structuring 

element is a bounding box use to establish connection between neighborhood pixels with 

an object. This element is like a spatial filter that links adjacent object pixels and is the 

basic object-building mechanism. Depending on the dimensions of the filter, greater 

accuracy can be obtained in defining the extents of an object. However, this comes with a 

price as the processing time increases in a geometric progression with each increase in 

dimension. The minimum (mOA) and maximum (MOA) object areas (pixels) constrain the 



allowable object sizes. These could act as a filter in restricting the objects detected and 

retained to only relevant classes. For example, if we are interested in extracting only cars 

from a video stream, then any bicycles and trucks would be unwanted information. The 

object compactness (C) is a shape metric that defines the elliptical shape ofthe object: 

Vector building parameters also control the creation of motion vectors of the 

filtered objects. The Maximum link distance specifies the maximum distance in pixels 

that the object centroid can change between successive motion frames. This makes swe 

that two similar but separate objects in the same video are not linked inadvertently. The 

Maximum spectral distance specifies maximum allowable variation in any color metric 

between successive motion frames. This ensures that two closely-spaced but differently 

colored objects are not seen as the same by the object detector. In a predominantly color 

based test, the link distance is set to a large value and the spectral distance becomes the 

key linking parameter. 

4.1.6. Object labeling and parameter definition 

The typical scenario for our work consists of a traffic network monitored by multiple 

video cameras at different locations. The cameras that comprise this geosensor network 

may be static (e.g. located on buildings or traffic poles) or moving (e.g. attached to 

moving vehicles). In either case their instantaneous location and orientation is considered 

available, provided, for example, by GPS sensors attached to them. Vehicles moving 

within the area of interest monitored by ow network pass through the field of view of one 

or more cameras at an instance. In order to model and link activities within this network 

we make use of two types of information: 



Network parameters allow us to index feeds (datasets) within our network, while 

Object attributes are used to index objects extracted fiom individual feeds. 

It is important to note here that any two sensors may or may not share a field of view. For 

the most part, we work under the latter assumption. When there is no continuity (as a 

mosaic of sensor FOVs) in the area being viewed, it becomes more difficult to label and 

reliably link objects across feeds. The reason is that there may be some objects that 

appear in one sensor view and may not in the others. In any case, the object count in one 

sensor need not be equal to that in any other because the sensors are all assumed to have a 

disjoint view of the terrain. 

4.1.6.1. Network parameters 

Global parameters allow us to position different feeds relevant to each other in space and 

time. Accordingly, they comprise the spatial coordinates of a sensor's field of view, and 

the corresponding temporal information (timestamp). The coordinates of a sensor's FOV 

are important in determining the view angle and transformation parameters necessary for 

normalizing objects in all feeds before comparing them to one another. Timestamping is 

very important because it acts as a validating piece of information. Similar objects that 

appear in two disjoint sensor views at the same time could be ruled as the same because it 

is not possible for an object to be physically present in two different locations. 

Sensor-level parameters are intrinsic (i.e. sensor calibration information) and 

extrinsic (i.e. sensor orientation information). The intrinsic parameters may be fixed or 



varying. For example, a single sensor may have the capability to fhnction in more than a 

single band (e.g. visible and thermal), depending on scene illumination conditions. 

Similarly, the spatial resolution of the sensor may be fixed (in the case of a fixed sensor) 

or varying (e.g. when a sensor is mounted on-board a moving vehicle). Focal length, on 

the other hand, may typically be kept fixed. Extrinsic sensor parameters comprise 

information that allows us to position the sensor in space (e.g. altitude, viewing angle). 

In situations where the sensor parameters are not known in advance, or if the 

sensor is not equipped to report these data, the object transformation parameters could be 

derived by calibrating the camera against a measured object in its FOV or by recording 

the positions of a set of known points in its view. 

4.1.6.2. Object spectral attributes 

The surface color of an object in either the RGB (red, green, and blue) or the HSV (hue, 

saturation, and value) domain is a fundamental attribute for comparison with other 

objects. The representative RGB color is derived in a manner similar to that described in 

(Wei, 2002) but we first eliminate noises that are associated with extracted objects such 

as shadows. In (Venkataraman et al, 2004) we described a shadow elimination process 

used in our approach. In order to index color content, we transform color information into 

spectral angles. The concept of spectral angles derives fiom the color indexing scheme 

described in (Stefanidis et al., 2003a). The spectral angles that correspond to the 

representative color are derived as follows: 



2 x s x ( s - g )  
G = arccos(( 

r x b  
> - 1) 

where, 

Two angles are sufficient to describe the color. The color components (r,g, b) are square 

roots of the sum of the squares of the other two color coordinates. By color coordinates, 

we mean the raw coordinates (Rm, Gm, Bm) of the object representative color in the three 

color axes. 

The figure below describes how the three color components (r,g,b) are related to the three 

spectral angles (R,G,B). In essence, the coordinates of an object's surface color form a 



triangle in three-dimensional spectral space. Any illumination changes would be reflected 

as a change of scale of the triangle's dimensions. 

a 
Red 

J " 
Blue 

Figure 4.7: Surface color of an object depicted in 3-D RGB colorspace 

The advantage of transforming color into spectral angles is in the independence of angles 

from the effects of illumination. Varying illumination can 'shift' the surface color of an 

object (as recorded by a sensor) in the colorspace in either direction. Hence, the same 

object in changing lighting conditions could have several recorded surface colors. The 

angles derived from each of these colors would still be the same, regardless of the shift 

that the original surface color underwent in the recorded data. 
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Figure 4.8: Spectral triangles formed by two different surface colors of the same object 

In the figure above, there are two objects, Vid30bj I (shorthand for Object #1  in Video #3) 

and Vids0bj.l. From the spectral profiles, we can see that both represent the same object 

but with similar surface colors. They both have been measured under different incident 

illuminations and hence, the difference in the profiles. Both their spectral triangles are, 

however, similar. The scale difference is due to illumination changes. A way of 

numerically comparing two objects subject to different lighting conditions is to check if 

the spectral angles derived from their mean surface colors are the same. In reality, there is 

a slight amount of variation even in the spectral angles. This could be due to errors in 

computing the mean surface color itself. The errors could arise from inclusion of shadow 

pixels or pixels from surrounding regions. To accommodate for any unaccountable 

random errors in computing the mean surface color, a threshold could be defined within 

which the comparison oftwo objects could be made. 



4.1.6.3. Object spatial attributes 

Compactness describes the 'roundness' of an object in comparison to a circle. It is a 

shape metric that compares an object to a circle which has its perimeter equal to the area 

of the object. 

4m2 
Compactness = , 

where a = area of the object, p = perimeter of the object. For a perfectly circular object, 

the compactness is 1. Compactness could also be seen as the ellipticity of the shape of an 

object. 

Object size is another key attribute which could be used to fix matches. It is 

approximated by multiplying the size of the object (in pixels) by the scale factor of the 

corresponding sensor. This can be used for an approximate comparison of two objects if 

the view scales are known for the sensors in question. Object sizes are also important in 

discriminating between classes of objects. A motorcyclist could travel at the same speed 

as a car and a pure color-based or speed-based comparison could incorrectly link them 

both as the same object. A simple size comparison could add more reliability to the 

comparison process. 

Lastly, geometric information also includes the object's dimensional ratio. 

Dimensional ratios are the length-to-height, height-to-width and width-to-length ratios of 

an object. These ratios can be used as an auxiliary metric for object comparison. However, 



their use in indexing and comparison is only auxiliary due to the low accuracy with 

which they can be determined. 

4.1.6.4. Object behavioral attributes 

These parameters describe the spatio-temporal properties of the object like velocity, 

acceleration or motion pattern. They are part of our model of spatiotemporal helix 

(Stefanidis et al, 2003b). These properties are useful for identifying objects that behave 

erratically or for clustering objects that have a certain kind of behavior. Deng and 

Manjunath define motion parameters as a quantitative measure for object indexing and 

segmentation in (Deng et al, 1998). Our goal is to utilize the information obtained fiom 

spatio-temporal analysis of data in organizing data qualitatively. An example would be a 

common traffic scenario composed of vehicles of different sizes and motion 

characteristics such as cars, trucks and buses. Based on expected and observed 

characteristics, vehicles could be classified as slow moving, fast moving etc. Further, 

alerts could be raised when vehicles do not meet their defined characteristics. For 

example, a school bus that speeds frequently. 

One spatio-temporal attribute of primary importance is obviously the speed of the 

object. Speed values usually are dynamic, meaning they change over time and a single 

representative value can hardly be consistent even within a few dozen fiames. However, 

under the assumption of constant motion (for example, in a traffic scenario) we take the 

average value for an object's speed vector in a video stream. In most cases, this is what is 

required in identifying objects across different feeds. Another attribute that bears some 

relevance is the acceleration. The standard deviations in speed and acceleration could be 

used in clustering objects. The direction of movement is also an important attribute. It 



validates the matching of objects in two videos. For example, two objects moving in 

opposite directions in two video feeds cannot obviously be the same, unless we are 

certain that in one of the videos, the object has made an about-turn. 

In applications where we need to check for any sudden increases in speed or 

frequent stops, a temporal vector of the object's speed and acceleration would be useful. 

Further, it could also prove usehl in making a secondary classification of objects as 

periodically halting, fast accelerating and so on. 

4.1.7. Intra-feed object linking 

Once objects are detected in each frame of a video feed, they need to be linked 

temporally with their counterparts. This is because objects detected in each fiame are not 

automatically connected to themselves in subsequent frames. 

4.2 Mobile feeds 

Mobile feeds are captured when there is relative motion between the sensor and its FOV. 

However, it is the sensor that moves in relation to the ground, whereas the terrain (except 

the moving objects being imaged) is stationary all the time. This is true in the case of 

sensors mounted on aerial platforms such as balloons or Unmanned Aerial Vehicles 

(UAV). Mobile feeds appear as a moving window over a group of objects (also moving). 

The goal of obtaining most mobile feeds is to track one (or more) moving object(s). 

While in static feeds, the sensor maintains its static state with respect to the terrain on 

which the objects are moving, in mobile feeds, the sensor attempts to be stationary with 

respect to the objects moving in the terrain. The result is that in static feeds, the same 



object never appears twice in the video (unless it takes a U-turn and goes back in the 

opposite direction) while in mobile feeds, the same object continues to occupy the FOV 

of the sensor. Mobile feeds are increasingly used in defense and security applications 

where it is crucial to keep tracking a group of vehicles (maybe a convoy of vehicles 

carrying VIPs or a group of enemy tanks in a war) constantly over a period of time. 

Processing mobile feeds can be challenging unless special pre-processing is 

performed first. The first problem, algorithm wise, in processing mobile feeds, is the fact 

that the background of the video is constantly "on the move". In differencing algorithms 

like the AFD, the assumption is that of the background being stationary all the time so 

that a difference between two successive frames would only yield the object pixels as the 

background pixels in both frames would cancel out. But in mobile feeds, at best, only a 

large overlap of background between successive frames can be expected. Hence, parts of 

or the whole background could be detected as one big moving object. What complicates 

it further is that the objects on the ground also move a little bit with respect to the sensor. 

In practice, it is not possible for an aerial sensor to maintain perfect synchrony in relative 

stationariness with the objects moving on the ground. The ground velocity of the sensor 

could either be more or less than that of the moving objects and so the objects in the 

mobile feed would move with a small positive or negative velocity. And if a group of 

objects is tracked by the sensor, they may all not move at the same speed and therefore, it 

is virtually impossible for the objects to be stationary with respect to the sensor. It is also 

important to note that when objects change direction of movement, the sensor also 

changes its view only after a small delay. 



4.2.1. Image warping 

Under assumptions of simple linear motion, the video could be "warped" such that the 

background is kept fixed in stretches where there is significant overlap between 

successive frames. Groups of such frames in a mobile video could be constructed in 

which the video could be cropped to only show the area that is common to all frames and 

the objects appear as moving from one end of the frame to another. However, the 

cropping must not be done at the expense of eliminating a few objects in the extreme 

frames of the group. In order to warp the frames, common points must be identified and 

their locations could be used as "tie points" to mosaic sets of frames. Once such sets have 

been formed, motion trajectories of the moving objects could be formed by connecting 

the sub-trajectories obtained from all the groups. The only issue with this method is the 

time consumed in manually selecting ties and selecting extents of groups. 

4.2.2. Mosaicking 

Instead of mosaicking the frames in a mobile feed manually, they could be overlapped 

automatically. A feature detection algorithm could be used to identify common 

background features in two adjacent frames and they could be grouped as long as some 

predefined overlap threshold is met. For example, a 60% overlap could be set as a 

possible threshold in binding frames. Anything less than that would automatically form 

the start of a new group of frames. In the following set of pictures, the frames have more 

than 60% overlap of background area. Hence, these can form part of a "group". 



Figure 4.9: Frames extracted from a video feed, captured by a mobile sensor, which 

shows correspondence in background features 



Chapter 5 

OBJECT LINKING IN MULTIPLE FEEDS 

5.1. Statement of problem 

Linking objects across multiple feeds is a far more complex problem than for a single 

feed. In a single feed, there is continuous coverage of an object's motion across the field- 

of-view of the sensor. In the case of multiple sensors, more so in the case of disjoint 

video networks, there could be gaps in the coverage of the terrain by the sensors. While 

this might seem a trivial issue initially, the potential problems are many. When there are 

no common areas in the FOVs of two sensors, it is not possible to match object 

trajectories purely based on feature correspondence in the two FOVs. A certain degree of 

overlap can aid in the transformation of object profiles to a uniform scale based on the 

relationship between the two instances, in the two FOVs, of the same background feature. 

Whereas, with no overlap, camera parameters must be known explicitly in order to 

normalize object attributes for accurate comparison. Further, since multiple disjoint 

sensors are located at a considerable distance fiom one another (for getting distinct views 

of the terrain), there is a high possibility of local errors due to illumination changes, 

weather phenomena such as wind, influencing the quality of data recorded by the sensor. 

5.2. Proposed approach 

In order to effectively tackle the problems posed by installing multiple sensors with non- 

intersecting views, we propose to establish a system of addressing moving objects using 

multiple attributes. Using the object attributes extracted fiom a video dataset (based on 



the procedure described in Sec. 4.1.6.), we construct a composite object signature that 

will effectively create a highly-reliable metric for object comparison across multiple 

video feeds. Object matching will be more reliable using multiple object descriptors 

rather than a single attribute of varying data quality, e.g. surface color. The following 

table outlines the object attributes that will be used for building the multi-dimensional 

signature: 

Table 5.1 : Listing of the object attributes used for building composite object signature 

When a single attribute alone is chosen for indexing an object in a video feed, there is 

very less room for flexibility in case the desired accuracy is not available in that attribute. 

The proposed multi-component object signatures seeks to solve that issue by affording 

flexibility to the user in determining which attribute is to be accorded higher precedence 

based on the quality of the data. For example, if surface color is perceived as the most 

accurately (in terms of data resolution) descriptive attribute, it could be given a higher 
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SpAng.R 
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Area 

Compactness 

AvSpeed 

AvAccel 

Dir 

Description 

R component of object mean surface color 

G component of object mean surface color 

B component of object mean surface color 

R component of object spectral angle 

G component of object spectral angle 

B component of object spectral angle 

Area of object profile 

Compactness of the object 

Average speed of the object 

Average acceleration of the object 

Direction of the object motion 

Unit 

(number) 

(number) 

(number) 

radian 

radian 

radian 

pixels 

(number) 

pixels/sec 

pixels/sec2 

radian 



weight than other attributes in the object signature. The implication is that the object 

comparison will be more reliable as the less accurate attributes will receive lower 

importance for their matching results. Hence, object matches will be much better than 

with using just one attribute. 

Various approaches (Cohen and Medioni, 1998; Lipton et al., 1998; Comaniciu et 

al., 2000; Pless et al., 2000; Amer, 2005) have been presented in the computer vision 

discipline on the detection, classification and analysis of object motion involving just one 

or a few object attributes. Our method differs from others in that we seek to solve the 

problem of object detection, tracking, and matching by means of a multi-pronged 

approach that involves establishment of a comprehensive object definition model by 

means of integrating multiple attributes along with their accuracy weights. Our work 

proposes a technique for identifying, labeling and analyzing the motion of objects by 

constructing a descriptive multi-level signature for the moving objects detected in a video 

stream. 

5.3. Object linking 

In the initial stages of object detection, we do not know the exact relationships between 

the objects detected in one frame with those in adjacent frames. While we realize that 

most, if not all, objects in two consecutive frames are the same; it is not possible for the 

object detector to automatically link the same objects across frames without extra 

information on the objects. At this juncture, the detector only knows two attributes of all 

objects - their size in pixels and the shape (outline) as derived from difference images. 

This might be enough information in a scenario where all objects in a video feed are of 



different shapes and sizes. However, in real-world situations, this is rarely the case. For 

example, in a traffic video, at least a few cars will look alike in several aspects - color, 

shape, or size or all. In such situations, we need to know the attributes of objects in more 

than one domain in order to link them reliably within a feed to their counterparts in other 

frames. We collect information on objects in three domains - spatial, spectral and spatio- 

temporal. Once all the attributes are known for all objects, we order objects over a 

possible range of domain-values. While this is not so much to enable intra-feed object 

linking, indexing assumes great importance while clustering objects in multiple-feed 

object linking (matching). Grouping indexed objects is easier than trying to cluster an 

unordered list of objects. 

5.3.1. Intra-feed linking 

Objects detected in each frame need to be linked to themselves in subsequent frames. 

Comparison is based on one attribute to speed up process of generating list of objects in a 

single video stream. Color is a suitable candidate for comparison because of the high 

level of accuracy with which objects can be labeled. Further, color is not affected by the 

sampling quality (spatial resolution) of the data too much because it is a mean measure 

over the object's surface as compared to geometric attributes which depend on the 

accuracy with which the raster image (frame) represents the actual shape profile of an 

object in the video. The reason why single-attribute comparison is used is because the 

ambient variations in illumination are almost negligible for frame-to-frame comparison. 

Knowing an object's attribute and its location in the frame, it can be compared with other 

objects in the next frame. The nearest object that has the same or nearly same attribute- 



value is its image in the next frame. In situations where there is a great deal of similarity 

of objects in one domain, say color, more attributes from the other domains could be used 

in linking objects. Using a single domain in such a situation would result in multiple links 

for one object in the next frame. But such a potentially confounding situation can be 

resolved by enforcing a proximity parameter that ensures that objects cannot appear at 

gaps (between two frames) more than the specified threshold. It is for this purpose that 

we define a vector-building parameter called maximum link distance which defines 

whether two temporally-adjacent centroid locations represent the same object or not. 

5.3.2. Multi-feed linking 

Linking (or matching) objects across multiple video feeds is far more complicated than a 

simple intra-feed linking. Several factors which are usually constant for a single video 

feed become highly variable for a set of video feeds. The view characteristics of the 

individual sensor is an important factor which is seldom constant in a video sensor 

network. Further, local illumination variations may be pronounced with multiple sensors. 

To tackle the problem of multi-feed linking, we propose the additional steps of object 

indexing and clustering. Once these processes are complete, actual object comparison can 

proceed and matches can be obtained. 

5.4. Object indexing 

Indexing the moving objects detected in a video feed is important for the purposes of 

clustering. Indexing could be a simple ordering of objects in each domain in a particular 

order. Such an index could be maintained for each domain. Alternatively, for larger 



object databases, it could be important to create a dynamic index (based on a B+ tree 

scheme, for example) so that frequent updates to the database are handled in an elegant 

manner. However, in our case we consider a simple ordered index of objects as it serves 

our purpose well. In a real-time application, objects are always added to the database. 

Any deletions or updates would occur only at a separate level. The application itself 

would not demand any changes to the data collected over a period of time. However, use 

of a special indexing mechanism (like the B+ tree) entails the use of a dedicated database 

system. In our case, we have restricted our choice of an index to an ordered list primarily 

because including a database system is beyond the scope of this work. However, using a 

database would be a tremendous boost in the direction of data management. For a real- 

world application involving moving objects, like traffic monitoring, the number of 

objects handled in a day would easily run into several thousands. Using a database to 

index the detected objects would be more appropriate in such a case. In our application, 

we only consider a limited set of objects that appear in a specific dataset, for our testbed. 

5.5. Object clustering 

Comparing objects across multiple feeds is not a straightforward procedure. Objects 

detected in a video possess multiple attributes in three domains. There is added 

complexity due to some attributes like mean surface color which are multi-valued. The 

main objective is to take an object in one video feed and match it with its instances in 

other video feeds. An object may appear in only one video feed in a network of n sensors 

or may appear in all of them. A simple solution to the problem would be to compare the 

object in question with each and every object in all other feeds. However, this would be a 



highly inefficient manner of comparison as for every such object in that video feed, the 

same process has to be repeated. This would place enormous processing overhead on the 

system. Instead, we propose an intermediate clustering step that will reduce processing 

significantly. After all the objects in a video stream are linked so that a minimal number 

of objects in that video are arrived at, we need to cluster the objects into logical groups. 

This is because when we compare objects in a video stream with those in other video 

streams, the comparison process can be performed faster by just evaluating similarities of 

objects belonging to relevant clusters. Note on color: instead of storing direct color values, 

color shapes can be stored in order to effectively compare the same objects in different 

video streams but with different apparent color profiles. Ex: (120,120,120) is the same as 

(240,240,240) due to heavy illumination effects in the second dataset. 

After clustering objects in a feed, it would be advisable to "normalize" all 

attribute values in all video feeds, to a uniform frame of reference. This is because when 

two clusters from two video feeds are compared, there is every possibility that local 

effects could have introduced errors in one cluster and hence comparisons would not be 

totally unbiased. Extreme errors could even cause two actually similar clusters to appear 

totally different. Further, even in the absence of ambient errors, there is a good possibility 

of distortion of object profiles as different sensors would have different view angles and 

scale factors of the scene in front of them. In order to bring all data to a uniform plane, 

we need to make use of sensor correction parameters such as transformation parameters, 

view angle, altitude, location etc. This process could also be performed before indexing 

but normalizing might magnify small errors between frames and intra-feed object linking 

might not perform accurately. Hence, any adjustments to object attributes should occur 



during the time when actual objects are being compared so that we do not alter the stored 

object records. 

5.5.1. Clustering based on a dominant attribute 

As opposed to single-attribute based linking, single-attribute based clustering does not 

rely on accuracy to define the choice for the attribute. Whereas, an inaccurately recorded 

attribute could hamper intra-feed object linking, clustering is basically only an arbitrary 

grouping of objects in a video stream. The grouping could be based on the variation in 

that domain seen in the objects in a video. Even though color is the most accurate 

attribute of an object, it need not be the only suitable candidate for clustering. This is 

because it is highly likely that in a video stream, the color profiles ofthe objects are very 

similar. This could happen if, for example, all the vehicles in a video feed are red or 

reddish in color. That would leave very less scope for grouping objects into separate 

classes. It would pose a problem while comparing with other video feeds because it 

would be necessary to evaluate comparisons with all the objects in the first feed, as they 

all belong to one class. To avoid such situations, a variability measure could let us decide 

which domain attribute is well-suited for object clustering. One way could be to check 

variance of all object attribute values from the mean. If they fell within a certain user- 

defined threshold, the domain would be unsuitable for clustering purposes. In such cases, 

we could choose another attribute that varies more than the set threshold. In rare cases 

where all attributes vary within the preset tolerances, a ranking could help identify the 

best suitable candidate for clustering. 



5.5.2. Clustering based on membership to multiple classes 

An alternative to clustering objects based on just one attribute would be to group them in 

many or all domains so that comparisons between video feeds are more accurate. The 

disadvantage of relying on one domain for clustering and subsequent inter-feed 

comparison is that inherent errors (if uncorrected) in one dataset contribute to mismatches 

with objects in another dataset. In using multiple domains for clustering and comparison, 

we can be assured that errors in one domain do not alter results. A simple voting system 

in which the object that has matches with another object in the maximum number of 

domains could make the comparison more accurate. Further refinements could be brought 

about by incorporating confidence measures of each domain to introduce a weighted-like 

selection scheme. 

An object in a video feed could thus belong to several clusters, each 

corresponding to a domain. For example, an object could belong to the classes with mean 

spectral value of (250, 100, 50), mean size of 400 pixels, mean velocity of 30 pixelslsec. 

The only apparent drawback in this method is the time taken to cluster objects into many 

classes as they happen to be in different independent domains. This means computation is 

essentially repeated for each domain. If the resulting time delay is not a major issue in the 

application, it could be used to deliver better results. In our approach, we make use of 

multiple attributes to cluster objects and compare clusters in a hierarchical fashion. 

5.6. Object comparison 

Once all datasets are clustered, the objects in all feeds are ready for comparison to one 

another. The motive behind object matching is to establish consolidated trajectories over 



the entire network for an object. In mobile applications, it is crucial to know a tracked 

object's location from a holistic, regional view as the network can be reconfigured on- 

the-fly. Even otherwise, knowing just a fiagment of an object's motion path in a network 

is of little practical use, especially when the network has multiple sensors. 

5.6.1. Comparison of object lists 

When object clusters are determined in each video feed, the comparison of objects takes 

place in two steps. First, the clusters in all video feeds are compared to find the closest 

neighbors of each cluster in each domain. While individual objects are grouped together 

based on their closeness of attribute values in each of the three domains in order to form 

object clusters, clusters themselves are in a sense clustered hrther in this step so that 

meta-clusters are determined. Meta-clusters can be thought of as clusters of mean domain 

values across multiple datasets while object clusters are logical groupings in one dataset. 

Once the list of meta-clusters is drawn up, we compare the objects in the constituent 

object clusters in a meta-cluster to one another. This ensures that only relevant objects are 

compared in the process of forming matches. For example, there are three clusters in the 

spectral domain, namely, red, brown, and black objects in four video feeds. Under a 

simple comparison, even black objects could be compared to red objects. However, meta- 

clustering ensures that only red objects in two video feeds are compared to each other. 

5.6.1.1. Optimal comparison vs. painrise comparison 

In a multiple-sensor network, it might be enough to compare a few feeds for matching 

objects and extending matches logically to other feeds. For example, if there are three 



video sensors in a network, it is enough if we compare feed, and feed2; and feed2 and 

feed3. It is not necessary to do the redundant feed1:feeds comparison. In most cases, such 

a technique would suffice as the accuracy with which data is recorded in common video 

sensors is suff~cient enough to allow for small amounts of error propagation. However, in 

applications which require a high level of precision, all pairs of feeds may be compared 

(except obviously redundant combinations like feed, :feed2 and feed?: feed,) so that there 

is no error carried over by inferencing match results. While the first technique has the 

advantage of timeliness of producing results in comparison to the second, it suffers from 

a potential carry-over of errors from one match to another. 

5.6.1.2. Domain-specific comparison vs. weighted comparison 

If we consider an atomic comparison step, an object in one video feed is compared to 

another in another feed. This comparison could be in terms of measuring how close the 

two objects are in domain-space. We consider three domains (spectral, spatial and spatio- 

temporal). Within each domain, we have several attributes. For example, spatial domain 

has attributes like area, compactness and size. When we determine the distance between 

the two objects in one domain, we find the distances of each sub-domain (attribute) and 

derive a single distance measure for the domain. If all attributes are assumed to be of 

equal importance and accuracy, we can normalize them to percent scores and multiply 

them. We would then get three individual scores for the three domains. In cases where 

there is not sufficient accuracy in one or more domains, we could choose the domain with 

the highest accuracy. However, it would be better to use a weighted score while obtaining 

matches in most cases as the accuracy of other domains is not too low to warrant their 



exclusion fkom the comparison process. Depending on its importance, each domain value 

could be assigned arbitrary weights and consolidated distance measures could be 

obtained. 

5.6.2. Hybrid comparison method 

Our approach towards object comparison and matching follows a mix of the techniques 

mentioned above. Object distance measures are obtained in every domain for all the 

attributes and normalized. All distance measures in a domain are then consolidated to 

obtain a single score for all three domains. Instead of assigning random weights to each 

domain, a hierarchy is followed in deciding if a match is suitable. The following 

pseudocode gives an idea of how the approach works: 

For objects (Objl , 0bj2) 

Iff dist-measure in domain1 <= threshold, and 

Iff dist - measure in domain2 <= threshold2 and 

Iff dist - measure in domain3 <= threshold3 

Then (Obj, == 0bj2) is true 

Where, Objl and Obj2 are two objects in two distinct video feeds, threshold, is predefined 

by the user for domaini, and dist - measure, is the distance measure between both objects 

in domaini. 

The advantage of using this approach is that it narrows down the match to only 

those objects which fulfill the nested condition. In effect, it functions like a three-stage 



filter, eliminating unwanted matches along the way. The three-step comparison might not 

be restrictive enough to narrow down to the best match. There might still be multiple 

matches (though far fewer than obtained using a plain weighted comparison) which can 

be minimized by choosing the closest match, in terms of the weighted distance. The 

difference between just a weighted comparison and the hybrid approach is the fact that 

the filtering of results takes place twice in the latter. 

5.6.3. Trajectory linking 

Building a complete trajectory of an object's journey across a network basically consists 

of linking individual sub-trajectories obtained from video feeds recorded by different 

video sensors across the network. When we have enough information on object matches 

(or correspondences) across different video feeds (essentially, different sections of the 

network), a complete trajectory may be formed by linking sub-trajectories in a certain 

sequence. Linking sub-trajectories in a spatial sequence may seem to be a possible way of 

achieving it, but it must be noted that at times, objects may travel in complex loops across 

a network. For example, an object may travel in one direction for some distance, turn into 

a side-road at some angle and after some time may even come back by the same road it 

entered the network. A spatial sequence may not be able to capture the complexities of 

the object's path unless predictive models are in place. 

Using timestamps as a key linking mechanism, we can connect sub-trajectories 

reliably without falling prey to simplistic assumptions about an object's possible route 

across the network. Trajectory linking using just timestamps is only a rough means to 

estimate an object's complete motion path across a network. This is especially true when 



sensors are sparsely distributed across the network and there is no overlap between 

adjacent sensors. If commonly used routes in a network are known, they could be used to 

predict an object's possible path in a blind spot (a location between two spatially-disjoint 

sensors). 



Chapter 6 

EXPERIMENTS 

6.1. Experiments with data from a single sensor 

In the course of establishing our approach for detecting moving objects in data recorded 

by multiple sensors, we tested our motion detection and tracking algorithms on videos 

obtained from a single sensor. The aim was to establish the efficacy of the algorithms in 

detecting objects correctly based on specified parameters and also to extract object 

attributes from the video. 

6.1.1. Data collection 

Color video was captured using digital video camcorders at 720x480 pixels and a frame 

rate of 29.97 @s. The camcorder was focused in such a way that as large as possible a 

view of the road below was available. This was to ensure that a significant portion of the 

object's trajectory (including turns) was captured as opposed to a closer but incomplete 

view of the object's path. This input video was reduced to 320x240 at 8 fps for testing 

low-resolution analysis and 720x480 at 3 fps for high-resolution analysis. High frame 

rates are not desirable given the nature of intense computations. The digital camcorders 

were set atop a three-storied building 50 feet tall. The sensor (camcorder) focused on an 

exit road. At the time of recording data, the sensor parameters such as location, focal 

length, etc. were not known. The goal of the experiments was to merely establish an 

object detection and tracking system upon which support for multi-sensor input could be 

built. 



Figure 6.1 : Viewing field of the sensor 

The algorithms accept preset values for parameters that are derived iteratively. Parameter 

values are applied consistently across the video scene and act as global constraints, 

establishing a knowledge base for a potential distributed video sensor network. 

6.1.2. Processing 

The apparent surface color of an object is determined by source illumination, viewing 

geometry and camera parameters. Processing color information can be expensive and is 

typically restricted to the pixels that have been obtained from the morphological 

operations on the object shape profile. Color information can be operated upon either in 

the RGB (Red-Green-Blue) domain or in the HSI (Hue-Saturation-Intensity) domain. In 

the RGB domain, isolating color information is not easy since all the three values (R,G,B) 

change significantly with illumination. In the HSI domain, the Hue value plays a vital 

part in object determination since it does not vary with intensity changes. This is 

particularly true when the object is subject to varying illumination levels as under 



shadows and under bright sunlight. Hence we attempt to track objects based on proximity 

in Hue values after shadows are eliminated. In order to get a Hue signature, the median 

hue value of pixels in an object blob is used. 

A rectangular region enclosing a detected object was first defined. Pixel values 

that were outside the object outline but within the bounding box belong to the surface on 

which the object traveled, in this case, the road. The frequency distribution of the hue 

values of these pixels was studied and a range of hue values which represented the road 

surface was chosen. It was assumed that the hue values of the shadowed region would be 

very close to the hue values obtained from the road pixels as the shadow is merely a 

region on the road with an illumination level different from its surrounding areas. The 

basis for this assumption is the premise that hue value of a surface does not vary with 

varying incident illumination. Once the range of hue values corresponding to the shadow 

was identified, those pixels in the vicinity of an object with hue values falling in the 

'shadow range' were eliminated. These pixels were identified by the motion tracking 

algorithm as part of the object as the shadow moved with the same velocity as the actual 

object. Once the shadows were eliminated, object hue values obtained were more relevant 

to the actual object surface color. This helped in linking object trajectories across the two 

datasets with greater accuracy. 

6.1.3. Results 

In the analysis of the video, we used the mean surface color of the object as a comparison 

metric for linking objects across frames. Trajectories of each object were formed based 

on the recorded centroid location of the object in consecutive frames. Trajectory 



formation was subject to the vector-building parameters. Hence, in frames where the 

objects stopped, their centroid locations were undetectable (due to absence of motion), 

and this caused their trajectories to fragment. The motion trajectories for the objects in in 

the scene analyzed based on different resolutions are shown in Fig. 6.2 below. The 

trajectories are plotted on the X-Y plane with time along the vertical axis. Shadow 

filtering was performed only on the high resolution analysis due to high loss of object 

surface pixels when performing the filtration. 

(a) 320*240; 8fps (b) 720*480; 3fps 

Figure 6.2: Motion vectors: Low- (a) and High- (b) resolutions 

MOA 
10000 
10000 

Table 6.1 : Parameter values for scenes I and 2 

Resolution 
Low 
High 

C 
0 
0 

mOA 
200 

4000 

Size 
320*240 
720*480 

FR 
8 fps 
3 fps 



In both the output figures (Fig. 6.2), we see that the trajectories of individual objects are 

represented by independent lines over the entire duration of the video. The first figure 

(Fig. 6.2a) incorrectly links two separate objects as one and hence the "hairpin" trajectory. 

It can clearly be seen that even an object making an about turn would have the portion of 

the trajectory where it travels in the opposite direction, still pointing in the increasing 

direction of the Z-axis (frames, as a representative of time). 

In the actual video, the objects do move linearly and hence the first output is 

wrong as it connects two objects because they appear to have similar properties. The 

same error does not occur in the high-resolution data output. High-resolution data offers 

better accuracy whilst entailing significantly longer processing times than lower 

resolution data. In this example, the ratio between higher- and lower- resolution data is 

4.5 ((720*480)/ (360*240)). This means that the processing time is 4.5 times longer in 

the case of the high-resolution data for the same duration of video. This can be somewhat 

mitigated by reducing frame rate (by a factor of 2.67 (813) in our case). However, 

reducing frame rate can cause linking errors in a high-volume dataset. Hence, a proper 

balance has to be struck by studying the potential characteristics of a geospatial network. 

Further, in this case two different objects were merged in the first output because of using 

only a selection of all possible parameters (color). A more complete description of the 

object's properties could help avoid linking errors. 



6.2. Experiments with synthetic data 

In order to demonstrate our clustering-based object matching approach, we conducted an 

experiment based on synthetically-generated data. We generated the datasets to act as 

object profiles extracted from real-world video data in a multi-sensor-monitored traffic 

network. The aim of the experiment was to generate a large number of objects ( M O O )  per 

dataset in order to simulate a real-world traffic network with a high density of moving 

vehicles (e.g., a highway). 

6.2.1. Data generation 

For dataset generation we used actual signatures of five distinct objects captured with real 

cameras in our university campus (see Table 6.2). Their radiometric and geometric 

properties (color, area and compactness are reported here) were extracted and served as 

seed values to generate our synthetic datasets. These seed values were subjected to the 

application of random errors (using a pre-defined standard deviation) in order to generate 

multiple object instances within five classes that correspond to the seed objects. Then, 

datasets were generated comprising three of these classes and an additional random class, 

with randomly generated properties (see Table 6.3). 

Table 6.2: Reference dataset seed values in three domains 

Class 
1 
2 
3 
4 
5 

Area 
2500 
4100 
5700 
9300 
7700 

Spectral Value (R, G, B) 
104 230 240 
128 10 10 
2221 18 
235 55 46 
255 206 207 

Compactness 
0.21 
0.36 
0.49 
0.72 
0.59 



Table 6.3: Composition of synthesized datasets: '0' refers to randomly generated data 

Dataset 

The combination of classes in each datasets is such that there is some overlap between 

any two datasets, indicating instances where a car moved from the field of view of one 

sensor onto the field of view of another. Data that are not common to two datasets but 

present in one of them represent objects that crossed the field of view of one sensor only 

in our hypothetical network. Randomly generated datasets (represented by '0' in Table 

6.3) would be interpreted in such a manner. 

6.2.2. Clustering 

After the artificial datasets were generated, each dataset was subjected to a clustering 

algorithm that grouped objects together based on similarity in a single attribute. The 

clustering started with a predefined number of classes. Based on a migrating-means 

approach, the clusterer grouped objects whose value in an attribute-domain (say, Area) 

fell within a certain threshold. During the second iteration, the class means were refined 

by taking the mean of the attribute values of the member objects in each class. The new 

mean values were then used to reclassify objects. The same process was repeated once 

more and if the class mean values changed little, the clustering process was stopped. The 

clustered objects were then compared to those in another dataset based on the closeness 

of the classes they belonged to. 

Reference classes 
(200 objects each) 

Deviation from 
reference (%) 

Total 
objects 



6.2.3. Results 

The objects detected in one dataset were matched to those in another by first clustering 

each dataset. The clustering was based on a simple Euclidean-distance based clusterer 

that grouped objects into one of a predefined number of classes based on the proximity of 

the object. The clustering algorithm is based on the ISODATA algorithm for classifying 

digital images. The clustering algorithm worked by iterating over the datasets more than 

once in order to first determine initial mean seed values for the clusters and then grouping 

objects in subsequent iterations, while refining the mean values. The results of the 

comparison are shown in Fig. 6.3. 

Ama Compactness 

I Dlllolt 7 Dl6111 
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Figure 6.3: Results of the comparison (a,b,c) separately and (d) in all domains together 

(a) Object matches with area alone (b) Object matches with compactness 
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(d) Object matches with all three domains 



Table 6.4: Tabulation of object matches in all dataset pairs 

Dataset 1 2 1 3 1 4 

In Fig. 6.3, objects in dataset-1 that did not map to any object in dataset-4 lie on the X- 

axis. The comparison between two objects is based on a simple computation of percent 

change in the parameters from one of the objects. If it fell within an acceptable threshold, 

the object was added to a table of 'possible matches'. When all objects in a dataset were 

compared to the current object in the other, the matching table was sorted. The object that 

had the least change in comparison to the current object was chosen as its match in the 

other dataset. Successful matches were eliminated from the pool in order to speed up the 

process. In a real-time system where newly detected objects are compared to those that 

already exist in the database, time-consuming comparisons could sIow down the system 

and will give rise to performance issues. On an average, our system took around 36 

seconds to compare 1600 objects in the database. After matches were obtained in 

individual domains, they were consolidated by choosing the match that appeared in more 

than one domain. In inconclusive cases, the match was determined as 'null'. The system 

could be extended by assigning leveIs of confidence to each attribute (color, compactness 

etc.). In cases where the matches conflict with one another, the match that is in the 

domain with a greater degree of confidence could be chosen over the rest. As of now, all 

attributes were assumed to have been measured with the same level of accuracy. 

1 1 399 1 181 1 286 



6.3. Experiments with data from multiple sensors 

To demonstrate the validity of our approach of multi-component object signatures, we 

recorded data using eight video sensors with disjoint views of a traffic scene and 

processed the data to obtain object information in multiple domains. The object 

signatures were then used to build indexes for each dataset that ordered objects according 

to the value of their attributes. The objects were then clustered and object comparison 

proceeded by comparing object clusters first and then comparing objects in the matching 

clusters. 

6.3.1. Data collection 

Data was recorded at eight different locations on the University of Maine campus using 

digital camcorders mounted on tripod. The camcorders recorded data for a period of 

nearly 45 minutes starting at nearly the same time of the day. The locations and extents of 

their coverage are shown below in the following figure: 



Figure 6.4: Map of the University of Maine campus showing the location of sensors 1-8 

The sensors were placed in such a way that they covered the flow ofthe bulk oftraffic on 

the eastern wing of the university campus. All the sensors had an elevated view of the 

terrain below as they were placed at window sills of the buildings in which they were 

located. The illumination changed considerably in certain sensor locations due to changes 

in weather. The data recorded by each camcorder was of a fiamesize of 720x480 and 30 

Qs. When transferred to the computer, the data was reduced to a size of 360x240 and 10 

fps as the fiequency of vehicles in each video was not too high and also the size of the 



vehicles in the encoded video was adequate enough for the purposes of our experiment. 

This conversion of the datasets ensured that processing time was cut down significantly 

but at very little compromise on the tracking accuracy. 

6.3.2. Processing 

The eight videos recorded by the sensors were individually processed in order to derive 

motion information. Each video was processed using the motion detector and motion 

tracking algorithms. Based on input parameters, a number of objects was extracted, with 

multiple characteristic-attributes (area, compactness, R, G, B, average speed and 

acceleration), from each video. The input parameters for the processes of motion 

detection and tracking were generated from the previous experiments with single feeds. 

Absolute mode of AFD was used in order to preserve the shape of the detected object. 

The following table lists the values for the input parameters for the motion detection and 

tracking algorithms: 

Table 6.5: Parameters used for object detection and tracking 

79 



Figure 6.5: (a) Frame fiom the original video, (b) Scatter plot of object centroids 

The above figure (Fig. 6.5a) shows a frame from one of the videos. The adjacent figure 

(Fig. 6.5b) shows a scatter plot of all the object centroids in the video. The outline of the 

tree as well as the plant in the edge of the frame is visible in the scatter plot. Due to the 

windy weather at the time of the video capture, the leaves in the plant and trees moved 

for considerable length in the video and hence accumulation of fiames was not 

completely successfbl in eliminating unwanted object points due to the plant movement. 

Using a higher value for the frame accumulation rate could have resulted in obliteration 

of some infrequent but valid objects. 

After each video was processed, object signatures (area, compactness, mean 

surface color, average speed, acceleration and direction of motion) in the spectral, 

geometric and spatio-temporal domains were obtained. 1n addition to that information, 

object centroids were obtained for each fiamne in which the corresponding object 

appeared. Knowledge of centroid locations helps us to build object trajectories for each 



sensor view. A sample output is shown below in Fig. 6.6, where three sensor views and 

the trajectory plot for each sensor are shown. 

Moving Object Trajectories 
...................... 300 . . . '. . . . . 

Moving Object Trajectories 
...................................... 

y (row pixels) 5 

Mov~ng Object Trajectories 

Figure 6.6: (top row) Frames from videos taken at sensors 3,5,7 (bottom row) Trajectory 

plot for all objects in each video 

Object attributes were then used to build indexes for each domain in each video feed. As 

already described in Chapter 5, indexing was implemented as a simple ordering of objects. 

Once indexes were created for each dataset, clusters were built from analyzing the indices 

for similar values. The clustering was based on a K-means algorithm. The software 

program used for the clustering algorithm was the public domain Fuzzy Clustering and 

Data Analysis Toolbox written by Balms Balasko, Janos Abonyi and Balms Feil, 

available from the website of Mathworks Inc. An arbitrary number (four) of clusters was 

chosen to be constant throughout all domains. The following figure shows a clustering of 

the "Area" attribute of objects detected in the fxst dataset, with five clusters: 



Figure 6.7: Clustering results for the "Area" attribute of the first dataset 

Table 6.6: A sample object fiom the first dataset 



After clusters are generated in each dataset, we begin the process of comparing individual 

objects in two datasets. 'The comparison first starts a comparison between the clusters in 

each of the two datasets. This step is necessary to ensure that only relevant objects are 

compared. This step can be likened to comparing hypothetical objects that possess the 

cluster means as their attribute values. Once a correspondence between the clusters in two 

datasets is established, object comparison can proceed further. In order to make sure that 

object comparisons are unbiased by local errors, we need to bring all object attribute 

values to a uniform scale. In the datasets we have captured, the size of objects is one 

attribute that varies greatly across datasets. Based on apparent variations between datasets, 

weights are assigned to each dataset to scale the size values of each object during the 

process of comparison. During object comparison, only those objects are checked whose 

clusters are similar. Also, in order to avoid redundant comparisons, only a subset of the 

possible pairs of datasets is compared, as seen in the following table: 

Table 6.7: Dataset-pairs marked by "-" are redundant and are not involved in the 

comparison process. Those marked by "*" were considered. 



A single object comparison (Objim == ObjJn) follows the following rule-scheme 

The following differences are defined: 

A potential match is chosen: 

iff (6.1) < thresholdl and iff (6.2) < threshold2 and iff (6.3) < threshold3 (6.5) 

If (6.5) is fulfilled, ~ b j ,  is chosen as a possible match mk for Objim. In order to pick the 

most relevant match out of a set of k matches, we choose the object for which (6.la), 

(6.4a), and (6.4b) are the least. A list of matches is built in this manner for all objects in 

both datasets. The same process of comparison is repeated for each pair of datasets 

marked by "*" in Table 6.7. 

A sample final match-list is produced below in Table xx. The two videos 

compared were short (30 sec.) segments of datasets 1 and 3. The table on the left (Table 

xx.a) shows the results obtained by comparing the objects in both videos solely on the 

basis of their mean surface color and the one on the right shows the results obtained by 

subjecting the objects to a multi-stage comparison based on their signatures. 



Table 6.8: (a) Match results obtained from color-based comparison (b) Match results 

obtained from multi-component signature-based comparison 

Matches with a "0" refer to no possible matches. In the first case, the matching accuracy 

is a low 46%. While a pure color-based comparison usually yields good performance, the 

reason for the poor match is due to the presence of occlusions (trees) in one of the videos. 

Normally, using color information and proximity as an auxiliary measure, a fairly reliable 

matching can be obtained. With occlusions, proximity cannot be used as a means to 

verify matches as spatial continuity is lost during the period of occlusion. In the case of 

the multi-component signature matching, the accuracy for the same pair of datasets is 

73%. The main inference fi-om this result is that even with occlusions, a multiple 

attribute-based matching scheme offers more scope for accuracy due to the mere fact that 

with more information about the ob-iects at hand, a more reliable matching can be 

performed. 



6.3.3. Results 

The results of processing the eight datasets confirm the validity of our approach in 

matching moving objects detected in disjoint video streams. The parameters used for 

detecting and building objects were chosen so that all valid objects were detected. 

However, a lot of unwanted objects (caused by background motion) were also detected as 

a result. The breakup of the object matches between the various pairs of datasets is 

presented in Table 6.9. The topmost row shows the number of objects detected in each 

dataset and the leflmost column shows the dataset to which those in the topmost row are 

compared. The number of object matches indicates only the object correspondences 

between each dataset, based on multi-component signatures. It does not indicate the 

percentage of successful matches as it would be virtually impossible to verify each and 

every match, and if so whether it is the best match. Further, the number of objects 

common to two datasets may not be the only objects appearing in both. Added to the non- 

common objects are unwanted objects that might have crept in due to the relaxed value of 

the frame accumulation rate. 

Table 6.9: Object matches across eight datasets 



On an average, each dataset contained more than 3,000 objects (including valid objects 

such as cars and bikes, and unwanted moving objects like pedestrians and background 

motion) in an approximate duration of 45 minutes. To compare each object in a dataset 

individually in a pairwise comparison over four attributes with those in another dataset 

would have resulted in 3,00Ox3,000x4 = 36 million operations. However, by clustering 

objects into four classes, only the relevant classes are compared. This brought in a 

significant reduction in processing time. For a real-time system operating with constraints 

on reporting times, it is essential to eliminate redundant processing cycles. Our 

clustering-based object motion analysis approach is well-suited for such an application. 



Chapter 7 

CONCLUSIONS AND FUTURE WORK 

7.1. Summary 

In this research, we sought to solve the problem of establishing a semi-autonomous 

computer-based system for processing and analyzing video streams obtained from 

multiple video sensors having non-overlapping views of a terrestrial network (region). 

The problem involved a multitude of parameters and variables. System variables included 

location of sensors, sensor intrinsic parameters such as sensor view angle, scale factor, 

altitude. The video capturing system was also not assumed to be robust or, in other words, 

totally error-free. The design of the system was envisioned to work with error-prone data 

and yet produce acceptable and timely results. The major outputs of the system included 

location and description of the moving objects in the different video streams. Derived 

outputs include trajectories of the object across multiple sensor-views. In the course of 

the development of the video analysis system, a limiting case was first considered and 

then generalized to hold good for a complex sensor network scenario. Initially, 

algorithms were developed for the case of a single video sensor. The aim was to develop 

techniques to detect motion in a video and construct objects from the detected moving 

regions. 

7.1.1. Algorithms 

The fundamental algorithm underlying the video analysis system is the object comparison 

technique based on multi-dimensional signatures. The preliminary object information is 



obtained by means of a frame differencing algorithm. The frame differencing algorithm is 

fairly popular in the computer vision domain for the primary reason that it offers superior 

accuracy at very little processing cost. Since all video analysis tasks revolve around the 

central technique of matrix manipulations, it is very desirable to reduce the fundamental 

complexity of the algorithms as an iterative processing of a video using a complex 

algorithm could prove to be computationally expensive and also slow in producing results. 

The basic differencing algorithm was modified to incorporate a "memory" of sorts to 

eliminate false positives from the list of moving regions. The differenced video data was 

then processed using pixel-level morphological operators to build objects from moving 

regions in the video. These two algorithms constituted the backbone of the single-sensor- 

based tests. When a high level of detection accuracy was achieved, the algorithm was 

further developed to enable processing of multiple video feeds and match objects 

detected in each of them. 

The core concept behind the multiple-sensor-suitable system is that of multi-component 

object signatures. Using the attribute information derived for each object fiom each video, 

a composite signature is constructed which is used for matching the object to its instances 

in other video feeds. By means of user-defined weights for rating the quality of the 

attribute data, the accuracy can be held consistent even in the face of changing ambient 

conditions that adversely influence the quality of data recorded at each video sensor. 

Further accuracy in generating results is by bringing all the data values of two 

comparable objects to the same scale. Often, local factors such as changing illumination 

could seriously affect the accuracy with which two objects can be matched. This issue 



was addressed by bringing in the concept of spectral angles (analogous to "spectral 

signatures" of physical objects in remote sensing terminology) for defining the instrinsic 

color characteristics of detected objects. Another source of error is trailing shadows of 

objects caused by the oblique position of the sun in the sky. Shadows cannot often be 

removed by differencing because they travel with the same velocity as the object and are 

"attached" to the object. We incorporated a shadow removal algorithm in our analysis 

system which removed shadow pixels fi-om an object's shape profile by performing a 

neighborhood search on "blacklisted" hue values. 

7.1.2. Evaluation of the algorithms 

For the single-sensor-based tests, we captured datasets with objects undergoing simple 

motion. The objects in question followed predetermined paths. The reason for 

predefining the motion path was to create a scenario where objects moved back and forth 

and in opposite directions at different points of time. Besides, objects of different sizes 

(cars, people etc.) were also involved in the video shoot to test for the efficiency of the 

motion analysis algorithms in detecting objects of varying sizes. Another added 

complexity was the deliberate coverage of areas of different background illuminations to 

check for the robustness of the algorithm. With all these constraints, the algorithms 

performed very well and produced accurate tracking results. In the multiple-sensor-based 

tests, we captured video feeds from sensors distributed at different points on the 

university campus. We made sure that each sensor had a totally disjoint view of the scene 

as compared to the adjacent sensors. The data capture was started at nearly the same time 

to ensure common objects in more than one of the captured video feeds. The video feeds 



were processed independently first to obtain lists of objects in each of them, along with 

their respective attributes in the three domains - spectral, spatial and spatio-temporal. The 

generated data was used to build signatures for each object and consequently, an object 

index for each dataset. The index was then clustered on each attribute to reduce the 

complexity of matching objects across multiple feeds. The actual object comparison 

proceeded after cluster matches were obtained. This ensured that redundant processing 

cycles were avoided for performing a direct one-to-one comparison. The results of the 

object matching confirm our hypothesis that a multi-dimensional object signature enables 

in obtaining better accuracy in object detection and matching. 

7.2. Conclusions 

Several conclusions were drawn during the course of this research on the characteristics 

of the original problem - object matching across multiple feeds. Firstly, the ambient 

environment for this problem space is highly variable. Multiple natural factors strongly 

influence the way in which raw visual data is recorded on the motion of objects on a 

terrain. Any system that seeks to establish an autonomous monitor should be built 

keeping this factor in mind. The system has to be designed to withstand the negative 

effects of the environmental factors as they influence the basic binary accuracy (passlfail) 

of the matching process. Other factors, such as background clutter, subtly influence the 

final matching accuracy. An example where they play a role would be where the 

trajectories of two similar objects could be "knotted" by the system, due to both of them 

traveling very close to each other (because of traffic conditions). The system should, thus, 

be able to discriminate two similar (in terms of color, size, shape, or motion) objects. 



Another important conclusion is that an object motion analysis system based on video 

sensors should be as minimally complex as possible. Video processing is quite different 

from conventional image processing in the fact that the process is basically iterative (over 

multiple digital images, or frames). This adds a further level of complexity to any 

algorithm and basically delays the time by which the results of an image processing can 

be obtained. Keeping this in mind, a video analysis system should thus be based on a 

simple, though not at the expense of the final accuracy, algorithm. The fundamental 

iterative (over all pixels in all frames) algorithm in our system is a subtractive process 

that requires the least of system resources for its processing and executes fast compared 

to costly filter-based operations such as edge detection. 

Further, while some time can be sacrificed for extracting object information from a video, 

the process of matching objects must take the least amount of time possible. In the initial 

stage, the input is a huge data, basically, a video with multiple frames and each frame 

with thousands of pixels. After the process of video analysis completes, the output is a 

mere few data records (of object information) per frame which can be analyzed in much 

quicker time. An object comparison algorithm cannot waste time on redundant (Objl:0bj2 

and 0bj2:0bjl) and/or invalid comparisons (red-colored 0bject:blue-colored object). For a 

real-time object detection system, all the above conclusions hold good. As final 

concluding note, our system is well-suited for a real-time application as it was designed 

keeping all these factors in mind. 



7.3. Deployment scenarios 

Our experiments were only constructed to act as ''proofs of concept" or validators of our 

hypothesis, but we envisage that our approach can be successfully implemented to solve a 

variety of practical real-world applications. One representative application is standard 

traffic monitoring. 

Raw Mso M a  

I____ 
Central ob'pd reparllory 

Figure 7.1: Possible configuration of a traffic-monitoring system based on our approach 



A typical road traffic network consists of hundreds, if not more, of vehicles of different 

sizes and shapes. Furthermore, they also vary in their hues and shades, not to mention 

their vastly different motion characteristics. This makes it an ideal situation for 

implementing our approach of multi-dimensional object indexing and linking. A real- 

time system for monitoring the traffic could be constructed on the lines of Fig. 7.1. The 

network shown in this figure comprises four sensor nodes. Each sensor node (shown as 

SN,) is an integrated video analysis system which consists of several distinct components 

like, video sensor, data pre-processor, video data analyzer, and wireless data transmitter. 

The video sensor captures raw video data at a preset spatial resolution, frame rate and 

color depth. This data is sent to a pre-processor to optimize the raw video data for hrther 

processing. A pre-processor could be an integrated circuit board specifically designed to 

downsample video data. The processed video data is then sent to the video data analyzer, 

which is basically a dedicated computer/circuit board fabricated for the purpose of 

motion detection, object tracking and indexing. The data analyzer takes in the sensor 

calibration data as auxiliary input to scale the intermediate object attribute information. 

The final output of the analyzer is a list of objects as well as their multi-dimensional 

signatures. 

The output is transmitted to a central object repository where the information sent 

from all the sensors is maintained in a database. The repository, thus, maintains an "index 

of indices", meaning that it holds a list of object attribute lists which could be used for 

future object comparisons. The advantage of processing captured video at the sensor 

node-level is that precious wireless bandwidth need not be wasted in transmitting raw 

video data to a central processor. Further, it would be impossible to process the video 



data relays of all sensors at the same time by a central processor. For a real-time 

application like traffic monitoring, it would be best suited to process data at the node- 

level and use the central processor only for the purposes of object signature analysis and 

subsequent comparisons. The object database could be used to build a knowledge base of 

object classes such as school buses, 4 x 4  trucks, or bicycles. This could improve the 

accuracy with which objects can be compared in future comparisons, as knowledge of 

object classes would enable the system to instantly label an object instead of subjecting it 

to a standard clustering procedure. Our approach was implemented in a MATLAB@ 

environment which is very fast for the purposes of implementation but is not optimized 

for commercial deployment due to the interpretation of user code. Using a compiling 

language like C++ could increase the throughput of the system significantly. Best results 

would of course be achieved only by a hardware implementation. However, more 

research needs to be done in the area of formalizing many of the arbitrarily-held 

parameters in our approach so that the algorithm is more suited to a hardware 

implementation. 

7.4. Future Work 

Future research in this domain could proceed in the direction of constructing a real-time 

system that works in an encapsulated fashion. In our case, the system was designed to act 

as a concept-machine. Further development could be in increasing system throughput by 

optimizing the program code. The concept of assigning weights to different object 

attributes could be studied in a formal manner and a theoretical basis for the same could 

be established. At present, the weights are user-defined and are dependent on the 



judgment of the user. By tying down the weights to an intrinsic calibration mechanism, 

the object comparison could be made more accurate. Another improvement could be in 

the area of object data normalization. Using GPS location data, camera parameters could 

be established, using which the normalization could be made more accurate. Another 

important enhancement could be in the direction of creating a formal object database. 

This could form the basis for a knowledge base, which ultimately would enable definition 

of object classes (buses, trucks, cars etc.) with more accuracy. 
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