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Phenomena occur both in space and time.  Correspondingly, ability to model 

spatiotemporal behavior translates into ability to model phenomena as they occur in 

reality.  Given the complexity inherent when integrating spatial and temporal dimensions, 

however, the establishment of computational methods for spatiotemporal analysis has 

proven relatively elusive. 

Nonetheless, one method, the spatiotemporal helix, has emerged from the field of 

video processing.  Designed to efficiently summarize and query the deformation and 

movement of spatiotemporal events, the spatiotemporal helix has been demonstrated as 

capable of describing and differentiating the evolution of hurricanes from sequences of 

images.  Being derived from image data, the representations of events for which the 

spatiotemporal helix was originally created appear in areal form (e.g., a hurricane 

covering several square miles is represented by groups of pixels).   
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Many sources of spatiotemporal data, however, are not in areal form and instead 

appear as points.  Examples of spatiotemporal point data include those from an 

epidemiologist recording the time and location of cases of disease and environmental 

observations collected by a geosensor at the point of its location.  As points, these data 

cannot be directly incorporated into the spatiotemporal helix for analysis.   

However, with the analytic potential for clouds of point data limited, phenomena 

represented by point data are often described in terms of events.  Defined as change units 

localized in space and time, the concept of events allows for analysis at multiple levels.  

For instance lower-level events refer to occurrences of interest described by single data 

streams at point locations (e.g., an individual case of a certain disease or a significant 

change in chemical concentration in the environment) while higher-level events describe 

occurrences of interest derived from aggregations of lower-level events and are 

frequently described in areal form (e.g., a disease cluster or a pollution cloud). 

Considering that these higher-level events appear in areal form, they could 

potentially be incorporated into the spatiotemporal helix.  With deformation being an 

important element of spatiotemporal analysis, however, at the crux of a process for 

spatiotemporal analysis based on point data would be accurate translation of lower-level 

event points into representations of higher-level areal events.  A limitation of current 

techniques for the derivation of higher-level events is that they imply bias a priori 

regarding the shape of higher-level events (e.g., elliptical, convex, linear) which could 

limit the description of the deformation of higher-level events over time. 

The objective of this research is to propose two newly developed kernel methods, 

support vector clustering (SVC) and support vector machines (SVMs), as means for 
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translating lower-level event points into higher-level event areas that follow the 

distribution of lower-level points.  SVC is suggested for the derivation of higher-level 

events arising in point process data while SVMs are explored for their potential with 

scalar field data (i.e., spatially continuous real-valued data).  Developed in the field of 

machine learning to solve complex non-linear problems, both of these methods are 

capable of producing highly non-linear representations of higher-level events that may be 

more suitable than existing methods for spatiotemporal analysis of deformation.   

To introduce these methods, this thesis is organized so that a context for these 

methods is first established through a description of existing techniques.  This discussion 

leads to a technical explanation of the mechanics of SVC and SVMs and to the 

implementation of each of the kernel methods on simulated datasets.  Results from these 

simulations inform discussion regarding the application potential of SVC and SVMs. 
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Chapter 1 

INTRODUCTION 

 

In many applications, understanding how phenomena evolve through space and 

time is an important step in developing an understanding of phenomenological 

occurrence and behavior. For example, in epidemiology, the identification of causes of 

disease often involves description of how outbreaks evolve through space and time. The 

evolution of a disease outbreak can be an integral component of epidemiological 

research, providing opportunity to compare changes in spatiotemporal behavior (e.g., 

disease spread into certain areas and avoidance of others) with the distribution of 

potential risk factors. Similarly, in a range of other application domains (e.g., 

meteorology, security, and environmental science) description of the spatiotemporal 

behavior of phenomena, such as deformation (i.e., expansion and/or contraction in certain 

directions) and movement through space, are important elements for directing hypothesis 

generation and forming explanatory models. Development of computational methods to 

support such spatiotemporal analysis has long been a research objective. 

Significant advances towards this goal have been accomplished by examining the 

spatial and temporal dimensions independently. Geographic information systems (GIS) 

are a notable example that ignore the temporal dimension and focus primarily on spatial 

relationships.  Advances have also been made with respect to the temporal dimension. 

Among these developments include the refinement of statistical techniques for time series 

(Waller and Gotway, 2004) and the establishment of a theoretical framework for 

temporal analyses (Allen, 1983). 
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Meanwhile, conceptual frameworks based on events and involving both the 

spatial and temporal dimensions have emerged. A variety of definitions for events have 

been suggested (e.g., Quine, 1985; Peuquet, 1994; Claramunt and Jiang, 1985) .These 

definitions have been generalized in terms of change units localized in space and time 

(Beard et al., 2008). and with such a conceptualization it is possible to describe changes 

in the spatiotemporal behavior of phenomena at multiple levels. For instance, lower-level 

events describe changes that are more localized (i.e., occur over a smaller area and/or for 

a shorter duration) while higher-level events tend to be more distributed in space and time 

and are defined by aggregations of lower-level events. 

Complementing the introduction of events as a conceptual framework for 

spatiotemporal analysis have been advances in a number of technologies. Positioning 

technologies such as GPS and wireless sensor networks particularly geosensor networks 

(Stefanidis and Nittel, 2004) are contributing to significant increases in the availability of 

spatiotemporal data. The increased availability of spatiotemporal data is concurrently 

driving the need for  better computational techniques for spatiotemporal analysis. One 

such method, the spatiotemporal helix, recently emerged from the fields of remote 

sensing and video processing (Agouris and Stefanidis, 2003). The helix summarizes the 

deformation and movement of spatiotemporal events such as hurricanes that have been 

extracted from image sequences (Stefanidis, Eickhorst, et al., 2003). The events for 

which the spatiotemporal helix was originally created are strictly areal in form (e.g., the 

hurricanes which encompass several square miles are extracted from images as groups of 

connected pixels). 
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Many sources of spatiotemporal data, are not image based but collected at points. 

Such data include disease cases recorded by epidemiologists or readings on the 

concentration of pollutants made by geosensors at point locations. While collected in 

point form, aggregates over these points may be the analytical units of interest. For 

example, epidemiologists may be interested in disease clusters, the regions of unexpected 

spatiotemporal concentration of disease cases, and similarly, environmental scientists 

may want to investigate the areal extent of pollution clouds. These aggregations are 

referred to as higher level areal events in contrast to the point based events   

If these higher-level areal events can be derived from lower-level point events 

with sufficient spatial detail through a process that is replicable overtime (i.e., resemble a 

series of events extracted from a sequence of images), they could serve as input to the 

spatiotemporal helix. Correspondingly, an existing method for spatiotemporal analysis 

could be rendered accessible to additional sources of spatiotemporal point data. At the 

crux of this process, however, is the implementation of techniques capable of translating 

groups of lower-level point events to higher-level areal events with a degree of spatial 

detail sufficient to enable meaningful description of spatiotemporal behavior. 

 

1.1. Problem Statement 

Methods for the translation of lower-level event points to higher-level areal events 

have long been a subject of research. An early and well-known example is John Snow’s 

cholera map. His mapping of the location of cholera deaths in London’s 1854 outbreak 

and subsequent identification of regions with concentrations of cases helped determine 

the cause of the disease. While John Snow relied on relatively subjective means (i.e., 
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walking the streets and observing the concentrations of deaths relative to potential 

causes), the field of spatial analysis has since developed numerous quantitative methods 

to describe the relative distribution of point events in space and current techniques are 

specialized to describe higher-level events arising from different forms of point data. 

 

1.1.1 Representing Higher-Level Events from Point Process Data 

Perhaps the most traditional form of spatiotemporal point data is point process 

data. A spatial point process is a stochastic mechanism that generates a countable set of 

events. John Snow’s cholera cases are an example of a spatial point process. They 

represent a set of discrete events (cholera deaths) distributed in continuous space (they 

could have occurred anywhere in the city). A common analysis objective for spatial point 

processes is the determination of areas of unexpected concentrations or clusters (Waller 

and Gotway, 2004). 

Well-known modern techniques for describing and delineating clusters include 

the scan statistic, hierarchical clustering, and kernel density estimation (Waller and 

Gotway, 2004; Levine and Associates, 2007). Limitations of these techniques are that 

they either impose shape biases or they are incapable of extracting explicit spatial 

boundaries (i.e., are continuous and do not generate event/non-event boundaries). For 

example, the scan statistic represents clustering in terms of minimal bounding ellipses 

(Kulldorff, 1997) and hierarchical clustering imposes either elliptical or convex shapes 

(Levine and Associates, 2007). In spatiotemporal analysis, where deformation may be a 

research interest, use of these techniques may not adequately represent the actual spatial 

extent of higher-level events. To illustrate the limitations of the scan statistic and 
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hierarchical clustering to describe the shape of events, consider an example of a higher-

level event whose true shape is parabolic. Both the scan statistic and hierarchical 

clustering approaches would either overestimate the true spatial extent (by including the 

empty portion of the “U”) or become so diluted that the higher-level event is not detected 

at all. Meanwhile, kernel density estimation (KDE) does not impose any explicit bias in 

terms of shape, but describes the relative distribution of lower-level events continuously 

throughout a study area (Waller and Gotway, 2007). Results from this approach do not 

produce any explicit extractable representations of higher-level events that could 

potentially serve as input for the spatiotemporal helix. 

 

1.1.2 Representing Higher-Level Events from Geosensor Data 

As with spatiotemporal point process data, a common research objective with 

geosensor network data in point form is the representation of the areal extent of higher 

level events. However, important distinctions exist between these two types of 

spatiotemporal point data which have direct implications on how higher-level events can 

be extracted. In point process data, points arise from binary fields, are discrete, and each 

point represents a low-level event (e.g., an instance of disease).  Meanwhile the rest of 

the study area, where there are no points, denotes the absence of events. In contrast, point 

observations from geosensor networks are observations onscalar fields, are real-valued, 

and can depict either the presence or absence of a low-level event at each sensor location. 

Being real-valued, statistical methods are required for the extraction of lower-

level events from geosensor readings. These methods range from the relatively simple, 

such as thresholds, to more complex techniques like multivariate regression (Beard et al., 



6 
 

2008).  The results of these techniques effectively reduce real-valued readings to discrete 

ones (i.e., lower-level event or non- event). The transformation of a time series to a 

discrete labeled event that can be represented by one or two bits has added advantages for 

the performance of sensor nodes which are highly power, compute and communication 

constrained. (Chintalapudi and Govindan, 2003; Nowak and Mitra, 2003; Nowak, Mitra, 

et al. 2004; Duckham, Nittel, et al. 2005; Worboys and Duckham, 2006). This 

transformation also has a conceptual benefit, where the separation of continuously 

varying fields into homogenous regions implies the existence of salient boundaries 

delimiting the extent of higher-level events (Duckham, Nittel et al., 2005). 

Approaches based on the spatial distribution of the event and non-event readings 

for the representation of these boundaries of higher-level events have been developed in 

both the engineering and geographic literature. As is the case with techniques for higher-

level areal event extraction in point process data, a limitation of methods for the 

representation of higher-level events in geosensor data is bias. The majority of these 

techniques have been either graph (e.g., Duckham, Nittel et al. 2005; Sadeq and 

Duckham, forthcoming) or gradient-based (e.g., Chintalapudi and Govindan 2003) and all 

result in linear representations of higher-level areal events. In reality, most events are 

likely to have complex non-linear forms (e.g., a pollution cloud) and the loss of spatial 

detail caused by the imposition of linearity could inhibit ability to describe changes in 

shape over time. 
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1.2 Thesis Objectives 

Objectives for spatiotemporal analysis in “security informatics” were recently 

summarized in terms of three questions 1) How to identify regions within the study area 

with high or low concentrations of events? 2) How to determine if any areas of variant 

concentration are the result of random variation or are statistically significant, and, if the 

variation is not random are there explanatory variables that can explain this deviation? 3) 

How to identify significant changes in the distribution of events (Zeng, Chang et al. 

2004)? An umbrella term, security informatics covers a diverse collection of research 

domains including homeland security, law enforcement, and public health among others 

and can be defined as the application of information technology for the maintenance of 

public safety and well-being (Zeng, Chang et al. 2004). 

The first two of these questions are traditional research objectives in spatial 

analysis, notably in epidemiology and criminology, and address the need to establish the 

presence of higher-level events. In the case of point process data, this typically involves 

statistically testing potential clusters against an expected distribution (e.g., complete 

spatial randomness). For geosensor data, statistical testing occurs as part of the 

determination of lower-level events, and the presence of higher-level events is signaled 

when lower-level events are detected. 

The third question describes the central objective of this thesis, the description of 

deformation of higher-level events over time. With point process data, resolution of the 

first two questions typically involves the generation of representations of the spatial 

extent of higher-level events (e.g., with the spatial scan statistic or hierarchical 

clustering). With geosensor data, this process involves interpolation based on the relative 
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distribution of sensor nodes with event and non-event readings. In both cases, 

spatiotemporal analysis of deformation involves examining how these representations of 

higher-level events change over time. 

The bias of current methods for representing the areal extent of higher-level 

events from both point process and geosensor data limits the ability to precisely describe 

changes in shape over time. This shortcoming is the motivation for this thesis, and the 

objective of this research is to investigate the potential of two newly developed machine 

learning methods for extracting and representing the spatial extent of higher-level events 

from point data. Machine learning takes advantage of computational power to resolve 

problems too complex to be solved through explicit programming.  Many of these 

problems involve non-linearity and the derivation of decision functions to interpolate 

results beyond observations collected at points.  

A class of techniques in machine learning, kernel methods, has demonstrated 

ability to generate non-linear decision functions with attractive generalization properties 

(Scholkopf and Smola, 2002).  These decision functions can be interpreted as delimiting 

the spatial extent of higher-level events (Ben-Hur et al., 2001; Zeng, Change et al, 2004; 

Chang and Zeng et al., 2005) which, combined with their non-linearity, suggests that 

these techniques could be used to describe deformation over time. 

Kernel methods rely on transformations to higher, potentially infinite, 

dimensional non-linear feature spaces. The functions used to conduct these 

transformations are called kernels, which have the sole requirement of being symmetric 

and positive semi-definite (Christianini and Shawe-Taylor, 2000; Scholkopf and Smola, 

2002). Evaluated at each data point, kernel functions produce what is called a feature 
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space. This space, can be interpreted in a manner similar to KDE. However, unlike KDE 

where the final objective is a continuous kernel-based representation of relative density 

throughout the study area (Waller and Gotway, 2004), kernel methods involve a second 

computational step that results in the derivation of a decision function in feature space. 

These decision functions provide a theoretical basis for the extraction of explicit 

boundaries and can be remapped in the initial domain of the data to delineate higher-level 

events. 

The decision function applied in feature space defines each of the various kernel 

methods.  In the case of support vector clustering (SVC), an unsupervised learning 

method with only one class of data point (i.e., all points are lower-level events), the 

decision function is a minimal bounding hypersphere. Results from this algorithm 

identify point clusters and SVC is thus proposed as a method for spatiotemporal analysis 

of point process data. 

For the geosensor network data considered in this thesis, there are two different 

classes of data points (i.e., points describing lower-level events and non-event points). 

The assignment of sensor points to one class or the other is not dissimilar to the process 

of developing a training set for supervised learning algorithms. Correspondingly, a 

method for supervised learning, SVMs, is proposed as a means for deriving 

representations of the boundaries of higher-level events from geosensor data. SVMs 

implement a separating decision function that divides two classes in feature space with a 

maximum separating hyperplane. As with SVC, this decision function can be mapped 

back to the initial spatial domain and be interpreted as a representation of the areal extent 
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of higher-level events. The focus of this thesis is the deformation of higher-level events 

derived from either point process or geosensor data. More explicitly the objectives are to: 

 

1. Demonstrate the applicability of SVC and SVMs for the derivation of 

representations of higher-level events and 

2. Critique issues related to their potential for spatiotemporal analysis. 

 

1.3 Thesis Organization 

Chapter 2 provides an introduction and description of existing techniques for 

extracting representations of higher-level events from both point process and geosensor 

data. Discussion begins with working definitions for events in the context of the two 

types of point data that are of interest in this research. These definitions motivate 

selection of different techniques for the extraction of higher-level events. Limitations in 

these methods are the basis for considering SVMs and SVC.  

Chapter 3 introduces the algorithms for SVC and SVMs along with a general 

background on statistical/machine learning techniques and other kernel methods. 

Discussion addresses key concepts including margins, optimization, and geometric 

interpretations. SVMs were developed prior to SVC, and while it may be more natural to 

discuss SVMs first, the order of presentation is reversed in this chapter.  

Chapter 4 provides an interpretation of SVC and SVM results. Kernel density 

estimation (KDE), an established technique for spatial analysis, is used to interpret the 

results from SVC. While clustering is a perceptual concept, the types of higher-level 

events captured in geosensor spatial fields of time series data allow for comparison 
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against hypothetical “ground truths.” To demonstrate the ability of SVMs to produce 

higher-level event boundaries that follow the distribution of lower-level event geosensor 

point locations, comparisons are made between SVM and existing techniques. In 

describing how complex boundaries for higher-level events can be derived using SVC 

and SVMs, several issues involving their implementation are introduced. Chapter 5 

presents these issues along with recommendation for future research.  
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Chapter 2 

RESEARCH CONTEXT 

 

Given the potential for spatiotemporal data to contribute to research in a range of 

applications, discussion of theoretical issues related to spatiotemporal phenomena has 

been an active topic and, in the modern era, can be traced back to Clark’s (1959, 1962) 

work involving “geographical change” in spatial patterns over time. More recent 

advances have examined spatiotemporal autocorrelation (e.g., Knox, 1964; Cliff and Ord, 

1981), diffusion, and time geography (e.g, Hagerstrand, 1967; Pred, 1977; Parkes and 

Thrift, 1980). This early work highlighted the substantial complexities involved in 

modeling phenomena with both the spatial and temporal dimensions (e.g., Miller, 1991; 

Hazelton, 1991). 

 
2.1 Events 

Increasingly, these modeling difficulties have been addressed conceptually 

through the definition of events. The spatiotemporal analysis literature provides several 

working definitions for events. Worboys (2005) compares events to objects and 

emphasizes the relative transience in time of events compared to objects. Claramaunt and 

Jiang (2000) describe events as an application driven concept describing patterns of 

change. Guarlnik and Srivastava (1999) suggest that events involve a qualitative change 

in dynamic behavior. Peuquet (1994) simply defined events as change in a location or an 

object. In a recent review and generalization of the literature involving the conceptual 

nature of events, Beard et al. (2008) characterized the majority of existing definitions for 

events as involving change localized in space and time. 
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Furthering their discussion, Beard et al. (2008) refined the definition of events as 

change units with spatial, temporal, and thematic dimensions. Such a conceptualization 

facilitates discussion of primitive, or low-level, events as well as higher-level composite 

events that are aggregations of primitive events. This distinction between primitive and 

higher-level events is applied in this thesis, where the kernel methods that are introduced 

for applications in spatiotemporal analysis are suggested as a means to interpolate the 

spatial extent of higher-level areal events based on the distribution of lower-level point-

based events. 

In point process data each point represents the location of a lower-level event (e.g. 

an instance of a crime). The change in such a case is the change from the expected state 

of no crime. Likewise, in epidemiology, the expected state is the absence of disease and 

individual cases indicate change from that state with the observation of each case. A 

common research objective for point process data involves the aggregation of individual 

low-level events into groups.  These aggregations have been called “hot-spots” or 

“clusters” depending on the field of application (e.g., Braga, 2001; Kulldorff, 1996) and 

represent higher-level events where the change involves rates of incidence over areas 

rather than observations at points (i.e.) the change is in the rate of incidence). 

The same framework of primitive and higher level events can be used to describe 

spatiotemporal phenomena detected by geosensor networks. A distinction between point 

process and geosensor data is that raw geosensor data are observed snapshots on 

continuous distributions. These observations are typically real-valued and do not 

necessarily denote the presence of low-level events (e.g., the concentration of a chemical 

in the air, the moisture content of the soil). Determination of the presence of events from 
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these real-values typically involves statistical techniques that can range from relatively 

simple approaches, such as thresholds, to more sophisticated methods such as regression, 

trend analysis, and Fourier analysis (Beard et al., 2008).1 

For both point process and geosensor forms of point data, analysis is commonly 

focused on higher-level areal events rather than lower-level point based events.  

Correspondingly, a number of techniques have been developed to translate collections of 

lower-level point events into higher-level areal event. A consistent problem with 

established techniques for both geosensor network and point process data developed to 

conduct these translations is that they typically imply some form of bias a priori 

regarding the shape of higher-level event boundaries (e.g., elliptical/circular shape, 

convexity, or linearity).  This chapter presents, their limitations, and motivates 

consideration of kernel methods as a means for deriving representations of the boundaries 

of higher-level areal events based on collections of lower-level point-based events. 

 

2.2 Existing Cluster Extraction Methods for Point Process Data 

Literally dozens of clustering techniques have been created to assess clustering 

within point process spatial data (Waller and Gotway 2004). Much of the literature 

provides comparative analyses of clustering techniques (e.g. Hill, Ding et al., 2000; Zeng, 

Chang et al., 2004; Aamodt, Samuelson et al., 2006; Wheeler, 2007). From these 

comparative analyses and from the volume of applications, a few of dominant clustering 

techniques have emerged. The following subsections critique three such techniques in 

                                                 
1 The objective of this research is to present kernel methods for the aggregation of lower-level events, and 
does not explore the appropriateness of these various techniques for the identification of lower-level events. 
Rather, the approaches described in this thesis are general enough that they can incorporate any method as 
long as it can produce labels identifying sensors detecting lower-level events. 
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order to motivate consideration of the support vector method for cluster analysis 

appearing in the next chapter. 

 
2.2.1 Hierarchical Clustering 

Hierarchical clustering methods are among the oldest clustering techniques.  

These methods have been widely applied in a range of applications that include pattern 

analysis and data mining, as well as spatial applications. In spatial applications, 

hierarchical clustering techniques iterate comparisons of spatial attributes against test 

criteria. Features that pass one set of tests are successively passed to the next level of the 

hierarchy until the process exhausts itself. Test criteria include nearest neighbor distance 

(Johnson, 1967; D'Andrade, 1978), a correlation-based centroid method (King,1967), 

median clusters (Gowers, 1967), and minimum error (Ward, 1963) among others. Due to 

their simplicity, hierarchical methods are often used as a basis of   comparison against 

other methods (e.g., Zeng et al., 2004).2 

Hierarchical techniques offer some advantages in that results can be computed 

very rapidly, there is no bias a priori regarding the number of component polygons of 

potential clusters, and statistical inferences can be drawn regarding the significance of 

clusters. The following discussion describes a version of hierarchical methods that 

employs nearest neighbor distance as a test criterion. 

The nearest neighbor hierarchical clustering algorithm involves iterative 

comparison of a nearest neighbor test value to a standard error computed under the 

assumption of complete standard randomness (see Equations 2.1-2.3) and generates 

                                                 
2 Hierarchical clustering is one of the algorithms included in the CrimeStat package created by Ned Levine 
and Associates with funding from the Department of Justice. It can be downloaded free of charge from 
http://www.icpsr.umich.edu/CRIMESTAT/. 
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hierarchies of clusters that can be represented in a dendogram (see Figure 2.1). The first 

iteration begins with the computation of a distance matrix for all of the points. For each 

point, the nearest neighbor is found and the distance between nearest neighbors is 

compared against the quantity in Equations 2.1-2.3 which is a function of the statistical 

significance level (α), the area of the study region (A), and the number of points (N). 

 
                         (2.1) 
      
 
 
                         (2.2) 
 
 
 
                         (2.3) 
 
 
 
 

 
 
Figure 2.1 Dendogram representation of the hierarchical clustering algorithm for a data 
set that exhausts itself after 5 iterations. The base represents the input data set. Each step 
upwards in the diagram represents a test against a given criterion. 
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Figure 2.2 Series of frames depicting the hierarchical clustering algorithm with point 
plots on the left side of each frame and the corresponding view of the dendogram on the 
right.  Starting with the raw point data (frame 1), nearest neighbor distances are compared 
against values computed using Equation 2.3 (frame 2). Pairs with distances less than the 
critical value are then used to define a new subset of points which are the midpoints of 
nearest neighbor distances (frame 3). This subset is then tested with a new critical value 
reflecting the corresponding number of points in the subset (frame 4). The process is 
repeated until the either the data are exhausted or the algorithm fails. 
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Figure 2.3  Application of user defined minimum cluster size.  The concentrations in the 
upper left and lower right are eliminated because they do not contain enough points.   
 
 

 
Figure 2.4  Derivation of estimates of the areal extent of clusters from hierarchical 
methods, either the minimum bounding ellipse or the convex hull can be used. 
 
 

2.2.2 Scan Statistic 
With strong roots in epidemiology, the spatial scan statistic has become a popular, 

if not the de facto, cluster detection method in a range of disciplines (Waller and Gotway, 

2004).  Scan statistics, as a class, operate through the use of a scanning window of fixed 

shape and varying size which exhaustively passes through the study area and generates 

statistics for potential clusters (Kulldorff, 1997).  Like the hierarchical clustering 

methods, the scan statistic can be used for statistical inference regarding the location of 



19 
 

clusters, does not have any bias a priori regarding the number of clusters, and can be 

calculated using a freeware package.3,4  

To scan the study area, a series of windows are generated at each point in the 

study area.  The window size is incrementally, successively capturing the next nearest 

neighbor, until a pre-determined maximum percentage of the study area has been 

covered.  At each location and for each window size the number of observed instances is 

counted.  Counts are compared against the number of hypothetical instances that would 

appear in the window under an assumed distribution with the likelihood ratio  

 

0

)ˆ(
L
ZL

=λ                         (2.4) 

 
 
where the numerator represents the number of instances observed and the denominator 

represents the number of instances expected.  Assumptions regarding covariates in the 

underlying population can be built into the ratio for each window and compared against a 

test statistic derived from Monte Carlo simulations to estimate the significance of 

potential clusters (Kulldorff, 1997).5 

The scan statistic is most commonly applied to analyses of point in polygon data 

where counts within polygons (e.g., census tracts, counties) are aggregated to some point 

of central measure (e.g., centroid, county seat).  However, the scan statistic can also 

handle point process data by entering the geographical coordinates for each instance as an 

                                                 
3 SaTScan is funded by the National Institutes of Health is available for free download from 
(www.satscan.org/). 
4 Scan statistic results as generated by SaTScan can detect multiple clusters, but the algorithm is designed 
primarily for the determination of the most likely cluster.  As a result, the p-values used for statistical 
inference are conservatively biased (Kulldorff, 2006). 
5 Comparison against the test statistic is represented by a p-value.  Output from the spatial scan statistic is 
presented in terms of the most likely cluster. 
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input point (as would be done for a point of central measure) and by assigning equal 

weight to each instance. 

The spatial scan statistic has been a subject of intense study, and since its 

introduction by Kulldorff in 1997, where it was presented for use with circular scanning 

windows for assumed Bernoulli and Poisson distributions, its applicability has been 

greatly extended.  Currently, the spatial scan statistic can also operate under assumptions 

of ordinal (Jung, Kulldorff et al., 2006) and exponential (Huang, Kulldorff et al., 2006) 

distributions and can use an elliptical shaped scanning window (Kulldorff, Huang et al. 

2006).  In studies comparing the spatial scan statistic against other cluster detection 

methods conducted by Aamodt et al. (2006), Zeng et al. (2004), and Song and Kulldorff 

(2003) the scan statistic proved capable of identifying potential clusters.  Song and 

Kulldorff (2003) noted the scan statistic’s high power and usefulness when the size and 

shape of potential clusters is unknown.  Aamodt et al. (2006) also found that the spatial 

scan statistic performed well in situations where little is known about potential clusters 

and for clusters with lower relative risks.  Zeng et al. (2004) found that the spatial scan 

statistic was able to determine the location of a cluster in the same area as risk-adjusted 

hierarchical clustering methods, but concluded that the spatial scan statistic offered less 

spatial precision due to its bias regarding the shape of clusters. 

This often stated limitation of the scan statistic has been countered by Kulldorff’s 

(2006) argument that clusters remain a perceptual construct and that the representation of 

the general area of the true underlying cluster is often sufficient.  While valid in the 

context of the point-in-polygon type data where spatial aggregation of instances over 

polygons already diminishes spatial precision, this argument is much weaker in the 
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context of point process data where the precision made available by the exact locations of 

instances can be exploited for a much greater degree and used for spatiotemporal analysis 

of deformation. 

 

 
Figure 2.5 An illustration of the spatial scan statistic.  Scanning windows successively 
increase in size and counts within each window are compared against the expected for 
each size at each location.  The p-values corresponding to each window (from likelihood 
ratio in Eq. 2.4) can be used to determine the most likely clusters.  The spatial extent of 
clusters is estimated as being those polygons which house the points corresponding to the 
most likely scans.  In point process data, the spatial extent of the window is estimated as 
the window itself.   
 
 
2.2.3 Kernel Density Estimation 

Kernel density estimation (KDE) describes the probability density of events f(s) 

as opposed to the intensity of events λ(s). In the context of spatial point processes, 
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probability density refers to the relative probability of observing an event at a given point 

s. Intensity refers to the number of events expected per unit area at locations. 

Correspondingly, KDE integrates to one while kernel intensity estimation would 

integrate to the mean number of events per unit area. The distinction between these two 

methods is a difference of proportionality that stretches or shrinks peaks, but does so 

proportionally and generates a consistent relative representation of the distribution of 

events regardless of whether kernel density or kernel intensity is modeled. The kernel 

density function can be derived from the kernel intensity function simply by dividing 

kernel values by the total area. Due to the similarity of the naming conventions and the 

results for these two methods, the use of terminology has been inconsistent in the 

literature (Waller and Gotway, 2004). This section describes kernel density estimation 

(KDE). 

KDE has been widely used in spatial applications to generate smooth 

representations of the distribution of low-level point process events throughout a study 

area. Instead of being a means for the derivation of representations for the spatial extent 

of clusters (as was the case with the hierarchical clustering and scan statistic examples 

already presented), KDE provides continuous description of the relative density of event 

instances throughout an entire study area, and is more a descriptive than extractive 

method. KDE is discussed in this review of clustering techniques because, despite not 

providing polygonal representations of clusters, KDE does address some of the 

limitations highlighted in the discussion of hierarchical clustering and the scan statistic – 

especially those related to a lack of spatial precision. In addition, through the concept of 
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kernels, KDE creates a conceptual bridge to the introduction of the support vector 

techniques in Chapter 4. 

Kernels are weighting functions often used in non-parametric (Bayesian) 

estimation. The sole requirements placed upon functions to be considered for kernels is 

that they be symmetric about the origin and integrate to 1 (Waller, 2004). The motivation 

behind their use for density estimation in spatial point processes is that kernels can be 

used to provide smoothed representation of point distributions’ probability functions and 

therefore are useful in visualizing both hot and cold spots within study areas. The 

functional form for KDE (under the assumption of no correlation between the 

x and y directions) is  
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where N is the number of points, hx and hy are smoothing parameters (bandwidths), and K 

represents a symmetric function with the property that  
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A variety of different kernels have been applied with radial basis functions with the 

Gaussian and the quartic being the most popular (see Table 2.1). 
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Table 2.1 One Dimensional Versions of Two Kernels Common in Spatial Applications 
Kernel Functional Form Selected Applications 
Gaussian 
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Intuitively, the concept of KDE is not entirely dissimilar to that of the scan 

statistic in that, like the scan statistic’s scanning window, a density function defined by 

the appropriate kernel centers itself on each point in the distribution and measures the 

relative distance from that point to the rest of the distribution. However, unlike the scan 

statistic, the entire surface of the study area, rather than just the area covered by a 

scanning window, is assigned a value reflecting the density of instances for all points in 

the study area. In the case of radial basis functions, such as the Gaussian the relative 

weight of values diminishes in all directions with distance from the point upon which the 

kernel is centered. 

In areas with tight concentrations of points, the values from kernels will overlap, 

and it is through this overlap that KDE represents areas of high or low concentrations 

(see Figures 2.6 and 2.7). Determining the extent of overlap, is the bandwidth parameter 

h, which can be varied to provide more smooth or rough (large or small bandwidth 

values) representations of density. While the determination of an appropriate value for 

this parameter is an open research topic (e.g., Wand and Jones 1995) and one that is 

always subject to the nature of the application, several methods have emerged to suggest 
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bandwidth values.  Among these methods is asymptotic mean squared error (AMISE) 

which is defined as the limit of the expected value of  
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as the sample size goes to infinity.  From an expansion of the components of AMISE, a 

relatively simple selection rule is  
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Where uσ̂ is the sample standard deviation of the coordinates in the u-dimension (e.g., x 

or y), N is the number of instances in the study area, and dim is the number of dimensions 

in the data (Scott, 1992). 

By summing all of the corresponding kernel values from every instance location 

in the study space, regions with tighter concentrations have higher density values and 

regions without points will have relatively low values. Normalizing these values by the 

number of points in the study area bounds the range of values throughout the study area 

between 0 and 1, and therefore provides a representation of probability density. Kernel 

density estimation is relatively easy to program (as was done by the author in Matlab to 

create Figures 2.6 and 2.7), An application is also available as part of the freeware 

package CrimeStat. 
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Figure 2.6  One dimensional kernel density example.  The first frame shows the input 
data.  The second, third, and fourth frames show kernel density estimates from Gaussian 
kernels with bandwidths 1, 2, and 4 respectively.   
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Figure 2.7 Two dimensional kernel density example.  As in Figure 2.6, the first frame 
shows the input data, and the second, third, and fourth frames show kernel density 
estimates resulting from Gaussian kernels with bandwidths 1, 2, and 4. 

 

2.2.4 Limitations of Current Methods for the Estimation of the Spatial 
Extent of Clustering Events 

While far from a complete review of available clustering techniques, the previous 

discussion illustrates some of the limitations of some of the most popular methods for the 

estimation of the spatial extent for aggregates of point-based events. One major limitation 

is the lack of spatial precision. Both hierarchical clustering and the scan statistic rely on 

the spatially simplistic convex hull and minimum bounding ellipse, for estimating the 

spatial extents. 

Even considering that the exact spatial extent of point-based aggregate events 

remains unknown and that their definition likely varies with the application focus, these 
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methods likely limit accuracy. For example, when the minimum bounding ellipse is used 

and the true shape of the cluster is parabolic, the ellipse could suggest a larger area than is 

warranted (due to the inclusion of the inside of the “U”). At the same time, the 

identification of such a cluster is problematic since the concentration described by the 

cluster would be diluted due to the inclusion of an area relatively devoid of instances 

(again the inside of the “U”). 

Representing parabolic clusters with convex hulls, creates similar representational 

problems. As with minimum bounding ellipses, the convex hull could distort the 

representation of clusters to include regions that are not actually part of the cluster (e.g., 

the portion inside the “U”) or, with sufficient area, could dilute the true cluster to the 

point that it is no longer extractable. 

Kernel density estimation can represent such spillovers in terms of relative 

concentration and can do so with complex shapes that follow the distribution of instances 

(see Figures 2.7 and 2.8). Kernel density estimation, however does not explicitly 

construct a boundary representation. The support vector clustering methods presented in 

the following section provide a means for delimiting discrete regions from kernel-based 

transformations. 
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Figure 2.8 Kernel density (color ramp from green to red) and hierarchical cluster/hot spot 
representations (convex hulls in blue).  Each of the frames show kernel density with 
different bandwidths.  The top frame has the widest bandwidth and the bottom frame has 
the smallestThe first frame shows kernel density estimates.  The second and third frames 
show the same kernel result overlaid by hierarchical clustering results corresponding to 
convex hull (frame 2) and minimum bounding ellipses (frame 3).   
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2.3 Geosensor Networks and Dynamic Spatial Scalar Fields 
With the rapid advance of wireless sensor technology, geosensor networks have 

become an important source of spatiotemporal data. Representing real-valued 

observations collected at sensor location points, the data produced by these systems have 

been described as arising from dynamic spatial scalar fields. Formally, a dynamic spatial 

scalar field is defined in terms of scalar values V that vary according to an unknown 

assignment function f that is dynamic in terms of both the spatial S and temporal T 

domains. As such, a dynamic spatial scalar field can be written VSTf →→:  where S 

represents the spatial domain and T depicts the temporal domain (Duckham, Nittel et al., 

2005). 

A common research objective with this form of data is the extraction of estimates 

for the areal extent of higher-level events (e.g., wildfires, propagation of a toxic 

chemical) based on the observations collected at sensor points. Approaches to this 

problem have been developed from both engineering (Chintalapudi and Govindan, 2003, 

Nowak and Mitra, 2003, Nowak et al., 2004) and geographic perspectives (e.g., Worboys 

and Duckham, 2006, Duckham et al., 2005). In both cases the methods involve the 

discretization of the real-valued observations collected at sensor points into qualitative 

values.  

Discretization at the sensor node level implies benefits both theoretically and in 

terms of network design. By assigning qualitative values at sensor nodes according to 

observations relative to application appropriate thresholds, salient event boundaries can 

be inferred between neighboring nodes with differing qualitative values.6 Throughout the 

                                                 
6 In the engineering literature these discontinuities have been called “edges” and have been differentiated 
from methods describing isolines, or contours, by discretization (Chintalapudi and Gonvidan, 2003).   
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study area, these boundaries can be used to define the spatial extent of events. Another 

advantage of discretization in geosensor networks relates to power consumption in 

wireless geosensor networks. With strict power constraints and communication being a 

primary power drain, reduction of the quantity of information to just a few qualitative bits 

reduces expensive communication time and therefore can result in significant power 

savings (Chintalapudi and Govindan 2003; Duckham, Nittel et al. 2005). An illustrative 

example of discretization is that made to a toxic air quality variable monitored by a 

geosensor network. The real-valued concentration observed at each sensor can be 

classified as either hazardous or benign according to established health standards. 

Consequently, instead of reporting the concentration observed at each 

geosensor node, all that needs to be transmitted is whether or not the reading at each 

location is in-event (toxic) or non-event (benign). 

Relative to the volume of research related to engineering and deployment 

schemes for geosensor networks, little research attention has been devoted to the 

extraction of event boundaries in geosensor networks. In an early investigation of 

algorithms for the estimation of event boundaries, Chintalapudi and Govindan (2003) 

examined estimators derived from bases in statistics, image analysis, and classification. 

Based on their investigation, the most attractive of these methods used a classification 

scheme that compared qualitative values within neighborhoods and derived straight line 

estimates representing boundary portions that successfully separated sensor reading 

classes. Methods proposed in the wake of Chintalapudi and Govindan (2003) include 

those based on network trees (Nowak and Mitra, 2003) and triangulation (Worboys and 

Duckham, 2006). Major drawbacks of the algorithm proposed by Nowak and Mitra 
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(2003) include potentially poor spatial characteristics of the tree structure (i.e., 

neighboring nodes not appearing on the same branch) and resource demands required to 

maintain tree structure in the presence of mobility. Worboys and Duckham (2006) 

proposed a more flexible framework based on planar triangulation of sensor nodes. Under 

such a configuration, the spatial extent of events is modeled in terms of the qualitative 

values of the vertices of the resulting triangles where triangles containing at least one in-

event node are considered as being in-event. While being less intensive from a 

computational standpoint, this method, as with other existing methods results in linear 

approximations for the spatial extent of events. 

Given that environmental phenomena (e.g., chemical plumes) likely do not have 

linear boundaries, reliance on coarse, linear, approximations for the spatial extent of 

events can limit the spatial precision for any subsequent spatiotemporal analysis. The 

only known attempt to address non-linearity has been the work of Nowak, Mitra et al 

(2004) and their platelet-based algorithm relies on the highly restrictive and unrealistic 

assumption of a uniformly distributed geosensor network. 

To address non-linearity in the boundaries of environmental phenomena, this 

research proposes a SVM-based approach for representing the spatial extent of events 

identified in geosensor network data. With their reliance on the maximum margin 

separator, a relatively simple method for classification, SVMs are efficient from a 

computational standpoint while simultaneously offering attractive and well-understood 

statistical properties (Christianini and Shawe-Taylor 2000; Scholkopf and Smola 2002; 

Shawe-Taylor and Christianini 2004). Non-linearity is achieved by derivation of these 

classifiers in a high-dimensional non-linear feature space which can be adapted to 
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incorporate technical constraints related to the sensors (i.e., sensing radius) and the 

geosensor network (i.e., sparseness of nodes). The following chapter presents the SVC 

and SVM algorithms for the estimation of the spatial extent of higher level events. 

Chapter 4 presents results from simulations as well as visual interpretations of the 

algorithms. 
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Chapter 3 

SUPPORT VECTOR ALGORITHMS 

 

 The previous chapter outlined some of the limitations of current techniques for the 

estimation of the spatial extent of point-based events.  This chapter describes support 

vector machines (SVMs) and support vector clustering (SVC) and begins with a brief 

history of the development of these methods before describing the methods themselves in 

detail.  Section 3.1 presents the domain background from which support vector methods 

evolved.  Section 3.2 and 3.3 introduce kernel methods and several definitions that are 

useful for the discussion of SVMs in Sections 3.4 and 3.5 as well as the description of 

SVC in Section 3.6 and 3.7. 

 
3.1 Machine Learning 

Advances in technology have enabled attention to increasingly sophisticated 

problems.  The field of machine learning, in particular, addresses numerous complex 

problems and allows computers to solve problems without explicit programming.  

Machine learning defines learning as the process of acquiring knowledge through 

experience (Valiant, 1984), an apporach thought to be similar to the way that humans 

learn.7  For machines the process of learning has been described in terms of a task (e.g., 

playing chess), a performance measure (e.g., winning), and a training experience (e.g., 

playing a game).  As the machine repetitively completes the task under varying training 

experiences, it can be made to analyze its performance so that results improve with 

                                                 
7 An illustrative analogy could be that of dogs trained to sniff.  Given the strength of their olfactory senses, 
it has been suggested that how dogs perceive their environment is incomprehensible to humans.  
Nonetheless, through training examples humans can teach dogs to effectively use their sense of smell to 
find drugs, bombs, and trapped individuals.  
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practice (Mitchell, 1994).  In this analysis, as in many other applications of machine 

learning, the learning task involves the prediction of an unknown feature of the data (i.e., 

where is the boundary of a higher-level event) given a set of data values (i.e., the lower 

level point-based events).   

To describe the learning process and establish the symbology used throughout the 

remainder of this thesis, Xx∈ refers to the input or training data and y a vector of labels 

associated with the input data points.  As methods for machine learning have developed, 

several categories of learning have emerged, notably those of supervised and 

unsupervised learning.  The existence of labels y in the input data distinguishes these two 

classes.  Supervised learning is characterized by the presence of labels, y, associated with 

each input point and the learning process in supervised scenarios can be written in the 

form  

 
( ) ( )( )xgyLyxf ,, =                       (3.1) 

 
 
where g is referred to as the decision function and L as the loss function.  When the true 

process is well approximated, the values generated by the prediction function will closely 

resemble the input labels and the loss function will approximate zero.  As such, when the 

prediction function is well-formulated, it will have solid generalization properties and 

novel points (points outside the input data set) with unknown labels are more likely to be 

appropriately classified.  SVMs are a supervised learning method with proven 

generalization properties that use a boundary as the prediction function (Shawe-Taylor, 

2004).  This boundary, when applied to a scenario such as that outlined for geosensors in 

the previous chapter, can be interpreted as representing the spatial extent of events as 
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captured by geosensor networks.  This approach is, in part, the motivation for this 

research and is outlined in the next chapter. 

In contrast to supervised learning techniques, unsupervised learning methods do 

not involve labels for the input data.  Rather, unsupervised learning scenarios involve the 

distribution of the input data x alone.  An obvious example of such an application would 

be that of clustering where the objective is the identification of concentrations of data 

points.  Another example would be the identification of outliers.  SVC is an unsupervised 

learning method designed for exactly such situations, and like SVMs, uses a boundary as 

the decision function.   Also like SVMs, with geographic input data these boundaries can 

be interpreted as delimiting events and therefore can be used for spatiotemporal analysis.  

A description of SVC follows that of SVMs and an illustration of how SVC-generated 

results can be used for spatiotemporal analysis is also provided in the next chapter.   

 
3.2 Development of Kernel Methods 

Given that both SVMs and SVC are kernel-based methods, prior to discussion of 

either SVMs or SVC, kernel methods as an algorithmic class are introduced.  These 

methods evolved out of the “non-linear revolution” that occurred in the pattern 

recognition literature which was enabled by the rapid advance of computing and 

processing power in the 1980s.  These technological advances allowed far greater 

complexity to be modeled and for non-linear patterns to be identified with the advent of 

methods such as backpropagation in multi-layer neural-networks.  While these new 

methods enabled entirely new fields including data-mining and bioinformatics, being 

largely based on gradient descent or greedy heuristics, they also suffered from local 
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minima.  Due to their complexity they are still not completely understood from a 

statistical perspective (Shawe-Taylor, 2004). 

To address these issues, kernel-based methods emerged in the early 1990s.  These 

models have been described as being modular in that they are composed of two 

independent components.  The first of these is a transformation from the space of the 

input data to a more complex, higher-dimensional, feature space.  The second involves 

the application of established, relatively simple, means for describing the data in the 

feature space.  Transformation through kernels allows attractive computational shortcuts 

and enables highly non-linear learning.  Meanwhile, reliance on well-established and 

understood, linear methods or other relatively simple analytical methods in feature space 

facilitate efficient analysis while simultaneously addressing obstacles of local minima 

and overfitting.  The following section provides a brief discussion of the basic concepts 

behind current kernel methods and a context for the introduction of SVMs and SVC. 

 
3.3 Kernel Methods 

A means of converting a linear classification algorithm to a non-linear scenario 

involves the addition of non-linear attributes to the algorithm that are non-linear functions 

of the original data.  A common application of similar logic is in regression where the 

hypothesized relationship between the dependent and explanatory variables is non-linear 

(e.g., parabolic).  Instead of relying upon a more complicated non-linear model, this 

relationship can be simply modeled using ordinary least squares by first transforming the 

explanatory variable (e.g., squaring the explanatory variable) and then performing a 

simple ordinary least squares regression.   
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This idea lies at the heart of all kernel methods where the input data set, X, is 

mapped to a higher-dimensional  feature space, ( ) XxxF ii ∈Φ= : , where relatively 

simple methods can be used to find boundaries that can be re-projected back into input 

space and interpreted as decision boundaries.  A simple illustrative example adapted from 

Scholkopf and Smola (2001) is presented in Figure 3.1.  When combined with the ability 

of separating hyperplanes to be written in a dual form, in terms of Lagrangian multipliers 

rather than in the primal form, and with the interpretation of kernels as representations of 

inner products, thereby eliminating the need to explicitly determine feature spaces, this 

allows for a significant computational savings and is known as the “kernel trick” 

(Scholkopf and Smola, 2001).  Capitalizing on this kernel trick are various methods that 

employ different feature space decision functions for different application objectives.  

Examples of such techniques include the SVM and SVC methods that are the basis for 

this research.8   

 

 
Figure 3.1.  A representation of kernel based learning.  The first frame shows an example 
of input data that would require a non-linear decision function.  Given that derivation of 
such non-linear boundaries directly from this input space could be complex, the data are 
transformed into a higher-dimensional feature space ( )2

221
2
1 ,2, xxxx  where more simple 

means (i.e., the linear hyperplane shown in the second frame) can be used to derive a 

                                                 
8 Another kernel-based technique, kernel principal components analysis, has seen application in remote 
sensing where it has been used to classify features in image-based data (e.g., Yang, Tan et al. 2006). 
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boundary.  This boundary can then be re-projected back into input space (frame 3) and 
used for classification of novel points.    
  
 

However, for kernels to offer these attractive properties, they must satisfy certain 

conditions.  Kernels are defined as a function K so that for all Xzx ∈,  

 
( ) ( ) ( )zxzxK φφ ⋅=,                        (3.2) 

 
 

where φ  is a non-linear mapping from an input space X to the feature space F .  To be 

considered a kernel function for the kernel trick, a function ( )zxK ,  must be symmetric 

and any finite subset X of the Gram matrix9 K must follow Mercer’s theorem, implying 

that it must be positive semi-definite (Christianini, 2000).  This ensures a unique solution 

to the problem of determining a minimum for the convex cost problem.  Functions 

fulfilling these requirements are called Mercer’s kernels but for brevity in this research, 

as is commonly done in the literature, they are simply referred to as kernels. 

 
3.4 Support Vector Machines 

Support vector machines (SVMs) are the most well-known and widely used class 

of kernel methods.  SVMs use maximum margin linear separating hyperplanes in feature 

space provide a sparse solution decision boundary with the absence of local minima.  Use 

of the “kernel trick” avoids potentially very complex calculations that may have been 

necessary to calculate such decision boundaries directly from input space and make these 

methods very attractive for a range of applications (Christianini, 2000). 

Although most of the component mathematical concepts behind SVMs have been 

in existence for decades, Boser et al. combined them in 1992 to establish SVMs as a 

                                                 
9 The Gram matrix is the symmetric positive semi-definite matrix of inner products X’X. 
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classification tool.  Among these existing concepts includes, perhaps most notably, those 

of large margin hyperplanes (Duda, 1973) and the geometric interpretation of kernels as 

inner products in a feature space (Aizermann, 1964).  Other component concepts include 

optimization techniques (Mangasarian, 1965) and slack variables (Smith, 1968; Bennett, 

1992).  Since their inception, SVMs have become widely applied in a range of 

application domains (Christianini, 2000; Bennett, 2000) and have been shown to offer 

very attractive generalization properties both mathematically (Vapnik, 1995; Devroye, 

1996; Pontil, 1998) and in practice.  SVMs have outperformed a variety of other 

techniques including application-tailored artificial neural networks (e.g., Scholkopf et al., 

1997, Yang and Liu, 1999, Pontil and Verri, 1998).   

As a kernel method, the first step in developing a SVM is to determine an 

appropriate kernel function and the corresponding transformation of the input data into a 

feature space.  In practice, the selection of an appropriate kernel should be guided by 

domain knowledge relevant to the application and automated in supervised learning 

situations through comparison of predicted results against labels in the training set 

(Christianini, 2000).  A list of commonly used kernels appears in Table 3.1.   

In feature space, a maximum margin linear discriminating hyperplane (or other 

simple discriminants) can be found which is often less complex to calculate than its 

image would be in input space (see Figure 3.1).10  Defining the margin is a subset of the 

transformed data points.  These points are the support vectors and can be interpreted as 

the data points with the highest relevant information content.  Indeed, consideration of 

                                                 
10 For linearly inseparable cases, the margin can be made tolerant to outliers, or “soft,” through the use of 
slack variables.  This scenario, which is considered to be much more realistic assumption with real-world 
data, is described in a following section.  The simple linearly separable SVM is described here first to help 
introduce the reader to base SVM concepts before introducing complications. 
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the support vectors alone can be used to derive the dividing hyperplane and this 

sparseness of the solution allows SVMs to scale efficiently to very large datasets.  Once 

determined, this hyperplane can then be re-projected back into input space where it can 

be used to classify novel points through its interpretation as a boundary. 

 
Table 3.1. Commonly Used Kernels11 
Kernel Functional Form 
Polynomial ( )dji xx 1+⋅  
Gaussian 

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛ −
−

σ2
exp

2

ji xx
 

Three Layer Neural Network 
( )axvx ji −+ 'exp1
1  

 
 
SVMs are often used in supervised learning situations to suggest labels for novel 

points according the novel point’s position relative to the decision function in input 

space.  In this research, where an objective is to estimate the spatial extent of 

spatiotemporal events, interest is focused on the decision function itself.  Given that the 

decision function gives an indication of the boundary between the in-event and non-event 

regions in input space, the decision function can be considered as an estimate of the 

spatial extent of an event at a given time (i.e., the entire study area can be considered as a 

set of novel points).  By considering different point readings, and correspondingly 

different boundaries, at different points in time, SVMs provide a means of extrapolating 

the areal extent of spatiotemporal events at different time instances.   

A potential application of SVMs with this interpretation would be geosensor 

network monitoring of air pollution (as described in Chapter 2).  Some of the sensors may 

                                                 
11 The three layer neural network kernel is only a Mercer kernel under certain conditions (Abe, 2005). 
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detect readings hazardous to human health and could be assigned a label of +1 while 

those with benign readings could be assigned the label -1 (i.e., a Boolean event predicate 

is applied).  These labels, along with geographic information regarding the sensor 

locations, could then be fed into a SVM which would produce an estimate for the spatial 

extent of the event.  These areal estimates could then be input into the spatiotemporal 

helix for comparison and analysis through time.  

To illustrate how these methods could be put into practice, a simulated example is 

presented in the next chapter.  The following subsection presents the algorithm and basic 

theory behind SVMs with a level of detail sufficient for the research purposes of this 

thesis.  For more detailed and technical discussions of SVMs the reader is referred to 

Christianini and Shawe-Taylor (2000) and Vapnik (1998). 

 
3.5 Support Vector Machine Concepts and Algorithm 

The first SVM to be introduced was the binary maximal margin classifier (Boser, 

1992).  This SVM is characterized by its maximization of the geometric margin of 

linearly separable data depicting two classes in feature space.  While the use of a 

maximum margin discriminant offers advantageous generalization properties (Bartlett, 

1998; Shawe-Taylor, 1998), the assumption of linear separability will always produce a 

perfectly consistent hypothesis (no training error) for the decision function.  As a result, 

the corresponding hypothesis for a decision boundary can easily be seen as having 

potential for overfitting data and therefore can defeat some of the attractive generalization 

principles which serve as a motivation for the use of SVMs in the first place.  Therefore, 

a “soft margin” SVM algorithm employing slack variables for soft margin optimization is 

more commonly used (Christianini, 2000).  Description of this technique appears in 
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Section 3.5.5 after the basic concepts related to SVMs have been established through 

discussion of the “hard-margin” linearly separable case.   

To further clarify discussion, this introduction to the hard-margin maximum 

margin binary SVM algorithm is broken down into four subsections: margins, 

generalization, geometric interpretation, and optimization.  Throughout this discussion 

n
ix ℜ∈ refers to a data point, yi the label assigned each particular point (e.g., toxic or 

benign), w (weight vector) the scalar orientation of the hyperplane, and b (bias) the offset 

of the hyperplane from the origin.  As such, the classification problem can be written 

)()( bxwsignxf ii −⋅= where the optimal hyperplane correctly assigns the labels yi .   
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3.5.1 Margins 
Use of hyperplanes as decision functions has a history in both statistics, where 

hyperplanes are referred to as linear discriminants, and neural network research, where 

they have been called perceptrons.   Regardless of the discipline, the underlying theory 

can be traced back to Fisher (1952).  In the fifties and sixties neural network researchers, 

Rosenblatt (1956) in particular, began to propose iterative approaches for separating 

points with different labels using linear hyperplanes.   

This early iterative approach is of interest not only historically, but also because 

many of the current methods for deriving hyperplanes in modern SVMs have strong roots 

in these early techniques.  As a reference, the perceptron algorithm, as presented in 

Christianini and Shawe-Taylor (2000), is shown in Table 3.1.  Starting with initial values 

for w and b, these parameters are updated according to the classification error in each 

iteration, until no errors are present.  This system is guaranteed to converge in data that 

are linearly separable (Novikoff, 1962).   

To clarify later discussion, several definitions are introduced here that address 

differences between Rosenblatt’s (1956) early work and support vector machines in their 

current state. Firstly, the functional margin of an example with respect to a hyperplane is 

defined as the quantity 

 
( )bxwyii +⋅=γ             (3.3) 

 
 

which will be positive for each point that is correctly classified and negative for each 

example that is misclassified.  The functional margin distribution of a hyperplane is the 

distribution of the functional margins for the examples composing an entire training set 

with the functional margin of the hyperplane with respect to a training set S being the 
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distribution’s minimum value.  Note that in the original perceptron algorithm (Table 3.2), 

the functional margin is used to derive a separating hyperplane.  By converging to a 

hyperplane solution that simply separates the data according to their labels, an infinite 

number of potential solutions exist and the selection of starting values for the parameters 

can influence the result (see Figure 3.2).  This is because the problem as stated in the 

perceptron is ill-posed (no unique solution).     
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Table 3.2 Perceptron Algorithm. The perceptron algorithm solves for a hyperplane in 
terms of the functional margin and yields non-unique solutions.   
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Figure 3.2.  Graphical Representation of Potential Results from a Perceptron Algorithm.  
Since the problem is ill-posed, there is not a unique optimal solution.   

 
 
Solving for a different quantity renders the problem well-posed so that a unique 

solution exists.  By normalizing with the weight vector w, 

 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
b

w
w

w
1,1 ,             (3.4) 

 
 

a geometric interpretation of the margin, 
w
1

=γ , can be obtained (see Figure 3.3).  The 

Euclidean distance of a point to a hyperplane and is called the geometric margin of an 

example.  The geometric margin of a set is the maximum geometric margin over all 

hyperplanes.  Maximization of the geometric margin of a set yields a unique hyperplane 

solution.  This is the boundary that SVMs.solve for.  The following subsections describe 

this unique solution in greater detail.   
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Figure 3.3 Representation of a Maximum Margin Linear Separating Hyperplane.  This 
shows the linear functions for the boundary (w·x-b=0) and the geometric margin γ=1/||w||.  
The support vectors are the points located closest to the decision boundary and are 
highlighted.   
 
 

3.5.2 Generalization 
In a high-dimension feature space, the use of a relatively simple decision 

boundary (such as a linear hyperplane) ensures that learning remains tractable.  However, 

with the expressive power made available by the high dimensional space and a 

potentially very large number of degrees of freedom, a sophisticated theory of 

generalization is required to guide the tradeoff between overfitting and ability to 

generalize to novel data.  By examining the potential separating hyperplanes in Figure 3.2 

and 3.3 above, one may intuitively feel that the best hyperplane may be the one that splits 

the difference between the two classes.  This intuition is correct, and can be proven 

through the use of a theory quantifying the tradeoff between the need to fit the training 

data well while also having to be general in terms of statistical bounds.   
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Key to the development of these bounds is Vapnik Chervonenkis (VC) theory 

which proves that bounds on the generalization error of novel points not included in the 

training set can be obtained.  VC theory proves the existence of a distribution free bound 

on the generalization of a consistent hypothesis which is a function of the 

misclassification rate and measures of function capacity12 for the training set.  For linear 

functions, maximization of the geometric margin reduces functional capacity and 

therefore minimizes the bounds on generalization.  Importantly, these bounds are not 

directly dependent on the dimensionality of the data and can suggest good performance 

even in very high-dimensional data.  A volume of literature has been developed on 

theoretical proofs of these generalization properties.  Examples of such work includes 

that by Vapnik (1995), Christianini and Shawe-Taylor (2000), and Devroye, Gyorfi et al. 

(1996).     

 While VC theory provides a conceptual basis for the strength of the generalization 

properties of SVMs, a growing body of literature that has demonstrated the effectiveness 

of SVMs relative to other techniques. Comparisons have been conducted in a range of 

applications, and SVMs have perform as well if not better than other commonly applied 

techniques such as artificial neural networks and even those designed for specific datasets 

(LeCun, 1995; Yang, 1999; Scholkopf, 1997; Pontil, 1998). 

 
3.5.3 Geometric Interpretations 

 Having defined the ‘best’ hyperplane and described some of its attractive 

generalization properties, this section focuses on the techniques and the geometric 

interpretation of the solution.  There are two geometric interpretations for the hyperplane 

solution.  The first involves the maximization of the distance between two parallel 
                                                 
12 Capacity refers to the ability of a machine to learn a training set without error.   
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supporting hyperplanes and the second involves the bisection distance between the points 

closest to each other on the respective convex hulls of each class in feature space.  The 

interpretations are the dual of one another and the resulting hyperplane is identical 

regardless of the approach taken. 

The first case can be seen as an extension of the perceptron.  In Figure 3.2 we can 

see that there are an infinite number of hyperplanes that can separate the two classes 

when the functional margin is solved for.  To solve for the unique maximum geometric 

margin hyperplane, pairs of parallel supporting hyperplanes are considered.13  For a 

linearly separable set there exist values for w and b so that 1≥−⋅ bxw i  for the class with 

the label +1 and 1−≤−⋅ bxw i for the class with the label -1, by maximizing the distance 

between these hyperplanes the supporting planes are ‘pushed’ apart until they ‘bump’ 

into the small number of points on the boundaries of each of the classes (see Figure 3.4).  

These points are the support vectors and the distance between the supporting planes 

w
2

=γ is the maximum geometric margin.  Maximizing the margin in such a manner is 

equivalent to minimizing 2/w  in the following 

 

2           1       
1        1    s.t.

2
1   min 2

Classyb-x w
Classybxw

w

i

ii

∈≤⋅
∈+≥⋅           (3.5) 

 
 
where the constraints can be simplified to 1)( ≥−⋅ bxwy ii . 
 
  

                                                 
13 A hyperplane with all the elements of one class on a side is said to support that class.   
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Figure 3.4.  Representation of ‘Pushing’ Supporting Hyperplane Approach.  By pushing 
potential candidate hyperplanes successively outward, they eventually ‘bump’ into data 
points.  These data points that are ‘bumped into’ the support vectors.  They define the 
‘fattest’ separating plane which can be bisected to defined the maximum margin 
hyperplane. 
 
 

The second geometric interpretation of maximum geometric margin problem 

involves the convex hulls of the points representing the two classes.  Once the convex 

hulls are found for each of the classes in the training set, the points that are closest to one 

another from each can be determined.  With this approach, these points are the support 
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vectors and by finding the plane that bisects the support vectors we can solve for the 

geometric margin maximizing hyperplane (see Figure 3.5).  This approach implies the 

following quadratic problem: 
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Figure 3.5.  Graphical Representation of Convex Hull Approach.  The convex hull 
approach where the nearest points on the convex hulls for the two classes can be used to 
derive the maximum geometric margin hyperplane. 

 
 
3.5.4 Optimization 
Having covered the basic definitions and generalization concepts related to 

SVMs, this section describes how one can derive an optimal hyperplane.  From the two 

formulations described in Section 3.5.3, one can see that the problem of finding the 

hyperplane reduces to an optimization problem.  More specifically, the problem involves 

the optimization of a convex function involving a quadratic objective function with linear 

inequality constraints (Christianini, 2000; Scholkopf, 2001).  The discussion below is 
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presented in terms of the separating planes but could equivalently be derived from the 

convex hull formulation (Bennett, 2000).    

Recall that the definition for the functional margin is the minimum of the 

functional margin of the distribution and can be written 

 
 
( ) 1=+⋅ bxwy ii , or less compactly as,                                                           (3.7) 
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The geometric margin, γ, with w normalized can then be written as half of the difference 
between the two classes, or the distance from each class to a maximal margin hyperplane, 
as   
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With the goal of maximizing the geometric margin, and with the geometric margin 

w
1

=γ  , the following optimization problem can be derived: 
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which implies the Lagrangian  
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where 0≥iα are the Largrange multipliers.14  Given that the problem involves the 

solution to a convex cost problem, the first order derivatives for the parameters can be 

written 
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Substituting these formulations back into the original Lagrangian, the following Wolfe 

dual expressed solely in terms of the multipliers can be derived (see Vapnik, 1998 for 

complete derivation):  
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14 The Lagrangian multipliers indicate the activity of the constraints for a given data point.  If the 
constraints are active at a given point, the value of the multiplier will be non-zero.  For other points, where 
the solution is not influenced by the constraints, the Lagrange multipliers will equal zero.  
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which can be rewritten in terms of inner products as 
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This formulation, containing a dot product, allows for the kernel substitution 
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The inequality constraints imply the following Kuhn-Tucker (KT) 

complementarity conditions: 

 
( )[ ] l..., ibxwy iii 1         01*** ==−+⋅α .       (3.21) 

 
 
The KT conditions imply that for only those points where the functional margin is 1, and 

therefore the closest points to the hyperplane, are the *
iα non-zero.  Those points with 

non-zero values are the support vectors, and by looking at the expressions for both the 

objective and the constraints one can see that the solution is dependent only on these 

points.   

The final formulation (Eq. 3.20) with the kernel substitution brings the discussion 

of the properties and theory behind SVMs that began with the concept of the “kernel 

trick” full circle.  Key to these computation savings are the use of the dual formulation, 
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written in terms of the Lagrangian multipliers and an inner product feature space.  As 

such, the feature space does not have to be explicitly defined.  Rather, it can be implicitly 

determined through the use of kernels which allows for very high, even infinite, 

dimensional feature spaces to become environments for tractable learning (Burges, 1998; 

Christianini, 2000).  In addition, it is noteworthy that the solution is solely dependent on 

the support vectors, which offers further computational savings. 

 
3.5.5 Soft Margin SVMs 
A limitation of the SVM is its assumption of perfect linear separation in feature 

space.  Indeed, if the data are noisy, as they often are in real-world situations, this 

assumption can easily be violated and result in a primal objective function with an empty 

feasible set and an unbounded objective in the dual (Christianini, 2000).  This section 

describes how SVM methods can be adapted to relax the assumption of complete 

separation through the use of slack variables and what is known as the “soft margin” 

SVM.  By implementing this more tolerant decision function, the SVM becomes more 

robust to noise and hence is more commonly applied in practice. 

Central to the development of this more robust estimator are the concepts of the 

margin distribution (Section 3.5.1) and that of the slack variable, iξ , which defines the 

extent to which a point fails to have a margin γ from the hyperplane (see Figure 3.6).   
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Figure 3.6. Representation of the soft-margin concept.  The slack variablesξ  for the 
points xi and xj are the amount by which each of these points fail to have the geometric 
margin γ.  If iξ is greater than γ it will be misclassified. 

 
The effect of introducing the slack variables is to relax the constraints on the functional 

margin (shown in Equations 3.7 and 3.8 in the beginning of the optimization subsection) 

so that they can be written 

 
( ) iii bxwy ξ−≥+⋅ 1 , or less compactly as,       (3.22) 
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As such, for an error to occur iξ  must be greater than one and ∑
i

iξ becomes an upper 

bound on the number of training errors (Burges, 1998).  As such, the primal objective 

function (from the optimization section) 
2
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C is a user-defined parameter that controls the penalty for slack variables and where 

higher values of C indicate higher penalties and k is a user-defined integer value.  When 

k = 1 or k =2, the problem continues to have a convex cost function and can be solved 

using quadratic programming.  With k = 1, the Wolfe dual (the primal objective written 

in terms of the Lagrangian multipliers) continues to have the advantage that neither the iξ

nor their Lagrangian multipliers appear in the formulation.  The result is the following  
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where the significant difference from the hard margin (linearly separable) case is the 

presence of an upper bound on the Lagrangian multipliers αi.  The KKT conditions 

become  
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This formulation is known as the 1-norm soft margin SVM. 

With k = 2, the formulation is known as the 2-norm soft margin SVM and the 

Wolfe dual is written  
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with the KKT conditions 

 
 

( )[ ] l..., ibxwy iiii 1         01*** ==+−+⋅ ξα       (3.27) 
 
 

where δ is the Kronecker delta and is equal to one when i = j and 0 otherwise.  This has 

the effect of weighting the diagonal by 
C
1 , thereby adding 

C
1  to eigenvalues of the 

kernel matrix and rendering the problem better conditioned.   

Historically, prior to the establishment of generalization bounds, the 1-norm SVM 

has been preferred in practice due to its similarity to the percentile error bound.  

However, since the generalization bounds for the 1 and 2-norm SVMs have been 

developed (Shawe-Taylor, 1999), both versions have become commonplace and the data 

and type of noise influence which performs better in practice (Christianini, 2000).    

One problem with both soft margin SVM formulations is the presence of the 

parameter C and the necessity of deriving a value for it.  A common approach to this 

issue is varying values of C through a range.  However, the value of C is also sensitive to 

the scale of the feature space and this presents a further complication.  Approaches for the 

determination of an appropriate parameter value can be computed in terms of the VC 

dimension, v.  It has been shown that solutions for varying C are equivalent as those that 

result from varying v.  This approach is advantageous in that manipulation of v not only 
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is independent of the scale of the feature space, but also allows for greater interpretation 

in that v represents a lower bound on the sum of the Lagrange multipliers αi, therefore 

providing a lower bound on the number of support vectors, and providing a more 

transparent parameterization of the problem in terms of the noise level of the data 

(Christianini, 2000).  

 
3.5.6 Mapping SVM Results back to Input Space 
Once derived in feature space, the maximum margin separating hyperplane can be 

mapped from feature space back to input space.  This process involves deriving the 

optimal parameter values for w* and b* (Eqs. 3.7-3.8) from the optimized Lagrange 

multipliers α* obtained from Eq.3.20 or Eq. 3.26. The expression for w* can be simply 

derived directly from the constraint (Eq. 3.5) where  
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Meanwhile, b* may be obtained through the KT conditions (Eq. 3.9) and the optimized 

value w* so that  
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over all points with αi > 0 (from the l  support vectors).  With these optimized values, the 

decision function 
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is obtained and is used to suggest labels for test points z (Scholkopf, 2002).  With the 

initial input data representing geosensor locations and Boolean event predicate results 

and by inputting a mesh of test points z over the area considered as being monitored by 

the geosensor network, the results of the decision function can be used as a means of 

interpolating the spatial extent of events from these point readings.15  The effect of the 

test function (Eq. 3.28) is the generation of a raster which gives positive results for 

locations hypothesized to be in-event and negative results for locations estimated to be 

non-event.   

In addition, and more importantly for the purposes of this research, the areal event 

boundary can be estimated by finding those points for which the decision function is 

equal to zero.  With the interpretation of SVM-derived decision function as a boundary 

for higher-level events and the ability of SVM decision functions to follow the 

distribution of lower-level events, SVMs may have the ability to provide accurate 

representations of the spatial extent of higher-level events.  Chapter 4 describes 

implementation of SVMs for spatial boundary estimation, discusses some properties for 

spatial analysis, and provides comparison against existing techniques.   

 
3.6 Support Vector Clustering 

The previous sections of this chapter introduced the base concepts of SVMs, and 

set the stage for discussion of SVC.  Of particular relevance are the concepts of duality 

(i.e., primal in terms of geometric margin vs. Wolfe dual in terms of Lagrangian 

multipliers), the “kernel trick,” and soft margins.  For SVMs, these concepts allowed for 

the derivation of maximum margin hyperplanes which can be solved efficiently as 

                                                 
15 The spatial extent of the meshgrid should be dictated by application specific assumptions concerning the 
effective coverage of a geosensor network.   
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quadratic programming problems in terms of inner products kernels and Lagrangian 

multipliers.  It will be shown that the process is much the same for SVC where, instead of 

maximum margin hyperplanes, the decision function is that of a minimum bounding 

hypersphere. 

This difference in decision function is driven by the inherent difference in data 

between clustering and classification problems.  For classification problems, where the 

objective is to delineate distinct classes, using decision functions to suggest class 

assignment for novel points based on a training set.  In contrast, unsupervised learning 

involves input data from only one class.  In such a situation, labels do not exist and the 

objective of learning is geared towards the description of patterns in the distribution of 

the data and the identification of clusters or, inversely, outliers.    

Clusters, hot-spots, or areas of point concentration are of interest in a variety of 

geographic application scenarios.  Some of these, along with methods for the estimation 

of their spatial extent, were discussed in Section 2.2.  A common limitation of existing 

techniques is their inability to produce estimates of potentially complex spatial extents of 

clustering events.  Given that the purpose of this thesis is to describe the spatial evolution 

of events, including how events deform with time, it seeks more sophisticated means for 

the estimation of the spatial extent of events.  SVC is introduced as a method for 

describing spatiotemporal evolution of clustering events.  In Chapter 5, a simulation 

demonstrates how SVC results could be incorporated in spatiotemporal data models such 

as the spatiotemporal helix for spatiotemporal analysis.  The following subsection 

describes the SVC algorithm.   
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3.7 Support Vector Clustering Algorithm 

Support vector methods can be used to solve supervised learning problems, as 

discussed in previous sections, and can also be adapted to address unsupervised learning 

problems where, in the absence of labeled training sets, the objective is generally the 

description of clustering in the data or the identification of outliers.  As with SVMs, the 

algorithm for the unsupervised case involves the resolution of a convex cost function in a 

kernel-produced feature space.   

Given the use of kernels, these methods have a close relationship to established 

kernel density estimation (KDE) methods (see Section 2.3) for cluster description.  A key 

difference between the two lies in the form of the results produced.  In KDE, the purpose 

is to generate a description of the relative spatial density of individual event instances.  

Therefore, KDE results in a map of the study area which highlights areas of high and low 

concentrations according to a given kernel.   Meanwhile, the support vector methods 

presented in this chapter generate estimates for the spatial extent of clusters in terms of a 

boundary.   

According to the stated objective of the analysis (outlier detection vs. cluster 

determination), the name given to this class of support vector methods has varied in the 

literature.  When the objective is the determination of outliers, these methods have been 

called support vector novelty detection (Scholkopf, 2000).  When the objective involves 

the inverse task of describing concentrations of points, these methods have been referred 

to as support vector clustering (Ben-Hur, et al. 2001).  Finally, when the objective is 

simply a general description of the distribution of data these techniques have also been 

called support vector data description (Tax et al., 1999).  Given the tradition of clustering 
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research in spatial analysis, this research refers to these methods as support vector 

clustering (SVC). 

As with other kernel methods, the defining characteristic of SVC is the type of 

decision function applied in feature space.  Where SVMs employed maximum margin 

hyperplanes separating data with different class labels, SVC, designed for data of only 

one class, implements minimum bounding hyperspheres.  With { } χ⊆ix a set of N data 

points in the data space dℜ⊆χ , the smallest sphere enclosing the data can be 

represented as 

 
22)( Raxi ≤−Φ   i∀                    (3.31) 

 
 
where ⋅  is the Euclidean norm, Φ is some non-linear transformation from χ to a high 

dimensional feature space, and a is the center of the minimum bounding sphere in that 

feature space.  The differentiation of clustered points from outliers implies the use of 

slack variables iξ , with the identical definition presented in Section 3.5.5, and resulting in 

a soft margin bounding hypersphere so that Eq. 3.31 is written  
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with 0≥iξ .  To solve this problem and derive the hypersphere, implies the use of the 

following Lagrangian: 
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with the Lagrangian multipliers 0≥iα  and 0≥iμ  and the constant C weighting the 

penalty term ∑ iC ξ for points outside the hypersphere with the KKT conditions 

 
0=iiμξ  and           (3.34) 

0))(( 22 =−Φ−+ axR iii ξα .        (3.35) 
 

Minimization of this convex cost function imposes stationarity (first derivatives L with 

respect to R, a, iξ  equal zero) and results in the following expressions: 
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Several definitions relative to clustering can be drawn from the above equations.  

First of all, from the KKT (Eqs. 3.31 and 3.32) it follows that the feature space 

representation of an input data point ix  with 0>iξ  and 0>iα  lies outside the 

hypersphere in feature space and can be determined to be an outlier.  In the terminology 

of SVC, such points are called bounded support vectors.  Therefore, points ix  with 0=iξ  

are mapped either inside or onto the surface of the sphere in feature space.  Such points 

with Ci << α0  are located on the surface of the sphere and are the (unbounded) support 

vectors while those with 0=iα are points located inside the cluster and are simply called 

interior points (Ben-Hur et al., 2001). 
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Using the equations derived from the first order conditions (Eqs. 3.34-3.35), one 

can eliminate the variables R, a, and iμ  from the Lagrangian giving the Wolfe dual 

written entirely in terms of the Lagrange multipliers iα  
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with the constraint 
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At this point, an appropriate Mercer kernel K, can be introduced and with the 

determination that Mercer kernels are a representation of the inner product it can be 

substituted so that  
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Although any Mercer kernel can be used, the Gaussian kernel has been employed in SVC 

applications almost universally.16  In this research the Gaussian kernel 
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is considered with the kernel width parameter σ2/1=q .  With this kernel the Wolfe dual 

can be written  

 

                                                 
16 Tax and Duin (1999) found that use of the polynomial kernel can lead to excessive influence of extreme 
outliers. 
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where the optimized values for αi depict a solution in terms of the support vectors alone.   

Both from the above formulations and intuitively, it is obvious that the 

hypersphere can be determined by the (unbounded) support vectors alone.  As a result, 

these points, with Ci << α0 , alone are used to map the hypersphere back to input space 

and produce a representation of the cluster boundary in that space.  The process involves 

feeding a mesh of novel points Zz∈  representing the spatial extent of the study area into 

the following expression for the distance of the feature space image of the point z from 

the center of the hypersphere: 
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i xa Φ=∑α (Equation 3.34) and kernel substitution forΦ , this formulation can 

be rewritten 
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where the ji xx , are support vectors and SX being the constant sum of the product of the 

kernel-based representation of the inner product of support vectors with their Lagrangian 

multipliers Ci << α0 .  With the Gaussian kernel in the first term equal to one and SX, 

the only term that varies in Eqs. 3.42-3.44 with each novel point z is the second one.   

                                                 
17 The distance between a point and itself is zero.  This results in an expression for the exponential of zero 
which is equal to one. 
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 Using these formulations, the radius of the minimum bounding hypersphere can 

be obtained through the consideration of the points Zxi ∈ where the ix are the support 

vectors, or equivalently 

 
 ( ){ }ctorsupport ve a is | ii xxRR = .        (3.48) 
 

This value, generated by the points lying on the hypersphere, can then be used to 

compare against the values generated through the expression in Eq. 3.46 and by 

identifying those points z with values that are equal, therefore determining contours 

representing the extent of the clusters in input space.  This can be written 

 
{ }RzRz =)(| .           (3.49) 
 
 

 With geographic data, these contours can be used to estimate the spatial extent of 

events.  The spatial precision afforded through the use of these techniques makes them 

attractive as a means of generating an areal representation which can be analyzed in terms 

of both movement and deformation.  The process by which such an analysis could be 

conducted is outlined in the next chapter. 
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Chapter 4 

IMPLEMENTATION 

 

Current techniques for the extraction of areal event boundaries from point-based 

events, occurring at points in both point process and dynamic spatial scalar fields suffer 

from a priori biases.  Methods typically applied to point process data such as hierarchical 

clustering or the scan statistic, impose elliptical or strictly convex forms on higher-level 

events.  Methods applied to geosensor data impose linear representations of boundaries 

when, in actuality, the true forms are likely to be non-linear (e.g., a toxic cloud).   

The support vector methods presented in the previous chapter describe two means 

of extracting non-linear representations of areal event boundaries.  Like kernel density 

estimation, these support vector methods depict the distribution of observations of lower-

level events through the implementation of non-linear kernel transformations.  Unlike 

KDE, however, these methods provide a means for the extraction of explicit 

representations of the boundaries of higher-level events which can be incorporated into 

existing methods for spatiotemporal analysis.  This chapter interprets these support vector 

algorithms visually, in terms of their intermediate results, and critiques their potential for 

application for obtaining areal event boundaries. 

 
4.1 Support Vector Clustering 

Due to its potential for describing point cluster event shapes with complex non-

linear shapes, SVC has already been examined for its application potential in security 

informatics (Zeng, Chang, et al., 2004; Chang, Zeng, et al., 2005).  The objectives in 

security informatics, outlined in the introduction, can be summarized as involving 1) the 
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identification of concentrations of lower-level event points, 2) statistical testing of 

concentrations to determine whether they are clusters, and 3) description of how clusters 

change shape and move over time.  The third of these objective parallels the central 

motivation for this thesis, which is description of the evolution of higher-level event 

shapes.   

In their purely spatial application of SVC, Zeng, Chang et al. (2004) investigated 

the application potential for input space representation of cluster boundaries and 

compared their results against those produced by the scan statistic and hierarchical 

clustering (Figure 4.1).  Conclusions suggested further consideration of SVC for 

spatiotemporal applications due to SVC’s capability to produce more complex 

representations of cluster boundaries.  However, this work did not generate any 

suggestions for eventual spatiotemporal analysis with SVC. 

 

 
Figure 4.1.  Comparison of scan statistic, hierarchical clustering, and SVC produced 
representations of cluster boundaries in space (Zeng, Chang, et al., 2004).  The exact 
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approach taken by the authors to produce the SVC results is unclear given that their SVC 
results appear similar to a convex hull while kernel methods are strictly non-linear in that 
they are produced by non-linear kernels.   
 
 

A later application of SVC was designed for spatiotemporal analysis (Zeng, 

Chang, et al., 2005).  In this research the authors incorporated time directly into the SVC 

algorithm, exploiting the ability of SVC to handle high dimensional data.  Rather than 

using the decision function to produce explicit representations of higher-level event 

boundaries, this approach used the decision function implicitly and produced results in 

terms of labels reflecting the location of points relative to the decision function (i.e., 

whether each point was clustered or not)  As in the purely spatial case,  these results were 

compared against those from a scan statistic (Figure 4.2).  While integrating both space 

and time, with output consisting solely of clouds of clustered points this approach offers 

limited appicability for the description of spatiotemporal behavior. 

 

  
Figure 4.2.  Comparison of scan statistic and SVC produced labels for points in space and 
time (Chang, Zeng, et al., 2005).  As opposed to Figure 4.1, which was purely spatial, 
these results include temporal coordinates directly into computations.  The second image 
highlights the limitations of the scan statistic to describe spatiotemporal behavior such as 
spread and contraction. 
 

An objective of this research is to take a different approach to spatiotemporal 

analysis, using SVC-generated decision functions to produce purely spatial “snapshots” 



71 
 

of cluster boundaries through time and then compare differences in the shape and 

location of the higher-level events through time.  Like Zeng, Chang et al. (2004), this 

approach uses SVC-produced representations of cluster boundaries to define clusters in 

terms of regions with high concentrations of event instances over a discrete period of 

time rather than as clouds of spatiotemporal points.  To incorporate the temporal 

dimension into this framework, derivations of boundaries are repeated through time 

which results in a sequence of boundary representations not unlike those extracted from 

video sequences of image data.  A method for describing event evolution such the 

spatiotemporal helix (Stefanidis et al., 2003) can then be used to compare sequences of 

these events over time.  

4.1.1 Visual Interpretation of SVC Results 
Considering that KDE is an established method for spatial analysis, and that both 

SVC and KDE are based on kernel transformations, this section provides a visual 

interpretation of the SVC algorithm that sequentially compares intermediate SVC results 

alongside those from KDE.  Discussion then leads to some of the limitations of SVC, and 

concludes with some remarks about spatiotemporal modeling with SVC-produced 

representations of cluster boundaries.  These comparisons begin with relatively simple 

versions of the SVC algorithm and migrate towards increasing complexity with the 

addition of parameters.   

As described in Chapter 2, KDE is a method of representing the probability 

distribution of points throughout a study area.  By evaluating kernel functions at each 

observation, summing the kernel values from all observations at each point in the study 

area, and then normalizing by the number of observations in the study area, a 

representation of the cumulative distribution of instances is produced (Figure 4.3).  The 
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effect of these transformations is the production of a raster, or continuous representation 

throughout the study area, of the relative distribution of observations (Waller and 

Gotway, 2004).  These representations have been used for spatial analysis of point 

patterns in applications including epidemiology (Bithell, 1990), crime analysis (Levine, 

2007), and even archaeology (Baxter, Beardah et al., 1997).  While effective in providing 

a visual representation describing areas that have relatively high or low concentrations of 

point events, KDE does not produce an explicit boundary delimiting areas of 

concentration.  An explicit boundary representation of these areas of concentration is 

required for “snapshot” based approaches like the spatiotemporal helix. 

 

 
Figure 4.3  Kernel density estimation.  The first image shows the distribution of points 
from which the kernel density estimates are derived.  The second image is a cut-away 
view of the two-dimensional third image with a collapsed y dimension.  For comparison 
purposes with SVC output, it is noteworthy that the weight/height of each of the points is 
the same (third image). 
 

Like KDE, SVC transforms the data to a kernel based higher-dimensional feature 

space where a minimum bounding hypersphere is derived.  Results from this procedure 

identify the points containing the most relevant information for describing the cluster 

boundary (the support vectors) and use these observations to construct a representation of 

clustering for the data (Figure 4.4).  Compensating for the reliance on only the support 

vector subset of the initial population of observations are weights (αi’s) that are 

calculated as part of the derivation of the minimum bounding hypersphere (Figure 4.5).   
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Figure 4.4. Point distribution and support vectors (circles in second image) and interior 
points (+’s in second image).   
 
 The minimum bounding hypersphere can be mapped back to the original input 

space to obtain a representation of a cluster boundary that can be used for spatiotemporal 

analysis.  This process was outlined in Chapter 3 (Eqs. 3.45-3.47) and involves the 

derivation of a radius value from the weights αi and the kernel transformation (Eq. 3.45).  

Given that the support vectors (xi with 0 < α i< C) are the only points that influence the 

shape of the cluster boundary, only these points are used to derive this radius value (Eq. 

3.46).  Once this value is obtained it can be used to test against a mesh of input points 

Zz∈ to find the locations in input space that are located on the cluster boundary (Eq. 

3.47).  Effectively, this process creates a raster of weighted kernel evaluations for points 

throughout the study area and is represented in the second image in Figure 4.5.  Those 

points found to have distances equal to the radius of the hypersphere in feature space 

form the cluster boundary, those with distances less than the radius are considered to be 

part of the clustering, and those points with distances greater than the boundary are 

considered to be outliers.  This process of assignment is shown in Figure 4.6 which 

demonstrates how representations for the areal extent of higher-level events can be 

derived. 
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Figure 4.5  SVC output.  This set of images is designed for comparison against those 
resulting from KDE that appear in Figure 4.3.  The SVC algorithm “thins” the number of 
points so that only those relevant to the boundary contribute to the derivation of cluster 
boundaries.  To compensate for this thinning, points are assigned weights (second image) 
which contrasts with KDE where each observation is equally weighted (1/Nh). 
 

   
Figure 4.6.  Derivation of cluster boundary with SVC.  Points in input space are fed 
through the weighted kernel function for the radius of the hypersphere (represented by 
the horizontal line in the first image).  Those points with values equal to those for the 
radius of the hypersphere delineate the cluster boundary (second image).18 
 
 

4.1.2 SVC and Outliers 
 The previous example presented the basic mechanics of the SVC algorithm for a 

simple dataset without outliers.  SVC is designed to handle more complex scenarios that 

rely on SVC to distinguish between clustered and outlying points.  To illustrate how SVC 

identifies outliers, this section presents another example and discusses the corresponding 

results.   

                                                 
18 The image with the weighted curves was created using 2-dimesional (x and y) distances while the points 
along the x-axis are shown in terms of 1-dimensional distances (just x direction).  This causes some 
distortion, but not enough to distract from the illustrative purpose of the image. 
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In a kernel-induced feature space, points are organized into a minimum bounding 

hypersphere whose radius is used to provide an input-space representation of cluster 

boundaries.  The weights play an important role.  The only points holding influence on 

the derivation of the hypersphere are the support vectors (xi with 0 < α i< C).  This is 

shown in Figure 4.6 and was described in Eqs. 4.1-4.3 where the support vectors were 

distinguished from the interior points in terms of the weights where interior points have 

αi=0 and the support vectors have weights αi>0.   

The values assigned to the support vectors reflect their relative position from the 

center of the hypersphere.  For the interior points, which are relatively close to the center 

and therefore do not influence the length of the radius, the values are zero.  For the 

support vectors, which are on the radius, values are assigned so that those farther from 

the center have larger weights.  This is because if they are to be located within the radius 

they require higher values due to their increased distance from neighboring points (the 

other points contribute relatively little to the value radius).  This is illustrated in Figures 

4.5 and 4.6 where the upper right support vector has the highest weight due to the fact 

that it is the farthest from the other three support vectors.   

Controlling the size of the weights is the parameter C (Eq. 3.40).  In all of the 

examples in the previous section, the parameter C was held equal to one which, with 

constraints Eqs 3.36-3.39 and  

 
Cnoutliters /1<          (4.4) 

 
 
where noutliers is the number of outliers and  

 
 

NCp /1=          (4.5) 
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being the upper bound on the percentage of outliers (Scholkopf, Williamson et al., 2000), 

effectively forced all points to be included in the cluster (no outliers).  The remainder of 

this section is designed to illustrate the role that C plays in determining cluster boundaries 

in the presence of outliers.  To do so, results are generated from the dataset in Figure 4.7. 

 

 
Figure 4.7  Dataset with outliers and corresponding KDE representations.  Outliers are 
located in the lower left and the upper and lower right. 
 
 
 In Figure 4.8 the results are shown for SVC with C=1 (i.e., constraint Eq. 3.40 

non-binding) in the presence of outliers.  Due to the relatively large distance between the 

outlying points and the core of the concentration, the outliers have relatively large 

weights (image 2 of Figure 4.8).  This is because with C=1 no compensation is given for 

points lying far from the rest of the distribution.  As a result each of these points is 

considered as part of the cluster.  The fact that the outlier in the bottom right is closer to 

the bulk of the distribution is reflected by the small portion of boundary located around 

this point (bottom right image of Figure 4.8).  Meanwhile, the outliers in the upper right 

and lower left are located at the extreme end of radius and do not have any visible portion 

of the boundary represented near their location (just the points are included). 
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Figure 4.8.  Results from running SVC with C=1 on data with outliers.  The first image 
shows the support vectors and interior points.  The second image shows the raster 
produced by testing a mesh of points.  The third image shows the weights for the support 
vectors.  The fourth image shows the SVC-produced cluster boundaries. 
 
 

By allowing C to take on a value less than one, a percentage of the points are 

allowed to become bounded support vectors (i.e., be treated as outliers), limiting the 

influence that these outlying points have on the determination of the hypersphere/cluster 

boundary.  C defines the upper limit that weights αi can take (Eq. 3.40) and those points 

with αi=C, where the constraint is binding, are the bounded support vectors (i.e., outliers).  

The effect that this has on the generation of cluster boundaries is demonstrated in Figures 

4.9 and 4.10. 
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Figure 4.9.  SVC results with C<1.  The effect of reducing C allowed for outliers/ 
bounded support vectors.  These are shown as the small filled squares in the first image.  
The second image shows the raster resulting from the weights which are shown in the 
third image.  Note that the bounded support vectors no longer influence the boundary, as 
opposed to Figure 4.8, where the regions surrounding these points were green.   
 



79 
 

 
Figure 4.10.  Second set of SVC results with C<1.  The images in this figure result from a 
larger q (smaller σ) and a smaller value for C (larger percentage of points allowed to be 
outliers). 
 

To demonstrate the potential of SVC to generate boundaries of higher-level 

events with actual application data, the algorithm was applied to a collection of crime 

data.  These data represent point locations of homicides in the Pittsburgh area and are 

downloadable in point shapefile format from the University of Illinois Spatial Analysis 

Laboratory (http://www.sal.uiuc.edu/stuff/stuff-sum/data).  The SVM algorithm was 

applied to these data to produce the cluster representations depicted in Figures 4.11-4.14.   

These figures are effective in demonstrating an important drawback in the 

application of SVC for spatiotemporal analysis.  While SVC is capable of producing 

highly non-linear representations of clustering and does not impose any bias in terms of 
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cluster shape a priori, SVC does involve bias implicit in the selection of parameters.  For 

the remainder of the thesis, a priori bias in terms of shape imposed on higher-level events 

is referred to as explicit bias (i.e., bias resulting from the selection of method) while bias 

resulting from parameter selection is referred to as implicit bias.  The effects of implicit 

bias on cluster shape are apparent in the examples in Figures 4.9-4.14 where both the 

number and shapes of the polygons composing the clusters vary according to the values 

selected for σ and C.   

 

     
Figure 4.11  Different representations of cluster boundaries generated by SVC with 
different bandwidths.  Bandwidth was manipulated indirectly using q=1/2σ.  Values for q 
in the above images are 6, 12, and 24 (σ = 3, 6, 12).  C was held constant (C=0.65). 
 
 

     
Figure 4.12.  Different raster representations of clustering generated by SVC with 
different bandwidths.  These images depict the weighted kernel Bandwidth manipulated 
indirectly using q=1/2σ.  Values for q in the above images are 6, 12, and 24 (σ = 3, 6, 12).  
C was held constant (C=0.65). 
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Figure 4.13  Different representations of cluster boundaries generated by SVC with 
different values for the outlier parameter C.  Values for C in the above images are 0.50, 
0.65, and 0.85.  Bandwidth was held constant (q=12). 
 
 

 
Figure 4.14  Different representations of cluster boundaries generated by SVC with 
different values for the outlier parameter C.  Values for C in the above images are 0.50, 
0.65, and 0.85.  Bandwidth was held constant (q=12). 
 
 

4.1.3 SVC and Parameter Value Selection 
A major criticism of SVC is related to the difficulty of selecting appropriate 

parameter values.  With SVC as with Gaussian kernels, parameter values must be 

selected for the bandwidth σ as well as for the parameter C that controls the influence of 

outliers.  To generate the results for the simulated data used for this analysis of SVC, a 

variety of parameter settings were examined and adjusted according to the degree of 

clustering and noise in each frame.  As shown in Figures 4.8-4.10 and Figures 4.11-4.14, 

the choice of parameter values can have a major affect on the representation of clustering, 

changing the number of individual clusters. 

Given that clustering is largely a perceptual phenomenon (Kulldorff, 1997), 

determination of a “best” representation presents real challenges.  Nonetheless, with KDE 
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an established tool for spatial analysis and with KDE also involving a bandwidth 

parameter σ that is also a feature of SVC, some guidance may be obtained from research 

already conducted on bandwidth selection from KDE.  One example is that of asymptotic 

mean integrated squared error (AMISE) (Waller and Gotway 2004).  Other techniques 

developed from KDE, such as varying bandwidths or weighting kernels according to 

underlying factors such as population, also warrant experimentation.   

Perhaps more problematic than the determination of a value for bandwidth is the 

issue of selecting an appropriate value for C.  By indirectly defining the percentage of 

outlying points (Ben-Hur et al, 2001), C also plays an indirect role in the determination of 

the representation of the clusters (Figures 4.13-4.14).  However, in this regard SVC 

suffers from many of the same problems as other algorithms for unsupervised learning in 

that the learning process requires assumptions a priori that have an impact on results.  K-

means clustering is another such example where the selection of a value for k plays a 

large role in the assignment of points to clusters.   

One potential means for determining a value for C can also answer the second of 

the questions posed in the introduction regarding statistical significance.  Throughout this 

thesis we have focused on the third of these questions, addressing the ability to represent 

non-linear clusters for spatiotemporal analysis of deformation and movement.  Statistical 

significance is central to several spatiotemporal research domains and whether or not a 

cluster is significant carries real weight in an application.  For example, Kulldorff and 

Athas’ (1998) investigation of potential brain cancer clusters in New Mexico with the 

scan statistic found no significant clusters which effectively barred brain cancer patients 

in the area from millions in federal funds.  The scan statistic tests for significance using a 
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likelihood ratio (Eq. 2.4).  The likelihood ratio is a function of observed (low-level) 

events over the expected number of events according to the application.  A similar 

technique could be applied for SVC.  Once an appropriate bandwidth was selected, C 

could be determined by scanning through values and testing for significance against 

likelihood ratios.  If statistically significant clusters were found, these could be used to 

represent the clustering behavior in a point process. For example, clusters could be 

extracted that are significant at the α = 0.01, 0.05, 0.10 levels. 

Nonetheless, the determination of guidelines for the selection of appropriate 

parameter values is an on-going topic of research (e.g., Lee and Daniels 2004).  

Parameter selection is complex in that both the bandwidth parameter σ and the limit on 

percentage outliers C must be updated and evaluated in tandem (i.e., changing q requires 

a corresponding appropriate change in C).  Given that the selection of these parameters 

impacts representations of higher-level cluster events, methods will have to be 

established to handle these sources of implicit bias before SVC can be suggested for 

widespread application.  
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4.2 Interpolating Higher-Level Events in Geosensor Data with SVMs 

This section outlines how higher level areal events can be approximated from 

point data produced from geosensor networks using SVMs.  For SVMs to be applied, it is 

only assumed that the sensor locations are known and that the Boolean values indicating 

whether or not a low-level event is occurring19 can be communicated to a location where 

the SVM algorithm can process the data.  These assumptions are not seen as 

unreasonable since many applications require tracking of sensor locations and since 

communication of Boolean value implies only minimal functionality.  During 

deployment, the position of each sensor could be recorded and stored or the sensors could 

locate themselves using GPS and communicate their location.  Boolean values could be 

communicated to a central location in centralized networks or to a “sink node” with 

processing capabilities in decentralized networks for the derivation of SVM 

representations of the higher level events.  Both the location and Boolean label serve as 

the input into the SVM algorithm. 

As with SVC, the SVM algorithm involves kernel transformation and can be 

interpreted using KDE.  Correspondingly, as in the last section, visual representations of 

KDE are compared against those produced by SVMs.  The key difference between the 

geosensor point data for which the SVM methods are described in this section and the 

SVC methods for point processes outlined in the previous section is the accompaniment 

of a Boolean label with the coordinate data in the SVMs algorithm.  This additional 

                                                 
19 For the purposes of this research low-level are assumed to have some endurance through time.  For 
example, low-level events in this research considered to represent time periods where sensor readings 
surpassed a given threshold or followed a given trend direction.  These low-level event definitions contrast 
those that are immediate and non-enduring such as inflection points in time series. 
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attribute renders the geosensor data to a form analogous to a training set and establishes 

where boundaries exist.   

While able to produce non-linear representations of higher-level events without 

explicit bias, this SVM approach also offers conceptual benefits.  Intuitively, when tasked 

with interpolating across an area from geosensor network data where the nodes are 

distributed through space one would expect the validity of these readings to diminish 

with distance (into sensor-less space) from each sensor.  By conducting a kernel 

transformation at each sensor point (with a Gaussian or radial basis kernel function), the 

SVM algorithm incorporates this concept.  As with KDE and SVC, SVMs sum the kernel 

evaluations at each point in order to make inferences about the area beyond observation.  

However, with the points being labeled, effectively assigning the sensors into classes (+1 

in-event, -1 non-event), the process involves the summation of positive and negative 

(rather than just positive as was done with SVC) values. 

The approach treats the data from each sensor node as an element of a training set 

and the rest of the study area as points with unknown labels.  As with KDE and SVC, the 

kernel transformation in SVMs results in a feature space that can be represented as a 

raster.  In this feature space, the maximum margin separating hyperplane is derived as a 

function of the points located along the boundary (the support vectors). With the 

assignment of the weights αi, kernel evaluations of each class of like-labeled points are 

summed and boundary estimates are defined as the locations where the sum equals zero.  

This process is outlined in Figures 4.15-4.25.  In order to communicate the process of this 

approach, data from a small hypothetical geosensor network are used (see Figure 4.15). 
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Figure 4.15 A hypothetical geosensor network displaying Boolean values for lower-level 
events.  The blue dots represent the sensors not detecting low-level events while the red 
squares represent nodes that are detecting low-level events. 
 
 

4.2.1 Visual Interpretation of SVM Results 
To help interpret the SVM algorithm Figures 4.16-4.21 represent KDE results for 

both the lower-level event and non-event sensors independently.  Figure 4.16 depicts 

what KDE would look like for the lower-level event subset of sensor locations and Figure 

4.17 depicts what KDE would like for the non-event locations.  Figure 4.20 depicts what 

KDE would look like for the non-event sensors when the labels (-1 for non-event points) 

are incorporated.  Complementing all of these figures are cutaways (Figures 4.17, 4.19, 

and 4.21) which show what the underlying kernel evaluations look like.  These are true 

cutaways (from the center of the study areas along the x-axis) and therefore give the 

appearance of unequal weighting (as results later from the SVM results).  However, they 

merely reflect location in terms of both the x and y dimensions.   
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Figure 4.16 In-event sensor locations and KDE representing the relative concentration at 
sensor locations.  The red regions denote areas of higher concentration and the blue 
regions denote areas of scarcity. 
 
 

 
Figure 4.17 Cutaway of the KDE shown in Figure 4.16.  Rather than collapsing a 
dimension as in Figure 4.3 and Figure 4.7 in the previous section, this image represents a 
cutaway from two-dimensional KDE (taken at the midpoint of the x-axis in Figure 4.16).  
All points are given equal weight, but distance in the hidden dimension gives the illusion 
of unequal weighting. 
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Figure 4.18 Non-event sensor locations and KDE representing the relative concentration 
of sensor locations.  The red regions denote areas of higher concentration and the blue 
regions denote areas of scarcity. 
 
 

 
Figure 4.19 Cutaway of the KDE shown in Figure 4.18.  As in Figure 4.17 all points are 
given equal weights.   
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Figure 4.20 Non-event sensor locations and KDE representing the relative concentration 
of sensor locations and sensor labels. Note the change in the colors relative to Figure 4.19 
due to the multiplication of the kernel evaluations by the negative non-event label. 
 
 

 
Figure 4.21 Cutaway of non-event sensor locations and KDE representing the relative 
concentration of sensor locations and sensor labels (negative/non-event according to the 
lower-level event predicate). 
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With the SVM algorithm (Eq. 3.20), the weights αi are derived.  By effectively 

reducing the number of data points to only those with the most relevant information - 

those located along the boundary – the weights reduce the number of calculations 

necessary to complete what would otherwise  be a more computationally expensive 

process.  In addition, in the context of geosensors, the identification of boundary nodes 

offers an additional benefit of highlighting local neighborhoods where nodes sleeping for 

power conservation could be activated to achieve greater spatial precision in later 

representation of higher-level events.  The effect of introducing the weights is presented 

in Figures 4.22-4.23. 

 
 

 
Figure 4.22 Cutaway and raster of in-event weighted kernel evaluations. 
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Figure 4.23 Cutaway and raster of non-event weighted kernel evaluations. 
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To derive the boundary, which is interpreted as a representation of the spatial 

extent of higher-level events, the in-event and non-event weighted kernel evaluations are 

summed.  This is shown in the cutaway from the center of the study area in Figure 4.24 

and in the rasters in Figures 4.25.  The maximum feature space (kernel evaluated) 

distance between classes is obtained where the sum is equal to zero and this is where the 

SVM-generated boundary between the classes is estimated. 

 
 

 
Figure 4.24 Summing of in-event and non-event weighted kernel evaluations.  The 
boundary is defined as those locations where the sum is equal to zero (black line). 
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Figure 4.25 SVM raster results.  These rasters depict the sums of the weighted kernel 
evaluation for the in-event and non-event sensors.  The blue regions are negative valued 
(non-event) areas and the red regions are positive valued (in-event) areas. 
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Results from the SVM used in this demonstration delimit four regions which 

essentiallyresult from drawing contours on the raster.  Two are delimited by the boundary 

and correspond to the regions of positive and negative values within the raster (separated 

by the thick black line in Figure 4.26).  The other two are subsets of these regions and are 

bounded by the support vectors and represent the locations where the raster is greater 

than 1 or less than -1.  The lines passing through the support vectors are equal to 1 or -1 

and delimit these regions.  Each of these four regions (i.e., the two separated by the black 

line decision function and the two bounding the support vectors) correspond to those 

depicted in the feature space representation in Figure 3.3.  Results for the simulated 

network appear in Figure 4.26. 

 
 

 
Figure 4.26 SVM generated representation of a higher-level event boundary.  The 
decision boundary appears as the thick black line.  The lighter red and blue lines depict 
the locations where the raster is equal to 1 and -1 respectively and correspond to the 
regions delimited in the hypothetical feature space shown in Figure 3.3. 
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4.2.2 SVMs and Selection of Parameter Values 
As with SVC, a major criticism of SVMs is related to the difficulty involved in 

selecting appropriate values for parameters.  While not subject to explicit bias in terms of 

shape, SVMs do involve implicit bias related to the selection of parameter values.  With 

Gaussian kernels, the most commonly applied kernel function and the kernel used in this 

thesis, a principal parameter is that for bandwidth.  Varying bandwidth can have a 

dramatic effect on the representation of boundaries (Figure 4.27).  The problem of 

parameter selection is a persistent pattern analysis problem (e.g., Wang et al., 2003; Ban 

and Abe, 2004) and will be central to the implementation of SVM methods in spatial 

analysis in geosensor networks.   

In geosensor networks, one possible source for assistance in determining 

bandwidth could be the concept of a sensing radius.  Sensing radii could be used to give 

an approximation of how far it may be appropriate for the readings collected at one 

sensor location to contribute to the determination of values at locations without sensors.  

Other sources that could inform selection could be derived from domain knowledge 

regarding the nature of the application.  An objective of future research will have to 

involve the establishment of guidelines for bandwidth selection. 
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Figure 4.27 A second simulated geosensor network and the effect of varying bandwidth.  
In the first frame, the red crosses represent in-event sensor readings and the black dots 
represent non-event readings.  The three frames show SVM estimates for the spatial 
extent of events with bandwidths of σ = 10, 50, 70. 
 
 

As mentioned at the beginning of this section, an assumption is that each sensor 

can communicate a Boolean response indicating whether or not the sensor witnessed a 

low-level event or not.  While in the above demonstrations it was assumed that the 

Boolean values recorded were accurate, a common problem in sensor networks, 

especially wireless sensor networks, is that the sensors are prone to error.  With SVMs 

the soft margin parameter C can help address this issue (see Section 3.5.5).  By allowing 

for values that are relatively extreme when compared to the rest of the distribution to 

appear on the opposite side of the decision function, errors in reporting can be 

accommodated and prevented from exerting inappropriate influence on the decision 
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boundary.  The effects of varying C, however, also impact the shape of the boundary (see 

Figure 4.28).  While attractive for these conceptual reasons, in practice the determination 

of C presents a problem.  Values for C could be varied in accordance with expectations 

regarding the reliability of sensors relative to the level appropriate for the application, 

but, as with σ, a general framework needs to be developed for the selection of parameter 

values before SVMs can be widely applied in applications in geosensor networks. 

 
 

 

 
Figure 4.28 The effect of varying C.  The three frames show SVM estimates for the 
spatial extent of events with constant bandwidths and decreasing values for C. 
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4.3 SVMs for Spatiotemporal Analysis: An Application-Based Example  
 

To analyze the application potential of the SVM methods for spatiotemporal 

analysis, this section examines how well  these methods are able to approximate irregular 

polygons derived to describe the shape of event over time in real-world settings.  The 

event examined is a forest fire in Shenandoah National Park (files accessed from Shedd, 

4/16/2009).    

The analysis is based on three frames of the fire (Figure 4.29).  The analysis 

considers the effect of sampling and parameter selection on the relative ability of the 

SVM methods to reproduce the original polygons.  In other words, the time series of 

polygons are considered to be a “ground truth” and the SVM generated boundaries are 

compared against these ground truths in order to analyze the ability of these techniques to 

represent the actual spatial extent of events at different periods of time.   

 

Figure 4.29 Three frames of fire boundaries analyzed with SVMs. 

The analytic process began in ArcGIS where the polygons were imported.  In 

ArcGIS random points were generated using Hawth’s Tools.  Hawth’s Tools includes a 

random point generator that allows enforcement of constraints regarding the minimum 

distance between generated points.  It is thought that this would better resemble potential 
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application scenarios where it would be unlikely that one sampling point would be 

located in immediate proximity to another.  For each of the three frames of the fire, three 

different sampling schemes were created in order to investigate the effect of increasing 

the number of points on SVM’s ability to describe the fire polygons.  To gain insight into 

how effective SVMs might be in replicating the “ground truth” fire polygons, thirty 

different sets of points for each of the sampling schemes were analyzed.  Frames from 

these results are presented in Figures 4.30-4.37.  For each of the sets of results, the 

bandwidth was set so that it is equal to the average distance among all of the points and 

the number of points.  

 

ߪ ൌ ௔௩௘௥௔௚௘ ௗ௜௦௧௔௡௖௘
ඥ௡௨௠௕௘௥ ௢௙ ௣௢௜௡௧௦

            (4.6) 
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Figure 4.30 Results for the first of the three frames in 4.29 with 200 points.  The support 
vectors appear as the red boxes or the larger black dots.  The red crosses and the smaller 
black dots are the interior points. 
 

 
Figure 4.31 Results for the first of the three frames in 4.29 with 500 points.  The support 
vectors appear as the red boxes or the larger black dots.  The red crosses and the smaller 
black dots are the interior points. 
 

 
Figure 4.32 Results for the first of the three frames in 4.29 with 1000 points.  The support 
vectors appear as the red boxes or the larger black dots.  The red crosses and the smaller 
black dots are the interior points. 
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Figure 4.33 Results for the second of the three frames in 4.29 with 200 points.  The 
support vectors appear as the red boxes or the larger black dots.  The red crosses and the 
smaller black dots are the interior points. 
 

 
Figure 4.34 Results for the second of the three frames in 4.29 with 500 points.  The 
support vectors appear as the red boxes or the larger black dots.  The red crosses and the 
smaller black dots are the interior points. 
 

 
Figure 4.34 Results for the second of the three frames in 4.29 with 1000 points.  The 
support vectors appear as the red boxes or the larger black dots.  The red crosses and the 
smaller black dots are the interior points. 
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Figure 4.35 Results for the third of the three frames in 4.29 with 200 points.  The support 
vectors appear as the red boxes or the larger black dots.  The red crosses and the smaller 
black dots are the interior points. 
 

 
Figure 4.36 Results for the third of the three frames in 4.29 with 500 points.  The support 
vectors appear as the red boxes or the larger black dots.  The red crosses and the smaller 
black dots are the interior points. 
 

 
Figure 4.37 Results for the third of the three frames in 4.29 with 1000 points.  The 
support vectors appear as the red boxes or the larger black dots.  The red crosses and the 
smaller black dots are the interior points. 
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In each of the three frames it is evident that there is a significant amount of 

variability in each of the representations derived from the data with 200 points.  In 

contrast, the representations derived from 500 and 1000 points were more consistent.  In 

addition to offering analysis of a time series, the three frames examined allow for 

discussion regarding SVMs ability to represent complex polygons.  The first of the 

polygons (first frame in Figure 4.29) is relatively simple with fewer irregularities. The 

third polygon is significantly more complex with narrow extensions protruding from the 

center of mass.  The SVM methods were able to capture the complexity in both the 

second and third polygons.  However, it does appear that the representation derived from 

the samples of 500 points provide a better approximation than those generated from 

samples with 1000 points.  It is thought that this is due to the consistent application of the 

formula for the bandwidth.  Adapting the method for the derivation of a bandwidth 

parameter may offer better approximations of the “ground truth” for more complex 

polygons.  As emphasized in other sections of this thesis, this remains a topic of research 

for SVMs, a consistent method for the derivation of a bandwidth was used to illustrate 

this point. 

Future research could examine other means for extracting an appropriate value for 

the bandwidth.  An iterative approach, resembling that taken by Ben-Hur et al. 2001 

where the number of polygons that result from the SVM are tracked in relation to the 

bandwidth.  In controlled settings, where a set of polygons are taken as a “ground truth,” 

these results could then be tested for their ability to represent the actual underlying event.  

Comparison between the SVM-produced and “ground truth” could be conducted using 

statistical methods such as the L2 error norm  
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௘௥௥௢௥ ௡௢௥௠ܮ 
ଶ ൌ ௔௥௘௔ሺሺைି௉ሻ׫ሺ௉ିைሻ

௔௥௘௔ሺைሻ
         (4.7) 

 

where O is the area of the “ground truth” polygon and P is the area of the test polygon 

derived from the SVM (Sadeq and Duckham, forthcoming).  Such testing could inform 

parameter selection. 
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Chapter 5 

CONCLUSIONS 

 

 With spatiotemporal analysis promising improved description of the 

behavior of phenomena, the development of methods capable of representing 

spatiotemporal behaviors has long been a research objective.  Recent advances in 

computational power have enabled the development of promising new approaches to 

spatiotemporal analysis.  Among these methods is the spatiotemporal helix which can 

describe movement and deformation of phenomena.  Initially designed for analysis of 

video sequences of images, the spatiotemporal helix was derived from series of areal 

extractions composed of groups of pixels. 

Many spatiotemporal data, however, occur in point form.  Given that analysis is 

not possible directly from point clouds, research efforts have framed spatiotemporal point 

data in terms of higher-level areal events that aggregate over lower-level point-based 

events.  Considering that these higher level events are in areal form, just as extractions of 

events from image data, they could serve as input into existing techniques for 

spatiotemporal analysis such as the spatiotemporal helix.  Given an emphasis on 

deformation behavior, at the crux of such an analytical effort would be the translation of 

groups of points into areal representations that accurately follow the distribution of 

points. 

The purpose of this thesis was to introduce two newly developed machine 

learning approaches that estimate the spatial extent of higher-level events from point 

data.  Support vector clustering (SVC), a technique for unsupervised learning, was 
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suggested as a means for deriving the areal extent for spatiotemporal point data.  Support 

vector machines (SVMs), a supervised learning method, is proposed for analysis of 

geosensor network data.  Both techniques rely upon kernel transformations to introduce 

non-linearity.  Being non-linear, these techniques are capable of producing 

representations that do not impose a shape a priori upon the representations of higher-

level events.   

The algorithms for each of these techniques were implemented and compared 

with KDE in terms of their intermediate results.  In the case of both SVC and SVMS, 

final results illustrated capability for producing representations that follow the 

distribution of lower-level event points.   While these highly non-linear representations 

avoid explicit bias in terms of shape, they are affected by implicit bias in the selection of 

parameter values.  In SVC, where only one class of data is considered (i.e., only lower-

level events) this form of bias may be severe.  The simulations showed representations 

that contained varying numbers of polygons as well as different shapes.  This variation 

may be sufficient to bias interpretations of spatiotemporal behavior.  Given that the 

geosensor network form of spatiotemporal data involves two classes of point-based 

events (i.e., events and non-events), the effects of parameter selection were less dramatic.  

The presence of points from the other class restricts the influence of parameters on the 

representation of higher-level events.  However, the results from the comparison of 

SVM-generated polygons against hypothetical “ground truth” polygons revealed that the 

potential for bias resulting from parameter selection remains an issue with SVMs.   

Future work using SVC and SVMs should be focused on the development of 

methods for the derivation of appropriate parameter values.  Again, with KDE being 
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similar to SVC and SVMs, some guidance may be obtained from existing research.  

Techniques such as asymptotic mean squared integrated error (AMISE) have already 

been applied in KDE (Waller and Gotway, 2004) and may offer potential for application 

with both SVC methods. A challenge in developing such techniques for point process 

data, however, is that clustering is largely a perceptual phenomenon whose true shape 

cannot be known (Kulldorff, 1997).  Depending on the application, different statistical 

tests of significance could be applied to SVC.  An example of such tests could be the 

likelihood ratio implemented by the scan statistic which could be used to help derive 

valid representations of clusters.   

With geosensor network data, experiments could be conducted that could guide 

the selection of appropriate parameter values.  For example, when analyzing the 

spatiotemporal behavior of air pollution SVM geosensor results for a given property 

could be compared to extractions from other data sources, such as remotely sensed 

images.  By comparing expected results from the image data with the results from the 

geosensor network, information regarding appropriate parameter values could be 

evaluated and improved.  Such analysis would complement that conducted in the last 

chapter of this thesis.  It is thought that iterative methods examining the effect of 

bandwidth selection on both the number of polygons and the number of support vectors 

could be particularly valuable.  In addition, further tests could be conducted with varying 

distributions of sensor nodes in order to see how the number and dispersal of sensors may 

affect results. 

This thesis work suggests great potential for the application of SVC and SVMs 

for spatiotemporal analysis.  The description of spatiotemporal behavior from point data 
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is relevant to a wide range of fields and the refinement of these techniques could be 

significant in enabling inferences describing spatiotemporal behaviors. 
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