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 In the practice of mapmaking, it is commonplace to represent many spatial 

phenomena as if they were in a different dimension than they truly are. In this context, it is 

extremely important to understand the total set of relationships available in a two-

dimensional setting. Currently, there exist many sets of relations in two dimensions that 

have been modeled by the 9-intersection matrix. Many of these sets of relations have 

defined conceptual neighborhood graphs that show the inherent topological similarities 

between different types of configurations. Many of these sets of relations, however, do not 

have established conceptual neighborhood graphs. Furthermore, a conceptual 

neighborhood graph does not exist for the entire set of relations in a two-dimensional 

setting, a result of particular importance when considering relationships on maps which do 

not necessarily precisely represent reality. 

 Through analyzing the 9-intersection matrix, a uniquely identifying labeling 

scheme is derived that takes away the semantic barriers of language. Its mapping function 



 

μ is found to be a bijective function. Through the values of μ, connection, negation, and 

converseness are defined and subsequently derived, culminating in a conceptual 

neighborhood graph of the power set of relations under μ. μ is formed under the conditions 

of a single-direction Hamming distance. 

 The definitions and theorems defining connection are then exploited to produce 

primitive conceptual neighborhood graphs for many sets of spatial relations. These 

primitive graphs serve as bases for conceptual neighborhood graphs, meaning that each of 

these connections derived must be found in any conceptual neighborhood graph modeling 

the topological deformations of translation, rotation, and scaling. This method, however, 

does not say that these are the only connections and shows that other connections are 

possible with restrictions upon the objects involved in the relations. In cases where the 

conceptual neighborhood graphs of sets of spatial relations with at least one object in co-

dimension 0, the method is shown to produce identical results to those that currently exist 

in the literature, providing concrete evidence for the viability of the method.  This method 

also shows a purpose for the perplexing Lakes of Wada topological example. 

 These conceptual neighborhood graphs are the first step to defining an overarching 

conceptual neighborhood graph that encompasses all relations in a two-dimensional 

embedding space. It is shown that of 218 possible pairs of relations between two sets of 

relations differing by exactly one dimension in one object, 160 of these pairs exist. This 

result suggests that the 9-intersection and the method utilized in this thesis may provide 

the necessary utility to construct a conceptual neighborhood graph which relates spatial 

relations from different dimensional constraints. 
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Chapter 1 

INTRODUCTION 

Fundamental to mapping systems is an ability to reduce many three-dimensional 

phenomena to corresponding two-dimensional representations, so that they can be 

portrayed in the plane or on a flat screen and distributed through contracts, books, maps, 

and other presentational media.  The predominant example of this reduction in dimension 

is the very surface of the Earth. Reduction of dimension at this level also occurs for objects 

such as buildings. This fundamental property of a map leads to many problems, however. 

Societal belief up until the time of Aristotle was that the Earth itself was flat, an 

assumption that colored the exploration and understanding of many geographical, 

astronomical, and other scientific facts that are known today. This belief of a flat Earth is 

understandable based on interaction with a small-scale space. We operate generically as if 

our Earth really were flat from a common sense perspective, but we still realize that the 

Earth truly is not flat (Egenhofer and Mark, 1995). Similarly, the process of dimensional 

reduction also occurs with two-dimensional objects being portrayed as one-dimensional 

objects to emphasize their relative width (i.e., roads and rivers in relation to political 

units). Two-dimensional objects are often times represented as points on a map to indicate 
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their relative size to other two dimensional objects (i.e., cities and towns in relation to 

states and countries). 

 

1.1 Real World Occurrences of Dimensional Reduction 

Waterways are one of the most common victims to the reduction of dimension. On a map 

of a state that contains the Penobscot River, the river is typically portrayed as a polyline 

(Figure 1b), because the width of the waterway is inconsequential to the user of the map. If 

we move down to a map of a town that contains the river, the river is typically portrayed as 

a region, possessing width. If there were a bridge over this gorge (Figure 1a), this map 

exhibits that the road has to cross the river and that the distance is not trivial. From the 

state-wide perspective, the river itself gets condensed into a polyline, reducing an 

inherently two-dimensional phenomenon into a one-dimensional one. 

 

 

 

 

 

 

     (a)            (b) 

Figure 1.1. The Penobscot River (a) from an observer’s perspective and (b) on a map of 

the state of Maine. 
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Methods of transportation are almost universally pictured as lines, because they are 

utilized for the purpose of displaying connectivity between objects of interest. 

Transportation inherently forms a network or a circuit on which people wish to move 

around. Roads essentially present an adjacency graph between spatial nodes of interest. 

Even when we restrict the spatial domain to very localized parameters, the roads still get 

represented by lines. If this representation were correct, traversing College Avenue every 

morning to go to class would be a much easier endeavor as the line itself has no width. 

Alas, this notion is not mirrored in reality. 

 

 

 

 

 

 

        (a)          (b) 

Figure 1.2.  The Trans-Canada Highway (a) from a car driver’s perspective and (b) on a 

map of Newfoundland. 

 

 Cities and towns, with a few notable exceptions, are always smaller than states and 

countries. When maps are made of states and countries, it is fairly commonplace to reduce 

the dimension of cities and towns from two dimensions (covering an area) to a single point 

representing a relative location amongst others. While, in terms of the map, the city or 

town is small, it is not necessarily small from the perspective of the person who has to 
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interact in that locale. Maps are often not presented in enough depth for us to see the 

depths of our travels. 

 

 

 

 

 

 

 

      (a)              (b) 

Figure 1.3. Orono, ME (a) from the air and (b) on a map of its surrounding area. 

 

 Representations like these examples are interpretable by humans, but it is not a 

trivial distinction. Quite frequently, we need more information than is necessarily given to 

us. Maps are built with the purpose in mind to relay as much information as is necessary 

for a specific purpose, with as little confusion as possible (Crone, 1953).   

There are numerous questions that need to be addressed about the reduction of 

dimension: 

• How similar are the spatial configurations that the reduction of dimension 

presents?  

• Is the reduction of this dimension trivial when compared to other types of 

geometrical changes that could happen between objects?  
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• Though we mentally bridge the gap between the representations, can we 

mathematically capture this relationship between the relations we tend to do this 

for: disjoint objects, contained objects, and overlapping objects?  

• Though quantifiable geometry will assert the differences in the configurations, can 

qualitative topology unlock some of the similarities present?  

• Are these similarities enough to suggest linking the representations together?  

• Can the imprecision of a dimensional reduction be mathematically shown to be a 

near neighbor of the reality of the situation? 

 

1.2  Topology 

There is a fundamental difference between geometry and topology. Geometry starts in the 

beginning of mathematics for purposes of answering the question of “how much” in the 

field of agriculture (Altshiller-Court, 1948). What the ancestral geometer did not realize 

was that this question ultimately reflects the notion of being enclosed, not the predefined 

shape and size of an object, allowing for slick computation. These problems all refer to a 

branch of mathematics where distance and shape do not matter. This branch of 

mathematics is an abstracted geometry which mathematicians have named topology. 

Topology is concerned merely with properties that are invariant under groups of 

continuous deformations. Topology was first used to solve the famous Konigsberg Bridges 

problem solved by Leonhard Euler (Adams and Franzosa, 2008). The conundrum of 

topology for a geometer is that not only can the topological properties of circles and 

squares (or any type of polygonal enclosure) be determined, but they are identical. By 

treating geographic objects topologically, a universal view can be obtained, which makes 
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talking about the boundaries of Bangor, Maine just the same as talking about the 

boundaries of Kyrgyzstan, a Central Asian nation. 

The study of formal models for spatial relations has occupied researchers in 

geographic information science for over 20 years (Clarke, 1981; Allen, 1983). Spatial 

relations address such issues as containment, connectivity, disjointness, orientation, and 

remoteness between spatial objects. Existing formal models of topological (Egenhofer and 

Franzosa, 1991), directional (Frank, 1991), and distance relations (Hernández et al., 1995) 

have become the underpinnings for the specification of terminology used in spatial query 

languages (Egenhofer, 1994), for spatial reasoning to enable spatial inference without the 

need for drawing graphical depictions (Egenhofer, 1994), for processing spatial queries 

that are sketched rather than formulated verbally (Egenhofer, 1994), and for advanced 

models of natural-language understanding of spatial predicates being used in everyday 

language to communicate about spatial configurations (Mark and Egenhofer 1995; Shariff 

et al., 1998). The foundations for the most popular models resort currently to two 

approaches that yield compatible results when the domains of the relations are subject to 

the same constraints. The Region Connection Calculus (Randell et al., 1992) is most 

popular in Artificial Intelligence, while the prevalent model used in geographic 

information systems and spatial databases is the 4-intersection (Egenhofer and Franzosa, 

1991) and its descendent, the 9-intersection (Egenhofer and Herring, 1993). 
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1.3 Motivation 

The motivation for the present investigation is dual in nature: 

• The first motivation comes from attempts to exploit the 9-intersection model 

beyond its initially targeted domain by applying the very model to spatial objects 

whose topological properties exceed the specifications of the initial domain, for 

instance by considering 9-intersection matrices for relations that include objects 

with separations of their interiors and exteriors (Schneider and Behr, 2006; Li, 

2006). Such extensions essentially expand the relations’ domains. With such 

relaxations come opportunities for identifying more relations than found for the 

more constrained sets, such as connected interiors and connected exteriors. If one 

starts to relax the domains’ constraints, are there further extensions that would need 

to be taken in order to exploit fully the opportunities offered by the 9-intersection 

framework, yielding potentially new undiscovered relations? 

• The second motivation stems from the need to adequately represent reality. 

Appropriate and concise models are needed for topological relations that reflect 

most closely the particular properties of the spatial objects taken into consideration. 

There is a good amount of similarity between two different types of real-world 

geographic objects. For instance, the footprints of two buildings and two lakes both 

occupy a certain spatial area on the surface of the Earth and that typically one 

lake’s footprint cannot be inside another lake’s footprint as cannot be one 

building’s footprint inside another building’s footprint. There may be semantic and 

geometric differences and limitations, however, with respect to a building and a 

lake being next to each other. The conventional approach to modeling both 
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configurations (and their possible relations) the same way may suggest that some 

of the critical ontological differences are not captured appropriately with current 

models of spatial relations. Therefore, a better understanding of what types of 

spatial configurations apply to what kind of properties of the objects’ domains 

would lead to better quality spatial models, and to better preservations of the 

particular semantics of spatial relations with respect to the objects’ ontologies. 

 

1.4 Approach 

In order to improve our understandings and constructions of models of spatial relations, 

this thesis investigates under what circumstances topological relations that can be inferred 

from the 9-intersection model can be realized. The 9-intersection with the content invariant 

of empty and non-empty intersections offers up to 512 different distinctions of topological 

relations, each connecting conceptually to nine other neighboring topological relations. 

While eight of the 512 are commonly used between two spatial regions (i.e., objects that 

are homeomorphic to closed disks) embedded in R2, 19 topological relations have been 

found between a simple line and a region (Egenhofer and Mark, 1995), and 33 between 

two simple lines, both also embedded in R2 (Egenhofer and Herring, 1993). Further 

relaxations, allowing for holes in regions or separations, yield more distinctions that can be 

made with the initial 9-intersection construction (Schneider and Behr, 2006), even if such 

distinctions are insufficient to capture some significantly different configurations with 

holes (Egenhofer and Vasardani, 2007). 
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 Part of the analysis of the 9-intersection matrices is an investigation of the potential 

for a conceptual neighborhood graph that links sets of topological relations from different 

dimensions. For instance, relating the mapping convention of a line crossing through a 

region (realized in mapping as a road going through a town) to the reality of a region 

crossing over another region (the actual road as seen by the observer standing near it) is a 

desirable spatial inference. Because spatial situations are so commonly obscured to 

different levels of dimension, it is imperative to have a conceptual neighborhood graph 

(Freksa, 1990) that will relate all displayable relations in a two-dimensional embedding 

space. A conceptual neighborhood graph shows the path by which objects can be 

deformed topologically to change their relation to another object. One particular type of 

conceptual neighborhood graph is an A-neighborhood, which shows how relations 

between objects can be transformed under the topological deformations of scaling, 

rotation, and translation (Egenhofer and Al-Taha, 1992).  Having this graph can provide 

numerous benefits: 

• Proper paths for retractions of objects which may need to be retracted at some time 

• Candidate paths for these retractions 

• Proper paths for the expansion of objects 

• Candidate paths for these expansions 

• Proper paths for simplification of holed or separated objects 

• Candidate paths for these simplifications 

• Proper paths for complication of regular objects 

• Candidate courses for these complications 
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To produce these paths and insights, it is necessary to produce a way to uniquely 

identify matrices that represent relations without basing it on the semantics of languages. 

Prototypes (Rosch, 1973) are often associated with languages and produce mental imagery 

that may be inherently misleading. Removing the semantic barrier of language gives us the 

freedom to produce exemplar groups that represent higher-level classes (Medin and 

Schaffer, 1978), then allowing us to see what these exemplars truly possess that is in 

common to all. These exemplars are necessary as they show the diversity of the spatial 

relations and also show the different types of paths that will be necessary to perform 

geometric and topological deformations.  

 This thesis will answer the following questions: 

• Can a labeling scheme be developed for 9-intersection matrices that is bijective, 

semantic-free, and has mathematical powers of inference for A-neighborhood 

connection? 

• Does the creation of A-neighborhoods for previously unanalyzed relations give us 

more understanding about the topological changes that happen in arbitrary objects? 

• Which particular spatial relations could serve as linkages for an integrated R2 

conceptual neighborhood graph, encompassing all relations between objects which 

can be embedded there? 

 To answer these questions, a unique addressing scheme for the 9-intersection 

matrices is derived that is free from the semantics of natural language. To avoid semantic 

concerns, a mathematical language must be derived. Using the connection architecture that 

is built to complement the addressing scheme, preliminary conceptual neighborhood 

graphs are derived for other sets of spatial relations which have been defined using the 9-
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intersection model. These conceptual neighborhood graphs will also be shown to be 

incomplete, lending to its definition as a basis generator.  This naming choice borrows 

from the topological notion of a basis set, the building blocks of all open sets, and thus the 

building blocks of a topology.  The addressing scheme is then utilized to show that certain 

matrices are recurrent in sets of spatial relations that do not necessarily share the same 

dimensions for their contributors. 

 

1.5 Major Results 

The work presented in this thesis shows that the semantic-free language has the power to 

uniquely identify 9-intersection matrices, is a bijective language, and has the power to 

produce converse matrices, negated matrices, and to explore the similarities between two 

separate matrices (and thus two separate spatial relations). Furthermore, the methodology 

employed defines a basis set that can be used to begin the explorations of not only 

particular sets of spatial relations, but also a set of spatial relations coming from different 

dimensional constraints. The work shows that 160 out of a potential 218 matrices, found in 

sets of relations, differ by one dimension in one object, suggesting the ability for an 

integrated framework of spatial relations in a particular embedding space. 

 

1.6 Intended Audience 

This thesis is intended for an audience versed in spatial reasoning. Such an audience can 

include, but is not limited to mathematicians, information scientists, cognitive 

psychologists, cartographers, geographers, and many others concerned with connectivity 

and object orientation. 
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1.7 Structure of Thesis 

The remainder of this thesis is structured as follows: Chapter 2 provides the topological 

background necessary to study spatial relations and the 9-intersection matrix and reviews 

relevant background literature concerning models of spatial relations and sets of relations 

defined under these models. Chapter 3 defines the alphabet of the semantic-free language, 

builds the inferential power, and constructs a graph of the power set of 9-intersection 

matrices. Chapter 4 creates basis sets for the conceptual neighborhood graphs of those 

sets defined in Chapter 2. Chapter 5 addresses the recurrence of spatial relations in 

different dimensional settings. Chapter 6 summarizes the work, comments on the major 

findings, and provides avenues for future work and study. 
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Chapter 2 

MODELS OF TOPOLOGICAL SPATIAL RELATIONS 

Engines and procedures for meaningful spatial inferences have been a cross-disciplinary 

pursuit for many years, which has ranged from computer science and mathematics to 

linguistics and cognition. This thesis is concerned more with the formal constructs that 

govern the inference of spatial relations.  Section 2.1 present relevant topological 

definitions and theorems, while Sections 2.2 and beyond present uses of these topological 

results in spatial reasoning.  

 

2.1 Topological Background 

This thesis assumes that the usual definitions of topology and neighborhood are 

understood by the reader and moves forward in presenting the topological definitions and 

theorems that underpin topological spatial relations.  If the reader wishes to refresh his or 

her memory, please consult (Alexandroff, 1961) or (Adams and Franzosa, 2008). 

 In this section, definitions and theorems are presented that define the concepts of 

open, closed, interior, closure, boundary, and exterior.  This section also presents 
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theorems that explicitly define properties of some of these concepts and also presents 

theorems that define membership within them.  

 

Theorem 2.1. Let X be a topological space and let A be a subset of X. Then A is open in X 

if and only if for each x ∈  A, there is a neighborhood O of x such that x ∈  O ⊂  A. 

 

 Theorem 2.1 states that A is open if there is a neighborhood inside A for every      

x∈A and also states that if A is open, then there is a neighborhood inside A for all of its 

points. In the geographic case, a set will be considered open if each point in the set as well 

as its arbitrarily immediate neighbors are contained in A. 

 The next concept that must be addressed is that of a closed set.  

 

Definition 2.2. A subset A of a topological space X is closed if the set X – A is open. 

 

 This definition of closed is simple, but it does not mean not open. In mathematical 

jargon, the two terms open and closed are not opposites at all. Recall that the empty set 

and the set X must be contained in a topological space X. Each set is open based on the 

definition of a topological space. Since each set is the other’s complement, each set is 

closed as well.  

Having created concepts for open and closed sets in a topological space X, it is now 

possible to consider specific open and closed sets in relation to arbitrarily chosen sets from 

X. These sets are called the interior and the closure, respectively. 
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Definition 2.3. Let A be a subset of a topological space X. The interior of A, denoted as 

Ao, is the union of all open sets contained in A. 

 

 Since all the parts of Ao are contained in A, it is obvious that Ao is smaller or equal 

to A. The interior is always an open set because it is the arbitrary union of open sets. Ao is 

the largest open set that is completely contained within A.  

 

Theorem 2.4. Let X be a topological space and let A and B be subsets of X. 

(i) If O is an open set in X and O ⊂  A, then O ⊂  Ao. 

(ii) If A ⊂  B, then Ao⊂  Bo. 

(iii) A is open if and only if A = Ao. 

(iv) Ao ∪  Bo  (A∪B)o, and in general equality does not hold. 

(v) Ao ∩ Bo = (A ∩ B)o. 

 

 Since the interior has been established, it is now possible to define which points 

belong to the interior. Membership in the interior is based on the existence of open set 

neighborhoods. 

 

Theorem 2.5. Let X be a topological space, A be a subset of X, and y be an element of X. 

Then y ∈  Ao if and only if there exists an open set O such that y ∈  O ⊂  A. 

 

Definition 2.6. Let A be a subset of a topological space X. The closure of A, denoted as A , 

is the intersection of all closed sets containing A. 
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 Since all the sets making up A  contain A, it is obvious from this definition that 

A is larger than or equal to A and explicitly contains A. Pairing this with the definition of 

interior, the following relationship can be expressed: Ao⊂  A ⊂  A . Since the closure is an 

intersection of closed sets, the closure itself is always a closed set. 

 

Theorem 2.7. Let X be a topological space and A and B be subsets of X. 

(i) If C is a closed set in X and A ⊂  C, then A  ⊂  C. 

(ii) If A⊂  B, then A ⊂  B . 

(iii) A is closed if and only if A = A . 

(iv) A  ∪  B  = )( BA∪ . 

(v) A  ∩ B ⊃ )( BA∩ . 

 

 Since the closure and some of its properties have been introduced, it is possible to 

now define membership in the closure. Membership in the closure is defined through the 

concept of neighborhood. 

 

Theorem 2.8. Let X be a topological space, A be a subset of X, and y be an element of X. 

Then y ∈  A  if and only if every open set containing y intersects A. 

 

 To express this theorem in terms of neighborhoods, every neighborhood of y 

contains part of the set A. If y is a point in a town or a point at the edge of town, every 

neighborhood of y can be found to have a piece of town A in it. 
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Definition 2.9. Let A be a subset of X. The set X – A  is known as the exterior of A, 

denoted by A—. 

 

 Membership in the exterior is exactly like membership in the interior, because the 

exterior is an open set, exactly like the interior is an open set. Since the interior and 

exterior of an object have been defined, it is now possible to discuss the boundary, which 

separates interior from exterior. 

 

Definition 2.10. Let A be a subset of a topological space X. The boundary of A, denoted 

∂A, is the set ∂A = A  – Ao. 

 

 Now that the boundary has been established, relevant properties of the boundary 

can be established. 

 

Theorem 2.11. Let A be a subset of a topological space X. Then the following statements 

about the boundary of A hold: 

(i) ∂A is closed. 

(ii) ∂A = A  ∩ AX − . 

(iii) ∂A ∩ Ao =ϕ . 

(iv) ∂A U Ao = A . 

(v) ∂A ⊂  A if and only if A is closed. 

(vi) ∂A ∩ A = ϕ  if and only if A is open. 

(vii) ∂A = ϕ  if and only if A is both open and closed. 
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 Since the properties of the boundary have been defined, membership in the 

boundary can be explicitly defined. 

 

Theorem 2.12. Let A be a subset of a topological space X and x be a point in X. Then x ∈  

∂A if and only if every neighborhood of x intersects both A and X – A. 

 

 The three relevant geographic concepts (interior, exterior, and boundary) have been 

explicitly defined in a topological space for their definition, properties, and membership.  

With these concepts in mind, the thesis moves forward to discuss applications of these 

three fundamental concepts in spatial reasoning. While the quest for spatial relationships 

interpretable by a computer system began with Kuipers’ TOUR model (Kuipers, 1978), we 

start with the Region Connection Calculus as the foundation for the sets of relations of 

pertinence to this thesis.   

 

2.2 Region Connection Calculus 

Clarke’s connection calculus, which is centered upon the statement of CX,Y, which should 

be read as “X is connected to Y” (Clarke 1981). Based solely on this notion of connection 

and the Boolean operators, Clarke defined a sequence of terms and theorems that laid the 

foundations for what is now called the Region Connection Calculus or RCC            

(Randell et al., 1992). RCC forms 14 logical relations between objects based on the 

definitions found in Clarke’s connection calculus, yielding a topologically based language; 

not a language based on geometry. This calculus, however, does not concern itself with 

topological constraints. For example, it does not deal with the classification of line 
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extremities stemming from an object, such as a river that stretches out from a lake. Since 

RCC is based fundamentally upon connection and disconnection, it is checking for points 

that satisfy conditions rather than full pieces or components of regions or lines. It is clear 

that another model is needed that pays attention to the pieces of the object on a topological 

level. The benefit of these relations is clear in that they are quickly derivable by axiomatic 

facts. 

 

2.3  4-Intersection 

A competing method for spatial relations is based on a point-set topological view. Point-

set topology is governed by the concepts introduced in Chapter 2. Egenhofer and Franzosa 

(1991) define a four-tuple intersection value that relates the interplay of the interior and 

boundary of one region with the interior and boundary of another region. This four-tuple 

intersection value was quickly converted into a matrix form, called the 4-intersection 

matrix (Egenhofer and Herring, 1990). Egenhofer and Franzosa (1991) showed that all 16 

possible values with empty and non-empty intersections are realizable, but only eight are 

realizable by regularly closed spatial regions. These regions are all closed sets in the 

standard topology on the plane. 

 The 4-intersection, however, lacks information that is necessary when the interplay 

of regions and lines is considered. To topologically characterize lines, Egenhofer (1993) 

employed constructs from algebraic topology. Lines are closed sets in the standard 

topology on R2 with the added distinction that it has no interior. With the algebraic-

topology definition for line components, however, the objects can be compared. It turns 

out that the 4-intersection matrix is not powerful enough and therefore additional object 
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component has to be considered: the exterior (Definition 2.9). To do this, the                    

4-intersection matrix grew into the 9-intersection matrix.  

 

2.4  9-Intersection 

For simple spatial regions, the 9-intersection matrix identifies the same relations as the 4-

intersection (Egenhofer et al., 1993), thus making it a viable alternative. Between a region 

and a line, the 9-intersection identifies 19 relations (Egenhofer and Mark, 1995). This total 

is greater than the 16 possibilities available in the 4-intersection. For line-line relations a 

total of 33 plausible combinations between two simple lines are identified (Egenhofer, 

1993). These initial derivations from the 9-intersection were only done for simple objects, 

namely connected regions and simple lines. The ability to have separations in regions was 

considered later in many different contexts, which will now be detailed further. 

  

2.5 Extensions of the 9-intersection 

These extensions of the 9-intersection show definitively that there are realizable objects 

that exist but do not follow the constructs of simple objects. Every archipelago is evidence 

to the ability to separate an object. Every island in a lake represents the ability to have a 

hole in an object. When plotting the trajectory of a canoe river trip around a waterfall, the 

line representing the path that the canoe is paddled down has a separation in it. These types 

of objects are considered non-simple, or in the language of the field, complex. 

Using the 9-intersection, Schneider and Behr (2006) defined 33 possible 

topological relations between two potentially complex regions, 82 between two potentially 

complex lines, and 43 relations between a potentially complex region and a potentially 
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complex line. Complexity in regions and lines includes the allowance for separations 

and/or holes in the objects. Li (2006) defined 43 possible topological relations between 

two potentially complex regions. These 43 relations include a set of region relations that 

exhaust the entire embedding space and five exotic relations built from objects having 

coincident boundaries.  All of the Li relations are named based on the RCC relation that it 

belongs to, plus an arbitrary number to distinguish them apart.  As an example, meet 

corresponds to EC5 in this set of relations. 

 Regions with holes have also been considered much more recently. Egenhofer and 

Vasardani (2007) derived 23 possible relations between a hole-free region and a single-

holed region and connected them into a conceptual neighborhood graph. Kurata (2008) has 

also extended the 9-intersection matrix by splitting boundary and exterior information into 

separate components based on having disconnected subsets (i.e., a hole or a separation 

exists in the objects). 

 

2.6  Lakes of Wada 

The relations that Li (2006) defined as exotics are directly connected to an important 

mathematical result from the Dutch mathematician Brouwer, who found that there exist k 

regions in R2 that share identical boundaries, are disjoint, and together with their 

boundaries exhaust their embedding space. Obviously a disc-like region and its 

complement accomplish this phenomenon, but this assertion claims that there are 

objects—other than the complement—that satisfy these conditions. 

 Yoneyama (1917) provides an example of how this topological conundrum can be 

realized in a realistic geographic setting through the use of an infinite series of 
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deformations. His result is known as the Lakes of Wada, named for his teacher Takeo 

Wada. They are constructed as follows: place an arbitrary number of lakes of different 

fluids on an island. The goal is to get each type of fluid (k in number) within an arbitrary 

distance of each point of dry land on this island. Recall from the definition of boundary 

that a point is on the boundary if every neighborhood of that point contains points from 

both A and A-. To get each fluid to each point, the residents dig canals to get one fluid 

within a specified distance so that the island is still one island (i.e., not divided by the 

fluids). The same process is repeated for the next fluid with a smaller specified distance. 

The process continues in this way through infinitely many iterations. Eventually the dry 

land is reduced to boundary by the diggers, leaving only isolated fluids separated by an 

arbitrarily thin boundary, all within an arbitrarily small distance of each other. The objects 

can never be drawn totally because of the infinite series, but they can be approximated to 

exhibit the structures inherent in such a claim.  Such regions are said to exhibit the Wada 

property. 

 

2.7  Conceptual Neighborhood Graphs 

Conceptual neighborhood graphs are connected nodes that show the paths possible 

between relations. Freksa (1992) laid out three definitions of conceptual neighborhood 

graphs for relations between one-dimensional intervals that have become the foundational 

principles of these graphs. Freksa constructs a conceptual neighborhood graph for the 

temporal interval relations proposed by Allen (1983). These definitions are: 

• Two relations are conceptual neighbors if a direct transition from one relation to 

the other can occur upon an arbitrarily small change in the referenced domain. 
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• A set of relations form a conceptual neighborhood when they are connected 

through conceptual neighbor-relations. 

• Incomplete knowledge is called “coarse knowledge” if the referred entities belong 

to the same conceptual neighborhood on the basis of complete knowledge. 

 Conceptual neighborhood graphs have been employed in many different sets of 

relations. The most notable conceptual neighborhood graphs come from the simple-region 

relations (Egenhofer and Al-Taha 1992), line-line relations (Reis et al. 2008), region-line 

and line-region relations (Egenhofer and Mark 1995), and the region-region relations on 

the sphere (Egenhofer 2005). These conceptual neighborhood graphs provide relevant 

information for crossing the divides between relations such as disjoint and meet. 

 Conceptual neighborhood graphs are not always consistent, though. There are 

different concepts of neighborhoods that can be formed and are relevant. For example, 

there are three neighborhoods for the eight topological region-region relations (Figure 2.1). 

 

 

 

 

 

         (a)                     (b)                       (c) 

Figure 2.1. A-, B-, and C-Neighborhoods of the eight topological region-region relations 
(Gooday and Cohn, 1994). 
  

Each of the neighborhood graphs shows the relationships between relations under a 

certain deformation (Freksa, 1992). The A-neighborhood (Figure 2.1a) shows the path 
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between objects under the deformations of scaling, rotation, and translation; the B-

neighborhood (Figure 2.1b) shows the path between objects under the deformations of 

shape, size, and orientation (Egenhofer and Al-Taha 1992); and the C-neighborhood 

(Figure 2.1c) shows the path between objects under isometric deformation. The A-

neighborhood is the predominant neighborhood discussed in applications as the types of 

changes considered have the least dependency on the objects involved in the relations. 

 

2.8  Hamming Distances 

An important capacity of many data-entry systems is its ability to check for and correct 

errors. In this light, a measure of distance between two equal-length data entries was 

developed in 1950 to assist in the error detection and correction process. This distance is 

known as the Hamming distance (Hamming, 1950). It is computed by comparing each 

individual symbol between two character strings of equal cardinality. For each difference 

in corresponding symbols, a value of 1 is assessed. If the symbols are equal, no distance is 

recorded. The Hamming distance forms a metric space, satisfying the metric properties of 

identity, symmetry, and the triangle inequality. 

 An example of an application of Hamming distances can be found in contemporary 

word processors, which notice common-place misspellings that result from mistyping a 

small number of characters. Levenshtein distances (Levenshtein, 1966) are an extension to 

the Hamming distance, accounting for added characters, omitted characters, or swapped 

characters. 
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2.9  Summary 

Throughout this chapter, models of spatial relations and different concepts for assessing 

similarities have been addressed. Currently, many of the established sets of spatial 

relations do not have conceptual neighborhood graphs, results which are necessary for 

effective spatial inferences.  The concept of a Hamming distance has been used to correct 

and detect errors in word processors and other interfaces, but it may prove to have more 

functionality when used in different contexts. 
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Chapter 3 

AN ADDRESSING SCHEME FOR 9-INTERSECTION RELATIONS 

This chapter develops a consistent numerical addressing scheme for 9-intersection 

matrices (Figure 3.1). To date, 9-intersection relations have been represented either by      

3 x 3 matrices of empty and non-empty values, or by uniquely identifying semantic labels, 

such as disjoint or covers. The intent is to obtain a reference model that allows for 

numerical inferences of connections between matrices, unlocking the door to cross-type 

conceptual neighborhood graphs (e.g., linking a line-region conceptual neighborhood 

graph to the corresponding region-region conceptual neighborhood graph). Definitions and 

theorems are provided to allow for formal inferences based solely on the address of the 

matrix, making the visualization and the origin of the matrix purely complementary. 

 

 

Figure 3.1. Structure of the 9-intersection matrix. 

 Bo ∂B B- 

Ao    

∂A    

A-    
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3.1 Properties of a 9-Intersection Addressing Scheme 

The 9-intersection matrix is a symbolic representation of binary topological relations 

between spatial objects considering the objects’ interiors, boundaries, and exteriors. These 

labels have been primarily in the form of natural-language like terms (as in the case for the 

eight region-region relations in R2 or the eleven region-region relations on the sphere) in 

order to simplify memorizing them. For other sets of relations based on the 9-intersection, 

a sequential numbering of the relevant subset of relations has been a popular choice—for 

line-line relations (Egenhofer, 1993), for line-region relations (Egenhofer and Mark, 

1995), for region-region relations with broad boundaries (Clementini and di Felice, 1996), 

for topological relations between complex spatial objects (Schneider and Behr 2006), and 

for broad-boundary line-line relations (Reis et al., 2008). All labeling schemes result in 

labels that are essentially on a nominal scale (as the sequential ordering exposes no 

particular meaning among the relations), which prevents a unique and consistent mapping 

from a label onto the corresponding 9-intersection. Unlike the matrix representation, the 

nominal labels also lack the support to infer any algebraic properties of the relations (such 

as symmetry and converseness). 

As the interest shifts into exploring the entire range of 9-intersection matrices with 

respect to their pertinence in different settings for different specifications of spatial 

objects, a consistent globally applicable addressing scheme is required.  

The desiderata for a consistent labeling scheme are as follows: 

• It should be applicable to all 512 empty/non-empty matrices that the 9-intersection 

distinguishes. 
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• The mapping (μ) from a 9-intersection matrix onto a topological relation label must be 

unique so that no two different matrices map onto the same label. 

• There should exist an inverse mapping (μ-1) from a topological relation label onto a 9-

intersection matrix. 

• The inverse mapping must produce unique 9-intersection matrices (i.e., no matrix 

inferred from two different labels must be the same). 

• μ-1(μ(9-intersection matrix)) = 9-intersection matrix and μ(μ-1(topological relation 

label)) = topological relation label. 

• The labels should be such that the relations’ algebraic properties (symmetry, 

converseness) can be inferred from the labels. 

• The algebraic properties inferred from the labels much be the same as the algebraic 

properties inferred form their corresponding 9-intersection matrices. 

 

 

Figure 3.2. The mappings µand µ-1 in relation to their analyses and algebraic properties. 
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 Another two constraints put these desiderata into a more constrained framework:  

• The mappings are complete if all algebraic properties that can be derived from the 9-

interesection matrices can be derived from the topological-relation labels as well. 

• The mapping are consistent if all algebraic properties derived from the 9-interesection 

matrices are the identical to those derived from the topological-relation labels. 

 

3.2 Binary Numbers and Connectedness 

Each cell in the 9-intersection matrix can have one of two values: 0 representing an empty 

intersection and 1 representing a non-empty intersection between the specified topological 

parts of A and B. It is desirable to have a single number associated with each matrix that 

would uniquely identify it. Since each cell has a value of either 0 or 1, it is possible to 

produce a binary coding of this matrix by appending the 0s and 1s into a binary digit string 

in some explicit order and then converting this binary digit string into its corresponding 

decimal form.  

 To obtain such a framework, we must start with defining the alphabet of our 

formal language. This alphabet is structured based on the notion of binary notations.  A 

similar method has been attempted for 3D relations (Jun and Xiaolin, 2008), but the full 

powers of which have not been explored.  

 

Definition 3.2.1. The binary notation βK of an integer K is composed by successively 

dividing K by 2 and recording the remainder from right to left.  

 

 To exhibit Definition 3.2.1, the binary notation of 44 (Table 3.1) is considered. 
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Table 3.1. Binary decomposition of 44, yielding 101100 by concatenation of remainders 

Number Quotient (Number/2) Remainder 

44 22 0 

22 11 0 

11 5 1 

5 2 1 

2 1 0 

1 0 1 

 

 The binary notation of an integer is order-dependent in just the same way as the 

decimal notation of an integer is order-dependent. Instead of multiplying each digit by the 

corresponding power of 10 from right to left and then adding them together to produce the 

number, we multiply each digit by the corresponding power of 2 from right to left and then 

adding them together. 

 

Theorem 3.2.2.  

 

 Theorem 3.2.2 essentially states that no power of 2 can be expressed explicitly as 

the sum of distinct powers of 2. The consequence of Theorem 3.2.2 allows for the 

assertion that the binary notation of an integer K is unique. Since βK is unique for every 

integer K, we have a viable alphabet for our formal language through the concept of binary 

notations. With this assertion in place, we now affix a labeling to the class of 9-

intersection matrices. We restrict the domain of interest. Since the consideration is the 9-
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intersection matrix from Figure 3.1, the domain is restricted to capture only enough labels 

for a one-to-one and onto correspondence, thus ensuring the existence of an inverse 

function µ-1. All of these concepts would apply for any domain set, but for ease of 

statement and the existence of an inverse function, we choose to restrict the domain. 

 

Definition 3.2.3. A label for a 9-intersection matrix, denoted as λ, is a member of the set 

{0, 1, 2, … , 511}. The set of all such labels λ is denoted as Λ. 

 

With a label set in place, the next step is to define the notion of connection. In 

order to produce conceptual neighborhood graphs of immediate neighbor relations, it is 

critical to identify methods that link the addresses that are formed under this alphabet of 

binary notation. This goal results in studying the subset connectivity of these ordered 

binary notation sets. 

 

Definition 3.2.4. Λ∈1λ is connected from above to Λ∈2λ if m221 =− λλ  and the mth 

member of 
1λ

β  = 1. Λ∈1λ  is connected from below to Λ∈2λ  if m212 =− λλ  and the 

mth member of 
2λ

β  = 1. If either of these relations holds between 1λ  and 2λ , 1λ  and 2λ  

are said to be connected. 

 

 This definition of connected from above implies that 1λ  is not connected from 

above to itself and that 1λ  > 2λ . Likewise, connected from below implies that 1λ  is not 

connected to itself and 1λ  < 2λ . An example of two numbers that are connected from 
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above is 1λ  = 63 and 2λ  = 31. Converting them to 9-digit binary notations, 63 = 

{0,0,0,1,1,1,1,1,1} while 31 = {0,0,0,0,1,1,1,1,1} where m = 5. An example of two 

numbers connected from below is 1λ  = 14 and 2λ  = 15. Using their 9-digit binary 

notations, 14 = {0,0,0,0,0,1,1,1,0} while 15 = {0,0,0,0,0,1,1,1,1}, where m = 0. The 

visualization of these binary notations shows a specific result that is presented as Theorem 

3.2.5. 

 

Theorem 3.2.5. If λ1 and λ2 are connected, then for exactly one m, the mth member of their 

binary representations differ for exactly one m. 

 

Proof: If λ1 and λ2 are connected, then they are either connected from above or connected 

from below. If they are connected from above, λ1 – λ2 = 2m, and mth member of 
1λ

β  = 1. 

Since 2m is a power of 2, changing this 1 to a 0 converts λ1 into λ2 directly. If they are 

connected from below, λ2 – λ1 = 2m, and mth member of 
2λ

β = 1. Since 2m is a power of 2, 

changing this 1 to a 0 converts λ2 into λ1 directly.                       ■ 

 

By Theorem 3.2.5, neighboring labels have been defined by having binary 

notations that differ in exactly one member, namely the mth members of each β. The mth 

member of a binary notation is the mth power of 2 considered in the binary notation (which 

reads right-to-left). This definition of connection represents a Hamming distance 

(Hamming, 1950) between the binary representations of the labels of exactly 1. 

 We have established connectivity by a means of the binary notation of the subsets 

via the Hamming distance calculation. This relationship can now be translated back into a 
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numerical form that does not fulfill the same Hamming distance qualities.  While this step 

of conversion is not necessary, it provides the ability for a shorter notation and more 

generalized form for non-mathematical users. 

 

Theorem 3.2.6. Let λ ∈  Λ be arbitrary. Let J = 2n such that J ≤ λ and 2J > λ. Let I = 2m 

such that J < I < 512. Label λ is connected to label λ + I for all I. 

 

Proof: Since λ < I, βλ(m) = 0. Since I is a power of 2, A must be connected from below to λ 

+ I because (λ + I) – λ = 2m. Thus λ is connected to λ + I.                          ■ 

 

Theorem 3.2.7. Let λ ∈  Λ be arbitrary. Let J = 2m such that J ≤ λ and 2J > λ. Label λ is 

connected to label λ – J. 

 

Proof: Since λ – (λ – J) = J, λ is connected from above to λ – J (Definition 4.1.4). Thus λ is 

connected to λ – J.                                ■ 

 

Theorem 3.2.8.  Let λ ∈  Λ be arbitrary. Let J = 2n such that J ≤ λ and 2J > λ. Let I = λ – J 

and G be connected from below to I. Let F = J + G. Then label λ is connected to label F. 

 

Proof: Since I = λ – J, λ – I = J algebraically. Because J is a power of 2, λ is connected 

from above to I. Since G is connected from below to I, I – G = 2m. From Theorem 4.1.2, It 

is known that both λ and F are unique sums of powers of 2. To prove the theorem, it must 

be shown that the mth member of Bλ = 1 and that λ – F = 2m. Since I – G = 2m, the mth 
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member of BI = 1. I is connected to λ and λ > I, so the mth member of λ is also 1. Because    

λ – F = I – G = 2m, the mth member of F must also be 0.                          ■ 

 

 Now that connectivity has been established, it is possible to move on to special 

matrix relations. 

 

3.3 Binary Numbers for 9-Intersection Matrices 

This section presents the application of the theorems and definitions presented in Section 

3.2. The addressing scheme is concretely assigned, allowing for the definition of a 

negation of a topological relation and a converse of a topological relation. Using the 

connection theorems from Section 3.2, we construct a conceptual neighborhood graph for 

the power set of the 9-intersection matrix. 

 The negation of a matrix represents the matrix with a Hamming distance of exactly 

9. This statement implies that each entry in the matrix must be reversed. From this 

construction, we derive Theorem 3.3.1. 

 

Theorem 3.3.1. The negation η(λ) has label 511 – λ. 

 

Proof: If we add the binary notations of λ and η(λ), we obtain 111111111.  Converting this 

binary number to decimal notation, we obtain 511.  Thus η(λ) = 511 – λ.                            ■ 

 

 The next result of importance is the converse relation matrix, which transposes two 

spatial objects A and B. The effect upon the 9-intersection matrix can be seen in Figure 
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3.3, where cells of the same shading have the same values in both the matrix and its 

converse. 

 

 Bo ∂B B- 

Ao a b C 

∂A d e F 

A- g h I 
   

(a)              (b) 

Figure 3.3. Comparison of 9-intersection matrices: (a) a 9-intersection matrix and (b) its 

converse. Cells with identical letters represent identical information. 

 

 Part of imposing a numeric addressing system is to have a predictable converse 

based solely on the label of the original matrix (Section 3.1). There are many ways for a 

function to be predictable. The two major routes for this goal are to have a specific 

algebraic equation that models the entire space or to have a repeating periodic sequence 

that represents the process explicitly. Considering the structure that is apparent in the 

converse of any matrix (including a 9-intersection matrix), a periodic sequence is far more 

likely to occur. Three cells in the matrix—those on the main diagonal—maintain the same 

values in both the matrix and the matrix of the converse relation. This result is intuitively 

periodic if the cells are associated with the correct powers of 2. 

 This instance is the first time where the address of the particular cell matters in the 

theorem set. In defining functions, a smaller period is conceptually easier to understand 

than a larger period, so the smallest binary units are used to construct the cells affected by 

 Bo ∂B B- 

Ao a d g 

∂A b e h 

A- c f i 
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the converse relation. This choice minimizes the period. If the cell addresses are chosen in 

a proper way, a predictable periodic function may result. A 1 x 9 slot array, each slot 

numbered ascending with an integer from [0,8], is used to maintain the positioning. 

 

Definition 3.3.2. The converse additive, denoted by Γ(λ), is λ – the label of its converse. 

 

 The diagonal cells of the 9-intersection matrix are placed arbitrarily in the 7th, 8th, 

and 9th slots of the array. The ordering selected for these three is ultimately 

inconsequential so long as consistency is maintained, because the diagonal is not affected 

under the converse operation. We select exterior-exterior to occupy slot 7, boundary-

boundary to occupy slot 8, and interior-interior slot 9. Using this configuration, the 

smallest binary powers are reserved for the cells that are affected by the converse 

operation. 

 

Theorem 3.3.3. Γ(λ) is a periodic function with a maximum period length of 64. 

 

Proof: Because the diagonal members of the matrix remain constant under the converse 

relation, the diagonal measures are present in both the original matrix and the converse 

relation. Let R be the set of diagonal entry in the matrix with label λ. Let S be the label of 

the matrix only containing R. Then λ = S + Z with   0 ≤ Z ≤ 63. Let T be the label of the 

converse of λ.  T = λ – Γ(λ) = S + Z – Γ(λ). The sum S can be cancelled without affecting 

the function as it is in common with both T and λ. Thus Γ(λ) is a periodic function. Since Z 

can take on 64 possible values, the function has a maximum period length of 64.              ■ 
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 Selecting values that differ by one across the diagonal (i.e., boundary-interior and 

interior-boundary) makes the function most predictable as there is a systematic difference 

between cells transposed under converse. Using the conventions of this one-difference and 

the largest values being placed on the diagonal, all cells can now be addressed with their 

respective placeholders. Figure 3.4 shows the positioning in the slot array by placing the 

number in the cell of the 9-intersection matrix. The values of Γ(λ) are computed for the 

first period and are given numerically in Table 3.2 and graphically in Figure 3.5. 

 

 

 

 

 

Figure 3.4. 9-Intersection matrix imposed with the cell positions within the slot array.  

 

 

 

 

 

 

 

 

 

 

 Bo ∂B B- 

Ao 8 2 0 

∂A 3 7 4 

A- 1 5 6 
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Table 3.2.   λ (mod 64) related to Γ(λ) 

λ Γ(λ) λ Γ(λ) λ Γ(λ) λ Γ(λ) 

0 0 16 -16 32 16 48 0 

1 -1 17 -17 33 15 49 -1 

2 1 18 -15 34 17 50 1 

3 0 19 -16 35 16 51 0 

4 -4 20 -20 36 12 52 -4 

5 -5 21 -21 37 11 53 -5 

6 -3 22 -19 38 13 54 -3 

7 -4 23 -20 39 12 55 -4 

8 4 24 -12 40 20 56 4 

9 3 25 -13 41 19 57 3 

10 5 26 -11 42 21 58 5 

11 4 27 -12 43 20 59 4 

12 0 28 -16 44 16 60 0 

13 -1 29 -17 45 15 61 -1 

14 1 30 -15 46 17 62 1 

15 0 31 -16 47 16 63 0 
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Figure 3.5. Graph of the first period of Γ(λ). 

 

 Now consider the region-region relations. To exhibit the functionality of this 

numbering scheme, the region relations have their matrices, converse matrices, and 

connected matrices identified via the constructs of this chapter. Table 3.3 represents the 

values of λ corresponding to region-region relations. These values are taken and placed 

through the theorems and definitions presented to establish the connections and converse 

matrices. 

 

 

 

 

 

 

 

 

Γ(λ) mod 64 
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Table 3.3. Binary codings of the eight region-region relations 

disjoint 115 

meet 243 

overlap 511 

equal 448 

contains 341 

covers 469 

inside 362 

coveredBy 490 

 

 The accuracy of the theorems can be checked by passing through the connections 

from the A-neighborhood of the region-region relations (Egenhofer and Al-Taha, 1992). In 

this conceptual neighborhood graph (Figure 2.1a), disjoint connects to meet, meet connects 

to overlap, overlap connects to covers, overlap connects to coveredBy, covers connects to 

contains, covers connects to equal, coveredBy connects to equal, and coveredBy connects 

to inside. The theory should preserve all of these connections to be accurate. Each of these 

relations is evaluated one by one. The results of this evaluation are presented as Table 3.4. 

 

 

 

 

 

 



 41

Table 3.4.  A-Neighborhood connections evaluated through connection theorems 

Relation 1 
Label of 

Relation 1 
Relation 2

Label of 

Relation 2
Connection 

Connected by 

Theorem 4.2.4 

disjoint 115 meet 243 direct below 

meet 243 overlap 511 indirect through 251 (below) 

and 255 (below) 

overlap 511 covers 469 indirect through 479 (above) 

and 471 (above) 

overlap 511 coveredBy 490 indirect through 495 (above) 

and 491 (above) 

covers 469 contains 341 direct above 

covers 469 equal 448 indirect through 468 (above) 

and 452 (above) 

coveredBy 490 inside 362 direct above 

coveredBy 490 equal 448 indirect through 482 (above) 

and 450 (above) 

 

These results show that a single direction linkage exists for all eight region-region 

relations. It also shows, however, that this linkage sometimes has a Hamming distance  

> 1. This result has happened because a subset of the power set of 9-intersection matrices 

was considered. Since only eight relations are realizable between two simple regions and 

there are only matrices that contain 3, 5, 6, and 9 non-empty intersections, it impossible for 

these relations to be directly connected under this method of defining connection. 
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3.4 Graph Generation of the 9-Intersection Addressing Scheme 

Since the label space Λ is larger than the set of region-region relations, it is often the case 

that for a particular label there does not exist a corresponding region-region relation. For 

example, the label 411 does not exist in the set of region-region relations, but the label 490 

exists (for coveredBy). Thus we are now considering a subset of all the relations for which 

we need to find connectivity. It then makes sense that connection in a subset should not 

necessarily be restrictively linked to a Hamming distance of 1. Conceptual neighborhood 

graphs need the capacity to link all member relations, not just those that happen to have a 

Hamming distance of 1. This requires the development of subset connectivity. 

 Subset connectivity refers to the aggregation of the smaller connections that exist 

between different relational labels. It becomes the vehicle for linking such relations as 

overlap and meet, which have a Hamming distance of 3. To define this notion of subset 

connectivity, we must first have a graph of all the connections present in the label set Λ. 

From this graph, we then define the concept of path and the concept of shortest path. 

 

Definition 3.4.1.  λ is represented by a node in the neighborhood graph of matrices. 

 

Definition 3.4.2. Let 1λ  and 2λ  be labels such that 1λ is connected to 2λ . The segment 

[ 1λ , 2λ ] is an edge in the graph of matrix relations. 

 

 Definitions 3.4.1 and 3.4.2 lead to a graph of all relations and their connected 

labels. 



 43

Definition 3.4.3. Let G be a graph with nodes connected by edges. A path P is an ordered 

sequence of distinct connected nodes linked by distinct connected edges of G. 

 

 An example path extends from the empty relation (with all empty entries) to 

overlap (all non-empty entries). This path requires iteratively adding each cell to the 

matrix; therefore, the path of labels {0, 1, 3, 7, 15, 31, 63, 127, 255, 511} is one of many 

possible paths from the empty relation to overlap.  

 

Definition 3.4.4. Define P as the shortest path from 1λ  to 2λ  if the Hamming distance 

between 1λ  and 2λ  is minimized, considering all possible paths from 1λ  to 2λ . 

 

Definition 3.4.5. Let 1λ and 2λ be labels and X be a subset containing 1λ and 2λ . 1λ is 

connected to 2λ in X if all shortest paths from 1λ to 2λ pass through at least one label from 

the complement of the subset X or if 1λ is connected to 2λ via definition. 

 

3.4.1 Region-Region Relations 

Using Definitions 3.4.3 through 3.4.5, the connections exhibited in the eight region-region 

relations subset are established (Table 3.5). This table produces the A-neighborhood of a 

conceptual neighborhood graph. 
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Table 3.5. Connected labels in the region-region subset 

disjoint (115) meet (243) 

meet (243) disjoint (115), overlap (511) 

overlap (511) meet (243), covers (469), coveredBy (490) 

equal (448) covers (469), coveredBy (490) 

contains (341) covers (469) 

covers (469) contains (341), equal (448), overlap (511) 

inside (362) coveredBy (490) 

coveredBy (490) inside (362), equal (448), overlap (511) 

 

 The negated relations for the eight region-region relations (Table 3.6) are absent 

from the region-region relations subset. This omission makes perfect sense as the objects 

in each relation must have every opposite value in the cell. If this were possible, then there 

must be a relation which does not contain the exterior-exterior intersection.  Negation of 

these relations thus implies that none of the objects forming the relations may have 

coincident exteriors. If the relations cannot have coincident exteriors, they either have no 

exteriors at all or the interior and boundary of one set exhaust the exterior of the other set. 

Either way, these relations do not exist in the defined region-region relations. 
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Table 3.6. Labels of the eight region-region relation negations 

disjoint (115) 396 

meet (243) 268 

overlap (511)   0 

equal (448)  63 

contains (341) 170 

covers (469)  42 

inside (362) 149 

coveredBy (490)  21 

 

The converse function should identify symmetric relations as their own converse. 

Those relations that are not symmetric should return a relation that is within the subset 

itself (as the candidate relation would be viable). Table 3.7 shows the converse relations of 

the eight region-region relations, confirming that the converse is in fact a member of the 

subset of region-region relations and furthermore that the arithmetic used to generate the 

converse produces identical results to considering the converse configuration and 

calculating its label. The contents of this table are produced by taking the label for the 

relation, dividing it by 64 and considering its remainder, using the value from Table 3.2 

associated with this remainder, and then calculating the converse. 
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Table 3.7. Converse in the region-region subset 

Relation and label Remainder of label (mod 64) Converse label and relation 

disjoint (115) 51 115 – 0 = 115 – disjoint 

meet (243) 51 243 – 0 = 243 – meet 

overlap (511) 63 511 – 0 = 511 – overlap 

equal (448) 0 448 – 0 = 448 – equal 

contains (341) 21 341 + 21 = 362 – inside 

covers (469) 21 469 + 21 = 490 – coveredBy 

inside (362) 42 362 – 21 = 341 – contains 

coveredBy (490) 42 490 – 21 = 469 – covers 

 

3.4.2 Line-Region Relations and Region-Line Relations 

The simple line-region relations (Figure 3.6) are now used with the converse rules to 

derive the simple region-line relations (Table 3.8), further confirming the validity of such a 

mathematical numbering scheme. 
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Figure 3.6. The 19 line-region relations identified with the 9-intersection (Egenhofer and 

Mark, 1995). 
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Table 3.8. Converses of the line-region relations 

Relation Remainder (mod 64) Converse Relation 

383  63 383 
 

367 
 

47 351 
 

366 
 

46 349 
 

362 
 

42 341 
 

495 
 

47 479 
 

494 
 

46 477 
 

490 
 

42 469 
 

375 
 

55 379 
 

503 
 

55 507 
 

487 
 

39 475 
 

486 
 

38 473 
 

482 
 

34 465 
 

119 
 

55 123 
 

247 
 

55 251 
 

231 
 

39 219 
 

230 
 

38 217 
 

115 
 

51 115 
 

243 
 

51 243 
 

227 
 

35 211 
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3.4.3 Graph of All Labels 

Using Theorems 3.2.6 and 3.2.8 and the rules defined in Definitions 3.4.1 and 3.4.2, the 

graph of Λ can be generated. In order to generate the graph for all λ∈Λ, it is necessary to 

add two more concepts (Definitions 3.4.6 and 3.4.7). 

 

Definition 3.4.6. The subset adjacency matrix C↓ is the matrix formed by the following 

rule: if 1λ  is connected from below to 2λ , then C↓ [ 1λ , 2λ ]=1, else C↓[ 1λ , 2λ ]=0.  

 

Definition 3.4.7. The superset adjacency matrix C↑ is the matrix formed by the 

following rule: if 1λ  is connected from above to 2λ , then C↑[ 1λ , 2λ ]=1, else C↑[ 1λ , 2λ ]=0. 

 

 Using these adjacency matrices, the graph G can be encapsulated for the first time 

in a realizable form. Using either of these adjacency matrices, G can be compiled by 

adding an edge from 1λ  to 2λ  wherever the value in their ordered pair is 1 (Figure 3.7). 

 

3.5 Summary and Assessment 

Through the course of Chapter 3, we derive a syntactical label set to replace the semantic-

based language labels for the 9-intersection matrices. These labels form a set Λ and 

provide a naming power for the sets of relations found in Chapter 2. 

 The label set has many mathematical properties and relationships that can be 

utilized to assist in 9-intersection pursuits. Negations, converses, and a notion of 

connectivity are defined strictly through these syntactical labels. Theorem 3.2.5 asserts 
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that connectivity is based in the construction of Hamming distances (Hamming, 1950). We 

also showed that the mathematical constructions of the label set produce desired results 

(identical for the eight region-region relations) and that a subset of relations may not be 

connected strictly by Hamming distance 1. Subset connectivity is thus defined to answer 

this issue.   

 The aforementioned graph of the set Λ is such that any particular label must be 

connected to nine other labels. It is impossible for this graph to be planar by Kuratowski’s 

Theorem (Adams and Franzosa, 2008). Utilizing the aggregated paths from the nodes 152, 

164, and 448 to 0, 128, and 508, the graph of the set Λ contains a subgraph homeomorphic 

to K3,3. For this reason, Figure 3.7 appears in a fairly confusing form.  The alignment of 

Figure 3.7 is such that all nodes on the same level have the same number of non-empty 

intersections.  The top-most level has 9 non-empty intersections, while the bottom-most 

level has 0 non-empty intersections. 
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Chapter 4 

ANALYSIS OF THE GRAPH WITH REGARD TO SUBSETS OF                           

 9-INTERSECTION RELATIONS 

In this chapter, the graph of Λ (Figure 3.7) is utilized to derive conceptual neighborhood 

graphs of 9-intersection relations for several sets of spatial relations. Systematic structures 

and patterns are assessed for each graph. With the plotting interface of the statistical and 

graphing software R 2.8.0, the graph can be modified to exhibit the connections between 

the subset graphs. In general, the graphs of the relations are not necessarily planar, so the 

elegancy of the eight region-region relations is not a reasonable expectation. 

 

4.1 Eight Region-Region Relations (Egenhofer and Franzosa, 1991) 

In giving examples for Chapter 3, the labels representing these relations have been 

computed and presented in the body of this work. Since some of the eight region-region 

relations are not connected directly in the graph, extra matrices are needed to fill the gaps 

between pairs of relations with a Hamming distance > 1. The matrices that fill the gaps are 

not a part of this subset of relations.  Figure 4.1 shows the graph of this subset with 
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connections exposed. Using connected in the subset (Definition 3.4.5) and the shortest 

path (Definition 3.4.4), we have created the A-neighborhood for the set of relations 

 

4.2 Spherical Relations (Egenhofer, 2005) 

The eleven spherical relations show the exact same patterns as the eight planar region-

region relations. The difference, however, is that another leg is added to the graph, 

representing the exhaustion of space with the addition of the relations entwined, embrace, 

and attach. The A-neighborhood of this relation subset is also identified through this basis 

generator. Figure 4.2 shows the graph of this subset with its connections exposed. 

 

4.3 Li Relations (Li, 2006) 

Figures 4.1 and 4.2 demonstrate that not all subsets of topological relations are directly 

connected in the graph of Λ. The Li relations provide some meaningful insight into the 

structure of the region-region graph and the spherical relations graph, specifically about 

the transformation between more distant neighbors such as equal to coveredBy or overlap 

to meet. There are six possible paths from each pair of neighbors with a Hamming distance 

of 3. Knowledge of these intermediary relations limits the number of paths that are 

actually possible. 

 The Li relations are fully connected. None of the realizable relations are offset 

from any of the others (i.e., every label connects directly to another one in the subset). The 

Li relations are of binary complex regions. Each of these relations has a different 9-

intersection matrix and label, but the objects also may have holes and separations as well. 

Of the two types of situations presented as examples of Hamming distance 3, the 
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easiest conceptual progression to understand is from overlap to meet. This transference is 

analogous to the transference that occurs in overlap to any of the other similar jumps in the 

graph (e.g., covers). Throughout Section 4.3, pink objects are region A, blue objects are 

region B, and a coincidence of A and B is purple. 

 

4.3.1 overlap (511) to meet (243) 

Theorems 3.2.4 and 3.4.3 generate six possible paths from overlap (511) to meet (243): 

{511, 507, 499, 243}, {511, 507, 251, 243}, {511, 503, 499, 243}, {511, 503, 247, 243}, 

{511, 255, 247, 243}, and {511, 255, 251, 243}. Only 499 (PO11), 503 (PO15), and 507 

(PO13) are among the Li relations, however, leaving only {511, 507, 499, 243} and {511, 

503, 499, 243} for consideration. A graphic representation of the transference between 

overlap and meet is shown in Figure 4.3. 

                     

Figure 4.3. Transference from overlap to meet: (a) induce a separation upon both regions, 

(b) collapse the overlapping component of one object into the other object, yielding 503 or 

507, (c) reduce the opposite overlapping component to the same size, yielding 499, (d) 

a 

b c 

d 

e a 

b c 

d 

e (a) 

(b) (c) 

(d) 

(e) 

511 

243 

507 

503 

511 499 

243 
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slide one of the equal components such that they share only a portion of their boundary, 

and (e) delete the created separation. 

 

 A certain sequence of transformations must occur to transfer between object 

relations as in Figure 4.3. First, unless the regions are already separated, they must each 

endure a separation such that one piece of one object remains covering one piece of the 

other object while the other pieces are disjoint. Second, the covering object must be 

shrunken down until it equals the covered piece. Third, the objects must move until just 

the boundaries are in contact. Merging is not necessary to obtain relation 243, but for the 

sake of completeness and compatibility with the initial configuration, we display meet as 

two regular regions, implying that a merge has occurred. 

 

4.3.2 overlap (511) to entwined (399) 

For the transference from overlap (511) to entwined (399), six paths are possible: {511, 

495, 463, 399}, {511, 495, 431, 399}, {511, 479, 463, 399}, {511, 479, 415, 399}, {511, 

447, 431, 399}, and {511, 447, 415, 399}. Of the matrices in these paths, only three are 

possible: 463 (PO16), 479 (PO17), and 495 (PO18), which reduces the potential paths to 

{511, 495, 463, 399} and {511, 479, 463, 399}. Figure 4.4 shows the transference from 

overlap to entwined. 
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Figure 4.4. Transference from overlap to entwined:  (a) create an equal hole in both objects 

in the overlapping region, (b) drag one object to exhaust its external space, (c) drag the 

other object to exhaust its external space, (d) fill the hole with one object, and (e) fill the 

hole with the other object. 

 

 Again, a certain sequence of transformations must occur. First we must create a 

hole in both objects contained in the intersection. Second, one object must be extended 

such that its boundary is removed from the exterior. Third, we must extend the other object 

in a similar way. Finally, we fill in the hole created in the first step to produce the relation 

entwined. Since overlap and entwined are both symmetric, reversing the colorations moves 

along the bottom of the figure. 

 

4.3.3 overlap (511) to coveredBy (490) and covers (369) 

For the transference from overlap (511) to coveredBy (490), there are again six potential 

paths: {511, 510, 506, 490}, {511, 510, 494, 490}, {511, 507, 506, 490}, {511, 507, 491, 

 

  
 

 
(a) 

(b) (c) 
(d) 

(e) 

511 

399 

479 

495 
511 463 

399 
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490}, {511, 495, 494, 490}, and {511, 495, 491, 490}. Along these potential paths, only 

three matrices are realizable: 491 (PO12), 495 (PO17), and 507 (PO13), which leaves us 

with two potential paths: {511, 507, 491, 490} and {511, 495, 491, 490}. Figure 4.5 shows 

a pictorial representation of the transference between these two relations. 

 

 

 

Figure 4.5. Transference from overlap to coveredBy (and conversely covers): (a) induce a 

separation in one object (shown for both for simplicity), (b) shrink one overlapping region 

down so that it is covered by the other, (c) engulf the boundary of the first object, (d) 

exhaust the area of the first object with the second object, and (e) merge the separated first 

object. 

 

 We sever the two regions such that one piece of one region sits inside the part of 

another on its boundary, and the other two pieces are disjoint. The second step takes the 

second region and engulfs the pieces of the first object while not entering them. The final 

 

   

 (a) 

(b) (c) 
(d) 

(e) 

511 

490 

507 
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511 491 

490 



 60

step engulfs those parts of the first object that were in the exterior of the second object, 

yielding coveredBy. This is also conversely true for covers by reversing the colors, 

reflecting as intermediary relations 471 (PO14), 479 (PO18), and 503 (PO15). 

 

4.3.4 Comparisons 

In all of these scenarios (Figures 4.3–4.5), the regions of the intermediary relation must 

have holes or separations, while the beginning and ending relations are also realizable for 

region without holes or separations. This distinction is the reason for the gaps in both 

Figures 4.1 and 4.2 that had to be filled by intermediary relations. 

 Certain patterns exist in the paths that are realizable in these transferences. To go 

down the superset adjacency matrix (overlap to meet) requires the removal of the 

boundary intersections, followed by the interior-interior intersection. This same pattern of 

removing boundary intersections first happens for the other three legs of the graph as well. 

Similarly, moving up the subset adjacency matrix (meet to overlap) requires adding the 

two-dimensional intersection (e.g., interior-interior), followed by the addition of the 

boundary intersections. 

 

4.3.5 equal (448) to coveredBy (490) 

The transference between equal (448) and coveredBy (490) is a little different, however. 

There still exist six possible paths between the two relations: {448, 456, 458, 490}, {448, 

456, 488, 490}, {448, 450, 458, 490}, {448, 450, 482, 490}, {448, 480, 482, 490}, and 

{448, 480, 488, 490}. Coincidentally three of these relations can be found in Li’s method: 
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450 (TPP1), 458 (TPP3), and 482 (TPP2), leaving exactly two paths: {448, 450, 458, 490} 

and {448, 450, 482, 490}.  

Where this sequence differs from the previous examples is that Li alludes to the 

existence of exotic regions (i.e., regions that share the entire boundary yet are not 

complementary or equal). In this case, we are referring to label 450. These types of regions 

do not exist in our realizable world in a connected form, because they are produced 

through infinite sequences. They do exist in our world, however, in a separated form 

through looking at some complex dynamic systems. An image of such a separated exotic 

region can be created by taking spherical Christmas ornaments, aligning them in a 

tetrahedral formation, covering up sources of light from all but one side, and then shining a 

light inside the configuration from the remaining side. The reflective powers of the 

ornaments will produce a highly complex fractal, which demonstrates the exotic regions.  

Figure 4.6 shows a picture of the formation of a system of connected Wada 

regions.  

 

 

 

 

 

 

Figure 4.6. First iteration of the Lakes of Wada procedure for four lakes. 
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 The Wada relations are named as follows: Wada coveredBy is represented by 

regions A = {blue} and B = {blue, red}; Wada covers is represented by regions A = {blue, 

red} and B = {blue}; Wada meet is represented by regions A = {green} and B = {yellow}; 

Wada entwined is represented by regions A = {blue, red} and B = {red, yellow, green}; 

and Wada overlap is represented as A = {blue, red} and B = {red, green}. Li makes the 

claim that the relations are all realizable with only 3 regions, however his realizations of 

M6 and M7 (Li, 2006) both entirely exhaust the space, making them both equivalent, not 

distinct, matrices. With this imagery in hand, Figure 4.7 shows the process to convert from 

equal to coveredBy. 

 

Figure 4.7. Transference from equal to coveredBy (and conversely covers by switching 

blue to pink). 

 

 A certain sequence of topological changes must occur: first, we must go from a 

region A which is equal to another region B, maintain the entirety of common boundary 

while growing region B. This step yields Wada coveredBy. From here, we must peel away 

part of the common boundary by adding to one boundary but not the other (which can be 

done by adding a second piece altogether or inserting a hole in one). Finally coveredBy is 

obtained by merging region B or collapsing region A.  

448 450 

482 

458 

490 
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4.3.6 Similarities between the Transferences from overlap to coveredBy and from equal to 

coveredBy 

In both of the title cases, exactly two paths exist and the sequence of adding to the 

matrices is the exact same. To ascend the subset adjacency matrix (and thus the graph), 

one must first add the corner entry (i.e. interior-interior), then add one of two boundary 

entry, and then add the other boundary entry. The Wada relations help us to see exactly 

how the transformations from equal and attach actually manifest themselves. The lack of 

Wada relations causes a gap in the region-region relations that is seemingly irreconcilable. 

This method of computing connections provides concrete evidence for why the Wada 

regions must exist in object space. Knowledge of the surrounding relations actually helps 

to pinpoint what the configuration would look like.  

 Figure 4.8 shows the graph of the Li relations. Unfortunately the Li relations are 

incomplete in that they allow for exhaustion of space by two objects, but do not allow one 

object to accomplish this feat, allowing for more spatial relations (though trivial they may 

be) to exist. 

 

4.4 Schneider and Behr (2006) Region-Region Relations 

The Schneider/Behr region-region relations are a subset of the Li relations. Their subgraph 

is disconnected (Figure 4.9) because of the missing exotic regions and complementary 

regions. This omission is not subtle in that it places a separation in the graph from equal 

up to the intermediary relations leading to covers and coveredBy. 
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4.5 Simple Line-Region Relations (Egenhofer and Mark, 1995) 

The line-region relations are simple in that they deal with a continuous line segment and a 

regular region. This section also considers the converse of these relations, namely the 

simple region-line relations. 

The existing conceptual neighborhood graph for these relations (Figure 3.6) is 

replicated exactly through this basis generator. This set of relations gives further validity 

of the power and applicability of the labeling process. The derived conceptual 

neighborhood graphs for the line-region and region-line relations are shown in Figures 

4.10 and 4.11, respectively. 

 

4.6 Complex Line-Region Relations (Schneider and Behr 2006) 

The complex line-region relations proposed by Schneider and Behr (2006) show the 

relations between a complex line and a complex region. Complex regions have separations 

or holes, while complex lines have multiple extremities (whether forked or separated) or 

no extremities, leading to cycles. There are 82 possible relations under their method. These 

relations do not account for the ability to exhaust a space by one or more objects. Further 

consideration needs to be given in this area to complete the set. The complex line-region 

relations form a connected set in the graph (Figure 4.12), and so do the converse relations, 

the region-line relations (Figure 4.13). 
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4.7 Line-Line Relations (Egenhofer 1993; Reis et al. 2008, Schneider and Behr 2006) 

The line-line relations come in two forms: simple lines and complex lines. Thirty-three 

relations have been accounted for between two simple lines, while 57 have been found for 

two lines with multiple boundary points. If one also allows for cycles (i.e., lines with no 

boundary) and separations, a total of 82 relations with complex lines apply. 

 The line-line relations give us the first opportunity to realize a matrix with only 

two non-empty intersections as the ability to have a cycle comes into play. A cycle has no 

endpoints, therefore it has no boundary in algebraic topology. Everything is either in the 

interior or the exterior. 

 The line-line relations provide a disconnected and also incomplete neighborhood 

graph through the basis generator. For the first time, a 9-intersection matrix with five non-

empty intersections can lead directly to another 9-intersection matrix with five non-empty 

intersections in one single step. Given the definition of connection in the context of this 

thesis, our basis generator cannot capture this transition for the A-neighborhood. This 

failure in the method might have something to do with the co-dimension of the space and 

the objects.  Since the objects in this case have a degree of freedom that a region would not 

have, they have additional flexibility. 

  The conceptual neighborhood graphs of the above-mentioned 33, 57, and 82 

relations are presented as Figures 4.14, 4.15, and 4.16, respectively. The 82 Schneider 

relations remain connected, however. These graphs complete Chapter 4 of the thesis. With 

these graphs, we move further down the line into what the graphs might suggest about 

relationships across graph subsets. 
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4.8 Summary and Assessment 

Although the basis generator is capable of generating an A-neighborhood when at least 

one object is in co-dimension 0, it says nothing about whether or not the generated 

neighborhood reflects the only paths that exist in the set of relations. An example of this 

point is the move from equal to covers. These two relations need not endure the 

problematic topological deformations of separation and hole-formation to get from one to 

another, as both can be deformed to each other through expansion and contraction.  

 This connection scheme has a different meaning than typical connection in a 

conceptual neighborhood graph that is not at first easy to understand, but does make some 

sense. Being connected in Λ has to do with the differences in the matrix representations. 

Object relations with the same matrix are equivalent under the matrix only. This notion of 

equivalence does not imply the topological equivalence of these objects. Connection for 

our purposes means that there exists at least one member with that particular label that can 

be deformed using A-neighborhood methods that will produce the connected label. The 

epitomes of this occurrence are the Wada relations. Though it is generically unnecessary to 

have these intermediary relations for any practical purposes, there are times when the 

Wada regions are needed to complete the transitions between two relations conceptually. 

Similarly separated regions like those used to exhibit the transition from overlap to meet 

allow us to explore relations for regions other than simple discs. To exhibit these 

equivalences under the matrices, we have used transformations that may not necessarily 

reflect topologically equivalent objects. This usage is meant to demonstrate that not all 

members of a matrix equivalence class are topologically equivalent, demonstrating that the 

9-intersection still has some information that it masks away under its premises.
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Chapter 5 

TRANSFORMING RELATIONS ACROSS DIMENSIONS 

This chapter provides a framework for linking relations across dimensional frameworks 

(e.g., line-line relations in R2 to region-region relations in R2). The 9-intersection matrix 

and the graph of its labels provide a means for connecting the conceptual neighborhood 

graphs across the relations through the increase or decrease of dimension. This chapter 

identifies relations under Schneider and Behr’s identification procedure that may lead to 

link points which will one day combine them into a single conceptual neighborhood graph. 

Such a conceptual neighborhood graph would make it possible to relate any combination 

of relations between two objects in R2. 

 

5.1 A Generalized Framework for Graph Connection 

Through analysis of the Schneider and Behr relations, there are 100 distinct labels that 

exist in some capacity in R2. Considering the total number of relations identified between 

objects, however, that number soars to 248 relations between any two spatial objects in R2. 

Therefore, on average, each distinct label is found in 2.48 of Schneider and Behr’s 

relational classes. Though the labels themselves are distinct, one label can represent 
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numerous different relations. Table 5.1 shows a frequency distribution of the distinctness 

of the labels. 

Table 5.1. Frequency of labels in Schneider/Behr relations 

Frequency Number of Labels 

0 411 

1 28 

2 19 

3 30 

4 23 

It is important to establish where the distinct relations are located in the graph, as 

these relations represent the problems that complicate inference and similarities across 

relational classes. All of the 28 distinct labels are located in the relational classes line-line, 

line-region, and region-line. Eighteen (64.3%) of these relations—79, 95, 111, 127, 195, 

199, 203, 207, 215, 235, 239, 255, 325, 330, 449, 450, and 451—are from the line-line 

class of relations. Five are in the line-region class (230, 334, 366, 486, and 494); another 

five are in the region-line class (217, 333, 349, 473, and 477); and four of the line-line 

relations in this grouping (195, 449, 450, and 451) are also represented as exotic region-

region relations in Li’s work. 

 To establish a framework, one must define how the change between relational 

classes would happen. There are nine different relational classes in R2: point to point, point 

to line, point to region, line to point, line to line, line to region, region to point, region to 

line, and region to region. The most logical construction for dimensional changes in 

objects is on the basis of dimension similarity (i.e., a point must become a line before it 
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becomes a region). An example of this construction is starting with a single point, 

extending the single point into a single line (containing an infinite number of points), and 

then finally adding width to the line to create a region (containing an infinite number of 

lines). If the relational classes are neighbored based on this philosophy, the lattice shown 

in Figure 5.1 results. This selection for alignment is far from arbitrary. It is conceptually 

understood that in Freksa’s C-neighborhood, certain linkages are established by expansion 

and contraction, which in theory would allow us to go directly from a point to a region 

without ever having constructed a line. When considering a neighborhood graph 

constructed by the matrix configurations, these changes are rendered obsolete, because 

points do not have boundaries, but regions do. Therefore, the matrices from a relation 

involving a point and some other object B cannot be found for a relation involving a region 

and some other object B. 

 

Figure 5.1. Relational class lattice. 
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 Moving left in the lattice increases the dimension of object B, while moving right 

in the lattice increases the dimension of object A. Having this relationship between 

dimensions allows us to refine the search for connections amongst different relational 

classes. Since 72 relations are found in more than one relational class, a relevant question 

to ask is “How many of these relations are found in neighboring nodes of this lattice?” 

 

5.2 Matrices Appearing in Neighboring Relational Classes 

The first measure of importance is to find which matrices appear in neighboring relational 

classes. After these matrices are identified, it is then possible to attempt to link them 

topologically. Subsections 5.2.1 through 5.2.12 identify the relations that are held in 

common between each set of relational classes. A synthesis of this material can be found 

in Section 5.3. 

 

5.2.1 Point-Point Relations to Point-Line Relations 

Three of the point-point relations identified by Schneider and Behr can be found in the 

point-line relations that they also identified: 67, 322, and 323. This total represents 60% of 

the point-point relations having an exact 9-intersection correspondence with the point-line 

relations. The total also represents that 21.4% of point-line relations can be found in the 

point-point relations. 

 

 

 

 



 80

5.2.2 Point-Point Relations to Line-Point Relations 

Since this section considers the converse case to 5.2.1, it is expected that 60% of the point-

point relations will also occur in the line-point relations. This expectation is confirmed by 

the fact that 67, 321, and 323 are found in both sets of relations. Similarly, 21.4% of the 

line-point relations can be found in the point-point relations. 

 The appearance of 67 and 323 in both 5.2.1 and 5.2.2 does not imply that the two 

relations in point-line and line-point themselves are connected in a similar fashion as 5.2.1 

and 5.2.2. To connect these, the dimension of the objects would need to change twice, 

which is different than what we have previously undertaken. 

 

5.2.3 Point-Line Relations to Point-Region Relations 

Seven of the point-line relations can be found in the point-region relations. These relations 

are: 99, 102, 103, 354, 355, 358, and 359. This total represents 50% of the point-line 

relations and 100% of the point-region relations. 

 

5.2.4 Line-Point Relations to Region-Point Relations 

Since this section considers the converse case to 5.2.3, it is expected that 50% of the line-

point relations occur in the region-point relation and the reverse 100% of region-point 

relations exist in the line-point set. Seven of the relations: 83, 89, 91, 337, 339, 345, and 

347 appear in both of the sets. This result confirms the expectation. 
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5.2.5 Point-Line Relations to Line-Line Relations 

Ten of the point-line matrices have corresponding matrices in the line-line relational class: 

67, 71, 99, 103, 322, 323, 327, 354, 355, and 359. This total represents 71.4% of point-line 

relations and 12.2% of line-line relations. 

 

5.2.6 Line-Point Relations to Line-Line Relations 

Since this section considers the converse case to 5.2.5, it is expected that 71.4% of line-

point relations can be found in the line-line relations and that 12.2% of the line-line 

relations can be found in the line-point relations. These expectations are confirmed by the 

existence of 67, 75, 83, 91, 321, 323, 331, 337, 339, and 347 in both sets of relations. 

 

5.2.7 Point-Region Relations to Line-Region Relations 

All seven of the point-region relations can be found in the line-region relations set. These 

relations are the same as those in 5.2.3. This total represents 100% of the point-region 

relations and 16.3% of the line-region relations. 

 

5.2.8 Region-Point Relations to Region-Line Relations 

Similarly to 5.2.7, all seven of the region-point relations can be found in the region-line 

relations set. The percentages from 5.2.7 apply here as well. 

 

 



 82

5.2.9 Line-Line Relations to Line-Region Relations 

There are 34 matrices that are found in both the line-line relations and the line-region 

relations. These matrices are: 71, 87, 99, 103, 115, 119, 227, 231, 243, 247, 327, 335, 343, 

351, 354, 355, 359, 362, 363, 367, 371, 375, 379, 383, 482, 483, 487, 490, 491, 495, 499, 

503, 507, and 511. This total represents 41.4% of the line-line relations and 79.1% of the 

line-region relations. 

 

5.2.10 Line-Line Relations to Region-Line Relations 

Since this section represents the converse relation to 5.2.9, we would expect to have the 

same number of matrices in common. This expectation is once again met. The matrices 

found in both sets are: 75, 83, 91, 107, 115, 123, 211, 219, 243, 251, 331, 335, 337, 339, 

341, 343, 347, 351, 363, 367, 371, 375, 379, 383, 465, 467, 469, 471, 475, 479, 499, 503, 

507, and 511. 

 

5.2.11 Line-Region Relations to Region-Region Relations 

Nineteen line-region matrices can be found in the region-region relations.  These 19 are:  

115, 227, 243, 351, 362, 367, 375, 379, 383, 482, 483, 487, 490, 491, 495, 499, 503, 507, 

and 511.  This total represents 44.2% of the line-region relations and 57.6% of the region-

region relations.  Incidentally, all of these relations found in common are also held in 

common with the line-line relations. 
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5.2.12 Region-Line Relations to Region-Region Relations 

Since this section represents the converse of 5.2.11, the expected result is to have the same 

amount of matrices in common.  This expected result is correct.  These 19 matrices are: 

115, 211, 243, 341, 351, 367, 375, 379, 383, 465, 467, 469, 471, 475, 479, 499, 503, 507, 

and 511. These 19 matrices are also held in common with the line-line relations. 

 

5.3 Summary and Assessment 

The important numerical information from Section 5.2 is compiled into Figure 5.2 and 

Table 5.2. 

 

Figure 5.2. Percentage of relational class maintained at next level. Number on the left of 

an edge represents upward movement while number on the right of an edge represents 

downward movement. 
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Considering the minimum number of possible similarities for each edge on the 

lattice, there are a total of 218 possible identical pairings that could exist. Of these 218 

pairings, 160 pairings exist, representing 73.4% of the total. In other words, considering 

the smallest class connected by an edge, 73.4% of those relations are paired off with 

another relation on the other end of the edge. 

 

Table 5.2. Relations maintained in neighboring relational classes 

Class 1 
Members of 

Class 
Class 2 

Members of 

Class 

Number in 

Common 

% in Common 

(Up) 

% in Common 

(Down) 

Point-Point 5 Point-Line 14 3 60 21 

Point-Point 5 Line-Point 14 3 60 21 

Point-Line 14 Point-Region 7 7 50 100 

Line-Point 14 Region-Point 7 7 50 100 

Point-Line 14 Line-Line 82 10 71 12 

Line-Point 14 Line-Line 82 10 71 12 

Point-Region 7 Line-Region 43 7 100 16 

Region-Point 7 Region-Line 43 7 100 16 

Line-Line 82 Line-Region 43 34 41 79 

Line-Line 82 Region-Line 43 34 41 79 

Line-Region 43 Region-Region 33 19 44 57 

Region-Line 43 Region-Region 33 19 44 57 

 

A sizable percentage of neighboring relational class matrix pairs can be found. 

There are three obvious questions that this coincidence bears asking: does it matter? Is 

there anything that we can gain from seeing what the matrices actually represent? Would it 

be possible to link the graphs at these recurrent nodes in some way? 
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A few of the relational sets also are recurrent. For example, the seven relations 

which are found between point-region and line-region are also found between point-line 

and point-region. This pattern is found again for the pair of classes surrounding region-

point. A similar pattern is found stemming from the region-region relations. The 19 

relations which are found in common between line-region and region-region are also 

found in line-line. Similarly, the 19 relations in common between region-line and region-

region are also found in line-line.  
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Chapter 6 

CONCLUSIONS AND FUTURE WORK 

 

This chapter presents a synthesis of the work discussed in this thesis on “An Embedding 

Graph for 9-Intersection Topological Spatial Relations.” A summary of the preceding 

chapters highlights how the analysis of the 9-intersection matrices was systematically 

developed. Section 6.2 presents the three major conclusions related to the labeling scheme 

developed, the connectivity of the subsets of the graph, and the potential for cross-

referencing different types of topological relations. 

 

6.1 Summary 

The goal of this thesis is to reduce the semantic conceptions inherent in current 

representations of 9-intersection matrices. These representations are generally 

accomplished through semantic-based languages or through images representing the 

objects A and B. Both of these representative methods produce problems in that they are 

vague (in the case of semantics) or non-exhaustive (in the case of images). Terminology 
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and images strike different meanings based on the user. In this light, a unique scheme to 

address the matrix itself is necessary and important in that it provides an exhaustive class 

of objects and takes away the semantics that the language-derived terminology presents. 

 Chapter 2 summarizes the relevant topological concepts that build the                   

4-intersection matrix and the 9-intersection matrix. Information parlayed through both of 

these methods is meant to capture topological properties of binary relations. From the 

definitions given, it is clear that regions, lines, and points are all different types of sets in 

regard to point-set topology in that only a region can possibly be an open set in the 

standard topology on R2. Algebraic topological methods were needed to recognize the 

interior of a line and the interior of a point for use with the 9-intersection.  These methods 

separate the system from a purely point-set topological construction. 

 Chapter 2 also summarizes the different types of formalisms used to characterize 

the topological concepts also defined there. These models include the Region Connection 

Calculus, the 4-intersection, the 9-intersection, and the 9+-intersection. The chapter also 

introduces different sets of relations that have been derived from the matrices for such 

configurations as two simple lines, two complex lines, a simple region and a simple line, a 

simple line and a simple region, two complex regions, and a complex line and complex 

region. Each set of relations carries different constraints, which open up new possibilities 

for realizable matrices. Chapter 2 also introduces the concept of a conceptual 

neighborhood graph, which relates how two relations could be deformed to reach one 

another. An important concept used in the analysis of 9-intersection matrices is a 

Hamming distance (Section 2.8), which is an established error-detecting and error-

correcting code based on the similarity of a sequence of symbols. 
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 Chapter 3 presents a method to derive a unique labeling structure for the               

9-intersection matrix. This labeling method is based on the binary notation of integers. 

Hamming distances are calculated over these binary numbers, enabling the definition of 

connection in the graph by being the nearest Hamming neighbor to a relation (i.e., having 

a Hamming distance of 1). The use of a subset is made feasible by relaxing the constraint 

to the nearest Hamming neighbor in the subset (i.e., the minimum Hamming distance if no 

Hamming distance of 1 exists). Chapter 3 defines the graph generated by the labels as 

nodes and the connections as edges. Chapter 3 also defines functions which allow a user to 

compute the label of the negated matrix and the label of the converse matrix. The converse 

function was found to be periodic with length 64. 

 Chapter 4 examines the subset graphs produced for the sets of topological relations 

reviewed in Chapter 2. The graphs identify relations that must be neighbors in any A-

neighborhood graph. It does not exclude nor preclude any relation from being an A-

neighbor of another relation, but provides a foundation from which to build an A-

neighborhood. The most important insights come from the study of Li’s region-region 

relations, showing a bridge through the 9-intersection that takes us through any 3-step 

matrix transformation (e.g., overlap to meet). The procedure can be incorporated with any 

regions that fit these relations, provided that there is an allowance for previously 

unallowed deformations such as deletions, separations, or hole-generations. In analyzing 

the Li relations, we also show that the Wada relations serve a distinct purpose in 

connecting equal (and attach in the spherical case) to the rest of our subset of relations. 

There exists a member of the equal class that could easily be morphed into the Wada 

covers or Wada coveredBy class. 
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 Chapter 5 analyzes the distribution properties of the labels and proposes a cross-

relational class structure to make inferences based on changing the dimension of the 

objects in consideration. One hundred distinct labels are exhibited in the Schneider/Behr 

relations (106 in all when including the Li relations). Seventy-two of these labels are found 

in multiple dimensional settings. Through inspection, 160 pairs of identical matrices are 

found in neighboring relational classes (i.e. different by one dimension in one object). 

These neighboring relations serve as viable candidates for linking the neighborhood graphs 

of each relational class through a connection built between these pair matrices. 

 

6.2 Conclusions 

This thesis has three major sets of conclusions about the labeling scheme for 9-intersection 

matrices, the connectivity of a graph subset, and the connectivity of relational classes. 

 

6.2.1 Labeling Scheme 

The labeling scheme (Chapter 3) provides a way to define any matrix by a non-semantic 

representation. This method has many advantages in that the label itself explicitly 

identifies the matrix and can be realized in whatever means is necessary. Though the label 

may strike specific images, it reinforces that there are many topological constructs that can 

exhibit the relation in different dimensions, in simple contexts, or in complex contexts. In 

the past, the usage of a term such as inside can limit the possibilities in which people can 

understand the matrix associated with that label. In this way, the representation of the 

image becomes purely complementary, in that similar relations are predictable, rather than 

having to distort an image. 
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 Since the binary representation of an integer is unique (Theorem 3.2.2), the nine 

binary values of a 9-intersection matrix can be mapped onto a unique integer k with  

0 ≤ k ≤ 511. This mapping is bijective. 

 Since this is a one-to-one and onto function, we are mathematically assured of 

having an inverse mapping from each label to a 9-intersection matrix. With both the 

function and its inverse mapping (both of which are one-to-one and onto), we are assured 

that the composition of the inverse and the labeling function produces the matrix itself. 

 Definition 3.3.2 and Theorem 3.3.3 provide a converse mapping that is both one-

to-one and onto. This powerful result allows us to show hypothetical relationships between 

matrices. For example, if one of the 406 matrices without a realizable representation in R2 

were considered, it can be shown which label is the hypothetical converse of this matrix. If 

a realization of this matrix were ever deduced, we immediately obtain its converse matrix, 

label, and realization.  This structure allows for placing the matrix in comparison to 

realizable relations differing by one non-empty intersection and finding a composite image 

from these matrices. 

 

6.2.2 Connectivity of a Graph Subset 

One of the features derived in Chapter 3 is the ability to discern connections based on 

subset relationships (i.e., one matrix containing another matrix entirely). If one matrix is a 

subset of the other, it has the opportunity to be connected to any of its supersets. An 

example of this connectivity is covers and overlap. There exists at least one realization of 

the covers (490) matrix that can be continuously deformed into the overlap (511) matrix. 

Its existence is found in simple regions. 
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 The most important feature of this connectivity, however, is that neighbors of 

Hamming distance 1 must have realizations that can be deformed into each other. Not 

every member of the matrix equivalence class has the necessity of crossing through that 

deformation, though. This is a principal reason why we have multiple conceptual 

neighborhood graphs. Certain relations in this particular neighborhood graph can be 

bypassed if some specific constraints are placed upon the objects. In general, however, 

when bypassing some steps, the resulting relations would have been connected through 

these bypassed steps. In situations with co-dimension > 0, non-subset relations may 

connect to each other. The graph of Λ cannot account for that situation as this is on a 

purely case-by-case basis. 

 

6.2.3 Connectivity of the Relational Classes 

Through comparison of the relational classes, we found that out of 218 potential pairings 

of matrices between two neighboring relational classes, 160 of these pairings were found 

to be present. This high percentage of recurrence suggests that some form of retraction 

might have applications for combining neighborhood graphs between relations of different 

dimension objects. 

 Assessing some of the percentages from Table 5.2 leads to the following insight: if 

we take the smallest class of relations on each row and compare how many of these 

relations are present in the neighboring class, there are always at least 57% present. While 

this may not be significant, it does give rise to questions as to why this occurrence would 

happen. 
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6.3 Future Work 

There are many opportunities to expand this thesis in the near future. The thesis has made 

progresses by defining bases for A-neighborhoods for different sets of topological 

relations, some of which have yet to have a neighborhood graph constructed. With such a 

tool, further advancements can be made: 

• The results of this thesis are somewhat tied to the mathematical definition of 

boundary. Up until now, we have considered the boundaries of objects as closed 

objects and barriers from an exterior. What result would modifying the notion of 

boundary from a mathematical construct to a linguistic connotation have? This is a 

very important question in that osmosis is a phenomenon that happens in the real 

world, allowing the circumvention of a rigid boundary. Projection of 3D images 

into a 2D medium also is a place where relaxing the boundary could have 

important implications.  

• This thesis suggests that the labels identified in Section 5.2 may be of particular 

significance in finding a cross-relational class neighborhood graph, which would 

extend for all point, line, and region relations for the embedding in R2. These labels 

can be graphically assessed to examine whether there are transformations that can 

provide a transition from one relational class to another through these labels. 

Furthermore, a conceptual distance for this traversal will be necessary to compute.  

• A key insight from this thesis is that, as the constraint of simple closed discs is 

removed from the region-region relations, many possibilities become realizable in 

objects. Whereas relations follow a particular order in a neighborhood with simple 

closed discs, there are abundant opportunities for members of an equivalence class 
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to transition to another relation without ever crossing through some other relations. 

Key to the visualization of this insight is to produce an exemplar class of relations 

for each label. 

• This thesis worked with the 9-interseciton model in deriving labels. Other models, 

such as the 9+-intersection (Kurata, 2008), can have a similar labeling scheme 

imparted upon them.  

• Given that each label does not distinguish a class of topologically equivalent 

relations, a particularly interesting area of study is a relative frequency distribution 

upon the neighborhood graph. Assume that a particular label is shown to map to 

four other labels. Is the probability of first contacting one of those labels larger 

than any of the others? Is it uniform? There may be much to learn from a study of 

this question. 

• This thesis considered 9-intersection matrices for a continuous embedding space. 

For applicability into sensor detection, an expansion of this method into a discrete 

space is highly pertinent. 
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