
The University of Maine
DigitalCommons@UMaine

Electronic Theses and Dissertations Fogler Library

12-2010

Mobile Map Browsers: Anticipated User
Interaction for Data Pre-fetching
Benjamin T. Weber

Follow this and additional works at: http://digitalcommons.library.umaine.edu/etd

Part of the Data Storage Systems Commons, and the Systems and Communications Commons

This Open-Access Thesis is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Electronic
Theses and Dissertations by an authorized administrator of DigitalCommons@UMaine.

Recommended Citation
Weber, Benjamin T., "Mobile Map Browsers: Anticipated User Interaction for Data Pre-fetching" (2010). Electronic Theses and
Dissertations. 551.
http://digitalcommons.library.umaine.edu/etd/551

http://digitalcommons.library.umaine.edu?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F551&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.library.umaine.edu/etd?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F551&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.library.umaine.edu/fogler?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F551&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.library.umaine.edu/etd?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F551&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/261?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F551&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/276?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F551&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.library.umaine.edu/etd/551?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F551&utm_medium=PDF&utm_campaign=PDFCoverPages

MOBILE MAP BROWSERS:

ANTICIPATED USER INTERACTION FOR DATA PRE-FETCHING

By

Benjamin T. Weber

B.S. University of Maine, 2008

A THESIS

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

(in Spatial Information Science and Engineering)

The Graduate School

The University of Maine

December, 2010

Advisory Committee:

Michael Worboys, Professor of Spatial Information Science and Engineering,

Advisor

Nicholas Giudice, Professor of Spatial Information Science and Engineering

Mark Jadkowski, Visiting Professor of Spatial Information Science and

Engineering

©2010 Benjamin T. Weber

All Rights Reserved

MOBILE MAP BROWSERS:

ANTICIPATED USER INTERACTION FOR DATA PRE-FETCHING

By Benjamin T. Weber

Thesis Advisor: Dr. Micheal F. Worboys

An Abstract of the Thesis Presented
in Partial Fulfillment of the Requirements for the

Degree of Master of Science
(in Spatial Information Science and Engineering)

December, 2010

When browsing a graphical display of geospatial data on mobile devices, users typically

change the displayed maps by panning, zooming in and out, or rotating the device.

Limited storage space on mobile devices and slow wireless communications, however,

impede the performance of these operations. To overcome the bottleneck that all map

data to be displayed on the mobile device need to be downloaded on demand, this thesis

investigates how anticipated user interactions affect intelligent pre-fetching so that an on-

demand download session is extended incrementally. User interaction is defined as a set

of map operations that each have corresponding effects on the spatial dataset required to

generate the display. By anticipating user interaction based on past behavior and intuition

on when waiting for data is acceptable, it is possible to device a set of strategies to better

prepare the device with data for future use.

Users that engage with interactive map displays for a variety of tasks, whether it be

navigation, information browsing, or data collection, experience a dynamic display to

accomplish their goal. With vehicular navigation, the display might update itself as a

result of a GPS data stream reflecting movement through space. This movement is not

random, especially as is the case of moving vehicles and, therefore, this thesis suggests

that mobile map data could be pre-fetched in order to improve usability. Pre-fetching

memory-demanding spatial data can benefit usability in several ways, but in particular it

can (1) reduce latency when downloading data over wireless connections and (2) better

prepare a device for situations where wireless internet connectivity is weak or

intermittent.

This thesis investigates mobile map caching and devises an algorithm for pre-fetching

data on behalf of the application user. Two primary models are compared: isotropic

(direction-independent) and anisotropic (direction-dependent) pre-fetching. A pre­

fetching simulation is parameterized with many trajectories that vary in complexity (a

metric of direction change within the trajectory) and it is shown that, although anisotropic

pre-fetching typically results in a better pre-fetching accuracy, it is not ideal for all

scenarios. This thesis suggests a combination of models to accommodate the significant

variation in moving object trajectories. In addition, other methods for pre-fetching spatial

data are proposed for future research.

ACKNOWLEDGEMENTS

The task of drafting, writing, and polishing this thesis to its current state has been a

challenging yet an enjoyable and rewarding experience. Nonetheless, the entire process

would not have been as successful without the continuing support of my family, friends,

department colleagues, and most important, my faculty mentors.

I would like to give special thanks to my advisory committee, all of whom were

always more than happy to offer their honest yet positive feedback and were genuinely

committed to helping me accomplish my goal. I was fortunate enough to work for Mark

Jadkowski at Global Relief Technologies beginning in 2008, whose experience in

commercial GIS influenced several ideas presented in this thesis. I thank Max Egenhofer

for his support and knowledge of mobile GIS. Nicholas Giudice's expertise in

experimental design was also valuable in helping me simulate and test my hypothesis. I

would also like to thank Michael Worboys for his support and role as thesis advisor,

whose positive feedback kept me confident and focused on completing this thesis.

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS iv

LIST OF TABLES ix

LIST OF FIGURES x

Chapter

1. INTRODUCTION 1

1.1 Mobile Maps Scenario 3

1.2 Mobile GIS Architectures 4

1.2.1 Mobile Data Storage 6

1.2.2 Data On-Demand 6

1.2.3 Hybrid Approach 7

1.3 Caching 9

1.3.1 Database Management Systems Cache 10

1.3.2 Web-Page Cache 10

1.3.3 Caching Algorithms 10

1.4 Mobile Map Cache 11

1.4.1 Cache Representation 12

1.5 Research Questions and Hypothesis 13

1.6 Results 15

1.7 Intended Audience 16

1.8 Organization of Thesis 16

2. MOBILE MAP FOUNDATIONS 18

2.1 Mobile Challenges 18

V

2.1.1 Mobile Caching 19

2.1.2 Spatial Caching. 20

2.2 Geographic Data Transmission 21

2.3 Visual Information Browsing 22

2.4 Trajectories and Object Tracking 23

2.4.1 Location Prediction 23

2.5 Summary 25

3. MOBILE MAP INTERACTION 27

3.1 Reference Spaces 27

3.1.1 Geographic Space 28

3.1.2 Map Space 28

3.1.3 Pixel Space 28

3.1.4 Screen Space 29

3.2 Tiled Map 29

3.3 Viewport 31

3.4 Coordinate Transformations 32

3.5 Viewport and Tile Relationship 34

3.6 Operations 35

3.6.1 Operations in the Tile Plane 36

3.6.1.1 Panning/Moving the Map 36

3.6.1.2 Rotating the Map 38

3.6.2 Multi-Scale Operations 40

3.6.2.1 Zooming the Map 42

3.6.2.2 Discrete Zoom 43

vi

3.6.2.3 Continuous Zoom 44

3.6.2.4 Focusing the Zoom 45

3.7 Summary 46

4. POPULATING THE TILE BUFFER 48

4.1 Cost 49

4.2 Tile Buffer 50

4.3 Populating Heuristics 51

4.3.1 Coarser Tiles 52

4.3.2 Stationary Map Rotation 54

4.3.3 Details on Demand 56

4.3.4 Nearby Movement 57

4.3.5 Direction-Dependent Movement 58

4.4 Server-Side Computation 60

4.5 Buffer Data Structure 61

4.6 Summary 62

5. CACHE MANAGEMENT 63

5.1 Cache Invalidation 63

5.2 Offloading Algorithms 64

5.2.1 Least Recently Used 65

5.2.2 Furthest Away Replacement 65

5.2.3 Directional FAR 66

5.2.4 Prioritization by Pre-fetching Strategies 68

5.3 Summary 69

vii

6. PROTOTYPE IMPLEMENTATION 70

6.1 Experimental Design 71

6.1.1 Trajectory Data Set 71

6.1.2 Web Tile Dataset 74

6.1.3 Wireless Coverage 75

6.1.4 Pre-fetching and Replacement Policy 76

6.1.5 Pre-fetching Metrics 78

6.2 Simulation Results 81

6.3 Analysis of Results 82

6.4 Discussion of Hypothesis 89

6.5 Summary 90

7. CONCLUSION AND FUTURE WORK 91

7.1 Summary 91

7.2 Future Work 94

BIBLIOGRAPHY 97

BIOGRAPHY 101

viii

LIST OF TABLES

Table 3.1 Viewport properties 31

Table 6.1 Classification matrix 79

Table 6.2 Trajectory database table schema 82

Table 6.3 Pre-fetching average accuracy andp-values 83

Table 6.4 Linear regression results 86

IX

LIST OF FIGURES

Figure 1.1 Spectrum of network characteristics 5

Figure 1.2 Straight line path versus revisiting path 12

Figure 3.1 Reference spaces 27

Figure 3.2 Tile coordinates 30

Figure 3.3 Map space clipping 33

Figure 3.4 MBRp is dependent on the rotation of Fand yields MBRT 34

Figure 3.5 Viewport free space 37

Figure 3.6 Viewport MBR dimensions 39

Figure 3.7 Zoom operations, F represented as highlighted rectangle 41

Figure 3.8 A tiled map is represented at discrete intervals (z G Z). Continuous tile

space includes representation in between these (z e R) 41

Figure 3.9 Pixel mapping 43

Figure 3.10 Pan and zoom 45

Figure 4.1 Tile buffer. 49

Figure 4.2 Tile containment. Tile T at level z and tiles containing T at lower zoom

levels 53

Figure 4.3 Rotational MBR of V(MBRry) 55

Figure 4.4 Tile neighborhood addition 55

Figure 4.5 Weighting of tiles 60

X

Figure 4.6 Server GIS data repositories 61

Figure 4.7 Buffer as a list of tiles, categorized by next move heuristics 62

Figure 5.1 LRU ranking 65

Figure 5.2 FAR discards furthest away tiles 66

Figure 5.3 Angular difference between motion vector and the directional relationship

between a tile and the center tile 67

Figure 6.1 Trajectory data 72

Figure 6.2 Tile weighting function and sample results 78

Figure 6.3 Tile pre-fetching 79

Figure 6.4 Trajectory complexity versus pre-fetching accuracy at max_prefetch = 0,

max_prefetch = 2, max_prefetch = 6, and max_prefetch = 10 85

Figure 6.5 Model trend lines at max_prefetch = 0, max_prefetch = 2, max_prefetch =

6, and max_prefetch = 10 87

Figure 6.6 Trend line intersections 88

XI

CHAPTER 1

INTRODUCTION

Mobile map browsers offer users opportunities to explore spatial data visually and

interactively from their current physical perspective on cell phones, GPS units, or tablet

computers. In mobile space, "here" prevails for the display of maps (Buttenfield, 2002) as

users would typically ask for location information that originates from their current

whereabouts, because that information relates most closely to their current task. There are

certainly exceptions to this ego-centric paradigm, particularly when a user's task shifts to

another geographic area.

Scenario 1

Emergency response field personnel are assessing flood damages in northern Maine.

Using before and after satellite imagery, they deduce the surrounding areas with the

greatest magnitude of damage. Meanwhile, data collected in the field are viewed on maps

by operations management.

The scenario above exemplifies how spatial data viewed on a device, whether a

mobile phone or a personal computer, may or may not be relevant to the user's current

physical location. While field workers were concerned with accessing maps relevant to

their current whereabouts, others were interested in maps of a remote area. Most often,

however, mobile map users need pertinent to their immediate surroundings, areas they

see from a vantage point, or places they are trying to reach from their current location.

Compared to their desktop counterparts, mobile devices are limited in memory,

screen space, processing power, and network performance, and this impedes the

interaction with mobile maps in the same responsive way often experienced on desktop

computers. The lack of local availability of all spatial datasets that a user may need in the

field is particularly constraining. One impediment is the sheer size of spatial data sets.

For a lxl meter resolution coverage of the entire state of Maine (86,000 km2),

approximately 25GB of local storage would be needed for a set of tiled JPEG images that

are 256x256 pixels and average about 20KB per tile. This number is just for the state of

Maine at that particular resolution. Lower (and higher) resolutions would require even

more storage space. As of 2010 the maximum data capacity for Apple's top-line iPhone is

32GB, clearly indicating that entire world map datasets cannot simply be loaded onto

mobile devices for reliable data availability. The mere addition of more flash memory

will not remedy this bottleneck, as each thematic variation—road map, soil map, weather

map—will press further demands on the size availability. Therefore, only a subset of

available spatial data is typically stored on a mobile device at any one time, and data

outside of the available range need to be added on demand. The dynamic state of maps on

a device is dependent of what portion of the globe is visible on the screen, typically

controlled by the user or on-board sensors. For example, one can request that the map

display an area to the east of what is currently visible, requiring an update of the display

and data used to render it. One might also zoom in on the map, requiring the map browser

to obtain data at a higher resolution for a more detailed map view. These user operations

2

and how they relate to the data currently available on the mobile device, are described in

Chapter 3.

Users expect responsiveness from visual interfaces, and this is a vital component of

usability (Nielson, 1994). When data are unavailable for a portion of a requested map—

for instance when a cellular data connection is lost—the resulting gaps in the map render

the software less informative and, in some instances, completely unusable. The design

and implementation of a responsive mobile map is challenging, primarily because it is

impossible to know with one hundred percent confidence exactly where the device will

be located in the future or know what the user's future task will be, making it difficult to

ensure that the correct data exist on the device. A viable solution to this problem is to

implement intelligent spatial data caching on behalf of the mapping application. Caching

is a procedure that stores data temporarily in a memory buffer in order to speed up

retrieval time (Alan et al. 1982). Reading data from a cache is much faster than remote

retrieval, such as over the Web. Since data processed or rendered by a mobile map is

location dependent, location is a reasonable basis for how the mobile map should manage

what to store in the cache. Algorithms for traditional caching strategies do not consider

spatial attributes of data but rather focus on temporal filtering of the data. Mobile map

caching, however, is concerned with both temporal and spatial characteristics of the

cached data and, therefore, requires tailored algorithms for managing the data.

1.1 Mobile Maps Scenario

Visualization of spatial data on a mobile device has relevance to a wide variety of

applications:

3

Scenario 2

Field personnel are gathering data on a hurricane-stricken region of a country. Data

collectors, who are assessing local damages from the disaster, use maps on their mobile

devices for navigation and for geo-referencing a particular scene. As personnel navigate

through flooded neighborhoods they may experience intermittent cellular connectivity

due to the damaged infrastructure, leaving them without the necessary map coverage.

Instead of downloading new data only on demand, alternative strategies are needed to

intelligently prefetch map data for the emergency response field crew.

Scenario 3

On his iPhone, Alex queries his mobile map for directions to the local ski resort. The

map draws a route and directs him towards the mountain. As Alex approaches the

mountain he loses cellular connectivity, however, and the lack of on-demand map access

over the air yields a blank map display.

Both data collection for emergency response efforts and navigation can rely heavily

on visual, location-based software. In either scenario the cause of the incorrect map

display is the loss of cellular connectivity, leaving the mobile map unusable. In order to

correct this unwanted behavior this thesis investigates a number of ways to anticipate

user interaction and movement through space in order to pre-fetch a dataset so as to

prepare for unexpected loss of connectivity.

1.2 Mobile GIS Architectures

In a distributed system multiple information systems work together over a network in

order to complete a task (Worboys and Duckham, 2004). In a client-server architecture, a

4

client make requests for information from a remote server over a network. Conventional

wired environments have the luxury of high-speed, reliable data access, whereas mobile

environments suffer from intermittent connectivity and relatively slower transmission

speeds (Jing et ah, 1999).

Important characteristics of networks are: network speed, reliability, throughput, and

frequency of connectedness, and different computing applications lie within the spectrum

of these characteristics (Figure 1.1).

Always connected Always disconnected

Reliable
High-speed
Ethernet

Broadband
Modems «C ~jjf WiFi y

Unreliable
High throughput

I |
High-speed
Ethernet

Broadband
Modems «C ~jjf WiFi y Mobile L o w throughput

Figure 1.1. Spectrum of network characteristics.

Mobile environments are of particular interest because of their distinct behavior

regarding connectivity. Relatively slow and unreliable connections distinguish mobile

architectures from conventional desktop ones.

In a mobile environment with large data sets, the repository where data are stored and

the location where the user interacts with the data are typically distributed spatially. The

data are on a server (or sets of servers), while users initiate operations to display or query

the data from their mobile devices. This distribution calls for a special attention to the

architecture of such a system, with a particular focus on providing the fastest response

times.

1.2.1 Mobile Data Storage

In order to circumvent the requirement of accessing data via wireless communication

channels, one might implement a solution to preload a mobile device with all the spatial

data necessary to carry out a user's tasks in the field. This setting normally allows for

display and processing of the spatial data, but also offers the fastest response times

possible for rendering, since the map browser need not wait for data from a remote

server. Processing the data can be a bottleneck for mobiles equipped with relatively slow

processing speeds, especially if the data is a vector format that requires geospatial overlay

operations like buffering. Faster response times for such instances might be achieved by

executing demanding operations on a faster CPU such as a remote server. This would,

however, introduce the requirement of a data connection.

One major disadvantage of preloading all maps onto a mobile device is the lack of a

dynamic dataset for users. Maps change at a varying temporal granularity and although

some datasets might remain fairly static (e.g., a roadmap), other overlay datasets are more

inclined to change at a high frequency (e.g., a traffic density overlay map). In addition to

the lack of a dynamic map dataset, the sheer size of geospatial data puts a limitation on

the volume of data that can be preloaded. Consequently, preloading requires knowledge

of a user's location and task beforehand so as to load only pertinent data onto the device.

1.2.2 Data On-Demand

As an alternative to preloading all maps to a mobile device, one might implement a

solution that relies on Internet connectivity to dynamically download maps onto the

mobile device on-demand. With on-demand data access the user sees the most up-to-date

6

datasets available. Each time the user requests a change in the map display, the map

browser initiates a request for data from a remote server. The issues with preloading,

namely storage requirements and prior knowledge of user location, are no longer

relevant. Instead, the server sends only the required data to satisfy a request from the

device.

Although on-demand data access is more flexible in terms of what maps are

accessible to the user, several disadvantages stem from this approach. First, the

assumption of continuous connectivity is not a realistic one. Although cellular data

coverage is continually improving, global cellular coverage is not likely in the near

future. Dead-zones continue to impact task performance of mobile device users through

intermittent connectivity and unusable software. Satellite communications such as

Broadband Global Area Network (BGAN) allow virtually global data access. Data rates

from Internet Service Providers (ISPs) such as Inmarsat, however, are quite expensive

and can cost around $8.37 USD per megabyte for the end user (Inmarsat BGAN

Factsheet, 2009). Relatively limited bandwidth and slow throughput involved with

cellular or satellite communicates also pose an issue to on-demand data access. Response

times for map requests involves some latency which increases the overall response time

of the map since the Tenderer must wait for the data prior to displaying it.

1.2.3 Hybrid Approach

In order to more closely enable the concept of "anything, anytime,

anywhere" (Reichenbacher, 2004), a mobile map requires dynamic mobile data access via

a client-server architecture (Jing et ah, 1999). Conventional wired environments have the

7

luxury of high-speed, reliable data access, whereas mobile environments suffer from

intermittent connectivity and relatively slower transmission speeds (Jing et ah, 1999);

therefore, transmitting less data over unreliable networks seems ideal, but enough

geographic coverage and detail are necessary to support the user's tasks. This thesis

investigates how one can augment on-demand data access by anticipating user interaction

and future locations to exploit available data connections for preloading map data to the

device. Such an approach requires the use of pre-fetching strategies to predict the maps a

user might need in the near future (Chapter 4).

The previous two approaches for exposing geospatial data on a mobile device did not

address the data types used during transmission. While vector data would support on

mobile devices not only the portrayal of spatial data, but also analytical operations, the

display of raster images at the resolution of the screen typically suffices for purely visual

tasks. Therefore, intelligent methods to transmit vector data, compressed or

incrementally, (Bertolotto and Egenhofer, 2001; Buttenfield, 2002; Yang et al, 2007) are

complementary to the approach discussed in this thesis.

This thesis assumes client-server architecture for transmitting raster map datasets.

Raster data in the form of common image formats such as JPEG or PNG are ideal for

their simplicity and scalability. Tiled maps are a common web-based GIS data source in

which pre-rendered raster tiles are used to render the map. Typically tiles are pre-

rendered on the server, speeding up the request/response/display process. Tiles are simply

replicated from the server's cache to the client's cache, at which point the map browser

renders the data to the screen. At any particular time a mobile map browser can utilize a

8

relatively small subset of tile images from the tile dataset repository available online and

so the approach described herein refers to a tiled map implementation for its conceptual

simplicity and programmatic efficiency (Chrisman, 1990). Map tiles are stored in the

device's cache, or temporary memory buffer, in order to reduce latency for requests from

the map browser.

1.3 Caching

Application responsiveness results from a number of factors, including the latency

involved with retrieving data. In a distributed system, caching is meant to eliminate the

need for multiple requests for data. Caching is ineffective and unprofitable unless it

greatly improves performance of the application (Fielding et at., 1999).

Cache memory, or caching, attempts to reduce the amount of time necessary to

retrieve data for the requestor by storing frequently used data items to a local memory

buffer (e.g., a local file). Computer processors use caching in program execution by

storing frequently used program instructions in the CPU's cache. Doing so reduces the

amount of time the CPU spends outputting data for those instructions (Handy, 1998).

Cache memory exists at a variety of levels. The fastest, but most expensive cache, is

CPU cache, which stores data or program instructions for the CPU. Cache can also refer

to any data stored in a computer's main memory (i.e., random access memory, or RAM).

A computer's local file system can serve as a cache as well. When spatially distributed

data repositories are accessed over the web, such as in the case when a web browser

retrieves an HTML file from a remote server, it is much faster to read the file from disk

than to re-request it over the Internet. Thus, resources that are frequently used by an

9

application are better off copied and stored on the local machine, provided that there

enough storage space to do so.

1.3.1 Database Management Systems Cache

Databases are commonly used to store massive amounts of data. Database management

systems (DBMSs) create, maintain, and optimize a database for its users. A DBMS often

consists of a cache layer, storing frequently-used portions of a database in main memory.

The cache layer is a cost savings mechanism because it allows the DBMS to read from

in-memory data as opposed to the files on the local disk.

1.3.2 Web-Page Cache

Caching web pages is a performance enhancing component common in web browsers.

When a browser first requests a file over HTTP, it stores the file in either main memory

or to a local file. The browser retrieves the cached version of a web page when it is re-

requested. Navigating the web via a browser typically consists of a series of interactions,

such as entering a URL, clicking links, or pressing the 'Back' button. Browsers can build

a history of previously visited URLs, eliminating the need to re-enter them. Caching a

formerly viewed page reduces the amount of wait if one were to request that page again

using the 'Back' button common to most browsers.

1.3.3 Caching Algorithms

Computers have only a finite amount of storage space for caching data and, for this

reason, software applications must use some mechanism to manage the cache when the

10

allocated cache space reaches its maximum capacity. A cache replacement algorithm is a

way for a program to optimize the cache. By following a set of cache replacement

instructions, the algorithm ensures that space is available for new items at any time.

The least recently used (LRU) policy is a commonly used replacement algorithm. A

cache is usually implemented as a collection of items with a specified maximum size.

Once the cache exceeds the maximum number of items or data size yet the application

needs to save a new item to the cache, the LRU algorithm first discards the least recently

used item(s). Other cache algorithms include most recently used (MRU), psuedo-LRU, 2-

way set associative, and least-frequently used (LFU) (Nagaraj, 2004).

1.4 Mobile Map Cache

One objective of this thesis is to investigate strategies for managing a mobile map cache,

which includes both the removal of unwanted data and pre-fetching of anticipated data.

A mobile map cache differs from other caches in that a spatial component now exists with

the data. Location supplements time as the criterion for managing a cache. As a mobile

device moves through space and time or a mobile map user interacts with the display,

items are added and removed from the mobile map's cache. The addition and removal of

data in the cache should follow not only the temporal locality but also the spatial locality

of the data. For example, an LRU algorithm could effectively manage a spatial cache if

the mobile device were to move in a straight-line path through space. If the device returns

to a location previously visited, however, the LRU algorithm fails to optimize the cache

with the most likely needed data. In this case the algorithm discards data that are near the

current location of the device (Figure 1.2).

11

Figure 1.2. Straight line path versus
revisiting path.

Managing a spatial cache involves keeping a history of location data coupled with

time. Historical data allows the application to predict the future locations of the user or

device. A prediction algorithm could, for instance, extrapolate a time series of coordinates

sensed by the device, producing a set of possible future locations. Tracking user

interactions with the map, such as panning, zooming and display rotation, also

contributes a rich history dataset needed for prediction.

1.4.1 Cache Representation

This thesis focuses on information management for mapping in the mobile environment.

In a setup where the client application and its main data source are likely to be distributed

spatially, it becomes important to ensure the availability of resources to be consumed by

the application. As with most client-server applications, the mobile client will access data

items from the server and cache them in some local memory buffer to ensure the current

and future availability of that item. For instance, a tiled map dataset allows a client to

retrieve several tile images (e.g., JPEG, PNG, GIF), stitching them together to create a

seamless, raster map display. In this instance the cache is managed as a set of tile images

and the dynamic map display dictates the retrieval and removal of items in the cache.

12

On mobile devices one has the option to cache data items in several ways. Depending

on the requirements of the software application one is designing for, a cache

implementation might utilize a main memory object cache (e.g., a list of map tile

objects), flash memory to write cached items to a file, or even a local database on the

device to optimize the storage and retrieval of a large number of cached items. While

flash or database storage can permit the storage of a substantial amount of data (e.g., flash

storage cards > 16 GB), a mapping application may not always make use of this storage

space for bulk downloading of data. Not only is data access for mobile devices hindered

by intermittent connectivity but also by a variety of data access charges as well.

Depending on the ISP, some devices might have an unlimited or very large data

download limit whereas others are charged by the megabyte. Even in the case of satellite-

based global coverage solutions (BGAN), high data transfer rates highlight the

importance of minimizing data transfer in order to maintain reasonable data access costs.

In this thesis the cache management scheme focuses on a main memory cache for

tiled images on mobile devices. Chapter 6 explains a prototype implementation that

defines a memory cache of size n for temporary storage of map image tiles which could

be extended to use other larger local memory allocations as well.

1.5 Research Questions and Hypothesis

The caching strategies presented in this thesis attempt to test strategies for reducing the

latency issue that arises when one interacts with a mobile map display. The cache

management implementation employs a pre-fetching and replacement policy to

13

effectively utilize valuable wireless connectivity periods to retrieve data on behalf of the

user.

In order to support this tile cache management, this thesis looks to answer a few

questions:

Question 1: In what ways might one pre-fetch maps in anticipation of user interaction

and device location?

Pre-fetching maps on behalf of the user is a critical component of mobile map cache

management. Pre-fetching strategies make use of past device or map location(s) to

estimate the near future locations of the device and thus identifying a pre-fetching dataset

relevant to that location. Other strategies can also complement location prediction to

further refine pre-fetching success.

Question 2: How much does it cost to pre-fetch maps (i.e., in terms of data size, time,

memory space on a device, bandwidth, dollars)?

Question 3: What is the relationship between the amount of data a mobile map pre­

fetches and the overall success rate of the pre-fetching.

Question 4: Is there some point where pre-fetching reaches a maximum effectiveness

for a given strategy and allowable storage space?

Retrieving a data item over a wireless network is costly, especially with regards to

time and storage space. Intuitively, pre-fetching maps should increase the reliability of

having that map when needed in the future. However, pre-fetching maps can also become

counter-productive, such as in the case of pre-fetching an item that is never used by the

application. The prototype implementation measures the accuracy of both isotropic and

14

anisotropic pre-fetching of map tiles, the latter taking into account the movement history

of the user. Movement of a mobile user through space is assumed to be non-random (i.e.,

future locations are partially dependent on the current and previous locations). For

example, when considering a car on a road network, the future location of the car is

constrained by its current location, maximum speed, and the road network itself. Using

this rationale the hypothesis for the tile cache management is as follows:

Hypothesis:

For non-random movement through space, the overall accuracy for a map tile pre­

fetching algorithm is significantly greater when one incorporates past user locations

to prioritize pre-fetching in the direction of user movement.

1.6 Results

Several simulations measure the tile pre-fetching accuracy for hundreds of real-world

trajectories captured by tracking school buses and construction trucks in the Athens,

Greece metropolitan area. The experimental testbed also models a tiled map accessed

over the Internet. Using caching strategies proposed in Chapter 4, each simulation varies

the volume of data allowed for both isotropic and anisotropic pre-fetching. When pre­

fetching prioritizes tiles in the direction of movement the pre-fetching accuracy is on

average 3.53% greater than when pre-fetching for an assumed stationary device. In

addition, although pre-fetching more data should yield greater reliability, the complexity

of the trajectory (i.e., the tendency of the trajectory to change directions) effects the pre­

fetching accuracy and shows that a direction-dependent model is not always ideal. The

15

simulations suggest that, for the selected strategies and algorithm used, pre-fetching

should consider the interaction history of the map and pre-fetching data volume when

deciding which pre-fetching policy(s) to employ.

1.7 Intended Audience

The intended audience of this thesis includes any researcher, developer, or other party

interested in mobile data caching and may be of particular interest to any mobile GIS

software developer. An exploration of spatial caching and data pre-fetching augments

current commercial mobile mapping applications by increasing data availability in

unreliable wireless environments and reducing the latency involved with over-the-air data

transmission.

1.8 Organization of Thesis

This thesis is organized in the following manner:

Chapter 2 highlights previous research in areas pertinent to this thesis and how these

works influence the ideas presented in this thesis. Chapter 3 explores mobile map

interaction specific to a tiled map scenario, since experimental pre-caching strategies

utilize this type of web data source. User interaction involves a dynamic relationship

between the viewable map space on a mobile screen and the data required to generate a

display for this space, an understanding that helps to formulate pre-fetching heuristics,

discussed in Chapter 4. The heuristics propose a number of ways in which map data

might be pre-fetched to exploit an available data connection. A critical part of managing a

cache in any software application is cache replacement policy. Chapter 5 proposes a

16

number of ways in which tiles in a cache are discarded so as to make room for new tiled

data. The proposed pre-fetching heuristics and replacement policies are tested in an

experimental prototype defined in Chapter 6. The chapter also details simulation results

and analysis. Chapter 7 concludes the thesis with a summary of this thesis as well as

proposed research for the future.

17

CHAPTER 2

MOBILE MAP FOUNDATIONS

Designing effective mobile solutions has been a topic of study for many years, especially

since designers of such solutions must overcome many limitations inherently present in

mobile environments. Although science is continually advancing and technology yields

faster, more capable hardware and software solutions every day, many of the initial

challenges with mobile computing still persist today and the solution lies only in the

design of a system that can adapt to its adverse conditions. Section 2.1 discusses some of

the ways in which caching can improve the limitations faced by mobile devices in

unfavorable conditions. Section 2.1.2 discusses previous work with spatial data caching

on mobile devices. The remainder of the chapter discusses visual interface design

principles and interaction with map displays, which are later applied to a design for

managing mobile map data. Also discussed are ways of tracking movement and

interaction history for assisting with data management.

2.1 Mobile Challenges

This thesis focuses on data management for map browsers in mobile settings, both

connected and disconnected. The fact that mobile computing has many fundamental

differences relative to a static, desktop environment makes it a popular area of research.

Satyanarayanan (1996) points out that mobile computing (1) is and and will continue to

be resource-poor relative to desktop environments, (2) is hazardous based on its

portability and security issues, (3) shows extreme variability in connectivity performance

18

and reliability, and (4) draws from a strictly limited amount of power. The severity of

mobile computing limitations is undoubtedly diminishing with the expansion of cellular

network coverage and ever-improving hardware on mobile devices. One is hard-pressed

to envision a day in the very near future, however, where every location on Earth has an

equally reliable, high-speed data connection to the Internet and a mobile device with a

virtually unlimited amount of storage space. Until this day arrives engineers must

consider the challenges of mobile computing when designing a mobile software solution.

2.1.1 Mobile Caching

The number of mobile units communicating with server-side databases over wireless

channels is growing significantly. To effectively handle the massive amounts of data

being shared between client and server endpoints, a popular solution is to cache retrieved

data locally to the device for repeated consumption. Not only does caching data locally

preserve some of the finite amount of bandwidth available over wireless channels but it

also prepares a device for unexpected interruptions with wireless connectivity and

minimizes wireless communication costs.

Mummert et al. (1995) discuss how hoarding data to a mobile database in

anticipation of intermittent connectivity can improve the overall performance and

usability of mobile software. Lack of connectivity for a mobile client causes an increase

in cache misses (i.e., requested data not locally available), which impedes the progress of

a user's task. Users are also unlikely to tolerate poor software performance due to a loss

of connectivity and their research models user patience and proposes that caching data to

19

a mobile unit should be based on whether or not the time it takes to do so will cross the

user patience threshold (i.e., the amount of time a user is willing to wait for an item).

When data are cached to a mobile database, the duration of its persistence is highly

dependent on the type of data. Generally, one would assume that base maps (e.g., maps

with political boundaries, rivers, buildings) are fairly static and change at a much less

temporal granularity than news or weather. Some spatial data do change more frequently,

however, such as traffic reports that can supplement static base maps. Barbara and

Imielinski (1995) describe a cache invalidation framework for checking whether or not

cached data should be discarded or updated. A challenge arises when considering

invalidation for mobile device databases since mobile devices are often offline and only

the server knows whether or not a cached item should be updated. In addition a server

lacks knowledge of whether or not devices are connected or even powered on. Mobile

devices can periodically communicate reports of their cache to servers to test which items

are up-to-date.

2.1.2 Spatial Caching

This thesis is particularly interested in caching maps on mobile devices, inherently

requiring a variation of methods used for caching non-spatial data. A least recently used

(LRU) cache replacement algorithm sorts candidate items to discard based on the

timestamp at which that item was last consumed from the cache. Algorithms such as

these only compare the temporal locality of items in a cache to choose candidates for

removal. With spatial data, however, cache invalidation should emphasize spatial locality

of cached items as well (Dunham and Kumar, 1998). As a mobile device moves through

20

space or a user changes the display on a map, data are retrieved from the cache or from a

remote resource and then written to the cache. The least recently used data should not

necessarily have the highest priority for removal since it may, in fact, have higher spatial

similarity to the current location of the device than other cached items. An alternative

approach might be to prioritize items in a cache for candidate removal using a Furthest

Away Replacement (FAR) policy (Ren and Dunham, 2000).

2.2 Geographic Data Transmission

To more closely enable the concept of "anything, anytime, anywhere" (Reichenbacher,

2004), a mobile map requires dynamic mobile data access via a client-server architecture.

Conventional wired environments have the luxury of high-speed, reliable data access,

whereas mobile environments suffer from intermittent connectivity and relatively slow

transmission speeds (Jing et al, 1999); therefore, transmitting less data over unreliable

networks seems ideal, but enough geographic coverage and detail are necessary to

support the user's tasks. While vector data would support not only the portrayal of spatial

data on mobile devices, but also analytical operations, the display of raster images at the

resolution of the screen typically suffices for purely visual tasks. Therefore, intelligent

methods to transmit vector data compressed or incrementally (Bertollo and Egenhofer,

2001; Buttenfield, 2002; Yang et al., 2007) are a complementary approach to the ideas

presented in this thesis.

In this thesis, raster tiles accessed from remote databases over wireless networks are

the data domain for mobile map browsers. A tiled representation of large geographic

spaces (Chrisman, 1990), which partitions the map area as discrete raster images, has the

21

advantage of managing smaller pieces of data and smaller portions of the map at any one

time.

2.3 Visual Information Browsing

Mobile map browsers are interfaces for browsing graphical spatial data on small-screen,

mobile devices and, thus, require some degree of visual interface design. Mobile maps

are graphics-driven in that they consume either raster or vector data and render them as

an image on screen. Interaction with mobile map browsers is often with the graphics

where the user directly manipulates the display.

Much work has focused on map interaction and information displays. Developing

interactive mapping systems involves determining what control is needed over the map,

the degree of such control, and how this control is implemented (Harrower and Sheesley,

2005). Mobile map browsers must be especially careful with these decisions since screen

space is limited and methods for interaction have implications on the information display

(e.g., less display space due to on-screen graphical buttons).

One important element of interactive graphical displays is how the information is

displayed dynamically. For mobile map browsers a dynamic display should avoid

information overloading by controlling the amount of information being displayed by

relating scale and speed (Igarashi and Hinckley, 2000). Speed-dependent zooming

suggests a direct relationship between speed and scale that determines the display of the

graphical content (scale = constant / speed). Space-scale trajectories were studied to

visualize the relationship between panning and zooming two-dimensional spaces (Furnas

and Bederson, 1995). Optimizing these trajectories yields a dynamic display that is both

22

"smooth" and "efficient" which is accomplished when a continuous transformation of the

graphical display contains no sudden jumps of the image being displayed, improving user

cognition (van Wijk and Nuij, 2003).

2.4 Trajectories and Object Tracking

Databases to store information on moving objects have been extensively studied in the

past. Whether the object is a moving point (e.g., car, mobile phone, train) or a moving

region (e.g., storm, disease), storage of movement history in a database allows for

querying the location history at temporal points and intervals (Guting et ah, 2009).

Object tracking has gained much popularity due to the plethora of data that are

obtainable from moving objects. Relatively cheap sensors like GPS and cellular network

antennas allow for the acquisition and storage of huge amounts of moving object data on

a daily basis (Chakka et al., 2003).

Trajectories are typically represented by a data model which samples continuous

movement of an object through space and time (Macedo et al., 2008). Data models can be

as simple as a series of space-time points or represent more complex, dynamically shaped

spatial regions with holes (Forlizzi et al., 2000).

2.4.1 Location Prediction

Perhaps the most beneficial uses of storing an object's location history is the ability to

predict its near future location. Various mathematical models attempt to predict an

object's future location and are of varying complexity. Based on a temporal sequencing of

object positioning, location prediction is mostly effective for near-future location

23

estimation only (Jeung et al, 2008). Location prediction is based on an object's last

movements and so the level of uncertainty with estimation grows as we move further into

the future. Although some models can estimate future locations to some degree, real-

world movement is often complex and is not easy to model with mathematical formulas,

especially since real-world phenomena (e.g., road construction or traffic volume) has

much influence on an object's movement through space and time (Jeung et al, 2008).

The database community has proposed extensions to SQL which would enable one to

query both past, present, and future locations of an moving object. Future temporal logic

(FTL) uses temporal operators such as Until, Nexttime, and Eventually to perform spatio-

temporal queries on objects with dynamic locations (Sistla and Wolfson, 1998). However,

it is unclear just how accurate these prediction models are given the variety of movement

scenarios.

Categories of location prediction models vary in both complexity and accuracy.

Vector-based prediction uses linear and non-linear motion functions for a time-dependent

estimation.

Linear models assume that an object's movement is linear and, thus, uses a linear

equation to solve the prediction (Equation 2.1) (Saltenis et al., 2000). The object's

predicted location, p, is dependent on its current location, po, velocity vector, v, and the

amount of time into the future.

p=po + v(t-to) (2.1)

Non-linear models such as a quadratic functions are able to model the acceleration of

a moving object as well as it's velocity. Even so, vector models do not capture curved

24

movement which is often observed with moving objects. To remedy the limitations

presented with linear and non-linear motion functions some have proposed using a

recursive motion function (RMF), which can predict future locations using an objects

"tendency" of movement such as linear, quadratic, or circular motion (Tao et ah, 2004).

In addition to vector-based movement, location estimation is also possible through the

use of pattern recognition. By discretizing space as cells, some have used Markov chain

models to compute the likelihood of an object moving from one cell to any neighboring

cells based on previous movements (Ishikawa et al., 2004).

Optimizing a prediction model or implementing the most complex and accurate

model is outside the scope of this thesis. Instead, later chapters discuss the use of location

prediction and will use an estimation model for merely demonstrating its usefulness in

mobile map cache management. Let it also be noted that the use of complex,

computationally expensive location prediction models coupled with extensive tracking

databases are better suited for implementation on servers equipped with the proper

resources.

2.5 Summary

This chapter addresses some of the components and issues necessary to address for

building a cache management framework for mobile map browsers. Mobile computing

faces many challenges such as limited memory and network bandwidth and caching,

when implemented correctly, offers a workable solution. The upcoming chapters propose

a design for caching strategies based on how individuals interact with a mobile map and

25

design principles for visual information interfaces. Historical logging of user interaction

and device location also proves beneficial for managing a mobile map cache.

26

CHAPTER 3

MOBILE MAP INTERACTION

Building a management framework for mobile spatial data relies on an understanding of

the relationship between the user and the mobile map browser. Maps have the ability to

give the user a stronger awareness of the environment, typically by graphically displaying

spatial data on a static medium (e.g., paper maps) or a dynamic medium (e.g., an

electronic screen). On an electronic screen, a scene selection is the display of spatial data

at any one point in time, established through the relationship between two rectangles: (1)

the geographic data representation (map space) and (2) the visible portion of the data

(viewport) (Jackson 1990). This chapter discusses the data used to generate a map display

on a mobile device.

3.1 Reference Spaces

The process of rendering graphics needs to account for multiple spaces. A mobile map is

a representation of the real world that is digitally preserved and used to generate an image

(a) (b) (c) (d)

Figure 3.1: Reference spaces: (a) geographic space, (b) map space, (b) pixel space, and

(d) screen space.

27

to display on a mobile device screen. This process occurs over several reference spaces:

geographic space, map space, pixel space, and screen space (Figure 3.1).

3.1.1 Geographic Space

Geographic space (Figure 3.1a) refers to the three-dimensional space of the Earth that, in

order to be portrayed on a mobile device, is often presented to the end user as a two-

dimensional map. Representation as a digital map first requires projecting points from the

Earth's surface (specified as spherical coordinates longitude, X, and latitude, cp) onto the

two-dimensional Euclidean plane (Bolstad 2005).

3.1.2 Map Space

Map space (M-space) (Figure 3.1b) is the planar representation of geographic space,

defined by a projection (e.g., Mercator, Plate Carree, etc.) and often measured in

geographic units of longitude (X) and latitude ((p) (Snyder 1987). In addition to

projection, map space holds several properties, such as the map space origin (OM) and its

geographic extent in the x- and ^-directions (AXM, AJV). A coordinate in the map space is

referred to as (XM,)>M).

3.1.3 Pixel Space

A client-server architecture using pre-rendered raster images is an effective method for

distributing mobile map data (Section 1.2). A core data requirement for this architecture

is the translation of the map space into pixel space (raster images). Images are measured

in pixels and use a reference system originating at (0,0) in their upper left corner with

28

positive x to the right and positive y down (Figure 3.1c). Pixel space (P-space) is a finite

two-dimensional array of pixels having an extent specified as (Axp, Ayp), while (xp, yp)

references a specific pixel in the space.

3.1.4 Screen Space

The final representation of geographic space is drawn to a mobile device screen.

Currently, mobile screens are rectangular, two-dimensional arrays with a coordinate

system similar to images. A screen's origin (Os) exists in the upper left corner with

positive x values to the right and positive y values down (Figure 3.Id). Screen space (S-

space) has a width and height denoted ws and hs, respectively, while (xs, ys) references a

specific coordinate in the space. Screen space is used to generate graphics.

3.2 Tiled Map

An image map has a particular resolution defining the amount of map space captured per

pixel. To visualize large geographic areas on small screens, the resolution of the image

will be coarse in order to fit a larger area into a small number of pixels. Conversely,

detailed displays require a higher-resolution image in order to fit a small geographic area

into the allotted screen space. Multi-resolution maps address this need of multiple levels

of detail because the map space is portrayed as several images of varying resolution.

Doing so permits small geographic features (e.g., roads, rivers, and cities) to be

abstracted from view at low levels of detail, only displaying pertinent items at that level.

Higher-resolution images show more detail, often including geographic features that were

29

abstracted at a lower level. Single resolution maps are of limited use for interactive map

interfaces as they provide no means to increase or decrease visible details.

High-resolution image maps with large geographic coverage inherently become too

large to be handled by a single computer. A 10-meter resolution map of the world, for

example, would require an image the width of about forty million pixels. A popular

solution is to fragment the image map into smaller, equal-sized images called tiles. A tiled

map is a multi-resolution representation of the map space implemented as several levels

of detail known as zoom levels. Zoom levels are typically specified as an integer value (Z)

within a predefined range (i.e., Zmm,<= Z <= Zmax). Therefore, any reference to a pixel in

pixel space (xp, yp) is relative to a specific zoom level. At any particular zoom level the

map is a composition of non-overlapping tiles (Figure 3.2).

Zo Zi Z2

(0,0)/ (0,0)z

(0,1)/, xpyp ' \

(0,0)y (1,0)7' (2,0)r (3,0>

(0,1)T" ""(T;i>- -(2,l)r (3,l)r

(0,2> (U)r (2,2)r (3,2)r

(0,3)T" "•(•1,3)7' (2,3)r (3,3)r

Figure 3.2: Tile coordinates.

Since a tiled map is a repository of pre-rendered map images, tiles need indexing to allow

reference to them. Tiled map coordinates consist of three levels of specificity: (1) the

zoom level, (2) the tile coordinates, and (3) the pixel coordinates (Figure 3.2). Zoom

levels refer to an image map of a particular resolution, tile coordinates (x, v)r refer to a

30

particular tile within a zoom level, (0,0)r being the upper-right tile of a tile layer, while

pixel coordinates (x, y)r (xp, yp) refer to a particular pixel within (x,y)r (e.g., (x, y)r(0, 0)

is the first pixel in (x,y)r). Any pixel in pixel space (xpyp) translates into a tile coordinate

and pixel offset (Section 3.4).

3.3 Viewport

A viewport is the rectangular portion of the map space drawn to the mobile screen, thus

displaying the viewable area of the map at any one point in time. Viewport properties

(Table 3.1) are measured in map space and pixel space units and are translatable between

coordinate systems (Section 3.4).

Property Description

CM, d,M Viewport center in map space

cp, dp Viewport center in pixel space

0v Viewport rotation angle

Zv Viewport current zoom level

MBRM Viewport's minimum bounding rectangle (MBR) in map space

MBRP Viewport's MBR in pixel space (relative to current zoom level)

XVM, hM Viewport width and height in map space

xvp, hp Viewport width and height in pixel space

Table 3.1: Viewport properties.

The viewport's zoom level corresponds to the current tile layer from which the map

browser displays data. The chosen zoom level is closest in resolution to the resolution of

the screen. This selection comes from a function that compares the screen resolution, that

is, the ratio of the viewport's map space extent to the screen extent (Equation 3.1) to each

31

zoom level resolution, that is, the ratio of the map space extent to the width of the pixel

space (Equation 3.2), returning the zoom level whose resolution is most similar to the

viewport's.

Resolutions = WMI WS (3.1)

Resolutionp = AXM/AXP (3.2)

The function getZoomLevel returns the zoom level as an integer value given the

current viewport (Function 3.3).

function getZoomLevel: integer (3.3)
diff[]
for to £max

diff[z] <— [Resolutions - Resolutionp j
end for

return index of MIN(diff)

3.4 Coordinate Transformations

Because a map browser uses data modeled from the real world and generates graphics on

a electronic screen, the map browser operates in multiple spaces and must translate

between coordinate systems. Coordinate transformations, which map the same space

from one reference system to another (Bolstad 2005), are dependent on the map

projection and tiling scheme (metadata about the tiled map). Defined transformations, for

instance, allow one to translate between raster image coordinates and geographic

coordinates (Equation 3.4, 3.5).

M(xp, yp) —> XM, y\i (3.4)

P(XM, yiu) —> xp, yp (3.5)

32

(a) (b)

Figure 3.3: Map space clipping: (a) Viewport in map
space and (b) corresponding screen graphics.

A raster representation of the map space belongs to a single zoom level Z and has an

additional conversion from pixel space to tile space (Equation 3.6, 3.7).

Tixp.yp) —* (x,y)z (xp.yp) (3.6)

P{(x,y)T, (xp, yp)) —*• xp, yp (3.7)

In order to display a map image, the graphics renderer translates points in the pixel

space to the screen space (Equation 3.8, 3.9) (Figure 3.2).

S(xp, yp) -^-xs,ys (3.8)

P(xs, ys) —• xp, yp (3.9)

Many viewport properties are obtained through implicit derivation using coordinate

transformations. The screen size (Axs, Ays) ultimately determines the extent of the

viewport, obtained thorough accurate tracking of the viewport's center and rotation angle.

33

3.5 Viewport and Tile Relationship

At any particular time, the viewport covers some portion of the map space and pixel

space, given by the properties of V(Table 3.1). To generate a map image the map browser

renders a portion of the raster map and draws this image to the screen. Since the raster

map is broken up into tiles at each zoom level, the map renderer requires at least one tile

to generate a screen image. The set of tiles includes any tile at a given zoom level that

intersects the viewport's MBR, a set which itself is specified as an MBR of tiles (Figure

3.4). Formally put, the tile MBR is the tile coordinate bounds of a specific zoom level

which satisfies intersection constraints with the viewport (Equation 3.10), where AXT and

Ayrare the width and height of a tile in pixel space, respectively).

(3.10)

(a) (b)

Figure 3.4: MBRp (dotted) is dependent on the rotation of I7and yields

MBRT (shaded), (a) 6v= 0° and (b) 0v= 45°.

34

3.6 Operations

A user primarily interacts with the screen of a mobile map to initiate a change in the

display. These interactions (e.g., panning, rotating, zooming) result in a change of the

viewport's location, size, orientation, or extent and impacts the data required to generate

the display. If one considers the viewport as a rectangle existent in map space, then user

interactions are transformations of the rectangle in the Euclidean plane of map space. The

viewport transformation maps each point within the rectangle to a new point in the same

space. Panning, rotating, and zooming are user interactions corresponding to the

Euclidean transformations of translation, rotation, and scaling, respectively (Worboys and

Duckham 2004) (Equation 3.11-3.13).

Translation (3.11)
(x,y) -•* (x + a,y + b)

Rotation (3.12)
(x,y) -•* (x cos# - y sin#, x sin# + y
cos8)

Scaling (3.13)
(x,y) -* (ax, by)

A tiled map supports two categories of operations: (1) transformations of the viewport

in which the viewport's size and zoom level remain constant, and (2) transformations of

the viewport in which the viewport's size and potentially the zoom level will change.

Each transformation has a before and an after state, symbolized by V and V, respectively.

Transformations may occur instantaneously or over some duration, each with differences

on how the operation appears on the screen and which tiles are required to complete the

35

operation. The transformation appears to either "jump" to the second state, for example,

or is animated on the screen for a smooth transition from Fto V.

3.6.1 Operations in the Tile Plane

A raster map display on a mobile unit is dependent on both direct and indirect

interactions from the user. A direct interaction responds to a user's request to reposition

the map on the screen (e.g., a button to pan north) whereas an indirect interaction

responds to a sensor's reading (e.g., when a GPS receiver detects a change in position)

and updates the map browser accordingly. Two operations take place at a single zoom

level on a tiled map: panning/moving (Section 3.6.1.1) and rotation (Section 3.6.1.2).

3.6.1.1 Panning/Moving the Map

Geographic space is vast relative to a mobile screen and, consequently, is often difficult

to capture within a single display space (Freundschuh and Egenhofer 1997). Mobile maps

should support a dynamic display by allowing the user to move the viewport relative to

the map space. Panning (or viewport movement due to physical user movement) is a

translation of V in the plane. The map interface allows the user to initiate this change by

some means of interaction, such as by dragging the map with one's finger or selecting

from a set of map controls (e.g., direction buttons). Depending on the implementation, the

user pans the map in a discrete set of directions (N, S, E, W) or in any direction, as in the

case of dragging the display on the screen (You et ah 2007).

A pan operation is a translation of the viewport (Equation 3.11), specified as a change

in the x- and ̂ -directions (i.e., pan(Ax,Ay)). A possible way to invoke a pan operations is

36

for the user to employ a touch-and-drag action on the mobile screen. Since the user does

this within the screen bounds, a possible constraint on the parameters of pan is (0 <= Ax

<= ws, 0 <= Ay <= hs). For the purpose of analyzing the affected tiles of a pan operation,

assume that this panning constraint is applied.

Prior to the pan operation, the viewport has certain leeway in each cardinal direction

and until a pan exceeds this free space, MBRT remains constant. Free space in each

direction is denoted Xfree , Xfree , yfree
 ¥, and yfree (Figure 3.4).

Figure 3.5: Viewport free space.

Panning the viewport may result in an incrementing or decrementing tile bounds

where the new values of MBRT are specified in terms of the free space, the panning

distance (i.e., Ax, Ay), and the width and height of a tile. If the panning distance exceeds

(3.14a)

(3.14b)

(3.14c)

(3.14d)

37

the outer bounds of MBRT then the new tile bounds increments or decrements once plus

however many tiles the viewport crosses (Equation 3.14).

3.6.1.2 Rotating the Map

Rotation is a change in the orientation of the viewport with respect to the map space.

Adoptive orientation is a term referred to a GIS that senses an orientation and rotates the

map in line with the user's frame of reference (Frank 2003). A location sensor (e.g., GPS

receiver) in combination with an orientation sensor (e.g., a digital compass) depicts the

user's environment in line with his or her frame of reference (Egenhofer and Kuhn 1998).

Rotation should, therefore, be considered a common interaction with mobile maps.

Rotation, like panning, may also be a direct or indirect interaction, such as when a user

requests a map rotation or the rotation is a result of a sensed change in device orientation.

A rotate operation is a rotation of the viewport (Equation 3.12) executed as rotate

(A0), A0 being the change in viewport orientation. Figure 3.3 shows that even when the

size of the viewport remains consistent, the size of MBRv fluctuates with 6v. The

maximum area covered occurs when 6v = 45°, 135°, 225°, or 315°, which follows from

deriving the function for the area of MBRv and determining the critical points. Let the

dimensions of the viewport be in terms of the width (wp), the height (hp), and the angle of

rotation (0) (Figure 3.6). The area of the minimum bounding rectangle is the product of

the MBR's width and height. Deriving the function and solving the equation at zero

reveals a local maximum, minimum, or inflection point (Equation 3.15). The second

derivative test shows that the maximum area of the bounding box occurs when 6 is 45

degrees, the same situation also applying to 6v = 135°, 225°, and 315°.

38

A(0) = [hP*cos(9) + wp*sin(6)] * [hP*sin{6) + wP*cos(9)] (3.15)
A'(0) = {hP

1+wp2){ cos2(d) - sin\d))
0 = (hpZ+wp2^ cos\6) - sin\d))
cos2(6) = sin\6)
6 = 45°, 0° <= 6 <= 90°
A" (0) = (hp2+M'P2)(-2cos(6)sin(e) - 2cos(0)sin(9))
A" (45°) < 0 => local maximum at 45°

To analyze the effects of a rotation on the underlying map tiles, the new location and

extent of the viewport relative to the pixel space must be calculated. All new points for

the viewport after the rotation come from the rotation equation (Table 3.2). First, the

coordinates are mapped to a local coordinate system where the viewport center acts as the

origin (i.e. {cp, dp} —> {0, 0}) and each point is specified relative to this origin. Next,

coordinates are transformed to their rotated version {(x,y) —» (x cos/9 - y sin6>, x sin6> + y

cos(9)}. After the rotation the local coordinates are converted back into global coordinates

relative to pixel or map space.

h*sin{9) w*cos(0)

Figure 3.6: Viewport MBR dimensions.

Regardless of the viewport's orientation, MBRv is always derivable given the

properties of V (e.g., cp, dp, wp, hp, 6v). As with panning, MBRv determines the minimum

bounding tiles for that space, MBRp (Equation 3.10). A rotation operation changes MBRv

and, consequently, the tiles intersecting the viewport's bounds. Prior to rotation, the

39

viewport has certain leeway in each cardinal direction and until MBRv exceeds this free

space (Figure 3.4), MBRT remains constant.

MBRT' are new tile bounds resulting from rotate(AO) and contain the same tiles as

prior to the rotation plus any new tiles that the viewport overlaps due to AMBRv

(Equation 3.16). Changes in the viewport bounds from rotation are denoted Axmmv,

kyminV, /SXmaxV, a n d AymaxV.

(3.16a)

(3.16b)

(3.16c)

(3.16d)

Rotation involves a transformation of viewport coordinates and is dependent on the

rotation angle, 9. A rotation of V implies an expansion or contraction of MBRv and,

consequently, can result in a corresponding expansion of MBRT. Rotation, like panning,

occurs within a single zoom level whereas requesting more or less detail through

zooming often requires multiple zoom levels (Section 3.6.2).

3.6.2 Multi-Scale Operations

Maps often support visualizing data at multiple levels of detail because geographic spaces

are too large and geographic features are too many in number to view on a single display

(Harrower and Sheesley 2005). Zooming is an interactive feature that, in addition to

panning, allows users to browse and seek information on a map display. Zooming refers

to a scaling geometric transformation of the viewport (Equation 3.13) and although it is

40

an instance of scaling, zooming is often described as two distinct operations (i.e., zoom in

for more detail, zoom out for less detail) (Figure 3.7). A mobile map supports zooming to

increase or decrease the level of detail in order to adjust the granularity of spatial

information.

(a) (b)

Figure 3.7: Zoom operations. J7represented as highlighted rectangle: (a) zoom in and

(b) zoom out.

Figure 3.8: A tiled map represents map space at several discrete intervals (z e Z).

Continuous tile space includes representations in between these (z e R).

41

3.6.2.1 Zooming the Map

A tiled map is composed of several discrete zoom levels, each being a distinct pixel space

of a particular width and height (Axp, Ayp). At any time the current zoom level, Zv, is the

tile layer from which data is retrieved and displayed on the screen although it is possible

to utilize tile images from a different level by scaling them. Zv is determined by getZoom

(Function 3.3).

This thesis distinguishes between two categories of zooming: (1) discrete and (2)

continuous zooming. A graphical user interface permits users to browse the map by

changing the map scale either in discrete intervals (e.g., users jump to a new scale) or on

a continuous basis (e.g., a pinch gesture to zoom in gradually). A tiled map typically

zooms to a specific set of zoom levels (i.e., Z G Z) versus zooming in between levels (i.e.,

z e R). In either case, the map browser references data from a single tile layer

corresponding to a particular zoom level.

From the perspective of pixel space to screen space mapping (P —> S), discrete and

continuous zooming are different. Discrete zooming permits the viewport to resize itself

to only a specific set of resolutions, each of which has the same resolution as the

corresponding zoom level (i.e. Resolutions = Resolution?). Each pixel from the pixel

space can map to one and only one screen coordinate, making this mapping an injective

function (Figure 3.9a), whereas continuous zooming allows for one-to-many or many-to-

one pixel mappings (Figure 3.9b,c).

42

(a) (b) (c)

Figure 3.9: Pixel mapping: (a) one-to-one (discrete zooming), (b) one-to-many

(continuous zooming), and (c) many-to-one (continuous zooming).

3.6.2.2 Discrete Zoom

This thesis defines two operations for a user under the realm of discrete zooming. The

user has the option to either zoom in or zoom out by one zoom level. In either instance,

TMBR' may need to be recalculated after the operation, since tiles now come from a new

tile layer. The new tile bounds, however, are still spatially dependent on the previous

bounds. Each successive zoom level splits a particular tile into four tiles, so that tile

coordinates from one level to the next are related. Given tile bounds MBRT {xmmT, ymmT,

XmaxT,)>maxT} at level Z, the tile bounds at level Z + 1 for the same area are MBRr' {2*

xmi„T, 2*yminT, 2*xmaxT+ 1, 2*ymaxT + 1}. Similarly, given tile bounds MBRT {xmmT, ymmT,

XmaxT, ymaxT} at level Z, the tile bounds at level Z - 1 for the same area are MBRT' {xmmTl2,

yminT/ 2, XmaxT/ 2, ymaxT / 2}. These new bounds, however, still represent the same map

space at each zoom level. A zoomIn() often requires fewer tiles within these new bounds,

while a zoomOut() often requires more tiles outside these bounds since the viewport

scales up or down relative to the map space.

43

3.6.2.3 Continuous Zoom

Continuous zooming is an interaction that allows a user to increase or decrease the extent

of the viewport in much smaller intervals. Instead of choosing between a set of

resolutions, a user can technically zoom to any resolution by setting the size of the

viewport explicitly. This thesis defines one operation for continuous zooming, zoom(A<i),

where d refers to the diagonal of the viewport in pixel space. A value Ad < 0 implies a

zoom out, whereas a value Ad > 0 implies a zoom in operation. Given the new diagonal

value, d', the scaling coefficient for the zoom is the ratio of the two diagonals (i.e., s = d' I

d). As with rotation, coordinates for the viewport are transformed to a local reference

system and s is applied to the scaling formula (Equation 3.13). Coordinates are then

transformed back into their original reference system and the map browser determines if

any new tiles are required.

A zoom operation has two states, V and V, and if the two states are within the same

zoom level (i.e., getZoom(F) = getZoom(P)) then the minimum bounding level

requires new tiles only if d < 0. If a scaling operation is always performed on the center

of the viewport (i.e., cp, dp = cp', dp), then the transformation is isotropic, that is, the

stretching or shrinking of the viewport is equal in all directions, implying that there is

equal growth (Ap) in each of the minimum bounds of the viewport. Prior to zooming, the

viewport has certain leeway in each cardinal direction and until one of these thresholds is

crossed by MBRv, MBRTremains constant. Free space in each direction is denoted Xfree
+,

xfree, yfree+, yjree' (Figure 3.4). The new tile bounds are:

44

(3.17a)

(3.17b)

(3.17c)

(3.17d)

3.6.2.4 Focusing the Zoom

A map browser may allow the user to focus the zoom operation on a point, which

essentially re-centers the viewport as the zoom operation takes place. In this way the user

is not strictly confined to zooming in on center. This operation is essentially a combined

pan-and-zoom operation, where the viewport is initially panned to the new center point

and then scaled according to the zoom parameter (Figure 3.10).

(a) (b) (c)

Figure 3.10: Pan and zoom: (a) viewport and focal point/

(b) viewport pans to re-center over/ and (c) viewport zooms in o n /

The operation on the interface should not appear to be two distinct operations but

rather a smooth animation from one state to the next. The data required to render this

operation smoothly for the map browser, however, is covered when thought of in a two-

45

step process. MBRT are the new tile bounds resulting from a pan operation t o / MBRT" is

the new tile bounds resulting from the zoom operation while V is centered over / Any

new tiles required to complete the operation are found in the new bounds. Allowing a

zoom operation to focus on a point adds the extra parameter, f, to the zoom operations,

which now are: zoomIn(/), zoomOut(/), and zoom(Ad,J).

3.7 Summary

This chapter identifies several spaces inherent in a tiled map implementation for mobile

devices. The map space is a rectangular projected representation of the real world globe.

The map space is split into several images of different resolutions as a computer

representation. Each level of detail, or zoom level, is a virtual image of the map space

which is cut into square images called tiles for easier storage, transport, and management.

This representation forms a tiled map, also known as an image pyramid, which is a

popular method for publishing base maps to clients since the client only needs a subset of

tiles to render a map display. The viewport is the region of the tile space drawn to the

screen. Such an operation requires mapping pixel locations from the tiles to those of the

screen. A dynamic display of the map is accomplished via user- or sensor-invoked

interactions such as panning, rotation, and zooming, each resulting in a geometric

transformation of the viewport. To render a display the mobile map browser requests a

minimum bounds of tiles that changes due to these interactions. User operations typically

allow incremental changes in the tile bounds (e.g., panning the display north to the next

tile). Any new data that the map browser needs, therefore, has a high spatial dependence

on the data used prior to the operation. Conceptually, this idea is consistent with Tobler's

46

first law of geography: "everything is related to everything else, but near things are more

related than distant things" (Tobler 1970). Interactions with a mobile map browser have

the highest impact on nearby data.

Operations occur individually or in combination. Concurrent operations have a

slightly different effect on the tile dataset, since the combined effect is in essence a union

of the two distinct operations. Mobile map operations play a role in cache management of

the data (Chapter 5). Whether considering individual or simultaneous operations, a

history of such operations effect how tiles in the cache are populated and removed.

47

CHAPTER 4

POPULATING THE TILE BUFFER

User interaction with a mobile map often results in the need to acquire new data

accessible from a remote data store. Downloading the data from a remote repository is

sometimes a necessary action yet has several drawbacks, such as unreliable connections

and relatively low bandwidth, yielding a slower response time. To combat the issues

involved with wireless communication a popular solution in mobile computing is caching

data locally on the device for repeated consumption. The map browser uses tiled images

as the smallest unit of data and in order to ensure proper data availability, tiles are cached

to a tile buffer, that is, a data structure for temporarily storing tiles on the mobile device.

A key advantage of the tile buffer is the addition of an intermediate communication

layer between the mobile map browser and the remote data store where tiles are accessed

(Figure 4.1). While the lack of a buffer enforces the map browser to establish expensive

connections (i.e., time intensive and data charges) to the network for each user action, the

presence of one permits the browser to first request tiles from the local store and only

make a remote request if a tile is not available in the buffer, reducing the amount of

client-server communication. The implementation of a tile buffer, coupled with a set of

intelligent heuristics on how to populate and manage tiles in the buffer, yields a map

browser with substantially higher usability. Improved usability is accomplished via an

attempt to decrease the amount of time a user waits for the map to refresh its display in

order to avoid testing the threshold of user patience (Mummert et al, 1995).

48

Map
Browser

Remote Data Store

T i l e Buffer

(a) (b)

Figure 4.1: Tile buffer: (a) map-server

communication and (b) map-server

communication via the buffer.

4.1 Cost

Although one wishes to minimize the latency involved with refreshing the map display,

time is only one of many costs involved with retrieving data over the air via a mobile

device. In fact, one can measure data retrieval cost using several metrics. Mobile devices

power themselves from a battery consisting of an extremely limited energy source and

communication over cellular networks can require a large amount of battery resource

(battery cost) relative to local computations. For this reason it is desirable to refrain from

too much over-the-air downloading of data to conserve battery power, especially with

spatial data, which are large relative to simpler data formats. Depending on the service

provider, data communication over wireless mediums can be expensive with regard to

money (dollar cost). While some providers offer prepaid, unlimited data plans for

communication over their cellular towers, others charge a user for data on a per-megabyte

49

scale. Therefore, one should design a mobile map browser with this in mind and possibly

allow the user to configure the allowable amount of downloaded data. Cost might also be

measured in data volume (storage cost) since data retrieved from a remote resource is

stored to local memory (e.g., RAM or flash). Once the designated storage space becomes

full an offloading mechanism must remove data in preparation for new downloads. All

costs mentioned are important. Latency of display refreshing due to temporal costs,

however, is very crucial for usability. When one must constantly wait for data retrieval on

an interactive display such as a mobile map browser, frustration levels rise and usability

is compromised. This chapter discusses some ways of populating a device with maps so

as to anticipate user interaction to reduce the latency of a map refresh.

4.2 Tile Buffer

This chapter defines the tile buffer and begins the discussion on how it may utilize tiled

data more effectively. The tile buffer is implemented as a set of tiles, meaning that the

buffer contains unique tiles and, therefore, changes only when adding a tile not currently

present in the buffer. This implementation differs from other collection data structures

that allow multiple instances of an item (e.g., a multiset or bag data structure).

Relevant operations on the tile buffer include those which enable caching of tiles to

the data structure. Since a tile buffer is a collection object (i.e., a set), there must be an

initialization or reset function to establish an empty buffer. The buffer herein is referred

to as B (a set of tiles) and initialization of the buffer is an instantiation of an empty tile set

defined as the function B.initQ (i.e., B <— {}). The remainder of this chapter is concerned

50

with populating the buffer with tiles and so makes use of a function to add tiles to the

buffer. The function B.add(T) adds the tile, T, to B (i.e., B ^ B u T) .

4.3 Populating Heuristics

A naive approach to populating a tile buffer includes only those tiles explicitly requested

by the map browser, meaning each tile in the buffer is or has been visible to the user

through the viewport. While this approach is the simplest, it creates a serious impediment

to performance of the map browser. Consumption of tiles in the buffer only happens

when the viewport intersects a previously used tile, meaning that the fastest map refresh

occurs only when the user goes back to a earlier location. Each operation resulting in a

new area on the map requires another network connection and additional tile requests

from the remote server. If the map browser is following a route for navigating the user

along a road network, each movement to a new location requires additional data and,

thus, delays the map rendering process.

To solve the issue of forcing the user to wait for a map refresh, the buffer can employ

better heuristics by anticipating future operations invoked by the user based on the

intuition of where a user expects the least amount of delay. Doing so exploits a network

connection by retrieving more data than currently required. Establishing a new

connection to a server for tile requests is assumed to cost something, mostly with regard

to the time required to do so. In addition, wireless networks are characterized by

intermittent connectivity and it is impossible to fully determine whether or not a

connection will be available in the near future. The unreliability factor of wireless

51

network connections creates an uncertainty to the availability of map data in the future.

The strategies for populating the tile buffer described in this chapter anticipate upcoming

operations on the map in order to take advantage of any available connection when

available by retrieving a larger data set from the server.

Each assumption has implications on the add() function defined on the tile buffer.

The map's viewable area is described using MBRp or MBRT, which describes a set of

adjacent tiles, each of which are added to the buffer by the B.add(T) method. The

governing strategies define a function/(T) which, given T, will derive a set of tiles which

are also added to the buffer as a result of add (Equation 4.1).

B^B + Tu/TT) (4.1)

4.3.1 Coarser Tiles

According to Shneiderman's Visual Information-Seeking Mantra (1996), overview

information is of highest priority for a visual interface. Overview information in regards

to a tiled map refer to tiles at a lower level of detail than a given tile, which herein are

referred to as coarser tiles. The first assumption of the buffer populating heuristics is that

users expect to have a less detailed map than what is currently available and, thus, the

buffer should always keep some set of coarser tiles in memory. The strategy attempts to

minimize the amount of wait time of a map refresh for zoom out operations by

maintaining coarser tiles in the buffer. When a tile is added to the buffer, a coarsening

function, c(T), derives a relatively small set of coarser tiles which are also added to the

buffer (Equation 4.2).

52

Assumption 1 (Al) : Always populate the buffer with lower detail tiles.

B^BuTu c(T) (4.2)

The coarsening finds tiles of a coarser resolution than that of T. Each zoom level

coarser than that of T has exactly one tile that contains the map extent of T (Figure 4.2).

By retrieving coarser detailed tiles, the buffer increases the geographic extent of the

cached tile data. Maintaining coarser tiles is especially useful if high detail maps are not

available for a specific location because raster images are scalable and may be used for a

different zoom level than originally intended. If tile T is not available, for example, the

map browser may instead find a tile from a lower zoom level, scaling the image to match

the resolution of T. Scaling an image up or down, however, does not increase or decrease

the amount of information and instead decreases image quality and so should only be

used as a temporary solution while the correct tiles are cached into the buffer.

Figure 4.2: Tile containment. Tile T at level z and tiles containing T at lower zoom

levels.

The function c(T) might use one of several strategies for retrieving tiles, each of

which require a different number of additional tiles to add to the buffer. For instance, the

function could retrieve all tiles at coarser zoom levels that contain T, such as in Figure

4.2, requiring (z - Zmin) additional tiles. Alternatively, c(T) could also just retrieve one tile

53

at a coarser level that contains the extent of all tiles visible by the map. Regardless of

which method is used, the implementation should attempt to minimize the number of tiles

to retrieve while still fulfilling the need for less detailed, overview data.

4.3.2 Stationary Map Rotation

In addition to retrieving coarser tiles, strategies for filling the buffer also incorporate data

that are near the map's current location. Map rotation should be considered an

instantaneous operation since it is fair to assume that a user might expect little to no delay

when simply rotating the map while keeping its center stationary. Also, rotation only

requires the addition of a relatively small amount of tiles so the buffer should, therefore,

support rotation by retrieving the neighboring tiles of T. The second assumption for

anticipating future operations and the corresponding tile set stems from this intuition that

users expect minimal delay as the map rotates, meaning the data required for rotation

should exist in the buffer. When the buffer adds a tile the function r(T) derives the tiles

around T that are included for rotation (Equation 4.3).

Assumption 2 (A2) : Always populate buffer to allow for stationary map rotation.

B «- B u T u r(T) (4.3)

The rotational tile set obtained by r(T) is based on one of several neighborhood

techniques. For example, one could use the MBR of the circular footprint formed from

rotating V about its center. The MBR is a square with a length equal to the diagonal of the

viewport (Figure 4.3) and is used to derive any addition tiles that could intersect V when

rotated. The rotational MBR creates some overhead, however, since the area in the

54

d

V

Figure 4.3: Rotational MBRof V(MBRrv).

corners of the MBR are not actually part of the rotational area but does guarantee that all

tiles are available for any stationary map rotation.

Alternatively, r(T) might be based on the situation that occurs when considering only

one tile and its immediate neighbors. If Presides completely within one tile, the only tiles

that can possibly intersect Ps rotational footprint are the four adjacent neighbors to that

tile. The function r(T) retrieves the four adjacent neighbors of T and, if multiple tiles are

covered by the viewport, the resulting tile set is derived by a matrix addition (Figure 4.4).

Figure 4.4: Tile neighborhood addition. T (dark) and rotational tiles (light).

Tiles that are pushed into the buffer in preparation of map rotation should also comply

with the coarser tile policy Al; for each tile added for rotation the buffer also finds the

coarser set of tiles. In other words, an extension of A2 states:

Assumption 2a (A2a) : Always populate the buffer with coarser tiles derived from A2.

B ^ B u T u c(r(T)) (4.4)

The intersection of the tile sets derived from c(T) and c(r(T)) will often be non-empty

since coarser tiles cover a larger extent. Therefore, the addition of A2a is considered

relatively non-expensive but necessary to maintain a set of tiles which provide an

overview of the current map.

4.3.3 Details on Demand

The Visual Information-Seeking Mantra suggests that higher detailed information be

retrieved only on-demand when requested by the user. Intuitively, users are more willing

to accept the fact that retrieving a higher detailed data set requires a wait. From a

performance perspective, on-demand access for high detail data is necessary since the

number of tiles composing a region of the map space grows exponentially as one

increases the zoom level. On-demand access to tiles at a higher zoom level is independent

of the anticipation heuristics but still triggers previously defined heuristics (Equation

4.5).

Assumption 3 (A3) : Add detailed tiles to buffer on-demand only.

B e B u T u c(T) u r(T) u c(r(T)) (4.5)

The cost of retrieving additional tiles for A3 is minimal since the buffer already

contains coarser tiles from immediately before the zoom in operation.

56

4.3.4 Nearby Movement

A commonly used feature of mobile mapping software is navigating the user through

space, such as along a road network. Navigation implies that the user is moving through

space and, hence, will require a dynamic map display. In addition to a navigation scenario

that updates the map display through sensed changes in position, browsing the map (e.g.,

panning) also yields a dynamic map display. These two examples both seek new data that

are close in pixel space to the map's current location. In order to anticipate the local

movement of the device/user or map display, the next buffer populating strategy assumes

that the user will require neighboring tiles of the current map view. A function «(d,T)

derives nearby tiles which are less than or equal to d tile units from T (Equation 4.6).

Assumption 4 (A4) : Anticipate nearby movement and pre-fetch tiles for a limited range

of the current map view in discrete tile units.

B ^ B u T u n(d,T) (4.6)

Tile distance refers to the number of units between two tiles and is defined using a

distance metric. Since tiles are indexed by their x- and ^-coordinates, the indexes

determine the distance between two tiles. A common distance metric in two-dimensional

space is based on the relation between two items in Euclidean space and uses the

Pythagorean theorem (i.e., d = \j(x\ - xif + (vi - yif , d € R) as a quantitative measure

of distance. A simpler but equally effective metric for tiles is Manhattan distance (or

Taxicab Geometry), where the distance is the sum of the absolute difference between tile

57

coordinates (i.e., d =1 x\ - xi I + I y\ - yi I , d € Z). Using this approach, distances are

described as integers and tiles of equal distance form rings around the center tile.

Both A2 and A4 are concerned with tiles residing in the immediate neighborhood of

T. In fact, the two assumptions both consider an isotropic tile range from T and will

result in some overlap. If A2 only considers the four adjacent neighbors of T, while A4

considers all tile neighbors up to some distance, d, then the buffer heuristics can discard

A2 so long as d > 0. The strategy populates the buffer in groups of neighboring tiles of

equal distance from T. In addition to adding the neighboring tiles, the buffer also looks to

previous heuristics for each added tile. A revision of A2a yields an extension of A4

(Equation 4.7).

Assumption 4a (A4a) : Always populate the buffer with nearby tiles up to some

distance, d.

B ^ B u T u c(n{d, T)) (4.7)

4.3.5 Direction-Dependent Movement

So far the buffer heuristics discuss pre-fetching nearby map tiles in an isotropic fashion,

that is, retrieving an equal number of neighboring tiles in all directions. In addition to

anticipating the next move by populating the tile buffer with coarser and nearby tiles, one

could also exploit direction of travel for bulk loading tiles into the buffer. Direction of

travel refers to the predominant direction of movement in the user's environment and to

derive this property, the buffer must record a location history of the user that together

form a trajectory which the buffer extrapolates to anticipate a future location. A tiled map

58

trajectory is the movement of the user or viewport through space and is represented as a

sequence of location and time entries, each having the form { xt, yt, tt}.

Processing on location history data determines whether or not the user is moving and,

if so, the direction and speed of the movement. Using the device's location history, the

buffer manager uses one of two strategies for bulk loading tiles. If the device has the

same position (or close to the same position) over the past n units of time, then one

assumes the device is stationary, in which case any bulk-loading of tiles acts according to

A4. A non-stationary mobile device, however, has a trajectory described by its past

positions. Processing this trajectory derives a motion vector, v, describing both the

direction and velocity of the movement. If the buffer manager determines that the device

is in motion, a direction-dependent bulk-downloading strategy overrides the stationary

version (A5).

Assumption 5 (A5) : When device is moving, populate the buffer with nearby tiles up

to some distance, d, in the direction given by a.

B e B u T u « (a , r f , T) (4.7)

Direction-dependent bulk-loading uses the predominant direction of movement of the

device to put emphasis on downloading tiles in a specific direction, a, where 0 < a < 2u.

The magnitude of the motion vector, d, is dependent on the velocity of the motion, where

an increase in velocity corresponds to an increase in d. Anticipating tile usage based on

direction demonstrates an anisotropic approach to pre-fetching nearby tiles.

Neighborhood tiles are compared to each other through distances from some center and

these distances are weighted based on how astray a tile is from the motion vector. Those

59

tiles opposite the direction will be weighted lower (i.e., larger distance) than those in the

direction of movement (i.e., smaller distance) (Figure 4.5).

(a) (b)

Figure 4.5: Weighting of tiles. Darker tiles are weighted higher, (a) Isotropic (stationary

device) and (b) anisotropic (moving device).

4.4 Server-Side Computation

Mobile devices draw from a finite energy source and will continue to limit how long one

can use a device in the field without recharging the battery. In order to maximize battery

life on a device one should avoid any intensive processing when possible and instead

offload this processing to a server. Mobiles, assuming now the presence of wireless

Internet connectivity, can communicate to servers via web services to assist in the future

state of a device.

The anticipatory user interaction strategies aim to select some number of tiles to pre­

load onto the device given several parameters such as previous interaction or device

movement and current map level of detail. For simple location prediction using linear

motion models, computation is relatively light, whereas for more complex trajectory

60

extrapolation or might require the assistance from a server. In addition, distributed

computing can offer further filtering for prioritizing anticipated locations through the use

of additional GIS data. A web service, for example, might determine whether it even is

necessary to preload data based on a separate prediction on the future status of cellular

signal strength (Figure 4.6a). Also, one could further refine a trajectory prediction based

on road networks, where a straight line path is sometimes highly unlikely (Figure 4.6b).

(a) (b)

Figure 4.6: Server GIS data repositories: (a) Cellular coverage data

plus trajectory and (b) road network plus trajectory.

4.5 Buffer Data Structure

The tile buffer, being a set of unique tile items, is implemented as a data structure with a

logical organization of the tiles based on the buffer populating heuristics. One way to

envision the buffer data structure is through the use of a linked list of tile objects, where

tiles in the buffer are grouped according to how they are inserted into the buffer. For

instance, all tiles that are currently used by the map browser might be adjacent in the list,

followed by Al tiles for the map overview, followed by A2 nearby tiles, and so on

61

(Figure 4.7). Categorizing tiles in this manner will help to prioritize how tiles are

removed from the buffer (Chapter 5).

Figure 4.7: Buffer as a list of tiles, categorized by next move heuristics.

4.6 Summary

This chapter details a specification for implementing an anticipatory approach to user

interaction on mobile map browsers. The specification describes several ways to populate

a tile buffer (local storage allocation for map tiles) based on graphical user interface

principles, intuition on user patience, and interaction history of the user. When the map

browser has satisfied on-demand data requirements and acknowledges the presence of a

data connection, the opportunity to gather additional map data from a remote tile

repository should be considered. Doing so will speed up future requests for data by

improving cache hit rates and also better prepare the device for a lost or slower data

connection. Chapter 6 describes a prototype for testing some of the heuristics for pre-

downloading map tiles to assess the advantages and disadvantages over on-demand map

tile access.

62

CHAPTER 5

CACHE MANAGEMENT

All software applications, especially mobile ones, are memory-limited and must,

therefore, employ some functionality for ensuring sufficient digital storage space for data.

Map browsers use memory-demanding raster and vector data for generating the graphics

for geo-visualization and regardless of whether maps are stored on a mobile device in

main-memory or on disk (i.e., flash memory), at some point it becomes necessary to

offload maps to ensure space for incoming data. Although it is possible to require the user

to choose data to offload, this task is assumed to be non-trivial since it may involve

selecting from a group of map layers, levels of detail, and geographic area and should,

therefore, be abstracted from the user and implemented as an automated process. This

chapter offers several tile offloading mechanisms and the rationale behind each method.

Offloading, or cache replacement, revolves around assessing temporal and spatial

relationships between cached items and may utilize one or both of these relations.

5.1 Cache Invalidation

Quality caching of map tiles involves proper anticipation of user interaction for pre­

loading data but also proper removal of the data. Since map browsers consume spatial

data over time, location is an additional parameter one may use for selecting candidate

tiles for deletion. Even so, temporal attributes of the data are important and should still be

factored into cache management. A challenge to effective tile data management is cache

invalidation, or determining when a cached item is expired. Information changes over

63

time but also at various temporal granularities. While weather and traffic information are

characterized by frequent change, housing developments arise much less frequently,

street names hardly change, and spatial attributes of geographic features like rivers and

mountains vary over a significantly larger time scale. In short, map layers are diverse in

the temporal granularity at which they change but nonetheless provides a metric by which

to make decisions on when to offload maps on mobile devices. For purposes of managing

a tile cache temporally, one might also tag each tile with a "time to live" property and

when this duration is exceeded the tile is discarded from the cache.

Although invalidating a tile based on a temporal threshold permits one to define a

single comparison for a cached item, a couple issues exist with the approach. For one, the

comparison does not take into account the tile's frequency of use. If a tile is relatively old

but frequently used and retrieving an updated version is costly (e.g., no data connection

exists), discarding the tile is not the best solution. Managing cached tiles should consider

the cost of retrieving an updated version of a particular tile prior to committing to

deletion.

5.2 Offloading Algorithms

Cache replacement policies compare several cached items at a time in order to prioritize

them for deletion. By doing so, a replacement algorithm aims to select data items to

delete that are least likely required for future use. With location data it is possible to

guide replacement policies using multiple metrics of space in addition to time.

64

5.2.1 Least Recently Used

One of the many common temporal cache replacement algorithms is the least recently

used (LRU) policy which deletes cache entries by comparing each item's last usage

timestamp and ranks them from least recent to most recent. In spite of the effectiveness of

an LRU approach, one can easily derive a scenario in which an LRU approach fails for

tiled maps (Figure 5.1). Consider a moving object which is traveling along a path which

will eventually return to its initial location. Given the history of data consumed by the

map, an LRU approach selects discarded tiles (dark shaded) that would intuitively be

saved for future use based on the current location and movement of the object.

Figure 5.1: LRU ranking (darker

shades indicate least recently used).

5.2.2 Furthest Away Replacement

Cache replacement algorithms for spatial data should integrate location-based cache

replacement when reasonable to do so. Given a tile buffer storing n tiles, a furthest away

replacement (FAR) will rank the set of tiles by distance from some point, p. Lhose tiles

that are furthest away from/; are removed from the buffer (Figure 5.2). Alternatively, the

65

replacement algorithm calculates tile distances between the current tile and all other tiles

in the buffer. The distance between two tiles, cl, comes from an equation that provides

some distance metric for tiles, assuming the two tiles are at equal zoom levels. Given that

this is true (i.e., ZTI=ZT2), the following applies:

d(Ti, Ti) = \xn- XT? + | yn - yn | (5.1)

Figure 5.2: FAR discards furthest away tiles

(darker shades indicate greater distance).

5.2.3 Directional FAR

Similar to pre-fetching local tiles based on user or device movement (Chapter 4), cache

replacement policies exploit trajectory data to further refine location-based cache

management. Chapter 2 discusses previous approaches to represent a moving object via

trajectories. In this thesis and for testing a prototype implementation a vector-based,

linear motion function is used to describe a mobile device's current state of movement. A

66

device's movement state is specified as a location, speed, and direction (Sistla et ah,

1997) and is derived from the previous n device locations.

A caching policy using FAR calculates a distance for each tile in the buffer

corresponding to the distance between that tile and the center tile (i.e., the tile containing

the device or map's current location and zoom level). Buffered tiles are then ranked by

distance, the farthest being removed. In order to make use of direction, each tile's

distance is weighted (w*d) based on the angle of difference between the two tiles and the

general direction of movement (Figure 5.3). Fhose tiles in the direction of the device's

motion vector receive the lowest weight, while those opposite the motion vector receive

the largest. Weighting the distances according to direction encourage the buffer manager

to keep tiles in the direction of movement and discard those opposite this direction. Of

course, a stationary device would have little effect on the distance values as the weights

would be the same regardless of direction.

Figure 5.3: Angular difference (a) between motion vector

(vm) and the directional relationship between a tile and the

center tile (vrm).

61

5.2.4 Prioritization by Pre-fetching Strategies

Chapter 4 discusses the tile buffer and suggests that the buffer will not only store

neighborhood tiles for a particular level of detail but also overview data, or tiles at a

coarser zoom level. At any time tiles might be cached for several zoom levels, something

the buffer must consider when executing a cache replacement algorithm.

A question that arises for multi-resolution tiled maps is how one establishes a distance

metric for tiles at different zoom levels, since one cannot simply use the discrete tile

distance for two tiles at equivalent zooms (Equation 5.1). For example, consider tiles Ti

and T2, where Ti is at a coarser zoom level than T2 and the distance between the tiles'

coordinates is large relative to if the tiles are at the same zoom level. Ti covers T2

topologically, however, and offers a less detailed, overview version of T2 and should thus

be preserved in the buffer. A distance metric for tiles at two different zoom levels is

required for comparing tile distances at varying zoom levels. One solution is to translate

T2's tile coordinates to the zoom level of Ti by recursively assigning T2's parent's tile

coordinates to T2 until both Ti and T2 are at the same level. Once translated Ti and T2' use

the same distance measure as for tiles of equivalent zoom levels. To account for the

difference in zoom levels one could also add the zoom level difference to the distance

metric (Equation 5.3).

given (ZTI < ZT2 A ZTI = ZTI1), d(Ti, Ti) = (ZTI - Zn) + d(Ti, T2') (5.2)

68

5.3 Summary

Offloading map tiles is a balancing functionality to populating and pre-populating the

memory buffer. As the buffer fills and exceeds some threshold, the buffer manager

prioritizes tiles from the buffer for deletion and does so on either a temporal, spatial, or

combined basis. Concepts from the previous two chapters are implemented in a prototype

tile caching application in order to assess anticipatory caching strategies to on-demand

strategies.

69

CHAPTER 6

PROTOTYPE IMPLEMENTATION

The previous two chapters introduced a number of strategies for both pre-fetching tiles

and removing tiles from a memory buffer on a mobile device. With the objective of

gaining some insight on the success of these strategies, this chapter introduces a

prototype implementation which simulates vehicle movement through a road network.

Two strategies, an isotropic and anisotropic pre-fetching policy, are implemented in

a .NET C# application for comparison on a set of trajectory data gathered from real-world

vehicles. Isotropic pre-fetching anticipates movement equally in all directions and

generally would be useful for a completely random movement pattern through space.

Realistically this is seldom the case as movement through space within relatively short

temporal intervals is dependent on the past and current locations of a moving object and

thus is not random, especially when constrained by a road network, for example.

Anisotropic pre-fetching anticipates user movement in a particular direction to retrieve

tiles at the current zoom level of the map. As a user moves through space and time, one

can derive a motion vector which is then used to prioritize nearby tiles for pre-fetching,

given that a data connection is available at the time.

To further augment pre-fetching, one can also pre-fetch tiles at a coarser level of

detail than the current map display, which has some advantages. First, since tiles are

scalable images, a single tile at the next coarser level can replace the need for retrieving

four tiles at the current level. Hence, one actually increases the geographic coverage

70

while decreasing the data volume. However, the resulting tradeoff of doing so is a

decrease in the overall visual quality of the map as coarser level tiles can become

"pixelated" when used for a resolution higher than originally intended. This chapter

describes a prototype to simulate tile pre-fetching at a single zoom level in order to

simplify the metrics needed to analyze pre-fetching performance.

6.1 Experimental Design

The prototype aims to simulate as realistic of a scenario as possible, one in which a

mobile map cache is dynamically updated as a user moves through the environment or

navigates the display via pan and zoom map operations. In order to do so the prototype

implementation models (1) user movement through space, (2) a web-based tiled dataset,

and (3) tile pre-fetching and removal policies. The success of the pre-fetching algorithm

is measured by pre-fetching accuracy, derived from recording both the correct and

incorrect classification of tiles for pre-fetching.

6.1.1 Trajectory Data Set

In order to support a realistic approach to measuring the pre-fetching strategies, the

caching algorithm makes use of data representing a mobile object whose position changes

with time. The R-tree Portal (www.rtreeportal.org) hosts a plethora of software, data

generators, and real-world datasets supporting ongoing research for moving-object

databases. GenerateSpatioTemporalData (GSTD), for example, is a publicly available

software library for generating point or rectangular moving object data and is available

for download over the web. Although a trajectory generator enables one to simulate a

71

http://www.rtreeportal.org

large number of trajectories very quickly, which is useful for statistical purposes, it

remains difficult to build a dataset that closely mimics the complexity of movement of a

real-world object. Some generators, such as GSTD, create spatio-temporal datasets

according to a statistical distribution. For example, one can specify both the spatial and

temporal components to follow a normal distribution. That is, Ax, Ay, and At each have a

mean and variance that dictates what their values tend to be. A trajectory following a

normal distribution will thus progress in one general direction, where increasing the

variance can result in a more irregular trajectory. In addition, the change in x- and y-

values for a single timestamp is not dependent on previous sample points for the

generator, which is not like the real world. A road that curves continues to curve and a

long, straight road does not vary direction for some distance. Therefore, in order to

capture the properties of trajectories most inherent in the real world, the map pre-fetching

simulation consumes data captured from real road networks.

(a) (b)

Figure 6.1. Trajectory data: (a) school buses and (b) construction trucks.

72

Frentzos et al. (2005) offer two datasets online for metropolitan Athens, one featuring

tracking of school buses picking up and dropping off students while the other represents

construction trucks moving to various sites within the region (Figure 6.1). Overall, the

trajectories offer a variety of trajectory complexity, from relatively straight highway

driving to city block driving with frequent directional change, providing the necessary

balance for an analysis of trajectory direction dynamics and pre-fetching performance.

The raw data made available on R-tree Portal does bring up a couple issues with

regard to the pre-fetching simulation. First, there is a lack of consistency between

timestamps of sample points and, consequently, distances between them. Since the

implementation prototype uses sampled trajectory points, it must estimate pre-fetching

effectiveness not only at the sampled points but also in between them. Assuming straight-

line movement from to to ti, all tiles intersecting the swath of the viewport at and in

between these two sample points are tagged as "required" by the map Tenderer. The pre­

fetching algorithms only consider a maximum number of tiles to pre-fetch, both at a

maximum distance and of a maximum quantity at any one time. To ensure consistency

between the domain of tiles for pre-fetching along a trajectory, the data was resampled so

that sample points were evenly spaced with regard to both space and time. As a result, the

normalized trajectories represented vehicles moving at a constant speed of about 35 mph.

Although this does not represent real world traffic perfectly, it does offer an advantage.

The prototype compares two pre-fetching strategies that differ in how they deal with

direction. By normalizing properties such as speed along a trajectory to ensure

consistency, the direction properly of trajectories is the only variant, making the

73

upcoming analysis more statistically sound. The trajectories were also trimmed so that

each trajectory contains 40 sample points.

6.1.2 Web Tile Dataset

Tile images from a tiled map dataset can vary depending on the provider, map projection,

data compression, image size, among other variables. The pre-fetching prototype

simulates the use of a particular data set of a defined set of attributes. OpenStreetMap is a

community GIS project for creating and editing a worldwide map and the project's main

website (http://openstreetmap.org^ features a tiled map browser that pulls pre-rendered

raster images from a database.

Our prototype simulates the use of OpenStreetMap tiles for a dynamic tile cache and

does so by estimating some attributes of the data source. Tiles themselves are 256x256

pixel PNG images in a Web-Mercator projection, which is consistent with many other

web tile data sources (e.g., Google, Bing). Although these attributes remain consistent,

the data size of tiles varies depending on how the original image was rendered. To

incorporate a varying tile data size the prototype assumes a normal distribution of sizes in

the entire dataset. A mean of \i = 14,146 bytes and standard deviation of o = 4,065 bytes

were calculated from a sample of 963 OpenStreetMap tiles. As the prototype simulates

user movement, tiles are created with a size according to a normal distribution of these

values, which will determine both the cost for retrieving a tile wirelessly and the impact

each tile has on the amount of available cache space.

74

http://openstreetmap.org%5e

6.1.3 Wireless Coverage

In addition to tile size, the data transmission rate of a cellular connection also determines

the cost for retrieving a map tile wirelessly (i.e., retrieval time ~ datasize I

transmissionrate). Although data rates fluctuate depending on carrier, cellular standards,

network user load, signal strength, etc., the International Mobile Union (IMU) called for

the 3G standard to provide a minimum speed of 348 kbit/s for a moving vehicle (ITU,

2005). The prototype implementation assumes a consistent transmission rate of 348 kbit/s

for downloading tiles when connected.

In reality, one might experience intermittent connectivity as they travel by vehicle

along a road network, since one hundred percent wireless coverage is not yet available

among any wireless carrier. The pre-fetching simulations do not model intermittent

connectivity in an environment, since the objective is to measure pre-fetching accuracy of

two direction-based models. This thesis argues, however, that a pre-fetching strategy

which yields a higher accuracy and thus higher reliability of having the necessary data in

the future implies that it would also prove beneficial in an environment where a wireless

connection is intermittent. This rationale assumes that a connection is indeed available

part of the time, however. Given a mobile device equipped with GPS, it is still possible to

record a location history when in a cellular dead-zone. When a connection does become

available one exploits it by pre-fetching data in anticipation that the connection may not

be available soon after. One might test this by varying the level of connectivity and

measure the confidence in having the necessary data during periods where connectivity is

75

lost. Pre-fetching clearly would become less effective when connectivity becomes more

sparse as there is little opportunity for pre-fetching at all.

6.1.4 Pre-fetching and Replacement Policy

Cache management for the prototype implementation includes both pre-fetching and

removal of tiles in a limited size memory buffer. Another control variable for the

simulation is the size of the memory buffer. As previously mentioned, the tile cache can

include a main memory cache, file cache, database cache, or combination of these. The

experiment will consider a main memory tile bitmap cache only of a maximum size of 64

tiles or 896 KB. As tiles are fetched and pre-fetched the tile buffer fills and once either

threshold is crossed a cleanup policy is invoked to rid the cache of unwanted tiles.

Chapter 5 discusses some strategies for removing tiles from a memory buffer, one

through temporal locality (LRU) and the other through spatial locality (FAR). Since the

prototype will be pre-fetching tiles in anticipation of movement, the removal algorithm

should refrain from discarding pre-fetched tiles as this would be counter-productive.

Instead, whenever the buffer reaches either the maximum tile threshold or the maximum

data size threshold, it ranks cached tiles according to last access time and discards the

least recently used tiles (i.e., LRU).

As the simulation moves from point to point along a trajectory, the pre-fetching

algorithm anticipates future needed tiles based on this movement and queues them up for

retrieval. First, the algorithm identifies the a set of tiles to prioritize based on movement,

defined as any tile within a maximum distance of the current center tile and of the same

zoom level. Each tile is then assigned a weight based on its distance from the center tile

76

(</), its angle to the center tile relative to the direction of movement (a), and the speed

movement (s). Tiles in line with the direction of movement should receive the highest

weight, while a greater speed corresponds to heavier weighting of tiles further out in the

direction of movement. To calculate these values the pre-fetching algorithm uses a

variation of the standard normal distribution function that captures these three variables

(Eq. 6.1) (Figure 6.2).

1 - ^
- e 1/V* (6-1)

d

The tile weighting function determines a weight for each tile based on a curve such as

that shown in Figure 6.2a. Values along the x-axis correspond to a and range from -% to n.

The speed of the moving object is equivalent to the function's standard deviation and so

as speed increases, the bell curve becomes narrower and tiles are weighted higher in the

direction of movement. The distance of the weighted tile to the current center tile affects

the overall weight as well, where tiles closer to the center will receive a slightly higher

weight. In essence, tile weighting is meant to account for both distance and direction of

movement for anisotropic pre-fetching only, whereas isotropic pre-fetching only accounts

for distance. Tile weighting could certainly be implemented differently, such as through

the use of a trigonometric function or a multivariate normal distribution (Hansen, 2008).

Such functions would likely produce similar results as they are also feature bell-shaped

curves. The prototype uses a tile weighting function since, like document retrieval in

search engines, items of interest are determined by their relevance, where relevance in

this instance is determined in large part by locality and direction.

77

(a) (b)

Figure 6.2. Tile weighting function (a) and sample

results (b). Darker shades imply a larger weight.

6.1.5 Pre-fetching Metrics

Pre-fetching map tiles is an information retrieval process similar to a querying a web

search engine. Google and Yahoo! search engines have specialized algorithms to rank

documents so as to return the most relevant search results to its user. Similarly, tile pre­

fetching aims to target a set of tiles (albeit a much smaller list than a web search) and

prioritizes them based on future relevance to the map. One can measure tile pre-fetching

in terms of precision and recall since the prototype is essentially performing a binary

classification on a group of tiles, marking them as either one to pre-fetch (i.e., positive

classification) or one not to pre-fetch (i.e., negative classification). Precision refers to the

ratio of tiles successfully pre-fetched and later found relevant (i.e., the map consumed

this tile from the cache and thus is a true positive) to the total number of pre-fetched tiles.

Recall is the ratio of successfully pre-fetched tiles to the total number tiles requested by

78

\J> 1
Jft2 I

/u

• to

(a) (b)

(c)

Figure 6.3. Tile pre-fetching: (a) pre-fetching prioritization of tiles of d<=

2 based on Eq. 6.2, (b) top 5 tiles are pre-fetched, (c) simulation records

correct and incorrect classifications.

the map. At each sample point along a trajectory the cache labels any pre-fetched tiles

from the previous movement according to a classification context or confusion matrix

+
Predicted

Classification

Actual Classification

+

tp
(true positive)

fp
(false positive)

fn
(false negative)

tn
(true negative)

Table 6.1. Classification Matrix.

79

(Table 6.1). All tiles within a distance of 10 tiles from any point on the trajectory are

initially labeled as true negatives so as to only consider a small number of tiles

(depending on the zoom level the tile space can be composed of millions of tiles). Tiles

are labeled as false positives if they are pre-fetched and later discarded from the cache

without ever being within the viewport.

Performance measures for predictive processes can be carried out using measures of

precision and recall (Olson and Delen, 2008). A receiver operating characteristics (ROC)

curve, for example, helps to visualize the relationship between true positives and false

positives. The ROC curve plots the true positive rate (Eq. 6.3) against the false positive

rate (Eq. 6.5). The true positive rate is also known as sensitivity while the false positive

rate is one minus the true negative rate (Eq. 6.4) (Olson and Delen, 2008). Accuracy is

another measure of success in information retrieval that can measure how well a pre­

fetching algorithm identifies or excludes future needed data (Eq. 6.6).

TP

True Positive Rate {sensitivity) = TP + FN
(6.3)

TN
True Negative Rate {specificity) = TN + FP

(6.4)
TN

False Positive Rate = 1 - TN+FP (6.5)
TP + TN

Accuracy - TP + FP + FN + TN (6.6)

A trajectory is a sampled representation of the viewport's movement through the map

space. Not only will the simulation need to track which tiles intersect the viewport's

bounds at each timestamp along the trajectory, but also any tile that might intersect this

moving window between timestamps. To determine the entire set of tiles that intersect the

swath we simply model the moving viewport as a polygon (Figure 6.2c) and test each tile

using a point-in-polygon algorithm. If any of the four points of a particular tile are within
80

the bounds of the polygon, the tile is said to be "required" by the map for rendering. This

approach assumes that (1) the viewport moves in a straight line between two trajectory

sample points and (2) both the tile width and height are smaller than the width and height

of the viewport, which is necessary to ensure an accurate point-in-polygon assessment.

6.2 Simulation Results

In total the tile pre-fetching prototype simulates 251 distinct trajectories (a product of

trajectory normalization from the larger dataset), each of which consists of 40 sample

points. Simulations are run for both isotropic and anisotropic models while varying the

data volume allowed to pre-fetch. That is, for each trajectory, the prototype simulates a

maximum tile pre-fetch of 0-10 for each model, yielding a total of 5,522 simulations

(2*11*251). Trajectories vary in complexity, herein defined as the average absolute

change in heading that the trajectory experiences along its duration. Trajectory

complexity values range from 9° to 70° with a mean of 32° and standard deviation of 14°.

As previously stated, the simulation considers a transmission rate of 348 kbps and

average tile size of around 14 KB. Trajectory sample points are taken every 30 seconds,

yielding a limit on how much data could potentially be pre-fetched per sample and is

actually considerably more than 10 tiles. Realistically, however, transmission speeds vary

and the time it takes to establish a connection and write data to disk or a database adds to

the total time it takes to retrieve one tile. A 10 tile maximum is an appropriate limit as it

does lead to some insight on how data volume affects pre-fetching accuracies in

conjunction with trajectory complexity.

81

The prototype implementation is a .NET Windows Console application and all

simulations were output to CSV text files. In order to efficiently query and format subsets

of the results all data were inserted into three tables of a Microsoft SQL Server database

(Table 6.2).

Trajectory

trajectory id num_points num turns vehicle type polyline avg heading change

TrajectorvPoint

trajectory_pt_id trajectory id latitude longitude speed heading

Simulation

simulation id maxjprefetch max distance zoom coverage isotropic

trajectoryJd tp tn fp fn tpj-ate

fprate fn rate accuracy total hits totaljnisses hit ratio

Table 6.2. Trajectory database table schema.

6.3 Analysis of Results

The initial presumption of this thesis was that anisotropic pre-fetching would

significantly outperform isotropic pre-fetching in a situation where movement is not

totally random, a requirement that is captured through use of real vehicle movement data

within a city road network. To test this hypothesis, each group of pre-fetching accuracy

values are found to be significantly different or not using a student's t-test. For each data

volume level (0-10), each trajectory has an accuracy value for both anisotropic and

isotropic pre-fetching. At each level, we apply a t-test to the two groups of anisotropic

and isotropic values while also visualizing the results to assess their differences. Table 6.3

82

displays each data volume level (max_prefetch, mp) along with the p-value obtained

using a t-test. The test is two-tailed since we are first trying to gauge whether or not the

two models yield significantly different results. Included in the table are the isotropic and

anisotropic mean accuracies, fii and HA , respectively, and the differences between the

two means.

mp Hi (accuracy) HA (accuracy) HA - HI P<

0 70.38% 70.38% 0% n/a

1 72.24% 73.60% 1.36% 9.41e-57

2 74.06% 76.51% 2.45% 6.94e-70

3 74.79% 78.63% 3.84% 4.8e-80

4 75.42% 80.11% 4.69% 1.29e-66

5 75.90% 81.23% 5.33% 1.77e-61

6 76.21% 81.72% 5.51% 9.95e-56

7 76.24% 81.36% 5.12% 2.77e-45

8 75.21% 80.09% 4.88% 2.44e-34

9 74.18% 77.88% 3.7% 1.21e-23

10 72.95% 74.89% 1.94% 7.7e-09

Table 6.3. Pre-fetching average

accuracy and p-values.

According to the p-values obtained and shown in Table 6.3, in all instances except for

when mp is zero, the groups of anisotropic and isotropic pre-fetching accuracy values are

significantly different. Looking at the mean values and differences of means for each, it

appears that the anisotropic algorithm always yields a greater mean pre-fetching

accuracy. However, spatial movement patterns in general are complex (Dodge et al.,

2008), let alone the endless possibilities of vehicle movement, and so it is not ideal to use

83

one of the above pre-fetching methods exclusively. Instead, in order to capture a wider

range of scenarios, it is possible to derive a rule of thumb for when to use one pre­

fetching model over the other based on the complexity of movement. Each trajectory in

the dataset can be classified by complexity, earlier defined as the average absolute

heading change between trajectory sample points. Plotting trajectory complexity versus

pre-fetching accuracy for both models shows that anisotropic pre-fetching clearly

outperforms that of isotropic pre-fetching for trajectories with a relatively small average

heading change (Figure 6.4b,c,d). However, for certain ranges of trajectory complexity, it

is less clear which model is best. In Figure 6.4d, where the maximum pre-fetch range is

10 tiles, it appears as though the isotropic model actually proves better on average than

the anisotropic model for the more complex trajectories (e.g., AvgHeadingChange > 40

degrees).

84

Pre-fetching Fitted : MaxPrefetch=0 Pre-fetching Fitted : MaxPrefetch—2

0.72

G.7

0.72

G.7

0.72

G.7

0.66

0,64

0.62

0.66

0,64

0.62

0.66

0,64

0.62

0.66

0,64

0.62

2 0 30 4 0 SO 6 0

A v g H e a d i n g C h a n g e

(a) (b)

Pre-fetching Fitted : MaxPrefetch-6 Pre-fetching Fitted : MaxPrefetch-10

Isotropic
Anisotropic

30 40 50

Avg Heading Change

0 10 SO 60 7 0

A v g H e a d i n g C h a n g e

(c) (d)

Figure 6.4. Trajectory complexity versus pre-fetching accuracy at (a) maxjprefetch

(b) max_prefetch = 2, (c) max_prefetch = 6, and (d) max_prefetch =10.

0,

To investigate the effect of trajectory complexity on isotropic and anisotropic pre­

fetching and where one model might outperform the other, a trend line for the datasets of

each model at each data volume were calculated using linear regression. By intersecting

the two trend lines, one can get a rough idea for when to use one model over the other.

Each linear regression model yields a trend line slope (a), y-intercept (b), p-value

explaining the significance of the model parameters, and R2 showing how well the model

can predict pre-fetching accuracy based on the trajectory (Table 6.4). The average

heading change for which the two trend lines intersect is shown as x'.

85

mp ai bl aA bA x' PI< PA< R2I R2A

0 0.7144 -0.0006 0.7144 -0.0006 n/a 0.0000 0.0000 0.1525 0.1525

1 0.7260 -0.0004 0.7508 -0.0007 82.67 0.0000 0.0000 0.0815 0.2222

2 0.7445 -0.0003 0.7875 -0.0009 71.67 0.0000 0.0000 0.082 0.2937

3 0.7477 -0.0002 0.8175 -0.0012 69.80 0.0064 0.0000 0.0256 0.3586

4 0.7483 0.0000 0.8435 -0.0015 63.47 0.8380 0.0000 -0.0038 0.3969

5 0.7553 -0.0001 0.8704 -0.0020 60.58 0.4569 0.0000 -0.0017 0.4654

6 0.7632 -0.0002 0.8916 -0.0025 55.83 0.0271 0.0000 0.0155 0.5114

7 0.7704 -0.0005 0.9073 -0.0031 52.65 0.0000 0.0000 0.0821 0.5794

8 0.7610 -0.0005 0.9126 -0.0037 47.37 0.0000 0.0000 0.0828 0.6305

9 0.7621 -0.0009 0.8983 -0.0040 43.94 0.0000 0.0000 0.2114 0.6603

10 0.7544 -0.0010 0.8723 -0.0041 38.03 0.0000 0.0000 0.3448 0.685

Table 6.4. Linear regression results.

Small pvalues suggest that one is confident that the estimated values of the

regression model are correct. While the majority of the models do yield very small

pvalues, there are a couple exceptions, particularly for the isotropic pre-fetching results

when mp=4 and mp=5. The anisotropic models also produce higher R2 values, meaning

that these models are a better fit for the sample data. Even so, this chapter aims at

obtaining a general rule that may not be flawless in every situation, which is surely the

case with the many scenarios of moving objects. Nonetheless, one can now perform a

simple analysis on the intersection values of the trend lines. As the data volume for pre­

fetching increases, we see that the intersection of the trend lines for isotropic and

anisotropic pre-fetching decreases (Figure 6.5). In fact, plotting max_prefetch against x'

along with a trend line shows a fairly consistent decrease in the intersection values

(Figure 6.6). This result may be what one would expect, since pre-fetching more data in

86

Pre-fetching Fitted : MaxPrefetch^O

opic-Fitted |
otro pic-Fitted \

0 10 20 30 10 50 60 70 80

AvgHeadingChange

(a) (b)

Pre-fetching Fitted : MaxPrefetch=6

Isotropic
Anisotropic

1—™ Isotropic-Fitted
1 ~ - Art isotropic-Fitted

20 30 40 SO

Avg Heading Change

60 70 SO

(c) (d)

Figure 6.5. Model trend lines at (a) max_prefetch = 0, (b) max_prefetch = 2,

(c) max_prefetch = 6, and (d) max_prefetch =10.

the direction of movement will typically only prove beneficial if the movement is

reasonably straight. If, on the other hand, a moving object is consistently changing

direction, it is better to anticipate movement equally in all directions. Using the resulting

trend line, one could employ a dynamic pre-fetching algorithm based on the history of

movement, specifically the average absolute heading change of the movement.

Depending on the average heading change of the object's movement over the past n

sample points and the amount of data being retrieved, either a direction-dependent or

direction-independent method is used. Doing so probably would not yield accuracies

s-7

greater than the highest accuracies resulting from the simulations, but should result in a

lesser decline in pre-fetching accuracy as trajectory complexity increases.

Trend Line Intersect ion

•'---..
: • • * „ . . .

'""•-..
" • • • • . .

'"-•..

•

1 2 3 4 5 6 7 8 9 10

max_prefetch

Figure 6.6. Trend Line Intersections.

The results gathered from the simulations are highly related to the experimental setup,

where several fixed parameters might otherwise have a varying degree of effect on the

results. Pre-fetching algorithm, caching policy, tile size (width, height, #bytes), assumed

data transmission speed, trajectory normalization, zoom level, and other variables were

set so that the simulations could model a real world example as much as possible while

still leading to practical results. A mobile mapping application that implements data pre­

fetching should, therefore, consider these parameters into its workflow and adjust its pre­

fetching policy accordingly.

88

70

90

80

<U

c
£
U
01
.E 60
•o
10
<U

>
<

40

Also, accuracy is one of many possible measures to assess pre-fetching success. It

should be noted that even when no pre-fetching takes place accuracy values remains

positive, due in part to the nature of the pre-fetching classification of tiles. Looking at Eq.

6.6, it is clear why this is so. TP (# of tiles pre-fetched then consumed) and FP (# of tiles

pre-fetched but not needed) are zero. However, TN (# of tiles not pre-fetched and needed)

and FN (# of tiles not pre-fetched yet needed) are greater than zero. In fact, FN will be

larger given that no pre-fetching takes place. Thus, the overall accuracy value will be, in

theory, less whenever no pre-fetching takes place. From the results, it is clear that

accuracy values are greater when mp is greater than zero.

6.4 Discussion of Hypothesis

In this chapter simulated tile pre-fetching strategies tested the hypothesis that for non-

random movement through space one can augment on-demand spatial data downloads by

pre-fetching data in the direction of movement, which would yield higher accuracies than

a strategy that does not include previous user location(s). Results showed that this is true

for situations when the frequency and magnitude of directional change in the movement

is relatively low. However, as complexity increases in trajectories (but not necessarily

randomness since movement is constrained by a road network) an isotropic strategy

sometimes returns better accuracies. The main conclusion here is that no one pre-fetching

model will prevail in all scenarios with regard to movement and that implementing a pre­

fetching component to a mobile mapping application should take into account this

variability.

89

6.5 Summary

This chapter describes a prototype implementation that models a real world scenario of

vehicle movement through a road network and assesses the performance of two direction-

based pre-fetching algorithms while varying the pre-fetching data volume. Trajectory

data were retrieved from the R-tree Portal website and normalized for consistency

between sample points and trajectory length. Linear regression allowed for the derivation

of trend lines which led to an understanding of how one can tailor a pre-fetching

algorithm to account for a wider range of vehicle movement scenarios. While one might

intuitively think that pre-fetching in the direction of movement will always yield a greater

reliability of obtaining future needed data, the performance is to a degree reliant on the

underlying complexity of the movement. It was found that increasing the pre-fetching

data volume, which would be useful in situations where communication to remote data

servers is intermittent, is effective only for movement patterns that are relatively straight

and, hence, predictable. However, in a scenario where movement is "more random" (e.g.,

city block driving where a moving object changes direction frequently), a direction-

independent pre-fetching algorithm is preferable. These findings suggest that this thesis's

original hypothesis does not hold true for all movement scenarios and that to effectively

implement a pre-fetching component for commercial mobile maps, one should consider

multiple approaches to cover the range of movement possibilities. Doing so can prove

beneficial to usability of mobile maps by decreasing latency involved with remote

retrieval of spatial data and better prepare a device for disconnected environments.

90

CHAPTER 7

CONCLUSION AND FUTURE WORK

This chapter provides a summary of content for this thesis on "Mobile Map Browsers:

Anticipated User Interaction for Data Pre-fetching." A prototype implementation for

assessing the performance of map pre-fetching for mobile devices was developed through

an investigation of the core issues and conventions of mobile map browsers (Section 7.1).

This section also concludes with the results and conclusions found from the prototype

implementation and pre-fetching simulations. The findings of this thesis are ripe with

potential for expanding on and can lead to other interesting research projects, which this

chapter addresses in Section 7.2.

7.1 Summary

The goal of this thesis is to investigate methods to utilize past user interactions with a

mobile map for pre-fetching data in anticipation of future interaction. Mobile computing

is challenging with respect to storage space, computing power, battery life, and

intermittent wireless communication. Because of storage limitations it is not feasible to

preload a high-resolution, global coverage map on a mobile device and, for a truly

dynamic map, it is necessary to retrieve map data from a remote data repository in an on-

demand fashion. This convention, however, causes delays when downloading map

imagery over slow transmission rates and even renders the map unusable whenever a data

connection is unavailable. In addition, wireless transfer of spatial data is costly (e.g.,

storage, battery, money). Given the sensor-rich nature of mobile devices, however, it is

91

possible to record the location history of a device or simply the interaction history for the

mobile map user. This thesis hypothesizes that since movement through space (e.g,. a

vehicle moving along a road network) is realistically non-random, it is possible to derive

a direction-dependent pre-fetching algorithm whose accuracy is significantly greater than

a direction-independent pre-fetching algorithm.

Chapter 2 summarizes relevant literature, concepts, and issues for mobile computing,

mobile and spatial caching, visual information browsers, trajectories and moving object

databases, and location prediction. These topics provide a foundation for implementing a

software prototype to model a real-world scenario where pre-fetching is beneficial.

Chapter 3 explores the fundamental interactions one typically invokes on a mobile

map browser. These interactions include direction manipulation of the map through pinch

or swipe gestures and refreshing of the map display as a result of sensor-derived changes

of a user's position, orientation, or velocity. Nevertheless, all interactions come down to a

three geometric transformations of the viewport: translation, rotation, and scaling. Each

viewport transformation affects a small set of tiles within the immediate neighborhood of

the map's current center and if one knows the set of candidate tiles needed by the map in

the immediate future, it is possible to derive some rules for map pre-fetching. Populating

the cache, or tile buffer, with data based on these pre-fetching strategies is the focus of

Chapter 4. Whenever a mobile map browser completes the retrieval of on-demand data

and realizes that a data connection is available, the opportunity to pre-fetch data on behalf

of the user can improve the cache hit ratio and better prepare the device in the event of a

dropped data connection.

92

In addition to populating a tile buffer, cache management policies include rules for

removing data from the memory buffer when necessary, such as when the cache size

exceeds a maximum number of bytes. Chapter 5 discusses both temporal and spatial

cache removal policies and the implications of each on a tile buffer. Whereas traditional

caching policies deal with the temporal locality of items in the cache and discard the least

recently or least frequently used items, other implementations such as Furthest Away

Replacement (FAR) compare items of a cache spatially and discard the items furthest

away from a given location. Mobile map browsers consume location-dependent data and

could therefore use either a temporal, spatial, or both cache removal policies.

Chapter 6 describes a software implementation that models moving objects along a

road network. The prototype simulates a tile cache management policy using either an

isotropic or anisotropic pre-fetching model. Simulations pre-fetch and discard tiles from a

virtual cache while recording statistics on the binary classification of tiles {pre-fetched

and not prefetched) in order to support a metric for pre-fetching success. Using pre­

fetching accuracy (Eq. 6.5) as the metric for comparison, this thesis shows that results for

isotropic and anisotropic pre-fetching are significantly different and that for relatively

straight movement anisotropic pre-fetching yields better results. However, this is not

always the case, as sometimes isotropic pre-fetching is preferable for more complex

movement, which is defined in this thesis as the average absolute heading change for a

trajectory. At each pre-fetching level (i.e., data volume allowed for pre-fetching), there is

a point of trajectory complexity at which the two pre-fetching models produce relatively

equal pre-fetching accuracies. These thresholds were found by intersecting the trend lines

93

of both pre-fetching models which were calculated using linear regression. Threshold

values were also found to be a function of the pre-fetching data volume, leading to a

general rule of thumb when pre-fetching tiled data for a mobile map browser. Depending

on the amount of data one is interested in pre-fetching, there exists a movement

complexity threshold. Movement complexity below this value should employ direction-

dependent pre-fetching while complexity above the value should use direction-

independent pre-fetching.

7.2 Future Work

There are several ways to extend the work presented in this thesis on anticipatory

interaction for data pre-fetching. The Chapter 6 prototype assumes a scenario in which

the mobile device is essentially unknowledgeable of the local environment and instead

simply exploits past user interactions for predicting what data to pre-fetch for future use.

The simulations use a history of GPS coordinates to determine a movement direction and

pre-fetch data weighted in that direction. If one were to expand on this approach, there a

few ways in which they might do so.

• In addition to direction, a pre-fetching algorithm could utilize the speed of

movement to target specific levels of detail for pre-fetching. Similar to "Speed-

dependent Automatic Zooming" (Igarashi and Hinckley, 2000), one might have

Speed-dependent Automatic Pre-fetching which follows the same concept. A

device moving at high speeds (e.g., 70 mph on a highway) should not display (or

pre-fetch) 1 -meter resolution imagery since the flow of information is far too fast

to be of any use. Speed could also have an effect on how tiles are weighted in the

94

pre-fetching process, where a increase in speed means tiles are weighted heavier

in the direction of movement (Eq. 6.2). The trajectories described in Chapter 6

were normalized for constant speed. In doing so post-simulation analysis could

focus on direction as the only spatial / temporal variable.

Chapter 4 discusses pre-fetching tiles at coarser levels of detail so as to increase

geographic coverage of the cache while decreasing the amount of data. This

certainly can prove beneficial but a metric is needed for assessing the cache

performance when consuming tiles of a coarser or finer level of detail for a given

resolution. For example, it would not be correct to pre-fetch the root tile (i.e., a

single tile spanning the entire map space) and consider this as a cache hit when a

tile does not exist at a higher zoom level. Doing so would result in a cache with a

100% hit ratio when this is in fact misleading.

• Two major advantages of pre-fetching tiles for a mobile map browser are a

reduced latency when refreshing the map and a more robust cache for situations

such as when a data connection is unavailable. Although not modeled in the

prototype of Chapter 6, one can design simulations to model interconnectivity and

measure any relationship between data volume, level of interconnectedness, and

pre-fetching accuracy (or other caching metric). Intuition suggests that for sparser

connectivity areas increasing the data volume results in a more reliable cache.

• Simulations in Chapter 6 only consider the interaction history of a user to

determine which tiles to pre-fetch. A more robust solution might be one which

incorporates server-side GIS resources to further refine data for pre-fetching.

95

Consider the moving vehicle scenario from the simulations. Given that it is

known the mobile device is traveling along a road network, one could use a web

service with GIS processing capabilities to (1) select all possible locations a

device could be within x time units on the road network and (2) determine which

map data are relevant to these locations for pre-fetching. Similarly, if data for

cellular coverage were available, a web service could determine the necessity of

pre-fetching data given the proximity of the user to any cellular dead zones. If

determined that the device is nearing a dead zone then pre-fetching for that region

might be helpful. These and other types of GIS data relevant to moving objects

and wireless communication are interesting research topics for how one might

augment mobile map cache management through data pre-fetching.

Even with the assistance of GIS data repositories, pre-fetching map data is a result

of a software agent anticipating where the user will request a map view for next.

However, interactive mapping software often allows users to query for people,

places, or directions. Location prediction from user input, despite not being

implemented in many commercial or open source packages, is another relatively

straightforward way of preparing a mobile device with maps.

96

BIBLIOGRAPHY

About Mobile Technology and IMT-2000. International Telecommunication Union. 2005.
http://www.itu.int/osg/spu/imt-2000/technology.html#Cellular%20Standards
%20for%20the%20Third%20Generation. Accessed April 19, 2010.

Barbara, Daniel and Tomasz Imielinski. Sleepers and Workaholics: Caching Strategies in
Mobile Environments. The VLDB Journal 4.4 (1995): 567-602.

Bertolotto, Michela and Max Egenhofer. Progressive Vector Transmission. 7th ACM
Symposium on Advances in Geographic Information Systems (Kansas City, MO).
New York, NY: ACM, 1999. 152-157.

Buttenfield, Barbara. Transmitting Vector Geospatial Data Across the Internet. Lecture
Notes in Computer Science 2478 (2002): 51-64.

Chakka, V. P., Adam Everspaugh and Jignesh Patel. Indexing Large Trajectory Data Sets
with SETI. In Proceedings of the Conference on Innovative Data Systems
Research, CIDR (Asilomar, CA). 2003.

Chrisman, Nicholas. Deficiencies of Sheets and Tiles: Building Sheetless Databases.
International Journal of Geographical Information Systems 4.2 (1990): 157-167.

Dodge, Somayeh, Robert Weibel and Anna-Katharina Lautenschutz (2008). Towards a
taxonomy of movement patterns. Information Visualization, 7.3,4 (2008):
240-252.

Dunham, Margaret and Vijay Kumar. Location Dependent Data and its Management in
Mobile Databases. Washington, DC: IEEE Computer Society, 1998. 414.

Egenhofer, Max and Werner Kuhn. Beyond Desktop GIS. GIS PlaNET: Lisbon, Portugal
http://www.spatial.maine.edu/~max/BeyondDesktopGIS.pdf (1998).

Fielding, R., J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach and T. Berners-Lee.
RFC2616: Hypertext Transfer Protocol~HTTP/l.l. RFC Editor United States.
1999.

Forlizzi, Luca, Ralf Guting, Enrico Nardelli and Markus Schneider. A Data Model and
Data Structures for Moving Objects Databases. ACMSigmod Record 29.2 (2000):
319-330.

Furnas, George and Benjamin Bederson. Space-Scale Diagrams: Understanding
Multiscale Interfaces. Proceedings of the SIGCHI Conference on Human Factors

97

http://www.itu
http://www.spatial.maine.edu/~max/BeyondDesktopGIS.pdf

in Computing Systems (Denver, CO). New York, NY: ACM Press/Addison-
Wesley Publishing Co., 1995. 234-241.

Guting, Ralf, Thomas Behr and Jianqiu Xu. Efficient k-Nearest Neighbor Search on
Moving Object Trajectories. The VLDB Journal 1.19 (2010).

Handy, Jim. The Cache Memory Book. San Diego, CA: Academic Press, Inc., 1998.

Hansen, Nikolaus. The CMA Evolution Strategy: A Tutorial. 2007.

Harrower, Mark and Benjamin Sheesley. Designing Better Map Interfaces: A Framework
for Panning and Zooming. Transactions in GIS 9.2 (2005): 77-89.

Igarashi, T. and K. Hinckley. Speed-Dependent Automatic Zooming for Browsing Large
Documents. In Proceedings of the 13th Annual ACM Symposium on User
Interface Software and Technology (San Diego, CA). New York, NY: ACM, 2000.
139-148.

I n m a r s a t e P r i c i n g , h t t p : / / w w w . t h e p o w e r o f b g a n . c o m / d o c u m e n t s /
inm_bgan_fact_prepaid.pdf. Accessed August 23, 2010.

Ishikawa, Yoshiharu, Yuichi Tsukamoto and Hiroyuki Kitagawa. Extracting Mobility
Statistics from Indexed Spatio-Temporal Datasets. Spatio-Temporal Database
Management. 2004.

Jackson, Jeffrey. Visualization of Metaphors for Interaction with Geographic Information
Systems. M.S. Thesis, Department of Spatial Information Science and
Engineering, University of Maine, 1990.

Jing, Jin, Abdelsalam Helal and Ahmed Elmagarmid. Client-Server Computing in Mobile
Environments. A CM Computing Surveys 31.2 (1999): 117-157.

Larrabeiti, David, Ricardo Romeral, Manuel Uruena, Arturo Azcorra and Pablo Serrano.
Charging for Web Content Pre-fetching in 3G Networks. Lecture Notes in
Computer Science 3266 (2004): 358-367.

Laube, Patrick, Todd Dennis, Pip Forer and Mike Walker. Movement beyond the
Snapshot—Dynamic Analysis of Geospatial Lifelines. Computers, Environment
and Urban Systems 31.5. (2007): 481-501.

Lee, Dik Lun, Jianliang Xu, Baihua Zheng and Wang-Chien Lee. Data Management in
Location-Dependent Information Services. IEEE Pervasive Computing 1.3
(2002): 65-72.

98

http://www.thepowerofbgan.com/documents/

Macedo, J., C. Vangenot, W. Othman, N. Pelekis, E. Frentzos, E. Kuijpers, I. Ntoutsi, S.
Spaccapietra and Y. Theodoridis. Trajectory Data Models. Mobility, Data Mining
and Privacy (2008): 123-150.

Mummert, Lily Barkovic, Maria Rene Ebling and Mahadev Satyanarayanan. Exploiting
Weak Connectivity for Mobile File Access. Proceedings of the Fifteenth ACM
Symposium on Operating Systems Principles. Copper Mountain, CO: ACM, 1995.
143-155.

Nagaraj, S. Web Caching and its Applications. Norwell, MA: Kluwer, 2004.

Nielsen, Jakob. Response Times: The Three Important Limits, in: Usability Engineering.
San Francisco CA: Morgan Kaufmam, 1994.

Olson, David and Dursun Delen. Performance Evaluation for Predictive Modeling.
Advanced Data Mining Techniques (2008): 137-147.

Rabinovich, Michael and Oliver Spatscheck. Web Caching and Replication. ACM Sigmod
Record 32A (2003): 107.

Reichenbacher, T. Mobile Cartography—Adaptive Visualisation of Geographic
Information on Mobile Devices. Dissertation, Technical University Munich,
Germany, 2004.

Ren, Qun and Margaret Dunham. Using Semantic Caching to Manage Location
Dependent Data in Mobile Computing. Proceedings of the 6th annual
international conference on Mobile computing and networking. New York, NY:
ACM, 2000. 210-221.

Ren, Qun and Margaret Dunham. Using Clustering for Effective Management of a
Semantic Cache in Mobile Computing. New York, NY: ACM, 1999. 94-101.

Ren, Qun, Margaret Dunham and Vijay Kumar. Semantic Caching and Query Processing.
IEEE Transactions on Knowledge and Data Engineering 15.1 (2003): 192-210.

Saltenis, Simonas, Christian Jensen, Scott Leutenegger and Mario Lopez. Indexing the
Positions of Continuously Moving Objects. SIGMOD Record 29.2 (2000):
331-342.

Satyanarayanan, Mahadev. Fundamental Challenges in Mobile Computing. Proceedings
of the Fifteenth Annual ACM Symposium on Principles of Distributed Computing.
New York, NY: ACM, 1996. 1-7.

Shneiderman, Ben and Catherine Plaisant. Designing the user interface. Reading, MA:
Addison-Wesley, 1998.

99

Sistla, A. and Ouri Wolfson. Temporal Triggers in Active Databases. IEEE Transactions
on Knowledge and Data Engineering 13 (1995): 471-486.

Sistla, Prasad, Ouri Wolfson, Sam Chamberlain, and Son Dao. Modeling and Querying
Moving Objects. Citeseer, 1997: 422-433.

Tao, Yufei, Christos Faloutsos, Dimitris Papadias and Bin Liu. Prediction and Indexing of
Moving Objects with Unknown Motion Patterns. New York, NY: ACM, 2004.
611-622.

Theodoridis, Yannis, Jefferson Silva and Mario Nascimento. On the generation of
spatiotemporal datasets. Lecture Notes in Computer Science 1651 (1999):
147-164.

Tobler, Waldo. A Computer Movie Simulating Urban Growth in the Detroit Region.
Economic Geography 46.2 (1970): 234^0.

van Wijk, Jarke and Wim Nuij. Smooth and Efficient Zooming and Panning. IEEE
Symposium on Information Visualization (InfoVis 2003), 2003.

Wolfson, Ouri, Bo Xu, Sam Chamberlain and Liqin Jiang. Moving objects databases:
Issues and solutions. 10th International Conference on Scientific and Statistical
Database Management (Capri, Italy). 1998. 111-122.

Worboys, Michael and Matt Duckham. GIS: A Computing Perspective. London: Taylor &
Francis, 2004.

Yang, Bisheng, Ross Purves and Robert Weibel. Efficient Transmission of Vector Data
Over the Internet. International Journal of Geographical Information Science
21.2 (2007): 215-237.

100

BIOGRAPHY OF THE AUTHOR

Benjamin Weber was born on March 17, 1986 in the small, rural town of Teutopolis,

Illinois. He attended and graduated Teutopolis High School in May 2004, finishing in the

top 10% of the class academically. Benjamin spent his first year of college at Southern

Illinois University at Carbondale in the Department of Geography. In the fall of 2005 he

transferred to the University of Maine, where he received a Bachelor of Science in

Information Systems Engineering in May of 2008. In the fall of 2008, he enrolled as a

Masters of Science student in the Department of Spatial Science and Engineering. During

his career as a graduate student, he was fortunate to hold an internship with Global Relief

Technologies in Portsmouth, NH as a GIS developer and has accepted a full-time offer

from the company starting in September 2010. Benjamin Weber is a candidate for a

Master of Science degree in Spatial Information Science and Engineering for December

2010.

101

	The University of Maine
	DigitalCommons@UMaine
	12-2010

	Mobile Map Browsers: Anticipated User Interaction for Data Pre-fetching
	Benjamin T. Weber
	Recommended Citation

	tmp.1325883746.pdf.abz4z

