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When browsing a graphical display of geospatial data on mobile devices, users typically 

change the displayed maps by panning, zooming in and out, or rotating the device. 

Limited storage space on mobile devices and slow wireless communications, however, 

impede the performance of these operations. To overcome the bottleneck that all map 

data to be displayed on the mobile device need to be downloaded on demand, this thesis 

investigates how anticipated user interactions affect intelligent pre-fetching so that an on-

demand download session is extended incrementally. User interaction is defined as a set 

of map operations that each have corresponding effects on the spatial dataset required to 

generate the display. By anticipating user interaction based on past behavior and intuition 

on when waiting for data is acceptable, it is possible to device a set of strategies to better 

prepare the device with data for future use. 



Users that engage with interactive map displays for a variety of tasks, whether it be 

navigation, information browsing, or data collection, experience a dynamic display to 

accomplish their goal. With vehicular navigation, the display might update itself as a 

result of a GPS data stream reflecting movement through space. This movement is not 

random, especially as is the case of moving vehicles and, therefore, this thesis suggests 

that mobile map data could be pre-fetched in order to improve usability. Pre-fetching 

memory-demanding spatial data can benefit usability in several ways, but in particular it 

can (1) reduce latency when downloading data over wireless connections and (2) better 

prepare a device for situations where wireless internet connectivity is weak or 

intermittent. 

This thesis investigates mobile map caching and devises an algorithm for pre-fetching 

data on behalf of the application user. Two primary models are compared: isotropic 

(direction-independent) and anisotropic (direction-dependent) pre-fetching. A pre­

fetching simulation is parameterized with many trajectories that vary in complexity (a 

metric of direction change within the trajectory) and it is shown that, although anisotropic 

pre-fetching typically results in a better pre-fetching accuracy, it is not ideal for all 

scenarios. This thesis suggests a combination of models to accommodate the significant 

variation in moving object trajectories. In addition, other methods for pre-fetching spatial 

data are proposed for future research. 
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CHAPTER 1 

INTRODUCTION 

Mobile map browsers offer users opportunities to explore spatial data visually and 

interactively from their current physical perspective on cell phones, GPS units, or tablet 

computers. In mobile space, "here" prevails for the display of maps (Buttenfield, 2002) as 

users would typically ask for location information that originates from their current 

whereabouts, because that information relates most closely to their current task. There are 

certainly exceptions to this ego-centric paradigm, particularly when a user's task shifts to 

another geographic area. 

Scenario 1 

Emergency response field personnel are assessing flood damages in northern Maine. 

Using before and after satellite imagery, they deduce the surrounding areas with the 

greatest magnitude of damage. Meanwhile, data collected in the field are viewed on maps 

by operations management. 

The scenario above exemplifies how spatial data viewed on a device, whether a 

mobile phone or a personal computer, may or may not be relevant to the user's current 

physical location. While field workers were concerned with accessing maps relevant to 

their current whereabouts, others were interested in maps of a remote area. Most often, 

however, mobile map users need pertinent to their immediate surroundings, areas they 

see from a vantage point, or places they are trying to reach from their current location. 



Compared to their desktop counterparts, mobile devices are limited in memory, 

screen space, processing power, and network performance, and this impedes the 

interaction with mobile maps in the same responsive way often experienced on desktop 

computers. The lack of local availability of all spatial datasets that a user may need in the 

field is particularly constraining. One impediment is the sheer size of spatial data sets. 

For a lxl meter resolution coverage of the entire state of Maine (86,000 km2), 

approximately 25GB of local storage would be needed for a set of tiled JPEG images that 

are 256x256 pixels and average about 20KB per tile. This number is just for the state of 

Maine at that particular resolution. Lower (and higher) resolutions would require even 

more storage space. As of 2010 the maximum data capacity for Apple's top-line iPhone is 

32GB, clearly indicating that entire world map datasets cannot simply be loaded onto 

mobile devices for reliable data availability. The mere addition of more flash memory 

will not remedy this bottleneck, as each thematic variation—road map, soil map, weather 

map—will press further demands on the size availability. Therefore, only a subset of 

available spatial data is typically stored on a mobile device at any one time, and data 

outside of the available range need to be added on demand. The dynamic state of maps on 

a device is dependent of what portion of the globe is visible on the screen, typically 

controlled by the user or on-board sensors. For example, one can request that the map 

display an area to the east of what is currently visible, requiring an update of the display 

and data used to render it. One might also zoom in on the map, requiring the map browser 

to obtain data at a higher resolution for a more detailed map view. These user operations 
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and how they relate to the data currently available on the mobile device, are described in 

Chapter 3. 

Users expect responsiveness from visual interfaces, and this is a vital component of 

usability (Nielson, 1994). When data are unavailable for a portion of a requested map— 

for instance when a cellular data connection is lost—the resulting gaps in the map render 

the software less informative and, in some instances, completely unusable. The design 

and implementation of a responsive mobile map is challenging, primarily because it is 

impossible to know with one hundred percent confidence exactly where the device will 

be located in the future or know what the user's future task will be, making it difficult to 

ensure that the correct data exist on the device. A viable solution to this problem is to 

implement intelligent spatial data caching on behalf of the mapping application. Caching 

is a procedure that stores data temporarily in a memory buffer in order to speed up 

retrieval time (Alan et al. 1982). Reading data from a cache is much faster than remote 

retrieval, such as over the Web. Since data processed or rendered by a mobile map is 

location dependent, location is a reasonable basis for how the mobile map should manage 

what to store in the cache. Algorithms for traditional caching strategies do not consider 

spatial attributes of data but rather focus on temporal filtering of the data. Mobile map 

caching, however, is concerned with both temporal and spatial characteristics of the 

cached data and, therefore, requires tailored algorithms for managing the data. 

1.1 Mobile Maps Scenario 

Visualization of spatial data on a mobile device has relevance to a wide variety of 

applications: 
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Scenario 2 

Field personnel are gathering data on a hurricane-stricken region of a country. Data 

collectors, who are assessing local damages from the disaster, use maps on their mobile 

devices for navigation and for geo-referencing a particular scene. As personnel navigate 

through flooded neighborhoods they may experience intermittent cellular connectivity 

due to the damaged infrastructure, leaving them without the necessary map coverage. 

Instead of downloading new data only on demand, alternative strategies are needed to 

intelligently prefetch map data for the emergency response field crew. 

Scenario 3 

On his iPhone, Alex queries his mobile map for directions to the local ski resort. The 

map draws a route and directs him towards the mountain. As Alex approaches the 

mountain he loses cellular connectivity, however, and the lack of on-demand map access 

over the air yields a blank map display. 

Both data collection for emergency response efforts and navigation can rely heavily 

on visual, location-based software. In either scenario the cause of the incorrect map 

display is the loss of cellular connectivity, leaving the mobile map unusable. In order to 

correct this unwanted behavior this thesis investigates a number of ways to anticipate 

user interaction and movement through space in order to pre-fetch a dataset so as to 

prepare for unexpected loss of connectivity. 

1.2 Mobile GIS Architectures 

In a distributed system multiple information systems work together over a network in 

order to complete a task (Worboys and Duckham, 2004). In a client-server architecture, a 
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client make requests for information from a remote server over a network. Conventional 

wired environments have the luxury of high-speed, reliable data access, whereas mobile 

environments suffer from intermittent connectivity and relatively slower transmission 

speeds (Jing et ah, 1999). 

Important characteristics of networks are: network speed, reliability, throughput, and 

frequency of connectedness, and different computing applications lie within the spectrum 

of these characteristics (Figure 1.1). 

Always connected Always disconnected 

Reliable 
High-speed 
Ethernet 

Broadband 
Modems «C ~jjf WiFi y 

Unreliable 
High throughput 

I | 
High-speed 
Ethernet 

Broadband 
Modems «C ~jjf WiFi y Mobile L o w throughput 

Figure 1.1. Spectrum of network characteristics. 

Mobile environments are of particular interest because of their distinct behavior 

regarding connectivity. Relatively slow and unreliable connections distinguish mobile 

architectures from conventional desktop ones. 

In a mobile environment with large data sets, the repository where data are stored and 

the location where the user interacts with the data are typically distributed spatially. The 

data are on a server (or sets of servers), while users initiate operations to display or query 

the data from their mobile devices. This distribution calls for a special attention to the 

architecture of such a system, with a particular focus on providing the fastest response 

times. 



1.2.1 Mobile Data Storage 

In order to circumvent the requirement of accessing data via wireless communication 

channels, one might implement a solution to preload a mobile device with all the spatial 

data necessary to carry out a user's tasks in the field. This setting normally allows for 

display and processing of the spatial data, but also offers the fastest response times 

possible for rendering, since the map browser need not wait for data from a remote 

server. Processing the data can be a bottleneck for mobiles equipped with relatively slow 

processing speeds, especially if the data is a vector format that requires geospatial overlay 

operations like buffering. Faster response times for such instances might be achieved by 

executing demanding operations on a faster CPU such as a remote server. This would, 

however, introduce the requirement of a data connection. 

One major disadvantage of preloading all maps onto a mobile device is the lack of a 

dynamic dataset for users. Maps change at a varying temporal granularity and although 

some datasets might remain fairly static (e.g., a roadmap), other overlay datasets are more 

inclined to change at a high frequency (e.g., a traffic density overlay map). In addition to 

the lack of a dynamic map dataset, the sheer size of geospatial data puts a limitation on 

the volume of data that can be preloaded. Consequently, preloading requires knowledge 

of a user's location and task beforehand so as to load only pertinent data onto the device. 

1.2.2 Data On-Demand 

As an alternative to preloading all maps to a mobile device, one might implement a 

solution that relies on Internet connectivity to dynamically download maps onto the 

mobile device on-demand. With on-demand data access the user sees the most up-to-date 
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datasets available. Each time the user requests a change in the map display, the map 

browser initiates a request for data from a remote server. The issues with preloading, 

namely storage requirements and prior knowledge of user location, are no longer 

relevant. Instead, the server sends only the required data to satisfy a request from the 

device. 

Although on-demand data access is more flexible in terms of what maps are 

accessible to the user, several disadvantages stem from this approach. First, the 

assumption of continuous connectivity is not a realistic one. Although cellular data 

coverage is continually improving, global cellular coverage is not likely in the near 

future. Dead-zones continue to impact task performance of mobile device users through 

intermittent connectivity and unusable software. Satellite communications such as 

Broadband Global Area Network (BGAN) allow virtually global data access. Data rates 

from Internet Service Providers (ISPs) such as Inmarsat, however, are quite expensive 

and can cost around $8.37 USD per megabyte for the end user (Inmarsat BGAN 

Factsheet, 2009). Relatively limited bandwidth and slow throughput involved with 

cellular or satellite communicates also pose an issue to on-demand data access. Response 

times for map requests involves some latency which increases the overall response time 

of the map since the Tenderer must wait for the data prior to displaying it. 

1.2.3 Hybrid Approach 

In order to more closely enable the concept of "anything, anytime, 

anywhere" (Reichenbacher, 2004), a mobile map requires dynamic mobile data access via 

a client-server architecture (Jing et ah, 1999). Conventional wired environments have the 
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luxury of high-speed, reliable data access, whereas mobile environments suffer from 

intermittent connectivity and relatively slower transmission speeds (Jing et ah, 1999); 

therefore, transmitting less data over unreliable networks seems ideal, but enough 

geographic coverage and detail are necessary to support the user's tasks. This thesis 

investigates how one can augment on-demand data access by anticipating user interaction 

and future locations to exploit available data connections for preloading map data to the 

device. Such an approach requires the use of pre-fetching strategies to predict the maps a 

user might need in the near future (Chapter 4). 

The previous two approaches for exposing geospatial data on a mobile device did not 

address the data types used during transmission. While vector data would support on 

mobile devices not only the portrayal of spatial data, but also analytical operations, the 

display of raster images at the resolution of the screen typically suffices for purely visual 

tasks. Therefore, intelligent methods to transmit vector data, compressed or 

incrementally, (Bertolotto and Egenhofer, 2001; Buttenfield, 2002; Yang et al, 2007) are 

complementary to the approach discussed in this thesis. 

This thesis assumes client-server architecture for transmitting raster map datasets. 

Raster data in the form of common image formats such as JPEG or PNG are ideal for 

their simplicity and scalability. Tiled maps are a common web-based GIS data source in 

which pre-rendered raster tiles are used to render the map. Typically tiles are pre-

rendered on the server, speeding up the request/response/display process. Tiles are simply 

replicated from the server's cache to the client's cache, at which point the map browser 

renders the data to the screen. At any particular time a mobile map browser can utilize a 
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relatively small subset of tile images from the tile dataset repository available online and 

so the approach described herein refers to a tiled map implementation for its conceptual 

simplicity and programmatic efficiency (Chrisman, 1990). Map tiles are stored in the 

device's cache, or temporary memory buffer, in order to reduce latency for requests from 

the map browser. 

1.3 Caching 

Application responsiveness results from a number of factors, including the latency 

involved with retrieving data. In a distributed system, caching is meant to eliminate the 

need for multiple requests for data. Caching is ineffective and unprofitable unless it 

greatly improves performance of the application (Fielding et at., 1999). 

Cache memory, or caching, attempts to reduce the amount of time necessary to 

retrieve data for the requestor by storing frequently used data items to a local memory 

buffer (e.g., a local file). Computer processors use caching in program execution by 

storing frequently used program instructions in the CPU's cache. Doing so reduces the 

amount of time the CPU spends outputting data for those instructions (Handy, 1998). 

Cache memory exists at a variety of levels. The fastest, but most expensive cache, is 

CPU cache, which stores data or program instructions for the CPU. Cache can also refer 

to any data stored in a computer's main memory (i.e., random access memory, or RAM). 

A computer's local file system can serve as a cache as well. When spatially distributed 

data repositories are accessed over the web, such as in the case when a web browser 

retrieves an HTML file from a remote server, it is much faster to read the file from disk 

than to re-request it over the Internet. Thus, resources that are frequently used by an 

9 



application are better off copied and stored on the local machine, provided that there 

enough storage space to do so. 

1.3.1 Database Management Systems Cache 

Databases are commonly used to store massive amounts of data. Database management 

systems (DBMSs) create, maintain, and optimize a database for its users. A DBMS often 

consists of a cache layer, storing frequently-used portions of a database in main memory. 

The cache layer is a cost savings mechanism because it allows the DBMS to read from 

in-memory data as opposed to the files on the local disk. 

1.3.2 Web-Page Cache 

Caching web pages is a performance enhancing component common in web browsers. 

When a browser first requests a file over HTTP, it stores the file in either main memory 

or to a local file. The browser retrieves the cached version of a web page when it is re-

requested. Navigating the web via a browser typically consists of a series of interactions, 

such as entering a URL, clicking links, or pressing the 'Back' button. Browsers can build 

a history of previously visited URLs, eliminating the need to re-enter them. Caching a 

formerly viewed page reduces the amount of wait if one were to request that page again 

using the 'Back' button common to most browsers. 

1.3.3 Caching Algorithms 

Computers have only a finite amount of storage space for caching data and, for this 

reason, software applications must use some mechanism to manage the cache when the 
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allocated cache space reaches its maximum capacity. A cache replacement algorithm is a 

way for a program to optimize the cache. By following a set of cache replacement 

instructions, the algorithm ensures that space is available for new items at any time. 

The least recently used (LRU) policy is a commonly used replacement algorithm. A 

cache is usually implemented as a collection of items with a specified maximum size. 

Once the cache exceeds the maximum number of items or data size yet the application 

needs to save a new item to the cache, the LRU algorithm first discards the least recently 

used item(s). Other cache algorithms include most recently used (MRU), psuedo-LRU, 2-

way set associative, and least-frequently used (LFU) (Nagaraj, 2004). 

1.4 Mobile Map Cache 

One objective of this thesis is to investigate strategies for managing a mobile map cache, 

which includes both the removal of unwanted data and pre-fetching of anticipated data. 

A mobile map cache differs from other caches in that a spatial component now exists with 

the data. Location supplements time as the criterion for managing a cache. As a mobile 

device moves through space and time or a mobile map user interacts with the display, 

items are added and removed from the mobile map's cache. The addition and removal of 

data in the cache should follow not only the temporal locality but also the spatial locality 

of the data. For example, an LRU algorithm could effectively manage a spatial cache if 

the mobile device were to move in a straight-line path through space. If the device returns 

to a location previously visited, however, the LRU algorithm fails to optimize the cache 

with the most likely needed data. In this case the algorithm discards data that are near the 

current location of the device (Figure 1.2). 
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Figure 1.2. Straight line path versus 
revisiting path. 

Managing a spatial cache involves keeping a history of location data coupled with 

time. Historical data allows the application to predict the future locations of the user or 

device. A prediction algorithm could, for instance, extrapolate a time series of coordinates 

sensed by the device, producing a set of possible future locations. Tracking user 

interactions with the map, such as panning, zooming and display rotation, also 

contributes a rich history dataset needed for prediction. 

1.4.1 Cache Representation 

This thesis focuses on information management for mapping in the mobile environment. 

In a setup where the client application and its main data source are likely to be distributed 

spatially, it becomes important to ensure the availability of resources to be consumed by 

the application. As with most client-server applications, the mobile client will access data 

items from the server and cache them in some local memory buffer to ensure the current 

and future availability of that item. For instance, a tiled map dataset allows a client to 

retrieve several tile images (e.g., JPEG, PNG, GIF), stitching them together to create a 

seamless, raster map display. In this instance the cache is managed as a set of tile images 

and the dynamic map display dictates the retrieval and removal of items in the cache. 

12 



On mobile devices one has the option to cache data items in several ways. Depending 

on the requirements of the software application one is designing for, a cache 

implementation might utilize a main memory object cache (e.g., a list of map tile 

objects), flash memory to write cached items to a file, or even a local database on the 

device to optimize the storage and retrieval of a large number of cached items. While 

flash or database storage can permit the storage of a substantial amount of data (e.g., flash 

storage cards > 16 GB), a mapping application may not always make use of this storage 

space for bulk downloading of data. Not only is data access for mobile devices hindered 

by intermittent connectivity but also by a variety of data access charges as well. 

Depending on the ISP, some devices might have an unlimited or very large data 

download limit whereas others are charged by the megabyte. Even in the case of satellite-

based global coverage solutions (BGAN), high data transfer rates highlight the 

importance of minimizing data transfer in order to maintain reasonable data access costs. 

In this thesis the cache management scheme focuses on a main memory cache for 

tiled images on mobile devices. Chapter 6 explains a prototype implementation that 

defines a memory cache of size n for temporary storage of map image tiles which could 

be extended to use other larger local memory allocations as well. 

1.5 Research Questions and Hypothesis 

The caching strategies presented in this thesis attempt to test strategies for reducing the 

latency issue that arises when one interacts with a mobile map display. The cache 

management implementation employs a pre-fetching and replacement policy to 
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effectively utilize valuable wireless connectivity periods to retrieve data on behalf of the 

user. 

In order to support this tile cache management, this thesis looks to answer a few 

questions: 

Question 1: In what ways might one pre-fetch maps in anticipation of user interaction 

and device location? 

Pre-fetching maps on behalf of the user is a critical component of mobile map cache 

management. Pre-fetching strategies make use of past device or map location(s) to 

estimate the near future locations of the device and thus identifying a pre-fetching dataset 

relevant to that location. Other strategies can also complement location prediction to 

further refine pre-fetching success. 

Question 2: How much does it cost to pre-fetch maps (i.e., in terms of data size, time, 

memory space on a device, bandwidth, dollars)? 

Question 3: What is the relationship between the amount of data a mobile map pre­

fetches and the overall success rate of the pre-fetching. 

Question 4: Is there some point where pre-fetching reaches a maximum effectiveness 

for a given strategy and allowable storage space? 

Retrieving a data item over a wireless network is costly, especially with regards to 

time and storage space. Intuitively, pre-fetching maps should increase the reliability of 

having that map when needed in the future. However, pre-fetching maps can also become 

counter-productive, such as in the case of pre-fetching an item that is never used by the 

application. The prototype implementation measures the accuracy of both isotropic and 
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anisotropic pre-fetching of map tiles, the latter taking into account the movement history 

of the user. Movement of a mobile user through space is assumed to be non-random (i.e., 

future locations are partially dependent on the current and previous locations). For 

example, when considering a car on a road network, the future location of the car is 

constrained by its current location, maximum speed, and the road network itself. Using 

this rationale the hypothesis for the tile cache management is as follows: 

Hypothesis: 

For non-random movement through space, the overall accuracy for a map tile pre­

fetching algorithm is significantly greater when one incorporates past user locations 

to prioritize pre-fetching in the direction of user movement. 

1.6 Results 

Several simulations measure the tile pre-fetching accuracy for hundreds of real-world 

trajectories captured by tracking school buses and construction trucks in the Athens, 

Greece metropolitan area. The experimental testbed also models a tiled map accessed 

over the Internet. Using caching strategies proposed in Chapter 4, each simulation varies 

the volume of data allowed for both isotropic and anisotropic pre-fetching. When pre­

fetching prioritizes tiles in the direction of movement the pre-fetching accuracy is on 

average 3.53% greater than when pre-fetching for an assumed stationary device. In 

addition, although pre-fetching more data should yield greater reliability, the complexity 

of the trajectory (i.e., the tendency of the trajectory to change directions) effects the pre­

fetching accuracy and shows that a direction-dependent model is not always ideal. The 
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simulations suggest that, for the selected strategies and algorithm used, pre-fetching 

should consider the interaction history of the map and pre-fetching data volume when 

deciding which pre-fetching policy(s) to employ. 

1.7 Intended Audience 

The intended audience of this thesis includes any researcher, developer, or other party 

interested in mobile data caching and may be of particular interest to any mobile GIS 

software developer. An exploration of spatial caching and data pre-fetching augments 

current commercial mobile mapping applications by increasing data availability in 

unreliable wireless environments and reducing the latency involved with over-the-air data 

transmission. 

1.8 Organization of Thesis 

This thesis is organized in the following manner: 

Chapter 2 highlights previous research in areas pertinent to this thesis and how these 

works influence the ideas presented in this thesis. Chapter 3 explores mobile map 

interaction specific to a tiled map scenario, since experimental pre-caching strategies 

utilize this type of web data source. User interaction involves a dynamic relationship 

between the viewable map space on a mobile screen and the data required to generate a 

display for this space, an understanding that helps to formulate pre-fetching heuristics, 

discussed in Chapter 4. The heuristics propose a number of ways in which map data 

might be pre-fetched to exploit an available data connection. A critical part of managing a 

cache in any software application is cache replacement policy. Chapter 5 proposes a 
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number of ways in which tiles in a cache are discarded so as to make room for new tiled 

data. The proposed pre-fetching heuristics and replacement policies are tested in an 

experimental prototype defined in Chapter 6. The chapter also details simulation results 

and analysis. Chapter 7 concludes the thesis with a summary of this thesis as well as 

proposed research for the future. 
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CHAPTER 2 

MOBILE MAP FOUNDATIONS 

Designing effective mobile solutions has been a topic of study for many years, especially 

since designers of such solutions must overcome many limitations inherently present in 

mobile environments. Although science is continually advancing and technology yields 

faster, more capable hardware and software solutions every day, many of the initial 

challenges with mobile computing still persist today and the solution lies only in the 

design of a system that can adapt to its adverse conditions. Section 2.1 discusses some of 

the ways in which caching can improve the limitations faced by mobile devices in 

unfavorable conditions. Section 2.1.2 discusses previous work with spatial data caching 

on mobile devices. The remainder of the chapter discusses visual interface design 

principles and interaction with map displays, which are later applied to a design for 

managing mobile map data. Also discussed are ways of tracking movement and 

interaction history for assisting with data management. 

2.1 Mobile Challenges 

This thesis focuses on data management for map browsers in mobile settings, both 

connected and disconnected. The fact that mobile computing has many fundamental 

differences relative to a static, desktop environment makes it a popular area of research. 

Satyanarayanan (1996) points out that mobile computing (1) is and and will continue to 

be resource-poor relative to desktop environments, (2) is hazardous based on its 

portability and security issues, (3) shows extreme variability in connectivity performance 
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and reliability, and (4) draws from a strictly limited amount of power. The severity of 

mobile computing limitations is undoubtedly diminishing with the expansion of cellular 

network coverage and ever-improving hardware on mobile devices. One is hard-pressed 

to envision a day in the very near future, however, where every location on Earth has an 

equally reliable, high-speed data connection to the Internet and a mobile device with a 

virtually unlimited amount of storage space. Until this day arrives engineers must 

consider the challenges of mobile computing when designing a mobile software solution. 

2.1.1 Mobile Caching 

The number of mobile units communicating with server-side databases over wireless 

channels is growing significantly. To effectively handle the massive amounts of data 

being shared between client and server endpoints, a popular solution is to cache retrieved 

data locally to the device for repeated consumption. Not only does caching data locally 

preserve some of the finite amount of bandwidth available over wireless channels but it 

also prepares a device for unexpected interruptions with wireless connectivity and 

minimizes wireless communication costs. 

Mummert et al. (1995) discuss how hoarding data to a mobile database in 

anticipation of intermittent connectivity can improve the overall performance and 

usability of mobile software. Lack of connectivity for a mobile client causes an increase 

in cache misses (i.e., requested data not locally available), which impedes the progress of 

a user's task. Users are also unlikely to tolerate poor software performance due to a loss 

of connectivity and their research models user patience and proposes that caching data to 
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a mobile unit should be based on whether or not the time it takes to do so will cross the 

user patience threshold (i.e., the amount of time a user is willing to wait for an item). 

When data are cached to a mobile database, the duration of its persistence is highly 

dependent on the type of data. Generally, one would assume that base maps (e.g., maps 

with political boundaries, rivers, buildings) are fairly static and change at a much less 

temporal granularity than news or weather. Some spatial data do change more frequently, 

however, such as traffic reports that can supplement static base maps. Barbara and 

Imielinski (1995) describe a cache invalidation framework for checking whether or not 

cached data should be discarded or updated. A challenge arises when considering 

invalidation for mobile device databases since mobile devices are often offline and only 

the server knows whether or not a cached item should be updated. In addition a server 

lacks knowledge of whether or not devices are connected or even powered on. Mobile 

devices can periodically communicate reports of their cache to servers to test which items 

are up-to-date. 

2.1.2 Spatial Caching 

This thesis is particularly interested in caching maps on mobile devices, inherently 

requiring a variation of methods used for caching non-spatial data. A least recently used 

(LRU) cache replacement algorithm sorts candidate items to discard based on the 

timestamp at which that item was last consumed from the cache. Algorithms such as 

these only compare the temporal locality of items in a cache to choose candidates for 

removal. With spatial data, however, cache invalidation should emphasize spatial locality 

of cached items as well (Dunham and Kumar, 1998). As a mobile device moves through 
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space or a user changes the display on a map, data are retrieved from the cache or from a 

remote resource and then written to the cache. The least recently used data should not 

necessarily have the highest priority for removal since it may, in fact, have higher spatial 

similarity to the current location of the device than other cached items. An alternative 

approach might be to prioritize items in a cache for candidate removal using a Furthest 

Away Replacement (FAR) policy (Ren and Dunham, 2000). 

2.2 Geographic Data Transmission 

To more closely enable the concept of "anything, anytime, anywhere" (Reichenbacher, 

2004), a mobile map requires dynamic mobile data access via a client-server architecture. 

Conventional wired environments have the luxury of high-speed, reliable data access, 

whereas mobile environments suffer from intermittent connectivity and relatively slow 

transmission speeds (Jing et al, 1999); therefore, transmitting less data over unreliable 

networks seems ideal, but enough geographic coverage and detail are necessary to 

support the user's tasks. While vector data would support not only the portrayal of spatial 

data on mobile devices, but also analytical operations, the display of raster images at the 

resolution of the screen typically suffices for purely visual tasks. Therefore, intelligent 

methods to transmit vector data compressed or incrementally (Bertollo and Egenhofer, 

2001; Buttenfield, 2002; Yang et al., 2007) are a complementary approach to the ideas 

presented in this thesis. 

In this thesis, raster tiles accessed from remote databases over wireless networks are 

the data domain for mobile map browsers. A tiled representation of large geographic 

spaces (Chrisman, 1990), which partitions the map area as discrete raster images, has the 
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advantage of managing smaller pieces of data and smaller portions of the map at any one 

time. 

2.3 Visual Information Browsing 

Mobile map browsers are interfaces for browsing graphical spatial data on small-screen, 

mobile devices and, thus, require some degree of visual interface design. Mobile maps 

are graphics-driven in that they consume either raster or vector data and render them as 

an image on screen. Interaction with mobile map browsers is often with the graphics 

where the user directly manipulates the display. 

Much work has focused on map interaction and information displays. Developing 

interactive mapping systems involves determining what control is needed over the map, 

the degree of such control, and how this control is implemented (Harrower and Sheesley, 

2005). Mobile map browsers must be especially careful with these decisions since screen 

space is limited and methods for interaction have implications on the information display 

(e.g., less display space due to on-screen graphical buttons). 

One important element of interactive graphical displays is how the information is 

displayed dynamically. For mobile map browsers a dynamic display should avoid 

information overloading by controlling the amount of information being displayed by 

relating scale and speed (Igarashi and Hinckley, 2000). Speed-dependent zooming 

suggests a direct relationship between speed and scale that determines the display of the 

graphical content (scale = constant / speed). Space-scale trajectories were studied to 

visualize the relationship between panning and zooming two-dimensional spaces (Furnas 

and Bederson, 1995). Optimizing these trajectories yields a dynamic display that is both 
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"smooth" and "efficient" which is accomplished when a continuous transformation of the 

graphical display contains no sudden jumps of the image being displayed, improving user 

cognition (van Wijk and Nuij, 2003). 

2.4 Trajectories and Object Tracking 

Databases to store information on moving objects have been extensively studied in the 

past. Whether the object is a moving point (e.g., car, mobile phone, train) or a moving 

region (e.g., storm, disease), storage of movement history in a database allows for 

querying the location history at temporal points and intervals (Guting et ah, 2009). 

Object tracking has gained much popularity due to the plethora of data that are 

obtainable from moving objects. Relatively cheap sensors like GPS and cellular network 

antennas allow for the acquisition and storage of huge amounts of moving object data on 

a daily basis (Chakka et al., 2003). 

Trajectories are typically represented by a data model which samples continuous 

movement of an object through space and time (Macedo et al., 2008). Data models can be 

as simple as a series of space-time points or represent more complex, dynamically shaped 

spatial regions with holes (Forlizzi et al., 2000). 

2.4.1 Location Prediction 

Perhaps the most beneficial uses of storing an object's location history is the ability to 

predict its near future location. Various mathematical models attempt to predict an 

object's future location and are of varying complexity. Based on a temporal sequencing of 

object positioning, location prediction is mostly effective for near-future location 
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estimation only (Jeung et al, 2008). Location prediction is based on an object's last 

movements and so the level of uncertainty with estimation grows as we move further into 

the future. Although some models can estimate future locations to some degree, real-

world movement is often complex and is not easy to model with mathematical formulas, 

especially since real-world phenomena (e.g., road construction or traffic volume) has 

much influence on an object's movement through space and time (Jeung et al, 2008). 

The database community has proposed extensions to SQL which would enable one to 

query both past, present, and future locations of an moving object. Future temporal logic 

(FTL) uses temporal operators such as Until, Nexttime, and Eventually to perform spatio-

temporal queries on objects with dynamic locations (Sistla and Wolfson, 1998). However, 

it is unclear just how accurate these prediction models are given the variety of movement 

scenarios. 

Categories of location prediction models vary in both complexity and accuracy. 

Vector-based prediction uses linear and non-linear motion functions for a time-dependent 

estimation. 

Linear models assume that an object's movement is linear and, thus, uses a linear 

equation to solve the prediction (Equation 2.1) (Saltenis et al., 2000). The object's 

predicted location, p, is dependent on its current location, po, velocity vector, v, and the 

amount of time into the future. 

p=po + v(t-to) (2.1) 

Non-linear models such as a quadratic functions are able to model the acceleration of 

a moving object as well as it's velocity. Even so, vector models do not capture curved 
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movement which is often observed with moving objects. To remedy the limitations 

presented with linear and non-linear motion functions some have proposed using a 

recursive motion function (RMF), which can predict future locations using an objects 

"tendency" of movement such as linear, quadratic, or circular motion (Tao et ah, 2004). 

In addition to vector-based movement, location estimation is also possible through the 

use of pattern recognition. By discretizing space as cells, some have used Markov chain 

models to compute the likelihood of an object moving from one cell to any neighboring 

cells based on previous movements (Ishikawa et al., 2004). 

Optimizing a prediction model or implementing the most complex and accurate 

model is outside the scope of this thesis. Instead, later chapters discuss the use of location 

prediction and will use an estimation model for merely demonstrating its usefulness in 

mobile map cache management. Let it also be noted that the use of complex, 

computationally expensive location prediction models coupled with extensive tracking 

databases are better suited for implementation on servers equipped with the proper 

resources. 

2.5 Summary 

This chapter addresses some of the components and issues necessary to address for 

building a cache management framework for mobile map browsers. Mobile computing 

faces many challenges such as limited memory and network bandwidth and caching, 

when implemented correctly, offers a workable solution. The upcoming chapters propose 

a design for caching strategies based on how individuals interact with a mobile map and 
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design principles for visual information interfaces. Historical logging of user interaction 

and device location also proves beneficial for managing a mobile map cache. 
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CHAPTER 3 

MOBILE MAP INTERACTION 

Building a management framework for mobile spatial data relies on an understanding of 

the relationship between the user and the mobile map browser. Maps have the ability to 

give the user a stronger awareness of the environment, typically by graphically displaying 

spatial data on a static medium (e.g., paper maps) or a dynamic medium (e.g., an 

electronic screen). On an electronic screen, a scene selection is the display of spatial data 

at any one point in time, established through the relationship between two rectangles: (1) 

the geographic data representation (map space) and (2) the visible portion of the data 

(viewport) (Jackson 1990). This chapter discusses the data used to generate a map display 

on a mobile device. 

3.1 Reference Spaces 

The process of rendering graphics needs to account for multiple spaces. A mobile map is 

a representation of the real world that is digitally preserved and used to generate an image 

(a) (b) (c) (d) 

Figure 3.1: Reference spaces: (a) geographic space, (b) map space, (b) pixel space, and 

(d) screen space. 
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to display on a mobile device screen. This process occurs over several reference spaces: 

geographic space, map space, pixel space, and screen space (Figure 3.1). 

3.1.1 Geographic Space 

Geographic space (Figure 3.1a) refers to the three-dimensional space of the Earth that, in 

order to be portrayed on a mobile device, is often presented to the end user as a two-

dimensional map. Representation as a digital map first requires projecting points from the 

Earth's surface (specified as spherical coordinates longitude, X, and latitude, cp) onto the 

two-dimensional Euclidean plane (Bolstad 2005). 

3.1.2 Map Space 

Map space (M-space) (Figure 3.1b) is the planar representation of geographic space, 

defined by a projection (e.g., Mercator, Plate Carree, etc.) and often measured in 

geographic units of longitude (X) and latitude ((p) (Snyder 1987). In addition to 

projection, map space holds several properties, such as the map space origin (OM) and its 

geographic extent in the x- and ^-directions (AXM, AJV). A coordinate in the map space is 

referred to as (XM, )>M). 

3.1.3 Pixel Space 

A client-server architecture using pre-rendered raster images is an effective method for 

distributing mobile map data (Section 1.2). A core data requirement for this architecture 

is the translation of the map space into pixel space (raster images). Images are measured 

in pixels and use a reference system originating at (0,0) in their upper left corner with 

28 



positive x to the right and positive y down (Figure 3.1c). Pixel space (P-space) is a finite 

two-dimensional array of pixels having an extent specified as (Axp, Ayp), while (xp, yp) 

references a specific pixel in the space. 

3.1.4 Screen Space 

The final representation of geographic space is drawn to a mobile device screen. 

Currently, mobile screens are rectangular, two-dimensional arrays with a coordinate 

system similar to images. A screen's origin (Os) exists in the upper left corner with 

positive x values to the right and positive y values down (Figure 3.Id). Screen space (S-

space) has a width and height denoted ws and hs, respectively, while (xs, ys) references a 

specific coordinate in the space. Screen space is used to generate graphics. 

3.2 Tiled Map 

An image map has a particular resolution defining the amount of map space captured per 

pixel. To visualize large geographic areas on small screens, the resolution of the image 

will be coarse in order to fit a larger area into a small number of pixels. Conversely, 

detailed displays require a higher-resolution image in order to fit a small geographic area 

into the allotted screen space. Multi-resolution maps address this need of multiple levels 

of detail because the map space is portrayed as several images of varying resolution. 

Doing so permits small geographic features (e.g., roads, rivers, and cities) to be 

abstracted from view at low levels of detail, only displaying pertinent items at that level. 

Higher-resolution images show more detail, often including geographic features that were 
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abstracted at a lower level. Single resolution maps are of limited use for interactive map 

interfaces as they provide no means to increase or decrease visible details. 

High-resolution image maps with large geographic coverage inherently become too 

large to be handled by a single computer. A 10-meter resolution map of the world, for 

example, would require an image the width of about forty million pixels. A popular 

solution is to fragment the image map into smaller, equal-sized images called tiles. A tiled 

map is a multi-resolution representation of the map space implemented as several levels 

of detail known as zoom levels. Zoom levels are typically specified as an integer value (Z) 

within a predefined range (i.e., Zmm,<= Z <= Zmax). Therefore, any reference to a pixel in 

pixel space (xp, yp) is relative to a specific zoom level. At any particular zoom level the 

map is a composition of non-overlapping tiles (Figure 3.2). 

Zo Zi Z2 

(0,0)/ (0,0)z 

(0,1)/, xpyp ' \ 

(0,0)y (1,0)7' (2,0)r (3,0> 

(0,1 )T" ""(T;i>- -(2,l)r (3,l)r 

(0,2> (U)r (2,2)r (3,2)r 

(0,3)T" "•(•1,3)7' (2,3)r (3,3)r 

Figure 3.2: Tile coordinates. 

Since a tiled map is a repository of pre-rendered map images, tiles need indexing to allow 

reference to them. Tiled map coordinates consist of three levels of specificity: (1) the 

zoom level, (2) the tile coordinates, and (3) the pixel coordinates (Figure 3.2). Zoom 

levels refer to an image map of a particular resolution, tile coordinates (x, v)r refer to a 
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particular tile within a zoom level, (0,0)r being the upper-right tile of a tile layer, while 

pixel coordinates (x, y)r (xp, yp) refer to a particular pixel within (x,y)r (e.g., (x, y)r(0, 0) 

is the first pixel in (x,y)r). Any pixel in pixel space (xpyp) translates into a tile coordinate 

and pixel offset (Section 3.4). 

3.3 Viewport 

A viewport is the rectangular portion of the map space drawn to the mobile screen, thus 

displaying the viewable area of the map at any one point in time. Viewport properties 

(Table 3.1) are measured in map space and pixel space units and are translatable between 

coordinate systems (Section 3.4). 

Property Description 

CM, d,M Viewport center in map space 

cp, dp Viewport center in pixel space 

0v Viewport rotation angle 

Zv Viewport current zoom level 

MBRM Viewport's minimum bounding rectangle (MBR) in map space 

MBRP Viewport's MBR in pixel space (relative to current zoom level) 

XVM, hM Viewport width and height in map space 

xvp, hp Viewport width and height in pixel space 

Table 3.1: Viewport properties. 

The viewport's zoom level corresponds to the current tile layer from which the map 

browser displays data. The chosen zoom level is closest in resolution to the resolution of 

the screen. This selection comes from a function that compares the screen resolution, that 

is, the ratio of the viewport's map space extent to the screen extent (Equation 3.1) to each 
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zoom level resolution, that is, the ratio of the map space extent to the width of the pixel 

space (Equation 3.2), returning the zoom level whose resolution is most similar to the 

viewport's. 

Resolutions = WMI WS (3.1) 

Resolutionp = AXM/AXP (3.2) 

The function getZoomLevel returns the zoom level as an integer value given the 

current viewport (Function 3.3). 

function getZoomLevel: integer (3.3) 
diff[] 
for to £max 

diff[z] <— [ Resolutions - Resolutionp j 
end for 

return index of MIN(diff) 

3.4 Coordinate Transformations 

Because a map browser uses data modeled from the real world and generates graphics on 

a electronic screen, the map browser operates in multiple spaces and must translate 

between coordinate systems. Coordinate transformations, which map the same space 

from one reference system to another (Bolstad 2005), are dependent on the map 

projection and tiling scheme (metadata about the tiled map). Defined transformations, for 

instance, allow one to translate between raster image coordinates and geographic 

coordinates (Equation 3.4, 3.5). 

M(xp, yp) —> XM, y\i (3.4) 

P(XM, yiu) —> xp, yp (3.5) 
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(a) (b) 

Figure 3.3: Map space clipping: (a) Viewport in map 
space and (b) corresponding screen graphics. 

A raster representation of the map space belongs to a single zoom level Z and has an 

additional conversion from pixel space to tile space (Equation 3.6, 3.7). 

Tixp.yp) —* (x,y)z (xp.yp) (3.6) 

P{(x,y)T, (xp, yp)) —*• xp, yp (3.7) 

In order to display a map image, the graphics renderer translates points in the pixel 

space to the screen space (Equation 3.8, 3.9) (Figure 3.2). 

S(xp, yp) -^-xs,ys (3.8) 

P(xs, ys) —• xp, yp (3.9) 

Many viewport properties are obtained through implicit derivation using coordinate 

transformations. The screen size (Axs, Ays) ultimately determines the extent of the 

viewport, obtained thorough accurate tracking of the viewport's center and rotation angle. 
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3.5 Viewport and Tile Relationship 

At any particular time, the viewport covers some portion of the map space and pixel 

space, given by the properties of V(Table 3.1). To generate a map image the map browser 

renders a portion of the raster map and draws this image to the screen. Since the raster 

map is broken up into tiles at each zoom level, the map renderer requires at least one tile 

to generate a screen image. The set of tiles includes any tile at a given zoom level that 

intersects the viewport's MBR, a set which itself is specified as an MBR of tiles (Figure 

3.4). Formally put, the tile MBR is the tile coordinate bounds of a specific zoom level 

which satisfies intersection constraints with the viewport (Equation 3.10), where AXT and 

Ayrare the width and height of a tile in pixel space, respectively). 

(3.10) 

(a) (b) 

Figure 3.4: MBRp (dotted) is dependent on the rotation of I7and yields 

MBRT (shaded), (a) 6v= 0° and (b) 0v= 45°. 
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3.6 Operations 

A user primarily interacts with the screen of a mobile map to initiate a change in the 

display. These interactions (e.g., panning, rotating, zooming) result in a change of the 

viewport's location, size, orientation, or extent and impacts the data required to generate 

the display. If one considers the viewport as a rectangle existent in map space, then user 

interactions are transformations of the rectangle in the Euclidean plane of map space. The 

viewport transformation maps each point within the rectangle to a new point in the same 

space. Panning, rotating, and zooming are user interactions corresponding to the 

Euclidean transformations of translation, rotation, and scaling, respectively (Worboys and 

Duckham 2004) (Equation 3.11-3.13). 

Translation (3.11) 
(x,y) -•* (x + a,y + b) 

Rotation (3.12) 
(x,y) -•* (x cos# - y sin#, x sin# + y 
cos8) 

Scaling (3.13) 
(x,y) -* (ax, by) 

A tiled map supports two categories of operations: (1) transformations of the viewport 

in which the viewport's size and zoom level remain constant, and (2) transformations of 

the viewport in which the viewport's size and potentially the zoom level will change. 

Each transformation has a before and an after state, symbolized by V and V, respectively. 

Transformations may occur instantaneously or over some duration, each with differences 

on how the operation appears on the screen and which tiles are required to complete the 
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operation. The transformation appears to either "jump" to the second state, for example, 

or is animated on the screen for a smooth transition from Fto V. 

3.6.1 Operations in the Tile Plane 

A raster map display on a mobile unit is dependent on both direct and indirect 

interactions from the user. A direct interaction responds to a user's request to reposition 

the map on the screen (e.g., a button to pan north) whereas an indirect interaction 

responds to a sensor's reading (e.g., when a GPS receiver detects a change in position) 

and updates the map browser accordingly. Two operations take place at a single zoom 

level on a tiled map: panning/moving (Section 3.6.1.1) and rotation (Section 3.6.1.2). 

3.6.1.1 Panning/Moving the Map 

Geographic space is vast relative to a mobile screen and, consequently, is often difficult 

to capture within a single display space (Freundschuh and Egenhofer 1997). Mobile maps 

should support a dynamic display by allowing the user to move the viewport relative to 

the map space. Panning (or viewport movement due to physical user movement) is a 

translation of V in the plane. The map interface allows the user to initiate this change by 

some means of interaction, such as by dragging the map with one's finger or selecting 

from a set of map controls (e.g., direction buttons). Depending on the implementation, the 

user pans the map in a discrete set of directions (N, S, E, W) or in any direction, as in the 

case of dragging the display on the screen (You et ah 2007). 

A pan operation is a translation of the viewport (Equation 3.11), specified as a change 

in the x- and ̂ -directions (i.e., pan(Ax,Ay)). A possible way to invoke a pan operations is 
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for the user to employ a touch-and-drag action on the mobile screen. Since the user does 

this within the screen bounds, a possible constraint on the parameters of pan is ( 0 <= Ax 

<= ws, 0 <= Ay <= hs). For the purpose of analyzing the affected tiles of a pan operation, 

assume that this panning constraint is applied. 

Prior to the pan operation, the viewport has certain leeway in each cardinal direction 

and until a pan exceeds this free space, MBRT remains constant. Free space in each 

direction is denoted Xfree , Xfree , yfree
 ¥, and yfree (Figure 3.4). 

Figure 3.5: Viewport free space. 

Panning the viewport may result in an incrementing or decrementing tile bounds 

where the new values of MBRT are specified in terms of the free space, the panning 

distance (i.e., Ax, Ay), and the width and height of a tile. If the panning distance exceeds 

(3.14a) 

(3.14b) 

(3.14c) 

(3.14d) 
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the outer bounds of MBRT then the new tile bounds increments or decrements once plus 

however many tiles the viewport crosses (Equation 3.14). 

3.6.1.2 Rotating the Map 

Rotation is a change in the orientation of the viewport with respect to the map space. 

Adoptive orientation is a term referred to a GIS that senses an orientation and rotates the 

map in line with the user's frame of reference (Frank 2003). A location sensor (e.g., GPS 

receiver) in combination with an orientation sensor (e.g., a digital compass) depicts the 

user's environment in line with his or her frame of reference (Egenhofer and Kuhn 1998). 

Rotation should, therefore, be considered a common interaction with mobile maps. 

Rotation, like panning, may also be a direct or indirect interaction, such as when a user 

requests a map rotation or the rotation is a result of a sensed change in device orientation. 

A rotate operation is a rotation of the viewport (Equation 3.12) executed as rotate 

(A0), A0 being the change in viewport orientation. Figure 3.3 shows that even when the 

size of the viewport remains consistent, the size of MBRv fluctuates with 6v. The 

maximum area covered occurs when 6v = 45°, 135°, 225°, or 315°, which follows from 

deriving the function for the area of MBRv and determining the critical points. Let the 

dimensions of the viewport be in terms of the width (wp), the height (hp), and the angle of 

rotation (0) (Figure 3.6). The area of the minimum bounding rectangle is the product of 

the MBR's width and height. Deriving the function and solving the equation at zero 

reveals a local maximum, minimum, or inflection point (Equation 3.15). The second 

derivative test shows that the maximum area of the bounding box occurs when 6 is 45 

degrees, the same situation also applying to 6v = 135°, 225°, and 315°. 
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A(0) = [hP*cos(9) + wp*sin(6)] * [hP*sin{6) + wP*cos(9)] (3.15) 
A'(0) = {hP

1+wp2){ cos2(d) - sin\d)) 
0 = (hpZ+wp2^ cos\6) - sin\d)) 
cos2(6) = sin\6) 
6 = 45°, 0° <= 6 <= 90° 
A" (0) = (hp2+M'P2)(-2cos(6)sin(e) - 2cos(0)sin(9)) 
A" (45°) < 0 => local maximum at 45° 

To analyze the effects of a rotation on the underlying map tiles, the new location and 

extent of the viewport relative to the pixel space must be calculated. All new points for 

the viewport after the rotation come from the rotation equation (Table 3.2). First, the 

coordinates are mapped to a local coordinate system where the viewport center acts as the 

origin (i.e. {cp, dp} —> {0, 0} ) and each point is specified relative to this origin. Next, 

coordinates are transformed to their rotated version {(x,y) —» (x cos/9 - y sin6>, x sin6> + y 

cos(9)}. After the rotation the local coordinates are converted back into global coordinates 

relative to pixel or map space. 

h*sin{9) w*cos(0) 

Figure 3.6: Viewport MBR dimensions. 

Regardless of the viewport's orientation, MBRv is always derivable given the 

properties of V (e.g., cp, dp, wp, hp, 6v). As with panning, MBRv determines the minimum 

bounding tiles for that space, MBRp (Equation 3.10). A rotation operation changes MBRv 

and, consequently, the tiles intersecting the viewport's bounds. Prior to rotation, the 
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viewport has certain leeway in each cardinal direction and until MBRv exceeds this free 

space (Figure 3.4), MBRT remains constant. 

MBRT' are new tile bounds resulting from rotate(AO) and contain the same tiles as 

prior to the rotation plus any new tiles that the viewport overlaps due to AMBRv 

(Equation 3.16). Changes in the viewport bounds from rotation are denoted Axmmv, 

kyminV, /SXmaxV, a n d AymaxV. 

(3.16a) 

(3.16b) 

(3.16c) 

(3.16d) 

Rotation involves a transformation of viewport coordinates and is dependent on the 

rotation angle, 9. A rotation of V implies an expansion or contraction of MBRv and, 

consequently, can result in a corresponding expansion of MBRT. Rotation, like panning, 

occurs within a single zoom level whereas requesting more or less detail through 

zooming often requires multiple zoom levels (Section 3.6.2). 

3.6.2 Multi-Scale Operations 

Maps often support visualizing data at multiple levels of detail because geographic spaces 

are too large and geographic features are too many in number to view on a single display 

(Harrower and Sheesley 2005). Zooming is an interactive feature that, in addition to 

panning, allows users to browse and seek information on a map display. Zooming refers 

to a scaling geometric transformation of the viewport (Equation 3.13) and although it is 
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an instance of scaling, zooming is often described as two distinct operations (i.e., zoom in 

for more detail, zoom out for less detail) (Figure 3.7). A mobile map supports zooming to 

increase or decrease the level of detail in order to adjust the granularity of spatial 

information. 

(a) (b) 

Figure 3.7: Zoom operations. J7represented as highlighted rectangle: (a) zoom in and 

(b) zoom out. 

Figure 3.8: A tiled map represents map space at several discrete intervals (z e Z). 

Continuous tile space includes representations in between these (z e R). 
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3.6.2.1 Zooming the Map 

A tiled map is composed of several discrete zoom levels, each being a distinct pixel space 

of a particular width and height (Axp, Ayp). At any time the current zoom level, Zv, is the 

tile layer from which data is retrieved and displayed on the screen although it is possible 

to utilize tile images from a different level by scaling them. Zv is determined by getZoom 

(Function 3.3). 

This thesis distinguishes between two categories of zooming: (1) discrete and (2) 

continuous zooming. A graphical user interface permits users to browse the map by 

changing the map scale either in discrete intervals (e.g., users jump to a new scale) or on 

a continuous basis (e.g., a pinch gesture to zoom in gradually). A tiled map typically 

zooms to a specific set of zoom levels (i.e., Z G Z ) versus zooming in between levels (i.e., 

z e R). In either case, the map browser references data from a single tile layer 

corresponding to a particular zoom level. 

From the perspective of pixel space to screen space mapping (P —> S), discrete and 

continuous zooming are different. Discrete zooming permits the viewport to resize itself 

to only a specific set of resolutions, each of which has the same resolution as the 

corresponding zoom level (i.e. Resolutions = Resolution?). Each pixel from the pixel 

space can map to one and only one screen coordinate, making this mapping an injective 

function (Figure 3.9a), whereas continuous zooming allows for one-to-many or many-to-

one pixel mappings (Figure 3.9b,c). 
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(a) (b) (c) 

Figure 3.9: Pixel mapping: (a) one-to-one (discrete zooming), (b) one-to-many 

(continuous zooming), and (c) many-to-one (continuous zooming). 

3.6.2.2 Discrete Zoom 

This thesis defines two operations for a user under the realm of discrete zooming. The 

user has the option to either zoom in or zoom out by one zoom level. In either instance, 

TMBR' may need to be recalculated after the operation, since tiles now come from a new 

tile layer. The new tile bounds, however, are still spatially dependent on the previous 

bounds. Each successive zoom level splits a particular tile into four tiles, so that tile 

coordinates from one level to the next are related. Given tile bounds MBRT {xmmT, ymmT, 

XmaxT, )>maxT} at level Z, the tile bounds at level Z + 1 for the same area are MBRr' {2* 

xmi„T, 2*yminT, 2*xmaxT+ 1, 2*ymaxT + 1}. Similarly, given tile bounds MBRT {xmmT, ymmT, 

XmaxT, ymaxT} at level Z, the tile bounds at level Z - 1 for the same area are MBRT' {xmmTl2, 

yminT/ 2, XmaxT/ 2, ymaxT / 2}. These new bounds, however, still represent the same map 

space at each zoom level. A zoomIn() often requires fewer tiles within these new bounds, 

while a zoomOut() often requires more tiles outside these bounds since the viewport 

scales up or down relative to the map space. 
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3.6.2.3 Continuous Zoom 

Continuous zooming is an interaction that allows a user to increase or decrease the extent 

of the viewport in much smaller intervals. Instead of choosing between a set of 

resolutions, a user can technically zoom to any resolution by setting the size of the 

viewport explicitly. This thesis defines one operation for continuous zooming, zoom(A<i), 

where d refers to the diagonal of the viewport in pixel space. A value Ad < 0 implies a 

zoom out, whereas a value Ad > 0 implies a zoom in operation. Given the new diagonal 

value, d', the scaling coefficient for the zoom is the ratio of the two diagonals (i.e., s = d' I 

d). As with rotation, coordinates for the viewport are transformed to a local reference 

system and s is applied to the scaling formula (Equation 3.13). Coordinates are then 

transformed back into their original reference system and the map browser determines if 

any new tiles are required. 

A zoom operation has two states, V and V, and if the two states are within the same 

zoom level (i.e., getZoom(F) = getZoom(P) ) then the minimum bounding level 

requires new tiles only if d < 0. If a scaling operation is always performed on the center 

of the viewport (i.e., cp, dp = cp', dp ), then the transformation is isotropic, that is, the 

stretching or shrinking of the viewport is equal in all directions, implying that there is 

equal growth (Ap) in each of the minimum bounds of the viewport. Prior to zooming, the 

viewport has certain leeway in each cardinal direction and until one of these thresholds is 

crossed by MBRv, MBRTremains constant. Free space in each direction is denoted Xfree
+, 

xfree, yfree+, yjree' (Figure 3.4). The new tile bounds are: 
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(3.17a) 

(3.17b) 

(3.17c) 

(3.17d) 

3.6.2.4 Focusing the Zoom 

A map browser may allow the user to focus the zoom operation on a point, which 

essentially re-centers the viewport as the zoom operation takes place. In this way the user 

is not strictly confined to zooming in on center. This operation is essentially a combined 

pan-and-zoom operation, where the viewport is initially panned to the new center point 

and then scaled according to the zoom parameter (Figure 3.10). 

(a) (b) (c) 

Figure 3.10: Pan and zoom: (a) viewport and focal point/ 

(b) viewport pans to re-center over/ and (c) viewport zooms in o n / 

The operation on the interface should not appear to be two distinct operations but 

rather a smooth animation from one state to the next. The data required to render this 

operation smoothly for the map browser, however, is covered when thought of in a two-
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step process. MBRT are the new tile bounds resulting from a pan operation t o / MBRT" is 

the new tile bounds resulting from the zoom operation while V is centered over / Any 

new tiles required to complete the operation are found in the new bounds. Allowing a 

zoom operation to focus on a point adds the extra parameter, f, to the zoom operations, 

which now are: zoomIn(/), zoomOut(/), and zoom(Ad,J). 

3.7 Summary 

This chapter identifies several spaces inherent in a tiled map implementation for mobile 

devices. The map space is a rectangular projected representation of the real world globe. 

The map space is split into several images of different resolutions as a computer 

representation. Each level of detail, or zoom level, is a virtual image of the map space 

which is cut into square images called tiles for easier storage, transport, and management. 

This representation forms a tiled map, also known as an image pyramid, which is a 

popular method for publishing base maps to clients since the client only needs a subset of 

tiles to render a map display. The viewport is the region of the tile space drawn to the 

screen. Such an operation requires mapping pixel locations from the tiles to those of the 

screen. A dynamic display of the map is accomplished via user- or sensor-invoked 

interactions such as panning, rotation, and zooming, each resulting in a geometric 

transformation of the viewport. To render a display the mobile map browser requests a 

minimum bounds of tiles that changes due to these interactions. User operations typically 

allow incremental changes in the tile bounds (e.g., panning the display north to the next 

tile). Any new data that the map browser needs, therefore, has a high spatial dependence 

on the data used prior to the operation. Conceptually, this idea is consistent with Tobler's 
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first law of geography: "everything is related to everything else, but near things are more 

related than distant things" (Tobler 1970). Interactions with a mobile map browser have 

the highest impact on nearby data. 

Operations occur individually or in combination. Concurrent operations have a 

slightly different effect on the tile dataset, since the combined effect is in essence a union 

of the two distinct operations. Mobile map operations play a role in cache management of 

the data (Chapter 5). Whether considering individual or simultaneous operations, a 

history of such operations effect how tiles in the cache are populated and removed. 
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CHAPTER 4 

POPULATING THE TILE BUFFER 

User interaction with a mobile map often results in the need to acquire new data 

accessible from a remote data store. Downloading the data from a remote repository is 

sometimes a necessary action yet has several drawbacks, such as unreliable connections 

and relatively low bandwidth, yielding a slower response time. To combat the issues 

involved with wireless communication a popular solution in mobile computing is caching 

data locally on the device for repeated consumption. The map browser uses tiled images 

as the smallest unit of data and in order to ensure proper data availability, tiles are cached 

to a tile buffer, that is, a data structure for temporarily storing tiles on the mobile device. 

A key advantage of the tile buffer is the addition of an intermediate communication 

layer between the mobile map browser and the remote data store where tiles are accessed 

(Figure 4.1). While the lack of a buffer enforces the map browser to establish expensive 

connections (i.e., time intensive and data charges) to the network for each user action, the 

presence of one permits the browser to first request tiles from the local store and only 

make a remote request if a tile is not available in the buffer, reducing the amount of 

client-server communication. The implementation of a tile buffer, coupled with a set of 

intelligent heuristics on how to populate and manage tiles in the buffer, yields a map 

browser with substantially higher usability. Improved usability is accomplished via an 

attempt to decrease the amount of time a user waits for the map to refresh its display in 

order to avoid testing the threshold of user patience (Mummert et al, 1995). 
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Map 
Browser 

Remote Data Store 

T i l e Buffer 

(a) (b) 

Figure 4.1: Tile buffer: (a) map-server 

communication and (b) map-server 

communication via the buffer. 

4.1 Cost 

Although one wishes to minimize the latency involved with refreshing the map display, 

time is only one of many costs involved with retrieving data over the air via a mobile 

device. In fact, one can measure data retrieval cost using several metrics. Mobile devices 

power themselves from a battery consisting of an extremely limited energy source and 

communication over cellular networks can require a large amount of battery resource 

(battery cost) relative to local computations. For this reason it is desirable to refrain from 

too much over-the-air downloading of data to conserve battery power, especially with 

spatial data, which are large relative to simpler data formats. Depending on the service 

provider, data communication over wireless mediums can be expensive with regard to 

money (dollar cost). While some providers offer prepaid, unlimited data plans for 

communication over their cellular towers, others charge a user for data on a per-megabyte 
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scale. Therefore, one should design a mobile map browser with this in mind and possibly 

allow the user to configure the allowable amount of downloaded data. Cost might also be 

measured in data volume (storage cost) since data retrieved from a remote resource is 

stored to local memory (e.g., RAM or flash). Once the designated storage space becomes 

full an offloading mechanism must remove data in preparation for new downloads. All 

costs mentioned are important. Latency of display refreshing due to temporal costs, 

however, is very crucial for usability. When one must constantly wait for data retrieval on 

an interactive display such as a mobile map browser, frustration levels rise and usability 

is compromised. This chapter discusses some ways of populating a device with maps so 

as to anticipate user interaction to reduce the latency of a map refresh. 

4.2 Tile Buffer 

This chapter defines the tile buffer and begins the discussion on how it may utilize tiled 

data more effectively. The tile buffer is implemented as a set of tiles, meaning that the 

buffer contains unique tiles and, therefore, changes only when adding a tile not currently 

present in the buffer. This implementation differs from other collection data structures 

that allow multiple instances of an item (e.g., a multiset or bag data structure). 

Relevant operations on the tile buffer include those which enable caching of tiles to 

the data structure. Since a tile buffer is a collection object (i.e., a set), there must be an 

initialization or reset function to establish an empty buffer. The buffer herein is referred 

to as B (a set of tiles) and initialization of the buffer is an instantiation of an empty tile set 

defined as the function B.initQ (i.e., B <— {}). The remainder of this chapter is concerned 
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with populating the buffer with tiles and so makes use of a function to add tiles to the 

buffer. The function B.add(T) adds the tile, T, to B (i.e., B ^ B u T ) . 

4.3 Populating Heuristics 

A naive approach to populating a tile buffer includes only those tiles explicitly requested 

by the map browser, meaning each tile in the buffer is or has been visible to the user 

through the viewport. While this approach is the simplest, it creates a serious impediment 

to performance of the map browser. Consumption of tiles in the buffer only happens 

when the viewport intersects a previously used tile, meaning that the fastest map refresh 

occurs only when the user goes back to a earlier location. Each operation resulting in a 

new area on the map requires another network connection and additional tile requests 

from the remote server. If the map browser is following a route for navigating the user 

along a road network, each movement to a new location requires additional data and, 

thus, delays the map rendering process. 

To solve the issue of forcing the user to wait for a map refresh, the buffer can employ 

better heuristics by anticipating future operations invoked by the user based on the 

intuition of where a user expects the least amount of delay. Doing so exploits a network 

connection by retrieving more data than currently required. Establishing a new 

connection to a server for tile requests is assumed to cost something, mostly with regard 

to the time required to do so. In addition, wireless networks are characterized by 

intermittent connectivity and it is impossible to fully determine whether or not a 

connection will be available in the near future. The unreliability factor of wireless 
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network connections creates an uncertainty to the availability of map data in the future. 

The strategies for populating the tile buffer described in this chapter anticipate upcoming 

operations on the map in order to take advantage of any available connection when 

available by retrieving a larger data set from the server. 

Each assumption has implications on the add() function defined on the tile buffer. 

The map's viewable area is described using MBRp or MBRT, which describes a set of 

adjacent tiles, each of which are added to the buffer by the B.add(T) method. The 

governing strategies define a function/(T) which, given T, will derive a set of tiles which 

are also added to the buffer as a result of add (Equation 4.1). 

B^B + Tu/TT) (4.1) 

4.3.1 Coarser Tiles 

According to Shneiderman's Visual Information-Seeking Mantra (1996), overview 

information is of highest priority for a visual interface. Overview information in regards 

to a tiled map refer to tiles at a lower level of detail than a given tile, which herein are 

referred to as coarser tiles. The first assumption of the buffer populating heuristics is that 

users expect to have a less detailed map than what is currently available and, thus, the 

buffer should always keep some set of coarser tiles in memory. The strategy attempts to 

minimize the amount of wait time of a map refresh for zoom out operations by 

maintaining coarser tiles in the buffer. When a tile is added to the buffer, a coarsening 

function, c(T), derives a relatively small set of coarser tiles which are also added to the 

buffer (Equation 4.2). 
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Assumption 1 (Al) : Always populate the buffer with lower detail tiles. 

B^BuTu c(T) (4.2) 

The coarsening finds tiles of a coarser resolution than that of T. Each zoom level 

coarser than that of T has exactly one tile that contains the map extent of T (Figure 4.2). 

By retrieving coarser detailed tiles, the buffer increases the geographic extent of the 

cached tile data. Maintaining coarser tiles is especially useful if high detail maps are not 

available for a specific location because raster images are scalable and may be used for a 

different zoom level than originally intended. If tile T is not available, for example, the 

map browser may instead find a tile from a lower zoom level, scaling the image to match 

the resolution of T. Scaling an image up or down, however, does not increase or decrease 

the amount of information and instead decreases image quality and so should only be 

used as a temporary solution while the correct tiles are cached into the buffer. 

Figure 4.2: Tile containment. Tile T at level z and tiles containing T at lower zoom 

levels. 

The function c(T) might use one of several strategies for retrieving tiles, each of 

which require a different number of additional tiles to add to the buffer. For instance, the 

function could retrieve all tiles at coarser zoom levels that contain T, such as in Figure 

4.2, requiring (z - Zmin) additional tiles. Alternatively, c(T) could also just retrieve one tile 
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at a coarser level that contains the extent of all tiles visible by the map. Regardless of 

which method is used, the implementation should attempt to minimize the number of tiles 

to retrieve while still fulfilling the need for less detailed, overview data. 

4.3.2 Stationary Map Rotation 

In addition to retrieving coarser tiles, strategies for filling the buffer also incorporate data 

that are near the map's current location. Map rotation should be considered an 

instantaneous operation since it is fair to assume that a user might expect little to no delay 

when simply rotating the map while keeping its center stationary. Also, rotation only 

requires the addition of a relatively small amount of tiles so the buffer should, therefore, 

support rotation by retrieving the neighboring tiles of T. The second assumption for 

anticipating future operations and the corresponding tile set stems from this intuition that 

users expect minimal delay as the map rotates, meaning the data required for rotation 

should exist in the buffer. When the buffer adds a tile the function r(T) derives the tiles 

around T that are included for rotation (Equation 4.3). 

Assumption 2 (A2) : Always populate buffer to allow for stationary map rotation. 

B «- B u T u r(T) (4.3) 

The rotational tile set obtained by r(T) is based on one of several neighborhood 

techniques. For example, one could use the MBR of the circular footprint formed from 

rotating V about its center. The MBR is a square with a length equal to the diagonal of the 

viewport (Figure 4.3) and is used to derive any addition tiles that could intersect V when 

rotated. The rotational MBR creates some overhead, however, since the area in the 
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d 

V 

Figure 4.3: Rotational MBRof V(MBRrv). 

corners of the MBR are not actually part of the rotational area but does guarantee that all 

tiles are available for any stationary map rotation. 

Alternatively, r(T) might be based on the situation that occurs when considering only 

one tile and its immediate neighbors. If Presides completely within one tile, the only tiles 

that can possibly intersect Ps rotational footprint are the four adjacent neighbors to that 

tile. The function r(T) retrieves the four adjacent neighbors of T and, if multiple tiles are 

covered by the viewport, the resulting tile set is derived by a matrix addition (Figure 4.4). 

Figure 4.4: Tile neighborhood addition. T (dark) and rotational tiles (light). 

Tiles that are pushed into the buffer in preparation of map rotation should also comply 

with the coarser tile policy Al; for each tile added for rotation the buffer also finds the 

coarser set of tiles. In other words, an extension of A2 states: 



Assumption 2a (A2a) : Always populate the buffer with coarser tiles derived from A2. 

B ^ B u T u c(r(T)) (4.4) 

The intersection of the tile sets derived from c(T) and c(r(T)) will often be non-empty 

since coarser tiles cover a larger extent. Therefore, the addition of A2a is considered 

relatively non-expensive but necessary to maintain a set of tiles which provide an 

overview of the current map. 

4.3.3 Details on Demand 

The Visual Information-Seeking Mantra suggests that higher detailed information be 

retrieved only on-demand when requested by the user. Intuitively, users are more willing 

to accept the fact that retrieving a higher detailed data set requires a wait. From a 

performance perspective, on-demand access for high detail data is necessary since the 

number of tiles composing a region of the map space grows exponentially as one 

increases the zoom level. On-demand access to tiles at a higher zoom level is independent 

of the anticipation heuristics but still triggers previously defined heuristics (Equation 

4.5). 

Assumption 3 (A3) : Add detailed tiles to buffer on-demand only. 

B e B u T u c(T) u r(T) u c(r(T)) (4.5) 

The cost of retrieving additional tiles for A3 is minimal since the buffer already 

contains coarser tiles from immediately before the zoom in operation. 
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4.3.4 Nearby Movement 

A commonly used feature of mobile mapping software is navigating the user through 

space, such as along a road network. Navigation implies that the user is moving through 

space and, hence, will require a dynamic map display. In addition to a navigation scenario 

that updates the map display through sensed changes in position, browsing the map (e.g., 

panning) also yields a dynamic map display. These two examples both seek new data that 

are close in pixel space to the map's current location. In order to anticipate the local 

movement of the device/user or map display, the next buffer populating strategy assumes 

that the user will require neighboring tiles of the current map view. A function «(d,T) 

derives nearby tiles which are less than or equal to d tile units from T (Equation 4.6). 

Assumption 4 (A4) : Anticipate nearby movement and pre-fetch tiles for a limited range 

of the current map view in discrete tile units. 

B ^ B u T u n(d,T) (4.6) 

Tile distance refers to the number of units between two tiles and is defined using a 

distance metric. Since tiles are indexed by their x- and ^-coordinates, the indexes 

determine the distance between two tiles. A common distance metric in two-dimensional 

space is based on the relation between two items in Euclidean space and uses the 

Pythagorean theorem (i.e., d = \j(x\ - xif + (vi - yif , d € R ) as a quantitative measure 

of distance. A simpler but equally effective metric for tiles is Manhattan distance (or 

Taxicab Geometry), where the distance is the sum of the absolute difference between tile 
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coordinates (i.e., d =1 x\ - xi I + I y\ - yi I , d € Z ). Using this approach, distances are 

described as integers and tiles of equal distance form rings around the center tile. 

Both A2 and A4 are concerned with tiles residing in the immediate neighborhood of 

T. In fact, the two assumptions both consider an isotropic tile range from T and will 

result in some overlap. If A2 only considers the four adjacent neighbors of T, while A4 

considers all tile neighbors up to some distance, d, then the buffer heuristics can discard 

A2 so long as d > 0. The strategy populates the buffer in groups of neighboring tiles of 

equal distance from T. In addition to adding the neighboring tiles, the buffer also looks to 

previous heuristics for each added tile. A revision of A2a yields an extension of A4 

(Equation 4.7). 

Assumption 4a (A4a) : Always populate the buffer with nearby tiles up to some 

distance, d. 

B ^ B u T u c(n{d, T)) (4.7) 

4.3.5 Direction-Dependent Movement 

So far the buffer heuristics discuss pre-fetching nearby map tiles in an isotropic fashion, 

that is, retrieving an equal number of neighboring tiles in all directions. In addition to 

anticipating the next move by populating the tile buffer with coarser and nearby tiles, one 

could also exploit direction of travel for bulk loading tiles into the buffer. Direction of 

travel refers to the predominant direction of movement in the user's environment and to 

derive this property, the buffer must record a location history of the user that together 

form a trajectory which the buffer extrapolates to anticipate a future location. A tiled map 
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trajectory is the movement of the user or viewport through space and is represented as a 

sequence of location and time entries, each having the form { xt, yt, tt}. 

Processing on location history data determines whether or not the user is moving and, 

if so, the direction and speed of the movement. Using the device's location history, the 

buffer manager uses one of two strategies for bulk loading tiles. If the device has the 

same position (or close to the same position) over the past n units of time, then one 

assumes the device is stationary, in which case any bulk-loading of tiles acts according to 

A4. A non-stationary mobile device, however, has a trajectory described by its past 

positions. Processing this trajectory derives a motion vector, v, describing both the 

direction and velocity of the movement. If the buffer manager determines that the device 

is in motion, a direction-dependent bulk-downloading strategy overrides the stationary 

version (A5). 

Assumption 5 (A5) : When device is moving, populate the buffer with nearby tiles up 

to some distance, d, in the direction given by a. 

B e B u T u « ( a , r f , T) (4.7) 

Direction-dependent bulk-loading uses the predominant direction of movement of the 

device to put emphasis on downloading tiles in a specific direction, a, where 0 < a < 2u. 

The magnitude of the motion vector, d, is dependent on the velocity of the motion, where 

an increase in velocity corresponds to an increase in d. Anticipating tile usage based on 

direction demonstrates an anisotropic approach to pre-fetching nearby tiles. 

Neighborhood tiles are compared to each other through distances from some center and 

these distances are weighted based on how astray a tile is from the motion vector. Those 
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tiles opposite the direction will be weighted lower (i.e., larger distance) than those in the 

direction of movement (i.e., smaller distance) (Figure 4.5). 

(a) (b) 

Figure 4.5: Weighting of tiles. Darker tiles are weighted higher, (a) Isotropic (stationary 

device) and (b) anisotropic (moving device). 

4.4 Server-Side Computation 

Mobile devices draw from a finite energy source and will continue to limit how long one 

can use a device in the field without recharging the battery. In order to maximize battery 

life on a device one should avoid any intensive processing when possible and instead 

offload this processing to a server. Mobiles, assuming now the presence of wireless 

Internet connectivity, can communicate to servers via web services to assist in the future 

state of a device. 

The anticipatory user interaction strategies aim to select some number of tiles to pre­

load onto the device given several parameters such as previous interaction or device 

movement and current map level of detail. For simple location prediction using linear 

motion models, computation is relatively light, whereas for more complex trajectory 
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extrapolation or might require the assistance from a server. In addition, distributed 

computing can offer further filtering for prioritizing anticipated locations through the use 

of additional GIS data. A web service, for example, might determine whether it even is 

necessary to preload data based on a separate prediction on the future status of cellular 

signal strength (Figure 4.6a). Also, one could further refine a trajectory prediction based 

on road networks, where a straight line path is sometimes highly unlikely (Figure 4.6b). 

(a) (b) 

Figure 4.6: Server GIS data repositories: (a) Cellular coverage data 

plus trajectory and (b) road network plus trajectory. 

4.5 Buffer Data Structure 

The tile buffer, being a set of unique tile items, is implemented as a data structure with a 

logical organization of the tiles based on the buffer populating heuristics. One way to 

envision the buffer data structure is through the use of a linked list of tile objects, where 

tiles in the buffer are grouped according to how they are inserted into the buffer. For 

instance, all tiles that are currently used by the map browser might be adjacent in the list, 

followed by Al tiles for the map overview, followed by A2 nearby tiles, and so on 
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(Figure 4.7). Categorizing tiles in this manner will help to prioritize how tiles are 

removed from the buffer (Chapter 5). 

Figure 4.7: Buffer as a list of tiles, categorized by next move heuristics. 

4.6 Summary 

This chapter details a specification for implementing an anticipatory approach to user 

interaction on mobile map browsers. The specification describes several ways to populate 

a tile buffer (local storage allocation for map tiles) based on graphical user interface 

principles, intuition on user patience, and interaction history of the user. When the map 

browser has satisfied on-demand data requirements and acknowledges the presence of a 

data connection, the opportunity to gather additional map data from a remote tile 

repository should be considered. Doing so will speed up future requests for data by 

improving cache hit rates and also better prepare the device for a lost or slower data 

connection. Chapter 6 describes a prototype for testing some of the heuristics for pre-

downloading map tiles to assess the advantages and disadvantages over on-demand map 

tile access. 
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CHAPTER 5 

CACHE MANAGEMENT 

All software applications, especially mobile ones, are memory-limited and must, 

therefore, employ some functionality for ensuring sufficient digital storage space for data. 

Map browsers use memory-demanding raster and vector data for generating the graphics 

for geo-visualization and regardless of whether maps are stored on a mobile device in 

main-memory or on disk (i.e., flash memory), at some point it becomes necessary to 

offload maps to ensure space for incoming data. Although it is possible to require the user 

to choose data to offload, this task is assumed to be non-trivial since it may involve 

selecting from a group of map layers, levels of detail, and geographic area and should, 

therefore, be abstracted from the user and implemented as an automated process. This 

chapter offers several tile offloading mechanisms and the rationale behind each method. 

Offloading, or cache replacement, revolves around assessing temporal and spatial 

relationships between cached items and may utilize one or both of these relations. 

5.1 Cache Invalidation 

Quality caching of map tiles involves proper anticipation of user interaction for pre­

loading data but also proper removal of the data. Since map browsers consume spatial 

data over time, location is an additional parameter one may use for selecting candidate 

tiles for deletion. Even so, temporal attributes of the data are important and should still be 

factored into cache management. A challenge to effective tile data management is cache 

invalidation, or determining when a cached item is expired. Information changes over 
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time but also at various temporal granularities. While weather and traffic information are 

characterized by frequent change, housing developments arise much less frequently, 

street names hardly change, and spatial attributes of geographic features like rivers and 

mountains vary over a significantly larger time scale. In short, map layers are diverse in 

the temporal granularity at which they change but nonetheless provides a metric by which 

to make decisions on when to offload maps on mobile devices. For purposes of managing 

a tile cache temporally, one might also tag each tile with a "time to live" property and 

when this duration is exceeded the tile is discarded from the cache. 

Although invalidating a tile based on a temporal threshold permits one to define a 

single comparison for a cached item, a couple issues exist with the approach. For one, the 

comparison does not take into account the tile's frequency of use. If a tile is relatively old 

but frequently used and retrieving an updated version is costly (e.g., no data connection 

exists), discarding the tile is not the best solution. Managing cached tiles should consider 

the cost of retrieving an updated version of a particular tile prior to committing to 

deletion. 

5.2 Offloading Algorithms 

Cache replacement policies compare several cached items at a time in order to prioritize 

them for deletion. By doing so, a replacement algorithm aims to select data items to 

delete that are least likely required for future use. With location data it is possible to 

guide replacement policies using multiple metrics of space in addition to time. 
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5.2.1 Least Recently Used 

One of the many common temporal cache replacement algorithms is the least recently 

used (LRU) policy which deletes cache entries by comparing each item's last usage 

timestamp and ranks them from least recent to most recent. In spite of the effectiveness of 

an LRU approach, one can easily derive a scenario in which an LRU approach fails for 

tiled maps (Figure 5.1). Consider a moving object which is traveling along a path which 

will eventually return to its initial location. Given the history of data consumed by the 

map, an LRU approach selects discarded tiles (dark shaded) that would intuitively be 

saved for future use based on the current location and movement of the object. 

Figure 5.1: LRU ranking (darker 

shades indicate least recently used). 

5.2.2 Furthest Away Replacement 

Cache replacement algorithms for spatial data should integrate location-based cache 

replacement when reasonable to do so. Given a tile buffer storing n tiles, a furthest away 

replacement (FAR) will rank the set of tiles by distance from some point, p. Lhose tiles 

that are furthest away from/; are removed from the buffer (Figure 5.2). Alternatively, the 
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replacement algorithm calculates tile distances between the current tile and all other tiles 

in the buffer. The distance between two tiles, cl, comes from an equation that provides 

some distance metric for tiles, assuming the two tiles are at equal zoom levels. Given that 

this is true (i.e., ZTI=ZT2), the following applies: 

d(Ti, Ti) = \xn- XT? + | yn - yn | (5.1) 

Figure 5.2: FAR discards furthest away tiles 

(darker shades indicate greater distance). 

5.2.3 Directional FAR 

Similar to pre-fetching local tiles based on user or device movement (Chapter 4), cache 

replacement policies exploit trajectory data to further refine location-based cache 

management. Chapter 2 discusses previous approaches to represent a moving object via 

trajectories. In this thesis and for testing a prototype implementation a vector-based, 

linear motion function is used to describe a mobile device's current state of movement. A 
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device's movement state is specified as a location, speed, and direction (Sistla et ah, 

1997) and is derived from the previous n device locations. 

A caching policy using FAR calculates a distance for each tile in the buffer 

corresponding to the distance between that tile and the center tile (i.e., the tile containing 

the device or map's current location and zoom level). Buffered tiles are then ranked by 

distance, the farthest being removed. In order to make use of direction, each tile's 

distance is weighted (w*d) based on the angle of difference between the two tiles and the 

general direction of movement (Figure 5.3). Fhose tiles in the direction of the device's 

motion vector receive the lowest weight, while those opposite the motion vector receive 

the largest. Weighting the distances according to direction encourage the buffer manager 

to keep tiles in the direction of movement and discard those opposite this direction. Of 

course, a stationary device would have little effect on the distance values as the weights 

would be the same regardless of direction. 

Figure 5.3: Angular difference (a) between motion vector 

(vm) and the directional relationship between a tile and the 

center tile (vrm). 
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5.2.4 Prioritization by Pre-fetching Strategies 

Chapter 4 discusses the tile buffer and suggests that the buffer will not only store 

neighborhood tiles for a particular level of detail but also overview data, or tiles at a 

coarser zoom level. At any time tiles might be cached for several zoom levels, something 

the buffer must consider when executing a cache replacement algorithm. 

A question that arises for multi-resolution tiled maps is how one establishes a distance 

metric for tiles at different zoom levels, since one cannot simply use the discrete tile 

distance for two tiles at equivalent zooms (Equation 5.1). For example, consider tiles Ti 

and T2, where Ti is at a coarser zoom level than T2 and the distance between the tiles' 

coordinates is large relative to if the tiles are at the same zoom level. Ti covers T2 

topologically, however, and offers a less detailed, overview version of T2 and should thus 

be preserved in the buffer. A distance metric for tiles at two different zoom levels is 

required for comparing tile distances at varying zoom levels. One solution is to translate 

T2's tile coordinates to the zoom level of Ti by recursively assigning T2's parent's tile 

coordinates to T2 until both Ti and T2 are at the same level. Once translated Ti and T2' use 

the same distance measure as for tiles of equivalent zoom levels. To account for the 

difference in zoom levels one could also add the zoom level difference to the distance 

metric (Equation 5.3). 

given (ZTI < ZT2 A ZTI = ZTI1), d(Ti, Ti) = (ZTI - Zn) + d(Ti, T2') (5.2) 
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5.3 Summary 

Offloading map tiles is a balancing functionality to populating and pre-populating the 

memory buffer. As the buffer fills and exceeds some threshold, the buffer manager 

prioritizes tiles from the buffer for deletion and does so on either a temporal, spatial, or 

combined basis. Concepts from the previous two chapters are implemented in a prototype 

tile caching application in order to assess anticipatory caching strategies to on-demand 

strategies. 
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CHAPTER 6 

PROTOTYPE IMPLEMENTATION 

The previous two chapters introduced a number of strategies for both pre-fetching tiles 

and removing tiles from a memory buffer on a mobile device. With the objective of 

gaining some insight on the success of these strategies, this chapter introduces a 

prototype implementation which simulates vehicle movement through a road network. 

Two strategies, an isotropic and anisotropic pre-fetching policy, are implemented in 

a .NET C# application for comparison on a set of trajectory data gathered from real-world 

vehicles. Isotropic pre-fetching anticipates movement equally in all directions and 

generally would be useful for a completely random movement pattern through space. 

Realistically this is seldom the case as movement through space within relatively short 

temporal intervals is dependent on the past and current locations of a moving object and 

thus is not random, especially when constrained by a road network, for example. 

Anisotropic pre-fetching anticipates user movement in a particular direction to retrieve 

tiles at the current zoom level of the map. As a user moves through space and time, one 

can derive a motion vector which is then used to prioritize nearby tiles for pre-fetching, 

given that a data connection is available at the time. 

To further augment pre-fetching, one can also pre-fetch tiles at a coarser level of 

detail than the current map display, which has some advantages. First, since tiles are 

scalable images, a single tile at the next coarser level can replace the need for retrieving 

four tiles at the current level. Hence, one actually increases the geographic coverage 
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while decreasing the data volume. However, the resulting tradeoff of doing so is a 

decrease in the overall visual quality of the map as coarser level tiles can become 

"pixelated" when used for a resolution higher than originally intended. This chapter 

describes a prototype to simulate tile pre-fetching at a single zoom level in order to 

simplify the metrics needed to analyze pre-fetching performance. 

6.1 Experimental Design 

The prototype aims to simulate as realistic of a scenario as possible, one in which a 

mobile map cache is dynamically updated as a user moves through the environment or 

navigates the display via pan and zoom map operations. In order to do so the prototype 

implementation models (1) user movement through space, (2) a web-based tiled dataset, 

and (3) tile pre-fetching and removal policies. The success of the pre-fetching algorithm 

is measured by pre-fetching accuracy, derived from recording both the correct and 

incorrect classification of tiles for pre-fetching. 

6.1.1 Trajectory Data Set 

In order to support a realistic approach to measuring the pre-fetching strategies, the 

caching algorithm makes use of data representing a mobile object whose position changes 

with time. The R-tree Portal (www.rtreeportal.org) hosts a plethora of software, data 

generators, and real-world datasets supporting ongoing research for moving-object 

databases. GenerateSpatioTemporalData (GSTD), for example, is a publicly available 

software library for generating point or rectangular moving object data and is available 

for download over the web. Although a trajectory generator enables one to simulate a 
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large number of trajectories very quickly, which is useful for statistical purposes, it 

remains difficult to build a dataset that closely mimics the complexity of movement of a 

real-world object. Some generators, such as GSTD, create spatio-temporal datasets 

according to a statistical distribution. For example, one can specify both the spatial and 

temporal components to follow a normal distribution. That is, Ax, Ay, and At each have a 

mean and variance that dictates what their values tend to be. A trajectory following a 

normal distribution will thus progress in one general direction, where increasing the 

variance can result in a more irregular trajectory. In addition, the change in x- and y-

values for a single timestamp is not dependent on previous sample points for the 

generator, which is not like the real world. A road that curves continues to curve and a 

long, straight road does not vary direction for some distance. Therefore, in order to 

capture the properties of trajectories most inherent in the real world, the map pre-fetching 

simulation consumes data captured from real road networks. 

(a) (b) 

Figure 6.1. Trajectory data: (a) school buses and (b) construction trucks. 
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Frentzos et al. (2005) offer two datasets online for metropolitan Athens, one featuring 

tracking of school buses picking up and dropping off students while the other represents 

construction trucks moving to various sites within the region (Figure 6.1). Overall, the 

trajectories offer a variety of trajectory complexity, from relatively straight highway 

driving to city block driving with frequent directional change, providing the necessary 

balance for an analysis of trajectory direction dynamics and pre-fetching performance. 

The raw data made available on R-tree Portal does bring up a couple issues with 

regard to the pre-fetching simulation. First, there is a lack of consistency between 

timestamps of sample points and, consequently, distances between them. Since the 

implementation prototype uses sampled trajectory points, it must estimate pre-fetching 

effectiveness not only at the sampled points but also in between them. Assuming straight-

line movement from to to ti, all tiles intersecting the swath of the viewport at and in 

between these two sample points are tagged as "required" by the map Tenderer. The pre­

fetching algorithms only consider a maximum number of tiles to pre-fetch, both at a 

maximum distance and of a maximum quantity at any one time. To ensure consistency 

between the domain of tiles for pre-fetching along a trajectory, the data was resampled so 

that sample points were evenly spaced with regard to both space and time. As a result, the 

normalized trajectories represented vehicles moving at a constant speed of about 35 mph. 

Although this does not represent real world traffic perfectly, it does offer an advantage. 

The prototype compares two pre-fetching strategies that differ in how they deal with 

direction. By normalizing properties such as speed along a trajectory to ensure 

consistency, the direction properly of trajectories is the only variant, making the 
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upcoming analysis more statistically sound. The trajectories were also trimmed so that 

each trajectory contains 40 sample points. 

6.1.2 Web Tile Dataset 

Tile images from a tiled map dataset can vary depending on the provider, map projection, 

data compression, image size, among other variables. The pre-fetching prototype 

simulates the use of a particular data set of a defined set of attributes. OpenStreetMap is a 

community GIS project for creating and editing a worldwide map and the project's main 

website (http://openstreetmap.org^ features a tiled map browser that pulls pre-rendered 

raster images from a database. 

Our prototype simulates the use of OpenStreetMap tiles for a dynamic tile cache and 

does so by estimating some attributes of the data source. Tiles themselves are 256x256 

pixel PNG images in a Web-Mercator projection, which is consistent with many other 

web tile data sources (e.g., Google, Bing). Although these attributes remain consistent, 

the data size of tiles varies depending on how the original image was rendered. To 

incorporate a varying tile data size the prototype assumes a normal distribution of sizes in 

the entire dataset. A mean of \i = 14,146 bytes and standard deviation of o = 4,065 bytes 

were calculated from a sample of 963 OpenStreetMap tiles. As the prototype simulates 

user movement, tiles are created with a size according to a normal distribution of these 

values, which will determine both the cost for retrieving a tile wirelessly and the impact 

each tile has on the amount of available cache space. 
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6.1.3 Wireless Coverage 

In addition to tile size, the data transmission rate of a cellular connection also determines 

the cost for retrieving a map tile wirelessly (i.e., retrieval time ~ datasize I 

transmissionrate). Although data rates fluctuate depending on carrier, cellular standards, 

network user load, signal strength, etc., the International Mobile Union (IMU) called for 

the 3G standard to provide a minimum speed of 348 kbit/s for a moving vehicle (ITU, 

2005). The prototype implementation assumes a consistent transmission rate of 348 kbit/s 

for downloading tiles when connected. 

In reality, one might experience intermittent connectivity as they travel by vehicle 

along a road network, since one hundred percent wireless coverage is not yet available 

among any wireless carrier. The pre-fetching simulations do not model intermittent 

connectivity in an environment, since the objective is to measure pre-fetching accuracy of 

two direction-based models. This thesis argues, however, that a pre-fetching strategy 

which yields a higher accuracy and thus higher reliability of having the necessary data in 

the future implies that it would also prove beneficial in an environment where a wireless 

connection is intermittent. This rationale assumes that a connection is indeed available 

part of the time, however. Given a mobile device equipped with GPS, it is still possible to 

record a location history when in a cellular dead-zone. When a connection does become 

available one exploits it by pre-fetching data in anticipation that the connection may not 

be available soon after. One might test this by varying the level of connectivity and 

measure the confidence in having the necessary data during periods where connectivity is 
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lost. Pre-fetching clearly would become less effective when connectivity becomes more 

sparse as there is little opportunity for pre-fetching at all. 

6.1.4 Pre-fetching and Replacement Policy 

Cache management for the prototype implementation includes both pre-fetching and 

removal of tiles in a limited size memory buffer. Another control variable for the 

simulation is the size of the memory buffer. As previously mentioned, the tile cache can 

include a main memory cache, file cache, database cache, or combination of these. The 

experiment will consider a main memory tile bitmap cache only of a maximum size of 64 

tiles or 896 KB. As tiles are fetched and pre-fetched the tile buffer fills and once either 

threshold is crossed a cleanup policy is invoked to rid the cache of unwanted tiles. 

Chapter 5 discusses some strategies for removing tiles from a memory buffer, one 

through temporal locality (LRU) and the other through spatial locality (FAR). Since the 

prototype will be pre-fetching tiles in anticipation of movement, the removal algorithm 

should refrain from discarding pre-fetched tiles as this would be counter-productive. 

Instead, whenever the buffer reaches either the maximum tile threshold or the maximum 

data size threshold, it ranks cached tiles according to last access time and discards the 

least recently used tiles (i.e., LRU). 

As the simulation moves from point to point along a trajectory, the pre-fetching 

algorithm anticipates future needed tiles based on this movement and queues them up for 

retrieval. First, the algorithm identifies the a set of tiles to prioritize based on movement, 

defined as any tile within a maximum distance of the current center tile and of the same 

zoom level. Each tile is then assigned a weight based on its distance from the center tile 
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(</), its angle to the center tile relative to the direction of movement (a), and the speed 

movement (s). Tiles in line with the direction of movement should receive the highest 

weight, while a greater speed corresponds to heavier weighting of tiles further out in the 

direction of movement. To calculate these values the pre-fetching algorithm uses a 

variation of the standard normal distribution function that captures these three variables 

(Eq. 6.1) (Figure 6.2). 

1 - ^ 
- e 1/V* (6-1) 

d 

The tile weighting function determines a weight for each tile based on a curve such as 

that shown in Figure 6.2a. Values along the x-axis correspond to a and range from -% to n. 

The speed of the moving object is equivalent to the function's standard deviation and so 

as speed increases, the bell curve becomes narrower and tiles are weighted higher in the 

direction of movement. The distance of the weighted tile to the current center tile affects 

the overall weight as well, where tiles closer to the center will receive a slightly higher 

weight. In essence, tile weighting is meant to account for both distance and direction of 

movement for anisotropic pre-fetching only, whereas isotropic pre-fetching only accounts 

for distance. Tile weighting could certainly be implemented differently, such as through 

the use of a trigonometric function or a multivariate normal distribution (Hansen, 2008). 

Such functions would likely produce similar results as they are also feature bell-shaped 

curves. The prototype uses a tile weighting function since, like document retrieval in 

search engines, items of interest are determined by their relevance, where relevance in 

this instance is determined in large part by locality and direction. 
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(a) (b) 

Figure 6.2. Tile weighting function (a) and sample 

results (b). Darker shades imply a larger weight. 

6.1.5 Pre-fetching Metrics 

Pre-fetching map tiles is an information retrieval process similar to a querying a web 

search engine. Google and Yahoo! search engines have specialized algorithms to rank 

documents so as to return the most relevant search results to its user. Similarly, tile pre­

fetching aims to target a set of tiles (albeit a much smaller list than a web search) and 

prioritizes them based on future relevance to the map. One can measure tile pre-fetching 

in terms of precision and recall since the prototype is essentially performing a binary 

classification on a group of tiles, marking them as either one to pre-fetch (i.e., positive 

classification) or one not to pre-fetch (i.e., negative classification). Precision refers to the 

ratio of tiles successfully pre-fetched and later found relevant (i.e., the map consumed 

this tile from the cache and thus is a true positive) to the total number of pre-fetched tiles. 

Recall is the ratio of successfully pre-fetched tiles to the total number tiles requested by 
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Figure 6.3. Tile pre-fetching: (a) pre-fetching prioritization of tiles of d<= 

2 based on Eq. 6.2, (b) top 5 tiles are pre-fetched, (c) simulation records 

correct and incorrect classifications. 

the map. At each sample point along a trajectory the cache labels any pre-fetched tiles 

from the previous movement according to a classification context or confusion matrix 

+ 
Predicted 

Classification 

Actual Classification 

+ 

tp 
(true positive) 

fp 
(false positive) 

fn 
(false negative) 

tn 
(true negative) 

Table 6.1. Classification Matrix. 
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(Table 6.1). All tiles within a distance of 10 tiles from any point on the trajectory are 

initially labeled as true negatives so as to only consider a small number of tiles 

(depending on the zoom level the tile space can be composed of millions of tiles). Tiles 

are labeled as false positives if they are pre-fetched and later discarded from the cache 

without ever being within the viewport. 

Performance measures for predictive processes can be carried out using measures of 

precision and recall (Olson and Delen, 2008). A receiver operating characteristics (ROC) 

curve, for example, helps to visualize the relationship between true positives and false 

positives. The ROC curve plots the true positive rate (Eq. 6.3) against the false positive 

rate (Eq. 6.5). The true positive rate is also known as sensitivity while the false positive 

rate is one minus the true negative rate (Eq. 6.4) (Olson and Delen, 2008). Accuracy is 

another measure of success in information retrieval that can measure how well a pre­

fetching algorithm identifies or excludes future needed data (Eq. 6.6). 

TP 

True Positive Rate {sensitivity) = TP + FN 
(6.3) 

TN 
True Negative Rate {specificity) = TN + FP 

(6.4) 
TN 

False Positive Rate = 1 - TN+FP (6.5) 
TP + TN 

Accuracy - TP + FP + FN + TN (6.6) 

A trajectory is a sampled representation of the viewport's movement through the map 

space. Not only will the simulation need to track which tiles intersect the viewport's 

bounds at each timestamp along the trajectory, but also any tile that might intersect this 

moving window between timestamps. To determine the entire set of tiles that intersect the 

swath we simply model the moving viewport as a polygon (Figure 6.2c) and test each tile 

using a point-in-polygon algorithm. If any of the four points of a particular tile are within 
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the bounds of the polygon, the tile is said to be "required" by the map for rendering. This 

approach assumes that (1) the viewport moves in a straight line between two trajectory 

sample points and (2) both the tile width and height are smaller than the width and height 

of the viewport, which is necessary to ensure an accurate point-in-polygon assessment. 

6.2 Simulation Results 

In total the tile pre-fetching prototype simulates 251 distinct trajectories (a product of 

trajectory normalization from the larger dataset), each of which consists of 40 sample 

points. Simulations are run for both isotropic and anisotropic models while varying the 

data volume allowed to pre-fetch. That is, for each trajectory, the prototype simulates a 

maximum tile pre-fetch of 0-10 for each model, yielding a total of 5,522 simulations 

(2*11*251). Trajectories vary in complexity, herein defined as the average absolute 

change in heading that the trajectory experiences along its duration. Trajectory 

complexity values range from 9° to 70° with a mean of 32° and standard deviation of 14°. 

As previously stated, the simulation considers a transmission rate of 348 kbps and 

average tile size of around 14 KB. Trajectory sample points are taken every 30 seconds, 

yielding a limit on how much data could potentially be pre-fetched per sample and is 

actually considerably more than 10 tiles. Realistically, however, transmission speeds vary 

and the time it takes to establish a connection and write data to disk or a database adds to 

the total time it takes to retrieve one tile. A 10 tile maximum is an appropriate limit as it 

does lead to some insight on how data volume affects pre-fetching accuracies in 

conjunction with trajectory complexity. 
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The prototype implementation is a .NET Windows Console application and all 

simulations were output to CSV text files. In order to efficiently query and format subsets 

of the results all data were inserted into three tables of a Microsoft SQL Server database 

(Table 6.2). 

Trajectory 

trajectory id num_points num turns vehicle type polyline avg heading change 

TrajectorvPoint 

trajectory_pt_id trajectory id latitude longitude speed heading 

Simulation 

simulation id maxjprefetch max distance zoom coverage isotropic 

trajectoryJd tp tn fp fn tpj-ate 

fprate fn rate accuracy total hits totaljnisses hit ratio 

Table 6.2. Trajectory database table schema. 

6.3 Analysis of Results 

The initial presumption of this thesis was that anisotropic pre-fetching would 

significantly outperform isotropic pre-fetching in a situation where movement is not 

totally random, a requirement that is captured through use of real vehicle movement data 

within a city road network. To test this hypothesis, each group of pre-fetching accuracy 

values are found to be significantly different or not using a student's t-test. For each data 

volume level (0-10), each trajectory has an accuracy value for both anisotropic and 

isotropic pre-fetching. At each level, we apply a t-test to the two groups of anisotropic 

and isotropic values while also visualizing the results to assess their differences. Table 6.3 
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displays each data volume level (max_prefetch, mp) along with the p-value obtained 

using a t-test. The test is two-tailed since we are first trying to gauge whether or not the 

two models yield significantly different results. Included in the table are the isotropic and 

anisotropic mean accuracies, fii and HA , respectively, and the differences between the 

two means. 

mp Hi (accuracy) HA (accuracy) HA - HI P< 

0 70.38% 70.38% 0% n/a 

1 72.24% 73.60% 1.36% 9.41e-57 

2 74.06% 76.51% 2.45% 6.94e-70 

3 74.79% 78.63% 3.84% 4.8e-80 

4 75.42% 80.11% 4.69% 1.29e-66 

5 75.90% 81.23% 5.33% 1.77e-61 

6 76.21% 81.72% 5.51% 9.95e-56 

7 76.24% 81.36% 5.12% 2.77e-45 

8 75.21% 80.09% 4.88% 2.44e-34 

9 74.18% 77.88% 3.7% 1.21e-23 

10 72.95% 74.89% 1.94% 7.7e-09 

Table 6.3. Pre-fetching average 

accuracy and p-values. 

According to the p-values obtained and shown in Table 6.3, in all instances except for 

when mp is zero, the groups of anisotropic and isotropic pre-fetching accuracy values are 

significantly different. Looking at the mean values and differences of means for each, it 

appears that the anisotropic algorithm always yields a greater mean pre-fetching 

accuracy. However, spatial movement patterns in general are complex (Dodge et al., 

2008), let alone the endless possibilities of vehicle movement, and so it is not ideal to use 
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one of the above pre-fetching methods exclusively. Instead, in order to capture a wider 

range of scenarios, it is possible to derive a rule of thumb for when to use one pre­

fetching model over the other based on the complexity of movement. Each trajectory in 

the dataset can be classified by complexity, earlier defined as the average absolute 

heading change between trajectory sample points. Plotting trajectory complexity versus 

pre-fetching accuracy for both models shows that anisotropic pre-fetching clearly 

outperforms that of isotropic pre-fetching for trajectories with a relatively small average 

heading change (Figure 6.4b,c,d). However, for certain ranges of trajectory complexity, it 

is less clear which model is best. In Figure 6.4d, where the maximum pre-fetch range is 

10 tiles, it appears as though the isotropic model actually proves better on average than 

the anisotropic model for the more complex trajectories (e.g., AvgHeadingChange > 40 

degrees). 
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Figure 6.4. Trajectory complexity versus pre-fetching accuracy at (a) maxjprefetch 

(b) max_prefetch = 2, (c) max_prefetch = 6, and (d) max_prefetch =10. 

0, 

To investigate the effect of trajectory complexity on isotropic and anisotropic pre­

fetching and where one model might outperform the other, a trend line for the datasets of 

each model at each data volume were calculated using linear regression. By intersecting 

the two trend lines, one can get a rough idea for when to use one model over the other. 

Each linear regression model yields a trend line slope (a), y-intercept (b), p-value 

explaining the significance of the model parameters, and R2 showing how well the model 

can predict pre-fetching accuracy based on the trajectory (Table 6.4). The average 

heading change for which the two trend lines intersect is shown as x'. 

85 



mp ai bl aA bA x' PI< PA< R2I R2A 

0 0.7144 -0.0006 0.7144 -0.0006 n/a 0.0000 0.0000 0.1525 0.1525 

1 0.7260 -0.0004 0.7508 -0.0007 82.67 0.0000 0.0000 0.0815 0.2222 

2 0.7445 -0.0003 0.7875 -0.0009 71.67 0.0000 0.0000 0.082 0.2937 

3 0.7477 -0.0002 0.8175 -0.0012 69.80 0.0064 0.0000 0.0256 0.3586 

4 0.7483 0.0000 0.8435 -0.0015 63.47 0.8380 0.0000 -0.0038 0.3969 

5 0.7553 -0.0001 0.8704 -0.0020 60.58 0.4569 0.0000 -0.0017 0.4654 

6 0.7632 -0.0002 0.8916 -0.0025 55.83 0.0271 0.0000 0.0155 0.5114 

7 0.7704 -0.0005 0.9073 -0.0031 52.65 0.0000 0.0000 0.0821 0.5794 

8 0.7610 -0.0005 0.9126 -0.0037 47.37 0.0000 0.0000 0.0828 0.6305 

9 0.7621 -0.0009 0.8983 -0.0040 43.94 0.0000 0.0000 0.2114 0.6603 

10 0.7544 -0.0010 0.8723 -0.0041 38.03 0.0000 0.0000 0.3448 0.685 

Table 6.4. Linear regression results. 

Small pvalues suggest that one is confident that the estimated values of the 

regression model are correct. While the majority of the models do yield very small 

pvalues, there are a couple exceptions, particularly for the isotropic pre-fetching results 

when mp=4 and mp=5. The anisotropic models also produce higher R2 values, meaning 

that these models are a better fit for the sample data. Even so, this chapter aims at 

obtaining a general rule that may not be flawless in every situation, which is surely the 

case with the many scenarios of moving objects. Nonetheless, one can now perform a 

simple analysis on the intersection values of the trend lines. As the data volume for pre­

fetching increases, we see that the intersection of the trend lines for isotropic and 

anisotropic pre-fetching decreases (Figure 6.5). In fact, plotting max_prefetch against x' 

along with a trend line shows a fairly consistent decrease in the intersection values 

(Figure 6.6). This result may be what one would expect, since pre-fetching more data in 
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Figure 6.5. Model trend lines at (a) max_prefetch = 0, (b) max_prefetch = 2, 

(c) max_prefetch = 6, and (d) max_prefetch =10. 

the direction of movement will typically only prove beneficial if the movement is 

reasonably straight. If, on the other hand, a moving object is consistently changing 

direction, it is better to anticipate movement equally in all directions. Using the resulting 

trend line, one could employ a dynamic pre-fetching algorithm based on the history of 

movement, specifically the average absolute heading change of the movement. 

Depending on the average heading change of the object's movement over the past n 

sample points and the amount of data being retrieved, either a direction-dependent or 

direction-independent method is used. Doing so probably would not yield accuracies 
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greater than the highest accuracies resulting from the simulations, but should result in a 

lesser decline in pre-fetching accuracy as trajectory complexity increases. 

Trend Line Intersect ion 

•'---.. 
: • • * „ . . . 

'""•-.. 
" • • • • . . 
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• 

1 2 3 4 5 6 7 8 9 10 

max_prefetch 

Figure 6.6. Trend Line Intersections. 

The results gathered from the simulations are highly related to the experimental setup, 

where several fixed parameters might otherwise have a varying degree of effect on the 

results. Pre-fetching algorithm, caching policy, tile size (width, height, #bytes), assumed 

data transmission speed, trajectory normalization, zoom level, and other variables were 

set so that the simulations could model a real world example as much as possible while 

still leading to practical results. A mobile mapping application that implements data pre­

fetching should, therefore, consider these parameters into its workflow and adjust its pre­

fetching policy accordingly. 
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Also, accuracy is one of many possible measures to assess pre-fetching success. It 

should be noted that even when no pre-fetching takes place accuracy values remains 

positive, due in part to the nature of the pre-fetching classification of tiles. Looking at Eq. 

6.6, it is clear why this is so. TP (# of tiles pre-fetched then consumed) and FP (# of tiles 

pre-fetched but not needed) are zero. However, TN (# of tiles not pre-fetched and needed) 

and FN (# of tiles not pre-fetched yet needed) are greater than zero. In fact, FN will be 

larger given that no pre-fetching takes place. Thus, the overall accuracy value will be, in 

theory, less whenever no pre-fetching takes place. From the results, it is clear that 

accuracy values are greater when mp is greater than zero. 

6.4 Discussion of Hypothesis 

In this chapter simulated tile pre-fetching strategies tested the hypothesis that for non-

random movement through space one can augment on-demand spatial data downloads by 

pre-fetching data in the direction of movement, which would yield higher accuracies than 

a strategy that does not include previous user location(s). Results showed that this is true 

for situations when the frequency and magnitude of directional change in the movement 

is relatively low. However, as complexity increases in trajectories (but not necessarily 

randomness since movement is constrained by a road network) an isotropic strategy 

sometimes returns better accuracies. The main conclusion here is that no one pre-fetching 

model will prevail in all scenarios with regard to movement and that implementing a pre­

fetching component to a mobile mapping application should take into account this 

variability. 
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6.5 Summary 

This chapter describes a prototype implementation that models a real world scenario of 

vehicle movement through a road network and assesses the performance of two direction-

based pre-fetching algorithms while varying the pre-fetching data volume. Trajectory 

data were retrieved from the R-tree Portal website and normalized for consistency 

between sample points and trajectory length. Linear regression allowed for the derivation 

of trend lines which led to an understanding of how one can tailor a pre-fetching 

algorithm to account for a wider range of vehicle movement scenarios. While one might 

intuitively think that pre-fetching in the direction of movement will always yield a greater 

reliability of obtaining future needed data, the performance is to a degree reliant on the 

underlying complexity of the movement. It was found that increasing the pre-fetching 

data volume, which would be useful in situations where communication to remote data 

servers is intermittent, is effective only for movement patterns that are relatively straight 

and, hence, predictable. However, in a scenario where movement is "more random" (e.g., 

city block driving where a moving object changes direction frequently), a direction-

independent pre-fetching algorithm is preferable. These findings suggest that this thesis's 

original hypothesis does not hold true for all movement scenarios and that to effectively 

implement a pre-fetching component for commercial mobile maps, one should consider 

multiple approaches to cover the range of movement possibilities. Doing so can prove 

beneficial to usability of mobile maps by decreasing latency involved with remote 

retrieval of spatial data and better prepare a device for disconnected environments. 
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CHAPTER 7 

CONCLUSION AND FUTURE WORK 

This chapter provides a summary of content for this thesis on "Mobile Map Browsers: 

Anticipated User Interaction for Data Pre-fetching." A prototype implementation for 

assessing the performance of map pre-fetching for mobile devices was developed through 

an investigation of the core issues and conventions of mobile map browsers (Section 7.1). 

This section also concludes with the results and conclusions found from the prototype 

implementation and pre-fetching simulations. The findings of this thesis are ripe with 

potential for expanding on and can lead to other interesting research projects, which this 

chapter addresses in Section 7.2. 

7.1 Summary 

The goal of this thesis is to investigate methods to utilize past user interactions with a 

mobile map for pre-fetching data in anticipation of future interaction. Mobile computing 

is challenging with respect to storage space, computing power, battery life, and 

intermittent wireless communication. Because of storage limitations it is not feasible to 

preload a high-resolution, global coverage map on a mobile device and, for a truly 

dynamic map, it is necessary to retrieve map data from a remote data repository in an on-

demand fashion. This convention, however, causes delays when downloading map 

imagery over slow transmission rates and even renders the map unusable whenever a data 

connection is unavailable. In addition, wireless transfer of spatial data is costly (e.g., 

storage, battery, money). Given the sensor-rich nature of mobile devices, however, it is 
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possible to record the location history of a device or simply the interaction history for the 

mobile map user. This thesis hypothesizes that since movement through space (e.g,. a 

vehicle moving along a road network) is realistically non-random, it is possible to derive 

a direction-dependent pre-fetching algorithm whose accuracy is significantly greater than 

a direction-independent pre-fetching algorithm. 

Chapter 2 summarizes relevant literature, concepts, and issues for mobile computing, 

mobile and spatial caching, visual information browsers, trajectories and moving object 

databases, and location prediction. These topics provide a foundation for implementing a 

software prototype to model a real-world scenario where pre-fetching is beneficial. 

Chapter 3 explores the fundamental interactions one typically invokes on a mobile 

map browser. These interactions include direction manipulation of the map through pinch 

or swipe gestures and refreshing of the map display as a result of sensor-derived changes 

of a user's position, orientation, or velocity. Nevertheless, all interactions come down to a 

three geometric transformations of the viewport: translation, rotation, and scaling. Each 

viewport transformation affects a small set of tiles within the immediate neighborhood of 

the map's current center and if one knows the set of candidate tiles needed by the map in 

the immediate future, it is possible to derive some rules for map pre-fetching. Populating 

the cache, or tile buffer, with data based on these pre-fetching strategies is the focus of 

Chapter 4. Whenever a mobile map browser completes the retrieval of on-demand data 

and realizes that a data connection is available, the opportunity to pre-fetch data on behalf 

of the user can improve the cache hit ratio and better prepare the device in the event of a 

dropped data connection. 
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In addition to populating a tile buffer, cache management policies include rules for 

removing data from the memory buffer when necessary, such as when the cache size 

exceeds a maximum number of bytes. Chapter 5 discusses both temporal and spatial 

cache removal policies and the implications of each on a tile buffer. Whereas traditional 

caching policies deal with the temporal locality of items in the cache and discard the least 

recently or least frequently used items, other implementations such as Furthest Away 

Replacement (FAR) compare items of a cache spatially and discard the items furthest 

away from a given location. Mobile map browsers consume location-dependent data and 

could therefore use either a temporal, spatial, or both cache removal policies. 

Chapter 6 describes a software implementation that models moving objects along a 

road network. The prototype simulates a tile cache management policy using either an 

isotropic or anisotropic pre-fetching model. Simulations pre-fetch and discard tiles from a 

virtual cache while recording statistics on the binary classification of tiles {pre-fetched 

and not prefetched) in order to support a metric for pre-fetching success. Using pre­

fetching accuracy (Eq. 6.5) as the metric for comparison, this thesis shows that results for 

isotropic and anisotropic pre-fetching are significantly different and that for relatively 

straight movement anisotropic pre-fetching yields better results. However, this is not 

always the case, as sometimes isotropic pre-fetching is preferable for more complex 

movement, which is defined in this thesis as the average absolute heading change for a 

trajectory. At each pre-fetching level (i.e., data volume allowed for pre-fetching), there is 

a point of trajectory complexity at which the two pre-fetching models produce relatively 

equal pre-fetching accuracies. These thresholds were found by intersecting the trend lines 
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of both pre-fetching models which were calculated using linear regression. Threshold 

values were also found to be a function of the pre-fetching data volume, leading to a 

general rule of thumb when pre-fetching tiled data for a mobile map browser. Depending 

on the amount of data one is interested in pre-fetching, there exists a movement 

complexity threshold. Movement complexity below this value should employ direction-

dependent pre-fetching while complexity above the value should use direction-

independent pre-fetching. 

7.2 Future Work 

There are several ways to extend the work presented in this thesis on anticipatory 

interaction for data pre-fetching. The Chapter 6 prototype assumes a scenario in which 

the mobile device is essentially unknowledgeable of the local environment and instead 

simply exploits past user interactions for predicting what data to pre-fetch for future use. 

The simulations use a history of GPS coordinates to determine a movement direction and 

pre-fetch data weighted in that direction. If one were to expand on this approach, there a 

few ways in which they might do so. 

• In addition to direction, a pre-fetching algorithm could utilize the speed of 

movement to target specific levels of detail for pre-fetching. Similar to "Speed-

dependent Automatic Zooming" (Igarashi and Hinckley, 2000), one might have 

Speed-dependent Automatic Pre-fetching which follows the same concept. A 

device moving at high speeds (e.g., 70 mph on a highway) should not display (or 

pre-fetch) 1 -meter resolution imagery since the flow of information is far too fast 

to be of any use. Speed could also have an effect on how tiles are weighted in the 
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pre-fetching process, where a increase in speed means tiles are weighted heavier 

in the direction of movement (Eq. 6.2). The trajectories described in Chapter 6 

were normalized for constant speed. In doing so post-simulation analysis could 

focus on direction as the only spatial / temporal variable. 

Chapter 4 discusses pre-fetching tiles at coarser levels of detail so as to increase 

geographic coverage of the cache while decreasing the amount of data. This 

certainly can prove beneficial but a metric is needed for assessing the cache 

performance when consuming tiles of a coarser or finer level of detail for a given 

resolution. For example, it would not be correct to pre-fetch the root tile (i.e., a 

single tile spanning the entire map space) and consider this as a cache hit when a 

tile does not exist at a higher zoom level. Doing so would result in a cache with a 

100% hit ratio when this is in fact misleading. 

• Two major advantages of pre-fetching tiles for a mobile map browser are a 

reduced latency when refreshing the map and a more robust cache for situations 

such as when a data connection is unavailable. Although not modeled in the 

prototype of Chapter 6, one can design simulations to model interconnectivity and 

measure any relationship between data volume, level of interconnectedness, and 

pre-fetching accuracy (or other caching metric). Intuition suggests that for sparser 

connectivity areas increasing the data volume results in a more reliable cache. 

• Simulations in Chapter 6 only consider the interaction history of a user to 

determine which tiles to pre-fetch. A more robust solution might be one which 

incorporates server-side GIS resources to further refine data for pre-fetching. 
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Consider the moving vehicle scenario from the simulations. Given that it is 

known the mobile device is traveling along a road network, one could use a web 

service with GIS processing capabilities to (1) select all possible locations a 

device could be within x time units on the road network and (2) determine which 

map data are relevant to these locations for pre-fetching. Similarly, if data for 

cellular coverage were available, a web service could determine the necessity of 

pre-fetching data given the proximity of the user to any cellular dead zones. If 

determined that the device is nearing a dead zone then pre-fetching for that region 

might be helpful. These and other types of GIS data relevant to moving objects 

and wireless communication are interesting research topics for how one might 

augment mobile map cache management through data pre-fetching. 

Even with the assistance of GIS data repositories, pre-fetching map data is a result 

of a software agent anticipating where the user will request a map view for next. 

However, interactive mapping software often allows users to query for people, 

places, or directions. Location prediction from user input, despite not being 

implemented in many commercial or open source packages, is another relatively 

straightforward way of preparing a mobile device with maps. 
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