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This study of late-glacial and Holocene changes in lake-level and vegetation at 

Mathews Pond contributes new information about Holocene environments in northeastern 

North America. The research establishes a 12,000-year record of paleohydrology for the 

watershed adjacent to Big Reed Forest Reserve, the largest stand of old-growth forest in 

the northeastern United States. Mathews Pond is a 7.4 ha, closed-basin, groundwater- 

seepage lake located in an upland, forested region of the Aroostook River drainage 

system. Glacial meltwater briefly filled the basin - 13.0 ka (1 ka = 1000 I4C yr BP)). The 

lake existed as a shallow pool in the deep area of the basin between 11.0 and 9.4 ka. 

Water levels rose to near-modern levels by 8.4 ka, and, except for a slight decline around 

7.5 ka (8200 cal yr BP), remained high until 4.8 ka, when a distinct low-stand lasted until 

3.0 ka. After 3.0 ka the lake level rose to the modern level with intermittent low and high 

fluctuations of 200-500 year duration. Synchrony of lake-level changes between 

Mathews Pond and Whited Lake, a groundwater seepage lake in an adjacent watershed, 



and from additional sites across northeastern North America provides strong evidence that 

Holocene climate varied with 1500-2000 year periodicity and with sufficient intensity to 

alter regional moisture balance. Synchrony of groundwater response between watersheds 

and across broad geographic regions suggests that changes in moisture balance are driven 

by external influences such as solar insolation or shifts in atmospheric circulation. 

Integration of lake-level, charcoal, and pollen data at centennial-scale temporal resolution 

identified subtle increases in groundwater recharge in response to decreased forest 

transpiration following local forest fires. 



ACKNOWLEDGMENTS 

I thank the members of my advisory committee - George L. Jacobson Jr., Ann 

Dieffenbacher-Krall, Daniel Belknap, and David Sanger - for their guidance, technical 

support, patience, and perseverance over the years that I took to complete this project. 

I am grateful to Bill Nurse, Christopher Dorion, Ann Dieffenbacher-Krall, Daniel 

Belknap, Rick Dyer, and Matts Lindbladh for their assistance in the field. Caitlin Jamison, 

Kristy Palmer, Steve Barteaux, and Elizabeth Braman supplied many hours of laboratory 

assistance. Ann Dieffenbacher-Krall, Molly Schauffler, Matts Lindbladh, Kirk Maasch, 

Alan White, and Alan Gontz guided me through learning the technical skills essential to 

completion of this project. 

I am especially gratefbl to Hal Borns, whose support gained my admission to the 

Institution for Quaternary and Climate Studies, and to Geneva Chase, my fellow student in 

Quaternary1 Science. There is no way to adequately express my gratitude to my husband, 

Bill Nurse, for his patience and his unfailing confidence in my abilities. 

This study was a collaborative research project between University of Maine 

Department of Forest Ecosystem Science and Institute for Quaternary and Climate Studies 

to investigate the effects of natural disturbance in Big Reed Forest Reserve, an old-growth 

forest stand. The project was hnded by The Nature Conservancy with field support fi-om 

University of Maine Association of Graduate Students. 



TABLE OF CONTENTS 

. . 
ACKNOWLEDGMENTS ................................................................................................ LI 

LIST OF TABLES .......................................................................................................... vi 

. . LIST OF FIGURES ....................................................................................................... WI 

Chapter 

................................................................................................... 1 . INTRODUCTION 1 

. . Objectives ............................................................................................................ 2 

Water-balance classification .................................................................................. 6 

Site selection ................................................................................................ 9 

Site-to-site comparisons ...................................................................................... 10 

2 . METHODS ...................................................................................................... 12 

Ground Penetrating Radar .................................................................................. 12 

Sediment collection ............................................................................................. 13 

Sediment analysis ................................................................................................ 1 4 

Charcoal particles ............................................................................................... 15 

Plant macrofossil analysis ................................................................................... -16 

Pollen analysis .................................................................................................... 17 

Radiocarbon dating ............................................................................................ 18 

3 . RESULTS ............................................................................................................. 19 

Ground Penetrating Radar .................................................................................. 19 



Chronology ........................................................................................................ 22 

Sediment units ................................................................................................... -22 

Sediment analysis ............................................................................................... -25 

Macrofossil analysis ............................................................................................ 25 

4 . STRATIGRAPHICINTERPRETATION .............................................................. 27 

Core MPB (modern water depth 547 cm) ........................................................... 29 

Core MPA (modem water depth 497 cm) ........................................................... 32 

Core MPD (modern water depth 361 cm) .......................................................... 35 

Core MPE (modern water depth 226 cm) ........................................................... 38 

Core MPC (modern water depth 107 cm) .................................. .. ....................... 40 

Core MPF (modern water depth -6.0 cm ............................................................. 40 

Pollen stratigraphy .......... ... ............................................................................. -42 

............................... 5 . PALEOENVIRONMENTAL SYNTHESIS OF CORE DATA 45 

Before 1 1.8 ka: high lake level ......................................................................... 45 

.......................................................................... 11.8 ka to 9.4 ka: low lake level 47 

.................................................... 9.4 ka to 8.2 ka: abrupt increase in water level 48 

8.2 ka to 4.8 ka: high lake level .......................................................................... -49 

4.8 ka to 3.0 ka: low lake level ........................................................................... 49 

. . 
3.0 ka to 2.0 ka: rislng lake level ......................................................................... 50 

2.0 ka to 1 . 5 ka: declining lake level .................................................................. -50 

. . 
1.5 ka to present: rislng lake level ...................................................................... -51 



.................................................................................................... . 6 CONCLUSIONS -52 

............................................................................................................. REFERENCES -58 

....................................................................................... APPENDIX A . Macro fossils -64 

APPENDIX B . Influence of isostacy on groundwater mound ....................................... 76 

BIOGRAPHY OF THE AUTHOR ................................................................................. 81 



LIST OF TABLES 

Table 1. Effective EM pulse velocity of lacustrine sediments at Mathews 

Pond, T8 RlO WELS, Maine, USA .............................................................. 19 

Table 2. Radiocarbon dates for cores MPA, MPB, MPD, MPE, MPC, 

and MPF fiom Mathews Pond ...................................................................... 23 

Table 3. Comparison of lake-level change at selected sites in 

northeastern North America ....................................................................... 53 

Table A. 1 Terrestrial and aquatic plant survey for Mathews Pond, Piscataquis 

County, Maine, USA.. ................................................................................. -73 



LIST OF FIGURES 

Figure 1 . 

Figure 2 . 

Figure 3 . 

Figure 4 . 

Figure 5 . 

Figure 6 . 

Figure 7 . 

Figure 8 . 

Figure 9 . 

Figure 10 . 

Figure 1 1 . 

Figure 12 . 

........ Location of paleohydrology investigation sites reviewed in this study 1 

Big Reed Forest Reserve and Mathews Pond. 46' 19' N. 69' 3.7' W .......... 3 

Mathews Pond with core sites and Ground Penetrating Radar 

(GPR) pathways .................................................................................... -12 

Top: GPR image along northwest to southeast transect . 

Bottom: Graphic sediment interpretation of GPR image .......................... 20 

Top: GPR image along core transect . 

Bottom: Graphic sediment interpretation of GPR image .......................... 21 

Lithic fence diagram of Mathews Pond sediment distribution ................... 24 

Comparison of changes in clastic grain size for Mathews Pond cores ....... 26 

Core MPB summary of lithic and macrofossil analyses: inorganic 

content. grain size. and macrofossils ........................................................ 28 

Core MPA summary of lithic and macrofossil analyses: inorganic 

content, carbonate content, grain size, charcoal, and macrofossils ............ 31 

Core MPD summary of lithic and macrofossil analyses: inorganic 

content, grain size, charcoal, and macrofossils ........................................ 34 

Core MPE summary of lithic and macrofossil analyses: inorganic 

content, grain size, charcoal, and macrofossils ........................................ 37 

Core MPC sediment stratigraphy with inferred disconfonnities, 

inorganic content, and age in radiocarbon years ....................................... 39 



Figure 1 3 . 

Figure 14 . 

Figure 1 5 . 

Figure A . 1 . 

Figure A.2. 

Figure A.3. 

Figure A.4. 

Figure A.5. 

Figure A.6. 

Figure B . 1 . 

Figure B.2. 

Figure B . 3 . 

Core MPF summary of lithic and macrofossil analyses: sediment 

stratigraphy. inorganic content. grain size. and age in 

radiocarbon years ................................................................................... 41 

Full-core summary for Core MPB: inorganic content. clastic grain 

size. charcoal. and pollen percentages ...................................................... 43 

Inferred lake-level change curve for Mathews Pond ................................. 46 

Summary of core MPB macrofossil analysis ........................................... -67 

S m r y  of core MPA macrofossil analysis ............................................ 68 

Summary of core MPD macrofossil analysis ............................................ 69 

Summary of core MPE macrofossil analysis ............................................. 70 

Summary of core MPC macrofossil analysis ............................................ 71 

Summary of core MPF macrofossil analysis ............................................. 72 

Schematic representation of groundwater mound and 

flow-through groundwater system underlying Mathews Pond .................. 76 

Ice proximal depression and forebulge migration across 

Moosehead Lake basin ............................................................................ 77 

Schematic representation of an inter-fluvial watertable (WT) hydraulic 

pressure mound ....................................................................................... 78 



Chapter 1 

INTRODUCTION 

Holocene climate fluctuations led to changes in vegetation and hydrology in the 

Acadia region (Maine, southeastern Quebec, and Maritime Canada). Three major air 

masses converge on Acadia (Figure 1): cold, dry Arctic air fiom the northwest; mild, dry 

Pacitlc air fiom the west; warm, wet Maritime tropical air from the south. Relative 

changes in the strength of these air masses influence changes in the temperature and 

moisture regimes of the region (Bryson 1966). 

I 

Figure 1 Location of paleohydrology investigation sites reviewed in this study. Air-mass 

positions fiom Bryson (1966) and Bryson and Hare (1974). 

While fossil pollen, oxygen isotope, and insect assemblage studies are often used 

to reconstruct past shifts in temperature, these parameters generally do not reveal changes 

in paleohydrology. Changes in lake level, indicated by changes in sediment morphology 



and aquatic macrofossil assemblages, are used to reveal changes in regional moisture 

balance (Precipitation - Evapotranspiration) and in ground water levels within a watershed 

(Digerfeldt 1986; Dearing 1997). 

To construct a 12,000-year record of paleohydrology for eastern North America, 

Harrison (1 989) reviewed various sedimentary data from 26 sites ranging eastward fi-om 

South Dakota and south into Alabama and Florida. While studies at many of the sites 

reviewed did not employ multi-proxy techniques to evaluate lake-level change, 22 of the 

sites analyzed sediment lithology plus at least one additional, independent indicator of 

paleohydrologic change. At 1000-year resolution, these lake-level reconstructions 

indicated that conditions were wetter than today between 12,000 and 10,000 cal yrs BP. 

Lake levels were lower by 9000 cal yrs BP, with maximum aridity occurring around 6000 

cal yrs BP. Lake levels rose to modern levels by 2000 cal yrs BP. Spatially and 

temporally coherent patterns of lake-level change across eastern North America implied 

climatic control. Community Climate Model simulations generated by the National Center 

for Atmospheric Research showed major shifts in atmospheric circulation patterns 

coinciding with fluctuations in paleohydrology (Kutzbach 1987, Harrison 1989). 

0 biect ives 

The multi-proxy lake-level study at Mathews Pond, T8 R10 WELS, Piscataquis 

County, Maine had three objectives: 

Objective 1: Establish a 10,000-year paleohydrology record for the watershed 

surrounding Big Reed Forest Reserve (BRFR), Piscataquis County, Maine. 



!eed Forr 
, .. 

est Rese 

Mathews Pond 
I 

atchmen 

1 

Figure 2 Big Reed Forest Reserve and Mathews Pond, 46' 19' N, 69' 3.7' W. Beetle 

Mountain, Maine, quadrant 46069-C1-TF-024, U.S. Geological Survey, 1989 edition . 

Image fi-om MapTech Terrain Navigator (www. maptech. corn). 



Mathews Pond is located 1.5 krn south of BRFR, at 1954 ha the largest stand of 

old-growth forest in New England, 7.5 krn southwest of Munsungun Lake, the site of 

paleamerican chert quarries, and within the same Aroostook River watershed (Figure 2). 

BRFR is owned and managed by The Nature Conservancy (TNC), and is surrounded by 

large tracts of privately owned and actively harvested timberland. TNC commissioned 

University of Maine Department of Forest Ecosystem Science and Institute for Quaternary 

and Climate Studies to examine recent and natural disturbance regimes that shaped 

prehistoric forests in northern Maine. TNC will use this information to determine an 

appropriate spatial scale for northern Appalachian forest reserves and to establish 

management program that will best conserve the boreal forest ecosystem. TNC 

hypothesized that "an area large enough to capture, absorb, and reflect the scale of natural 

disturbances, historic and expected" is a key factor in site viability (Vickery 1999). 

Adequate definition of disturbance regimes requires integration of multiple 

research methods (Foster et al. 1996). Begun in 1999, this study will integrate data fiom 

dendrochronology, palynology, paleohydrology, spatial analysis, GIs modeling, and 

historical techniques to examine effects of recurring fire, wind, drought, and disease on the 

structure of small forest stands (<50 ha), landscapes (e.g. 2000 ha), and regions (e.g. 3 

million ha). Because the hardwood, conifer, and mixed forests of Piscataquis County are 

part of a similar forest landscape stretching fiom northern New York through Maine and 

into the Canadian Maritimes, results of this study may apply to a broad ecoregion. This 

study provides paleoecologic and paleoclimatic perspectives on the effects of natural 

disturbance on forest biodiversity. 



Objective 2: Construct well-dated, stratigraphic pollen and charcoal records to 

examine the link between regional hydrologic changes and changes in composition 

and disturbance regimes of forests in BRFR. 

Integration of lake-level data with analyses of fossil pollen and large, air-borne 

charcoal particles fiom lake sediments reveals changes in regional vegetation patterns, 

periods of regional wildfire activity, and the associated effects on groundwater recharge. 

The 12,000-year regional record fiom Mathews Pond will be integrated with stand-level 

data obtained during studies of vegetation history and natural disturbance in BRFR (e.g., 

Schauffler and Jacobson 2002). 

Objective 3: Determine the degree of synchrony of lake-level change for 

northeastern United States, southeastern Quebec, and Maritime Canada. 

When Harrison published her 1989 study, lake-level data was not available fiom 

Acadia. Since 1997, data fiom five sites across Acadia (Table 3: Yu et al. 1997, Shuman 

et al. 2001, Newby et al. 2000, Almquist et al. 2001, Lavoie and Richard 2000) suggested 

that the time transgressive, mid-Holocene warm, dry period observed in mid-western 

North America (Wright 1992, Yu et al. 1997) extended across northeastern North 

America. Additional paleohydrology studies fiom Acadia, at centennial-level resolution 

and over extended time periods, will identifjl fine-scale, cyclical shifts in moisture balance 

and past drought cycles. Comparative data fiom these studies aid in determining causal 

factors for changes in regional moisture balance and identrf) variations between coastal 

and continental moisture balance. 



Water-balance classification 

Sensitivity of a lake to climate change depends on several factors: presence or 

absence of an outlet; water-balance regime of the lake; basin and catchment 

geomorphology; sediment type; degree of human intervention. Mean annual water 

balance of a lake is represented by the equation: 

V = AL(PL - EL) + (R - D) + (G, - GouJ (Street-Perrott and Harrison, 1 985). 

V = net change in the volume of lake water. A, = area of the lake (changes in lake 

depth are directly related to changes in lake area). P, and EL = precipitation onto and 

evaporation fiom the lake expressed as depth of the water. R = runoff fiom the 

catchment. D = surface discharge through the lake outlet (D = zero for a closed lake. 

Surface discharge depends on the height of the lake surface over the floor of the spillway. 

G, and Gout = groundwater flows into and out of the lake. 

The high concentration of lakes around 45' N is the result of glacial scouring by 

northern ice sheets (Street-Perrott and Roberts 1983). Retreat of the Laurentide ice mass 

left numerous small, closed kettle ponds and ice-scoured basins across northeastern North 

America. Hydrologic factors relevant to water balance in glacial-terrain lakes include: 

1) regime dominance - the relative amount of groundwater in the water budget of the lake; 

2) system efficiency - the rate of surface and groundwater movement through a lake 

system; and 3) lake position within the groundwater flow system (Born et al. 1979). Born 

et al. (1 979) classified lakes according to regime dominance: groundwater-dominated 

lakes (seepage lakes); surface water-dominated lakes (flow-dominated lakes); and 



atmosphere-controlled lakes (perched lakes). Most lakes fall along a graded continuum, 

with degree of groundwater inflow and outflow dacul t  to assess. 

Extreme flow-dominated lakes are essentially "wide places in a river" with 

precipitation and surface runoff flushed out through outlet discharge in <1 to 10 years 

(Street-Perrott and Harrison 1985). Sediment cores fiom these lakes are not suitable for 

paleoclimate studies. 

Atmosphere-controlled lakes are closed systems perched on impermeable 

substrates such as glaciolacustrine or glaciomarine clays. Mansell Pond in Penobscot 

County, Maine, sits atop thick deposits of Presumpscot Formation clay (Almquist- 

Jacobson and Sanger 1995, Almquist et al. 2001) laid down during a late-Pleistocene 

marine incursion. The clays provide sufficient seal to separate the lake basin fiom 

groundwater influences. 

Water level at Mathews Pond, a small, closed-basin, groundwater seepage lake, 

fluctuates with changes in precipitation, evapotranspiration across the groundwater 

aquifer, and intermittent, non-channelized surface runoff. System efficiency in basins of 

this type depends on the groundwater hydraulogic pressure gradient and the permeability 

characteristics of soils surrounding the lake (Born et al. 1979). Groundwater feed into 

such lakes often occurs along the littoral zone through springs or by d f i s e  seepage fiom 

rising water tables, while groundwater outflow occurs though deep-basin fiacture zones 

(McBride and Pfannkuch 1 975). 

Depending on topographic lake position within the aquifer drainage system and the 

height of the groundwater pressure mound, dominant water movement in the lake may be 



discharge, recharge, or flow-through. A comparative lake-level study of three lakes 

located on Parkers Prairie sandplain in west-central Minnesota showed that, while the 

level of all three lakes lowered between 7.2 ka and 6.7 ka (1 ka = 1000 "C yr BP), the 

magnitude of decline (fiom 2.8 meters to 6.2 meters) was directly proportional to the 

distance away fiom the river that drained the sandplain (Digerfeldt et al. 1992). That 

study and related modeling (Almendinger 1990) demonstrated that change in surface 

hydrology in groundwater-dominated lakes is influenced by external factors beyond P - E 

ratios. 

The internal structure of stratified lake sediments is determined by the dominant 

sediment distribution mechanism at time of deposition (Dearing 1997). Mechanisms that 

influence lake sedimentation include: 1) sliding, slumping, and turbidity currents on 

underwater slopes with inclines as low as 4'; 2) wave action along shore lines; 3) random 

sediment redistribution fiom wave action on the lake bed where sediment accumulation is 

independent of water depth; and 4) intermittent mixing following temperature stratification 

overturn, where sediment accumulation rate is proportional to water depth (Dearing 1997, 

Nichols 1999, HBkanson and Jansson 2002). Rich vegetative growth in littoral zones may 

reduce resuspension and thereby increase loading of organic sediment. Organic loading 

and vegetative encroachment ultimately result in natural lake in-filling. Lakes best suited 

for lake-level studies are those in which temperature stratification is the dominant 

sediment distribution mechanism (Dearing 1997). 



Site selection 

Appropriate site selection is the critical first step in unraveling these intertwined, 

sedimentary processes. Small, closed-basin ponds with no inlet, no outlet, and relatively 

small catchment areas reveal past changes in regional water balance better than large water 

bodies with extensive catchment regions and complex, external influences on sediment 

deposition. When the catchment region is relatively small, less exogenous sand and 

gravel, pollen, and organic debris enter the lake in surface runoff. Minimization of surface 

runoff more closely links changes in sediment deposition to changes in catchment area 

hydrology (precipitation and evapotranspiration effects on local ground water levels) 

(Dearing 1997). Lakes of areal distribution <50 ha, depths of <lo m, catchment/lake area 

ratios less than 5: 1, and with littoral vegetation growing along sheltered, gently sloping 

shores best exhibit distinct, stratified, sediment units (Digerfeldt 1986; Dearing 1997). 

Digerfeldt (1986) pioneered analytic techniques to reconstruct past lake 

fluctuations according to changes in distribution of littoral vegetation, sediment 

composition, and level of deep-water sediment deposition. Digerfeldt's multi-proxy, 

multi-core methodology has been expanded to accommodate the diversity of trophic 

states, temperature stratscation, and geophysical composition found in small, temperate- 

region lakes (Dearing 1997, Almquist et al. 2001, Dieffenbacher-Krall and Halternan 

2000, Hiikanson and Jansson 2002, Dieffenbacher-Krall2003). 

Sedimentary evidence of lake-level change varies with changes in lake 

geochemistry and topography. Multiple sediment cores, taken in a transect from the 

deepest point to the near-shore zone, are examined, often at centimeter-scale, for evidence 



of lake-level change. Analytical methods are designed to idente the following 

independent lines of sediment evidence: 1) progradation and aggradation of littoral 

vegetation relative to the lake center, deduced fiom the presence of coarse organic matter 

(Digerfeldt 1986) or fiom aquatic macrofossil assemblages (Hannon and Gaillard 1997, 

Dieffenbacher-Krall and Halternan 2000); 2) distinct transitions between sediment types 

that are linked to specific hydrological conditions, i.e., peat overlain by gyttja; 3) coarse, 

minerogenic layers identified by visual description or by clastic grain-size analysis; 4) loss- 

on-ignition (LOI) analysis to identifl changes in bulk density, organic content, and 

carbonate content. While vegetation response time of <200 years has been documented 

for climatic temperature shifts, only a few studies (e.g., Williams et al. 2002, Almquist and 

Sanger 2000, Almquist et al. 2001) relate changes in regional vegetation to changes in 

regional water balance. 

Site-to-site comparisons 

Climate-driven changes in lake levels are inferred by correlating data f?om 

independent lake-level studies across a region. Catchment-driven changes in lake levels 

are identified by correlating changes in lake level with landscape changes surrounding the 

watershed. 

Differences in timing of reconstructed paleohydrologic events at sites across a 

broad geographic region may result fiom the time-transgressive nature of the causal event, 

or fiom different methodologies, lake-basin morphologies, or discrepancies in agetdepth 

correlations. Time transgressive changes in water balance across northeastern North 



America, e.g., the warm, dry mid-western prairie period (Baker et al. 1992, Wright 1992) 

and its extension eastward into southern Ontario (Yu et al. 1997) and into Maine 

(Dieffenbacher-Krall2003, this study), are identified by comparison of lake-level studies 

across a continental transect. 

Short-term or localized changes in groundwater levels, not apparent across a 

geographic region, may result from changes in local landscape, e.g., forebulge migration 

during isostasy, vegetation change, forest fire, and altered land-use. High-resolution 

charcoal and pollen analysis, along with a thorough history of local land-use, augment 

centennial-scale lake-level resolution. 

Most di£Eculties in correlating lake-to-lake, or even core-to-core data, result fiom 

inadequate chronologies. Radiocarbon dates with one standard deviation >lo0 I4C years 

carry a potential uncertainly of >200 years. Bulk sediment dates fiom zones with low 

sedimentation rates may span hundreds of years. Water-residence time in closed lake 

basins may exceed fifty years (Street-Perrott and Harrison, 1985). Aquatic plants may 

take up old carbon from aquatic carbon reservoirs during photosynthesis. The large 

number of dates required to compile an accurate and precise age-depth curve for each 

core sometimes exceeds the available budget. Dating precision is further compromised 

when radiometric dates are converted to calendar years. Unless otherwise specified, all 

dates in this study are reported as radiocarbon years before present. 



Chapter 2 

METHODS 

Mathews Pond (Figure 3) is a 7.4 ha pond with no inlet and a high-water, seepage 

outlet of 0.3 meters over an ice-deposited, boulder sill. Maximum depth of the pond is 5.5 

meters. The glacially-scoured basin sits in Devonian-age, volcanic tuff bedrock (Hall 

1970) overlain by an unconsolidated, glacial till layer of gravel and boulders. Mathews 

Pond formed as glacial meltwater filled the basin. The low topographic relief surrounding 

the pond and a catchmentflake area ratio of -3: 1 buffer surface runoff into the pond from 

storms and melting snow pack. 

Mathews Pond, T8, RlO, Piscataquis County, Maine, USA 

f"\ 

Figure 3 

Outlet Seepage 
Area 

Mathews Pond with core sites and Ground Penetrating Radar (GPR) pathways. 

Ground Penetrating Radar 

PulseEKKO 100 Ground Penetrating Radar (GPR) manufkctured by Sensors and 

Software was used to chart the bathymetry of the basin and the depth, distribution, and 

stratigraphy of lacustrine sediments at Mathews Pond. The unit was compact and portable 



enough that three people transported the equipment over 0.5 krn of rough terrain. GPR is 

operational through ice or through the flat bottom of a non-metallic boat or raft (Belknap, 

personal communication). Because motorized vehicles create electromagnetic (EM) 

noise, we conducted the survey at Mathews Pond fiom a paddle-propelled, ABS plastic 

canoe. Transmitter and receiver antennae were placed one meter apart on either side of 

the center of the canoe. As the canoe traveled along north-south and east-west transects, 

the transmitter antennae emitted 100 Mhz EM pulses at regular time intervals. Each pulse 

was differentially reflected back to the receiving antennae by interface surfaces of stratified 

lake sediments. The receiver amplified and digitalized reflected pulses, and then passed 

the information to the control unit. Digital pulses were converted to "time versus energy" 

data points known individually as trace points. When trace points were plotted side-by- 

side along the transect profile, they combined to create a digital image of the reflective 

surfaces. GPR mapping depends on the physical and EM ( i .e . ,  electrical conductivity, 

dielectric constant, velocity of EM pulse, attenuation of EM energy, and reflective 

coefficient) contrasts between water and lacustrine sediments (Moorman 2001). 

Sediment collection 

Five lake-sediment cores were collected across a water-depth gradient in June of 

1999 using a Wright, 7.5-cm diameter, square-rod, piston corer (Wright 1967) for all but 

the loose, surface gyttja. As each meter-long section of core was extruded from the core 

barrel, the section was measured, and the visible stratigraphy was recorded. Cores were 



wrapped in plastic, transported to the laboratory within 48 hours, and stored at So C until 

analyzed. 

Surface-sediment cores were obtained with an 8-cm diameter transparent pipe. The 

pipe was attached to metal rods and gravity-fed into the surface sediments. An internal 

piston held surface sediments in the pipe; the bottom of the pipe was capped with a 

gasketed stopper before the pipe and core broke the water surface. Surface cores were 

transported to the shore in an upright position, and the sediment was extruded in five-cm 

sections starting at the sedimentlwater interface. Whirlbags containing the samples were 

transported to the laboratory within 48 hours, and stored at 5' C until analyzed. 

A pond-side peat core (MPF) was obtained with a 10-cm Russian corer in October 

1998. The 73-cm core was wrapped in plastic, transported to the laboratory within 24 

hours, and stored at 5' C until analyzed. Water seepage into the core hole showed the 

surface of the core to be six centimeters above current lake surface. 

Sediment analysis 

All cores were visually examined in the field immediately after extrusion. Core 

photographs obtained in the laboratory failed to achieve the resolution necessary to show 

sediment changes in the dark gyttja. Analysis of X-ray images revealed subtle changes in 

sediment density not visible by eye. Each meter-long core section was divided lengthwise 

into 113 by 213 sections. The larger portion was retained for analytical sampling; the 

smaller section was wrapped in plastic and archived at 5' C. 

Analyses for bulk density, total inorganic content (loss-on-ignition), and carbonate 



content followed Bengtsson and Enell (1986) and were simultaneously performed on core 

MPA. For physical analyses, sediment samples of 2-cm3 were taken at 0.5-cm to 1 -cm 

intervals fiom all cores. Because bulk density showed minimal variation and carbonate 

content was less than 4% of sediment by weight in MPA, these parameters were not 

assessed in the remaining cores. Total inorganic content was measured at 0.5-cm to 1-cm 

intervals in all cores. 

All cores were simultaneously examined at 2-cm to 5-cm intervals for change in 

inorganic particle (clast) size, charcoal content, and plant macrofossil content. Sediment 

samples ranging fiom 20 cm3 to 100 cm3 were measured by liquid displacement in a 5% 

solution of potassium hydroxide. Samples incubated in 5% KOH for one hour at 50°C (or 

overnight at room temperature) to break up the soil matrix and dissolve hurnic acids. 

Each sample was then gently washed through 500 pm, 250 pm, and 63 pm wire sieves. 

After examining the 500 pm and 250 pm sieved portions for charcoal and plant 

rnacrofossils, all size fractions were heated in a muffle h a c e  for two hours at 550' C. 

Combined weights of the ash residue at each sample interval were calibrated to 100 cm3, 

and the percent of clastic particles larger than silt and clay (>63 pm) calculated. 

Charcoal particles 

Contiguous, 2-cm to 5-cm bulk-sediment slices of 20 cm3 to 100 cm3 were taken 

along the core. This sampling regime identified periods of forest fire activity rather than 

individual fire events. Bulk samples were gently washed through 500 pm and 250 pm 

wire sieves. The entire sieved sample was placed in a channeled tray or gridded petri dish, 



covered by water, and scanned under a Nikon SMZ-U dissecting microscope. Charcoal 

particles were identified and counted simultaneously with plant macrofossils. Charcoal 

identification counted only fragments that were black, completely opaque, angular, and 

highly reflective. Recorded number of charcoal particles in each sample level were 

standardized to 100 cm3 of sediment and plotted using Tilia and TiliaGraph programs 

(Grimrn 1 994). 

Plant macrofossil analysis 

Macroscopic plant remains were identified to the lowest possible taxonomic level 

with reference to Martin and Barkley (1961), Montgomery (1 977), Levesque et al. 

(1 988), and Holmgren (1 998). AU identifications were verified by comparison with the 

extensive reference collection of seeds, h i t ,  and preserved plant parts at the Laboratory 

of Quaternary Paleoecology and Paleohydrology, University of Maine. Ann 

Dieffenbacher-Krall (Climate Change Institute, University of Maine) provided assistance 

with some identification. Nomenclature follows Gleason and Cronquist (1 991). Recorded 

numbers of individual plant rnacrofossils in each sample level were standardized to 100 

cm3 of sediment, grouped by hydrologic preference, and plotted in Tilia and TiliaGraph 

programs (Grimrn 1987). 

Submergent macrofossil assemblages included aquatic plants with either 

submerged leaves (i.e., Chara spp., Nitella spp., and Najas spp.) or floating-leaved 

aquatics generally found in deeper water regions (i.e., Potamogeton spp., Nuphar, and 

Brasenia). Macrofossils classified as emergent species were those plants commonly found 



in shallow waters less than 0.5 m or along muddy shores. Facultative hydrophytes were 

defined as species occurring in wet soils, but also tolerant of terrestrial conditions 

(Dieffenbacher-Krall and Halteman 2000). Terrestrial macrofossils signified the presence 

of upland species. 

Pollen analysis 

Pollen analysis was done on core MPB, the longest and only continuous core. In 

an effort to achieve 100 to 200-year resolution during post-glacial and early-Holocene 

transitions, 1-cm3 samples were counted at 0.5 to 2-cm intervals along core section 91 5- 

cm to 800-cm. The remainder of the core (800-cm to 550-cm surface sample) was 

examined at five-cm intervals to identlfL broad trends in vegetative change. Pollen 

analyses were conducted at the Laboratory of Quaternary Paleoecology and 

Paleohydrology, University of Maine. Pollen concentration techniques were developed 

fiom chemical and physical methods presented by Faegri et al. (1989). After 

deflocculation of the original 1-cm3 sample, extraneous matter (calcium carbonate, humic 

acids, coarse particles, and siliceous matter) was either sieved or dissolved out of the 

sample. The remaining sediment was suspended in silicon oil, and permanently mounted 

on a glass slide under a 24x24 mm coverslip. Working on a Nikon Phase microscope at 

40X, a minimum of 300 arboreal and herbaceous pollen cells were counted and identified. 

Pollen identification guides included the extensive pollen reference collection at the 

Laboratory of Quaternary Paleoecology and Paleohydrology, University of Maine, and 

identification keys in Faegri et al. (1989), Moore et al. (1991), and McAndrews et al. 



(1973). Picea pollen was identified to species using binary regression classification 

techniques developed by Lindbladh et al. (2002). Pollen data were plotted in percentage 

diagrams using Tilia and TiliaGraph programs (Grimrn 1994), and local pollen assemblage 

zones were based on stratigraphically constrained cluster analysis (CONISS) (Grimrn 

1987). 

Radiocarbon dating 

I obtained twenty-eight radiocarbon dates from the six cores on samples of bulk 

sediment and terrestrial macrofossils. Dated material taken fiom the base of sediment 

transitions represented the minimum age of initiation of the overlying unit. Where 

macrofossil-poor sections precluded AMS dating, low carbonate content in the lake 

sediment allowed use of bulk gyttja samples. AU samples were dried, weighed, and 

submitted to Beta Analytic Incorporated for standard radiocarbon dating. Beta Analytic 

pre-treated bulk gyttja samples with an acid wash. Age determinations on bulk samples 

included both soluble and insoluble fractions. The radiocarbon time scale is used 

throughout this report to rninirnjze calibration error and to facilitate systematic regional 

correlation of lake-level change data. 



Chapter 3 

RESULTS 

Ground penetrating radar 

A north-to-south GPR transect (Figures 3 and 4) showed a gently sloping littoral 

zone along the north shore, abrupt deepening at the center of the pond, and sediment 

accretion into the basin at the seepage outlet. The east-to-west transect (Figures 3 and 5) 

identified the deepest point of the basin as off the rock outcrop along the eastern 

shoreline. The deep basin extended to the middle of the pond to a low hummock 20 

meters west of the outcrop. From the hummock, the sediment interface rose westward in 

a gradually sloping littoral zone. Figures 5 and 6 show approximate locations of five lake- 

sediment cores along the east-to-west transect. Core NPF was taken fiom the shoreline 

heath zone. 

Lacustrine Material Velocity rnlns 

Fresh water 0.033 

Loose, surface gyttja 0.035 

Coarse organics 0.037 - 0.038 

Deep water gyttja 0.034 - 0.037 

Silt and clay 0.035 - 0.038 

Table 1 Effective EM pulse velocity of lacustrine sediments at Mathews Pond, T8 R10 

WELS, Maine, USA. Velocity values in meters/nanosecond are based on reflectors in the 

cores and on velocity values listed in Pulse EKKO 100 Run User's Guide (1996). 
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Chronology 

Age models were developed by linear interpolation between radiocarbon dates 

(Table 2, Figure 18 ). Because sediment accumulation rates vary among sediment types, 

dates bracketed changes in sediment type whenever possible. Except for MPB and MPF, 

all cores contained disconformities. These abrupt sediment transitions occurred between 

glaciolacustrine deposits and overlying gyttja in MPA, MPD, and MPE. Although no 

sediment transition was visually or geochemically obvious in the upper portion of ME'C, a 

date of 5.14 ka just 60 cm below the sedimentlwater interface strongly suggested a 

disconformity . 

Sediment units 

Sediment cores included six types of sediment: 1) deep-water gyttja - olive green 

gyttja composed of >45% fine-grained, organic materials; 2) sedgy gyttja containing 

either visible sedge-like plant material or abundant aquatic and emergent macrofossils; 

3) rhythmic banding - alternating light and dark bands; 4) light gray gyttja - clear to 

gradual transitional zones between deep-water gyttja and glaciolacustrine clay containing 

45% - 20% fine-grained, organic materials; 5) glaciolacustrine clay - blue gray, fine- 

grained sediment containing <20% organic materials; 6) angular sand and gravel - 

medium to coarse-grained sand and small, glacially-striated pebbles. Figure 6 diagrams 

individual core stratigraphy, and profiles sediment units across the basin. 



Beta Analytic Core Depth (cm) below Material 13C112C I4C yr Calibrated 
Lab number modern water Ratio (years BP) calendar 

surface years BP 
171 686 MPA 640-645 g f l ja  -25.0 oloo* 4380+/- 1 20 491 5 
171 687 MPA 750-755 SYW -25.0 oloo* 81 60+1-170 9082 
171 688 MPA 795-800 gyttja -25.0 oloo* 9250+1-110 10451 
165209 MPB 655-660 gyttja -30.8 0100 3380+1-70 3634 
16521 0 MPB 722 seeds, leaves -25.5 0100 4020+1-40 4477 
16521 1 MPB 745 wood -24.0 0100 5020+1-40 5742 
165212 MPB 799.5 bark -23.7 0100 6860+1-40 7676 
171 689 MPB 825-830 gyttja -25.0 oloo* 8430+1- 1 60 9472 
168756 MPB 870-875 gyttja -25.00/00* 11010+/-130 13002 
171 691 MPD 447-452 g f l ja  -25.0 oloo* 1730+1-100 1644 
168750 MPD 510-515 m a  -25.0 oloo* 3050+/-70 3296 
168751 MPD 560-565 gyttja -25.0 oloo* 491 O+/-70 5627 
168752 MPD 625 seeds -22.5 0100 5890+1-40 6745 
168753 MPD 683-688 gyttja -25.0 o/oo* 9420+1-160 10635 
168754 MPD 690-695 gyttja -25.0 oloo* 1 01 80+/-100 11 830 
168755 MPD 695-700 g~t t ja  -25.0 oloo* 1 1470+/-150 13444 
171 692 MPE 355-360 sedge g~t t ja  -25.0 oloo* 1260+1-90 1205 
171 693 MPE 458-467 gfltja -25.0 oloo* 3020+1-70 3226 
171694 MPE 533-542 gyttja -25.0 oloo* 4000+1-70 4477 
171695 MPE 620-625 gyttja -25.0 oloo* 6160+1-120 7091 
171696 MPE 700-705 gyttja -25.0 oloo* 9160+1-110 10316 
173757 MPC 167-172 charcoal -26.2 0100 51 40+1-50 591 1 
173758 MPC 200-205 gyttja -25.0 oloo* 7280+/-70 8104 
173759 MPC 238-243 g f l j a  -25.0 oloo* 8340+1-70 9380 
173760 MPC 293-298 gyttja -25.0 oloo* 1 0050+/-100 11490 
173755 MPF 27 wood -27.1 0100 270+/-40 305 
177871 MPF 40 seeds -26.4 0100 4380+/-40 4950 
173756 MPF 60 wood -28.8 0100 5430+/-50 6235 
165213** MPF 73 sedge, grass -27.0 0100 21 70+1-40** 

* Estimated 13C112C values based on values typical for gyttja. 
** AMS Radiocarbon date disregarded as too young for statigraphic position. 
Beta Analytic Inc. reported all dates as radiocarbon years before 1950 A.D. Modern reference 
standard was 95% of theI4C content of the National Bureau of Standards's oxalic acid, and was 
calculated using the Libby 14C half life of 5568 years. Quoted errors represent 1 standard 
deviation (68% probability) and are based on combined measurements of the sample, 

background, and modern reference standards. Measured 13C112C ratios were calculated relative 
to the PDB-1 international standard and radiocarbon ages normalized to -25 per mil. Radiocarbon 
ages (14C yr) were converted to calendar year (cal yr) notation with Calib 4.3 computer 
programming (Stuiver and Braziunas 1993, Stuiver et al. 1998a, Stuiver et al. 1998b). 

Table 2 Radiocarbon dates for cores MPA, MPB, MPD, MPE, MPC, and MPF fiom 

Mathews Pond. 
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Sediment analysis 

Clastic grain size provided the strongest indication of lake-level change. Changes 

in grain size for cores MPF, W E ,  MPD, MPA, and MPB are summarized in Figure 7. 

Inorganic content, clastic grain size, carbonate content, and macrofossils for core MPA 

are diagramed in Figure 9. Figures 8, 10, 1 1, and 13 diagram inorganic content, clastic 

grain size, and macrofossils for cores MPB, MPD, MPE, and MPF respectively. Inorganic 

content in core MPC is shown in Figure 12. 

Macrofossil analysis 

Although Mathews Pond displayed distinct Chara and Nitella oospore and Najas 

seed peaks, except for the shoreline core MPF, no cores displayed a clear relationship 

between aquatic seed deposition and water depth. Heavy, terrestrial macrofossils, such as 

Pinus and Picea needles, sink rapidly and tend to collect in shallower water along 

shorelines (Harmon and Gaillard 1997). Terrestrial macrofossils were present in all cores, 

but quantities did not fluctuate to a degree that suggested shoreline advancement or 

regression. Sedge-filled layers of macrofossil-poor gyttja provided the most direct 

evidence of lake-level low stands. Full macrofossil diagrams for each core are presented 

in Appendix A. 

Sample resolution of charcoal particles larger than 250 pm identified millennial- 

scale periods of fire activity in the Mathews Pond region. Charcoal particle deposition is 

included in the stratigraphic interpretation, because increased charcoal deposition suggests 

a drier environment. 
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Figure 7 Comparison of changes in clastic grain size in Mathews Pond cores. X-axes 

represent percent oftotal solids by weight larger than .63 mrn. Cores are arranged in 

order of water depth left to right. Y-axes are scaled to radiocarbon age. 



Chapter 4 

STRATIGRAPHIC INTERPRETATION 

Because MPB was the deepest and only continuous core, sediment zones 

indicating changes in water level were established in MFB and applied to cores MPA, 

W D ,  and W E .  All cores bottomed in blue-gray, glaciolacustrine clay underlain by sand 

and gravel. These layers of glacial till and silty outwash draped the entire basin and are 

designated Zone A. Sediment draping compressed stratigraphic units as the basin floor 

rose into the littoral zone. Imperfect age-depth correlation between cores complicated 

zone correlation. 

Disconformities in core stratigraphy formed during periods of non-deposition or 

fiom rapid sediment decomposition, when the sediment surface was exposed to the air. 

Surface erosion during periods of rising water levels could also create sediment 

disconformities. In either case, disconformities were associated with low-water periods. 

Conversely, rhythmic banding may represent periods when the lake was deep enough to 

experience thermal stratification and seasonal turnover. 



Figure 8 Core MPB summary of lithic and macrofossil analyses: inorganic content, grain size, charcoal, and macrofossils. 
Zones A-M indicate changes in sediment composition related to changes in water depth. 



Core MPB (modern water depth 547 cm; Figures 8 and A.1) 

Zone A: Proglacial outwash of medium to coarse sand and small pebbles is overlain by silt 

and clay with <5% organic material. A macrofossil assemblage dominated by Chara and 

emergent species suggests a shallow pond surrounded by sedge wetlands. The peak in 

bryophyte fragments, along with an increase in clastic grain size, may signal a period of 

high-energy terrestrial runoff, perhaps fiom snow melt or heavy storms. 

Zone B: Ten percent increase in organic content, an increase in rnacrofossil emergent 

species, and rhythmic banding indicate deeper, quieter water. Large charcoal particles 

from 13.0 ka to 12.0 ka indicate fire activity. 

Zone C: Increased inorganics, increased clastic grain size, and low abundance of aquatic, 

emergent, and facultative hydrophile macrofossils suggest a period of low water. 

Zone D: Decrease in inorganics, decrease in clastic grain size, and rhythmic banding 

suggest an increased lake level. 

Zone E: A radiocarbon date of 1 1,010 +/-I30 years identified the lower boundary of Zone 

E as the start of the Younger Dryas chronozone. Increase in inorganics, increase in clastic 

grain size, high charcoal levels, and low sedimentation rate suggest a dry environment and 

low water level in the pond. 

Zone F: Percent inorganics and clastic grain size remain high for most of this period, 

indicating a low lake level for at least the first Holocene millennium. Increased 

macrofossils of emergent species also suggest a wide littoral zone. Charcoal levels remain 

high, with a distinct peak corresponding to a dark band in the core at 837 cm 

Zone G (8.3 ka to 4.8 ka): Increased sedimentation rate, stable inorganic content, fine- 



grained clastic sediments, and rhythmic banding indicate deep water. Decline in grain size 

at 820 cm and increase in grain size at 730 cm are clear transitions into and out of this 

period. Marked decline in charcoal suggests a more humid environment. Slight increase 

in inorganic content and clastic grain size signal a decrease in water level between 6.5 ka 

and 7.6 ka (Zone G, Figure 8). An increase in terrestrial macrofossils in Zone G, (Figure 

A.l) suggests shoreline encroachment of trees and shrubs. 

Zone H (4.8 ka to 4.0 ka): Clear transitional increase in clastic grain size, thin coarse 

organic layers, and low sedimentation rates indicate low water level. Lack of aquatic 

macrofossils, increased facultative hydrophile and terrestrial rnacrofossils, and increased 

charcoal deposition all suggest a drier environment. 

Zone I (4.0 ka to 3.5 ka): Decreased clastic grain size, increased aquatic macrofossils, and 

rapid sedimentation rates indicate a period of rising water levels. 

Zone J: Increased clastic grain size and decreased aquatic macrofossils suggest lower 

water levels. Charcoal particle deposition increases in the latter half of this zone. 

Zone K: Decreased clastic grain size indicates rising water levels. 

Zones L and M: Surface sediments contain minimal stratigraphic changes. 



Figure 9 Core MPA summary of lithic and macrofossil analyses: inorganic content, carbonate content, grain size, charcoal, 
and macrofossils. Zones A-M indicate changes in sediment composition related to changes in water depth. 



Core MPA (modern water depth 497 cm, Figures 9 and A.2 ) 

Despite low sample resolution, grain-size, macrofossil, and charcoal results 

substantiate inferences based on MPB. Because carbonate content of < 4.0% is too low 

to provide evidence of lake-level change, low carbonate values in MPA justified not 

performing the analysis on additional cores. 

Zone A: Proglacial outwash of medium to coarse sand and small pebbles are overlain by 

silt and clay. This zone is macrofossil-poor and has 6 %  organic material. 

Zone B: Seven percent increase in organic content and decreased clastic grain size 

indicates deeper, quieter water. Peak in charcoal particles corresponds to 12.5 ka charcoal 

peak in MPB. 

Zones C, D, & E are not evident: Disconfonnity. The current sedimentlwater interface of 

MPA is 0.5 m above that of MPB. An erosional disconformity immediately above post- 

glacial lacustrine sediment suggests that the water surface lowered by 0.5 m between 12.5 

ka and 9.3 ka. 

Zone F (Disconfonnity to -8.0 ka): High inorganic content and increased clastic grain 

size indicate a period of low water interrupted by a brief high-water flux at 9.2 ka (Zone 

F,, Figure 9) evidenced by an abrupt decline in clastic grain size. 

Zone G (-8.0 ka to 4.5 ka): Increase in organic content and decrease in clastic grain size 

indicate deep water. This high water period is interrupted by a brief low water period 

-5.5 ka (Zone G,, Figure 9) indicated by an abrupt increase in clastic grain size. 

Zone H (4.5 ka to 3.1 ka): Increased clastic grain size indicates low water. Charcoal peaks 

between 4.5 ka and 4.3 ka suggest drier conditions. 



Zone I: A brief high water period is indicated by decreased clastic grain size. 

Zone J: Increased clastic grain size suggests low water levels. 

Zone K: Consistent inorganic content with slightly smaller clastic grain sizes suggests 

rising water levels. 

Zone L (0.25 ka (-300 cal yrs BP)): High inorganic content and decreased clastic grain 

size suggest a cold, wet environment and high lake levels. 

Zone M: Modem surface sediments contain minimal stratigraphic changes. 



Figure 10 Core MPD summary of lithic and macrofossil analyses: inorganic content, grain size, charcoal, and macrofossils. 
Zones A-M indicate changes in sediment composition related to changes in water depth. 



Core MPD (modern water depth 361 cm, Figures 10 and A.3) 

MPD demonstrates a visual disconformity just above the lacustrine clay layer. 

Radiocarbon dating indicates the disconfonnity to be of Younger Dryas age. 

Zone A: Proglacial outwash of medium to coarse sand and small pebbles is overlain by silt 

and clay. Sediment is macrofossil-poor with <5% organic material. 

Zones B, C, D, & E are not evident: Disconformity. Erosional disconformities 

immediately above post-glacial lacustrine sediment and again between 1 1.5 ka and 10.2 ka 

suggest that water receded into the deep area of the basin. 

Zone F (Disconforrnity to -8.2 ka): Increased inorganics, increased clastic grain size, and 

increased emergent macrofossil species indicate low water levels. Charcoal peak at start 

of deposition zone suggests drier environment. 

Zone G (-8.2 ka to 4.9 ka): Decreased clastic grain size and higher sedimentation rate 

indicate a period of high water. A brief water level decline -5.9 ka (Zone G,, Figure 10) is 

evidenced by increased inorganic content, increased terrestrial macrofossils, and increased 

clastic grain size. 

Zone H (4.9 ka to 3.0 ka): This low water period is characterized by low sedimentation 

rates, increased clastic grain size, and an undifferentiated bryophyte peak. 

Zone I (3.0 ka to 2.0 ka): Increased sedimentation rate and decreased clastic grain size 

suggest higher water levels. 

Zone J (2.0 ka to 1.4 ka): Increase in clastic grain size and increase in emergent 

macrofossils suggests lower water levels. 



Zone K: Rising water levels are indicated by decrease in clastic grain size and Nitella 

oospore peak. 

Zone L: High inorganic content and fine-grained clastics suggest a cold, wet environment. 

Peaks in bryophyte fragments may indicate increased terrestrial runoff. 

Zone M (0.27 ka to present): High water at start of zone is suggested by a brief decline in 

inorganic content. Slight increases in inorganic content and clastic grain size following the 

initial high-water flux suggest that water levels briefly declined and are now increasing. 



Figure 11 Core MPE summary of lithic and macrofossil analyses: inorganic content, grain size, charcoal, and macrofossils. 
Zones A-M indicate changes in sediment composition related to changes in water depth. 



Core MPE (modern water depth 226 cm, Figures 11 and A.4) 

Disconformity in MPE occurred during the early Holocene, when water was 

confined to the deepest portion of the basin. A narrow band of peat at - 4.7 ka indicates 

that the core site was above water for a brief period. High sedimentation rates after - 4.0 

ka may be the result of sediment trapping by littoral flora. 

Zone A: Proglacial outwash of medium to coarse sand and small cobbles are overlain by 

narrow band of silt and clay. The sediment is macrofossil-poor and contains <5% organic 

material. 

Zones B, C ,  and D: These zones appear as narrow bands of lacustrine deposition. 

Zones E, F, and early-G are not evident: Erosional disconformities between 9.2 ka and 6.2 

ka suggest that water receded into the deep portion of the basin. Early Holocene 

deposition may have eroded as waters rose between 9.2 ka and 8.4 ka. 

Zone late-G: Sedimentation resumed in MPE following the Zone G, dry interval (-6.2 ka 

to 5.7 ka) evident in the deeper cores. Rhythmic banding, Nitella oospore peak, and low 

clastic grain size identif4r this zone as a high water period. 

Zone H (-4.7 ka to 3.0 ka): This is low-water period is characterized by high inorganic 

content, increased clastic grain size, increased terrestrial macrofossils, and stratified sedgy 

gyttja layers. A significant charcoal peak at - 4.5 ka indicates local fire activity. A high- 

water interlude, characterized by decreased grain size, follows the charcoal peak (Zone 

H,, Figure 1 1). 

Zone I (3.0 ka to -1.8 ka): High organic content, low clastic grain size, and decreased 

terrestrial rnacrofossils indicate high water levels. 



Zone J (-1.8 ka to -1.1 ka): Multiple sedge layers and intermittent increases in clastic 

grain size indicate lowered water depth. 

Zone K (-1.1 ka to 0.5 ka): Except for a brief decline in water depth between 0.7 and 0.6 

ka evidenced by an abrupt increase in inorganic content and clastic grain size, decreased 

inorganics and clastic grain size indicate rising water levels. 

Zone L (500 to 130 cal yrs BP): High inorganic content and low clastic grain size suggest 

the cold, wet environment. Decreased clastic grain size at 270 cm suggests a high water 

flux. 

Zone M: Modem surface sediments characterized by increased clastic grain size suggest a 

decline in water depth during uppermost sediment deposition. 

Hiatus I 
Figure 12 Core MPC sediment stratigraphy with inferred disconformities, inorganic 

content, and age in radiocarbon years. 



Core MPC (modern water depth 107 cm; Figures 12 and A.5) 

Disconformities at both top and bottom of this core complicate an already 

confusing stratigraphy. Loss-on-ignition (LOI) analysis for inorganic content conforms to 

patterns established with deeper cores and the observed core stratigraphy. Radiocarbon 

dates are in sequence, and match core stratigraphy and LO1 results. Post-glacial MPC 

stood well above the water line. The thick layer of coarse sedge material below gyttja 

dated to 10.0 ka (295-3 15 cm) indicates a sedge-filled, marshy shoreline during the 

Younger Dryas chronozone. The 5.1 ka date just 55 cm below the sedimentlwater 

interface precedes the 1000+ year mid-Holocene dry period, and probably marks the lower 

limit of an erosional disconfonnity. Due to laboratory error, clastic grain size, charcoal, 

and macrofossil analyses were not used to assess lake-level change. 

Core MPF (modern water depth -6.0 cm; Figures 13 and A.6) 

MPF was collected from the sphagnum heath shore approximately 1 0 m from the 

shoreline and 6 cm above the current water level. The Russian corer rehsed in gravel till 

at 73 cm. Sediment progression from compacted dark brown mud, to compacted coarse 

organics, to loosely compacted peat represents natural wetlands in-filling by surrounding 

forest and shrubs. This premise is supported by large numbers of aquatic seeds and 

oospores in the lower portion of the core. Two bands of light gray, fine-grained clastics at 

25-28 cm and at 32-35 cm dated 0.5 ka - 0.27 ka and 2.5 ka - 2.0 ka respectively and may 

represent brief high-water events. 



Particles (macrofossils) per 100 cc of sediment 

Figure 13 Core MPF summary of lithic and macrofossil analyses: sediment 

stratigraphy, inorganic content, grain size, and age in radiocarbon years. 



Pollen stratigraphy 

Stratigraphically constrained cluster analysis (CONISS) (Grirnm 1987) designated 

eleven local pollen assemblage zones (PAZ) in core MPB (Figure 17). Variations in pollen 

concentration relate to vegetation cover-type and to lake sedimentation rates. Grass and 

shrub-covered tundra and open, Pinus-Picea parklands produced low pollen 

concentrations prior to 1 1.5 ka. Periodic declines in pollen concentration since 1 1.5 ka 

correspond to increased sedimentation rates during periods of high or rising water levels 

(i.e., 820-725 cm and 690-670 cm, Figure 14). While Betula has undoubtedly been a 

dominant forest component throughout the Holocene, pollen levels greater than 40% 

probably overstate species significance. Only selected pollen taxa are shown in the 

percentage pollen diagram (Figure 14). 

PAZ-I (Pinus-Picea-Populus-Ostrya-Salix-herbaceous basal layer (9 1 5-885 cm; 

c. 1 3.5- 1 1.4 ka)): Low pollen concentrations suggest a tundra landscape gradually 

grading into open Pinus-Picea taiga forests. Resurgence of Picea and Cyperaceae, along 

with increased rninerogenics between 895-885 cm (Figure 14), may signal the brief Older 

Dryas cold period. 

PAZ-I1 (Pinus-Picea-Quercus-Betula-shrub Betula (885-860 cm; 1 1 .O-10.0 ka)): 

Except for a subtle increase in inorganic content, an increase in Picea pollen (40% of tree 

and shrub pollen) provides the strongest indication of Younger Dryas cooling at Mathews 

Pond. Pinus strobus and Picea glauca are the predominant conifer pollen types. 

PAZ-I11 (Pinus-Betula-Alnus (860-835 cm; c. 10.0-9.0 ka)): Decline in Picea pollen to 

less than 10% of the tree and shrub total is accompanied by an increase in Betula and 



Figure 14 Full-core summary for Core MPB: Percent inorganic content, % clastic grains >.63mm by d 
dendrogram was constructed with CONISS square root transformation analysis (Grimm 1987) .  



;ontent, % clastic grains >.63mm by dry weight, charcoal particles/100cc, and pollen percentages. Pollen assemblage : 
iation analysis (Grimm 1987).  



a1 particles/100cc, and pollen percentages. Pollen assemblage zone (PAZ) 
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Alnus pollen, with Alnus crispa the dominant Alnus species. 

PAZ-IV (Pinus-Betula-Quercus (835-805 cm; c. 9.0-6.7 ka)): Decline in Alnus to less 

than 10% is accompanied by increases in Pinus and in Quercus pollen. 

PAZ-V (Pinus-Betula-Quercus (805-770 cm; 6.7-5.9 ka)): Decrease in Betula and 

increase in Pinus strobus is concurrent with decline in charcoal deposition. 

PAZ-VI (Pinus-Tsuga-Betula-Quercus (770-735 cm; 5.9-4.8 ka)): Quercus pollen 

declines as Tsuga becomes more prominent. 

PAZ-VII (Pinus-Betula-Quercus-Fagus (735-700 cm ; 4.8 ka-3.8 ka )): Abrupt Tsuga 

decline at 4.8 ka is followed by a gradual increase in Fagus and Quercus pollen. 

PAZ-VIII (Pinus-Betula-Fagus (700-625 cm; 3.8-2.2 ka)): Pollen taxa suggest an open 

hardwood forest with scattered Pine. 

PAZ-IX (Pinus-Tsuga-Betula-Fagus-Juncus (625-595 cm; 2.2- 1.2 ka)): Increased 

emergent species (Juncus) suggest that the lake-level at Mathews Pond declined and the 

wet, sedge-covered shore zone expanded. Return of Tsuga indicates a more closed- 

canopy forest. 

PAZ-X (Pinus-Picea-Tsuga-Betula-Quercus-Fagus (595-570 cm; 1.2-.3 ka)): Picea 

pollen increases, and Picea glauca re-appears in the pollen record. 

PAZ-XI (Pinus-Picea-Tsuga-Betula-Quercus-Fagus-Ambrosia-Rumex (570-560 cm; .3 

ka to present)): Ambrosia and Rumex pollen appears in the pollen record. 



Chapter 5 

PALEOENVIRONMENTAL SYNTHESIS OF CORE DATA 

Integration of lake-level, charcoal, and pollen data at Mathews Pond tracked 

broad, climate-related changes in vegetation, as well as subtle groundwater increases in 

response to decreased forest transpiration following forest fire. Fine-resolution analyses 

identified subtle increases in lake level and in Betula pollen following peaks in early- 

Holocene charcoal deposition (Zone F1, Figure 8 and PAZ IV, Figure 14). Mathews 

Pond contained 16 sediment units related to changes in water level, and nine lake-level 

stands (Figures 8 and 15, Table 3). 

Before 11.8 ka: high lake level 

Ice-recession isobars fiom Davis and Jacobson (1985) and Borns et al. (2003) 

along with linear age-depth interpretation of core MPB radiocarbon dates indicate that the 

region was ice-free by 13.5 ka. Pro-glacial deposits of sand and gravel abruptly grading 

into minerogenic, macrofossil-poor glaciolacustrine clay underlie the entire basin at 

Mathews Pond. Organic sedimentation began 13 .O- 12.5 ka with deposition of silty, 

banded gyttja. Pollen and macrofossil assemblages indicate an open landscape dominated 

by cold-tolerant Picea, Pinus, Populus, Salix, shrub Betula, Dryas and other Rosaceae, 

Cyperaceae, and Artemisia. Pollen assemblages in Figure 14 suggest that the landscape 

evolved from grass and shrub-covered tundra to spruce and pine-dotted parkland to mixed 

boreal forest by 1 1.8 ka. 



Figure 15 Inferred lake-level change curve for Mathews Pond. 12,000-year inferred 

lake-level curve is superimposed on age-depth curve for each core. Radiocarbon years 

before present are charted against depth below modern water surface for six cores. 

Inferred lake-level change curve, shown here as the solid black line, is based on core 

characteristics. 



11.8 ka to 9.4 ka: low lake level 

Except for brief water influxes coincident with the cold Killarney Oscillation 

observed in New Brunswick, Canada (Levesque et al. 1993) (Zone D, Figure 8 and 

Figurel4) and following local forest fires (Zone F1, Figure 8), water level was low 

throughout this period. Sediment discordorrnities in cores MPA, W D ,  W E ,  and MPC 

suggest that water persisted only in the deepest section of the basin. Abundant Pinus 

strobus (>6% of total pollen) and elevated charcoal levels between 1 1.2 ka and 8.2 ka 

fixther imply a dry environment. 

Changes in water balance between 10.0 ka and 8.2 ka may have been influenced by 

the effects of isostatic tilt and forebulge migration on groundwater hydraulics. If the 

Aroostook River and Allagash River recharge boundaries are far enough apart, isostatic 

tilt could affect groundwater distribution (Appendix B). Major evapotranspiration (ET) 

shifts fiom changing forest cover could also alter groundwater recharge. By 1 1.7 ka, 

high-ET forests, dominated by Picea, Pinus, and Betula, had replaced low-ET shrub 

grasslands. As the Berlling-Allererd warm period came to an end, a forest of pine and mixed 

northern hardwoods (Juniperus/Thula, Populus, Betula and Ostrya) covered the local 

landscape. A subtle increase in sediment inorganics and a resurgence of Picea glauca 

(white spruce) pollen between 1 1.0 and 10.0 ka (Figure 14) mark the cool, Younger Dryas 

chronozone. 

Paleoamericans at Munsungun quarry sites (Jacobson et al. 1987, Pollock et al. 

1999) apparently worked in a mixed boreal forest dotted with sedge-covered wetlands 

where shallow ponds occur today. Based on the inferred lake level at Mathews Pond 



(Figure 15), the water level at Munsungun Lake could have been as much as five meters 

lower than its present level. 

9.4 ka to 8.2 ka: abrupt increase in water level 

Water level in Mathews Pond rose as much as five meters during the millennium 

(Figure 18). While increased water levels were reported from other northeastern North 

American lakes (Table 3), rising water levels at other sites began earlier and were not as 

abrupt. If tilting of the Aroostook and AUagash watershed recharge boundaries are 

sufficiently far apart to effect groundwater distribution, isostatic crustal adjustment could 

have masked surficial expression of increased groundwater recharge at Mathews Pond 

(see Appendix B. 1 ). 

Spruce forests rapidly declined as the climate warmed after the Younger Dryas 

chronozone. Pinus strobus and Betula became abundant early in this period. Abies and 

Quercus also increased, and the landscape returned to a more open forest of pine and 

mixed northern hardwoods. 

Charcoal deposition was high at Mathews Pond fiom 1 1.25 ka to 8.2 ka (Figures 8 

and 14). Mathews Pond charcoal deposition patterns are supported by a study of charcoal 

deposition in lake sediments at 30 sites in eastern Canada (Carcaillet and Richard 2000). 

While water levels in groundwater seepage lakes are controlled by winter precipitation, 

fire occurrence is typically controlled by summer precipitation (Carcaillet and Richard 

2000). The combination of increased wild f ie  and rising lake levels between 9.0 and 8.2 

ka required heavy winter snow fall and dry summer seasonality. MPB charcoal peaks at 



876 cm (c.11.2 ka), at 835 cm (c.8.8 ka), and at 625 cm (c. 2.5 ka) are followed by subtle 

increases in lake-level and Betula pollen spikes succeeded by increases in Pinus pollen 

(Zone DIE transition and Zone F1, Figure 8 and PAZ 11, IV, and IX, Figure 14). 

8.2 ka to 4.8 ka: h i ~ h  lake level 

By 8.2 ka water level had risen to approximately modem levels, and charcoal 

deposition markedly declined. The slight water-level decline (Zone G,) centered around 

7.5 ka (8,200 cal yrs BP) (Figure 15, Table 3 ) was consistent with the cool, dry period 

described by Alley et al. (1 997) and Bond et al. (1 997). Persistence of submergent and 

floating-leaved aquatic macrofossils (Chara, Najas, Potamogeton, and Sparganium) in the 

bottom of shoreline core MPF suggested that the lake rose to within 67 cm of its current 

level, and maintained that depth until c. 5.3 ka (Figures 13 and A.6). 

As Picea species declined to -40% of the pollen rain, Picea glauca disappeared 

kom the pollen record to be replaced by moisture-tolerant P. rnarianna and P. rubens. 

Pinus, Betula alleghaniensis (species identification from fossil seeds), and Quercus 

characterized the mixed hardwood forest. Between c.5.2 and 4.8 ka, Tsuga canadensis 

(eastern hemlock) replaced Pinus strobus (white pine) as the dominant conifer species. 

Charcoal abundances indicate that local fire was minimal during this period. 

4.8 ka to 3.0 ka: low lake level 

Water level fell sufficiently to create a sediment disconformity in MPC (Figure 12), 

and sedgy gyttja deposition in MPE (Figure A.4). A brief rise in water level followed a 



charcoal peak c. 4.7-4.3 ka (Zone HI, Figure 11). This mid-Holocene, low-water period 

coincides with the cool, dry 1500-year cyclical events described as Holocene expressions 

of DansgaardIOeschger 180 shifts (Dansgaard et al. 1984, Bond et al. 1997). 

The 4.8 ka Tsuga decline recorded across northeastern North America (Allison et 

al. 1986) coincidentally occurred at the same time as the abrupt, 4.8 ka lake-level decline 

at Mathews Pond. Mixed, open hardwood forests of Pinus, Betula, Quercus, and Fagus 

replaced dense hemlock stands. 

3.0 ka to 2.0 ka: rising lake level 

Rising lake levels are inferred fiom decreasing clastic grain size and decreased 

inorganic content. Charcoal abundances indicate that local fire activity increased after 2.5 

ka. Carcaillet and Richard (2000) also reported increased fire activity after 2.5 ka in the 

mixed boreal forests of southern Quebec. Rising lake levels and increased fire frequency 

suggests warm, dry summers and heavy winter snowfall. 

2.0 ka to 1.5 ka: declining lake level 

Coarse, sedgy gyttja sandwiched between layers of deep-water gyttja in MPE 

(Figure 11) confirmed the lake-level low stand subtly evident in MPB, MPA, and MPD. 

Submergent and floating-leaved macrofossils in MPFdeclined during this period, 

suggesting a prograding shoreline and natural lake in-filling. An increase in emergent taxa 

in the pollen record provides additional evidence of an expanded, marshy shore. 



1.5 ka to present: rising lake level 

The lake level rose approximately 70 cm during this period. An apparent flooding 

event indicated by an inorganic layer in MPF and centered around 0.4 ka (Figures 13 and 

A.6) suggests that the lake level fluctuated during this period. Increased inorganics and 

clastic grain size in the top of W E  suggest that water level may have declined over the 

past 50-1 00 years. 

The percent of Picea pollen increased after 1.5 ka, evidence of a cooler climate. 

Tsuga pollen peaked c. 1.1 ka, and then declined after 0.8 ka. Conifers dominated the 

mixed, pre-boreal forest. 



Chapter 6 

CONCLUSIONS 

Figure 15 summarizes lake-level change at Mathews Pond over the past 12,000 

years. Table 3 compares synchrony of lake-level change at seven sites in northeastern 

North America. Although Almquist et a1 (2001) listed 17 paleohydrological study sites in 

northeastern North America, only the seven sites presented in Table 3 adhered to the 

guidelines for identifLing lake-level fluctuations established by Digerfeldt (1 986). 

Low lake levels at adjacent sites in Massachusetts (Shurnan et ~1.2001, Newby et 

al. 2000), at Mathews Pond, and at Whited Lake in Aroostook County, Maine 

(Dieffenbacher-Krall2003) (Table 3) suggest that the climate in Acadia was relatively dry 

throughout the late-glacial period and the Younger Dryas chronozone. Low lake levels, 

combined with high fire activity, during the early Holocene at Mathews Pond coincide 

with low lake levels and high fire activity in southwestern Quebec (Carcaillet and Richard 

2000). Dry climatic conditions in the early Holocene could have resulted from a 

combination of high summer solar radiation, Arctic Oscillation low-phase, and adiabatic 

winds from the remnant Laurentide ice sheet (Carcaillet and Richard 2000). 

Mathews Pond water levels rose to near-modern levels by 8.4 ka, and, except for a 

slight decline centered around 7.5 ka (8200 cal yr BP), remained high until -4.8 ka. 

All three Maine ponds listed in Table 3 exhibited lake-level decline coincident with the 

8200-year event (Alley et al. 1997, Bond et al. 1997). The mid-Holocene dry period, 

evident at all sites summarized in Table 3 and lasting from 1,500 to 2,000 years, exhibited 
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west-to-east, time-transgressive onset: Minnesota prairie-forest border moved eastward 

and Parker's Prairie lake levels declined fiom 8.0 to 5.0 ka (Baker et al. 1992, Digerfeldt 

et al. 1992); southern Wisconsin prairie-forest border moved eastward 5.5 to 3.0 ka 

(Baker et al. 1992); southern Ontario lake-levels declined 5.0 to 3.0 ka (Yu et al. 1997); 

Maine lake-levels declined 4.8 to 3.0 ka (this study, Dieffenbacher-Krall2003). The time- 

transgressive nature of the mid-Holocene dry period provides additional evidence that 

changing air-rnass distribution patterns controlled mid-Holocene climate (Yu et al. 1997). 

With intermittent low and high fluctuations lasting from 200-500 years, Mathews 

Pond lake level rose to modern levels after 3.0 ka. This lake-level rise was accompanied 

by increased charcoal deposition, an indication of heavy winter precipitation accompanied 

by dry summers. Late-Holocene periods of high fire activity and rising lake levels may be 

associated with millennia1 shifts in storminess (increased fall and winter storms) associated 

with the low-phase, atmospheric Arctic Oscillation (Thompson and Wallace 2001, Noren 

et al. 2002). Southward-dipping Arctic air masses could increase winter snow pack, while 

blocking humid Maritime Tropical air masses (Carcaillet and Richard 2000) to produce 

dry summer conditions. Synchrony of lake-level changes between Mathews Pond and 

Whited Lake (Dieffenbacher-Krall2003), a groundwater seepage lake in an adjacent 

watershed, and with additional sites across northeastern North America (Figure 1, Table 

3) provides strong evidence that atmospheric circulation shifts drive periodic, short-term 

climate changes. 

A number of catchment experiments and ET models demonstrated the direct 

relationship between vegetation change and groundwater recharge rates (Bosch and 



Hewlett 1982, Alley 1984, Whitehead and Robinson 1993, Sahin and Hall 1996, Stednick 

1996, Disse 1999, Abbott et al. 2000, Rosenrneier et al. 2002). Conifer forests have the 

greatest evapotranspiration rates, followed by deciduous hardwood forests, with scrub and 

grasslands having the lowest ET rates (Bosch and Hewlett 1982). Figure 14 demonstrates 

that marked changes in vegetation in response to changing climate or to fire influence 

groundwater recharge. Lake-level low-stands beginning before the Younger Dryas 

chronozone and extending into the early Holocene may have been prolongd by increased 

ET accompanying the sift from shrub-dominated, Picea parklands to Pinus/PicedBetula 

forests. As the Acadia landscape continues to revert to mixed hardwood and conifer 

forests fiom the open agricultural and grazing lands of 200 years ago, increased forest 

transpiration may fiuther lower overtaxed groundwater aquifers. 

Synchrony of lake-level behavior depicted in Table 3 suggests that moisture 

balance during much of the Holocene may have been similar to current levels. While 

decline in non-coastal Picea populations has been linked to warmer, drier climates 

(Schauffler and Jacobson 2002), the Picea glauca-dominated spruce populations at 

Mathews Pond declined during the early-Holocene lake-level rise. This implies that 

temperature rather than general moisture balance may be the limiting factor, at least for 

white spruce. Because groundwater recharge in forested regions occurs during late fall 

and early spring (Abbott et al. 2000), lake levels in heavily forested regions are controlled 

by winter precipitation, and may be stronger indications of seasonality than of annual P-E 

ratios. This recharge pattern could compromise moisture balance assessments and 

paleotemperature estimates based on 180 values. 



While most pollen preserved in lake sediments came fiom a broad geographic area, 

pollen fiom small forest hollows originated within 20-30 m of the hollow (Jacobson and 

Bradshaw 198 1, Schauffler and Jacobson 2002). In an effort to separate regional and 

local components of the pollen rain, a companion study will examine pollen stratigraphies 

fiom forest hollows within BRFR. Pollen diagrams fiom paired sites that share a common 

regional component, but where vegetation varies as a result of local differences in soil and 

relief, define fine-scale changes in past vegetation (Jacobson 1979, Schauffler and 

Jacobson 2002). 

Research at Mathews Pond met the following established project objectives: 

1. The 10,000-year record of lake-level change at Mathews Pond indicated a dry early- 

Holocene, increased moisture balance 8.2 ka to 4.8 ka, pronounced dry periods fiom 4.8 

ka to 3.0 and fiom 2.0 ka to 1.5 ka, and general increase in moisture balance after 1.5 ka. 

In addition to long-term hydrologic trends, lake-level responses to short-term climate 

events were recorded at 7.5 ka (8,200 cal yr), 2.5 ka, 2.0 ka, and 0.4 ka. 

2. High-resolution sampling for lake-level, charcoal, and pollen analyses demonstrated 

that changes in regional vegetation interrelate with changes in regional hydrology and with 

periods of high fire activity. Mathews Pond sediments held evidence of both millennial- 

scale and short-term changes in hydrology and vegetation across the landscape 

surrounding BRFR. 

3. Lake-level change at Mathews Pond exhibited a high degree of synchrony with lake- 

level change at Whited Lake, a groundwater-fed lake in an adjacent watershed. Synchrony 

of groundwater response between watersheds and across broad geographic regions 



suggests that changes in moisture balance are driven by external influences such as shifts in 

solar insolation or in atmospheric circulation. Disparity of lake-level change data may be 

related to the water-balance regime of the lake (i.e., atmosphere controlled versus 

groundwater controlled). 
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APPENDIX A 

MACROFOSSILS 

Plant Macrofossils 

Mathews Pond, with its high transparency, lack of algal blooms, and trout 

population, is presently an oligotrophic lake. Littoral plants, both submergent aquatics 

and emergent plant species that root in shallow waters, enhance sediment accumulation in 

water < 2 m deep through wave velocity reduction, increased sediment trapping, and 

localized organic loading (Anderson 1990, Dearing 1997). Littoral macrophytes are 

particularly important in stabilizing erosional shorelines. Organic accumulation and littoral 

zone progradation are precursors to natural in-filling of the lake basin. When assessing 

lake-level change, natural shoreline progradation must be differentiated fiom shoreline 

expansion due to lake lowering. 

Because the distribution of submerged, floating-leaved, and emergent plant species 

are related to water depth, macrofossil associations of these species can be used as one of 

several independent lines of evidence to infer lake-level change (Digerfeldt 1986, Harrison 

and Digerfeldt 1993, Hannon and Gaillard 1997, Dieffenbacher-Krall and Halteman 2000). 

Traditional macrofossil analysis assumed obligate aquatic plants had short seed-dispersal 

distances, while emergent and shoreline species had longer dispersal distances (Birks 

1980). Several studies found little correlation between vegetation cover and the aquatic 

seed bank (Greatrex 1983, Haag 1983, Kautsky 1990, Dieffenbacher-Krall and Halteman 

2000). In an extensive study of plant remains in alkaline, New England lakes 



Dieffenbacher-Krall and Halteman (2000) concluded that the key issue is water depth at 

which the seeds settle, rather than proximity of seed deposition to the source plant. The 

most usehl types of macrofossils are those fiom plants with the narrowest depth ranges, 

and whose seeds fall to the sediment quickly (Hannon and Gaillard 1997). While 

Dieffenbacher-Krall and Halteman (2000) identified several indicator species for alkaline 

lakes, this calibration can not automatically be extended to non-alkaline lakes. Alkalinity 

is a major factor in determining distribution of many aquatic plant species (Hellquist 

1980), with species assemblages differing significantly between alkaline and non-alkaline 

lakes (Dieffenbacher-Krall and Halternan 2000). Dieffenbacher-Krall and Halteman 

(2000) also concluded that the presence of a species within the macrofossil assemblage 

was a more usehl indicator of lake-level change than was the relative abundance of a 

species within the macrofossil assemblage. 

Charcoal 

Charcoal analyses of sediment cores are biased by the distance between the 

collecting basin and the charcoal source (Clark 1988a, 1990). During a fire, charcoal 

particles of all size ranges are lifted into the atmosphere by thermal convection plumes. 

Charcoal particles ranging in size £tom 0.1 pm to 10,000 pm are lifted above the forest 

canopy by turbulent in-drafts and convection winds (Clark 1988a). Fragments 

differentially fall out of suspension. Charcoal particles >I30 pm fall close to the fire zone, 

while smaller, dust-sized particles spread out into continental and even global distribution 

(Clark 1988a, 1988b, 1990, Clark and Royall1995). Because this project targeted the fire 



history of the Mathews Pond catchment region, charcoal particles >250 pm were 

identified and counted. 

Charcoal analyses of sediment cores are spatially and temporally imprecise (Clark 

1990). To delineate fire frequency, the quantitative sampling technique must be at a scale 

h e  enough to resolve individual £ires while spanning extended time periods (Clark 

1988b). Sample resolution at Mathews Pond identified millennial-scale periods of fire 

activity. 



Figure A.l Summary of core MPB macrofossil analysis. Charcoal particles and macrofossils calculated to 100 cc of sediment. 
Zones indicate changes in sediment composition related to changes in water depth. 
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Figure A.2 Summary of core MPA macrofossil analysis. Charcoal and macrofossil values adjusted to 100 cc of sedi 
Zones indicate changes in sediment composition related to changes in water depth. 
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Figure A.3 Summary of core MPD macrofossil analysis. 
Zones indicate changes in sediment composition related to changes in water depth. 
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Figure A.4 Summary of core W E  macrofossil analysis. 
Zones indicate changes in s e d i i t  composition related to changes in water depth. 
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Figure A.5 Summary of core MPC macrofossil analysis. Charcoal and macrofossil values adjusted to 100 cc of sediment. 
Charcoal and macrofossil analyses were not considered in lake-level calculations, because of questions regarding the orientation of core segment 2 10-3 10 c 
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Figure A.6 Summary of shoreline core MPF macrofossil analysis includes 
lithic stratigraphy, charcoal, submergent species, and floating-leaved emergent species. 
Zones indicate lithic horizons. 



Table A.l Terrestrial and aquatic plant survey for Mathews Pond, Piscataquis County, 

Maine, USA. Aquatic plants surveyed 30-July-02 by Ann Dieffenbacher-Krall. Trees and 

surveyed 04-October-00 by Andrea Nurse. Taxonomy follows Haines and Vining (1 998). 

Family 

Characeae 

Characeae 

Haloragaceae 

Isoetaceae 

Nyrnphaeaceae 
Potamcgetonaceae 

Pdarnogetonaceae 

Pdamogetonaceae 
Ranunculaceae 

Apiacaee 

Clusiaceae 

Cyperaceae 

Eriocaulaceae 

Juncaceae 

Menthaceae 

Poaceae 

Sparganiaceae 

Veronicaceae 

Cupressaceae 

Droseraceae 
Ericaceae 

Ericaceae 
Ericaceae 

lridaceae 

Myricaceae 

Pinaceae 

Asteraceae 

Betulaceae 

Betulaceae 

Ericaceae 

Ericaceae 

Fagaceae 

Pinaceae 
Pinaceae 

Pinaceae 

Pinaceae 

Pinaceae 

Rubiaceae 

Sapindaceae 

Sapindaceae 

Sapindaceae 

Vidaceae 

Commenrs 

less abundant than Nitella 

fairly abundant 

abundant 

sporadic 

abundant 

present 

rare 

abundant 

on shore 

on log 

abundant 

abundant 

on shore 

on shore 

present 

on shore 

on sbore 

on shore 

on shore 

on shore 

on shore 

Genus 

Chara spp. 

Nitella spp. 

Myriophyllum fanvellii Morong 

Isoetes echinospora Durieu 

Nuphar variegata Dw. 

Potamogeton amplifolius Tuckerman 

Potamogeton epihydrus Rd. 

Pornogeton spirillus Tuckerman 

Ranunculus aquatilis L. var. ditfusus Withering 

Sium suave Walt. 

Triadenum nrgnlcum (L ) Raf 

Carex spp 

Enocaulon aquatlcum (Hjll) Druce 

Juncus spp 

Lycopus unifloms Michx. 

Miscellaneous 

Sparganium angushfoliurn Michx 

cf Gratiola 

7huja occidentalis L. 

Drosera rotundifolia L. 

Chamaedaphne calyculata (L.) Moencb 

Gaultheria hispidula (L.) Muhl. ex Bigelow 

Kalmia anystifolia L. 

his  versicolor L. 
Myrica gale 1.. 

Picea manana (P. Mill.) B.S.P. 

Flieracturn sp 

Betula alleghaniensis Britt. 

Betula papyifera Marsh 

Rhododendron canadcnse (L.) Torr. 

Rhododendron goenlandicum (Oeder) Kron & Judd 

F a y s  grandifolia Ehrh. 

Abies balsamea (L)  P. Mill. 

Picea rubens Sarg 

Pmus reslnosa Ait. 

Pinus strobus L. 

Tsuga canadensis (L.) Carr. 

Galium sp. 

Acer pensylvanicum L. 

Acer rubrum L. 

A m  saccharurn Marsh. 

Viola sp. 

Classification 

Submergent aquatic 

Strbmergent aquaic 

Submergent aquatic 

Snbmergent aquatic 

Submergent aquatic 

Sub~nergent aquatic 

Submergent aquatic 

Submergent aquatic 

Submergent aquatic 

Emergent 

Emergent 

Emergent 

Emergent 

Emergent 

Emergent 

Emergent 

Emergent 

Emergent 

Facultative hydrophyte 

Facultative hydrophyte 

Facultative bydropbyte 

Facultative hydrophyte 

Facultative bydrophyte 

Facultative hydrophyte 

Facultative hydrophyte 

Facultative hydrophyte 

Terreshial 

Terreshial 

Tcrrestrial 

Tcrrestrial 

Terrestrial 

Terrestrial 

Terrestrial 

Terrestrial 

Terrestrial 

Terrestrial 

Terrestrial 

Terrestrial 

Terrestrial 

Terrestrial 

Terrestrial 

Terrestrial 
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APPENDIX B 

INFLUENCE OF ISOSTACY ON GROUNDWATER MOUND 

Groundwater response to forebulge migration 

Because Mathews Pond is a groundwater seepage lake, changes in lake-level at 

Mathews Pond more strongly reflect changes in the height and shape of the underlying 

groundwater aquifer than changes in P,-EL over the lake surface. If the groundwater 

aquifer sustaining Mathews Pond is b e d  between the AUagash River in the 

Methem Pond 

3000 - 

2300- 
Elevatmn in meters 

Figure B.l  Schematic representation of groundwater mound and flow-through 

groundwater system underlying Mathews Pond. Adapted fiom Born et al. (1 979). 



northwest and Aroostook River drainage system in the southeast (Figures B. 1 and 

B.3), the aquifer encompasses a geographic region large enough for the shape of the 

aquifer (i.e., groundwater hydraulic pore pressure) to be influenced by isostatic depression 

and subsequent forebulge migration. 

Timing and magnitude of sea-level lowstands in Massachusetts (-43 m at 12 cal yr 

BP (Oldale et al. 1993)), off the Maine coast (-65 m at 1 1.65-1 1.25 cal yr BP (Stea et al. 

1994)), and in Quebec (-5 m at 7-6 cal yr BP (Dionne 1988)) suggest that a crustal 

forebulge of 20-25 m in amplitude migrated across Acadia at a rate of 7-1 1 km1100 years 

(Barnhardt et al. 1995). Mathews Pond is located northeast and along roughly the same 

glaciostatic rebound contour as the north end of Moosehead Lake (Balco et al. 1998). 

Forebulge migration rates fiom Balco et al. (1 998)(Figure B.2) predicted that the aquifer 

was tilted to the northwest, and that water levels in the southeast sector of the aquifer 

Figure B.2 Ice proximal depression and forebulge migration across Moosehead Lake 

basin. From Balco et al. (1 998). 



were low 12.0 ka to 10.0 ka. The forebulge passed through the region c. 9.4 ka, 

leveling, but elevating, the underlying bedrock basement. Between 9.0 ka and 8.5 ka the 

region tilled toward the southeast, implying high groundwater levels in the southeast and 

low groundwater levels in the northwest sector. By 8.2 ka tilt rebounded slightly back to 

the northwest, and then gradually decreased to the present inclination (Balco et al. 1998). 

Figure B.3 Schematic representation of an inter-fluvial watertable (WT) hydraulic 

pressure mound. From Almendinger (1 990) and Digerfeldt et al. (1 992). 

In response to effective moisture over the land surface (groundwater recharge), 

hydraulic pore pressure creates a water table mound, with mound elevation greatest 

midway between two parallel rivers (Figure B.3)(Almendinger 1990, Digerfeldt et al. 

1992). When groundwater recharge is reduced, the water table mound elevation lowers, 

lowering more in the center of the mound than near the rivers (Alrnendinger 1990). Lakes 

near the center of the aquifer experience greater decrease in water level than do lakes 



nearer the draining river systems. If isostatic tilt and forebulge migration changed surficial 

aquifer drainage patterns or altered the shape of the interfluvial, water-table mound, 

aquifer hydraulics could influence lake levels. 

Without knowing the effects on groundwater mound shape and elevation, or 

knowledge of the geographic extent and orientation of the groundwater aquifer, it is 

impossible to predict exact timing of surficial groundwater response to ice-proximal tilt 

and forebulge migration. However, groundwater response to isostatic rebound could 

account for at least part of the pronounced increase in water level at Mathews Pond 

following the extended early-Holocene low stand. 
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