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This study of late-glacial and Holocene changes in lake-level and vegetation at
Mathews Pond contributes new information about Holocene environments in northeastern
North America. The research establishes a 12,000-year record of paleohydrology for the
watershed adjacent to Big Reed Forest Reserve, the largest stand of old-growth forest in
the northeastern United States. Mathews Pond is a 7.4 ha, closed-basin, groundwater-
seepage lake located in an upland, forested region of the Aroostook River drainage
system. Glacial meltwater briefly filled the basin ~ 13.0 ka (1 ka = 1000 "*C yr BP)). The
lake existed as a shallow pool in the deep area of the basin between 11.0 and 9.4 ka.
Water levels rose to near-modern levels by 8.4 ka, and, except for a slight decline around
7.5 ka (8200 cal yr BP), remained high until 4.8 ka, when a distinct low-stand lasted until
3.0 ka. After 3.0 ka the lake level rose to the modern level with intermittent low and high
fluctuations of 200-500 year duration. Synchrony of lake-level changes between

Mathews Pond and Whited Lake, a groundwater seepage lake in an adjacent watershed,



and from additional sites across northeastern North America provides strong evidence that
Holocene climate varied with 1500-2000 year periodicity and with sufficient intensity to
alter regional moisture balance. Synchrony of groundwater response between watersheds
and across broad geographic regions suggests that changes in moisture balance are driven
by external influences such as solar insolation or shifts in atmospheric circulation.
Integration of lake-level, charcoal, and pollen data at centennial-scale temporal resolution
identified subtle increases in groundwater recharge in response to decreased forest

transpiration following local forest fires.
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Chapter 1
INTRODUCTION
Holocene climate fluctuations led to changes in vegetation and hydrology in the
Acadia region (Maine, southeastern Quebec, and Maritime Canada). Three major air
masses converge on Acadia (Figure 1): cold, dry Arctic air from the northwest; mild, dry
Pacific air from the west; warm, wet Maritime tropical air from the south. Relative
changes in the strength of these air masses influence changes in the temperature and

moisture regimes of the region (Bryson 1966).

Figure 1 Location of paleohydrology investigation sites reviewed in this study. Air-mass

positions from Bryson (1966) and Bryson and Hare (1974).

While fossil pollen, oxygen isotope, and insect assemblage studies are often used
to reconstruct past shifts in temperature, these parameters generally do not reveal changes

in paleohydrology. Changes in lake level, indicated by changes in sediment morphology



and aquatic macrofossil assemblages, are used to reveal changes in regional moisture
balance (Precipitation - Evapotranspiration) and in ground water levels within a watershed
(Digerfeldt 1986; Dearing 1997).

To construct a 12,000-year record of paleohydrology for eastern North America,
Harrison (1989) reviewed various sedimentary data from 26 sites ranging eastward from
South Dakota and south into Alabama and Florida. While studies at many of the sites
reviewed did not employ multi-proxy techniques to evaluate lake-level change, 22 of the
sites analyzed sediment lithology plus at least one additional, independent indicator of
paleohydrologic change. At 1000-year resolution, these lake-level reconstructions
indicated that conditions were wetter than today between 12,000 and 10,000 cal yrs BP.
Lake levels were lower by 9000 cal yrs BP, with maximum aridity occurring around 6000
cal yrs BP. Lake levels rose to modern levels by 2000 cal yrs BP. Spatially and
temporally coherent patterns of lake-level change across eastern North America implied
climatic control. Community Climate Model simulations generated by the National Center
for Atmospheric Research showed major shifts in atmospheric circulation patterns

coinciding with fluctuations in paleohydrology (Kutzbach 1987, Harrison 1989).

Objectives

The multi-proxy lake-level study at Mathews Pond, T8 R10 WELS, Piscataquis
County, Maine had three objectives:
Objective 1: Establish a 10,000-year paleohydrology record for the watershed

surrounding Big Reed Forest Reserve (BRFR), Piscataquis County, Maine.



Figure 2 Big Reed Forest Reserve and Mathews Pond, 46° 19' N, 69° 3.7' W. Beetle

Mountain, Maine, quadrant 46069-C1-TF-024, U.S. Geological Survey, 1989 edition .

Image from MapTech Terrain Navigator (www.maptech.com).



Mathews Pond is located 1.5 km south of BRFR, at 1954 ha the largest stand of
old-growth forest in New England, 7.5 km southwest of Munsungun Lake, the site of
paleamerican chert quarries, and within the same Aroostook River watershed (Figure 2).
BRFR is owned and managed by The Nature Conservancy (TNC), and is surrounded by
large tracts of privately owned and actively harvested timberland. TNC commissioned
University of Maine Department of Forest Ecosystem Science and Institute for Quaternary
and Climate Studies to examine recent and natural disturbance regimes that shaped
prehistoric forests in northern Maine. TNC will use this information to determine an
appropriate spatial scale for northern Appalachian forest reserves and to establish
management program that will best conserve the boreal forest ecosystem. TNC
hypothesized that “an area large enough to capture, absorb, and reflect the scale of natural
disturbances, historic and expected” is a key factor in site viability (Vickery 1999).

Adequate definition of disturbance regimes requires integration of multiple
research methods (Foster ef al. 1996). Begun in 1999, this study will integrate data from
dendrochronology, palynology, paleohydrology, spatial analysis, GIS modeling, and
historical techniques to examine effects of recurring fire, wind, drought, and disease on the
structure of small forest stands (<50 ha), landscapes (e.g. 2000 ha), and regions (e.g. 3
million ha). Because the hardwood, conifer, and mixed forests of Piscataquis County are
part of a similar forest landscape stretching from northern New York through Maine and
into the Canadian Maritimes, results of this study may apply to a broad ecoregion. This
study provides paleoecologic and paleoclimatic perspectives on the effects of natural

disturbance on forest biodiversity.



Objective 2: Construct well-dated, stratigraphic pollen and charcoal records to
examine the link between regional hydrologic changes and changes in composition
and disturbance regimes of forests in BRFR.

Integration of lake-level data with analyses of fossil pollen and large, air-borne
charcoal particles from lake sediments reveals changes in regional vegetation patterns,
periods of regional wildfire activity, and the associated effects on groundwater recharge.
The 12,000-year regional record from Mathews Pond will be integrated with stand-level
data obtained during studies of vegetation history and natural disturbance in BRFR (e.g.,
Schauffler and Jacobson 2002).

Objective 3: Determine the degree of synchrony of lake-level change for
northeastern United States, southeastern Quebec, and Maritime Canada.

When Harrison published her 1989 study, lake-level data was not available from
Acadia. Since 1997, data from five sites across Acadia (Table 3: Yu et al. 1997, Shuman
et al. 2001, Newby et al. 2000, Almquist et al. 2001, Lavoie and Richard 2000) suggested
that the time transgressive, mid-Holocene warm, dry period observed in mid-western
North America (Wright 1992, Yu et al. 1997) extended across northeastern North
America. Additional paleohydrology studies from Acadia, at centennial-level resolution
and over extended time periods, will identify fine-scale, cyclical shifts in moisture balance
and past drought cycles. Comparative data from these studies aid in determining causal
factors for changes in regional moisture balance and identify variations between coastal

and continental moisture balance.



Water-balance classification

Sensitivity of a lake to climate change depends on several factors: presence or
absence of an outlet; water-balance regime of the lake; basin and catchment
geomorphology; sediment type; degree of human intervention. Mean annual water

balance of a lake is represented by the equation:

V=A(P.-E)+R-D)+ (G, -Gy (Street-Perrott and Harrison, 1985).

V = net change in the volume of lake water. A; = area of the lake (changes in lake

depth are directly related to changes in lake area). P, and E; = precipitation onto and
evaporation from the lake expressed as depth of the water. R = runoff from the
catchment. D = surface discharge through the lake outlet (D = zero for a closed lake.
Surface discharge depends on the height of the lake surface over the floor of the spillway.
G,, and Gy, = groundwater flows into and out of the lake.

The high concentration of lakes around 45° N is the result of glacial scouring by
northern ice sheets (Street-Perrott and Roberts 1983). Retreat of the Laurentide ice mass
left numerous small, closed kettle ponds and ice-scoured basins across northeastern North
America. Hydrologic factors relevant to water balance in glacial-terrain lakes include:

1) regime dominance - the relative amount of groundwater in the water budget of the lake;
2) system efficiency - the rate of surface and groundwater movement through a lake
system; and 3) lake position within the groundwater flow system (Born et al. 1979). Born
et al. (1979) classified lakes according to regime dominance: groundwater-dominated

lakes (seepage lakes); surface water-dominated lakes (flow-dominated lakes); and



atmosphere-controlled lakes (perched lakes). Most lakes fall along a graded continuum,
with degree of groundwater inflow and outflow difficult to assess.

Extreme flow-dominated lakes are essentially “wide places in a river” with
precipitation and surface runoff flushed out through outlet discharge in <1 to 10 years
(Street-Perrott and Harrison 1985). Sediment cores from these lakes are not suitable for
paleoclimate studies.

Atmosphere-controlled lakes are closed systems perched on impermeable
substrates such as glaciolacustrine or glaciomarine clays. Mansell Pond in Penobscot
County, Maine, sits atop thick deposits of Presumpscot Formation clay (Almquist-
Jacobson and Sanger 1995, Almquist ef al. 2001) laid down during a late-Pleistocene
marine incursion. The clays provide sufficient seal to separate the lake basin from
groundwater influences.

Water level at Mathews Pond, a small, closed-basin, groundwater seepage lake,
fluctuates with changes in precipitation, evapotranspiration across the groundwater
aquifer, and intermittent, non-channelized surface runoff. System efficiency in basins of
this type depends on the groundwater hydraulogic pressure gradient and the permeability
characteristics of soils surrounding the lake (Born et al. 1979). Groundwater feed into
such lakes often occurs along the littoral zone through springs or by diffuse seepage from
rising water tables, while groundwater outflow occurs though deep-basin fracture zones
(McBride and Pfannkuch 1975).

Depending on topographic lake position within the aquifer drainage system and the

height of the groundwater pressure mound, dominant water movement in the lake may be



discharge, recharge, or flow-through. A comparative lake-level study of three lakes
located on Parkers Prairie sandplain in west-central Minnesota showed that, while the
level of all three lakes lowered between 7.2 ka and 6.7 ka (1 ka = 1000 "*C yr BP), the
magnitude of decline (from 2.8 meters to 6.2 meters) was directly proportional to the
distance away from the river that drained the sandplain (Digerfeldt ef al. 1992). That
study and related modeling (Almendinger 1990) demonstrated that change in surface
hydrology in groundwater-dominated lakes is influenced by external factors beyond P - E
ratios.

The internal structure of stratified lake sediments is determined by the dominant
sediment distribution mechanism at time of deposition (Dearing 1997). Mechanisms that
influence lake sedimentation include: 1) sliding, slumping, and turbidity currents on
underwater slopes with inclines as low as 4% 2) wave action along shore lines; 3) random
sediment redistribution from wave action on the lake bed where sediment accumulation is
independent of water depth; and 4) intermittent mixing following temperature stratification
overturn, where sediment accumulation rate is proportional to water depth (Dearing 1997,
Nichols 1999, Hakanson and Jansson 2002). Rich vegetative growth in littoral zones may
reduce resuspension and thereby increase loading of organic sediment. Organic loading
and vegetative encroachment ultimately result in natural lake in-filling. Lakes best suited
for lake-level studies are those in which temperature stratification is the dominant

sediment distribution mechanism (Dearing 1997).



Site selection

Appropriate site selection is the critical first step in unraveling these intertwined,
sedimentary processes. Small, closed-basin ponds with no inlet, no outlet, and relatively
small catchment areas reveal past changes in regional water balance better than large water
bodies with extensive catchment regions and complex, external influences on sediment
deposition. When the catchment region is relatively small, less exogenous sand and
gravel, pollen, and organic debris enter the lake in surface runoff. Minimization of surface
runoff more closely links changes in sediment deposition to changes in catchment area
hydrology (precipitation and evapotranspiration effects on local ground water levels)
(Dearing 1997). Lakes of areal distribution <50 ha, depths of <10 m, catchment/lake area
ratios less than 5:1, and with littoral vegetation growing along sheltered, gently sloping
shores best exhibit distinct, stratified, sediment units (Digerfeldt 1986; Dearing 1997).

Digerfeldt (1986) pioneered analytic techniques to reconstruct past lake

fluctuations according to changes in distribution of littoral vegetation, sediment
composition, and level of deep-water sediment deposition. Digerfeldt’s multi-proxy,
multi-core methodology has been expanded to accommodate the diversity of trophic
states, temperature stratification, and geophysical composition found in small, temperate-
region lakes (Dearing 1997, Almquist ef al. 2001, Dieffenbacher-Krall and Halteman
2000, Hakanson and Jansson 2002, Dieffenbacher-Krall 2003).

Sedimentary evidence of lake-level change varies with changes in lake
geochemistry and topography. Multiple sediment cores, taken in a transect from the

deepest point to the near-shore zone, are examined, often at centimeter-scale, for evidence



of lake-level change. Analytical methods are designed to identify the following
independent lines of sediment evidence: 1) progradation and aggradation of littoral
vegetation relative to the lake center, deduced from the presence of coarse organic matter
(Digerfeldt 1986) or from aquatic macrofossil assemblages (Hannon and Gaillard 1997,
Dieffenbacher-Krall and Halteman 2000); 2) distinct transitions between sediment types
that are linked to specific hydrological conditions, i.e., peat overlain by gyttja; 3) coarse,
minerogenic layers identified by visual description or by clastic grain-size analysis; 4) loss-
on-ignition (LOI) analysis to identify changes in bulk density, organic content, and
carbonate content. While vegetation response time of <200 years has been documented
for climatic temperature shifts, only a few studies (e.g., Williams ef al. 2002, Almquist and
Sanger 2000, Almquist et al. 2001) relate changes in regional vegetation to changes in

regional water balance.

Site-to-site comparisons

Climate-driven changes in lake levels are inferred by correlating data from
independent lake-level studies across a region. Catchment-driven changes in lake levels
are identified by correlating changes in lake level with landscape changes surrounding the
watershed.

Differences in timing of reconstructed paleohydrologic events at sites across a
broad geographic region may result from the time-transgressive nature of the causal event,
or from different methodologies, lake-basin morphologies, or discrepancies in age/depth

correlations. Time transgressive changes in water balance across northeastern North

10



America, e.g., the warm, dry mid-western prairie period (Baker ef al. 1992, Wright 1992)
and its extension eastward into southern Ontario (Yu ef al. 1997) and into Maine
(Dieffenbacher-Krall 2003, this study), are identified by comparison ‘of lake-level studies
across a continental transect.

Short-term or localized changes in groundwater levels, not apparent across a
geographic region, may result from changes in local landscape, e.g., forebulge migration
during isostasy, vegetation change, forest fire, and altered land-use. High-resolution
charcoal and pollen analysis, along with a thorough history of local land-use, augment
centennial-scale lake-level resolution.

Most difficulties in correlating lake-to-lake, or even core-to-core data, result from
inadequate chronologies. Radiocarbon dates with one standard deviation >100 '*C years
carry a potential uncertainly of >200 years. Bulk sediment dates from zones with low
sedimentation rates may span hundreds of years. Water-residence time in closed lake
basins may exceed fifty years (Street-Perrott and Harrison, 1985). Aquatic plants may
take up old carbon from aquatic carbon reservoirs during photosynthesis. The large
number of dates required to compile an accurate and precise age-depth curve for each
core sometimes exceeds the available budget. Dating precision is further compromised
when radiometric dates are converted to calendar years. Unless otherwise specified, all

dates in this study are reported as radiocarbon years before present.
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Chapter 2
METHODS
Mathews Pond (Figure 3) is a 7.4 ha pond with no inlet and a high-water, seepage

outlet of 0.3 meters over an ice-deposited, boulder sill. Maximum depth of the pond is 5.5
meters. The glacially-scoured basin sits in Devonian-age, volcanic tuff bedrock (Hall
1970) overlain by an unconsolidated, glacial till layer of gravel and boulders. Mathews
Pond formed as glacial meltwater filled the basin. The low topographic relief surrounding
the pond and a catchment/lake area ratio of ~3:1 buffer surface runoff into the pond from
storms and melting snow pack.

Mathews Pond, T8, R10, Piscataquis County, Maine, USA
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Figure 3 Mathews Pond with core sites and Ground Penetrating Radar (GPR) pathways.

Ground Penetrating Radar

PulseEKKO 100 Ground Penetrating Radar (GPR) manufactured by Sensors and
Software was used to chart the bathymetry of the basin and the depth, distribution, and

stratigraphy of lacustrine sediments at Mathews Pond. The unit was compact and portable
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enough that three people transported the equipment over 0.5 km of rough terrain. GPR is
operational through ice or through the flat bottom of a non-metallic boat or raft (Belknap,
personal communication). Because motorized vehicles create electromagnetic (EM)
noise, we conducted the survey at Mathews Pond from a paddle-propelled, ABS plastic
canoe. Transmitter and receiver antennae were placed one meter apart on either side of
the center of the canoe. As the canoe traveled along north-south and east-west transects,
the transmitter antennae emitted 100 Mhz EM pulses at regular time intervals. Each pulse
was differentially reflected back to the receiving antennae by interface surfaces of stratified
lake sediments. The receiver amplified and digitalized reflected pulses, and then passed
the information to the control unit. Digital pulses were converted to “time versus energy”
data points known individually as trace points. When trace points were plotted side-by-
side along the transect profile, they combined to create a digital image of the reflective
surfaces. GPR mapping depends on the physical and EM (i.e., electrical conductivity,
dielectric constant, velocity of EM pulse, attenuation of EM energy, and reflective

coeflicient) contrasts between water and lacustrine sediments (Moorman 2001).

Sediment collection

Five lake-sediment cores were collected across a water-depth gradient in June of
1999 using a Wright, 7.5-cm diameter, square-rod, piston corer (Wright 1967) for all but
the loose, surface gyttja. As each meter-long section of core was extruded from the core

barrel, the section was measured, and the visible stratigraphy was recorded. Cores were
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wrapped in plastic, transported to the laboratory within 48 hours, and stored at 5° C until
analyzed.

Surface-sediment cores were obtained with an 8-cm diameter transparent pipe. The
pipe was attached to metal rods and gravity-fed into the surface sediments. An internal
piston held surface sediments in the pipe; the bottom of the pipe was capped with a
gasketed stopper before the pipe and core broke the water surface. Surface cores were
transported to the shore in an upright position, and the sediment was extruded in five-cm
sections starting at the sediment/water interface. Whirlbags containing the samples were
transported to the laboratory within 48 hours, and stored at 5° C until analyzed.

A pond-side peat core (MPF) was obtained with a 10-cm Russian corer in October
1998. The 73-cm core was wrapped in plastic, transported to the laboratory within 24
hours, and stored at 5° C until analyzed. Water seepage into the core hole showed the

surface of the core to be six centimeters above current lake surface.

Sediment analysis

All cores were visually examined in the field immediately after extrusion. Core
photographs obtained in the laboratory failed to achieve the resolution necessary to show
sediment changes in the dark gyttja. Analysis of X-ray images revealed subtle changes in
sediment density not visible by eye. Each meter-long core section was divided lengthwise
into 1/3 by 2/3 sections. The larger portion was retained for analytical sampling; the
smaller section was wrapped in plastic and archived at 5° C.

Analyses for bulk density, total inorganic content (loss-on-ignition), and carbonate
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content followed Bengtsson and Enell (1986) and were simultaneously performed on core
MPA. For physical analyses, sediment samples of 2-cm® were taken at 0.5-cm to 1-cm
intervals from all cores. Because bulk density showed minimal variation and carbonate
content was less than 4% of sediment by weight in MPA, these parameters were not
assessed in the remaining cores. Total inorganic content was measured at 0.5-cm to 1-cm
intervals in all cores.

All cores were simultaneously examined at 2-cm to 5-cm intervals for change in
inorganic particle (clast) size, charcoal content, and plant macrofossil content. Sediment
samples ranging from 20 cm® to 100 cm’ were measured by liquid displacement in a 5%
solution of potassium hydroxide. Samples incubated in 5% KOH for one hour at 50°C (or
overnight at room temperature) to break up the soil matrix and dissolve humic acids.
Each sample was then gently washed through 500 pm, 250 pm, and 63 pum wire sieves.
After examining the 500 um and 250 pm sieved portions for charcoal and plant
macrofossils, all size fractions were heated in a muffle furnace for two hours at 550° C.
Combined weights of the ash residue at each sample interval were calibrated to 100 cn’,

and the percent of clastic particles larger than silt and clay (>63 pm) calculated.

Charcoal particles

Contiguous, 2-cm to 5-cm bulk-sediment slices of 20 cm’ to 100 cm® were taken
along the core. This sampling regime identified periods of forest fire activity rather than
individual fire events. Bulk samples were gently washed through 500 pm and 250 pm

wire sieves. The entire sieved sample was placed in a channeled tray or gridded petri dish,
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covered by water, and scanned under a Nikon SMZ-U dissecting microscope. Charcoal
particles were identified and counted simultaneously with plant macrofossils. Charcoal
identification counted only fragments that were black, completely opaque, angular, and
highly reflective. Recorded number of charcoal particles in each sample level were
standardized to 100 cm’ of sediment and plotted using Tilia and TiliaGraph programs

(Grimm 1994).

Plant macrofossil analysis

Macroscopic plant remains were identified to the lowest possible taxonomic level
with reference to Martin and Barkley (1961), Montgomery (1977), Lévesque ef al.
(1988), and Holmgren (1998). All identifications were verified by comparison with the
extensive reference collection of seeds, fruit, and preserved plant parts at the Laboratory
of Quaternary Paleoecology and Paleohydrology, University of Maine. Ann
Dieffenbacher-Krall (Climate Change Institute, University of Maine) provided assistance
with some identification. Nomenclature follows Gleason and Cronquist (1991). Recorded
numbers of individual plant macrofossils in each sample level were standardized to 100
cm’ of sediment, grouped by hydrologic preference, and plotted in Tilia and TiliaGraph
programs (Grimm 1987).

Submergent macrofossil assemblages included aquatic plants with either
submerged leaves (i.e., Chara spp., Nitella spp., and Najas spp.) or floating-leaved
aquatics generally found in deeper water regions (i.e., Potamogeton spp., Nuphar, and

Brasenia). Macrofossils classified as emergent species were those plants commonly found
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in shallow waters less than 0.5 m or along muddy shores. Facultative hydrophytes were
defined as species occurring in wet soils, but also tolerant of terrestrial conditions
(Dieffenbacher-Krall and Halteman 2000). Terrestrial macrofossils signified the presence

of upland species.

Pollen analysis

Pollen analysis was done on core MPB, the longest and only continuous core. In
an effort to achieve 100 to 200-year resolution during post-glacial and early-Holocene
transitions, 1-cm’ samples were counted at 0.5 to 2-cm intervals along core section 915-
cm to 800-cm. The remainder of the core (800-cm to 550-cm surface sample) was
examined at five-cm intervals to identify broad trends in vegetative change. Pollen
analyses were conducted at the Laboratory of Quaternary Paleoecology and
Paleohydrology, University of Maine. Pollen concentration techniques were developed
from chemical and physical methods presented by Faegri et al. (1989). After
deflocculation of the original 1-cm’® sample, extraneous matter (calcium carbonate, humic
acids, coarse particles, and siliceous matter) was either sieved or dissolved out of the
sample. The remaining sediment was suspended in silicon oil, and permanently mounted
on a glass slide under a 24x24 mm coverslip. Working on a Nikon Phase microscope at
40X, a minimum of 300 arboreal and herbaceous pollen cells were counted and identified.
Pollen identification guides included the extensive pollen reference collection at the
Laboratory of Quaternary Paleoecology and Paleohydrology, University of Maine, and

identification keys in Faegri er al. (1989), Moore et al. (1991), and McAndrews et al.
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(1973). Picea pollen was identified to species using binary regression classification
techniques developed by Lindbladh et al. (2002). Pollen data were plotted in percentage
diagrams using Tilia and TiliaGraph programs (Grimm 1994), and local pollen assemblage
zones were based on stratigraphically constrained cluster analysis (CONISS) (Grimm

1987).

Radiocarbon dating

I obtained twenty-eight radiocarbon dates from the six cores on samples of bulk
sediment and terrestrial macrofossils. Dated material taken from the base of sediment
transitions represented the minimum age of initiation of the overlying unit. Where
macrofossil-poor sections precluded AMS dating, low carbonate content in the lake
sediment allowed use of bulk gyttja samples. All samples were dried, weighed, and
submitted to Beta Analytic Incorporated for standard radiocarbon dating. Beta Analytic
pre-treated bulk gyttja samples with an acid wash. Age determinations on bulk samples
included both soluble and insoluble fractions. The radiocarbon time scale is used
throughout this report to minimize calibration error and to facilitate systematic regional

correlation of lake-level change data.
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Chapter 3
RESULTS

Ground penetrating radar

A north-to-south GPR transect (Figures 3 and 4) showed a gently sloping littoral
zone along the north shore, abrupt deepening at the center of the pond, and sediment
accretion into the basin at the seepage outlet. The east-to-west transect (Figures 3 and 5)
identified the deepest point of the basin as off the rock outcrop along the eastern
shoreline. The deep basin extended to the middle of the pond to a low hummock 20
meters west of the outcrop. From the hummock, the sediment interface rose westward in
a gradually sloping littoral zone. Figures 5 and 6 show approximate locations of five lake-

sediment cores along the east-to-west transect. Core MPF was taken from the shoreline

heath zone.
Lacustrine Material Velocity m/ns
Fresh water 0.033
Loose, surface gyttja 0.035
Coarse organics 0.037 - 0.038
Deep water gyttja 0.034 - 0.037
Silt and clay 0.035 - 0.038

Table 1 Effective EM pulse velocity of lacustrine sediments at Mathews Pond, T8 R10
WELS, Maine, USA. Velocity values in meters/nanosecond are based on reflectors in the

cores and on velocity values listed in Pulse EKKO 100 Run User’s Guide (1996).
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Chronology

Age models were developed by linear interpolation between radiocarbon dates
(Table 2, Figure 18 ). Because sediment accumulation rates vary among sediment types,
dates bracketed changes in sediment type whenever possible. Except for MPB and MPF,
all cores contained disconformities. These abrupt sediment transitions occurred between
glaciolacustrine deposits and overlying gyttja in MPA, MPD, and MPE. Although no
sediment transition was visually or geochemically obvious in the upper portion of MPC, a
date of 5.14 ka just 60 cm below the sediment/water interface strongly suggested a

disconformity.

Sediment units

Sediment cores included six types of sediment: 1) deep-water gyttja - olive green
gyttja composed of >45% fine-grained, organic materials; 2) sedgy gyttja containing
either visible sedge-like plant material or abundant aquatic and emergent macrofossils;

3) rhythmic banding - alternating light and dark bands; 4) light gray gyttja - clear to
gradual transitional zones between deep-water gyttja and glaciolacustrine clay containing
45% - 20% fine-grained, organic materials; 5) glaciolacustrine clay - blue gray, fine-
grained sediment containing <20% organic materials; 6) angular sand and gravel -
medium to coarse-grained sand and small, glacially-striated pebbles. Figure 6 diagrams

individual core stratigraphy, and profiles sediment units across the basin.
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Beta Analytic Core Depth (cm) below Material BCi2C “Cyr Calibrated
Lab number modern water Ratio (years BP) calendar
surface years BP
171686 MPA  640-645 gyttja -25.0 o/oo* 4380+/-120 4915
171687 MPA  750-755 gyttja -25.0 o/oo* 8160+/-170 9082
171688 MPA  795-800 gyttja -25.0 oloo* 9250+/-110 10451
165209 MPB  655-660 gyttia -30.8 o/oo 3380+/-70 3634
165210 MPB 722 seeds, leaves -25.5 oloo 4020+/-40 4477
165211 MPB 745 wood -24.0 o/oo 5020+/-40 5742
165212 MPB 799.5 bark -23.7 oloo 6860+/-40 7676
171689 MPB  825-830 gyttja -25.0 o/oo* 8430+/-160 9472
168756 MPB 870-875 gyttja -25.0 o/oo* 11010+/-130 13002
171691 MPD  447-452 gyttja -25.0 o/oo* 1730+/-100 1644
168750 MPD 510-515 gyttja -25.0 o/00* 3050+/-70 3296
168751 MPD 560-565 gyttja -25.0 o/oo* 4910+/-70 5627
168752 MPD 625 seeds -22.5 oloo 5890+/-40 6745
168753 MPD 683-688 gyttja -25.0 o/oo* 9420+/-160 10635
168754 MPD 690-695 gyttja -25.0 o/oo* 10180+/-100 11830
168755 MPD  695-700 gyttia -25.0 o/oo* 11470+/-150 13444
171692 MPE  355-360 sedge gyttja -25.0 o/oo* 1260+/-90 1205
171693 MPE 458-467 gyttja -25.0 o/oo* 3020+/-70 3226
171694 MPE 533-542 gyttia -25.0 o/oo* 4000+/-70 4477
171695 MPE 620-625 gyttja -25.0 o/oo* 6160+/-120 7091
171696 MPE  700-705 gyttja -25.0 o/oo* 9160+/-110 10316
173757 MPC 167-172 charcoal -26.2 o/oo 5140+/-50 5911
173758 MPC  200-205 gyttia -25.0 oloo* 7280+/-70 8104
173759 MPC 238-243 gyttia -25.0 o/oo* 8340+/-70 9380
173760 MPC 293-298 gyttja -25.0 o/oo* 10050+/-100 11490
173755 MPF 27 wood -27.1 oloo 270+/-40 305
177871 MPF 40 seeds -26.4 oloo 4380+/-40 4950
173756 MPF 60 wood -28.8 oloo 5430+/-50 6235
165213** MPF 73 sedge, grass -27.0 o/oo 2170+/-40™
* Estimated "*C/'*C values based on values typical for gyttja.
** AMS Radiocarbon date disregarded as too young for statigraphic position.
Beta Analytic Inc. reported all dates as radiocarbon years before 1950 A.D. Modern reference
standard was 95% of the '*C content of the National Bureau of Standards's oxalic acid, and was
calculated using the Libby 14C balf life of 5568 years. Quoted errors represent 1 standard
deviation (68% probability) and are based on combined measurements of the sample,
background, and modern reference standards. Measured 13C/12C ratios were calculated relative
to the PDB-1 international standard and radiocarbon ages normalized to -25 per mil. Radiocarbon
ages (14C yr) were converted to calendar year (cal yr) notation with Calib 4.3 computer
programming (Stuiver and Braziunas 1993, Stuiver et al. 1998a, Stuiver et al. 1998b).

Table 2 Radiocarbon dates for cores MPA, MPB, MPD, MPE, MPC, and MPF from

Mathews Pond.
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Sediment analysis

Clastic grain size provided the strongest indication of lake-level change. Changes
in grain size for cores MPF, MPE, MPD, MPA, and MPB are summarized in Figure 7.
Inorganic content, clastic grain size, carbonate content, and macrofossils for core MPA
are diagramed in Figure 9. Figures 8, 10, 11, and 13 diagram inorganic content, clastic
grain size, and macrofossils for cores MPB, MPD, MPE, and MPF respectively. Inorganic

content in core MPC is shown in Figure 12.

Macrofossil analysis

Although Mathews Pond displayed distinct Chara and Nitella oospore and Najas
seed peaks, except for the shoreline core MPF, no cores displayed a clear relationship
between aquatic seed deposition and water depth. Heavy, terrestrial macrofossils, such as
Pinus and Picea needles, sink rapidly and tend to collect in shallower water along
shorelines (Hannon and Gaillard 1997). Terrestrial macrofossils were present in all cores,
but quantities did not fluctuate to a degree that suggested shoreline advancement or
regression. Sedge-filled layers of macrofossil-poor gyttja provided the most direct
evidence of lake-level low stands. Full macrofossil diagrams for each core are presented
in Appendix A.

Sample resolution of charcoal particles larger than 250 um identified millennial-
scale periods of fire activity in the Mathews Pond region. Charcoal particle deposition is
included in the stratigraphic interpretation, because increased charcoal deposition suggests

a drier environment.
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Chapter 4
STRATIGRAPHIC INTERPRETATION

Because MPB was the deepest and only continuous core, sediment zones
indicating changes in water level were established in MPB and applied to cores MPA,
MPD, and MPE. All cores bottomed in blue-gray, glaciolacustrine clay underlain by sand
and gravel. These layers of glacial till and silty outwash draped the entire basin and are
designated Zone A. Sediment draping compressed stratigraphic units as the basin floor
rose into the littoral zone. Imperfect age-depth correlation between cores complicated
zone correlation.

Disconformities in core stratigraphy formed during periods of non-deposition or
from rapid sediment decomposition, when the sediment surface was exposed to the air.
Surface erosion during periods of rising water levels could also create sediment
disconformities. In either case, disconformities were associated with low-water periods.
Conversely, rhythmic banding may represent periods when the lake was deep enough to

experience thermal stratification and seasonal turnover.
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Core MPB (modern water depth 547 cm: Figures 8 and A.1)

Zone A: Proglacial outwash of medium to coarse sand and small pebbles is overlain by silt
and clay with <5% organic material. A macrofossil assemblage dominated by Chara and
emergent species suggests a shallow pond surrounded by sedge wetlands. The peak in
bryophyte fragments, along with an increase in clastic grain size, may signal a period of
high-energy terrestrial runoff, perhaps from snow melt or heavy storms.

Zone B: Ten percent increase in organic content, an increase in macrofossil emergent
species, and rhythmic banding indicate deeper, quieter water. Large charcoal particles
from 13.0 ka to 12.0 ka indicate fire activity.

Zone C: Increased inorganics, increased clastic grain size, and low abundance of aquatic,
emergent, and facultative hydrophile macrofossils suggest a period of low water.

Zone D: Decrease in inorganics, decrease in clastic grain size, and rhythmic banding
suggest an increased lake level.

Zone E: A radiocarbon date of 11,010 +/-130 years identified the lower boundary of Zone
E as the start of the Younger Dryas chronozone. Increase in inorganics, increase in clastic
grain size, high charcoal levels, and low sedimentation rate suggest a dry environment and
low water level in the pond.

Zone F: Percent inorganics and clastic grain size remain high for most of this period,
indicating a low lake level for at least the first Holocene millennium. Increased
macrofossils of emergent species also suggest a wide littoral zone. Charcoal levels remain
high, with a distinct peak corresponding to a dark band in the core at 837 cm.

Zone G (8.3 ka to 4.8 ka): Increased sedimentation rate, stable inorganic content, fine-
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grained clastic sediments, and rhythmic banding indicate deep water. Decline in grain size
at 820 cm and increase in grain size at 730 cm are clear transitions into and out of this
period. Marked decline in charcoal suggests a more humid environment. Slight increase
in inorganic content and clastic grain size signal a decrease in water level between 6.5 ka
and 7.6 ka (Zone G, Figure 8). An increase in terrestrial macrofossils in Zone G, (Figure
A.1) suggests shoreline encroachment of trees and shrubs.

Zone H (4.8 ka to 4.0 ka): Clear transitional increase in clastic grain size, thin coarse
organic layers, and low sedimentation rates indicate low water level. Lack of aquatic
macrofossils, increased facultative hydrophile and terrestrial macrofossils, and increased
charcoal deposition all suggest a drier environment.

Zone I (4.0 ka to 3.5 ka): Decreased clastic grain size, increased aquatic macrofossils, and
rapid sedimentation rates indicate a period of rising water levels.

Zone J: Increased clastic grain size and decreased aquatic macrofossils suggest lower
water levels. Charcoal particle deposition increases in the latter half of this zone.

Zone K: Decreased clastic grain size indicates rising water levels.

Zones L and M: Surface sediments contain minimal stratigraphic changes.
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Figure 9 Core MPA summary of lithic and macrofossil analyses: inorganic content, carbonate content, grain size, charcoal,
and macrofossils. Zones A-M indicate changes in sediment composition related to changes in water depth.
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Core MPA (modern water depth 497 ¢cm, Figures 9 and A.2)

Despite low sample resolution, grain-size, macrofossil, and charcoal results
substantiate inferences based on MPB. Because carbonate content of <4.0% is too low
to provide evidence of lake-level change, low carbonate values in MPA justified not
performing the analysis on additional cores.

Zone A: Proglacial outwash of medium to coarse sand and small pebbles are overlain by
silt and clay. This zone is macrofossil-poor and has <5% organic material.

Zone B: Seven percent increase in organic content and decreased clastic grain size
indicates deeper, quieter water. Peak in charcoal particles corresponds to12.5 ka charcoal
peak in MPB.

Zones C, D, & E are not evident: Disconformity. The current sediment/water interface of
MPA is 0.5 m above that of MPB. An erosional disconformity immediately above post-
glacial lacustrine sediment suggests that the water surface lowered by 0.5 m between 12.5
ka and 9.3 ka.

Zone F (Disconformity to ~8.0 ka): High inorganic content and increased clastic grain
size indicate a period of low water interrupted by a brief high-water flux at 9.2 ka (Zone
F,, Figure 9) evidenced by an abrupt decline in clastic grain size.

Zone G (~8.0 ka to 4.5 ka): Increase in organic content and decrease in clastic grain size
indicate deep water. This high water period is interrupted by a brief low water period
~5.5 ka (Zone G, Figure 9) indicated by an abrupt increase in clastic grain size.

Zone H (4.5 ka to 3.1 ka): Increased clastic grain size indicates low water. Charcoal peaks

between 4.5 ka and 4.3 ka suggest drier conditions.
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Zone I: A brief high water period is indicated by decreased clastic grain size.

Zone J: Increased clastic grain size suggests low water levels.

Zone K: Consistent inorganic content with slightly smaller clastic grain sizes suggests
rising water levels.

Zone L (0.25 ka (~300 cal yrs BP)): High inorganic content and decreased clastic grain
size suggest a cold, wet environment and high lake levels.

Zone M: Modern surface sediments contain minimal stratigraphic changes.
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Figure 10 Core MPD summary of lithic and macrofossil analyses: inorganic content, grain size, charcoal, and macrofossils.

Zones A-M indicate changes in sediment composition related to changes in water depth.
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Core MPD (modern water depth 361 ¢m, Figures 10 and A.3)

MPD demonstrates a visual disconformity just above the lacustrine clay layer.
Radiocarbon dating indicates the disconformity to be of Younger Dryas age.
Zone A: Proglacial outwash of medium to coarse sand and small pebbles is overlain by silt
and clay. Sediment is macrofossil-poor with <5% organic material.
Zones B, C, D, & E are not evident: Disconformity. Erosional disconformities
immediately above post-glacial lacustrine sediment and again between 11.5 ka and 10.2 ka
suggest that water receded into the deep area of the basin.
Zone F (Disconformity to ~8.2 ka): Increased inorganics, increased clastic grain size, and
increased emergent macrofossil species indicate low water levels. Charcoal peak at start
of deposition zone suggests drier environment.
Zone G (~8.2 ka to 4.9 ka): Decreased clastic grain size and higher sedimentation rate
indicate a period of high water. A brief water level decline ~5.9 ka (Zone G,, Figure 10) is
evidenced by increased inorganic content, increased terrestrial macrofossils, and increased
clastic grain size.
Zone H (4.9 ka to 3.0 ka): This low water period is characterized by low sedimentation
rates, increased clastic grain size, and an undifferentiated bryophyte peak.
Zone I (3.0 ka to 2.0 ka): Increased sedimentation rate and decreased clastic grain size
suggest higher water levels.
Zone J (2.0 ka to 1.4 ka): Increase in clastic grain size and increase in emergent

macrofossils suggests lower water levels.
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Zone K: Rising water levels are indicated by decrease in clastic grain size and Nitella
oospore peak.

Zone L: High inorganic content and fine-grained clastics suggest a cold, wet environment.
Peaks in bryophyte fragments may indicate increased terrestrial runoff.

Zone M (0.27 ka to present): High water at start of zone is suggested by a brief decline in
inorganic content. Slight increases in inorganic content and clastic grain size following the

initial high-water flux suggest that water levels briefly declined and are now increasing.
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Figure 11 Core MPE summary of lithic and macrofossil analyses: inorganic content, grain size, charcoal, and macrofossils.
Zones A-M indicate changes in sediment composition related to changes in water depth.
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Core MPE (modern water depth 226 cm, Figures 11 and A.4)

Disconformity in MPE occurred during the early Holocene, when water was
confined to the deepest portion of the basin. A narrow band of peat at ~ 4.7 ka indicates
that the core site was above water for a brief period. High sedimentation rates after ~ 4.0
ka may be the result of sediment trapping by littoral flora.

Zone A: Proglacial outwash of medium to coarse sand and small cobbles are overlain by
narrow band of silt and clay. The sediment is macrofossil-poor and contains <5% organic
material.

Zones B, C, and D: These zones appear as narrow bands of lacustrine deposition.

Zones E, F, and early-G are not evident: Erosional disconformities between 9.2 ka and 6.2
ka suggest that water receded into the deep portion of the basin. Early Holocene
deposition may have eroded as waters rose between 9.2 ka and 8.4 ka.

Zone late-G: Sedimentation resumed in MPE following the Zone G, dry interval (~6.2 ka
to 5.7 ka) evident in the deeper cores. Rhythmic banding, Nitella oospore peak, and low
clastic grain size identify this zone as a high water period.

Zone H (~4.7 ka to 3.0 ka): This is low-water period is characterized by high inorganic
content, increased clastic grain size, increased terrestrial macrofossils, and stratified sedgy
gyttja layers. A significant charcoal peak at ~ 4.5 ka indicates local fire activity. A high-
water interlude, characterized by decreased grain size, follows the charcoal peak (Zone
H,, Figure 11).

Zone I (3.0 ka to ~1.8 ka): High organic content, low clastic grain size, and decreased

terrestrial macrofossils indicate high water levels.
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Zone J (~1.8 ka to ~1.1 ka): Multiple sedge layers and intermittent increases in clastic
grain size indicate lowered water depth.

Zone K (~1.1 ka to 0.5 ka): Except for a brief decline in water depth between 0.7 and 0.6
ka evidenced by an abrupt increase in inorganic content and clastic grain size, decreased
inorganics and clastic grain size indicate rising water levels.

Zone L (500 to 130 cal yrs BP): High inorganic content and low clastic grain size suggest
the cold, wet environment. Decreased clastic grain size at 270 cm suggests a high water
flux.

Zone M: Modern surface sediments characterized by increased clastic grain size suggest a

decline in water depth during uppermost sediment deposition.
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Figure 12 Core MPC sediment stratigraphy with inferred disconformities, inorganic

content, and age in radiocarbon years.
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Core MPC (modern water depth 107 cm: Figures 12 and A.5)

Disconformities at both top and bottom of this core complicate an already
confusing stratigraphy. Loss-on-ignition (LOI) analysis for inorganic content conforms to
patterns established with deeper cores and the observed core stratigraphy. Radiocarbon
dates are in sequence, and match core stratigraphy and LOI results. Post-glacial MPC
stood well above the water line. The thick layer of coarse sedge material below gyttja
dated to 10.0 ka (295-315 cm) indicates a sedge-filled, marshy shoreline during the
Younger Dryas chronozone. The 5.1 ka date just 55 cm below the sediment/water
interface precedes the 1000+ year mid-Holocene dry period, and probably marks the lower
limit of an erosional disconformity. Due to laboratory error, clastic grain size, charcoal,

and macrofossil analyses were not used to assess lake-level change.

Core MPF (modern water depth -6.0 cm; Figures 13 and A.6)

MPF was collected from the sphagnum heath shore approximately 10 m from the
shoreline and 6 cm above the current water level. The Russian corer refused in gravel till
at 73 cm. Sediment progression from compacted dark brown mud, to compacted coarse
organics, to loosely compacted peat represents natural wetlands in-filling by surrounding
forest and shrubs. This premise is supported by large numbers of aquatic seeds and
oospores in the lower portion of the core. Two bands of light gray, fine-grained clastics at
25-28 cm and at 32-35 cm dated 0.5 ka - 0.27 ka and 2.5 ka - 2.0 ka respectively and may

represent brief high-water events.
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Radiocarbon Age

Particles (macrofossils) per 100 cc of sediment

Figure 13 Core MPF summary of lithic and macrofossil analyses: sediment

stratigraphy, inorganic content, grain size, and age in radiocarbon years.
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Pollen stratigraphy

Stratigraphically constrained cluster analysis (CONISS) (Grimm 1987) designated
eleven local pollen assemblage zones (PAZ) in core MPB (Figure 17). Variations in pollen
concentration relate to vegetation cover-type and to lake sedimentation rates. Grass and
shrub-covered tundra and open, Pinus-Picea parklands produced low pollen
concentrations prior tol11.5 ka. Periodic declines in pollen concentration since 11.5 ka
correspond to increased sedimentation rates during periods of high or rising water levels
(i.e., 820-725 cm and 690-670 cm, Figure 14). While Betula has undoubtedly been a
dominant forest component throughout the Holocene, pollen levels greater than 40%
probably overstate species significance. Only selected pollen taxa are shown in the
percentage pollen diagram (Figure 14).

PAZ-1 (Pinus-Picea-Populus-Ostrya-Salix-herbaceous basal layer (915-885 cm;

c. 13.5-11.4 ka)): Low pollen concentrations suggest a tundra landscape gradually
grading into open Pinus-Picea taiga forests. Resurgence of Picea and Cyperaceae, along
with increased minerogenics between 895-885 cm (Figure 14), may signal the brief Older
Dryas cold period.

PAZ-I1 (Pinus-Picea-Quercus-Betula-shrub Betula (885-860 cm; 11.0-10.0 ka)):
Except for a subtle increase in inorganic content, an increase in Picea pollen (40% of tree
and shrub pollen) provides the strongest indication of Younger Dryas cooling at Mathews
Pond. Pinus strobus and Picea glauca are the predominant conifer pollen types.

PAZ-1I (Pinus-Betula-Alnus (860-835 cm; c. 10.0-9.0 ka)): Decline in Picea pollen to

less than 10% of the tree and shrub total is accompanied by an increase in Betula and
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Alnus pollen, with Alnus crispa the dominant Alnus species.

PAZ-IV (Pinus-Betula-Quercus (835-805 cm; c. 9.0-6.7 ka)): Decline in A/nus to less
than 10% is accompanied by increases in Pinus and in Quercus pollen.

PAZ-V (Pinus-Betula-Quercus (805-770 cm; 6.7-5.9 ka)): Decrease in Betula and
increase in Pinus strobus is concurrent with decline in charcoal deposition.

PAZ-VI (Pinus-Tsuga-Betula-Quercus (770-735 cm; 5.9-4.8 ka)): Quercus pollen
declines as Tsuga becomes more prominent.

PAZ-VII (Pinus-Betula-Quercus-Fagus (735-700 cm ; 4.8 ka-3.8 ka )): Abrupt Tsuga
decline at 4.8 ka is followed by a gradual increase in Fagus and Quercus pollen.
PAZ-VII (Pinus-Betula-Fagus (700-625 cm; 3.8-2.2 ka)): Pollen taxa suggest an open
hardwood forest with scattered Pine.

PAZ-IX (Pinus-Tsuga-Betula-Fagus-Juncus (625-595 cm; 2.2-1.2 ka)): Increased
emergent species (Juncus) suggest that the lake-level at Mathews Pond declined and the
wet, sedge-covered shore zone expanded. Return of Tsuga indicates a more closed-
canopy forest.

PAZ-X (Pinus-Picea-Tsuga-Betula-Quercus-Fagus (595-570 cm; 1.2-.3 ka)): Picea
pollen increases, and Picea glauca re-appears in the pollen record.

PAZ-XI (Pinus-Picea-Tsuga-Betula-Quercus-Fagus-Ambrosia-Rumex (570-560 cm; .3

ka to present)): Ambrosia and Rumex pollen appears in the pollen record.
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Chapter 5
PALEOENVIRONMENTAL SYNTHESIS OF CORE DATA

Integration of lake-level, charcoal, and pollen data at Mathews Pond tracked
broad, climate-related changes in vegetation, as well as subtle groundwater increases in
response to decreased forest transpiration following forest fire. Fine-resolution analyses
identified subtle increases in lake level and in Betula pollen following peaks in early-
Holocene charcoal deposition (Zone F1, Figure 8 and PAZ IV, Figure 14). Mathews
Pond contained 16 sediment units related to changes in water level, and nine lake-level

stands (Figures 8 and 15, Table 3).

Before 11.8 ka: high lake level

Ice-recession isobars from Davis and Jacobson (1985) and Borns et al. (2003)
along with linear age-depth interpretation of core MPB radiocarbon dates indicate that the
region was ice-free by 13.5 ka. Pro-glacial deposits of sand and gravel abruptly grading
into minerogenic, macrofossil-poor glaciolacustrine clay underlie the entire basin at
Mathews Pond. Organic sedimentation began 13.0-12.5 ka with deposition of silty,
banded gyttja. Pollen and macrofossil assemblages indicate an open landscape dominated
by cold-tolerant Picea, Pinus, Populus, Salix, shrub Betula, Dryas and other Rosaceae,
Cyperaceae, and Artemisia. Pollen assemblages in Figure 14 suggest that the landscape
evolved from grass and shrub-covered tundra to spruce and pine-dotted parkland to mixed

boreal forest by 11.8 ka.
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11.8 ka to 9.4 ka: low lake level

Except for brief water influxes coincident with the cold Killarney Oscillation
observed in New Brunswick, Canada (Levesque ef al. 1993) (Zone D, Figure 8 and
Figure14) and following local forest fires (Zone F1, Figure 8), water level was low
throughout this period. Sediment disconformities in cores MPA, MPD, MPE, and MPC
suggest that water persisted only in the deepest section of the basin. Abundant Pinus
strobus (>6% of total pollen) and elevated charcoal levels between 11.2 ka and 8.2 ka
further imply a dry environment.

Changes in water balance between 10.0 ka and 8.2 ka may have been influenced by
the effects of isostatic tilt and forebulge migration on groundwater hydraulics. If the
Aroostook River and Allagash River recharge boundaries are far enough apart, isostatic
tilt could affect groundwater distribution (Appendix B). Major evapotranspiration (ET)
shifts from changing forest cover could also alter groundwater recharge. By 11.7 ka,
high-ET forests, dominated by Picea, Pinus, and Betula, had replaced low-ET shrub
grasslands. As the Bolling-Allerad warm period came to an end, a forest of pine and mixed
northern hardwoods (Juniperus/Thula, Populus, Betula and Ostrya) covered the local
landscape. A subtle increase in sediment inorganics and a resurgence of Picea glauca
(white spruce) pollen between 11.0 and 10.0 ka (Figure 14) mark the cool, Younger Dryas
chronozone.

Paleoamericans at Munsungun quarry sites (Jacobson et al. 1987, Pollock et al.
1999) apparently worked in a mixed boreal forest dotted with sedge-covered wetlands

where shallow ponds occur today. Based on the inferred lake level at Mathews Pond
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(Figure 15), the water level at Munsungun Lake could have been as much as five meters

lower than its present level.

9.4 ka to 8.2 ka: abrupt increase in water level

Water level in Mathews Pond rose as much as five meters during the millennium
(Figure 18). While increased water levels were reported from other northeastern North
American lakes (Table 3), rising water levels at other sites began earlier and were not as
abrupt. Iftilting of the Aroostook and Allagash watershed recharge boundaries are
sufficiently far apart to effect groundwater distribution, isostatic crustal adjustment could
have masked surficial expression of increased groundwater recharge at Mathews Pond
(see Appendix B.1).

Spruce forests rapidly declined as the climate warmed after the Younger Dryas
chronozone. Pinus strobus and Betula became abundant early in this period. Abies and
Quercus also increased, and the landscape returned to a more open forest of pine and
mixed northern hardwoods.

Charcoal deposition was high at Mathews Pond from 11.25 ka to 8.2 ka (Figures 8
and 14). Mathews Pond charcoal deposition patterns are supported by a study of charcoal
deposition in lake sediments at 30 sites in eastern Canada (Carcaillet and Richard 2000).
While water levels in groundwater seepage lakes are controlled by winter precipitation,
fire occurrence is typically controlled by summer precipitation (Carcaillet and Richard
2000). The combination of increased wild fire and rising lake levels between 9.0 and 8.2

ka required heavy winter snow fall and dry summer seasonality. MPB charcoal peaks at
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876 cm (c.11.2 ka), at 835 cm (c.8.8 ka), and at 625 cm (c. 2.5 ka) are followed by subtle
increases in lake-level and Betula pollen spikes succeeded by increases in Pinus pollen

(Zone D/E transition and Zone F1, Figure 8 and PAZ 11, 1V, and [X, Figure 14).

8.2 ka to 4.8 ka: high lake level

By 8.2 ka water level had risen to approximately modern levels, and charcoal
deposition markedly declined. The slight water-level decline (Zone G,) centered around
7.5 ka (8,200 cal yrs BP) (Figure 15, Table 3 ) was consistent with the cool, dry period
described by Alley ef al. (1997) and Bond et al. (1997). Persistence of submergent and
floating-leaved aquatic macrofossils (Chara, Najas, Potamogeton, and Sparganium) in the
bottom of shoreline core MPF suggested that the lake rose to within 67 cm of its current
level, and maintained that depth until ¢. 5.3 ka (Figures 13 and A.6).

As Picea species declined to <10% of the pollen rain, Picea glauca disappeared
from the pollen record to be replaced by moisture-tolerant P. marianna and P. rubens.
Pinus, Betula alleghaniensis (species identification from fossil seeds), and Quercus
characterized the mixed hardwood forest. Between c.5.2 and 4.8 ka, Tsuga canadensis
(eastern hemlock) replaced Pinus strobus (white pine) as the dominant conifer species.

Charcoal abundances indicate that local fire was minimal during this period.

4.8 ka to 3.0 ka: low lake level

Water level fell sufficiently to create a sediment disconformity in MPC (Figure 12),

and sedgy gyttja deposition in MPE (Figure A.4). A brief rise in water level followed a

49



charcoal peak c. 4.7-4.3 ka (Zone H,, Figure 11). This mid-Holocene, low-water period
coincides with the cool, dry 1500-year cyclical events described as Holocene expressions
of Dansgaard/Oeschger '*O shifts (Dansgaard et al. 1984, Bond et al. 1997).

The 4.8 ka T'suga decline recorded across northeastern North America (Allison et
al. 1986) coincidentally occurred at the same time as the abrupt, 4.8 ka lake-level decline
at Mathews Pond. Mixed, open hardwood forests of Pinus, Betula, Quercus, and Fagus

replaced dense hemlock stands.

3.0 ka to 2.0 ka: rising lake level

Rising lake levels are inferred from decreasing clastic grain size and decreased
inorganic content. Charcoal abundances indicate that local fire activity increased after 2.5
ka. Carcaillet and Richard (2000) also reported increased fire activity after 2.5 ka in the
mixed boreal forests of southern Quebec. Rising lake levels and increased fire frequency

suggests warm, dry summers and heavy winter snowfall.

2.0 ka to 1.5 ka: declining lake level

Coarse, sedgy gyttja sandwiched between layers of deep-water gyttja in MPE
(Figure 11) confirmed the lake-level low stand subtly evident in MPB, MPA, and MPD.
Submergent and floating-leaved macrofossils in MPFdeclined during this period,
suggesting a prograding shoreline and natural lake in-filling. An increase in emergent taxa

in the pollen record provides additional evidence of an expanded, marshy shore.
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1.5 ka to present: rising lake level

The lake level rose approximately 70 cm during this period. An apparent flooding
event indicated by an inorganic layer in MPF and centered around 0.4 ka (Figures 13 and
A.6) suggests that the lake level fluctuated during this period. Increased inorganics and
clastic grain size in the top of MPE suggest that water level may have declined over the
past 50-100 years.

The percent of Picea pollen increased after 1.5 ka, evidence of a cooler climate.
Tsuga pollen peaked c. 1.1 ka, and then declined after 0.8 ka. Conifers dominated the

mixed, pre-boreal forest.
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Chapter 6
CONCLUSIONS

Figure 15 summarizes lake-level change at Mathews Pond over the past 12,000
years. Table 3 compares synchrony of lake-level change at seven sites in northeastern
North America. Although Almquist ef al (2001) listed 17 paleohydrological study sites in
northeastern North America, only the seven sites presented in Table 3 adhered to the
guidelines for identifying lake-level fluctuations established by Digerfeldt (1986).

Low lake levels at adjacent sites in Massachusetts (Shuman et a/.2001, Newby ef
al. 2000), at Mathews Pond, and at Whited Lake in Aroostook County, Maine
(Dieffenbacher-Krall 2003) (Table 3) suggest that the climate in Acadia was relatively dry
throughout the late-glacial period and the Younger Dryas chronozone. Low lake levels,
combined with high fire activity, during the early Holocene at Mathews Pond coincide
with low lake levels and high fire activity in southwestern Quebec (Carcaillet and Richard
2000). Dry climatic conditions in the early Holocene could have resulted from a
combination of high summer solar radiation, Arctic Oscillation low-phase, and adiabatic
winds from the remnant Laurentide ice sheet (Carcaillet and Richard 2000).

Mathews Pond water levels rose to near-modern levels by 8.4 ka, and, except for a
slight decline centered around 7.5 ka (8200 cal yr BP), remained high until ~4.8 ka.

All three Maine ponds listed in Table 3 exhibited lake-level decline coincident with the
8200-year event (Alley ef al. 1997, Bond ef al.1997). The mid-Holocene dry period,

evident at all sites summarized in Table 3 and lasting from 1,500 to 2,000 years, exhibited
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Table 3 Comparison of lake-level change at selected sites in northeastern North America (based on Almquist et al. 2001).
Site locations are shown in Figure 1.



west-to-east, time-transgressive onset: Minnesota prairie-forest border moved eastward
and Parker’s Prairie lake levels declined from 8.0 to 5.0 ka (Baker et al. 1992, Digerfeldt
et al. 1992); southern Wisconsin prairie-forest border moved eastward 5.5 to 3.0 ka
(Baker et al. 1992); southern Ontario lake-levels declined 5.0 to 3.0 ka (Yu et al. 1997);
Maine lake-levels declined 4.8 to 3.0 ka (this study, Dieffenbacher-Krall 2003). The time-
transgressive nature of the mid-Holocene dry period provides additional evidence that
changing air-mass distribution patterns controlled mid-Holocene climate (Yu ef al. 1997).

With intermittent low and high fluctuations lasting from 200-500 years, Mathews
Pond lake level rose to modern levels after 3.0 ka. This lake-level rise was accompanied
by increased charcoal deposition, an indication of heavy winter precipitation accompanied
by dry summers. Late-Holocene periods of high fire activity and rising lake levels may be
associated with millennial shifts in storminess (increased fall and winter storms) associated
with the low-phase, atmospheric Arctic Oscillation (Thompson and Wallace 2001, Noren
et al. 2002). Southward-dipping Arctic air masses could increase winter snow pack, while
blocking humid Maritime Tropical air masses (Carcaillet and Richard 2000) to produce
dry summer conditions. Synchrony of lake-level changes between Mathews Pond and
Whited Lake (Dieffenbacher-Krall 2003), a groundwater seepage lake in an adjacent
watershed, and with additional sites across northeastern North America (Figure 1, Table
3) provides strong evidence that atmospheric circulation shifts drive periodic, short-term
climate changes.

A number of catchment experiments and ET models demonstrated the direct

relationship between vegetation change and groundwater recharge rates (Bosch and
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Hewlett 1982, Alley 1984, Whitehead and Robinson 1993, Sahin and Hall 1996, Stednick
1996, Disse 1999, Abbott et al. 2000, Rosenmeier ef al. 2002). Conifer forests have the
greatest evapotranspiration rates, followed by deciduous hardwood forests, with scrub and
grasslands having the lowest ET rates (Bosch and Hewlett 1982). Figure 14 demonstrates
that marked changes in vegetation in response to changing climate or to fire influence
groundwater recharge. Lake-level low-stands beginning before the Younger Dryas
chronozone and extending into the early Holocene may have been prolongd by increased
ET accompanying the sift from shrub-dominated, Picea parklands to Pinus/Picea/Betula
forests. As the Acadia landscape continues to revert to mixed hardwood and conifer
forests from the open agricultural and grazing lands of 200 years ago, increased forest
transpiration may further lower overtaxed groundwater aquifers.

Synchrony of lake-level behavior depicted in Table 3 suggests that moisture
balance during much of the Holocene may have been similar to current levels. While
decline in non-coastal Picea populations has been linked to warmer, drier climates
(Schauffler and Jacobson 2002), the Picea glauca-dominated spruce populations at
Mathews Pond declined during the early-Holocene lake-level rise. This implies that
temperature rather than general moisture balance may be the limiting factor, at least for
white spruce. Because groundwater recharge in forested regions occurs during late fall
and early spring (Abbott et al. 2000), lake levels in heavily forested regions are controlled
by winter precipitation, and may be stronger indications of seasonality than of annual P-E
ratios. This recharge pattern could compromise moisture balance assessments and

paleotemperature estimates based on '*O values.
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While most pollen preserved in lake sediments came from a broad geographic area,
pollen from small forest hollows originated within 20-30 m of the hollow (Jacobson and
Bradshaw 1981, Schauffler and Jacobson 2002). In an effort to separate regional and
local components of the pollen rain, a companion study will examine pollen stratigraphies
from forest hollows within BRFR. Pollen diagrams from paired sites that share a common
regional component, but where vegetation varies as a result of local differences in soil and
relief, define fine-scale changes in past vegetation (Jacobson 1979, Schauffler and
Jacobson 2002).

Research at Mathews Pond met the following established project objectives:

1. The 10,000-year record of lake-level change at Mathews Pond indicated a dry early-
Holocene, increased moisture balance 8.2 ka to 4.8 ka, pronounced dry periods from 4.8
ka to 3.0 and from 2.0 ka to 1.5 ka, and general increase in moisture balance after 1.5 ka.
In addition to long-term hydrologic trends, lake-level responses to short-term climate
events were recorded at 7.5 ka (8,200 cal yr), 2.5 ka, 2.0 ka, and 0.4 ka.

2. High-resolution sampling for lake-level, charcoal, and pollen analyses demonstrated
that changes in regional vegetation interrelate with changes in regional hydrology and with
periods of high fire activity. Mathews Pond sediments held evidence of both millennial-
scale and short-term changes in hydrology and vegetation across the landscape
surrounding BRFR.

3. Lake-level change at Mathews Pond exhibited a high degree of synchrony with lake-
level change at Whited Lake, a groundwater-fed lake in an adjacent watershed. Synchrony

of groundwater response between watersheds and across broad geographic regions
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suggests that changes in moisture balance are driven by external influences such as shifts in
solar insolation or in atmospheric circulation. Disparity of lake-level change data may be
related to the water-balance regime of the lake (i.e., atmosphere controlled versus

groundwater controlled).
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APPENDIX A

MACROFOSSILS

Plant Macrofossils

Mathews Pond, with its high transparency, lack of algal blooms, and trout
population, is presently an oligotrophic lake. Littoral plants, both submergent aquatics
and emergent plant species that root in shallow waters, enhance sediment accumulation in
water < 2 m deep through wave velocity reduction, increased sediment trapping, and
localized organic loading (Anderson 1990, Dearing 1997). Littoral macrophytes are
particularly important in stabilizing erosional shorelines. Organic accumulation and littoral
zone progradation are precursors to natural in-filling of the lake basin. When assessing
lake-level change, natural shoreline progradation must be differentiated from shoreline
expansion due to lake lowering.

Because the distribution of submerged, floating-leaved, and emergent plant species
are related to water depth, macrofossil associations of these species can be used as one of
several independent lines of evidence to infer lake-level change (Digerfeldt 1986, Harrison
and Digerfeldt 1993, Hannon and Gaillard 1997, Dieffenbacher-Krall and Halteman 2000).
Traditional macrofossil analysis assumed obligate aquatic plants had short seed-dispersal
distances, while emergent and shoreline species had longer dispersal distances (Birks
1980). Several studies found little correlation between vegetation cover and the aquatic
seed bank (Greatrex 1983, Haag 1983, Kautsky 1990, Dieffenbacher-Krall and Halteman

2000). In an extensive study of plant remains in alkaline, New England lakes
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Dieffenbacher-Krall and Halteman (2000) concluded that the key issue is water depth at
which the seeds settle, rather than proximity of seed deposition to the source plant. The
most useful types of macrofossils are those from plants with the narrowest depth ranges,
and whose seeds fall to the sediment quickly (Hannon and Gaillard 1997). While
Dieffenbacher-Krall and Halteman (2000) identified several indicator species for alkaline
lakes, this calibration can not automatically be extended to non-alkaline lakes. Alkalinity
is a major factor in determining distribution of many aquatic plant species (Hellquist
1980), with species assemblages differing significantly between alkaline and non-alkaline
lakes (Dieffenbacher-Krall and Halteman 2000). Dieffenbacher-Krall and Halteman
(2000) also concluded that the presence of a species within the macrofossil assemblage
was a more useful indicator of lake-level change than was the relative abundance of a

species within the macrofossil assemblage.

Charcoal

Charcoal analyses of sediment cores are biased by the distance between the
collecting basin and the charcoal source (Clark 1988a, 1990). During a fire, charcoal
particles of all size ranges are lifted into the atmosphere by thermal convection plumes.
Charcoal particles ranging in size from 0.1 pm to 10,000 pum are lifted above the forest
canopy by turbulent in-drafts and convection winds (Clark 1988a). Fragments
differentially fall out of suspension. Charcoal particles >130 pm fall close to the fire zone,
while smaller, dust-sized particles spread out into continental and even global distribution

(Clark 1988a, 1988b, 1990, Clark and Royall 1995). Because this project targeted the fire
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history of the Mathews Pond catchment region, charcoal particles >250 um were
identified and counted.

Charcoal analyses of sediment cores are spatially and temporally imprecise (Clark
1990). To delineate fire frequency, the quantitative sampling technique must be at a scale
fine enough to resolve individual fires while spanning extended time periods (Clark
1988b). Sample resolution at Mathews Pond identified millennial-scale periods of fire

activity.
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Figure A.1 Summary of core MPB macrofossil analysis. Charcoal particles and macrofossils calculated to 100 cc of sediment.
Zones indicate changes in sediment composition related to changes in water depth.
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Figure A.2 Summary of core MPA macrofossil analysis. Charcoal and macrofossil values adjusted to 100 cc of sedi
Zones indicate changes in sediment composition related to changes in water depth.
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Figure A.3 Summary of core MPD macrofossil analysis.
Zones indicate changes in sediment composition related to changes in water depth.
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Figure A.4 Summary of core MPE macrofossil analysis.
Zones indicate changes in sediment composition related to changes in water depth.
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Figure A.5 Summary of core MPC macrofossil analysis. Charcoal and macrofossil values adjusted to 100 cc of sediment.
Charcoal and macrofossil analyses were not considered in lake-level calculations, because of questions regarding the orientation of core segment 210-310 ci
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Figure A.6 Summary of shoreline core MPF macrofossil analysis includes
lithic stratigraphy, charcoal, submergent species, and floating-leaved emergent species.
Zones indicate lithic horizons.
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Family Genus Classification C
Characeae Chara spp. Submergent aquatic less abundant than Nitella
Characeae Nitella spp. Submergent aquatic

Haloragaceae Myriophylium farwettii Morong Submergent aquatic fairly abundant
|soetaceae Isoetes echinospora Durieu Submergent aquatic
Nymphaeaceae Nuphar variegata Dur. Submergent aquatic abundant
Potamogetonaceae |Potamogeton amplifolius Tuckerman Submergent aquatic sporadic
Potamogetonaceae |Potamogeton epihydrus Raf. Submergent aquatic abundant
Potamogetonaceae |Potamogeton spirillus Tuckerman Submergent aquatic present
Ranunculaceae Ranunculus aquatilis L. var. diffusus Withering Submergent aquatic

Apiacaee Sium suave Walt. Emergent rare
Clusiaceae Triadenum virginicum (L.) Raf. Emergent

Cyperaceae Carex spp. Emergent

Eriocaulaceae Eriocaulon aquaticum (Hill) Druce Emergent abundant
Juncaceae Juncus spp. Emergent

Menthaceae Lycopus uniflorus Michx. Emergent

Poaceae Miscellaneous Emergent

Sparganiaceae Sparganium angustifolium Michx. Emergent

Veronicaceae cf. Gratiola Emergent

Cupressaceae Thuja occidentalis L. Facultative hydrophyte on shore
Droseraceae Drosera rotundifolia L. Facultative hydrophyte on fog
Ericaceae Chamaedaphne calyculata (L.) Moench Facultative hydrophyte abundant
Ericaceae Gaultheria hispidula (L.) Muhl. ex Bigelow Facultative hydrophyte

Ericaceae Kalmia angustifolia L. Facultative hydrophyte

Iridaceae Iris versicolor L. Facultative hydrophyte

Myricaceae Myrica gale L. Facultative hydrophyte abundant
Pinaceae Picea mariana (P. Mill.) B.S.P. Facultative hydrophyte on shore
Asteraceae Hieracium sp. Terrestrial on shore
Betulaceae Betula alleghaniensis Britt. Terrestrial

Betulaceae Betula papyrifera Marsh. Terrestrial

Ericaceae Rhododendron canadense (L.) Torr. Terrestrial

Ericaceae Rhododendron groenlandicum (Oeder) Kron & Judd Terrestrial present
Fagaceae Fagus grandifolia Ehrh. Terrestrial

Pinaceae Abies balsamea (L.) P. Mill, Terrestrial on shore
Pinaceae Picea rubens Sarg. Terrestrial on shore
Pinaceae Pinus resinosa Ait. Terrestrial on shore
Pinaceae Pinus strobus L. Terrestrial on shore
Pinaceae Tsuga canadensis (L.) Casr. Terrestrial on shore
Rubiaceae Galium sp. Terrestrial

Sapindaceae Acer pensylvanicum L. Terrestrial

Sapindaceae Acer rabrum L. Terrestrial

Sapindaceae Acer saccharuom Marsh. Terrestrial

Violaceae Viola sp. Terrestrial on shore
Table A.1 Terrestrial and aquatic plant survey for Mathews Pond, Piscataquis County,

Maine, USA. Aquatic plants surveyed 30-July-02 by Ann Dieffenbacher-Krall. Trees and

surveyed 04-October-00 by Andrea Nurse. Taxonomy follows Haines and Vining (1998).
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APPENDIX B

INFLUENCE OF ISOSTACY ON GROUNDWATER MOUND

Groundwater response to forebulge migration

Because Mathews Pond is a groundwater seepage lake, changes in lake-level at
Mathews Pond more strongly reflect changes in the height and shape of the underlying
groundwater aquifer than changes in P, -E, over the lake surface. If the groundwater

aquifer sustaining Mathews Pond is hinged between the Allagash River in the

4000

Mathews Pond
3600
Shallow, flow-throuyth

[3300

3000 —|
Munsungun Lake

26007 Chandler Pond

2300
Elevation in meters

Figure B.1 Schematic representation of groundwater mound and flow-through

groundwater system underlying Mathews Pond. Adapted from Born et al. (1979).
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northwest and Aroostook River drainage system in the southeast (Figures B.1 and
B.3), the aquifer encompasses a geographic region large enough for the shape of the
aquifer (i.e., groundwater hydraulic pore pressure) to be influenced by isostatic depression
and subsequent forebulge migration.

Timing and magnitude of sea-level lowstands in Massachusetts (-43 m at 12 cal yr
BP (Oldale et al. 1993)), off the Maine coast (-65 m at 11.65-11.25 cal yr BP (Stea et al.
1994)), and in Quebec (-5 m at 7-6 cal yr BP (Dionne 1988)) suggest that a crustal
forebulge of 20-25 m in amplitude migrated across Acadia at a rate of 7-11 km/100 years
(Barnhardt et al. 1995). Mathews Pond is located northeast and along roughly the same
glaciostatic rebound contour as the north end of Moosehead Lake (Balco ef al. 1998).
Forebulge migration rates from Balco et al. (1998)(Figure B.2) predicted that the aquifer

was tilted to the northwest, and that water levels in the southeast sector of the aquifer

9.0-8.5ka

- B.2ka

Present

Figure B.2 Ice proximal depression and forebulge migration across Moosehead Lake

basin. From Balco ef al. (1998).
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were low 12.0 ka to 10.0 ka. The forebulge passed through the region c. 9.4 ka,

leveling, but elevating, the underlying bedrock basement. Between 9.0 ka and 8.5 ka the
region tilled toward the southeast, implying high groundwater levels in the southeast and
low groundwater levels in the northwest sector. By 8.2 ka tilt rebounded slightly back to

the northwest, and then gradually decreased to the present inclination (Balco ef al. 1998).

i River
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Figure B.3 Schematic representation of an inter-fluvial watertable (WT) hydraulic

pressure mound. From Almendinger (1990) and Digerfeldt ef al. (1992).

In response to effective moisture over the land surface (groundwater recharge),
hydraulic pore pressure creates a water table mound, with mound elevation greatest
midway between two parallel rivers (Figure B.3)(Almendinger 1990, Digerfeldt et al.
1992). When groundwater recharge is reduced, the water table mound elevation lowers,
lowering more in the center of the mound than near the rivers (Almendinger 1990). Lakes

near the center of the aquifer experience greater decrease in water level than do lakes
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nearer the draining river systems. Ifisostatic tilt and forebulge migration changed surficial
aquifer drainage patterns or altered the shape of the interfluvial, water-table mound,
aquifer hydraulics could influence lake levels.

Without knowing the effects on groundwater mound shape and elevation, or
knowledge of the geographic extent and orientation of the groundwater aquifer, it is
impossible to predict exact timing of surficial groundwater response to ice-proximal tilt
and forebulge migration. However, groundwater response to isostatic rebound could
account for at least part of the pronounced increase in water level at Mathews Pond

following the extended early-Holocene low stand.
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