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Nitrogen is commonly thought of as the most limiting nutrient to plant growth, yet 

elevated N deposition can result in N accumulating in excess of biotic demand, a 

condition known as 'TI Saturation." Excess N can perturb soil microbial N 

transformations and may cause initial increases in net N mineralization rates followed by 

decreases in net N mineralization with concomitant increases in net nitrification. Along 

with increases in net nitrification and N loss, N saturation is often associated with a loss 

of forest productivity. Understanding nitrogen dynamics in soil under enhanced N 

deposition is key to predicting future forest health. We studied forest floor and mineral 

soils at the Bear Brook Watershed in Maine (BBWM), a paired watershed experiment 

with one watershed serving as a reference and another treated with (NH&SO4. We used 

both lab incubations and in situ measurements to evaluate net N mineralization and net 



nitrification in both watershed soils. Significantly higher net N mineralization and net 

nitrification rates were observed in the treated watershed by both methods. For example 

in situ net N mineralization was 4.25 mg kg" day" in the treated watershed compared to 

3.00 mg kg-' day-' in the reference watershed. Soil under differing dominant forest types 

present in these watersheds resulted in different N cycling rates and different response to 

long-term N fertilization: hardwoods had higher N mineralization rates in the 0 horizons, 

however softwoods had higher rates in the mineral soils. Despite different N cycling 

rates, influenced by forest cover and treatment, input-output estimates suggested -80% N 

retention in treated watershed, despite the long-term N amendments to this watershed, 

and -96% N retention in the reference watershed. 
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CHAPTER 1 : LITERATURE REVIEW 

INTRODUCTION 

Nitrogen (N) cycling in terrestrial ecosystems is one of the most complex of the 

major nutrient cycles, which has led to extensive research on this topic in both 

agricultural and forestry settings over'the past century. Nitrogen is also considered to be 

the most cornonly limiting plant nutrient throughout the world (Vitousek and Howarth, 

199 1 ; Schlesinger, 1997). However, in the past 50-1 00 years atmospheric N deposition 

has increased significantly resulting in it being considered a potential pollutant in 

terrestrial ecosystems (Schlesinger & Hartley 1992; Galloway et al. 1995; Torseth and 

Semb, 1997). Increasing N deposition has been a prominent issue in the last decade and 

consequently more effort has been put into understanding its effects. Increasing N 

deposition has largely been due to the combustion of fossil fuels, resulting in the increase 

of N oxides in the atmosphere (Galloway et al. 1995; Lovett et al., 2000). Nitrogen 

oxides can be transported long distances and can create strong mineral acids in the 

atmosphere that are deposited back into ecosystems as acid deposition, otherwise known 

as acid rain (Fernandez and Adams, 2000). Acidic N deposition is problematic for many 

reasons, one of which is that many plant species in terrestrial ecosystems are adapted to, 

and function optimally in, soils with low N availability (Vitousek et al., 1997). Changes 

in N availability can result in changing dynamics of plant populations and their primary 

consumers and ultimately all species that depend on plants (Aerts and Berendse, 1988; 

Wedin and Tilman. 1996; Tilman, 1987; Vitousek et al., 1997). Increased N deposition 

has serious repercussions on all aspects of the nitrogen cycle and consequently on many 

other elemental biogeochemical cycles (Lovett et al., 2000; Aber et al., 1989; Vitousek et 



al., 1997). One consequence of soil acidification is root damage, resulting in reduced 

ability of N uptake (Henriksen and Hessen, 1997), while other problems include: 

increasing emissions of NOx which contributes to the formation of ozone (Seinfeld 1986), 

nitrate leaching resulting in acidification of streams, eutrophication of estuaries and 

coastal waters (Murdoch and Stoddaid, 1992; Henriksen and Hessen, 1997; Smith et al., 

1999), spruce forest decline (Johnson et al., 1994; McNulty et al., 1996), mercury 

accumulation in fish (Driscoll et al., 1994), increased A1 mobility (Lawrence and David 

1997) and increased contamination of NO3-N in dnnking water (Spalding and Exner, 

1993). 

Due to persistent perturbation of the N cycle resulting mainly from the activities 

of humans; it is critical to understand how N dynamics change over time, particularly as a 

result of increased N inputs to terrestrial and aquatic ecosystems. A specific way to 

quantify changes wrought in the soil N cycle by enhanced N availability is to measure 

rates of N mineralization and nitrification; two important microbial processes that govern 

the availability of N to plants and themselves. These processes, usually measured as N 

mineralization and nitrification can provide an accurate benchmark as to where the 

system is in terms of saturation; a condition where N availability exceeds biotic demand. 

Objectives 
To examine N mineralization and nitrification rates at the Bear Brook Watershed in 

Maine (BBWM), where one artificially N-enriched watershed is compared against a 

control watershed. This will be done against a backdrop of other potential influences 

including forest cover. 



To evaluate the relationship between potential net nitrification and nitrification 

potential. 

To determine the effects of a lab incubation period (7, 14,28 days) on N 

mineralization; commonly used incubation periods found in the N cycling literature. 

I 

NITROGEN CYCLE 

In a forested ecosystem, N is a dynamic and essential nutrient. Nitrogen is also 

commonly thought of as the most limiting nutrient for plant growth. The main processes 

that affect N in soils includes: atmospheric deposition, N2 fixation, mineralization, 

nitrification, immobilization, denitrification and leaching (Stoddard et al., 1994). 

Almost all the N that enters a terrestrial ecosystem by natural processes is derived 

fi-om biological N2 fixation and atmospheric deposition (Stevenson and Cole, 1999). 

Nitrogen deposition occurs in a variety of forms, including NO3', Nl&+, gaseous forms, 

and organic N in wet and dry deposition. Concentrations of NO3-, Nl&+ and organic N in 

wet and dry deposition vary widely throughout the US (Stoddard et al., 1994). 

Although a large pool of N exists in our atmosphere (3.9* 10" kg or 

approximately 78% of the partial pressure of the atmosphere), it is present as an inert gas 

and as such cannot be used by most plants or animals. The N2 molecule has a triple 

covalent bond that is difficult to break; yet some microorganisms and some fi-ee-living 

and plant-associated microorganisms, known as diazotrophs are capable of incorporating 

N into organic molecules. The N2 molecule can then be utilized by microorganisms 



within nodulated leguminous plants (e.g., Rhizobium sp.), non-leguminous root 

associated actinomycetes (e.g., Frankia sp.) and by free-living non-photosynthetic 

bacteria and cyanobacteria (Sievenson and Cole, 1999). 

Mineralization is the process of microbial decomposition of this fixed-N within 

organic matter resulting in production' of NT&-N and NO3-N. Mineralization is an 

important process in non-leguminous plant ecosystems such as forests, as it internally 

recycles N that would otherwise be tied up in organic matter and unavailable for plant use 

(Stoddard et al., 1994). 

Nitrification (part of the mineralization process) is the microbially mediated 

oxidation of NT&+ to No3- carried out by autotrophic bacteria. Nitrification is a two-step 

process: 

ilrosomonas 
Step 1) NT&+ +1.5 0 2  NO; + 2 g  +Hz0 +275kJ energy 

acteria 
Step 2) NO; + '/r 0 2 A l  NO{ +76kJ energy 

(l3rady and Weils, 1999). 

Winogradsky (1890) was the first to discover that nitrification was a two-step process as 

well as finding that Nitrosomonas and Nitrobacter were the organisms involved in this 

oxidative reaction (Stevenson and Cole 1999). Although Nitrosomonas and Nitrobacter are 

most commonly thought of as the dominant bacteria species that perform this oxidative 

process, there are a number of other microbes (bacteria such as Nitrosospira sp., and 
-, 



possibly heterotrophic fungi) capable of nitrifjmg m - N  and gaining energy fiom this 

process (Sylvia et al., 1998). 

It has been assumed that little if any nitrification goes on in highly acidic forest 

soils (Brierley et al., 2001), mainly because isolated autotrophic nitrifying 

microorganisms rarely carry out nitrification below pH 6.0 in pure culture. However, 

Brierley et al. (2001) and Klein et al. (1983) both found that nitrification proceeded at pH 

ranges of 3-6. The authors hypothesized this could be due to the pH of microhabitats 

differing enough fiom the average stand pH to allow for autotrophic nitrification, that 

there are acid-tolerant autotrophic nitrifiers that have yet to be investigated, or that acid- 

tolerant heterotrophic nitrifiers are carrying out the nitrification (Brierley et al., 2001). 

Regardless of the mechanisms of nitrification by either autotrophic or heterotrophic 

organisms, it has been found by a number of researchers that nitrification does proceed in 

acidic forest soils (Brierley et al., 2001; De Boer and Kowalchuk, 2001; Pennington and 

Ellis, 1993; Tietema et al., 1992). 

There are three main processes that make mineral N unavailable to plants: 

immobilization (either through biotic demand or abiotic sorption), denitrification, and 

leaching. Biotic immobilization is the conversion of inorganic N (NK-N and NO3-N) to 

organic forms, the reverse process of mineralization, although the two processes often 

occur simultaneously in soils. Denitrification is the process of NO3- being converted to 

gaseous forms of N such as N20 and N2 by facultative and obligate anaerobic soil 

microorganisms (Brady and Weil, 1999). Although denitrification results in a loss of 

available N for plants, N20 is also a greenhouse gas 230 times more effective than C02 at 

trapping heat radiation and its atmospheric lifespan is 3-5 times that of C02 (IPCC, 1995; 



Powlson, 1993). The combination of N20 and C02 is not only the source of eighteen to 

fifty percent of current global warming, but these gasses are also involved in reactions 

that lead to ozone depletion in the stratosphere (Warneck et al., 1988). Leaching of NO3- 

N is another way (besides denitrification) NO3-N is lost fiom terrestrial ecosystems. 

Leaching of NO3-N occurs because the negatively charged NO3-N ions are not adsorbed 

by the predominately negatively charged colloids and surfaces that are found in most soils 

(Brady and Weil, 1999). This results in NO3-N ions being easily leached by water 

percolating through soils. Nitrate leaching is a concern for a number of reasons 

including: a decrease in available N for plants, leaching of NO3-N causes acidification of 

streams and eutrophication of estuaries and coastal waters (Murdoch and Stoddard, 1992; 

Henriksen and Hessen, 1997). 

NITROGEN DEPOSITION AND SATURATION 

Acidic deposition first emerged in scientific literature in the 1960's in Sweden and 

around Scandinavia when researchers began seeing acidic precipitation and surface water 

acidification (Oden 1968). Hubbard Brook in New Hampshire was the first site in North 

America to report acidic deposition effects around this time (Likens et al., 1972). Acidic 

deposition has increased the concentration of If, SO:-, and NO3- ions in soils which has 

led to increased rates of leaching of base cations, increased A13+ mobility and the 

resulting acidification of soils (Driscoll et al., 2001). Since the implementation of the 

Clean Air Act in 1963, 1970, and revised again in 1990, Stoddard et al. (1999) reports 

that lake and stream SO:- concentrations in the northeastern United States have declined 



significantly; a result of so2- scrubbers in coal burning utilities and use of coal with . 

lower S content. Conversely, NO3-N concentrations in streams have only slightly 

decreased due to the 1990 legislation probably owing to the required 10% reduction in N 

deposition (Stoddard et al. 1999; McNulty et al., 1996). 

A consequence of chronically'enhanced N deposition is that the ecosystem could 

become N saturated, a term used to describe a state where the availability of mineral N is 

in excess of plant and microbial demand. This is usually evident by significant amounts 

of NO3-N leaching fiom the catchment (Aber et al., 1989; Aber et al., 1998). Because 

increasing NO3-N concentrations in streams are indicative of a watershed reaching N 

saturation, it is important to understand the factors controlling all forms of N in soils and 

streams. 

Aber et al., (1 989) proposed four stages of N saturation that have since been 

experimentally tested and revised in Aber et al., (1998). Stage 0 is defined as 

characteristics of N cycling under N limiting conditions (ambient N loading); while 

during stage 1 there is a fertilization effect; e.g., an increase in plant growth and other N- 

limited biological processes. Since N is limiting in most ecosystems, this initial pulse of 

added N often increases N availability and N cycling rates such as mineralization and 

nitrification. Nitrogen saturation occurs at stage 2 resulting in negative affects although 

they may be relatively subtle and difficult to measure. These negative effects can include 

loss of frost-hardiness in conifer trees (Bobbink et al., 1992; Fangrneier et al., 1994, but 

see Taulavuori 1998; Wiernken et al., 1996), elevated amino acid content (Nkholm and 

Ericsson,l990; Nkholm et al., 1994) and lowered phosphorus and lignin content in 

foliage, NO3-N leaching fiom soils, and increased emissions of N20 (Aber et al., 1998). 



Stage 2 is also where Aber et al., (1998) found N mineralization to decrease in four sites 

in New England. This is contrary to the original hypothesis where N mineralization rates 

continued to increase over the course of the saturation continuum due to expected 

continued decrease in the soil C M  ratio due to the increased N deposition. Stage 3, the 

final stage of N saturation, is where sbme visible effects are observed such as disruption 

of both above and below ground forest structure resulting in tree death. Other indications 

of stage 3 include a reduction in total net photosynthesis and a reduction in overall forest 

productivity (Aber et al., 1989; Aber et al., 1998). However, some ecosystems are 

considered predisposed to N saturation due to factors such as chronic elevated N 

deposition, advanced stand age (Stoddard et al., 1994), artificial or natural disturbances 

(Goodale and Aber 2001) and large soil organic and inorganic N pools (Stoddard et al., 

1994). 

In N limited soils, the rate of nitrification is low compared to N enriched soils as 

autotrophic nitrifiers are poor competitors for available m - N .  In an N limited system, 

m - N  is retained by soils through adsorption to cation exchange sites and little is 

typically leached, however as N accumulates in ecosystems, changes may occur in the N 

cycle. Increased N availability in the soil results in faster and more complete 

decomposition of N-containing soil organic matter manifested as increased N 

mineralization and nitrification rates (Aber 1993; McNulty et al., 1996). Aber et al., 

(1995) found a consistent set of responses to chronic N additions in a study of five 

northern temperate forested ecosystems, including the Bear Brook Watershed in Maine. 

Some of the responses to chronic N additions included: initial increases in net N 

mineralization followed by decreases during stage 2 of N saturation, continual increases 



in net nitrification and declining tree growth in coniferous stands. These findings 

demonstrate how soil processes such as N mineralization and nitrification can provide an 

accurate benchmark for determining rhe effects of increased N deposition and may be 

used to place an ecosystem on the N saturation continuum. These results are consistent 

with those found in alpine watersheds in the Front Range of the Colorado Rocky 

Mountains which reached N saturation from anthropogenically derived sources of N 

(Williams et al., 1996). 

NITRATE IN STREAMS 

Large amounts of NOs-N ions leached to streams is an important and often 

deleterious result of increasing N deposition and consequently much effort has gone into 

understanding the factors that control terrestrial NO3-N loss to streams. Some of these 

controlling factors have been found to include disturbances such as forest harvesting 

(Likens et al., 1970; Goodale and Aber 2001), insect damageldefoliation (Swank et al., 

1981; Webb et al., 1995; Lovett et al., 2002), land use history, vegetationltree species 

composition and decreasing tree growth rates (Lovett et al., 2000; Goodale and Aber 

2001). Broader ecological or biogeochemical factors that control NO3-N loss to streams 

include microbial or hydrological variables (Vitousek et al., 1979), atmospheric 

deposition of N-containing compounds (Lovett et al., 2000) and abiotic interactions in 

soil (Berntson and Aber, 2000; Dail et al., 2001). All of these factors influence NO3-N 

loss in streams with most increasing the amount of NO3-N that is leached to streams. 



Peterson et al. (2001) reported that the most rapid uptake and transformation of 

inorganic N in streams occurred in the smallest streams included in their large in-stream 

N release studies. This phenomenon is likely the result of interactions between flowing 

waters (and the inorganic-N therein) with the streambeds and sediments as the volume of 

flow in contact with sediments is greater in smaller streams. These researchers also found 

that m - N  entering the streams was removed fiom the water within tens to hundreds of 

meters, (Mulholland et al., 1990) while NO3-N was removed only after traveling 5-10 

times the distance of IVf&-N. Even though low m - N  concentrations were found in 

most of the streams studied, the nitrification rates were high indicating that small streams 

may be important sources of NO3-N, and hence N20 to the atmosphere when NO3-N 

laden waters encounter anaerobic sediments. 

Lawrence (2002) investigated the hydrologic constraints on stream acidification 

and found that episodic as opposed to chronic acidification of streams, was more 

widespread. The term episodic acidification is used to indicate the increasing acidity of a 

stream due to a high flow event such as a storm. Although episodic acidification can 

occur naturally, the intensity of acidification (usually associated with significant declines 

in pH) in many streams during hydrologic episodes has been associated with increased 

acidic deposition (Wigington et al., 1996). This is likely due to high flow events moving 

water quickly through the soil and reducing the mitigating biotic and abiotic factors that 

retain acidifymg-N species. The anion neutralization capacity (ANC) depends on cation 

exchange reactions that buffer decreases in the pH of soil solutions through the release of 

bases (mostly ca2+) adsorbed to particle surfaces. Since exchangeable ca2+ in the mineral 

soil can decrease due to acidic deposition, the result of persistent acid deposition storm 



events can be a loss of neutralization of soil waters occuning in the mineral soils. 

(Lawrence 2002). 

NITROGEN MINERALIZATION AND NITRIFICATION 

There is evidence that N mineralization and nitrification are controlled by a 

number of factors including soil depth, forest species composition, amount and quality of 

organic matter present, and varying seasons (Boone 1992; Federer et al., 1983; Finzi et 

al., 1998; Campbell et al., 2000). There is also evidence that the effects of tree species on 

surface soil N dynamics can occur over short time scales (Gower and Son 1992; Binkley 

1995; Verchot et al., 2001). Pastor and Post (1988) demonstrated that changes in 

temperature and precipitation caused a northward migration of the hardwood forest 

borders in North America. The transition occurred fiom conifer- to hardwood-dominated 

forests and led to increases in N availability because hardwood species have high growth 

rates, high tissue N concentrations, and rapid rates of litter decomposition due to lower 

lignin and other polyphenolic concentrations (Finzi et al., 1998; Perry et al., 1987). The 

findings of Finzi et al. (1998) are consistent with Ferrari (1993) who found a two-fold 

difference in the annual rate of N mineralization in sugar maple and hemlock stands on 

the same soil type in the organic soil horizons. Cole and Rapp (1981) found organic 

matter turnover in the forest floor to take on average four times longer and N turnover 

more than three times longer in conifer stands as opposed to deciduous stands. In 

contrast, Mladenoff (1987) found no significant difference in the rate of N mineralization 

beneath sugar maple and hemlock trees in Wisconsin. Interspecific differences in soil 



organic matter (SOM) quality appear to regulate the rate of net N mineralization in 

northeastern forests (Finzi et al., 1998). Low rates of nitrification are observed in many 

acid forest soils (Davidson et al., 1992; Stark and Hart 1997) and increases in the pH of 

soils can often increase the rate of net nitrification (Vitousek and Matson 1985; Persson et 

al., 1995). 

Nitrogen mineralization has been found by a number of researchers to vary 

significantly with depth (Federer et al. 1983; Boone 1992; Binkley and Hart 1989; 

Persson et al. 1995; Friedland et al., 1991). Federer et al. (1983) demonstrated that N 

mineralization declined with increasing depths in New Hampshire and Connecticut, but 

that mineralization in Maine was independent of depth. Persson et al. (1 995) found that 

N mineralization and potential nitrification were significantly different between organic 

and mineral soils in an acidic Norway spruce forest in southern Sweden and eastern 

Denmark, with 78% of the net N mineralization occurring above a 10cm depth. Nitrogen 

mineralization generally decreases with increasing depth because there is less organic 

matter for microbes to decompose (Persson et al., 1995). When the organic matter effect 

is removed by expressing mineralization on a mass per area basis, a general decrease with 

depth still occurs. This is hypothesized to be partly due to decreasing temperatures with 

increasing depths, yet that only explains part of the decrease. Federer et al. (1983) 

suggests that organic matter may become older and more difficult to break down as depth 

increases. 

Nitrogen mineralization has been found to vary according to dominant vegetation 

and leaf litter composition. Some researchers have reported greater N mineralization 

rates in soils dominated by deciduous trees as opposed to coniferous stands (eg. Campbell 



et al., 2000; Finzi et al., 1998; Nadelhoffer et al., 1984; Boone 1992; Aber et al., 1993), 

although this is dependant on substrate quality. Similar results have been found in 

deciduous versus coniferous leaf litter (Tietema and Wessel 1992). In an experiment 

conducted by Campbell et al. (200@), they found hardwood stands to have higher net N 

mineralization rates in the organic hofizons of the soils sampled, but the mineral soils had 

equally low rates of N mineralization and nitrification in both stand types. Campbell et 

al., (2000) attributed the increased N mineralization in the organic horizons of the 

hardwoods to differences between stand types in soil moisture, temperature, pH, and 

biotic controls related to competition between plants and microbes. They also 

hypothesized that the lower N cycling rates found in the softwood stands could indicate 

that softwoods might be more sensitive to increased N deposition. Finzi et al., (1998) and 

Fernandez et al., (2000) both found results similar to Campbell et al., (2000) with 

hardwood stands demonstrating significantly higher net N mineralization rates compared 

with softwoods in the organic horizons. This was attributed to differences in SOM 

quality such as the C/N. Aber et al., (1993) found similar results at the Harvard Forest, 

MA after 3 years of chronic N fertilization. Immediately following treatment, Aber et al., 

(1993) found higher rates of net N mineralization and net nitrification in the softwood 

stands in the mineral soils and the opposite true for the organic horizons in the hardwood 

stands. Aber et al., (1993) also found the softwoods to show larger changes in extractable 

N, foliar N, nitrification and N leaching loss, lending support to the premise that 

softwoods may be more sensitive to increased N deposition (Campbell et al., 2000). 

Net N mineralization rates have been found to-vary seasonally in temperate forest 

soils with greater rates in the growing season, especially midsummer than the winter 



(Garten et al., 1994; Boone 1992; Nadelhoffer et al., 1984; Vitousek and Matson 1985). 

Temporal trends in soil m - N  and net N mineralization potential also suggest that 

maximum soil N availability occurs during the time of high nutrient demands by forests 

to initiate spring root growth (Garten et al., 1994). Vitousek and Matson (1985) 

demonstrated a 10-fold seasonal rang& for potential net N mineralization (PNNM) in the 

mineral soil and found that temperature and moisture were largely responsible for the 

large variation observed. 
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CHAPTER 2 : DECADAL RESPONSES IN SOIL N DYNAMICS AT THE BEAR 

BROOK WATERSHED IN MAINE 

INTRODUCTION 

Over the past 50-100 years atmospheric N deposition has increased across both 

Europe (Gunderson 1995; Dise and Wright, 1995) and the northeastern U.S. (Galloway et 

al., 1995; Aber et al., 1993) due largely to human activities including fossil he1 

combustion and changes in agricultural practices. Although N is considered to be 

limiting in most forest ecosystems throughout the world (Schlesinger 1997), it is also 

considered a potential pollutant in some ecosystems (Torseth and Semb, 1997). 

Furthermore, increasing emissions of NOx contributes to the formation of ozone (Seinfeld 

1986). N in excess of biological demand can lead to soil acidification, which in turn can 

cause root damage, thereby reducing the ability of plants to take up N (Henriksen and 

Hessen, 1997). Other consequences of increased N deposition include: spruce forest 

decline (McNulty et al., 1 996), increased A1 mobility (Lawrence and David 1997), 

mercury accumulation in fish (Driscoll et al., 1994), increased NO3-N leaching resulting 

in acidification of streams, eutrophication of estuaries and coastal waters (Murdoch and 

Stoddard, 1992; Henriksen and Hessen, 1997), and increased contamination of NO3-N in 

drinking water (Spalding and Exner, 1993). 

In N-limited soils, the rates of ammonification and nitrification are low compared 

to N-enriched soils. This is because in an N-limited ecosystem, N&-N made available 

via mineralization is quickly utilized by both plants and soil microbiota or retained by 



soils through adsorption to cation exchange sites. This can result in little NH4-N being 

leached or available for nitrification. However, once assimilatory needs have been met, 

additional m - N  is available for nitrifier communities that oxidize m - N  to NO3-N. 

This NO3-N can then be leached owing to its low retention by most soils and under 

conditions of low oxygen availability'denitrification can convert much of NO3-N to N20 

or N2. (Aber 1993; McNulty et al., 1996; Mohn et al., 2000). 

Nitrification and N mineralization rates are one among many microbial activities 

that have been studied to assess effects of disturbance including fertilization (Gilliam et 

al., 1996; McNulty et al., 1993), harvesting (Fenn et al., 1998; Frazer et al., 1990), land 

use history and other disturbance (Goodale and Aber 2001; Goodale et al., 2000) and 

climate (Mitchell et al., 1996; Pastor and Post 1988; Rustad et al., 2000; Peterjohn et al., 

1994). Nitrogen mineralization has also been used in forest ecology to evaluate forest 

succession (Gower and Son 1992) and the subsequent effects on forest types (Cole and 

Rapp 1981; Campbell et al., 2000). A number of researchers have found 0 horizons soils 

under hardwoods to have significantly higher rates of N mineralization compared to 0 

horizon soils under softwoods (Campbell et al., 2000; Aber et al., 1993; Finzi et al., 1998; 

Ferrari 1993). This has been attributed to differences in soil moisture, pH, temperature, 

carbon to nitrogen (C/N) ratios and biotic mechanisms related to competition between 

plants and microbes (Campbell et al., 2000; Aber et al., 1993). Campbell et al., (2000) 

and Aber et al., (1993) have hypothesized that the lower N cycling rates observed in 

softwoods could indicate that softwoods might be more sensitive to deleterious effects of 

increased N deposition than hardwoods. 



Long-term elevated N deposition can result in N saturation at a site where N 

availability is chronically in excess of microbial and plant demand (Aber et al., 1989; 

Agren and Bosatta 1988). Nitrogen saturation is manifested in an ecosystem by initial 

increases in net N mineralization rates (thought to be a fertilization effect) followed by 

sharp declines. These declines in N rhineralization parallel increases in net nitrification 

rates and are often followed by declining tree growth after saturation is reached (Aber et 

al., 1998). 

Since many of Europe's ecosystems have progressed farther on the N saturation 

continuum than in North America, researchers there have provided valuable insights into 

the progression of N dynamics during the evolution of N saturation. The Experimental 

MANipulation of Forest Ecosystems project in Europe (EXMAN) (Rasmussen et al., 

1990) and the NITRogen Saturation Experiments in Europe (NITREX) @ise and Wright, 

1992) addressed the effects of increased N deposition on biogeochemical cycling in 

European coniferous forests. In both Europe and North America the most commonly 

used indicator of the N status of a site is stream NO3-N export (e.g. Aber et al., 1993, 

Adams et al., 1997, Andersson et al., 2002). However, stream chemistry is a function of 

internal watershed processes such as N mineralization and nitrification in soils. 

Therefore, this study was designed to evaluate N dynamics at the Bear Brook Watershed 

in Maine (BBWM) after more than a decade of experimental N enrichment. The specific 

objectives of this research were to determine the effects of increased N deposition on net 

N mineralization and net nitrification at BBWM and the influence of forest type on those 

processes. 



MATERIALS AND METHODS 

Site Description 

The Bear Brook Watershed in Maine (BBWM) is located in eastern Maine at 

44'52' north latitude and 68'06' west longitude, approximately 60 km fiom the coast of 

Maine (Figure 1 .l) and is located on the upper 210 m of the southeast slope of Lead 

Mountain. BBWM is a paired watershed experiment that began in 1987. BBWM was 

established to evaluate a whole ecosystem response to elevated N and S deposition in a 

low alkalinity forested stream watershed in northern New England (Norton et al., 1999) 

utilizing the paired watershed approach (Likens et al., 1977). Both watersheds are 

topographically similar (Wang and Fernandez, 1999) and had similar patterns of output 

fluxes for elements prior to manipulation (Norton et al., 1999). The East Bear watershed 

is 10.95 ha while West Bear is 10.26 ha. A first order stream drains each watershed with 

an average slope fiom the top of the watershed to the weirs of 31% (Norton et al., 1999). 

The vegetation at BBWM includes both hardwoods and softwoods, with 

hardwoods and mixed woods dominating the lower -60% of the watersheds. Hardwoods 

include American beech Fagus ~andifolia Ehrh.), sugar maple (Acer saccharurn 

Marsh.), red maple (Acer rubrum L.), with minor yellow birch (Betula alle&aniensis 

Britt.) and white birch (Betula papirifera). The hardwood forest is successional following 

logging prior to 1945 (Wang and Fernandez, 1999). The upper areas of the watersheds 

are nearly pure softwood s tads  80-120 years old including red spruce (Picea rubens 

Sarg.), balsam fir (Abies balsamea L.) and hemlock (Tsuna L. Cam). 

Softwood, mixed wood, 



Fig. 1 .1 .  Relative location of the Bear Brook Watershed in Maine. 



and hardwoods cover approximately 25,40, and 35% of the total watershed areas, 

respectively (Wang and Fernandez, 1999). 

The soils are acidic, have low base saturation, cation exchange capacity, and 

sulfate adsorption capacity (Norton et al., 1999). Bedrock geology consists of 

metamorphosed quartzites and calc-silicate gneiss. Further details of the study site can be 

found in Norton et al. (1999) and Fernandez and Adams (2000). 

Nitrogen additions to the West Bear watershed were initiated in 1989 and 

consisted of bimonthly additions of dry (NH&S04 typically with two applications to the 

snowpack, two during the growing season, one in the spring and one in the fall. The 

West Bear watershed receives 25.2 kg N ha-'year'l of N treatments resulting in estimated 

total N inputs (wet + estimated dry + treatment) of 33.6 kg N ha-lyeafl. The reference 

East Bear watershed receives 8.4 kg N ha-lyearl of ambient wet plus estimated dry 

deposition (Norton et al., 1999). 

Experimental Design 

Within each watershed, four 10x10 m plots were established with two of the four 

plots in each watershed in hardwoods and two in sofhoods. Plots were chosen to have 

comparable slopes, dominant tree species, and proximity to streams between watersheds. 

Four replicate soil samples were collected fiom each 10x10 m plot on five different dates 

(September 19,2000, June 11 and 12,2001, July 2,2001, August 6 and 7,2001 and 

September 17,2001). In-situ incubations varied for logistical reasons by sampling period 

and were 35,28,21,14, and 14 days, respectively. Soil sampling depth increments 

included the 0 horizon and the uppermost 15 cm of the B horizon using a 15x1 5 cm 



frame for sampling, excluding the E horizon when present. In the lab, samples were 

sieved and each sample was then divided into three subsamples. Subsamples were 

numbered to indicate that they were (1) "time zero" or the initial NO3-N and m - N  

extractions prior to incubations, (2) subsamples for the 14 day laboratory incubations, or 

(3) subsamples that were placed in labeled polyethylene bags and re-buried for in-situ net 

N mineralization for 14 to 35 days according to Eno (1960). 

Soils were transported on ice packs and stored at 4 ' ~  prior to extraction. Soil 

extractions were completed within 24 hours of collection. Extracts were frozen until they 

could be analyzed for m - N  and NO3-N. Analyses were conducted by similar methods 

at both the Institute of Ecosystem Studies (IES) in Millbrook, NY and the University of 

Maine's Analytical Laboratory. A subset of samples were analyzed at both laboratories to 

assure data quality with excellent agreement between facilities. 

Net N Mineralization and Net Nitrification 

Net N mineralization and net nitrification were assessed using both a 14-day 

laboratory incubation (Hart et al., 1994) and an in situ method (Eno 1960). Both methods 

were chosen to assess N mineralization and net nitrification in order to estimate actual 

rates in the field exposed to variable temperatures (in situ method) as well as measuring 

the potential for mineralization by the nitrifjrlng communities present in the soil under 

more ideal laboratory conditions (14-day laboratory incubation method). While 

laboratory incubations do not quantitatively measure actual rates of these processes under 

field conditions, they are widely used for their value as an index of N dynamics and for 

some of their practical advantages in the context of field research. Net N mineralization 



is defined as the difference between the sum of NO3-N and m - N  before and after 

incubation, while net nitrification is the difference for NO3-N alone. 

Field moist 0 horizon soils were sieved through a 6 mm mesh sieve and mineral 

soils were sieved through a 2 mm mesh sieve. A 15+0.05 g subsample of field moist soil 

was placed in a plastic cup and incubated in the dark at -22' C for 14 days. A -5g 

subsample of field moist soil was also used to determine oven-dry moisture content (0 

horizon soils were dried at 6 5 ' ~  and mineral soils were dried at 105'~). At the initiation 

of the experiment, "time zero" subsamples were extracted immediately with 100 mL of 

2M KC1 to determine initial NO3-N and m - N  concentrations. After 14 days of 

laboratory incubation or 14-35 days of in-situ incubation, soils were extracted as above. 

Net N mineralization was calculated as NO3-N plus m - N  (at time 14 days for 

laboratory incubations or varying in situ times) minus NO3-N plus m - N  (time zero for 

initials). Soil pH was determined in deionized water according to Hendershot et al. 

(1993) for samples collected in September 2000. Soil pH fiom this research was highly 

correlated with soil pH measured during a quantitative soil study in 1998 at BBWM 

(Fernandez, unpublished data) when evaluated at the plot level. Concentrations of NO3-N 

and m - N  were determined on an 01  Analytic Dual-Channel Automated Ion Analyzer at 

the University of Maine's Analytical Laboratory and on a Perstop Flow Solutions 3000 

Injection Analyzer at E S .  

N Budget Calculations 

Biomass N was calculated as the sum of above and belowground biomass N 

content, both of which were estimated using allometric equations fiom the literature. 



Total soil N was calculated fiom a quantitative soil study conducted in 1998 at BBWM 

(Fernandez, unpublished data). Total N in the mineral soils was defined in this study as 

all soil below the 0 horizons, excluding the E horizon, but including all B and C horizons 

to a 1 m depth. Total pedon values for total N were the sum of the 0 horizon and all 

mineral soils. Extractable N data fioh the 1998 soil studies were only available for the 0 

horizons and mineral soils to a depth of 5 cm. Annual in situ net N mineralization was 

taken as growing season net N mineralization and calculated for May 1,2001 to October 

31,2001. Since soils were collected in June, July, August and September 2001, June and 

September 2001 were used to extrapolate estimates for both May and October. 

Statistical Design 

The statistical design was a split-split plot between treatments, forest types and 

time. In this design, factor A was the East and West Bear watersheds, factor B was the 

hardwood and softwood forest types and factor C was time. Analyses were performed 

separately on 0 horizons and mineral soils given the dramatically different characteristics 

of each horizon. Data required rank transformations and were subsequently analyzed by 

ANOVA on the Statistical Analysis System (SAS System, 1999) with an alpha level of 

0.05. 



RESULTS AND DISCUSSION (Net Nitrogen Mineralization and Net Nitrification) 

Watershed Effects 

Organic horizons potential net N mineralization (NNM) was significantly higher 

in the treated West Bear watershed compared to the reference East Bear watershed (Table 

1.1). Wang and Femandez (1 999) reported potential NNM after four years of treatment at 

BBWM and found no significant differences between the watersheds. They attributed 

their findings to either no treatment effect on potential NNM, or that differences were 

masked by high variability in the data. Furthermore, they pointed out that watershed 

level comparisons did not take into account the effects of forest type and suggested that 

watershed by dominant forest type contrasts were more appropriate. The occurrence of 

significantly higher potential NNM in West Bear 0 horizons in this study, after twelve 

years of continuous treatment, could reflect the evolution of N accumulation in the 

treatment watershed. All of the net N mineralization results showed a consistent trend 

towards higher numerical means in West Bear compared with East Bear. West Bear in 

situ net N mineralization means were nearly 40% higher in the 0 horizons of West Bear 

but nearly the same in the mineral soils although neither was significantly different 

between watersheds. It is logical that potential NNM, an indicator of incipient change 

carried out under more ideal laboratory conditions for microbial co~lmunities might best 

reveal a shift in N dynamics in the 0 horizon before in situ NNM, measured under 

variable field conditions that are often less than ideal. 



Table 1-1. Net N mineralization and net nitrification (mg N kg-'soil 6') for both watersheds and forest types (standard 
errors in parentheses) 

Net N minedimtion Net Nitrification 

-mg N kg"soil day-'-- -mg N kg-'soil day-'- 

Soil 14 day lab 14 day lab 
Horizon In-siru incubation In-siru incubation 

Watershed 

East Bear 0 Horizon 3.00 (0.46) 4.a (0.53) t 
Mineral 0.24 (0.09) 0.91 (0.09) 

West Bear 0 Horizon 425 (0.59) 10.30 (1.07) 
Mineral 0.21 (0.07) 1.01 (0.19) 

Softwood 0 Horizon 2.17 (0.25) t 4.76 (0.47) t 
Mineral 032 (0.09) 138 (0.09) t 

Hardwood 0 Horizon 5.07 (0.66) 1036 (1.09) 
Mineral 0.13 (0.07) 0.65 (0.1 8) 

Forest T m e  

indicates significance at the 0.05 level for contrasts within either watershed or forest type within horizons. 

Increased N mineralization rates in northeastern forests soils in response to 

experimental N enrichment have been reported previously at the Harvard Forest, 

Massachusetts (Magill et al., 1997), Mt. Ascutney, Vermont (Aber et al., 1995), and the 

Fernow Experimental Forest, West Virginia (Gilliam et al., 2001). Increased N 

mineralization rates at the beginning of N additions are attributed to a fertilization effect 

(Aber et al., 1998). Aber et al., (1998) hypothesized that during stages 2 and 3 along a 

temporal N saturation continuum, N mineralization rates'decrease due to one of two 

hypotheses: 1) increased N deposition results in the randomization of chemical bond 

structures in N containing soil organic matter thereby reducing efficiencies of 

extracellular catabolic enzymes resulting in decreasing decomposition rates or 2) the 

production of humus-degrading microbes is suppressed in the presence of elevated N. 



Stream chemistry for the treated West Bear watershed indicated that BBWM is at stage 2 

of N saturation (Aber et al., 1995; Fernandez and Adams 2000). Stage 2 in the N 

saturation continuum is consistent with higher mean net N mineralization rates found in 

West Bear compared to East Bear. 

Rates of both potential and in'situ net nitrification (NN) were significantly higher 

in the West Bear compared to the East Bear watershed in both the 0 horizon and mineral 

soils (Table 1.1). The relative difference was much greater for 0 horizons than mineral 

soils interpreted as a reflection of responsiveness to added N. Wang and Fernandez 

(1999) also found significantly higher potential NN rates in the forest floor of the treated 

West Bear watershed compared to the East Bear watershed early in the study. 

Inorganic N in acidic forest soils tends to be dominated by N&-N rather than 

NO3-N. This is due in part to the fact that m - N  is the initial form of inorganic N 

produced from mineralization with subsequent nitrification often limited in forest soils by 

organic matter quality and acidity, and that NO3-N is easily leached. The dominance of 

m - N  was evident in the net N mineralization data from the 0 horizons in both 

watersheds (Table 1.2) and has been reported for other sites in the northeastern United 

States (McNulty et al. 1996; Aber and Melillo 1991). Although the majority of 

significant differences in this study were observed in potential and in situ NN (Table 1. I), 

differences in net nitrification did not generally translate into significant differences in N 

mineralization because in most cases mineralized N was almost entirely attributable to 

m - N  (Table 1.2). A notable exception to the m - N  dominated soils at BBWM is 

West Bear mineral soils that showed NO3-N comprised the majority of net N 



mineralization in both hardwood and softwood forest types (Table 1.2) as did the in situ 

East Bear hardwood mineral soils. 

That the treated West Bear mineral soils demonstrated higher NO3-N 

concentrations compared to N&-N is consistent with hypotheses regarding the 

progression of the stages of N saturation (Aber et al., 1998), where NO3-N becomes an 

increasingly larger component of net N mineralization especially in the mineral soils. 

Fenn et al., (1998) hypothesized that elevated N additions may increase nitrification rates 

by supporting larger nitrifying microbial populations in soils due to the increase of 

substrate N&-N. Magill et al., (1997) found an increased percentage of net nitrification 

in relation to net N mineralization in N enriched plots at the Harvard Forest, 

Massachusetts. They showed that net nitrification, as a percentage of net N 

mineralization, increased fiom 17% at the beginning of N additions in 1988 to 5 1 % in 

1993, with most of this increase occurring in the mineral soil of a monoculture red pine 

stand. No clear explanation for the relative importance of net nitrification to net N 

mineralization in the East Bear hardwood mineral soils is evident but rates of N turnover 

were exceedingly low in this soil material. 

Gilliam et al., (2001) reported that environmental factors such as soil temperature 

and soil moisture strongly influenced net nitrification rates in the untreated forested 

watersheds at the Fernow Experimental Forest (FEF) in West Virginia. However, they 

found that these environmental factors were not as strongly correlated with net 

nitrification rates in their experimental watershed between four and six years after the 

beginning of treatments with (N&)*So4. They suggested that N additions might alter the 

relationship between microbes and their environment, causing microbes to become more 



Table 1.2. Percentage of net N mineralization comprised of Nth-N and NO,-N averaged 
over the five collection periods. 

N min N min 
dominated by dominated by 

Watershed Forest Type Horizon Method NH,-N (%) NO3-N (%) 

East Bear Hardwood 0 Horizon 

Mineral 

East Bear Sofiwood 0 Horizon 

Mineral 

West Bear Hardwood 0 Horizon 

Mineral 

West Bear Sofiwood 0 Horizon 

Mineral 

14 day 
in situ 
14 day 
in situ 

14 day 
in situ 
14 day 
in situ 

14 day 
in situ 
14 day 
in situ 

14 day 
in situ 
14 day 
in situ 



sensitive to N additions rather than environmental factors. Koopmans et al., (1995) found 

similar results in coniferous forests in the Netherlands where environmental factors were 

not as strongly correlated with net nitrification rates in the high N deposition plots 

compared to the ambient and low N deposition plots. No significant correlations between 

soil temperature or soil moisture and potential or in situ NNM were found in our data at 

BBWM. The disparity in results between this study and that of Gilliam et al., (2001) may 

be due to climatic or soil differences between the sites. The Fernow Experimental Forest 

has a mean annual temperature 5' C higher and receives on average 15 cm more 

precipitation than BBWM leading to warmer soil temperatures and possibly higher 

moisture contents in the soil (Fernandez and Adarns 2000). 

Forest Type Effects 

Table 1.1 shows the potential and in situ NNM means by major forest type at the 

BBWM. Both potential and in situ methods showed significantly higher rates of net N 

mineralization in hardwood compared to softwood 0 horizons. In contrast, there was 

significantly lower potential NNM in hardwood compared to softwood mineral soils. Net 

nitrification results showed no significant differences between forest types although 

numerical trends paralleled the contrasting patterns seen in NNM between 0 and mineral 

soil horizons. 

Opposing trends in net N mineralization between organic and mineral horizons in 

hardwoods versus softwoods have been shown in other studies in the northeastern United 

States (Aber et al., 1993; Fernandez et al., 2000; Campbell et al., 2000; Finzi et al., 1998). 



Campbell et al., (2000) attributed the higher N cycling rates in hardwood 0 horizons to 

differences in soil moisture, pH, and biotic controls related to competition between plants 

and microbes. They found lower rates of N mineralization in the mineral soils although 

there were no significant differences in mineral soils between forest types. 

Fernandez et al., (2000) looked at potential NNM, potential NN and potential net 

amrnonification at 20 hardwood stands and 9 softwood stands across Maine including the 

reference watershed at BBWM. They found significantly higher 0 horizon potential 

NNM and potential NN in hardwoods compared to softwoods. They also found that both 

forest types had similar 0 horizon N concentrations, but total C concentrations were 

higher under softwoods leading to a higher C/N ratio under softwoods. Higher C/N ratios 

are often correlated with lower N mineralization rates in forest soils (Fernandez and 

Adams 2000; Vitousek et al., 1982; Blair et al., 1990). Quantitative soil excavations and 

analyses at BBWM (Fernandez, unpublished data) showed softwoods had significantly 

higher C/N ratios than hardwoods in both organic and mineral horizons (Table 1.3) which 

could explain why hardwoods had significantly higher NNM rates in the 0 horizons 

compared with softwoods. 

Results from the European NITREX project showed C/N ratios could be an 

indicator of N03-N leaching (Gunderson et al., 1998; Dise et al., 1998). Gunderson et al., 

(1 998) found that conifer stands in temperate forest ecosystems in Europe having a C/N 

ratio below 25 leached N03-N or had elevated N03-N concentrations. They suggested a 

C/N ratio continuum where the potential for NO3-N leaching is low with 0 horizon C/N 

ratios above 30, moderate for sites with C/N ratios between 25-30 and high for those with 

C/N ratios below 25. Thus, in addition to soil moisture, pH, and competition, litter 



Table 1.3. Soil pH, total N, total C and total C:N ratio by horizon and depth from the quantitative soil excavations in 1998 
(standard errors given in parenthesis). 

Watershed Forest Type 
Fine 

PHW Total N Total C Total C:N Earth 

East Bear Hardwoods 0 horizon 4.01 (0.d) t 1.56 (0.06) 34.3 (1.49) t 22 (0.99) t 82652 (9957) t 
S-cm 4.28 (0.04) t 0.49 (0.06) 8.83 (0.84) 19.41 (0.81) t 146059 (201 77) 

East &ar Softwoods 0 h a l w  3.54 (0.04) t$ 1.41 (0.03) 40.64 (0.81) tt 29.20 (0.94) tt 159393 (27270) 
5-cm 4.07 (0.05) t 0.39 (0.04) 9.28 (0.82) 24.39 (0.62) tt 144733 (12750) 
5-25 cm 4.36 (0.06) t 0.32 (0.03) 7.69 (0.70) 24.08 (0.41) tt 680275 (60916) 

West &u Hardwoods 0 horizon 3.97 (0.06) t 1.44 (0.05) 33.63 (1.45) 23.31 (0.54) 86 1 1 1 (1 9293) 
5-m 4.18 (0.05) 0.43 (0.03) 8.59 (0.64) 19.92 (0.37) t 120254 (I 1001) 
5-25 cm 4.59 (0.05) t 0.33 (0.03) 6.65 (0.57) 20.60 (0.39) t 704367 (8 1687) 

West &ar Softwoods O M  3.69(0.05) tt ' 1.49 (0.05) 37.54(126) $ 25.68 (1.25) t 139519 (11661) t 
5zm 4.09 (0.04) 0.46 (0.05) 9.8 1 (0.95) 22.22 (0.67) & 143093 (12571) 
5-25 cm 4.43 (0.04) t 030 (0.02) 6.47 (0.38) 22.28 (0.68) t$ 768772 (50000) 

"7" indicates significance between vegetation types within a watershed at the 0.05 level. 
"2" indicates significance between watersheds within a vegetation type at the 0.05 level. 

quality (e.g., C/N ratio) also is a determinate of NNM and NN. Table 1.3 shows 

softwood stands at BBWM have 0 horizon C/N ratios of 29 and 26 for East and West 

Bear watersheds, respectively (Table 1.3); indicating that the softwood stands at BBWM 

may be leaching moderate amounts of NO3-N according to the findings of Gunderson et 

al. (1998). During 1997 the West Bear watershed discharged -5 kg N ha-' while East 

Bear discharged -0.1 kg N ha-' (Xahl et a]., 1999) paralleling the differences in the C/N 

ratios between watersheds. Similar to Gunderson et al., (1998), Dise et al. (1998) 

examined the hypothesis that C/N ratios of the 0 horizons could be used to estimate the 



level of NO3-N leaching fiom an ecosystem, but finthered Gunderson et al. (1998) work 

by examining a range of N deposition conditions and evaluated how N deposition affects 

both C/N ratios and NO3-N leaching. Dise et al., (1998) found that at low levels of N 

deposition (<9 kg N ha-' year-') NO3-N leaching was minimal regardless of the 0 horizon 

C/N ratio. At intermediate (9-1 8 kg N ha-' year-'), high (1 8-30 kg N ha-' year-'), and very 

high (>30 kg N ha-' year'') levels of N deposition, NO3-N leaching increased with 

increasing N deposition and decreasing C/N ratios. BBWM receives an estimated 

ambient total N deposition of 8.4 kg N ha-' year-', with the treated West Bear watershed 

receiving 33.6 kg N ha-' year' as both ambient atmospheric deposition plus treatment 

&ah1 et al., 1999). According to Dise et al., (1998) the very high N deposition (>30 kg N 

ha-' year-') to West Bear should induce higher NO3-N leaching compared to East Bear. 

This is reflected in the higher stream NO3-N export in West Bear compared with East 

Bear (Kahl et al., 1999). However, other parameters need to be taken into account when 

predicting NO3-N leaching besides C/N ratios and amounts of N deposition such as site 

and land-use history (Goodale and Aber 2001; Ollinger et al., 2002; Gunderson et al., 

1998; Dise et al., 1995, 1998). 

Studies examining C/N ratios as a predictor of NO3-N leaching, N mineralization, 

and nitrification have also been conducted in the U.S. (McNulty et al., 1991; Lovett and 

Reuth 1999; Goodale and Aber 200 1 ; Ollinger et al., 2002). Typically negative 

correlations have been reported between 0 horizon soil C/N ratios and N mineralization 

and nitrification rates (Goodale and Aber 2001 ; McNulty et al., 199 1 ; McNulty et al., 

1996; Ollinger et al., 2002). The strongest correlations are usually between soil C/N 

ratios and nitrification rates. Lovett and Reuth (1999), Ollinger et al., (2002) and 



McNulty et al., (1 996) all reinforced the premise that a threshold C/N ratio of 20-25 in 

both softwoods and hardwoods exists where nitrification sharply increases at or below 

this range. 

The discussion of 0 horizons above, where lower C/N ratios correlate with higher 

net N mineralization and NO3-N leaching, may explain why the 0 horizons in the 

hardwood stands have significantly higher net N mineralization rates compared to the 

softwood stands. It does not explain why the opposite trend exists in the softwood 

mineral soils. We hypothesize one of two possibilities for the softwood mineral soil 

results. The first hypothesis is that 0 horizons in hardwoods mineralize N at a faster rate 

than softwoods because of higher tissue N concentrations (Nadelhoffer et al., 1995) and 

more rapid rates of litter decomposition (Finzi et al., 1998). This leaves only the more 

recalcitrant humic materials to illuviate into the mineral soils below. In contrast, 

softwood litter is slower to decompose in the 0 horizons because of its higher 1ignin:N 

and C/N ratios (Ferrari 1993), resulting in less 0 horizon mineralization and hurnification 

with more rnineralizable substrate illuviating into the mineral soils. Thus, more labile C 

is available in softwood mineral soils to respond to N enrichment. The second hypothesis 

is that softwood and hardwood mineral soils mineralize N at similar rates, but softwood 

mineral soils are more sensitive to increased N deposition causing an increase in net N 

mineralization to result in the softwoods with N enrichment. A higher sensitivity to N 

deposition in softwoods for N mineralization has also been hypothesized by others 

(Campbell et al., 2000; Aber et al., 1995). Campbell et al. (2000) hypothesized that 

softwood species may be more sensitive to N deposition if softwood sites have lower 



rates of N assimilation into foliage and bolewood compared to hardwood sites 

(Nadelhoffer et al., 1995). 

No significant differences were observed for potential or in situ NNM or NN 

between watersheds by dominant stand type (Figure 1.2). Similar numerical patterns 

were observed between watersheds dnd forest types: 1) 0 horizons had higher net N 

mineralization and net nitrification rates than mineral soils; 2) potential NNM and NN 

rates were higher than in situ NNM and NN rates; 3) hardwood soils, particularly in West 

Bear, had higher nitrification rates compared to softwoods. Wang and Fernandez (1 999) 

also found no significant differences in potential NNM between the two watersheds by 

dominant stand type. In this study, West Bear hardwood 0 horizon soils had twice the 

rates of potential and in situ NNM than East Bear hardwood soils (Figure 1.2) after 

twelve years of continuous treatment. The higher rates of potential and in situ NNM in 

West Bear hardwoods compared to East Bear hardwoods could reflect the progressive 

accumulation of ecosystem N. The lack of significant differences in potential NNM 

between watersheds by dominant stand type in both this study and Wang and Fernandez 

(1999) could be attributed to: (a) high variability, (b) rapid immobilization of added N by 

soil microbes and plant roots, (c) adsorption of m - N ,  (d) denitrification, or (e) 

nitrification and subsequent NO3-N leaching. In response to these possibilities, (a) high 

variability in this study was evident by the large standard deviation of the mean (120% of 

the mean for the 14 day laboratory incubations and 160% of the mean for the in situ 

incubations), (b) immobilization by soil microbes and plant roots was not in the scope of 

this study, however, there is evidence for this immobilization mechanism in both soil 



Fig. 1.2. Net N mineralization between watersheds, tree types and soil horizons in 
both the laboratory and in situ incubated samples. Note: WB - the West 
Bear watershed; EB - the East Bear watershed; S - softwood forest type; 
H - hardwood forest type; 0 - 0 horizons; M - mineral soils; 14D - 14 
day laboratory incubations; IS - in situ incubations. 



biota and trees from previous work at BBWM (White et al. 1999; Nadelhoffer et al., 

1999), (c) given the high CEC of the soils at BBWM as well as the greater 

exchangeable m - N  in the West Bear watershed, it is probable that there was adsorption 

of N&-N, (d) there is no denitrification data from BBWM at this time, (e) there is 

evidence of increased nitrification an;d NO3-N leaching in streams as noted above from 

the treated West Bear watershed at BBWM (Kahl et al. 1999). 

Temporal Patterns 

There was a temporal trend for declining NNM and potential NN over time in this 

study (Figure 1.3). These trends appear to be attributable to declining moisture over the 

study period Figure 1.4). Both temperature and moisture strongly influence microbial 

activity in soils and subsequently N mineralization and nitrification rates (Arnold et al., 

1999; Sarathchandra et al., 1989). Although warmer soils can lead to increased N 

mineralization rates Fenn et al., 1998), warmer soils can also lead to decreases in soil 

moisture that may have negative effects on microbial populations (Van Gestel et al., 

1993). Arnold et al., (1999) reported on microbial biomass at different experimental soil 

temperatures and resultant moisture regimes in the 0 horizons at the Howland Integrated 

Forest Study site in Maine. They suggested that a moisture threshold may exist in the 0 

horizons between 20-120% moisture content, above which soil temperature had a strong 

influence on microbial biomass, and below which moisture was the dominant factor 

limiting microbial activity. Results from this study support the hypothesis that a moisture 

threshold exists in the 0 horizons of these forest soils between approximately 75 to 130% 



moisture content (Figure 1.3). Above this threshold, soil temperature had a greater 

influence on soil microbial processes compared to soil moisture and below this threshold 

the opposite was true. Since in situ NNM rates declined after the July 2001 collection 

(Figure 1.4) coincidental with an 0 horizon soil moisture decline to approximately 75% 

(Figure 1.3), we hypothesize that moisture was primarily responsible for the decline in in 

situ NNM rates and controlled the temporal pattern of in situ NNM over time in this 

study. This does not negate the possibility of substrate availability, substrate quality, 

phenology or other factors contributing to these results. The decline of in situ NNM rates 

were most clearly demonstrated by East and West Bear hardwoods and West Bear 

softwoods (Figure 1.4). Similar declines were evident in potential NNM and potential 

NN but the declines in potential NNM did not occur until after the August 2001 

collection. Potential NNM may have demonstrated an effect of declining moisture later 

because soil mixing and laboratory incubations at -22 '~ made microbial communities 

less sensitive to moisture stress compared to in situ measurements subjected to variable 

field conditions. It should be noted that this trend was not demonstrated in the mineral 

soils where relative moisture declines were less marked over the duration of the study. 

Soil N Content and Watershed N Budgets 

Similar trends in soil N dynamics were observed between watersheds and forest types 

when data were expressed on a mass of N per unit surface area basis, as was reported 

above for soil concentration data. Notable exceptions that differed fiom the 

concentration results for the main effects of watershed and forest type were: (1) in situ 



Fig. 1.3. 
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In situ net N mineralization compartmental rates over time. EBSW - East 
Bear watershed, softwood forest type; ERHW - East Bear watershed, 
hardwood forest type; Ul3SW - West Bear watershed, softwood forest 
type; WBHW - West Bear watershed, hardwood forest type. 



Fig. 1.4. 0 horizon and mineral soil percent initial moisture over time (standard 
errors in parentheses). 



NNM had significantly higher means in West Bear compared with East Bear in the 0 

horizons, and (2) potential NNM was no longer significantly higher in hardwood 0 

horizons compared to softwood 0 horizons or softwood mineral soils compared to 

hardwood mineral soils. The loss of a statistical significance was the result of the slightly 

different soil masses between waterslieds although numerical trends remained the same. 

Table 1.4 shows mass per unit area data for the interaction between watershed and forest 

type for both net N mineralization and net nitrification. West Bear NNM was 

significantly higher than East Bear for both softwoods and hardwoods. It is noteworthy 

Table 1.4. In situ net N mineralization and nitrification (kg N ha-' soil day-') for watersheds by forest type 
(standard errors in parentheses). 

West Bear East Bear 

Softwoods Hardwoods Softwoods Hardwoods 

net N mineralization 

0 Horizon 0.476 (0.064) t 0.464 (0.079) 7 0.100 (0.029) . 0.386 (0.075) 

Mineral 0.076 (0.012) 0.071 (0.069) 0.139 (0.059) 0.065 (0.021) 

net nibification 

0 Horizon 0.066 (0.015) 0.103 (0.020) 0.004 (0.002) 0.009 (0.004) 

Mineral 0.071 (0.008) 0.063 (0.067) 0.055 (0.01 1) 0.063 (0.015) 

"t" indicates significance between watersheds by forest type at the 0.05 level. 



that the increase in West Bear over East Bear in the 0 horizons for NNM is -5X for 

softwoods but only -1.2X for hardwoods. The higher softwood NNM in West Bear 

compared to the reference East Bear watershed suggests that this forest type may be more 

responsive to changes in N dynamics in the forest floor after twelve years of treatment, in 

contrast to results from earlier in the BBWM experiment when it was suggested that 

hardwoods had a higher sensitivity to treatments (Wang and Fernandez 1999). The data 

reported here show that both forest types have a higher and now roughly equal rate, of 

NNM in the 0 horizons presumably as a result of the different relative increases they 

showed in response to treatments. 

Annual net N mineralization and net nitrification were estimated using data 

extrapolated from May 1 to October 3 1 and assuming no N turnover during the dormant 

season. These data were then used to construct a simple N budget for BBWM to provide 

a whole ecosystem context for data from this study. Estimated biomass N was small 

compared to total soil N, and represented only 6-7% of total soil N in both watersheds 

while estimated annual NNM was -0.6% of total soil N in East Bear and only -1 % in 

West Bear. Although the majority of total soil N was found in the mineral soils, the 

majority of NNM occurred in the 0 horizons in both the treated and reference watersheds 

(Figures 1.5 and 1.6). A lower rate of decomposition and N turnover in the mineral soils 

presumably reflects the fact that soil organic matter is older and progressively more 

recalcitrant with depth (Federer et al., 1983; Persson et al., 1995). The 0 horizons also 

contained more extractable N than the mineral soils, a logical byproduct of higher rates of 

N cycling. Extractable inorganic N was 0.2-0.6% of total N in both watersheds for the 0 

horizons and upper mineral soil. The most notable difference between watersheds was 



that total NNM was approximately 60% greater in West Bear compared to East Bear due 

largely to the higher rates of NNM in West Bear 0 horizons compared to East Bear 0 

horizons. In contrast to the higher NNM found in the 0 horizons compared to mineral 

soils, higher NN was found in the mineral soils compared to 0 horizons. Net nitrification 

under N treatment in the mineral soilk was also proportionally greater and comprised up 

to 100% of the NNM in the mineral soils as evidenced by the West Bear mineral soil data 

(Figures 1.5 and 1.6). In this estimate of the BBWM watershed N budget it should be 

noted that total soil N includes soil depth increments to the bottom of a one meter pedon. 

We confined our study of net N mineralization and net nitrification to the 0 horizon and 

upper mineral soil increments. This was due to both practical limitations and an 

expectation that the majority of the N mineralization in these soils occurs in these upper 

increments as reported in literature (Federer et al., 1983; Persson et al., 1995). Therefore, 

estimates of whole soil net N mineralization and net nitrification were not possible. Also, 

since actual measurements were limited to growing season data and winter rates were 

assumed to be negligible, these annual estimates are likely conservative. 

These data for N dynamics at BBWM are comparable to those reported in the 

literature for other low elevation forests in the region. Literature values for total soil N 

appear to range from 1034 and 2275 kg N ha-' in the 0 horizon and mineral soil, 

respectively, for a low elevation spruce-fir forest in Howland, Maine (Fernandez et al. 

1993), to 1932 kg N ha-' and 877 kg N ha-' in the 0 horizon and mineral soil, 

respectively, for the Adirondack Region of New York (Mitchell et al. 2001). Federer et 

al. (1983) reported the total N in a softwood stand in Maine was1802 and 3224 kg N ha-', 

and net N mineralization was 15 and 27 kg N ha-Iyear-', for 0 horizons and mineral soils, 



Fig. 1.5. Watershed budget for the West Bear watershed. 



Fig. 1.6. Watershed budget for the East Bear watershed. 



respectively. Cole and Rapp (1981) analyzed data from 14 sites included in the 

International Biological Program (IBP) fkom around the world and found temperate 

coniferous forest soils contained on average 6821 kg N ha-' and temperate deciduous 

forest soils contained on average 5 177 kg N ha-'. Devito et al. (1999) reported net N 

mineralization values for 0 horizons 'in Canadian soils ranged fkom 1 14 kg N ha-lyear'l 

for deciduous forest types to 140 kg N ha-'year-1 for mixed conifer forest types. They 

also reported 52 and 46 kg N ha'lyearl for deciduous and mixed forest types, 

respectively, in the upper 10 cm of the mineral soils, which is -4 times that at BBWM. In 

their measurements of annual net N mineralization, they included the winter months for 

which they reported high rates of net N mineralization (49 to 92% of annual net N 

mineralization). It will be important in future research to better define dormant season 

forest soil N dynamics across a range of climatic regimes for northern forest types. Other 

researchers have also found similar increases in net nitrification in the mineral soils 

compared to the 0 horizons at N treated sites (Andersson et a1 2002; Magill et al. 1997). 

The results fiom this study suggest higher proportions of mineralized N being nitrified, 

consistent with the concepts of the evolution of N saturation in forested ecosystems (Aber 

et al., 1998). 

Input-output estimates showed that -20% and -4% of the total N inputs were 

exported annually in West and East Bear streams, respectively. Therefore -80% of the 

input N was still retained in West Bear, despite the long-term N amendments to this 

watershed. Other investigators in both Europe and in the United States have reported 

high retention of inorganic N even after experimental N additions in forested ecosystems. 

Bergholm and Majdi (2001) reported 93% retention of N inputs in a Norway spruce stand 



in Sweden treated with (NH4)2S04, and 96% retention for their reference watershed. 

They suggested that the spruce stand had a relatively high capacity to accumulate N due 

to high aboveground production. They reported 326 kg ha-' in aboveground biomass. 

Mitchell et al., (1 996b) reported that an untreated watershed in the Adirondack State Park 

of New York retained 74% of wet inputs of N. Similarly, Magill et a]., (1997) observed 

that 85-99% of N additions (50 and 150 kg N ha-lyeel of NH4N03) were retained at the 

Harvard Forest in Massachusetts. It must be noted that none of these studies measured 

gaseous loss, ostensibly by way of denitrification, which may temper the high estimates 

of N retention. Even so, it is likely that even under ambient deposition and treatment N 

amendments these forest soils have at once a large potential for further accumulation of N 

in soil N pools, and yet a high susceptibility for increased N amendments to induce 

accelerated N mineralization, nitrification, and NO3-N export in soil solutions and 

streams. 

Conclusions 

Our results indicate that after twelve years of whole-watershed experimental N 

enrichment, the West Bear watershed demonstrated higher rates of net N mineralization 

and net nitrification consistent with stages in the evolution of N enrichment or "N 

Saturation". However, watershed retention of N inputs was nearly 80% in the treated 

West Bear watershed and over 95% in the reference East Bear watershed, indicating a 

significant potential in both watersheds for continued N accumulation. Of greater 

importance are the changes in N dynamics within the ecosystem, which respond to 

increased N inputs rapidly despite high overall N retention in the watershed. Forest soil 



nitrification plays an increasing role in net N mineralization in the treated watersheds that 

are otherwise dominated by N&-N. Increased stream NO3-N in the treated West Bear 

watershed may best reflect the notably higher rates of N mineralization in hardwood 0 

horizons compared to softwoods, although higher mineral soil N mineralization was 

evident in softwoods compared to hdrdwoods. In addition, earlier studies of N dynamics 

at BBWM showed little or no response in softwoods to the treatments. This suggests that 

forest type is important in understanding watershed response to N deposition. The results 

also indicate that changes in N dynamics not evident earlier in this whole watershed N 

enrichment experiment are emerging afier over a decade of treatments and are providing 

insights into long-term processes ofien undetected in research of limited duration. 
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CHAPTER 3. METHODOLOGICAL APPROACHES FOR ASSESSING NET N 
MINERALIZATION AND NET NITRIFICATION 

INTRODUCTION 
A common goal of both researchers and managers concerned with N cycling in 

forested ecosystems is the evaluation of both the amount of nitrogen (N) in forest soils, N 

turnover, and its availability to plants. Generally speaking measuring total N in soils has 

become routine, but this measurement belies the complexity of N forms and their 

availability. Measuring labile N is much more complex, and methods range from 

attempts to estimate actual rates of N turnover and availability in the field, to indices of 

these same N dynamics by laboratory methods wherein more variables can be controlled. 

Considerable interest in N dynamics in forest soils has also resulted from concerns for the 

effects of long term atmospheric N deposition on forest ecosystems, and the phenomenon 

called N saturation, an ecosystem condition where inorganic N exceeds plant and 

microbial demand (Aber et al., 1989). The most common techniques seek to measure the 

rates of oxidation of organic N to inorganic N (N mineralization), or the transfer of 

ammonium (NI&) to nitrate (NO3). Measurements of N mineralization can be either 

measurements of net N mineralization or gross N mineralization (Verchot et al., 2001) 

with net measurements being much more common due to the ease and relative low cost of 

the technique. Common approaches to measuring net N mineralization include 

incubating soils in a laboratory or in situ incubations for one or more weeks (Hart et al. 

1994; Raison et al. 1987). Researchers in tropical ecosystems often use a 7-day 

incubation since N mineralization proceeds more rapidly under increased temperature and 

moisture regimes (Veldkamp et al., 1999; Ellingson et al., 2000). Researchers in 



temperate ecosystems have more often used both 14-day and 28-day incubations, both in 

situ and in the laboratory (Knoepp and Swank, 1995, 1996; McNulty et al., 1996; Eno 

1960; Wang and Fernandez, 1999; Fernandez et al., 2000; Verchot et al., 2001; Kraske 

and Fernandez, 1990). Therefore, methodology has been inconsistent in the literature 

regarding the length of the incubatiod period when measuring potential net N 

mineralization using laboratory or in situ incubation techniques. Moreover, comparison 

of laboratory rates to those obtained in the field has brought the former into question 

(Knoepp and Swank, 1995). We chose to examine the difference between these 

incubation times and the subsequent effects on net N mineralization to provide insight 

into the relationship between 7-, 14-, and 28-day incubations. Since a measurement of 

net nitrification can also be made from N mineralization assays, we also sought to 

compare NO3-N production in our temporal N mineralization assays. We compared in 
d 

situ potential net nitrification (Eno 1960), 14-day laboratory potential net nitrification 

(Hart et al. 1994) and nitrification potential (Hart et al. 1994) to assess the degree of 

correlation among methods. We also considered these data in the context of a watershed 

N manipulation experiment to determine which method might be more sensitive for 

detecting differences in forest type or N status as a result of long term N amendments 

which have altered the availability of mineral N. The nitrification potential assay (Hart et 

al., 1994) measures the activity of the autotrophic nitrifjmg soil community by providing 

ideal conditions for nitrification where the limiting factor is no longer NI&-N but the 

nitrifylng population itself. Acidic forest soils are thought to be dominated by 

autotrophic nitrifylng populations as opposed to heterotrophic nitrifylng populations, the 

latter for whom assimilable organic-C could also limit growth (Zhu and Carreiro 1999). 



MATERIALS AND METHODS 

Soils Used in this Study 

Soils fkom the Bear Brook Watershed in Maine (BBWM) were used in these 

methodological comparisons. The BBWM is located in eastem Maine at 44'52' north 

latitude and 68'06' west longitude, approximately 60 km fiom the coast of Maine and is 

located on the upper 210 m of the southeast slope of Lead Mountain. BBWM is a paired 

watershed experiment that began in 1987 and was established to evaluate a whole 

ecosystem response to elevated N and S deposition in a low alkalinity forested stream 

watershed in northem New England (Norton et al., 1999). 

The vegetation at BBWM includes both hardwoods and softwoods, with 

hardwoods and a mix of the two dominating the lower -60% of the watersheds. 

Hardwoods include American beech (Fagus ~zrandifolia Ehrh.), sugar maple (Acer 

saccharurn Marsh.), red maple weer rubrurn L.), with minor yellow birch (Betula 

allenhaniensis Britt.) and white birch (Betula papirifera). The higher elevations are nearly 

pure softwood stands 80-120 years old including red spruce (Picea rubens Sarg.), balsam 

fir (Abies balsamea L.) and hemlock (Tsuna canadensis L. Carr). Softwood, hardwoods 

and a hardwood-softwood mix cover approximately 25,35, and 40% of the total 

watershed areas, respectively (Wang and Femandez, 1999). 

The soils are acidic, have low base saturation, cation exchange capacity, and 

sulfate adsorption capacity (Norton et al., 1999). Bedrock geology consists of 

metamorphosed quartzite and calc-silicate gneiss. Further details of site characteristics 

can be found in Norton et al. (1999) and Femandez and Adams (2000). 



The Nitrogen Amendments 

Nitrogen additions to the West Bear watershed were initiated in 1989 and 

consisted of bimonthly additions of dry (NH&SO4 typically with two applications to the 

snowpack, two during the growing season, one in the spring and one in the fall. The 

West Bear watershed receives 25.2 kb N ha-lyearl of N treatments resulting in estimated 

total N inputs (wet + estimated dry + treatment) of 33.6 kg N ha-lyear-'. The reference 

East Bear watershed receives 8.4 kg N ha-lyear-l of ambient wet plus estimated dry 

deposition (Norton et al., 1999). To the experimental design of the plot layout use for 

sampling is described in Shah et al., (2002). 

In Situ Net N mineralization and Net Nitrification 

I n  situ net N mineralization and net nitrification were assessed using the buried 

bag method of Eno (1960). Soils were incubated in the field for 35 and 28 days in 

September 2000 and June 2001, respectively. Net N mineralization was defined as the 

difference between the sum of NO3-N and N&-N at initiation and after incubation, while 

net nitrification was the difference for NO3-N alone. Soil samples were kept in plastic 

bags in a cooler for transport from the field to the laboratory. Field moist 0 horizon soils 

were sieved through a 6 mm mesh sieve and mineral soils were sieved through a 2 mm 

mesh sieve. Replicate subsamples (-5g) of field moist soil were used to measure oven- 

dry moisture content (0 horizon soils were dried at 6 5 ' ~  and mineral soils were dried at 

105'~). At the initiation of the experiment, "time zero" subsamples were immediately 

extracted with 100 mL of 2M KC1 (solution to soil ratio d v )  to determine initial NO3-N 

and N&-N concentrations. After incubating in the field, buried soil bags were collected 



and extracted as above. Concentrations of NO3-N and m - N  were determined on an 01 

Analytic Dual-Channel Automated Ion Analyzer at the University of Maine's Analytical 

Laboratory and on a Perstop Flow Solutions 3000 Injection Analyzer at The Institute of 

Ecosystem Studies. 

Laboratory Net N Mineralization and Net Nitrification Incubations 

Net N mineralization and net nitrification were assessed using a 14-day laboratory 

incubation (Hart et al., 1994). Soils were returned to the laboratory and sieved as 

described above for the in situ incubation. A 155.05 g subsample of field moist soil was 

placed in a plastic cup covered with parafilrn perforated for ventilation and then incubated 

in the dark at -22' C for 14 days. A -5g subsample of field moist soil was also used to 

determine oven-dry moisture content and correct for the dry mass equivalent of the 

incubating soils ( 0  horizon soils were dried at 6 5 ' ~  and mineral soils were dried at 

105'~). Soils were then extracted and analyzed as described above. 

Nitrification Potential Assay 

The nitrification potential assay of Hart et al., (1994) was chosen because it 

measures the rate of nitrification in a soil by creating conditions where m - N  is no 

longer the limiting factor, with the assumption that rates of nitrification are then limited 

by the capacity of the nitrifying community itself. Samples were handled according to the 

shaken slurry method described by Hart et al. (1994). A 159.05 subsample of soil was 

taken from each sample and mixed with lOOml of a solution containing 1.5 m M  m+ 
and 1 mM ~ 0 4 ~ -  in a 250-ml flask. Slurries were shaken on a wrist-action shaker for 24 



hours. Approximately one-quarter of the sluny was removed at 2,4,22, and 24 hours. 

These subsamples were then filtered through Whatman #40 filter papers that had been 

previously leached with deionized water to remove any inorganic-N contamination. 

Samples were analyzed for NO3-N on a Perstop Flow Solutions 3000 Injection Analyzer 

at IES. 

Statistical Analyses 

The nitrification potential data was analyzed using a repeated measures design on 

the Statistical Analysis System (SAS System, 1999) with an alpha level of 0.05. The 

statistical design for the laboratory and in situ incubations was a split-split plot among 

treatments, forest types and time. In this design, factor A was the reference East and 

treated West Bear watershed soils, factor B was the hardwood and softwood forest types 

and factor C was time. Analyses were performed separately on 0 horizons and mineral 

soils given the clearly different characteristics of each horizon. All data except the 

nitrification potential required rank transformations and were subsequently analyzed by 

ANOVA on the Statistical Analysis System (SAS System, 1999) with an alpha level of 

0.05. 



RESULTS AND DISCUSSION 

The Importance of Incubation Time in Measuring Potential Net N Mineralization 

Figures 2.1 and 2.2 show net N mineralization grand means for 0 horizon and mineral 

soils respectively, across watersheds and forest types for 7-, 14- and 28-day incubations. 

Data are expressed on a per day basis to normalize for the obvious differences that would 

occur from cumulative results over different incubation times. These data suggest that 

the 7-day incubation results in a mineralization rate distinctly less per unit time with an 

asymptotic decrease in slope to the 14- and 28-day incubation periods for the 0 horizon 

soils (Fig 2.1). The results suggest that using the 7-day incubation in these northern US 

forest soils would likely underestimate potential net N mineralization and given the slope 

of the curve at 7 days, perhaps small differences in substrate quality or environmental 

conditions such as temperature or moisture could have disproportionate influences on the 

results. Although the 28-day results are higher than the 14-day results in the 0 horizon 

soils, the difference between these two longer incubation periods is relatively small and 

the results from both are highly correlated (3 of 0.94) (Figure 2.3). However, the mineral 

soils suggest that a 14-day incubation would also likely underestimate the potential of 

these soils to mineralize N. These results of the 0 horizon soils suggest that either of 

these longer incubation periods might adequately assess N mineralization potential of a 

soil, or that scientific and practical considerations could govern the final choice of 

technique. However, in the mineral soils these data suggest that a 28-day incubation 

would be needed to adequately assess N mineralization potential of a soil. 



Fig 2.1. 

0 DAY 7 DAY 14 DAY 28 DAY 

Organic horizon net N mineralization compartmental means over 7, 14,28 
day laboratory incubations. Error bars represent standard error of the 
mean. 



Fig 2.2. 

0 DAY 7 DAY 14 DAY 28 DAY 

Mineral soil compartmental net N mineralization means over 7, 14,28 day 
laboratory incubations. Error bars represent standard error of the mean. 



Fig. 2.3. 

14day PNNM mg N kg soir'day" 

28 day m 

Fourteen day potential net N mineralization vs. 7 day and 28 day potential 
net N mineralization for both watersheds, forest types and soil horizons in 
September 2000. The 2 of the 14 day vs. 7 day is 0.30; the 2 of the 14 
day vs. 28 day is 0.94. 



Overall, we would suggest that a 14-day incubation be used to minimize the time 

involved in obtaining this type of data, while still assuring adequate incubation times for 

the soil to more fully express its potential for N mineralization by this type of index 

method. Figure 2.3 also suggests that conclusions drawn on 14- and 28-day ( 3  of 0.94) 

results might be nearly interchangeable whereas the correlation to 7-day incubation 

results is much weaker ( 3  of 0.29 between the 7- and 14-day incubations). It is important 

to note that these results are for a single intensive research site, and similar comparisons 

should be conducted across a range of forest and soil types in northern climate forest 

ecosystems to draw conclusions on the best methods to use. 

Potential Net Nitrification, In Situ Net Nitrification, and Nitrification Potential: A 

Methodological Comparison 

All three methods were applied to 0 horizons material and mineral soils fiom the 

BBWM and Table 2.1 shows the means and associated standard error of the mean for 

each method, presented by both watershed and forest type. All three methods showed 

similar significant differences when N-mineralization rates were compared between 

watersheds for both 0 horizon and mineral soils. Each method revealed that N- 

treatments to the West Bear watershed have resulted in higher potential rates of 

nitrification. Differences between forest types were less consistent among the methods 

we used. The in situ method resulted in significant differences in 0 horizons between 

forest types but not mineral soils, while the nitrification potential assay demonstrated 

significant differences in the mineral soils between forest types but not 0 horizons (Table 

2.1). Interestingly, the nitrification potential assay was the only method that detected 



Table 2.1.. Potential net nitrification and nitrification potential for both watersheds 
and forest types by soil horizon (standard errors in parentheses) 
t indicates significance at the 0.05 level for contrasts within either 
watershed or forest type within horizons 

Nitrification Potential (mg N kg soil-') 
Horizon Watershed Forest T m  

East - Hardwood Softwood 

Organic 5.68 (2.12)t 86-26 (1 8.05) 77.74 (19.33) 14.2 (4.59) 

Mineral 9.31 (1.94)t 28.92 (3.31) 12.44 (2.02)t 26.66 (4.07) 

14 day potential net nitrification (mg N kg soil-Id") 
Horizon Watershed Forest Twe 

East - Hardwood Softwood 

Organic 
Mineral 

I n  situ potential net nitrification (mg N kg soil-Id") 
Horizon Watershed Forest T m  

East - West Hardwood Softwood 

Organic 
Mineral 



numerically higher means in the mineral soils of the softwoods compared to the 

hardwoods (Table 2.1). These differences between horizons by forest types has been 

demonstrated for both in situ and 14-day laboratory incubations in a study conducted by 

Shah et al., (2002) spanning a period of two years, and is consistent with the findings of 

others for northeastern U.S. forest soils (Aber et al., 1993; Fernandez et al., 2000; 

Campbell et al., 2000; Finzi et al., 1998). This suggests that the nitrification potential 

assay may be more sensitive for detecting differences, such as between softwood and 

hardwood forest types, which are not readily expressed under less than ideal conditions 

for the relevant microbial communities. It should be noted that all three methods proved 

to be significantly correlated (Table 2.2). 

Table 2.2. Pearson correlation coefficients for 14 day PNN, in situ PNN, nitrification 
potential spanning both collection months (Sept. 00 and June 01). N=40. 
t indicates significance at the 0.05 level. 

14 day 
In situ 

14 day 
In situ 

0 Horizons 
Nitiification 

In silu Potential 

Mineral Soils 
Nitrification 

In situ Potential 
+0.44t +C).76t 

+0.42t 



Verchot et al. (2001) examined the differences between gross and net 

mineralization and nitrification and also compared the sensitivity of lab incubations, in 

situ incubations and the nitrification potential assay in determining functional differences 

in net nitrification between hardwood forest stands dominated by different canopy tree 

species in Millbrook, NY and the Cat'skill Mountains of NY. They found that gross rates 

of N mineralization and nitrification were not good indicators of differences in forest 

types. Furthermore, they reported that net N mineralization and net nitrification, 

particularly the laboratory incubation, proved to be better indicators of differences 

between forest types by using a 14-day incubation technique both in the laboratory and in 

situ. Knoepp and Swank (1995) compared 28-day laboratory incubations to both in situ 

buried bags and in situ incubated cores and found the in situ incubated cores to be 

preferable because they found them to best incorporate site-specific changes in moisture 

and soil temperature. The findings of Verchot et al. (2001) concur with this study in that 

nitrification potential appeared to be more sensitive to diffkrences in forest types than net 

nitrification in laboratory incubations or in situ incubations. 

Although the three methods proved to be significantly correlated, the magnitude 

of the correlation differed between methods and between soil horizons. In the 0 

horizons, the 14-day laboratory incubation and the in situ incubation proved to be best 

correlated, however in the mineral soils, the 14-day laboratory incubation and the 

nitrification potential assay proved to be best correlated out of the three methods used 

(Table 2.2). The differences between the correlation coefficients are likely due to sample 

size and variability between the three methods. 



A clear distinction among the three methods is the mean rate of nitrification as 

shown in Table 1.1. The nitrification potential assay had the highest rates, nearly an order 

of magnitude greater than either the 14-day laboratory incubation or the in situ 

incubation. For the latter two methods, the 14-day laboratory incubation rates were one 

to four times greater than the in situ iricubation rates. The differences in magnitude 

among the three methods were logical, in that the nitrification potential assay supplied 

essentially unlimited N&-N to autotrophic nitrifjmg microbial communities. The 

difference in magnitude between the laboratory and in situ incubations was also expected 

as laboratory incubations take place in well mixed soils and higher temperature 

conditions of a laboratory, in this case 22OC, and without the diurnal fluctuations in 

temperature that would be experienced in situ. Therefore laboratory incubations are 

expected to provide more consistent but overestimated rates of microbial activity during 

the incubation period while in situ soils would be limited by cool night time temperatures 

and perhaps the extreme heat of the warmest of days during the field season. Because of 

these differences, the laboratory incubation may be more effective at detecting differences 

in the incipient N dynamics of sites, whereas in situ incubations are the logical choice for 

estimating actual rates of nitrification. 

A depiction of in situ potential net nitrification (PNN) for the interaction of 

watershed and dominant forest type for both the 0 horizons and mineral soils at BBWM 

is shown in Figure 2.4. The high variability in these data resulted in no significant 

differences among in situ PNN means. West Bear hardwood 0 horizon in situ PNN, 

while not significant, showed a clear numerical trend towards greater rates than all other 

soil-treatment combinations in this experimental design. Both the 14-day laboratory 



incubation and the nitrification potential assay revealed differences among watershed and 

forest type as reported in Figure 2.4. A futher discussion of watershed and forest type 

differences can be found in Shah et al., (2002). 

Nitrification Potential Assay I 

The nitrification potential assay @PA) measures the activity of soil nitrifjmg 

microbial communities by providing ideal conditions for nitrification where the limiting 

factor is no longer NI&-N availability but the nitrifying population itself. Since 

subsamples were taken fiom each soil slurry during the 24-hour incubation period, it is 

possible to analyze the temporal pattern of nitrate production over time (Figures 2.5 and 

2.6). The NPA data confirmed that among 0 horizon soils, those fiom the treated West 

Bear watershed under hardwoods had the highest rates of nitrification and that these rates 

were higher than mineral soil NPA. Shah et al., (2002) concluded these higher rates in 

hardwoods fiom West Bear were due to a lower C/N ratio compared with softwood litter 

but also a lower C/N ratio compared with the East Bear hardwoods due to the increased N 

inputs resulting fiom the amendments. The slope (e-g., the nitrification rate) to the 24 

hour incubation time point was positive suggesting that nitrification would likely proceed 

had the incubation period continued (Figure 2.5). This same pattern is evident in the 

West Bear softwood mineral soils, where the slope of nitrate production over time 

continues to increase. 



EBHO EBSO W H O  WBSO EBMl EESM WI$+M W S M  

Fig. 2.4. In situ potential net nitrification by compartment with standard error of the 
mean. Note: EB - the East Bear watershed; WE3 - the West Bear 
watershed; S - softwood forest type; H - hardwood forest type; 0 - 0 
horizons; M - mineral soils. 



Fig. 2.5. Nitrification potential of hardwood soils over the 24-hour sampling period. 
Note: EB - the East Bear watershed; WB - the West Bear watershed; H - 
hardwood forest type; 0 - 0 horizons; M - mineral soils. Subsamples 
removed for analysis at 2,4,22, and 24 hours after initiation of incubation. 



Fig. 2.6. Nitrification potential of softwood soils over the 24-hour sampling period. 
EB - the East Bear watershed; WB - the West Bear watershed; S - 
softwood forest type; 0 - 0 horizons; M - mineral soils. Subsamples 
removed for analysis at 2,4,22, and 24 hours after initiation of incubation. 



Conclusions 

Results fiom the incubation time trial experiment shows that the 14-day and 28- 

day laboratory incubation periods provided similar and highly correlated estimates of 

potential net N mineralization rates. These incubation times produced notably higher 

rates than the 7-day laboratory incubation period, which may underestimate net N 

mineralization potentials in these northern forest ecosystem soils. Results demonstrate 

that all three methods used to assess net nitrification: 14-day laboratory incubation, in situ 

incubation and the nitrification potential assay showed similar trends brought about by 

either forest cover or the nitrogen treatment. However, the nitrification potential assay 

was the only method that elucidated differences in net nitrification potential between 

forest types, particularly between softwood and hardwood mineral soils. Each of the 

three methods could be suitable choices for determining qualitative differences in N 

dynamics in various settings. Each also has characteristics that could make it the better 

choice depending on the scientific objectives. The 1 4-day laboratory incubation is the 

easiest to perform, and seems particularly well suited for studies of remote sites where a 

single collection or site visit is necessary due to logistics and resources. The in situ net 

nitrification is the clear choice when the goal is estimates of actual rates of nitrification in 

the field. Finally, the less widely used nitrification potential may be more sensitive to 

emerging differences in soil N dynamics and further evaluation of its efficacy and the 

merits of additional incubation periods, is warranted. 
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APPENDIX A 

Nitrogen Mineralization and Nitrification 



Tabir A.1 Net N mnh~erallzrtion (me N kg SOU-' d-') for both watersheds and forest types over U~ne 
(strncinrci al.ors In parentheris) 

14 dny Inb 14  dny Inb 14 day lab 14  dny lnb 14 d ~ y  h b  
brdh Incubation Iir4tn hra~batioll I 1 1 d t  hcubntlon I11dh1 inmbntion In,dtn Incnbnon 

Soil 
Ho14zo1r Stp-00 Stp-00 JIU-0 1 JIUI-0 1 Jul-0 1 Jul-01 Ang-01 Aag-01 Stp-01 Stp-01 

East Btnr 

Wtxt Btnr 

fioNWood 

Hardwood 



Appendix A.2 Net N mineralization (mg N kg soil-' d") for both watersheds by forest types and soil horizons over time 
(standard errors in parenthesis) 

Soil 
Watershed Horizon Forest Type Sep-00 Sep-00 Jun-01 Jun-01 Jul-01 Jui-01 Aug-01 Aug-01 Sep-01 Sep-01 

East Bear Organlc 

Mineral 

East Bear Organic 

Mineral 

West Bear Organlc 

Mineral 

West Bear Organlc 

Mineral 

Hardwood 

Hardwood 

Softwoqd 

Softwood 

Hardwood 

Hardwood 

Softwood 

Softwood 



Appendlx A.3 Net nitrification (mg N kg BOX' d-') for both watersheds by forest types and soil horizons over time (standard errors in parenthesis) 

14 day lab 14 day lab 14 day lab 14 day lab 14 day lab 
b-siru incubation ~n-siru incubatlon I N - S ~ ~ U  incubation I N - S ~ ~ U  lncubatlon b-siru incubation 

Soll 
Watershed Horlzon Forest Type Sep-00 Sep-00 Jun-Ol Jun-01 Jul-01 Jul-Ol Aug-01 Aug-Ol Sep-Ol Sep-01 

East Bear Organlc Hardwood 0.06 0.08 0.06 0.39 0.21 0.08 0 0.03 1.20 0 
(0.02) (0.03) (0.03) (0.35) (0.17) (0.05) (0) (0.03) (0.60) (0) 

Mlneral Hardwood 0.14 0.13 0.06 0.15 0.18 0.16 0.06 0.16 0.08 0.13 
(0.06) (0.13) (0.02) (0.05) (0.07) (0.08) (0.06) (0.13) (0.08) (0.07) 

East Bear Organic Softwood 0.06 0.19 0.08 0.06 0.04 0.17 0.04 0 -0.03 -0.01 
(0.02) (0.09) (0.05) (0.03) (0.03) (0. LO) (0.04) (0) (0.03) (0.01) 

Mlneral Softwood 0.17 0.36 0.10 0.20 0.14 0.28 0.18 - 0.26 0.09 0.15 

(0.05) (0.10) (0.04) (0.09) (0.05) (0.12) (0.1 2) (0.26) (0.05) (0.08) 

West Bear Organlc Hardwood 1.10 4.52 1.78 6.21 1.90 4.00 0.51 2.18 -1.16 0.33 
(0.16) (1.40) (0.64) (0.72) (0.60) (0.64) (0.15) (0.86) (0.12) (0.13) 

Mlneral Hnrdwoocl -0.23 -0.33 0.34 1.07 0.24 0.73 0.18 0.47 0.14 0.27 
(0.46) (1.19) (0.02) (0.14) (0.03) (0.10) (0.03) (0.18) (0.01) (0) 

West Bear Organlc Sortwoad 0.15 0.67 0.48 1.47 0.33 1.22 0.38 0.18 0.14 0.16 
(0.07) (0.37) (0.15) (0.36) (0.19) (0.28) (0.04) (0.04) @OT) (0.21) 

Mlneral Sortwoad 0.25 1.00 0.25 0.81 0.25 1.00 0.25 1.28 0.29 0.67 
(0.06) (0.14) (0.07) (0.23) (0.03) (0.14) (0.06) (0.27) (0.11) (0.05) 



Appendix A.4 Net N mlnerallzation (kg N ha soil-' d-') for both watersheds by forest types and sol1 horlmns over time 
(standard errors in parenthesis) 

14 day lab 14 day lab 14 day lab 14 day lab 14 day lab 
~n-situ lncubatlon [,,-sit,, lncubatlon ~tt-situ Incubation ~ n - s i t ~  Incubation In-situ lncubatlon 

Soll 
Watershed Horizon Forest Type Sep-00 Sep-00 Jundl JukOl Jul-01 Jul-81 Aug-01 Aug-01 Sepdl Sep-01 

East Bear Organic Hnrdwood 0.19 0.28 0.70 0.79 0.44 0.53 '0 0.92 0.12 0.43 
(0.06) (0.06) (0.16) . (0.13) (0.13) (0.08) (0.03) (0.06) (0.06) (0.16) 

Mlnenl Hnrdwood 0.08 0.21 0.06 0.68 0.08 0.29 0.30 0.01 0.01 0.28 
(0.03) (0.06) (0.02) (0.10) (0.06) w e )  (0.03) (0.09) (0.02) (0.09) 

East Bear Organlc SoAwood 0.13 -0.04 0.10 0.29 0.11 0.20 0.05 0.54 0.01 0.07 
(0.06) (0.09) (0.06) (0.09) (0.06) (0.05) (0.03) (0.29) (0.03) (0.09) , 

Mineral Softwood 0.16 0.38 0.08 0.45 0.22 0.63 0.07 -0.58 0.09 0.39 
(0.05) (0.0a) (0.02) (0.08) (0.22) (0.13) (0.01) (0.30) (0.02) (0.15) 

W u t  Bear Organk Hardwood 0.36 1.39 0.54 1.32 0.69 Q.87 0.11 1.21 0.18 0.36 
(0.08) (0.23) (0.22) (0.27) (0.09) (0.19) (0.17) (0.48) (0.19 (0.02) 

Minenl Hardwood -0.11 -0.17 0.13 0.77 0.19 0.32 0.12 0.31 0.03 0.16 
(0.23) (0.58) (0.04) (0.15) (0.07) (0.05) (0.06) (0.08) (0.07) (0.01) 

West Bear Orgnnlc SoRwood 0.49 1.09 0.44 1.06 0.69 1.05 -0.15 1.94 0.35 0.90 
(0.10) (0.08) (0.10) (0.15) (0.11) (0.15) (0.14) (0.74) (0.01) (0.34) 

Mtnenl SoRwood 0.08 0.36 0.07 0.55 0.06 0.36 0.16 0.41 0.09 0.28 
(0.01) (0.08) (0.02) (0.08) (0.01) (0.03) (0.14) ( o w  (0.01) (0.07) 





APPENDIX B 

Soil Moisture 



Appendix B.1. Organic and mineral soil moisture content over time (standard errors in parantheses) 

Soil 
Watershed Horizon Forest Type Percent Initial Moisture 

East Bear Organic Hardwood 200.96 188.01 139.03 68.46 65.27 
(19.88) (32.58) (20.88) (11.81) (7.66) 

Mineral Hardwood 64.35 77.58 55.68 37.33 36.69 
(8.34) (12.90) (4.08) (3.11) (4.37) 

East Bear 

West Bear 

Organlc Solhvood 196.64 158.95 151.66 73.44 46.39 
(14.28) (15.58) (11.65) (4.80) (4.17) 

Mlneral Solhvood 66.97 96.66 87.25 54.84 40.91 
(6.13) (10.11) (7.60) (8.15) (5.52) 

Organic Hardwood 195.82 151.22 80.64 62.03 45.12 
(1 L94) (19.69) (1 1 .SO) (13.06) (8.00) 

Mineral Hardwood 49.06 52.23 41.65 26.55 23.99 
(4.73) (2.11) (2.43) (4.09) (2.60) 

West Bear Organlc Solhvood 218.72 193.64 155.77 100.28 83.65 
(13.71) (8.74) (8.14) (12.19) (6.33) 

Mineral Solhvood 114.83 124.63 104.11 86.47 76.50 
(8.92) (6.70) (5.48) (6.22) (3.48) 
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Correlation Coefficients 





APPENDIX D 

Plot Layout Design 
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