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This thesis monitored the progression of early-stage humification during the 

decomposition of four soil amendments and analyzed the effect of hurnification on 

the copper (Cu) binding capacity of amendment-derived dissolved organic carbon 

(DOC). Amendments chosen for the 8-week incubation were: wheat straw (Triticum 

aestivium L.), crimson clover (Trifolium incamaturn L.), a primary papermill residue 

(PPR), and a primary papermill residue mixed with secondary wastewater treatment 

sludge (PPR+SS). Specific attention was given to the <I kDa, low molecular weight 

(LMW) fraction of amendment DOC as the high solubility and charge characteristics 

of this fiaction likely influence soil processes. Amendments were incubated at 22 "C 

and extracted 6 times over 8 weeks with deionized-distilled water. The LMW fraction 

was separated by pressure filtration through a 1000 MWCO membrane. Molar 



absorptivity was determined at 285 nm, phenolic acid content by the Folin-Ciocalteu 

reagent, and charge density by titration. Fluorescence spectra were determined after 

standardizing carbon concentration to 3 mM. Copper complexation capacity was 

determined on extracts of wheat straw and crimson clover at day 0 and 7 using the 

equilibrium ion exchange method. I 

For wheat straw and crimson clover, early-stage humification progressed 

through an increase in molar absorptivity (A285), phenolic and total charge density, 

and averaged molecular size, and through the polymerization of breakdown products 

as determined through transitions in fluorescence peak locations. The most significant 

humification transitions occurred during the first week of the incubation. A shift in 

fluorescence peak location also occurred within the first week for the LMW fraction 

of amendment DOC. This transition within even the LMW pool demonstrates the 

scale invariance of the humification process. Monitoring humification in papermill 

residues proved more difficult as these materials lacked a significant soluble C pool. 

For wheat straw and crimson clover, DOC extracted both initially and 

following a 7 day incubation desorbed and complexed resin-bound Cu. Interpretation 

of weak, outer-sphere binding was complicated by poor replicability at high solution 

Cu concentrations. Strong, inner-sphere binding was responsible for 0.11-0.55 mmol 

Cu g-' C with the higher values corresponding to LMW extracts. For bulk extracts, 

there was no consistent pattern of increasing binding capacity with increasing degree 

of early-stage humification. For the LMW fraction, the maximum strong Cu binding 

capacity increased with increasing degree of humification. One plausible explanation 

for this difference is that LMW hurnic materials likely contain a greater relative 



percentage of  surface-exposed acidic hnctional groups and experience less geometric 

or steric hinderance to metal binding. Enhanced mobility o f  Cu due to its ability to 

complex with the LMW fraction o f  soluble organic matter may result in increased 

toxicity and runoff or leaching potential. 

I 
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I Chapter I 

LITERATURE REVIEW 

Dissolved Organic Carbon (DOC) 

The aerobic degradation of plant materials occurs through the enzymatic 

oxidation and de-polymerization of tissue components, resulting in the initial 

formation of progressively smaller, more water-soluble molecules (Wershaw et al., 

1996) (Figure 1). Soluble, monomeric products may be taken up by soil microbes for 

maintenance functions, utilized for energy production and respired, adsorb unaltered 

to soil mineral constituents, and/or undergo enzymatically mediated transformations 

that may enhance their solution phase stability. Recognizing this range of potential 

pathways, Guggenberger and Zech (1994a) defined dissolved organic carbon (DOC) 

as the complete pool of soluble compounds ranging fiom little modified plant 

oligosaccharides through recalcitrant lignin-derived materials to fulvic acid-like 

microbial resynthesis products. DOC may also be identified in terms of the practical 

aspects of collection or isolation. Herbert and Bertsch (1 995) operationally defined 

dissolved organic matter @OM) as organic matter passing a 0.45 pm filter, though 

acknowledging that this fiaction likely included some colloidal material. 

DOC is further characterized by a high concentration of acidic functional 

groups included in both aliphatic and aromatic organic acids (Mathur et al., 1993). 

The composition of such groups influences soil pH, nutrient mineralization rates, 

metal complexation, pollutant transport, and both microbial and phyto-toxicity 

(Mathur et al., 1993; Moore and Matos, 1999; Ohno and First, 1997). Cronan et al. 

(1992) determined that not only did acid functional group chemistry affect the above- 



mentioned factors, but that changes in environmental conditions and land 

management practices altered functional group density and acid strength itself. Such 

alterations may in turn arnplifL or ameliorate further changes in pH, mineralization 

rates, and both metal complexation a d  pollutant transfer capacity. Other studies 

(Liang et al., 1996) have suggested that variations in DOC molecular weight affect 

the likelihood of DOC adsorption to soil mineral phases. 

A growing body of work has focused on the initial degradation pathways of 

various organic materials. Through 13c N M R  analysis, Krosshavn et al. (1992) 

concluded that both vegetative source and degree of hurnification affect OM 

functional group distribution. Eijsackers and Zehnder (1 990) and Gressel et al. (1995) 

focused on the decompositional fate of integral plant cellular components (i.e..lignin, 

cellulose, hemicellulose, polysaccharides, lipids, proteins, and hydrocarbons) and 

concluded that there was a significant compositional and degradation rate difference 

between monocotyledonous and dicotyledonous stem and leaf tissues. Sikora and 

McCoy (1 990) conceptualized organic matter degradation as the microbial- and 

leaching-facilitated decomposition of three discrete fractions: (1) a soluble fraction 

composed of low molecular weight (LMW) acids, sugars and cytoplasmic and 

membrane constituents that provides ready microbial substrate, (2) a degradable 

fraction that is stabilized to some degree by protection mechanisms or substrate 

complexity, and (3) a highly stable, recalcitrant fraction that contributes directly to 

SOM. Eiksackers and Zehnder (1990) further noted that while soil fauna generally 

dominate the OM degradation process, direct microbial action was a key factor in 



ago-ecosystems. This heightened microbial role was attributed to the generally lower 

recalcitrance of crop residues. 

Kuiters and Sarink (1 986) observed that the organic-rich leachate produced 

through the degradation of leaf and needle litter was a significant source of the 

dissolved organic matter (DOM) found in soil solution and natural waters. Leenheer 

(1 994) agreed on this likely source, but observed that < 20% of DOM in natural 

waters consisted of identifiable compounds. The remainder was defined as a complex 

mixture of humified environmental residues. While the exact chemical 

transformations involved in humification are poorly understood, the process involves 

the complexation or polymerization of precursor products including lignin, 

microbially synthesized phenols, N-containing amino acids, and plant derived 

secondary metabolites. The humified fraction of soil organic matter contains 

materials of varying solubilities, including the recalcitrant but still soluble fulvic acids 

(FA). Harper et al. (2000) defined FA and HA as composites of smaller molecular 

units including aliphatic and aromatic groups, oils, amino acids, phenols, phenolic 

acids, phenolic esters, fatty acids, alkanes, tannins, and mono-and polysaccharides. 

Phenolic acids are chemically defined by the presence of aromatic rings bearing one 

or more hydroxyl substituents (Kuiters, 1990). A model fulvic acid includes 3 linked 

regions (i.e. altered carbohydrates, lignin residues, and lipid residues) with side- 

chains attaching to the lignin-derived core through aromatic ketonic linkages (Figure 

2). This structure is a product of both hydrolytic and biotic and abiotic oxidation 

reactions. 
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Figure 2. A model hlvic acid. [Wershaw et al., (1985)l 

- In an evaluation of the composting process, Sanchez-Monedero et al. (1 999) 

focused specifically on the recognizable products released during litter decomposition 

that may serve as humification precursors. Within a range of composted materials, a 

significant (p < 0.05) correlation was found between the decreasing solution 

concentration of water-soluble phenolic monomers and increasing humification as 

defined by multiple indices (i.e., humic acid carbon as a percentage of total organic 

carbon (HACITOC), total extractable carbon (HACEXC), and relative to fulvic acid 

carbon (HACFAC)). The plant tissue concentration of water soluble LMW phenolic 

acids is affected by vegetation age, type, and growth rate, soil moisture and nutrient 



content, season, plant stress including the extent of herbivory and nutrient 

availability, the presence or absence of soil microsymbionts, and soil management 

and cultivation history (Homer et al., 1988; Kuiters, 1 990; Northup et al., 1995; 

Siquiera et al., 1991). In living plant tissue, monomeric phenols are considered as 

toxins or mobile defenses, while the polymeric phenols behave as digestibility- 

reducing compounds or immobile defenses (Homer et al., 1988). 

While LMW phenols are water soluble, the majority of phenolic compounds 

are released through the oxidative breakdown of cell wall sugar conjugates during 

litter decomposition. Such compounds may subsequently form recalcitrant 'tanning 

complexes' with plant cellular proteins, a process potentially limiting the availability 

of both phenols and an otherwise labile source of nitrogen. Blurn and Shafer (1988) 

observed that the half-life of soluble phenolics and phenolic monomers was less than 

10 days, demonstrating their degradability by soil microbes. Martens (2000) 

incorporated 7 plant residues of known phenolic acid concentration into a loam soil 

and, following an 84 day incubation, observed that between 16% (soybean) and 69% 

(oat) of the initially present phenolic acids had been mineralized. Sugai and Schimel 

(1993) analyzed the microbial utilization of radio-labeled salicylic (SAL) and p- 

hydroxybenzoic (PHY) acids and observed that a greater percentage of PHY was 

incorporated into SOM (41% versus 17% of SAL) while a greater percentage of SAL 

was respired (77% versus 41% of PHY). Siquiera et al. (1991) concluded that as 

LMW phenolics continuously undergo polymerization, conjugation and degradation 

reactions they should not be thought of as soil solution end products. 



While Sanchez-Monedero et al. (1999) found no significant correlation 

between water soluble carbohydrates and humification indices, soluble sugars are the 

litter fraction most readily decomposed by soil microbes and may significantly affect 

patterns and rates of nutrient release and immobilization (Palm and Rowland, 1997). 

Martens (2000) measured C02 respired during the decomposition of organic 

amendments and found that for a 57 day incubation, C02 evolved was significantly 

correlated to residue carbohydrate content (r = 0.93). Sugai and Schimel(1993) 

concluded from a study of microbial response to 14c labeled glucose and salicylic 

(SAL) and p-hydroxybenzoic (PHY) acids, that microbes selectively incorporated 

glucose into cellular structural materials while metabolizing and respiring the 

aromatic acids. Qualls and Haines (1 992) found a strong correlation (r = 0.83) 

between percent DOC lost during a 134 day incubation and the hydrophilic neutrals 

component of throughfall, litter leachate, stream water and soil 0 ,  A, and B horizon 

DOC. The hydrophilic neutral fraction comprised 10-36% of total DOC for all 

samples and was characterized as G 54% soluble carbohydrate. Herbert and Bertsch - 

(1995) noted that the remainder of this fraction was comprised, in significant part, of 

LMW aliphatic acids. 

Low Molecular Weight DOC 

While approximately 80% of the compounds that comprise DOM cannot be 

definitively identified, operational separations, such as between fhlvic versus hurnic 

acids or hydrophilic versus hydrophobic acids and bases, allow the examination of 

discrete DOC fractions and their interactions with both soil solution and solid phase 

components. One fraction of DOC receiving increased attention is the low molecular 



weight (I 1500 daltons) fraction that includes both organic acids (aliphatic, aromatic 

and amino acids plus siderophores) and simple mono- and oligosaccharides (Homann 

and Grigal, 1992; Harter and Naidu, 1995). Though LMW organic acids (OA) 

comprise 5 10% of total soil solution DOC, their high solubility and metal 

complexation capacity disproportionately affect soil processes (Fox et al., 1990; 

Bergelin et al., 2000). LMW OA play a key role in mineral weathering and soil 

genesis (Huang and Schnitzer, 1986), plant solubilization and uptake of both macro- 

and micronutrients (Nigam et al., 2001), and the alleviation of metal-induced plant 

root and aquatic organism toxicity (Hue et al., 1986). LMW OA are synthesized by 

plants, animals and microbes and are likely building blocks of the structurally 

heterogeneous fblvic and humic acids that have been widely studied in plant extracts, 

soils and natural waters (Stevenson, 1982). LMW OA concentration in the soil may 

range fkom pM to mM and abundance normally follows the sequence aliphatic > 

aromatic > amino acids. Distribution in the soil is influenced by the type and 

abundance of vegetation, soil characteristics including aeration, moisture and clay 

content and the presence and activity of soil microbes (Harter and Naidu, 1995). In 

agricultural soils, OA concentration is also affected by the adoption of management 

practices such as reduced tillage and green manure or compost application (Bolan et 

al., 1994). 

LMW OA range h m  short chain aliphatic acids with weights of 50-60 

daltons to long chain fatty acids with molecular weights approaching 400 daltons. 

The majority of the common LMW OA have molecular weights under 300 daltons 

and may contain both acidic and neutral functional groups (Fox, 1995). Carboxylic 



acids are the most important functional group as they contribute significantly to 

overall acidity and solubility (Fox, 1995). LMW OAs may influence soil chemical 

processes through their ability to complex metals, react with mineral surface 

exchange sites, andlor extend domains of congruent dissolution (Vulava et al., 1997). 

Homann and Grigal(1992) compared:LMW fulvic acids with high molecular weight 

(HMW) humic acids and concluded that LMW acids were both less easily flocculated 

and more effective at binding soil metals into soluble complexes. 

Fox (1995) studied LMW OA release in forest soils and concluded that the 

major OA contributors were root exudates, soil fungi, the leaching of forest floor 

litter, the combined effect of rain and throughfall, and the decomposition of soil 

organic matter. Plant roots exude organic acids in response to nutrient deficiencies 

and bulk organic acid concentrations may reach 15-20 g kg-' root dry weight in the 

soil rhizosphere (Fox, 1995). There are over a dozen OA commonly extracted kom 

leaf litter leachates (Fox, 1999, and the soil under such litter is kequently enriched in 

-the aromatic constituents of the LMW OA pool. In terms of organic matter 

decomposition, plants and soils contain fulvic, humic and long-chain fatty acids, 

polysaccharides, proteins and lignin, all of which may release LMW OAs upon 

breakdown (Homann and Grigal, 1992). Lagier et al. (2000) sequentially ultrafiltered 

a landfill DOC extract and concluded that 47% of the extract weighed I 3000 daltons 

with 43% of that kaction weighmg I 1000 daltons. 

Harter and Naidu (1995) noted that while significant research has focused on 

the interaction between fulvic/humic acids and soil metals, less information exists 

regarding organo-metallic interactions involving LMW OA. The metal complexation 



capacity of an OA is a function of the specific acid present (and thus the relative 

placement of its acidic functional groups), its concentration in solution and the nature 

of the metal-ligand complex formed. Complexes involving 5- and/or 6- member ring 

structures, such as those involving aliphatic di-carboxylic acids, are highly stable 

(Harter and Naidu, 1995). Taga et al. (4 99 1) observed that the strong Cu binding sites 

on a soil solution humic acid were carboxyl sites with weak metal binding occumng 

at both amino and phenolic sites. Lagier et al. (2000) reached a similar conclusion in 

studying Cu chelation by a landfill leachate humic acid. Vulava et al. (1997) 

examined the effect of the LMW chelator DTPA on Cu solubility and concluded that 

Cu-DTPA ligand formation was affected by absolute and relative concentrations of 

Cu and DTPA, soil solution pH and ionic strength and the order of Cu-DTPA 

application (i.e. whether testing the ability of DTPA to solubilize soil-bound Cu or to 

chelate soil solution Cu). Romkens et al. (1999a) fiactionated 0 horizon DOC into 

HMW and LMW components and observed that at a high Cu/C ratio the maximum 

binding capacity was greater for the LMW fiaction than the HMW fiaction (0.45 

mrnol Cu g-' C versus 0.25 mrnol Cu g-' C, respectively). Fox et al. (1990) studied the 

effect of LMW OA addition on Al release fiom a spodic horizon and hypothesized 

that reactions at Al oxide exchange sites would increase the solution concentration of 

Al-ligand complexes. The researchers concluded that, for the sixteen naturally 

occurring organic acids studied, the number of carboxylate groups per OA molecule 

increased fiom one to three as the OA-Al stability constants (log KAI) increased fiom 

0.80 to 7.80. 



Nigam et al. (2001) studied the influence of LMW plant root exudates on 

metal mobilization by modeling the interaction between Cd and a suite of common, 

root derived carboxylic and amino acids. In terms of plant uptake, the Cd content of 

maize roots was almost twice as high under carboxylic acid treatments as under 

amino acid treatments. The researcher$ concluded &at carboxylic acids were more 

effective than amino acids at complexing Cd and that within the carboxylic acids 

tested citric acid complexed more Cd than malic acid. Mench et al. (1 988) studied the 

metal binding capacity of LMW maize root exudates. The researchers concluded that 

the LMW fraction formed stable complexes with Cu, Pb, and Zn and that Cu could 

form both mono- and biscomplexes (i.e. metal + 2 ligands). Young et al. (1982) 

studied Cu chelation by a polyrnaleic acid (PMA) (MW 1200) and concluded that 

there was 1 Cu ion complexed per PMA molecule and that the complex was of the 

form CuLz (i.e. Cu + 2 ligand sites). Evangelou and Marsi (2001) noted that infrared 

spectroscopic analysis of Cu-humic acid complexes revealed bidentate chelation 

involving either two adjacent carboxyl or adjacent carboxyl and phenolic groups, 

Evangelou and Marsi (2001) studied the metal complexation capacity of three 

distinct molecular size fractions of decomposing corn leaves and stalks and observed 

that as fraction molecular size decreased both carboxyl acidity and carboxyl acidity as 

a percentage of total acidity increased. Cadmium (Cd), calcium (Ca) and copper (Cu) 

binding capacities were measured for each size fraction and the researchers concluded 

that complexation strength followed the order Cu > Cd > Ca. This was explained by 

the fact that Cu and, to a lesser extent Cd, formed strong inner-sphere complexes with 

soluble humic materials while Ca formed weak outer-sphere complexes. In terms of 



molecular size profiles, the researchers concluded that for all three metals, at all 

tested concentrations, stability constants increased as fraction molecular size 

decreased. As practical utility of their research they noted that land management 

practices encouraging the application or build-up of organic residues may influence 

soil metal mobility. I 

Copper 

While metal-rich waters and soils may occur naturally, the anthropogenic 

input of metals creates potentially hazardous metal burdens in diverse environments. 

Copper (Cu) is a metal of interest affecting soil and aquatic organisms and plant root 

development (Jarausch-Wehrheim et al., 1996; Parker et al., 1998). Copper exists in 

the soil in multiple forms as it may be adsorbed onto the charged surface of clay 

minerals, bound with amorphous oxyhydroxides of iron or manganese, present in the 

lattice of primary andfor secondary minerals, or complexed with soil organic matter 

(Ponizovsky et al., 1999). Karathanasis (1 999) analyzed the subsurface migration of 

Cu and Zn in agricultural soils and observed that both metals demonstrated increased 

solubility under slightly to moderately acid soil conditions (pH 5-6.5). The 

researchers concluded that this was due, in part, to complexation with DOM. 

Temminghoff et al. (1997) reached a similar conclusion in column leaching 

experiments designed to measure the effect of DOC on Cu mobility in contaminated 

soils. Romkens et al. (1999b) concluded that not only were DOC-Cu complexes 

stable, but that DOC effectively mobilized Cu that was adsorbed to both soil organic 

matter and mineral phases. 



The mean U.S. soil copper burden is 50 mg Cu kg" soil, and may reach, in 

some locations, an order of magnitude higher (Holmgren et al., 199 1). Soil copper 

loading may result from industrial practices, field spreading of sewage sludge or 

agricultural application of fungicides or herbicides. Holrngren et al. (1 991) noted that 

in locations with above average soil Cu concentrations Cu had been commonly 

utilized as a fungicide. Cu-based fungicides, sold as Bordeaux mix (Bm), constitute 

CuS04 and lirne-based sprays. Bm has traditionally been applied as a mildew 

treatment in vineyards, orange groves, and coffee plantations and is now increasingly 

applied to agricultural crops such as potatoes and hops. Treatment is by foliar spray 

and excess Cu is transferred from leaves and fi-uit to the soil. Further transfer occurs 

when leaves, stems or stalks saturated with fungicide decay on the soil surface. Cu 

burdens as high as 1500 mg kg-' soil and 500 kg ha-' have been measured in French 

vineyard and Kenyan coffee plantation soils, respectively (Flores-Velez et al., 1996). 

Moolenaar and Beltrami (1 998) examined Italian viticultural methods and 

observed a mean Bm application rate of 26 kg Cu ha-' yr-' in "organic" vineyards 

versus a 10 kg Cu ha-' yr-' rate in "conventional production" vineyards. They noted as 

explanation that organic growers, in shunning organophosphate-based pesticides, 

often rely exclusively on Bm to combat leaf and h i t  mildew. To model soil Cu 

accumulation the researchers applied a dynamic balance model that accounted for 

metal input, adsorption, and leaching rates. They extrapolated Bm application rates to 

the European soil saturation limit (1 00 mg Cu kg-' soil) under the assumption that 

adsorption reactions controlled the model. Extrapolation for organic vineyards 

suggested that if Cu adsorption significantly exceeded Cu leaching, soil saturation 



could be reached within 13 years. Extrapolation for conventional production 

vineyards suggested a 'time to soil saturation' of 30 years. In terms of the averaged 

permissible groundwater limit of 100 mg Cu (m3)-' the 'time to saturation' for organic 

versus conventional methods was 139 versus >300 years, respectively. Flores-Verez 

et al. (1 996) observed that Bm has been used as a fungicide and bactericide in French 

vineyards since the 1850s and the 'time to saturation' may already have been 

exceeded. Furthermore, the utilization of Bm is increasing across Europe as EU 

directives both encourage the adoption of organic production practices and allow 

higher Bm-derived soil Cu burdens than may occur through the land application of 

sewage sludge. 

Guggenberger et al. (1994b) studied the hydrophobic and hydrophilic 

fractions of soil solution DOC. They concluded that the hydrophilic fraction had a 

higher Cu complexation capacity than the hydrophobic fraction (0.03-0.14 mmol Cu 

mol-' DOC versus 0.01-0.04 mmol Cu mol-' DOC, respectively) and that due to its 

relative soil mobility, the hydrophilic fraction likely played a significant role in metal 

leaching. The authors concluded that as DOM-metal complexation was, in part, a 

metal-* ion exchange process, differences in binding capacity were related to 

differences in hydrophilic and hydrophobic exchange acidities. Calculated exchange 

acidities were 10.6-14.3 versus 8.5-1 1.8 mmol, g-' C for the hydrophilic and 

hydrophobic fractions, respectively. 

Kuiters and Mulder (1 993) utilized a Sephadex-25 column (fractionation 

range 0.1-5 kDa) to measure differences in Cu binding potential between forest floor 

litter and the forest humus horizon. While the Cu binding capacity of the humus 



horizon DOC was greater than the capacity for litter layer DOC (2.6-6.0 mmol Cu g-l 

DOC versus 0.7-0.9 mmol Cu g'l DOC, respectively), Cu binding by the litter 

leachate was still significant. They concluded that as litter layer DOC was dominated 

by LMW compounds, differences in binding capacity were attributed, in part, to the 

relatively larger percentage of non-complexing C compounds (e.g. carbohydrates and 

amino sugars) in fresh litter leachates. Elution profiles were further analyzed to 

specifically correlate molecular size fractions with Cu-binding capacity. The authors 

concluded that the LMW fraction of litter layer and humus horizon DOC extracts was 

responsible for 50-99% versus 30-60% of Cu-binding capacity, respectively. 

Romkens and Dolfing (1 998) operationally defined fulvic acid (FA) as a 

LMW acid (< 3 kDa) with a higher proton binding capacity and greater solubility than 

humic acid (HA) (3-100 ma) .  To study molecular weight differences between FA 

and HA they tested whether the addition of a CaC12 flocculant would affect both the 

molecular size profile of soil DOC and DOC-Cu complexation. Upon addition of 

CaC12 50% of soil system DOC flocculated, suggesting that the HMW HAS were 

precipitating from solution. They concluded that while HMW DOC had a higher Cu 

binding affinity, the LMW DOC had a higher binding capacity (0.45 mmol Cu g'l 

DOC versus 0.25 mmol Cu g-' DOC for the HM W fraction). If results were 

extrapolated to a field scale with a realistic agricultural soil Cu burden of between 5- 

150 mg Cu kg-' soil, they believed that a significant concentration of Cu remained in 

solution even after flocculation-based attempts to precipitate soluble metal 

complexes. Romkens et al. (1999a) cautioned that researchers should not overlook the 

significant role that LMW acids play in the complexation and transport of soil copper. 



Chapter I1 

DOC ANALYTICAL TECHNIQUES 

Molecular Size and Weight: Ultrafiltration 

The availability of membrane filters with defined pore sizes has allowed the 
I 

development of rapid fractionation and concentration techniques for aquatic humic 

substances, soil solutions, and natural waters. A range of filtration membranes exist 

with nominal molecular weight cut-offs (MWCO) between 50 and lo6 daltons. While 

cut-off values are defined in terms of molecular weight, fractionation should be 

considered more precisely in terms of molecular size. Swift (1985) observed that a 

given membrane generally retained 2 90% of spherical, uncharged solute molecules 

greater than its MWCO. Factors influencing retention include molecular 

configuration and both solute-solute and solute-membrane charge interactions. As 

aqueous extracts are filtered under pressure, extract concentration and pressure 

gradients must also be considered (Wershaw and Aiken, 1985). Wershaw and Aiken 

(1985) concluded that the potential for larger-molecular-size breakthrough increased 

concomitant with the increase in retentate concentration and that permeate volume 

should never exceed 90% of initial solution volume. 

Ultrafiltration has been increasingly utilized in the study of the low molecular 

weight components of both plant and soil derived DOC. Mench et al. (1988) used a 

1000 MWCO ultrafiltration membrane to fractionate and characterize maize plant 

root exudates. They concluded that LMW compounds comprised 58% of the soluble 

exudate organic C and that the LMW fiaction consisted primarily of reducing sugars 

(54%) and organic acids (42%) with small concentrations of amino acids (3.0%), 



proteins (0.6%), and phenolic compounds (0.5%). Brumer et al. (1996) fractionated 

an aqueous chestnut leaf litter extract and examined the relative phytotoxicities of the 

4 0 0 0  MWCO (LMW) and >10,000 MWCO 0 fractions. The researchers 

concluded that the LMW fraction neither suppressed barley root growth nor affected 

root tip morphology while the HMW fiaction both suppressed root growth and 

produced root tip deformity at DOC concentrations as low as 5 mg kg-' soil. 

Dell'Amico et al. (1994) performed a similar fractionation on humic substances 

extracted from composted municipal sewage sludge and concluded, conversely, that 

the LMW fraction (-4000 MWCO) had a suppressive effect on both root and shoot 

dry weight while the HMW (>lo00 MWCO) and the "bulk" (i.e. non-ultrafiltered) 

fractions stimulated both root and shoot growth. Meyer et al. (1987) ultrafiltered 

DOC from a blackwater river and examined relative biodegradability of LMW 

(-4000 MWCO) and HMW (>10000 MWCO) fractions. They concluded that while 

-4% of the HMW fraction was microbially degraded, 86% of the LMW fraction was 

utilized as microbial substrate. 

UV-Vis Spectrophotometry + Organic Reagents 

Molar Absorptivity 

Spectrophotometric absorbance at 272-285nm has been used to non- 

destructively analyze marine, riverine, and terrestrial aquatic samples. This 

wavelength range has been explored on the grounds that a-a* electron transitions 

occur within this portion of the W spectrum for both simple (i.e. phenolic acids) and 

complex (i.e. PAHs) aromatic compounds. As some of these compounds may exist as 

either breakdown products of more complex organic substances or as polymerized 
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precursors to humic substances, a measure of 270-285nm absorbance per mole of 

organic carbon in the analyte provides information regarding aromaticity, degree of 

humification andor sample provenance. A further benefit of this technique is that 

nitrate does not absorb at these wavelengths and thus no spectral interference occurs 

due to its presence (Chin et al., 1994). 

Chin et al. (1994) analyzed the molar absorptivity of sedimentary porewaters, 

aquatic fulvic acids, tannin rich surface waters, and a commercial humic acid. 

Calculated molar absorptivity ranged between approximately 60 and 900 L mol OC-' 

cm-' (i.e. spectrophotometric absorbance per cm cell / molar organic C concentration 

per liter) with TOC concentration constrained between 2.5-4.5 rnM C. Lake Michigan 

porewater displayed the lowest, and the humic acid displayed the highest, molar 

absorptivity. The researchers further observed that aquatic fulvic acids originating 

fiom water bodies devoid of higher plant life displayed lower absorptivity than 

aquatic fulvic acids originating fiom water bodies rich in the organic residues of 

-higher plants (1 50 L mol OC-' cm-' versus 250-500 L mol OC-' cm-', respectively). 

For the fulvic acid samples, regression of molar absorptivity (A285) against 

aromaticity (a) as determined by percent C in the 1 10- 160 ppm shift region of 13c 

CPMAS NMR scans revealed a strong correlation ( a  = 0.05(AZa5) + 6.74; 2 = 0.90). 

Traina et al. (1 990) measured molar absorptivity of stock humic acids at 272 nm and 

found a similar strong correlation ( a  = 0.707(~~7~) + 12.626; 2 = 0.88). Chin et al. 

(1 994) recorded a second correlation between molar absorptivity and the averaged 

molecular weight of the fulvic acid samples as determined by size exclusion 

chromatography (M, = 3.99(AZa5) + 490; 2 = 0.97). This strong correlation suggests a 



further relationship between aromaticity and molecular polymerization. Both Chin et 

al. (1 994) and Traina et al. (1 990) concluded that these relationships could be put to 

predictive use as both aromaticity and polymerization of humic materials correlate 

with an affinity for metals and organic pollutants. 

Rostan and Cellot (1 995) utilized the molar absorptivity ratio to detect both 

seasonal and provenance variation in Rhone River DOC. Such use of this ratio was 

initially proposed by Buffle and Deladoey (1 982) and successfully applied to the 

differentiation of terrestrial versus aquatic DOC in eutrophic lakes, ponds and "peaty 

waters." They believed that this parameter was independent of DOC concentration 

but sensitive to structure and concluded that an Azs5 value 510 L (g OC)-' cm-' 

suggested the presence "aquagenic" aliphatic compounds while a value 2 20 L (g 

OC)-' cm-' suggested the presence of "pedogenic" refractory compounds. Rostan and 

Cellot (1 995) reached a similar conclusion, determining that the higher AZ85 value for 

the upper river and feeder streams was due to the dominance of allocthonous DOC, 

while lowervalues for the lower river main axis was attributed to the dominance of 

autocthonous DOC. 

Mathur et al. (1 993) utilized AZ80 as an optical means of testing compost 

maturity. Four farmyard manures were composted for 60 days with DOC extracts 

collected every 7-9 days for photometric analysis. Measured DOC averaged 44 mg 

DOC g - ' ~  dry weight initially, increased during the initial decomposition process and 

then decreased once the thennophilic phase had passed. While absorption for all 4 

manures demonstrated a rapid increase followed by a generally slow decline, the 

authors noted that, though DOC content had decreased, day-60 AZ80 values were not 



significantly different than day-0 values. They concluded that while the bonds 

absorbing at this wavelength were still clearly present, the compounds involved had 

shifted from simple aromatics toward those with more complex, humified structures. 

Absorbance at 625 nm: Anthrone-HzS04 

Brink et al. (1960) applied the colorimetric anthrone reagent to soil organic 

matter to test its reliability as an indicator of soil polysaccharide content. In the 

presence of hexose sugars, anthrone dissolved in concentrated H2S04 produces a blue 

color with an absorption maximum at 625nm. Brink et al. (1960) noted both that 

anthrone could react with non-carbohydrate compounds and that interference from 

aromatic proteins had been recorded. They believed, however, that protein 

interference from soil extracts was generally insignificant. Application of the reagent 

to soils ranging from a prairie silt loam to a New England podzol revealed that 

anthrone-reactive sugars comprised between 3.4 and 8.1% of total soil DOC. Katz et 

al. (1983) concluded that the presence of NO3- at concentrations as low as 20 ppm 

could interfere with absorbance. Martens and Frankenberger (1 990) analyzed the 

potential for ionic strength-related interference and observed that when soil solutions 

were tested with or without prior ion exchange treatment significantly different 

anthrone-reactive hexose concentrations were found. In a study designed to test the 

effects of ion interference on &25, Grandy et al. (2000) applied the anthrone-sulfuric 

acid treatment to both field derived and simulated soil-water extracts spiked with 

known amounts of glucose standard. The researchers concluded both that fractional 

recovery of the glucose spikes was high (78-100%) and that no significant correlation 

was found between spike recovery and solution ionic composition. 



Gallet and LeBreton (1 995) measured anthrone-reactive carbohydrates in 

water extracts of fresh spruce needles and bilbeny leaves and determined that soluble 

carbohydrates comprised 11.6-12.0 % and 7.0-10.8 % of spruce needle and bilberry 

leaf dry matter, respectively. DeLuca and Keeney (1 993) analyzed soluble anthrone- 

reactive carbon (ARC) in soybean straw and sorghum residue incubations as a 

measure of microbially available carbon. ARC at the beginning of the incubation was 

approximately 15 pg g-l soil for both soybean straw (C:N 66: 1) and sorghum (C:N 

8:l) residue. This high concentration was attributed to soluble sugars released during 

initial plant material decomposition. With only one exception ARC remained above 

the background level (4.1 ug g-' soil) for the duration of the experiment in those 

incubations containing either low C:N residue high C:N residue plus glycine. An 

experiment adding cellulose to the test soil revealed that when applied with no 

additional source of N, ARC remained near the background level. When cellulose 

was added with NI&, ARC peaked at approximately 30 ug g-l soil at day 20 before 

falling to the background level by end of the experiment. While initial free sugar 

content was low in both treatments the increasing concentration seen in the +N 

incubations was attributed to the microbially-facilitated breakdown of cellulose into 

anthrone-reactive monosaccharides. In comparing the decomposition of both 

amendments and cellulose the authors believed that initial ARC, when present, 

flushed quickly from plant materials and represented an ephemeral pool of microbial 

substrate. This view was corroborated by Collins et al. (1 990) who concluded from a 

study of wheat straw decomposition that nonstructural carbohydrates disappeared 

within the first 33 days of incubation. 
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Absorbance at 750 nm: Folin-Ciocalteu Reactive Phenolic Acids 

The Folin-Ciocalteu reagent contains phosphomolybdic and phosphotungstic 

acids that are reduced in alkali solution. The reaction produces a heteropoly blue 

color with an absorption maximum at 750nm. Reduction occurs in the presence of 

phenolic hydroxyl groups, cyclic compounds containing either NH or aldehyde 

groups, and the purine and pyrimidine bases. F-C reagent reduction by the latter two 

groups, however, was deemed insignificant in comparison to reduction in the 

presence of phenolic acids (Box, 1983). Reduction may also occur with inorganic 

substances and interference has been observed in the presence of Fe (at > 2 m&), 

Mn (X.3 m&), and s2-(> 30 p&). BOX (1983) fkther concluded that while the F- 

C reagent allowed for good relative measure of the water soluble humic substances in 

leaf and natural water extracts, results varied with the standard chosen. The F-C 

reagent technique has been applied successfhlly in contexts where total phenolic acid 

concentration is more significant than the identification of particular acids. 

Researchers have used it to measure the phenolic acid content of agricultural soils 

(Ohno and First, 1998), forest soil pore waters (Gallet and Keller, 1999), lake and 

stream water (Box, 1983), leaves and needles of both deciduous and coniferous trees 

(Kuiters and Sarink, 1986), tropical legumes (Palm and Sanchez, 1990), leaf litter and 

humus fiom mountain sites (Gallet and LeBreton, 1995) and composted organic 

wastes (Sanchez-Monedero et al., 1999). 

Kuiters and Sarink (1986) analyzed the water soluble phenolic acid (WSPA) 

concentration of leaves and needles collected fiom seven tree species both during 

autumnal leaf fall and after 4 months of decomposition. WSPA content ranged fiom 



2.5 mg TAE (tannic acid equivalents) g-' dry wt for hornbeam leaves to 0.045 mg 

TAE g" dry wt for spruce needles. When samples were collected 4 months later the 

WSPA concentration had fallen to 0.195 mg TAE g-' dry wt for hornbeam leaves and 

was undetectable in spruce needles. Palm and Sanchez (1990) analyzed initial WSPA 

content of leaves collected ffom three tropical woody legumes and calculated TAE 

polyphenol concentrations of between 34.35 mg TAE g" dry wt (Inga edulis) and 

10.42 mg TAE g-' dry wt (Erythrina sp). Polyphenol concentration was significantly 

correlated with initial lignin concentration (p < 0.05). Tian et al. (1992) analyzed 

WSPA concentration of woody perennial (both N2-fixing and non Nz-fixing) and 

herbaceous (N2-fixing) cover crop leaves. WSPA concentration (TAE) ranged 

between 15 mg g'l dry wt (herbaceous N2-fixer) and 53 mg g-' dry wt (woody non N2- 

fixer) and was not correlated with initial lignin concentration. Sanchez-Monedero et 

al. (1 999) analyzed the WSPA concentration of 6 compost mixtures on the grounds 

that WSPA concentration would be sensitive to the chemical transformations that 

occur during composting. Samples were collected over a 5 month interval and 

analyzed for WSPA using p-coumaric acid as the standard. Initial WSPA 

concentrations ranged between 2.3 mg g-' dry wt. (municipal solid waste + sorghum 

bagasse) and 4.4 mg g-ldry wt (sorghum bagasse + pine bark + urea) and fell 

throughout the incubation, ultimately equaling 4 . 0  mg g-l dry wt. for all compost 

mixtures. 

Blum et al. (1 991) analyzed the phenolic acid content of a soybean cropped 

sandy loam soil under different management practices (wheat-no till, wheat- 

conventional till, and fallow-conventional till). Total WSPA content was determined 



using the F-C reagent (ferulic acid as the standard) and regressed against HPLC 

determination of 7 common plant tissue phenolic acids. The researchers calculated F- 

C reagent WSPA concentrations of between 50-250 pg g-l soil and when regressed 

against HPLC data, concluded that the F-C reagent overestimated WSPA by a factor 

of 16 (WSPAHPLC = -0.3536 + 0.0795'WSPAFc; 3 = 0.87). The researchers noted that 

a similar overestimation had been found between the two methodologies in a sandy 

loam soil cover cropped with crimson clover, hairy vetch, rye, and subterranean 

clover. Cilliers et al. (1990) analyzed the chlorogenic and caffeic acid concentrations 

of apples and cider and reported an average F-C overestimation factor (relative to 

HPLC) of 13 ( 3  = 0.99). Whitehead et al. (1982) used HPLC to measure the 

concentration of common phenolic acids extracted fiom herbaceous root tissues of 14 

plant species. WSPA concentrations ranged between 45 pg g-' soil organic C 

(Equisetum antense) and 450 pg g-' soil organic C (Ranunculus repens) (with 1.7 % 

and 2.1 % soil organic C, respectively). Whitehead et al. (1983) further measured the 

phenolic acids extracted fiom woody and herbaceous plant roots plus beejch leaf litter. 

WSPA concentrations for the root samples ranged fiom 50 pg dry matter 

(unspecified pasture grass) to 370 pg g-' dry matter (-4grostis stolonifera) with a 

concentration for fallen beech leaveb of 74 pg g'' dry matter. 

Fluorescence Spectroscopy 

Fluorescence spectroscopy is a powerfhl tool for probing the chemical 

structure of both humified and simple organic materials. The technique requires little 

sample preparation, minimizing the potential for sample alteration through extraction 



or stabilization procedures, and is sufficiently sensitive to permit examination at 

environmentally relevant concentrations (Miano et al., 1988). The fluorescence 

phenomenon is the result of the immediate radiative dissipation of energy following 

molecular excitation. Radiation typically occurs at a slightly longer wavelength than 

the initial absorption as some energy is inevitably lost through vibrational absorption 

(Senesi, 1990). The wavelength of both absorbed energy and its re-radiation are 

specific to individual molecular energies and this specificity provides information 

regarding the source and structure of the excited molecule. 

Fluorescence interference may result from the colloidally-mediated scatter of 

incident light (Tyndall scatter), immediate (lo-'' s) re-emission of absorbed light due 

to incomplete electronic transition (Rayleigh scatter), and/or vibrational effects seen 

in conjunction with Rayleigh scatter when working with dilute solutions (the Raman 

effect) (Senesi, 1990). Compounds that fluoresce with measurable intensity are either 

unsaturated aliphatics capable of a high degree of resonance or aromatics or other 

closed-ring compounds (Visser, 1983; Miano et al., 1988). Fluorescence intensity - 

may be altered by functional group substitutions, by complexation reactions with 

paramagnetic metals that quench fluorescence, by changes to molecular structure 

brought about by changes in pH, ionic strength, or temperature of the medium, or 

through solute-solvent interactions (Senesi, 1990). 

Ghosh and Schnitzer (1980) analyzed the effect of altering pH and ionic 

strength on fluorescence spectra garnered from soil humic acids. They observed that 

as solution ionic strength increased from 1 mM to 100 mM, relative fluorescence 

intensity decreased. They concluded that at low solution ionic strength fluorescence 



intensity is enhanced because molecules present are flexible and uncoiled. When the 

researchers incrementally increased pH fiom 2.0 to 9.5, fluorescence intensity also 

rose steadily. Below pH 7.0 the authors believed that increased intensity resulted fiom 

the ionization of available electron withdrawing functional groups. Above neutrality 

the ionization of semi-quinone type structures increased solution free radical 

concentration and enhanced fluorescence intensity. Blaser and Sposito (1987) 

analyzed the effect of pH on the fluorescence intensity of a chestnut leaf litter extract 

and concluded that relative intensity was highest at pH 5.0. Tam and Sposito (1993) 

observed the same relationship in their analysis of both the gentisic acid standard and 

an aqueous pine litter extract. They correlated this maximum with an increased 

deprotonation of phenolic acids, stating that this occurs at a lower pH (between pH 3- 

5) in the molecularly excited state than in the ground state. Senesi et al. (1991) 

concluded that due to the complex, heterogeneous nature of humic substances the 

observed fluorescence fingerprint should not be used as a diagnostic tool for 

identifjmg specific, individual humification products, but rather to aid in 

differentiating source and molecular characteristics by probing cumulative structure. 

Fluorescence spectra may be generated in various modes: (1) emission spectra 

collected by fixing the excitation wavelength and observing emission peaks over a 

wavelength range, (2) excitation spectra collected by varying the excitation energy 

and observing emissions at a fixed wavelength, (3) synchronous scan spectra obtained 

by optimizing the distance between the emission and excitation wavelengths (thus 

minimizing the peak interference that occurs within complex mixtures), and scanning 

over a wide wavelength range, and (4) excitation-emission matrix (EEM) spectra that 



generate 3 dimensional contour plots by simultaneously scanning all excitation and 

emission pair possibilities within a proscribed wavelength range. EEM spectra offer 

maximum information in that they contain all possible transect lines drawn using 

modes 1-3 (Yang et al., 1994). 

Visser (1983) studied humifidation by examining molecular weight and 

functional group related changes in fluorescence spectra. He examined hlvic and 

humic acids of aquatic origin and compared them with humic materials of bacterial 

origin. He determined that lower molecular weight fractions displayed greater 

fluorescence intensities than higher molecular weight fractions and absorbed at 

shorter, more energetic wavelengths. He further determined that fluorescence 

intensity appeared more correlated with fundamental aromatic structure then with the 

presence of particular hnctional groups. Major excitation peaks (I,) were found 

within two designated ranges: I with an average wavelength of 334 f 7 nm and I1 with 

an average wavelength of 415 f 20 nm. Only one major emission peak (k,,,) was 

- detected, a broad, poorly defined peak located between-370 and 550 nm. With respect 

to molecular size fractions, he observed that while excitation wavelengths varied by 

as little as 2-4 nm between size fractions, higher molecular weight emission 

wavelengths were 25 nm and 100 nm longer than lower molecular weight emission 

wavelengths for microbial material and aquatic hlvic/humic acids, respectively. 

Miano et al. (1988) analyzed nine hlvic or humic acids extracted from both 

terrestrial and aquatic sources. They concluded that while the excitation spectra of 

hlvic acids varied significantly by source, spectra of the hurnic acids displayed little 

variation. They further observed that humic acid emission spectra were of a lower 



intensity and at a longer wavelength, resulting, they believed, from the relatively 

more condensed ring structure of humic acids. At Lx = 320 nm they observed an 

average hlvic acid Lrn of 447 +lo  nm versus an average hurnic acid 1, of 500 + 17 

nm. Senesi et al. (1991) analyzed 50 samples of hlvic and hurnic acids isolated from 

soils, composted organic materials, sewage sludges, and h g a l  synthates. They 

observed the same relatively lower intensity and longer 1,, of the humic acid samples 

and concluded these features were associated with the increase of linearly-condensed 

aromatic ring structures bearing carbonyl or carboxyl groups. The shorter A, and 

higher intensities observed for the composts and hlvic acids were associated with the 

presence of structurally simpler components with lower levels of aromatic 

condensation. The presence of hydroxyl, methoxyl or amino substituents was also 

thought to enhance fluorescence intensity. 

Erich and Trusty (1997) extracted DOC from soil organic horizons collected 

from 9 forested sites and generated EEM spectra for each sample. All spectra 

displayed a-peak with Lx between 320-348 nm and h, between 436-458 nm. This 

peak corresponds to the hlvic acid peaks described by Senesi (1990) and Miano et al. 

(1988). Two secondary peaks were also observed, one with hex/Lrn = 250-2601436- 

458 nm and the second with Lx/h, = 2801338-345 nm. Coble et al. (1990) observed 

a peak at Lxlh, = 2801325-45 in an extract of marine DOC and concluded that it 

displayed tryptophan-like fluorescence. Tryptophan, an aromatic amino acid, exhibits 

intensity maxima at L I h ,  = 2871348 and is responsible for 90% of total protein- 

related fluorescence (Wolfbeis, 1985). Ohno and Cronan (1997) found a similar peak 

(kxlLrn = 271-2771336-345) in their examination of corn residue DOC and also 



attributed it to tryptophan. Brunner et al. (1 996) studied the low molecular weight 

fiaction (4000  daltons) of an aqueous chestnut leaf litter extract and observed 

fluorescence peaks at both Lxlh, = 2751325 and hex/hem = 330/440. They attribute 

the first peak to either tyrosine or tryptophan and the second to simple phenolic 

compounds (phenols, coumarins or fla'vonoids). In their study of corn residue DOC, 

Ohno and Cronan (1997) further noted the presence of a fluorescence peak at hexlLm 

= 3 13-3161435-444. Yang et al. (1994) observed a similar peak in their study of 

ponderosa pine needles. Ohno and Cronan (1997) defined peaks of this approximate 

wavelength as being of fulvic-like material. They noted that while DOC extracted 

fiom fresh residues was not truly fulvic (not having gone through the degradation and 

microbial reworking that constituted humification), both its spectra and response to 

XAD resin treatment suggested a fulvic-like nature. 

Zsolnay et al. (1999) proposed a humification index (HIX) (i.e. HIX = C I(435- 

480)/ C 1 (300-345)) based on the relative fluorescence of two well-defined regions 

analyzed at hex = 244 nm. Region 1, defined by emission wavelengths in the 300-345 

nm range, corresponds to the shoulder of fluorophore A. Region 2, defined by 

emission wavelengths in the 435-480 nrn range, corresponds to the shoulder of the 

unidentified fluorophore B. The authors compared soil extracts with extracts prepared 

fiom both soil FA and microbial cell lysis products. A graphical presentation of their 

results highlighted three distinct pools with H E  values ranging between 2-7 for lysis 

products, 7-12 for soil DOC, and 13-16 for FA. This distinction corresponded to a 

decreasing relative intensity of the aromatic amino fluorophore concomitant with the 

increasing relative intensity of the unidentified fluorophore. Cox et al. (2000) utilized 



HIX to examine DOC extracted fiom organic amendments and soils. Humification 

index values ranged fiom approximately 1 for liquid- to 20 for solid- olive-mill waste 

sludge extracts. Humification index values for solid urban waste, sewage sludge, and 

soil DOC extracts ranged fiom 5-8. The authors concluded that the low H E  value for 

liquid mill waste resulted fiom the relatively high percentage of non-humified 

components. As the effect of pH on HIX proved the most significant for the solid mill 

waste, the authors concluded that the high carboxyl charge density of this material 

was a product of its humified state. 

Ohno (2002), redefined this equation as HIX = C I (435-480)/ C I (300-345)+(435-480), 

recognizing that this rendered the equation less sensitive to changes in the intensity of 

the amino fluorophore. As this peak is the product of a labile component, its 

degradation has the potential to overwhelm what smaller intensity transition occurs 

with the other index fluorophore. This correction generates HIX values in the range of 

0-1, and while dampening the magnitude of progression observed using the traditional 

formula, more specifically addresses the changing nature of both index fluorophores. 

Ohno subsequently examined aqueous extracts of field corn residue, soil DOM and a 

purified soil fulvic acid (FA). HIX values using the tradition formula evolved from 

2.1 to 6.5 to 28.5 for corn, DOM and soil FA, respectively. When re-calculated 

according to the redefined equation, results evolved over the range 0.57 to 0.84 to 

0.94. Fluorescence scans generated at an excitation wavelength of 254 nnl showed 

that (1) aromatic amino N was only clearly identifiable for the corn residue extract 

and (2) the undefined peak was distinctly visible only in DOM and FA extracts. 



DOC-Metal Complexation 

Many techniques exist for studying the metal complexation capacity of natural 

waters, plant leachates, soil solutions, and composted wastes. Each technique has 

both its strengths and limitations. Researchers have used potentiometric titrations 

coupled with ion selective electrodes (Stevenson et al., 1993), the relative quenching 

of fluorescence chromophores (Yang, 1994), metal-saturated Sephadex gels (Kuiters 

and Mulder, 1993), rhizotoxicity and plant tissue analysis (Nigam et al., 2001), 

ultrafiltration (Mulligan et al., 1999), equilibrium dialysis (Berggren, 1989), and 

batch complexation studies designed to measure both conditional stability constants 

('K) and metal binding capacities (L) (Luster et al., 1996). Problems for various 

techniques may arise involving the detection limitations of the electrode, fluorescence 

interference resulting fiom solution ionic strength or DOC concentration, hydrogen 

bonding to the chromatographic gel, or inadequate system equilibration time. 

Luster et al. (1994) modified the equilibrium ion exchange method (EM) to 

measure copper complexation by chestnut leaf litter DOC. This technique uses a 

strong cation exchange resin to examine the competing equilibrium between resin- 

metal and DOC-metal complexes. The authors demonstrated that at low solution ionic 

strength the technique could be successfully employed over a wider range of 

experimental parameters by including the nonlinear portions of adsorption isotherms 

in their analyses. They concluded that if the concentration of solution-bound metal 

(i.e. in DOC-metal complexes) relative to solution fiee metal (i.e. in aquoion or 

hydroxo complexes) was plotted versus solution bound metal [(M&Af) versus (MI,)] 



the shape of the plot both suggested the nature of the metal-ligand complex formed 

and allowed the calculation of 'K and L. 

Various resins have been used for EIM and system equilibration times vary 

with resin type. Luster et al. (1994 and 1996) believed that 24 and 60 hours were 

required for leaf litter DOC to equilibrate with Cu bound to Serdolit CS2 and BioRad 

AG 50W-X8 resins, respectively. Taga et al. (1991) studied Cu equilibration between 

a peat humic acid and Sephadex C-25 sulphopropyl resin and concluded that it could 

be reached in less than 1 hour. Romkens et al. (1998) addressed potential competition 

for [ C U ] ~  between the resin and the experimental stock solution and concluded that 

at pH 6.0 less than 1% of [CU],,~~ would occur in inorganic complexes (i-e. as 

CUNO~+ or CuCOs). Further factors to consider include the potential for DOC 

sorption to the resin and poor equilibration due to ionic strength effect.. While 

Werner (1 987) concluded that solution ionic strength did not significantly influence 

he did observe that analytical precision increased as solution ionic strength 

- decreased from 1.0 M to 10 rnM. Buflle et al. (1980) concluded that with pH 2 6.0 

and a total interfering cation concentration o i <  0.05M, competition for ligand 

binding sites was negligible. Luster et al. (1 994) addressed ionic interference by 

setting the background solution ionic strength to 0.01 M and desalting the leaf litter 

extract on an H+-saturated cation exchange resin prior to EIM analysis. In examining 

the potential for leachate sorption they measured DOC concentration both prior to and 

following H+ resin treatment and concluded that resin DOC retention was < 5%. 

Other studies of resin-DOC interactions have calculated sorption concentrations of 

3% in a forest soil solution (Guggenberger et al., 1994b), 5% in a forest soil 0 



horizon and 15% in a corn residue extract (Ohno and Cronan, 1997). The results of 

Ohno and Cronan (1 997) suggest that a desalting pre-treatment for fiesh crop residues 

could alter bulk DOC composition and thereby affect experimental results. 



Chapter I11 

OBJECTIVES 

1. To seek evidence for the occurrence of early-stage humification during the 

decomposition of select soil amendments. 
I 

2. To determine whether amendment-derived DOC is able to desorb and 

complex resin-bound copper (Cu). 

3. To determine what affect early-stage hurnification has on the Cu desorption 

and complexation potential of amendment-derived DOC. 



Chapter IV 

MATERIALS AND METHODS 

Amendments 
I 

An 8-week incubation was conducted using 4 potential soil amendments: 

wheat straw (Triticum aestivium L.), crimson clover (Trifolium incarnatum L.), a 

primary papermill residue (PPR), and a primary papermill residue mixed with 

secondary wastewater treatment sludge (PPR+SS). Wheat straw was collected fiom a 

Kansas farm in the autumn following grain harvest. All aboveground components 

were collected, dried at 60' C, ground to pass a lrnm sieve, and stored in a sealed 

container at room temperature until use. Crimson clover was grown at Rogers Farm, 

Stillwater, ME and was prepared and stored following the same protocol. Papermill 

residues were stored at 5' C in air-tight containers and were dried and ground under 

the same protocol prior to use. The papermill residues were both classified as 'low 

metal and low dioxin' and were produced in two New England mills (Andrew 

Carpenter, personal communication). Wheat straw, crimson clover and papemill 

residues were chemically analyzed for C and N using a Leco CN2000 Analyzer. 

Cations (Al, Ca, Fe, K, Mg) were measured with an ICP-AES (Model 975 Plasma 

AtomCorp or TJA-IRIS 1000) following dry ashing and HC1 dissolution of the ash 

(Miller, 1998). Lignin, cellulose, and ash content were determined by the method of 

Goering and Van Soest (1970) (Table 1). 

Because initial C:N ratios for the 4 amendments ranged between 12:l 

(crimson clover) and 300: 1 (primary papermill residue), NH4N03 was utilized to 



Table 1. Selected chemical characteristics of amendmentsP 
Amendment C:N carbon nitrogen lignin cellulose ash 

(%) 
Crimson Clover 12 43.7 (0.02) 3.65 (0.02) 4.19 (0.13) 17.5 (0.21) 0.15 (0.07) 
Wheat Straw 100 44.0 (0.04) 0.44 (0.00) 5.13 (0.07) 33.5 (0.42) 2.75 (0.16) 
PPR+SS~ 63 34.5 (0.1 1) 0.55 (0.00) 8.37 (0.98) 43.7 (0.28) 10.43 (1.12) 
PPR' 303 33.3 (0.04) 0.11 (0.00) 4.33 (1.20) 63.7 (0.49) 14.03 (1.12) 

Ca Mg K P A1 

Amendment mg kg" 

Crimson Clover 12850 (71) 3210 (14) 18500 (0) 1885 (0) 243 (12) 
Wheat Straw 1900 (57) 994 (37) 93 80 (540) 249 (1 1) 50 (2) 
PPR+SS~ 57450 (490) 1600 (0) 73 1 (27) 2025 (7) 23250 (500) 
PPR' 1035 (21) 968 (3) 307 (13) 247 (3) 34300 (140) 
blues  presented are mean values for two replicates * (one standard deviation) 
bprirnary Papermill Residue + Secondary Sludge 

'Primary Papermill Residue 



adjust the C:N ratio to 40: 1 for wheat straw and both papermill residues. To address 

the initial disparity in amendment P and K content, both the wheat straw and the 

primary papennill residue received KH2P04. This nutrient solution equalized P 

concentrations (10.1 f 1.4 mg P g-l substrate C) across all amendments and roughly 

equalized the K concentration between wheat straw and clover (69.3 f 22.4 mg K g'l 

substrate C) and between the primary and secondary papermill residues (8.9 f 6.6 mg 

K g-' substrate C). N, P and K were monitored throughout the incubation, and both 

the primary and secondary papermill residues received 1.77 mL of 0.4 M NH4N03 + 

0.2 M KH2P04 solution during the sth week of the incubation. 

Decomposition Incubations 

Incubations were carried out in 250 mL polyethylene screw-top bottles. Acid 

washed silica sand (80 g) was mixed with 2.55 g of soil collected at the Rogers 

experimental farm plus amendment at a concentration of 2.0 g C incubation bottle-'. 

Mixed sand, amendment and soil were moistened to 20% by weight with either D.I. 

H20 or, when necessary, D.I. H20 mixed with the appropriate nutrient solution. 

Bottles were capped, shaken to ensure thorough mixing and maintained loosely 

covered in a 22 "C incubator for the duration of the experiment. Bottles were 

removed fiom the incubator, weighed every 2-3 days, and remoistened if necessary. 

There were 10 bottles, i.e. 2 replicates of 4 amendment plus two blanks (sand plus 

soil with no amendment), with the initial extraction (time 0) involving 10 separately 

prepared bottles that were destructively sampled. This method allowed for the 

quantification of initially available DOC without necessitating its removal fiom the 

bottles used in the 8 week incubation. 



Sampling 

At days 7, 14,28,42, and 56, bottles were removed from the incubator and 

prepared for extraction by the addition of 125 mL D.I. H20. Bottles were shaken for 

30 minutes on a wrist action shaker, allowed to stand for 30 minutes, and centrifuged 

for 30 minutes at 3600 min-'. Supem&.nt was vacuum filtered (90 kPa) through 

Nylaflo 0.2 pm nylon membrane filters. Material collected on the filters was removed 

and returned to the incubation bottles. To return the bottles to proper weight/moisture 

conditions following sampling, they were left uncapped in the incubator for 12-1 6 

hours. If post-sampling moisture content was greater than 15% (by weight) above 

pre-sampling bottle weight, bottles were placed in a 35 OC convection oven to speed 

the drymg process. Time in the oven never exceeded 4 hours and was restricted 

mainly to the primary paper mill residue. Bottles for the time 0 extraction were 

prepared as for the 8 week incubation, allowed to stand for 30 minutes and extracted 

following the same protocol. 

Supernatant Analysis 

Supernatant was refrigerated immediately upon collection and all analyses 

were conducted within one week of extraction. Immediate analyses included 

measuring pH (Ross combination electrode), electrical conductivity (VWR Scientific 

Model 2052 conductivity meter), and TOC (Shimadzu TOC-500). Carbon analysis 

was conducted using potassium hydrogen phthalate as the standard. Standard 

concentrations were 10 and 100 ppm C and standards were run following each 

extraction interval prior to sample analysis. The mean coefficient of variation for 

analytical standards over the 6 sampling intervals was 1.1 % ( f 0.6%) for 100 ppm C 



and 16.0% ( f 8.9%) for 10 ppm C. A 5 mL aliquot of each aqueous extract was 

diluted to 3 mM C and absorbance at 285 nm was measured on a Bausch and Lamb 

Spectronic 2000 spectrophotometer. Deionized-distilled water was used to both 

calibrate the instrument and to monitor analytical consistency during sample analysis. 

Instrument drift during analysis was hegligible. Cations (Al, Ca, Fe, K, Mg) and P 

were measured with an ICP-AES (Model 975 Plasma AtomCorp or TJA INS 1000), 

and N&+ and NO3- with a Lachat Auto-Analyzer (QC values in Appendix A). 

Five 10 mL aliquots of each aqueous extract were pressure filtered (using N2 

gas at 350 kPa) through a 10 mL Diaflo stirred cell fitted with a YMl 1000 MWCO 

ultrafiltration membrane. Filtration efficiency can be compromised by the over- 

concentration of the solution retentate, and filtration was deemed operationally 

complete when 60% of each 10 mL aliquot had passed through the cell. A 10 rnL 

aliquot of both ultrafiltration permeate and the bulk (i.e., not ultrafiltered) extract 

were subsequently analyzed fluorimetrically (Hitachi F-4500 fluorimeter) to examine 

aromatic moeities. Analytical preparation involved standardizing each sample in 

terms of carbon concentration (3 mM), ionic strength (10 mM using KCl) and pH 

(5.5). Samples containing less than 3 mM C were not analyzed. Excitation-emission 

matrices (EEM) were generated for each aliquot to allow examination of aromatic 

peak location and variations both over time and between amendment in peak 

intensities. Instrumentation parameters were: EX and EM slits, 5 nm; response time, 8 

s; and scan speed, 1200 nm min-'. 

A 10 mL aliquot of the bulk sample and the ultrafiltration permeate was 

analyzed for both soluble phenolic acids and soluble hexose sugars. Soluble phenolics 



were analyzed using the Folin-Ciocalteu (F-C) reagent with ferulic acid as the 

standard (Blum et al., 1992). Five mL of each aliquot plus 0.75 mL of 1.9 M Na2C03 

and 0.25 mL of the F-C reagent were pipetted into a test tube, shaken, allowed to 

develop in darkness for 1 hour and analyzed at 750 nm using a Bausch and Lomb 

Spectronic 2000 spectrophotometer. Soluble sugars were analyzed using the 

anthrone-sulfuric acid procedure with glucose as the standard (Brink et al., 1960). 

The anthrone reagent was mixed with reagent grade H2S04 at a concentration of 0.2% 

(wIv) and allowed to stand in darkness for 1 hour. Ten mL aliquots of this mixture 

were pipetted into test tubes containing 5 mL aliquots of aqueous extract, shaken on a 

vortex shaker, allowed to develop in darkness for 30 minutes and analyzed at 625nm 

on a Bausch and Lomb Spectronic 2000 spectrophotometer. The linear range of the 

standard curves for both ferulic acid and glucose were between 3 mM and 7 mM C. 

Microbial Respiration 

In a set-up identical to that used in the decomposition study, 250 mL 

polyethylene bottles were prepared containing acid-washed sand, amendment, soil, 

and 20% by weight D.I. H20 (f nutrient solution as required). Two blanks (sand plus 

soil plus water without amendment or nutrient solution) were included in the 

experiment to allow correction for native soil organic matter induced respiration. All 

polyethylene bottles were placed uncapped within ?4 gallon Mason jars and jar tops 

were covered with Parafilrn prior to securing lids to improve sealing quality. Glass 

vials containing 10 mL of 2M NaOH were suspended within the Mason jars and 

removed every 3-4 days to determine C02 evolved. Remaining OH- was titrated with 

0.5 N HCl in the presence of 1.5 M BaC12 using phenolphthalein as the indicator 



(Zibilske, 1994). The 0.5 N HCl was standardized with Na2C03 (Skoog and West, 

1969). During each titration period the polyethylene bottles were weighed, moisture 

contents were corrected and the bottles were left open to allow 0 2  replenishment. 

Following weekly DOC extraction at the same time intervals used for incubation 

sampling, bottles were returned to prbper weight using the method outlined for the 

decomposition study. The bottles spent a maximum of 16 hours per week outside of 

the Mason jar (i.e. with no CO2 being trapped). 

Metal Complexation Capacity and Charge Density 

Sample Preparation 

Based on an assessment of DOC concentration and extract properties, wheat 

straw and crimson clover were chosen for an examination of Cu desorption potential 

of the organic ligands present in the plant residues, both initially and after a 7 day 

incubation. Initial C:N ratios were corrected in the same manner as during the 8 week 
w 

incubation, with N&N03 utilized to lower the C:N ratio for wheat straw to 40: 1. 

Phosphorous and K concentrations were not equalized between amendments due to 

the short length of the incubation. Dissolved organic carbon (DOC) was collected 

from both amendments at time 0 following the methodology already outlined. Seven 

day incubations were carried out in 250 mL polyethylene screw-top bottles following 

the already defined protocol and DOC was collected from each incubation bottle as 

described. Aliquots of the supernatant collected at both time 0 and following the 7 

day incubation were pressure filtered as described to collect the low molecular weight 

(-4000 MWCO) fraction. Both the bulk extract and the ultrafiltration permeate were 

analyzed for cations (K, Mg, Ca, Na), P, and inorganic N as described previously. 



Acid-Base Chemistry 

Potentiometric titrations were conducted using the method outlined by Ohno 

and Cronan (1997). Titrations were conducted in a Plexiglas capped, glass reaction 

vessel maintained at a csnstant 25.0 f 0.1 ' C. A Ross combination electrode was 

standardized at pH 4.0 and 10.0 using buffers held at the same constant temperature. 

Extracts were diluted to either 10 or 20 m M  C in 50 mL total solution volume using 

C02-free D.I. H20. Extract ionic strength was standardized at 10 mM using 1.0 M 

KCl. To hrther minimize C02 contamination extracts were bubbled with a steady 

stream of N2. Prior to titration, solutions were brought to pH 3.0 using HCl and 

allowed to equilibrate for 15 minutes under N2. Titrations were undertaken with 0.048 

M standardized NaOH dispensed in either 0.1 or 0.05 mL aliquots depending on 

solution C concentration. A 50 mL solution of 0.0 1M KC1 adjusted to pH 3.0 was 

titrated over the experimental pH range (3.0-1 1 .O) and used as a blank correction. All 

titrations were conducted in triplicate. 

Extracts were titrated between pH 3.0-1 1.0 to assess total charge density. 

Carboxyl charge density was defined operationally as that fraction of titratable acidity 

below pH 5 7.0. This operational definition is due to the difficulties inherent in 

recognizing equivalence points for DOC extracts. An average ionization constant was 

determined for each extract using the method of Albert and Serjeant (1989) and 

explicitly correcting for titration outside the range of pH 4.0-10.0. A hrther 

correction was employed to address the dissociation of H' from phosphate over the 

pH range studied. 



Metal Binding Capacity 

The copper binding capacity (B-,) and pH-dependent conditional stability 

constant &) for Cu-DOC were calculated for both bulk extracts and the extract 

LMW fraction using the equilibrium ion exchange (EM) method of Luster et al. 

(1994). A BioRad 50W X-8 200-mesh strong cation exchange resin (H+ form) was 

used as per Luster et al. (1996) as a soil proxy. The resin was prepared by slurry 

packing into a chromatographic column and cleaning with 2 column volumes of 1.0 N 

HCl. Resin was subsequently rinsed with D.I. H20 until the addition of AgN03 no 

longer precipitated excess C1-. Resin was converted to ~ a "  form by rinsing with two 

column volumes of 1.0 N NaOH followed by D.I. H20. Prepared resin was flushed 

fiom the column with D.I. Hz0 and refrigerated in a sealed container. Copper 

solutions were prepared at 6 concentrations ranging fiom 3.0 p M  to 1.0 rnM. 

Dissolved organic carbon concentration was standardized at 25 ppm C and 

background solution ionic strength was standardized at 0.01 M using NaN03. 

The experiment was conducted using 60 n L  polyethylene screw-top bottles. 

Sixty mg of Na'-form resin, appropriately measured aliquots of Cu solution and 

NaN03 were weighed into bottles and equilibrated for 1 hour at 21 OC on a table top 

shaker. Aliquots of DOC were added to bring total solution volume to 30 n L  and 

total C concentration to 25 ppm. Solution pH was standardized at pH 6.0 using either 

NaOH or HN03 and bottles were re-equilibrated on a shaker table in a 4 OC incubator 

for 24 hours. Following incubation, solutions were filtered (0.2 pm) to separate resin 

fiom the filtrate. The supernatant was analyzed for Cu using an ICP-AES (TJA IRIS 

1000). A reference isotherm was generated for bottles brought to 30 n L  total volume 



without the addition of DOC (i.e. resin + Cu solution + NaN03). This allowed 

determination of a Cu distribution coefficient ('DM) between the resin ( C U ) ~  and 

solution [Gulf that was employed in calculating the distribution of Cu in the presence 

of DOC. For the reference isotherm, solution Cu (i.e. [Gulf) was defined as either the 

aquoion (cu2+) or hydrOxocomplex (CU(OH),,(~-"?. For the generation of sample 

isotherms (i.e., in the presence of DOC), Cu complexation was modeled as a 

desorption-mediated transfer of Cu from the resin surface to the DOC complex. As it 

was thus assumed that the concentration of free Cu ([Gulf) did not change 

significantly between the reference and the sample isotherms, the concentration of 

DOC-bound Cu ([CU]~) was calculated by difference from the ICP-AES data. 

Scatchard plots generated for each extract were curvilinear, demonstrating the 

participation of multiple binding site classes (see Appendix B). Data were 

subsequently fit to various models to explore both the presence of, and potential 

interactions between, ligand classes. The best fit was obtained by modeling metal 

binding as a non-competitiveinteraction between 2 binding site classes, each 

exhibiting 1 : 1 binding geometry. The requirement of non-competition dictates that 

both the geometry of metal binding and the specific ligand functional group 

involvement are products of metal concentration. Use of this model was validated by 

Luster et al. (1996) for Cu binding with DOC extracted from both juniper and 

chestnut leaf litters. The specification of 1 : 1 geometry was supported by both 

Cabaniss et al. (1988) and Buffle et al. (1980). Cabaniss et al. (1988) observed that at 

pH 5-8 with approximately 1 rnM DOC and pCutObl = 4.0-7.0, less than 10% of Cu 



binding involved multi-site complexes. Buffle et al. (1980) concluded that if DOC 

concentration was < 3 mM C, C u L  (Cu + 2 ligand) binding geometry did not occur. 

Statistical Analysis 

All values except potentiomepic titration data are presented as mean values 

for two replicates and appear graphically * 1 standard deviation. Potentiometric 

titration data are presented as mean values for three replicates * 1 standard deviation. 

Statistical tests of significant difference were conducted at a = 0.05 and analyzed 

using the SAS statistical program. Fluorescence EEM matrices were created using 

Sigma Plot and presented as smoothed mean value plots. Least squares linear 

regression analysis was used to test for correlation between independent factors. Non- 

linear curve fitting was used to generate CU-DOC binding parameters following the 

model: Y= X)/(Kal+X) + &*X)/(Ka2+X). This concentration-dependent 

binding model was deemed robust when data fitting involved > 10 points. For all 

extracts except crimson clover o and wheat straw 1, a strong fit was 

generated ( 3  > 0.99) using all 12 data points (i.e. 6 Cu concentrations x 2 replicates). 

For these two extracts, a strong fit (3 > 0.98) was generated using the mean value at 

each Cu concentration. The use of mean values was necessitated by the degree of 

inter-replicate variance for solution Cu at the highest applied Cu concentration (1 mM 

Cu). While this concentration was chosen to guarantee weak binding site saturation 

(i.e., to determine B,*), results suggest that interpretation of B,* may be subject to 

greater error than the strong binding site saturation (i.e., B-1) data that were 

determined at a significantly lower Cu concentration. 



Cha~ter V 

RESULTS AND DISCUSSION 

Electrical conductivity, pH and elemental ion concentrations were measured 

weekly for each amendment extract (Figure 3, Table 2). Extract pH increased for all 
I 

amendments between time 0 and week 1 and continued rising to a week 2 incubation 

maxima for crimson clover, wheat straw and PPR. Crimson clover pH increased as 

high as 8.7 concomitant with the increase in m' concentration (Figure 4). The 

initially high m' and N03- concentrations measured in wheat straw, PPR and 

PPR+SS extracts resulted fiom the nutrient addition designed to lower the initial C:N 

ratios to 40: 1. The increase in solution N concentration in both PPR and PPR+SS 

extracts at week 5 resulted fiom a firther addition of NHJVO3. This increase is also 

evident as a week 5 spike in PPR and PPR+SS extract electrical conductivity. 

Electrical conductivity in all cases dropped significantly during the first week of 

incubation. In the crimson clover incubation electrical conductivity did not fall firther 

until after the second week. This plateau may relate to the elevated m' 
concentration. 

The dissolved organic carbon (DOC) concentration of each amendment was 

measured at time 0 (Figure 5). This soluble C pool accounted for 13.5%, 32.7%, 

0.5%, and 0.1%, respectively, of wheat straw, crimson clover, PPR, and PPR+SS 

total substrate carbon. Caine (1982) measured carbon loss fiom leaves, mosses and 

sedges and concluded that roughly 30% of total substrate carbon leached fiom these 

materials within the first 24 hours of decomposition. Kuiters and Sarink (1986) 
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Figure 3. Amendment extract pH (A) and electrical conductivity (B) over an 8 week 
incubation. All values presented are mean values for two replicates. PPR = Primary 
Papermill Residue; PPR+SS = Primary Papermill Residue + Secondary Sludge 



Table 2. Selected chemical characteristics of amendment DOC extracted over an 8 week incubationa 
Amendment Week Ca MI3 K Al Fe P NO;- N Nb'-  N 

ma/L 

Wheat Straw 

Crimson Clover 

c. 

PPR' 

8 9.95 (1.20) 2.77 (0.22) * <1.0 c0.15 c0.15 4 . 1  0.79 (0.04) <O. 1 
%dues reported * (one standard deviation) 

binstrumental detection limit 

'primary papermill residue 
dprimary papemill residue + secondary sludge 

'PPR and PPR+SS received KH2P04 + NH4N03 solution at week 5 
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Figure 4. Inorganic N measured over an 8 week incubation. Values presented 
are mean values for two replicates. Error bars represent one standard deviation. 
A) Wheat straw; B) Crimson clover 
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Figure 4 (cont.). Inorganic N measured over an 8 week incubation. Values presented 
are mean values for two replicates. Error bars represent one standard deviation. 
C) Primary Papermill Residue + Secondary Sludge; D) Primary Papermill Residue 
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Figure 5. DOC concentration of  amendment extracts over an 8 week incubation. 
Error bars represent one standard deviation. PPR = Primary Papermill Residue; 
PPR+SS = Primary Paperrnil1 Residue + Secondary Sludge 



observed that up to 40% dry weight of leaves and needles was leached within 4 

months of litter fall. This soluble carbon pool represents the materials that are readily 

available for microbial utilization, and its composition was investigated through the 

use of colorimetric reagents. The Folin-Ciocalteu-reactive soluble phenolic acid 

(FSP) concentration was determined hsing ferulic acid as the reference. If total ferulic 

acid equivalents (FAE) are expressed in terms of ferulic acid C, their contribution to 

total extract DOC can be calculated. While this approach makes correlation imprecise 

between experiments using different standards, it allows for an internally consistent 

assessment of FSP. Calculated in this manner, initial time 0 FSP-C ranged between 

1.4% and 6.8% of DOC for PPR and crimson clover, respectively (Figure 6). These 

values are generally consistent with published values for a range of plant materials. 

Martens (2000) employed chromatographic techniques to analyze the phenolic acid 

concentration of agricultural crop residues and found that the total phenolic acid 

concentrations ranged from 0.08% for red clover to 3.8% for corn. Sakala et al. 

(2000), using the Folin method with tannic acid as the standard, calculated total 

polyphenol contents of 0.5% and 1.5% for maize stover and green pigeonpea leaves, 

respectively. 

Anthrone-reactive soluble hexose sugars (ARS) were determined using glucose as 

the reference. Calculated as a percentage of DOC, ARS accounted for 26.8% and 

17.4% of time 0 wheat straw and crimson clover extracts, respectively (Figure 7). 

When calculated in terms of total amendment C, ARS represented 3.0% of total 

wheat straw and 4.7% of total crimson clover substrate. McDowell(1985) concluded 

that 12.7% of a collected leaf litter leachate was comprised of monomeric 



1 2 3 4 5 6 7 8 
Sampling week 

Figure 6. Folin-Ciocalteu reactive soluble phenolic acids expressed as a percentage 
of DOC. PPR= Primary Papennill Residue; PPR+SS = Primary Papennill Residue 
+ Secondary Sludge 



Wheat straw 
LZ Crimson clover 

0 1 2 3 4 5 6 7 8 

Sampling week 

Figure 7. Anthrone-reactive soluble hexose sugars expressed as a percentage of DOC. 



carbohydrates. Martens (2000) chromatographically analyzed the carbohydrate 

concentration of agricultural crop residues and found it to range from 4.7% (red 

clover) to 17.4% (canola). As the anthrone reagent is adversely affected by high 

nitrate concentration no time 0 ARS measure was made for PPR or PPR+SS extracts. 

Gressel et al. (1995) characterized the decomposition of OM as an evolution of 

DOC chemistry that occurred as a function of decomposition. The evolution of both 

FSP and ARS were thus examined to explore the changing nature of specific DOC 

fractions. FSP, when examined over the length of the incubation, generally increased 

as a percentage of DOC for both wheat straw and crimson clover. In each case 

maximum values were reached at week 4 (1 1.5% and 13.5% of extract DOC, for 

wheat straw and crimson clover, respectively), falling to 10.8% and 1 1.2%, 

respectively, by the final week of the experiment. FSP concentration did not exceed 

4% for either PPR or PPR+SS and was no longer detectable in PPR extracts by week 

4. Both Blum et al. (1991) and Cilliers et al. (1990) have concluded that as the F-C 

reagent also reacts with hydroxyl substituted amino and nucleic acids, it 

overestimates the true concentration of phenolic acids by an approximate factor of 13. 

If values here are recalculated in light of this correction, initial time 0 soluble 

phenolic acid concentrations decline to <0.5% of extract DOC for wheat straw and 

crimson clover, respectively. Maximum soluble phenolic acid concentrations (i.e. 

calculated at week 4) are <1 .O% for each amendment. Utilizing this correction, the 

soluble phenolic acid content of PPR and PPR+SS is indistinguishable from 0% at 

every sampling interval. 



Over the course of the incubation, ARS remained a measurable percentage of both 

wheat straw and crimson clover DOC. Wheat straw ARS decreased to <9% of extract 

DOC after 1 week, and remained between 7-1 0% of extract DOC throughout the 

remainder of the incubation. Crimson clover ARS decreased to 5% of extract DOC 

after 1 week, and remained between 4-6% of extract DOC for the duration of the 

incubation. ARS values for PPR and PPR+SS DOC extracts were indistinguishable 

fi-om 0% for weeks 1-8 of the incubation. The values for ARS are generally consistent 

with those calculated by Aoyarna (1 996) in a 28 day incubation of rapeseed meal, 

orchard grass shoots, and rice straw. Using size exclusion chromatography this 

researcher isolated a DOC fi-action containing carbohydrates and peptides. This 

fi-action initially represented between 2 and 6% of extract DOC in all incubations and 

was still present at day 28, representing between 1 .O and 3.5% of DOC. 

Both Collins (1990) and Eijsackers et al. (1 990) placed such compositional 

percentages into wider context by defining decomposition as progressing fi-om water 

soluble components to structural carbohydrates to lignin. Eijsackers et al. (1990) 

calculated predicted breakdown rates for major leaf litter components, focusing on 

sugars, phenols, and cellulose. They concluded that these components represented 

IS%, 5%, and 20% of leaf litter, respectively, and that over 1 year would be 99%, 

1 O%, and 75% degraded, respectively. Collins (1 990) specifically differentiated 

between structural and non-structural carbohydrates (NSC), defining the majority of 

NSC as hc tose  polymers with terminal glucose groups. While the majority of NSC 

are water soluble, the researchers found that <35% of the NSC present in wheat 

residues were released during a single cold-water extraction. 



Reinertsen et al. (1984) concluded that the rate of plant material degradation was 

dependent initially on the size of the soluble C pool p& the presence of a 

simultaneously degrading "intermediately-available pool." This pool was defined as 

containing polysaccharides and/or oligosaccharides linked in slowly-degrading 

polymers. The researchers believed &at as the soluble C pool was exhausted, these 

materials gained an increasing relative significance as a source of available carbon. 

Other research has concluded that this microbially accessible fi-action of plant residue 

is to some degree persistent in soils. Sikora et al. (1990) conducted a hot H20 

extraction of soil TOC and concluded that the anthrone-reactive portion (12.4 mg C 

kg-' soil) represented 10% of soil solution carbon. Qualls et al. (1992) analyzed a 

commercial fulvic acid and found it to contain 16% carbohydrate. Vance and David 

(1 991) reported that monosaccharides represented between 3.4-4.4'7'0 of forest floor 

DOC. Guggenberger and Zech (1994b) concluded that carbohydrates represented a 

significant percentage of soil solution hydrophobic (i.e. humic) acids and that the 

persistence of these otherwise labile materials was explained by the formation of 

ligno-carbohydrate polymers. The slow degradation of polysaccharide-containing 

complexes is a plausible explanation for the measurable ARS content of wheat straw 

and crimson clover DOC throughout this incubation. 

Total respired C equaled 60 mg C02-C g-' C for PPR, 70 mg C02-C g-' C for 

PPR+SS, 159 mg C02-C g-l C for wheat straw, and 214 mg C02-C g-' C for crimson 

clover (Figure 8). Over a 57 day incubation, Martens (2000) calculated cumulative 

C02-C evolution of between 100-200 mg C for prairie grass and oats, respectively, 

with a 175 mg C evolution for clover. Collins et al. (1990) conducted a 30 day 
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Figure 8. Cumulative CO, respired over an 8 week incubation. (*) represents the point 
at which 50% total C respired was reached for each amendment. PPR = Primary 
Papermill Residue; PPR+SS = Primary Papermill Residue + Secondary Sludge 



incubation and concluded that total respired C was greater for wheat leaf blade (325 

mg C02-C g-' leaf) then for wheat chaff or wheat stem (225 mg C02-C g-' chaff or 

stem). Bremer et al. (1991) studied the degradability of wheat straw, lentil straw, and 

lentil green manure over a 98 day incubation. C02 respired ranged from 250 mg CO2- 

C g-' residue for both lentil straw and wheat straw to 275 mg C02-C g" residue for 

lentil green manure. Sakala et al. (2000) incubated senesced pigeonpea, green 

pigeonpea, and N-amended maize stover for 60 days and calculated a cumulative C02 

release of 332 mg C g" C, 376 mg C g-' C and 407 mg C g-' C, respectively. Factors 

responsible for variation between experiments include the C:N of bulk substrate, the 

D0C:TDN ratio of the water-soluble fractions, the size and composition of the labile 

and intermediately available C pools and amendrnent:soil ratios that may vary by 

several orders of magnitude. 

Watkins et al. (1996) modeled decomposition as a two-phase process, observing 

that C02 respiration experiments frequently document an initially rapid rate with up 

to 70% of the labile DOC utilized, followed by decreasing activity during the 

degradation of more recalcitrant components. The researchers defined the rapid phase 

as involving the degradationlutilization of free amino acids, amino sugars, 

carbohydrates, and both cell membrane and cytoplasmic constituents. The slower 

phase corresponded to both the degradation of more recalcitrant primary components 

and decomposition of the secondary, stabilized products produced during the first 

phase. Ajwa and Tabatabai (1994) reported that total C02 evolution in a 30 day 

incubation ranged from 27% of corn residue C to 58% of alfalfa residue C and that 

greater then 50% of total COz evolution occurred within the first 6 days of the 



incubation. Martens (2000) observed that for lentil green manure > 50% of initial 

substrate C was respired within the first 14 days of a 98 day incubation. Sakala et al. 

(2000) concluded that C02 evolution was the most rapid during the first 10 days of 

their incubation and that 25%-30% of residue total C had been respired by the end of 

the experiment. These values can be Compared with the present incubation in which, 

following a 57 day incubation, 16% of wheat straw, 22% of crimson clover, 8% of 

PPR+SS and 7% of PPR total C had been respired. The >50% evolution was reached 

in 12 days for wheat straw and crimson clover, 19 days for PPR, and 22 days for 

PPR+SS. 

As is clear froni these figures, the size of the initial C pool and the absolute 

concentration of both C02-C and sequentially extracted DOC varied considerably 

between amendments. It was assumed that microbes initially utilized the most 

labildwater soluble plant components and a measure of C02 respired allowed 

examination of the efficiency of utilization of this pool. Weekly extraction of DOC 

- explored the progressive solubilization that occurred as this pool was consumed as a 

source of substrate. These two processes, when taken together, accounted for >loo% 

of the initially available DOC pool for wheat straw, PPR and PPR+SS, and roughly 

90% of the initial pool for crimson clover. It appears thus that only in the case of 

crimson clover was the initial DOC pool (week 0) larger than the total extracted C 

pool (weeks 1-8). It must be recognized, however, that without the use of radio- 

isotope labeling techniques it is difficult to clearly define the fractionation of DOC 

between respiration, incorporation into substrate, and mobilization or leaching loss. In 



terms of total substrate C, total respired + solubilized C accounted for 23%, 30%, 8% 

and 7%, respectively, of wheat straw, crimson clover, PPR and PPR+SS substrate. 

Reinertsen et al. (1 984) examined wheat straw degradation under three different N 

regimes and observed that though the initial C:N ratio of each mixture was adjusted to 

10: 1, the leachate C:N varied from 8:l to 63: 1 and increased with the increasing 

concentration of fertilizer added to standardize the bulk C:N ratio. Leachate N was 

measured as inorganic N, assuming explicitly that loss of both dissolved organic 

nitrogen (DON) and gaseous N species was insignificant. The authors concluded (1) 

that no additional source of N was required during microbial utilization of substrates 

with a 10: 1 C:N leachate ratio and (2) that unless bulk C:N was > 40: 1, the absence 

of an external N supply did not necessarily hinder plant residue decomposition. In 

the current experiment, crimson clover had an initial bulk C:N of 12:l with an initial 

leachate C:N of 365:l (Figure 9). Following this initially high value for leachate C:N, 

the ratio fell to 22:l in the first week and was < 4: 1 for each subsequent week of the 

experiment. Interestingly, though the leachate C:N at week 2 was only 4: 1, the 

majority of N was present as m'. While this high concentration of m' further 

hints at the suppression of N mineralization, neither the evolution profile of DOC 

during the 8 week incubation nor C02 respired data strongly support this suggestion. 

Furthermore, it must be recognized that as the leachate C:N ratio specifically 

excludes organic N, this measure may only poorly define the decomposition potential 

of N-rich amendments like crimson clover. For wheat straw, the leachate C:N ratio 

increased initially from its time 0 value (1 1 : 1) to a week 4 maximum (1 25:1), before 

decreasing to 58:l by the end of the incubation. Though extract DOC concentration 



2 3 4 5 6 7 8 

sampling week 

Figure 9. Extract D0C:TDIN (total dissolved inorganic N) over an 8 week incubation. 
(**) corresponds to the D0C:TDIN ratio above which amendment decomposition is 
likely hindered by N immobilization (Reinertsen et al., 1984). PPR = Primary Papermill 
Residue; PPR+SS = Primary Papennill Residue + Secondarj Sludge 



still exceeded 4 mM at week 8, these high ratios coupled with the relatively shallower 

COz evolution profile and the lack of a significant organic N pool indicate that N 

limitation could have hindered wheat straw decomposition as the incubation 

progressed. 

The papermill residues, in contrast, were pre-processed materials in which both 

the labile C and indigenous N pools had likely been depleted. Initial bulk C:N was 

standardized at 40: 1 for both PPR and PPR+SS, creating an initial leachate C:N of 

0.7: 1 and 0.1 : 1, respectively. In each case the low initial ratio was due to the small 

quantity of readily accessible DOC relative to the high concentration of added 

N&NO3. While the addition of fertilizer may have initially stimulated the 

decomposition of the PPR (as DOC concentration increased during the first week of 

the incubation), DOC concentration never exceeded 5 mM. For PPR+SS the highest 

DOC concentration, approximately 7 mM, occurred at time 0. Evolution of the 

leachate C:N ratio mirrored the addition schedule of fertilizer, i.e. 4: 1 at time 0 and 

week 6, and increasing to as high as 854:l at week 4. When compared with crimson 

clover and wheat straw, the C02 and DOC extraction profiles were markedly different 

for these products, a contrast that likely resulted from a combination of N 

immobilization and the absence of a labile C pool. 

Qualls et al. (1992) observed that an increasing D0C:TDN ratio over an 

incubation suggested either (1) enzymatic cleavage of N-containing functional groups 

from the remainder of soluble molecules andlor (2) selective decomposition of entire 

N-rich molecules. Mary et al. (1996) concluded that the effect of N availability on the 

decomposition rate of residues was not described by a simple, linear function and 



instead depended on the relative stage of decomposition of the residue. These 

researchers observed that while N addition increased the decomposition rate of the 

initial, soluble fraction (though the C:N ratio of that fraction might already be quite 

low), N addition at a later-stage likely impeded the degradation of more recalcitrant 

components. While ratios including N:polyphenol and N:lignin have been utilized in 

predictive models, it has proven difficult to model the decomposition kinetics of an 

amendment in terms of either its N or lignin content. In the current experiment, the 

lignin content of the PPR+SS was significantly higher than in the plant residues 

(8.4% versus 5.1% and 4.2% for wheat straw and crimson clover, respectively), 

though there was little difference in the lignin content of the plant residues and PPR 

(4.3%) (Table 1). Both PPR and PPR+SS, however, contained a significant 

percentage of cellulose (63.7% and 43.7%, respectively), suggesting that residue 

decomposition could have been hindered by the absence of a degrader community 

able to affect its breakdown. Furthermore, cellulose content differed widely between 

the plant residues (17.5% versus 33.5% for crimson clover and wheat straw, 

respectively), and could help explain the relatively higher C02 respiration rate of the 

crimson clover incubation. 

To assess the evolution of DOC hurnification, various parameters were explored. 

Spectrophotometric absorption at 285nm (A285) revealed that time 0 absorbance 

ranged from 24 to 134 L mol C-' cm-' (Figure 10). PPR displayed the highest and the 

PPR+SS displayed the lowest initial with both crimson clover and wheat straw 

displaying similar intermediate values. While increased for wheat straw, crimson 

clover, and PPR+SS over the length of the incubation, it declined for PPR. Wheat 
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Figure 10. UV spectrophotometric absorbance (defined for a crn cell and per mole C 
at 285 nrn) over an 8 week incubation. Values presented are mean values for two 
replicates. Error bars represent one standard deviation. PPR = Primary Papennill Residue; 
PPR+SS = Primary Papermill Residue + Secondary Sludge 



straw and crimson clover displayed the greatest overall increases (from approximately 

70 L rnol c'' cm" to 330 L rnol C" cm-' over 8 weeks), with the greatest incremental 

increase for both amendments occurring during the first week of the incubation. 

may be converted to an estimate of percent aromaticity using the regression equation 

of Chin et al. (1 994). When calculated weekly for this 8-week incubation, 

decomposition resulted in an aromaticity increase of from 10% to 23% for both wheat 

straw and crimson clover extracts, from 8% to 13% for PPR+SS extracts, and a 

decrease from 14% to 1 1 % for PPR. The substantial increase in absorption seen for 

crimson clover and wheat straw within the first week corresponded to an increase in 

relative aromaticity of from 10% to 16% and 2 1%, respectively. These values may be 

compared with published values generated using the same technique. Bmnner et al. 

(1996) calculated a 23% aromaticity (A285 =330 L mol C-' cm") for an extract of 

degraded chestnut leaf litter. Traina et al. (1990) calculated percent aromaticity for a 

marine and a suite of soil humic acids as 20% and 33-43%, respectively. Chin et al. 

(1994) calculated percent aromaticity for river water, groundwater, and Antarctic lake 

water fhlvic acids (FA) as 23%, 13%, and 13%, respectively (A285 = 308 L rnol C-' 

cm", 122 L rnol C-' cm-', and 150 L rnol C-' cm", respectively). Rostan et al. (1995) 

concluded that when A285 exceeded 220 L rnol C-' cm-' (1 8% aromaticity) it signaled 

the presence of fhlvic-like refractory organic compounds. 

Absorption results are best analyzed by considering the plant and papermill 

residues separately. For wheat straw, the rapid increase within the first week 

likely corresponded to the initial degradation of labile, non-humic components such 

as soluble sugars. With these materials rapidly degrading, increased to 282 L 



mol C-' cm-' at week 1 followed by continued slow increase through the remainder of 

the experiment. Regression of increasing Azss against decreasing anthrone reactive 

C/DOCtObI revealed a poor data distribution (Figure 1 1 a). Regression of Azss against 

FSP-C/ DOC,,,, revealed a likewise poor distribution (Figure 12a). While poor data 

distribution makes it difficult to draw conclusions regarding the composition of the 

UV-absorbing DOC pool, it does appear that, following the degradation of the most 

labile components, wheat straw DOC A2s5 was equivalent to values calculated for 

riverine and terrestrial fulvic and hurnic acids. A similar trend was seen for crimson 

clover, with the increase over time in A2s5 occurring more gradually. This rate 

contrast may result from factors including a smaller initial pool of carbohydrate C or 

a smaller initial increase in UV-absorbing aromatic breakdown products. Poorer 

correlation for crimson clover regressed against either ARS-C/DOCmI (r2=0.66) 

(Figure 1 1 b) or FSP-C/DOCtOtal (24.46) (Figure 12b) suggested the likely 

involvement of both factors. By week 2, however, crimson clover A2*5 was > 220 L 

mol C-' cm" and was quantitatively similar to riverine and terrestrial fulvic and 

hurnic acids. 

These results are conceptually consistent with the conclusions of Aoyama (1 996) 

and Gregorich et al. (1996). Aoyama employed size exclusion chromatography to 

monitor the evolution of plant-derived DOC. He observed that UV-absorbing organic 

compounds were formed early in the decomposition process and often remained in 

solution throughout the incubation. In an incubation of rapeseed meal, he further 

observed that in as few as 3 days a chromatographic peak signaling the presence of 

water-soluble hurnic substances appeared. Though the evolution of the humic peak 



Figure 11. Anthrone reactive soluble sugars versus molar absorptivity at 285 nm. 
Values presented are mean values for two replicates. Error bars represent one 
standard deviation. A) Wheat straw B) Crimson clover 



Figure 12. Folin-Ciocalteu reactive soluble phenolic acids versus molar absorptivity 
at 285 nrn. Values presented are mean values for two replicates. Error bars represent 
one standard deviation. A) Wheat straw B) Crimson clover 



was inconsistent between materials incubated, its signature increased throughout the 

experiment for all materials studied. Gregorich et al. (1996) analyzed maize leaves 

and the light fraction (LF) of soils previously amended with maize residues under the 

hypothesis that the LF represented maize residues that had begun the humification 

process. While Py-FIMS analyses revealed significant percentages of carbohydrates, 

lignin monomers and phenols in both fractions, both the C:N and arnino:total N ratios 

decreased from fiesh leaf to LF (56: 1 versus 22: 1 and 0.56: 1 versus 0.43: 1, 

respectively). Relative aromaticity, determined using I3c NMR and considered a 

measure of material recalcitrance, increased from 1 1% in maize leaf to 17% in the 

LF. Correspondingly, the percentage of total scan intensity corresponded to the o- 

alkyVcarbohydrate region decreased fiom 77% in leaf residue to 60% in the LF. 

The papermill residues behaved in a distinctly different fashion, with aromaticity 

remaining at less than 14% throughout the experiment. Aromaticity values increased 

toward this maximum for PPR+SS and fell fiom it for PPR. Both residues represent 

highly processed materials generating low DOC concentrations. For PPR+SS, the 

addition of sewage sludge likely contributed a small pool of hurnifying materials and 

was responsible for the aromaticity progression that occurred. It is also possible that 

the AZs5 signature was generated by the breakdown products of the limited microbial 

community able to utilize these materials. Interestingly, though PPR had the highest 

time 0 AZs5, it had the lowest concentration of Folin-Ciocalteau reactive soluble 

phenolic acids (FRP) and contained no aromatic amino acid fluorescence signature. 

This lack of specific correlation between AZs5 and either aromatic N or FRP suggests 

that the x-x* transitions measured likely resulted from the cumulative presence of 



condensed aromatic structures rather than the specific existence of simple aromatic 

moieties. 

The low molecular weight (LMW) fraction of residue DOC was examined to 

determine whether progressive humification resulted in increasing average molecular 

size. As discussed for the bulk DOC extracts, there were large differences in the 

absolute concentrations of DOC from which relative percentage data were generated. 

The DOC concentration of the ultrafiltration membrane permeate ( 4  000 MWCO) at 

time 0 accounted for 71 %, 62%, 73%, and 30% of the wheat straw, crimson clover, 

PPR+SS, and PPR bulk extract DOC, respectively. If these data are viewed not in 

terms of membrane permeate, but in terms of its retentate, a retention percentage (RP) 

is generated that allows examination of change, over time, in average molecular size. 

For wheat straw, as example, if the time 0 LMW fraction accounted for 7 1% of bulk 

extract DOC, this corresponds to a 29% retention percentage (Figure 13). 

For wheat straw, the RP increased significantly over the incubation and by 

week 8, while the bulk extract still contained 4.4 rnM C, the LMW Eraction contained 

no C (i.e. RP =loo%). Crimson clover followed a different pattern, with the RP 

increasing &om 38% to 72% by the conclusion of the incubation and demonstrating 

that, even after 8 weeks of decomposition, a soluble LMW fraction of DOC was still 

present. For both amendments, the most significant increase in the RP occurred 

during the first 7 days. Weekly retention percentages for both amendments were 

regressed against A285 to determine whether increasing aromaticity was correlated 

with increasing average molecular size. As with other regressions involving wheat 

straw, data distribution was poor (Figure 14a). While data distribution was broader 
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Figure 13. DOC retention percentage over an 8 week incubation. Retention defined 
as not passing through a 1000 MWCO ultrafiltration membrane. Values presented are 
mean values for two replicates. Error bars represent one standard deviation. 
PPR = Primary Papermill Residue; PPR+SS = Primary Papermill Residue + Secondary 
Sludge 
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Figure 14. Molar absorptivity at 285 nm versus the retention percentage (RF') 
of DOC. Retention defined as not passing through a 1000 MWCO ultrafiltration 
membrane. A) Wheat straw; B) Crimson clover 



for crimson clover, the correlation was poor (r2=0.63) (Figure 14b). This poor 

correlation suggests that for crimson clover, LMW DOC contributed to aromaticity as 

measured throughout the incubation. For PPR, the RP increased slowly over the 

incubation, though the low absolute concentration of bulk and LMW DOC 

hindered interpretation. The RP for PPR+SS was not significantly different at week 8 

than at week 0. 

Folin-Ciocalteu reactive soluble phenolic acids (FSP) were likewise analyzed 

in tenns of evolving retention percentages (RP). The initial (time 0) FSP retention 

percentages for both wheat straw and crimson clover were approximately 30% 

(Figure 15). For both amendments, RP values increased most significantly during the 

first week before leveling ultimately at 100% and approximately 90% for wheat straw 

and crimson clover, respectively. The RP for PPR+SS increased over the first week 

fiom approximately 55% to 100% where it remained for the duration of the 

incubation. While the application of the Blum et al. (1 991) correction suggests that 

the actual phenolic acid concentration of wheat straw and crimson clover DOC was 

negligible after the first week, the Folin-Ciocalteu reagent clearly continued reacting. 

Though it is not possible to say with which aromatic compounds, increasing RP 

values suggest the presence of, and reaction with, higher molecular weight hydroxyl- 

substituted aromatic moieties. That such compounds are the product of linkages 

between semi-labile phenolic monomers was explored by Martin and Haider (1 976). 

14 C was utilized to analyze the relative decomposition potential of ferulic acid ring or 

side chain C versus aliphatic acid or glucose C. Results suggested both that ferulic 

acid and its demethoxylation products were stabilized in the soil relative to the other 
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Figure 15. Folin-Ciocalteu reactive soluble phenolic acids (FSP): 
retention percentage over an 8 week incubation. Retention defined as 
not passing through a 1000 MWCO ultrailltration membrane. Value presented 
are mean values for two replicates. Error bars represent one standard deviation. 
PPR+SS = Primary Papermill Residue + Secondary Sludge 



substrates and that polymerization stabilized significantly more aromatic substrate 

than adsorption to either clay surfaces or existing soil humus. 

Fluorescence scans were employed to further explore the aromatic nature of 

amendment DOC. Fluorophores were examined that corresponded to peaks defined in 

the published literature. Fluorophore A (h,,lh, = 270-2801335-350) was present in 

week 0 scans of wheat straw, crimson clover and PPR+SS DOC, but was absent fiom 

PPR DOC (Table 3 and Appendix C). Peak intensity was highest for the crimson 

clover extract. This peak has been identified in the literature as arising fiom the 

aromatic amino acid tryptophan (Coble et al., 1990). Fluorophore B (L,IL, = 250- 

2601440-460) was present in time 0 scans of wheat straw, crimson clover, and PPR 

DOC but was absent fiom PPR+SS. Peak intensity was highest for PPR, and while 

this peak has been observed by other authors, it has not been positively identified. 

There is debate as to how to define the excitation and emission boundaries for 

fluorophore C. If the broad region L,lh,= 310-3501435-445 is considered the 

provenance of a single fluorophofe (C) then this peak is present in the DOC extracts * 

of all four amendments. Ohno and Cronan (1997) concluded, however, that 

fluorophore C was characterized by an L, I 320 nm, with an L, > 320 nm signaling 

the presence of a distinct fluorophore D. This designation is supported by the results 

of both Ohno and Crannell(1996) and Yang et al. (1994). Ohno and Crannell(1996) 

contrasted DOC extracted fiom fiesh plant residues and animal manures and observed 

that hex increased fiom 3 10 nm (crimson clover and hairy vetch) to 349 nm (poultry 

and cattle manure) with h, remaining unchanged (435-450 nm). Yang et al. (1 994) 

analyzed DOC extracted fiom pine needles and a forest soil 0 horizon and observed 
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Table 3. Location and intensity of primary peaks in fluorescence spectra of DOC extracts; bulk extract' 

a. Wheat straw 
Fluoroahore 

Time (wks) Excitation h Emission h lb Excitation h Emission h I Excitation h Emission h I 
0 277 (nm) 333 (nm) 121 253 438 200 31 6 435 333 

b. Crimson clover . - 
Fluorophore 

A B C-D 
Time (wks) Excitation h Emission h ' I Excitation h Emission h I Excitation h Emission h I 

0 277 348 491 253 441 131 31 3 444 131 
1 280 351 137 253 462 184 343 44 1 198 
2 NP 253 450 187 340 444 168 
4 NP 253 444 207 340 438 254 
6 NP 256 453 203 340 444 228 
8 NP 253 44 1 1 96 343 444 251 

'All scans at 3mM C; 0.01 M IS; pH 5.5 
blntensity in arbitrary units 
'No peak present 



Table 3 (cont.). Location and intensitv of Drimarv Deaks in fluorescence s~ectra of DOC extracts; bulk extracta 

C. PPR' 
Fluorophore 

A B C-D 
Time (wks) Excitation h Emission h lb Excitation h Emission h I Excitation h Emission h I 

0 N P ~  255 447 320 324 443 387 
1 NP 256 452 309 327 440 41 7 
2 NP 262 446 356 339 435 556 
4 N S' NS NS 
6 NP 258 450 304 330 435 465 
8 NS NS NS 

d. PPR+SS~ 
- 

Fluorophore 
A B C-D 

Time (wks) Excitation h Emission h I Excitation h Emission h I Excitation h Emission h I 
0 280 342 292 NP 31 9 428 114 
I NP 255 438 359 325 431 261 
2 NP 252 435 31 3 347 429 290 
4 NS NS NS 
6 NP 253 449 189 327 435 378 
8 NP 259 449 233 333 435 344 

aAll scans at 3mM C; 0.01 M IS; pH 5.5 d~rimary Papermill Residue + Secondary Sludge 
blntensity in arbitrary units 
'Primary Papermill Residue 

'No peak present 
'NO scan generated: <3mM C 



that for the he, range 450-460 nm the he, increased from 3 10 nm in the needle extract 

to 338 nm at the base of the 0 horizon. They noted as explanation that excitation 

peaks shift to longer wavelengths for fluorophores with extended conjugated 

structures and that the shift witnessed here likely resulted from increasing 

humification of simple aromatic codpounds. If this distinction is adopted in the 

current experiment, fluorophore C (arising from fresh DOC) appeared in the time 0 

extracts of wheat straw, crimson clover, and PPR+SS while fluorophore D (arising 

from complexedi'humified DOC) appeared in the time 0 extract of PPR. 

It is dificult to construct a clear picture of fluorophore transition over time as 

sometime low C concentration precluded the generation of a full suite of standardized 

scans. Fluorophore A disappeared from wheat straw and PPR+SS DOC after time 0, 

and from crimson clover DOC following week 1. Fluorophore B was present in wheat 

straw and crimson clover DOC throughout the incubation, though its intensity began 

initially higher for wheat straw and ending ultimately higher for crimson clover. 

Fluorophore B intensity was consistently high for PPR, though low C concentration 

precluded the generation of week 4 and 8 scans. While this peak was initially absent 

from the PPR+SS time 0 scan, it subsequently appeared and was present at all 

sampling intervals where there was sufficient C concentration to generate scans. 

Fluorophore C disappeared from wheat straw, crimson clover, and PPR+SS scans 

after week 0 and was replaced by fluorophore D. This peak was present in all 

subsequent wheat straw and crimson clover scans. Fluorophore D was likewise 

present in all PPR and subsequent PPR+SS extracts with sufficient C for scan 



generation. Fluorophore D intensity followed a nonlinear trajectory over the length of 

the incubation, initially rising then falling for all four amendments. 

When analyzed in the context of progressing humification, the fluorescence 

trends for wheat straw and crimson clover were consistent with the general trends 

observed via other parameters. Fluordphore C has been observed in leaf and needle 

extracts and correlated with the EEM peak location of pure mono- and di- 

hydroxybenzoic, salicylic, and hydroxycinnamic acids (Wolfbeis, 1985). Fluorophore 

D has been widely correlated in the literature with both terrestrial and aquatic fblvic 

and humic acids. If these two fluorophores represent simple and humified aromatic 

materials, respectively, then the shift in excitation waveiength occurring between 

week 0 and week 1 represents a transition toward monomer polymerization. 

Following the first 7 days, the most significant further transitions involved peak 

intensity and as this phenomenon is sensitive to multiple factors, it cannot be 

explicitly correlated with peak source concentration. Fluorescence within the C-D 

peak region underwent a less definitive evolution in papermill residue DOC. For PPR, 

the analyses already presented reveal an initially higher aromaticity (vis a vis the 

other amendments) and a FSP pool concentrated within the HMW fraction. This 

picture is corroborated by the time 0 DOC presence of fluorophore D. For PPR+SS, a 

weak transition fiom fluorophore C to D occurred during week 1 consistent with both 

the small recorded increase in bulk aromaticity and the disappearance of FSP fiom 

the LMW fiaction. 

The humification index (HE) of Zsolnay et aL(1999) was applied to the DOC 

extracts utilizing the equation correction of Ohno (2002). Initial (time 0) H E  values 



ranged from 0.33 for crimson clover to 0.91 for PPR (Figure 16). The low value for 

crimson clover was consistent with the high intensity of its aromatic amino acid 

fluorescence peak. Over the 8 week incubation, HIX values increased for crimson 

clover, wheat straw and PPR+SS, and were unchanged for PPR. Week 8 HIX values 

ranged from 0.84 (PPR+SS) to 0.89 (crimson clover) with the single most rapid 

incremental increase occurring over the first 7 days of the incubation. Results can be 

compared with the results of Ohno (2002) for materials representing stages in the 

humification continuum. Values for field corn residue, soil DOM and a purified soil 

fblvic acid (FA) were 0.57,0.84, and 0.94, respectively, with DOM and FA results 

bracketing all week 8 values for the current experiment. 

Specific interpretation of this index is rendered difficult by the lack of identity 

of the 435-480 nm peak. As both Coble et al. (1990) and Ohno and Cronan (1997) 

have concluded that the peak in question is not a reflection of the FA peak, the HIX 

ratio specifically excludes a humification-related fluorophore that is well defined in 

the literature (i.e. fluorophore D). Wolfbeis (1985) did observe a humic acid peak at 

led&,, = 2701460 though noted that the scan was conducted at pH 10.0. The literature 

is inconclusive regarding the effect of pH >7.0 on the intensity and location of 

fluorophores. In this experiment, it is clear that low H E  values at time 0 resulted 

from the presence and concentration of aromatic amino N. Following the utilization 

of this material, HIX values generally increased in all extracts with sufficient C for 

analysis. 
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Figure 16. HlX trends for wheat straw (A) and crimson clover (B). Values on right 
margin correspond to relative hurnification on a scale of 0-1 as defined by Ohno (2002). 
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Figure 16 (cont.). HIX trends for PPR+SS (C) and PPR @). Values on right margin 
correspond to relative hurnification on a scale of 0-1 as defined by Ohno (2002). 
PPR = Primary Papennil1 Residue; PPR+SS = Primary Papermill Residue + Secondary 
Sludge 



Low Molecular Weight Fraction (4000  MWCO) 

The low molecular weight (LMW) fraction of the extracted DOC was 

examined as this fraction may significantly affect soil processes. The DOC 

concentration of the ultrafiltration membrane permeate (4000  MWCO) at time 0 

accounted for 71%, 62%, 73%, and 30% of the wheat straw, crimson clover, 

PPR+SS, and PPR bulk extract DOC, respectively. As a relative percentage of bulk 

extract DOC this fraction varied both over time and between amendments during this 

incubation (Figure 17). For wheat straw, the LMW fraction ofbulk DOC decreased 

consistently over the incubation, falling sharply to 15% at week 1 followed by a slow 

subsequent decrease to 0% by week 8. For crimson clover, the LMW fraction 

decreased to 33% of total DOC by week 1, and 28% of total extract DOC by the 

conclusion of the incubation. Following the initial sampling, the LMW DOC 

concentration for both papermill residue extracts was too low for reliable 

measurement. 

Folin-Ciocalteu reactive soluble phenolic acids (FSP) were measured in the LMW 

fraction to test for the presence of LMW hydroxyl-bearing aromatic moeities. As a 

percentage of total soluble LMW C, FSP accounted for 3.3% of wheat straw, 7.8% of 

crimson clover and 2.0% of PPR+SS DOC (Figure 18a). The C concentration of the 

PPR permeate was too low for component analysis. For the wheat straw LMW 

fraction, FSP were present through week 4 as a relatively increasing percentage of an 

absolutely decreasing C pool. FSP were present in the crimson clover LMW fiaction 

throughout the incubation. Following time 0, there was insufficient C in the PPR+SS 

LMW fraction for m e r  analysis. If the Blurn et al. (1991) correction is applied, the 
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Figure 17. DOC concentration in amendment bulk extracts and LMW (-4 kDa) 
fraction. Values in parenthesis correspond to the relative percent LMW DOC. 
A) Wheat straw; B) Crimson clover 
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week incubation. A) Folin-Ciocalteu reactive soluble phenolic acids as a percentage 
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time 0 concentration (expressed in terms of ferulic acid-C) falls to 0.2% of wheat 

straw, 0.6% of crimson clover, and 0% of PPR+SS LMW DOC. 

Anthrone reactive sugars (ARS) were also measured in the wheat straw and 

crimson clover LMW fractions (Figure 18b). While high nitrate interference 

precluded their measure in PPR and PPR+SS time 0 extracts, low C concentrations in 

all subsequent extractions was taken as evidence of their absence. Calculated as a 

percentage of permeate DOC, ARS accounted for 49.6% and 20.5% of time 0 

wheatstraw and crimson clover extracts, respectively. ARS accounted for less than 

4% of week 1 wheat straw DOC, approximately 2% of week 2 DOC and following 

week 2 was no longer measurable. In crimson clover extracts, ARS were no longer 

measurable after the initial time 0 extraction. Meyer et al. (1987) observed a strong 

association between molecular size and biodegradability. In an incubation of tannin- 

rich river water, 86% of the less abundant LMW (<1000) fraction was rnicrobially 

degraded while <5% of the HMW (>10000) fraction was degraded over the same 

time interval. Subsequent hydrolysis of the HMW fraction revealed that its small 

degradable fraction was comprised of complexed LMW compounds. Results from the 

current experiment support their conclusions, namely that the LMW fraction may be 

significantly enriched in more easily degradable components. 

For the LMW fraction, the generation of fluorescence scans and the 

examination of peak transitions were complicated by low C concentrations (Table 4). 

Fluorophore A was present in the time 0 LMW scans of wheat straw, crimson clover, 

and PPR+SS with an intensity that was enhanced relative to the bulk extract scans. 

Fluorophore B was only clearly present in the time 0 scan for wheat straw though at a 



Table 4. Location and intensity of ~rimarv Deaks in fluorescence s~ectra of DOC extracts; LMW fraction (4 k ~ a ) "  

a. Wheat straw 
Fluorophore 

A B C-D 
Time (wks) Excitation h Emission h lb Excitation h Emission h I Excitation h Emission h I 

0 280 (nm) 324 (nm) 167 250 456 123 31 3 436 323 

b. Crimson clover 
- 

Fluorophore 
A B C-D 

Time (wks) Excitation h Emission h I Excitation h Emission h I Excitation h Emission h I 
0 276 351 672 NP 31 5 441 150 
1 NP 252 435 357 325 41 4 41 2 
2 NP 250 438 476 349 438 475 
4 NP 252 440 350 34 1 429 332 
6 NP 252 443 455 333 428 41 0 
8 NP 250 432 307 331 420 31 2 

'All scans at 3mM C; 0.01 M IS; pH 5.5 'No peak present 
blntensity in arbitrary units d ~ o  scan generated: c3mM C 



V )  U) U) U) U) (I: 
Z Z Z Z Z Z  



lower intensity than found in the bulk extract scan. Fluorophore C was present in the 

time 0 scans for wheat straw, crimson clover and PPR+SS at an intensity that was, in 

all cases, similar to the bulk extract scans. In terms of peak development, fluorophore 

A disappeared afier time 0 for all amendments. Fluorophore B was present in wheat 

straw DOC at increasing intensities uhtil low C concentration at week 4 precluded the 

generation of further scans. Fluorophore B was consistently present in crimson clover 

at higher intensities than found in the bulk extract. As occurred in bulk extract scans 

for all amendments, fluorophore C disappeared afier week 0 and was replaced by 

fluorophore D. No scans were generated for PPR or PPR+SS permeate during weeks 

1-8 due to low C concentration. 

For both wheat straw and crimson clover, the intensity of fluorophore D was 

markedly higher in the LMW than in the bulk scans. An explanation for the relatively 

enhanced peak intensity in the LMW fraction lies in the absence of HMW 

polymerized materials. Such materials would likely play a role in quenching the 

- fluorescence of simple aromatic moeities. The week 1- appearance of the structurally 

condensed fluorophore D in the LMW fraction is explained by Fox (1995) who 

observed that small fulvic acid molecules exist within the general size range of simple 

organic acids. This transition (i.e. from fluorophore C to D) within the LMW fraction 

suggests that the W-absorbing DOC pool (as defined by A2g5) is dynamic, 

progressing through varying aromatic components. A similar conclusion was reached 

by Mathur et al. (1993), using A2g0 as an optical means of testing compost maturity. 

While the concentration of DOC extracted weekly from farmyard manures decreased 

over time, day-60 A2g0 values were not significantly different than day-0 values. They 



concluded that while the bonds absorbing at this wavelength were still clearly present, 

the compounds involved had shifted from simple aromatics toward those with more 

complex, humified structures. 

Charge Density 
I 

Both carboxyl charge (defined as titratable acidity between pH 3.0-7.0) and 

total charge density were calculated at time 0 and following a 7 day incubation for 

wheat straw and crimson clover DOC. Neither PPR nor PPR+SS were included in 

this analysis due to low DOC concentration. Initial carboxyl charge values calculated 

for wheat straw and crimson clover were consistent with published values (Table 5). 

Ohno and Crannell(1996) calculated values ranging from 4.6 mmol, g-'C for wheat 

straw to 8.0 mmol, g-l C for crimson clover, including 6.2 mmol, g-l C for field corn 

residue and 7.5 mmol, g-' C for hairy vetch. Ionization products (pKa) calculated for 

both amendments were likewise consistent with published values. Cronan et al. 

(1992) calculated pKa values ranging from 3.9-4.2 for soil solution DOC extracts 

with carboxyl charge densities ranging from 4.8-6.0 mmol, g-l C. Vance and David 

(1991) calculated pKa values ranging between 3.8-4.8 for hydrophobic and 

hydrophilic acids extracted from forest soil DOC. 

Charge density values determined for the bulk extracts were compared both 

temporally (i.e. time 0 versus week 1) and relative to the LMW fiaction (Figure 19). 

For crimson clover (time 0), both the carboxyl and the total charge density of the 

LMW fraction were significantly greater than for the bulk extract. Carboxyl charge 

defined as a percentage of total charge density (C/T), however, was equivalent (i.e. 

60%) between size fractions. For wheat straw (time 0), while carboxyl charge density 



Table 5. The effect of incubation on charge density 
Plant material Fraction Wdek Carboxyl chargea pKa Total charge density c/Tb 

mmol, g-'C mmol, g-'C % 

Wheat straw LMW fractionC 0 ~ . 2 7 ~  (0.23) 3.8 5.64 (0.00) 93.5 (4.1) 
1 9.95 (0.47) 3.8 33.5 (0.81) 29.7 (0.8) 

Bulk extract 0 4.72 (0.00) 3.8 5.60 (0.00) 84.2 (0.0) 
1 ' 5.10 (0.23) 3.8 12.2 (0.23) 42.0 (1.1) 

Crimson clover LMW fractiond 0 
1 

Bulk extract 0 6.99 (0.47) 4.0 11.6 (0.47) 60.1 (1.6) 
1 6.45 (0.00) 4.1 12.7 (o.ooj 50.8 (o.oj 

'defined as titratable acidity between pH 3.0-7.0 
b(carboxylate charge densityltotal charge density) x 100 
'defined as passing through a 1000 MWCO ultrafiltration membrane 
dvalues presented are mean values for three replicates + (one standard deviation) 



d o x y 1  charge total charge 

carboxyl charge total charge 

Figure 19. Charge density differences over time (time 0 versus week 1) and 
between the bulk extract versus the LMW (4000 MWCO) fraction. Error 
bars represent one standard deviation. A) Wheat straw; B) Crimson clover 



was significantly higher in the LMW fraction than the bulk extract, total charge 

density was equivalent. The C/T ratio was, correspondingly, higher for the LMW 

fraction than for the bulk extract (94% versus 84%, respectively). In contrasting the 

amendment bulk extracts, while both the initial carboxyl and total charge density 

were, in absolute terms, significantly 'greater for crimson clover DOC, the C/T ratio 

was higher for wheat straw (84% versus 60%, respectively). 

For the crimson clover bulk extract, there was no significant temporal (i-e. 

time 0 versus week 1) change in carboxyl charge density. Total charge density 

increased, however, leading to a decrease of from 60% to 5 1 % in the C/T iatio. For 

the LMW fraction, while both carboxyl and total charge density increased 

significantly over time, the C/T ratio decreased from 60% to 46%. When the week 1 

bulk extract was compared with the LMW fraction, both the carboxyl and the total 

charge density had increased significantly, with the C/T ratio decreasing from 5 1% to 

46%. For the wheat straw bulk extract, while there was no change over time in 

carboxyl charge density, total charge density-increased significantly, leading to a 

decrease of from 84% to 42% in the C/T ratio. For the LMW fraction, both carboxyl 

charge and total charge density increased significantly over the time interval, 

resulting in a decrease of from 94% to 30% in the C/T ratio. When the bulk extract 

(week 1) was compared with the LMW fraction, both the carboxyl and total charge 

density had increased significantly, with the C/T ratio decreasing from 42% to 30%. 

In comparing bulk extracts at week 1, while both carboxyl and total charge 

density were greater for crimson clover than wheat straw the difference relative to its 

extent at time 0 had decreased dramatically. Total week 1 carboxyl charge density for 



both amendments was between 5.1-6.5 -01, g-' C. These values are consistent with 

the calculations of Cronan and Aiken (1985) for the total carboxyl charge density of 

extracted and purified O1A horizon forest floor leachates (i.e. between 5.6-8.3 mmol, 

g-' C, with an average over all sites of 6.5 mmol, g-' C). Total week 1 charge density 

for both amendments was between 12.2-12.7 mmol, g-' C. These values are consistent 

with the calculations of Vance and David (1 991) for forest soil solution hydrophobic 

and hydrophilic acids (10.5 mrnol, g-' C and12.3 mrnol, g-' C, respectively) and 

Rornkens and Dolfing (1998) for agricultural soil DOC (8.5-1 1.2 mrnoE g-' C). 

Over the incubation it thus appears that (1) there was a significant increase in 

non-carboxyl acidity that was more pronounced in the LMW fraction than in the bulk 

extracts, (2) a significant increase in carboxyl acidity that was only visible in the 

LMW fraction, and (3) all acidity increases were more pronounced in the wheat straw 

than in the crimson clover extracts. These conclusions can be viewed in the context of 

results already presented. The more significant increase in total titratable acidity seen 

for wheat straw is consistent with the more rapid increases seen regarding the 

humification indices presented here. For both amendments, it was clear that an 

increase in phenolic acidity occurred during the 1 week incubation. This is consistent 

with the increases measured in Folin-Ciolcateu reactive phenolic acids (FSP) and is 

likely consistent with the increases measured via relative aromaticity indices (i.e. 

Azss, H E ,  and the peak excitation wavelength shift from fluorophore C to D). 

Following incubation, the non-carboxyl acidity of the LMW fraction increased 

to 13.6 mmoE g-' C and 23.6 mrnol, g-' C for crimson clover and wheat straw DOC, 

respectively, with total titratable acidity increasing to 25.0 mmol, g-' C (crimson 



clover) and 33.5 mmol, g-l C (wheat straw). These values can be compared with the 

results of Evangelou and Marsi (2001) and Bergelin et al. (2000). After decomposing 

corn stalks and leaves for 8 months, Evangelou and Marsi (2001) extracted and size 

fiactionated soluble humic materials. Both phenolic and total acidity showed relative 

enrichment per gram C as size fiactioh decreased, with values in the lowest molecular 

weight fraction reaching 19.7 mmol, g-l C (phenolic) and 57.5 mmol, g-' C (total 

titratable acidity). Bergelin et a1. (2000) analyzed the buffering capacity of LMW 

organic acids in podzolic soils and calculated a specific buffering capacity of 40 

mmolH+ g-' DOC. 

The apparent concentration of both carboxyl and non-carboxyl acidity in the 

LMW fraction may be interpreted in several ways. While humification clearly 

involves a transition toward higher molecular weight components, this process also 

involves breakdown steps in which simple molecules are enzymatically cleaved from 

larger compounds. These molecules would exist ephemerally as intermediary 

products priorc to the reactive formation of humic structures. While the significant 

increase in non-carboxyl charge density may correspond to the liberation of 

monomeric phenols, this interpretation contradict both the steep increase in the FSP 

retention percentage (RP) and the shift in the fluorescence excitation wavelength seen 

over this interval for both amendments. A second possibility involves Fox's (1995) 

identification of low molecular weight fulvic acids. As humification progresses 

through even low molecular weight condensation reactions involving acid functional 

group-bearing aromatic monomers, total charge density could increase with the 

increasing structural complexity that accompanies polymerization. This view is 



consistent with the conclusion of Krosshavn et al. (1 992) regarding the relationship 

between degree of humification and OM functional group distribution within forest 

soils. Utilizing 13c NMR, these researchers concluded that the process of plant 

material humification involved relative increases in the overall proportions of alkyl 

and carboxyl C. That such an increase in carboxyl charge was more pronounced for 

the LMW fraction than for the bulk extract during this incubation may suggest that 

the early stages of humification are more initially visible in lower molecular weight 

components. 

It is difficult to define what percentage of the increase in titratable acidity 

resulted from the generation of acidic breakdown productsILMW hlvic acids and 

what resulted simply fiom the degradation of non-titratable components (i.e. the 

simple sugars). As all titrations were conducted at a standard C concentration, the 

degradation of labile materials would leave a C pool enriched by default in acid 

functional group-bearing components. Vance and David (1991) concluded, for 

example, that roughly 90% of forest soil DOC was comprised of hydrophobic and - 

hydrophilic organic acids. In the context of this experiment, not only did the wheat 

straw extract contain a higher percentage of anthrone-reactive sugars, but the wheat 

straw LMW fraction was preferentially enriched relative to the bulk extract in this 

labile substrate. The removal of such materials would clearly play a role in the acidity 

increase measured, though to what extent it is the explanatory mechanism and 

through what means it would favor the dramatic increase in phenolic acidity is 

uncertain. In the context of defining early-stage humification, however, the 

categorical distinction between LMW polymerization and simple component 



degradation may prove arbitrary. These two processes, operating in tandem, may 

describe complementary facets of the same DOC transition occurring during the early 

stages of humification. 

Copper Binding Capacity 

Evangelou and Marsi (2001) observed that the high 0-bearing functional 

group content of humic materials likely explains the affinity between humics and both 

solution phase and adsorbed metals. Young et al. (1982) observed that at low solution 

metal concentrations N-bearing compounds displayed strong Cu binding potential. 

Luster et al. (1994 and 1996) studied the Cu binding capacity of both juniper and 

chestnut leaf litter DOC and concluded that strong Cu binding was definable in terms 

of inner-sphere quasiparticle complexes involving either 4 0 or 2 0 + 2 N ligand 

sites. Sposito (1 986) defined quasiparticles as hypothetical, non-interacting 

macromolecules bearing single functional group classes. Both Luster et al. (1994 and 

1996) and Sposito (1 986) defined weak Cu binding in terms of outer-sphere 

complexes involving 2 0 + 2 H20 molecules. 

Results in the current experiment suggest that multiple factors influence both 

the strength of Cu-ligand stability constants (log 'K) and the maximum binding 

capacity (B,) of the ligand. At time 0, stability constants for both quasiparticle 

complexes (L1 and L2) were greater for wheat straw bulk extract than for crimson 

clover bulk extract (Table 6). Following incubation, stability constants decreased for 

wheat straw and increased for crimson clover, such that ultimate log 'KLl (i.e. strong 

binding) values were similar between amendments while log 'Ku (i.e. weak binding) 

values were higher for crimson clover than for wheat straw. 



Table 6. The effect of incubation on Cu binding parameters 
Plant material Fraction Week log C K ~  ~~2 logCK2 B,,' 
Wheat straw LMW fractionb 0 6.61 0.1 1 5.35 0.53 

1 6.96 0.35 3.05 32.1 
- 

Bulk extract 0 7.21 0.16 5.79 0.22 
1 6.96 0.29 4.55 1.48 

Crimson clover LMW fractionb 0 
1 

Bulk extract 0 6.59 0.41 2.98 46.4 
1 6.78 0.34 5.17 2.27 

'mmol cu g-' c 
bdefined as passing through a 1000 MWCO ultrafiltration membrane 



Analyzed in terms of maximum binding capacity (Bmx), it appeared that (1) 

both strong and weak maximum binding capacities were initially greater for crimson 

clover, (2) the binding capacity increased over the incubation interval for wheat straw 

and decreased over the same interval for crimson clover, but (3) after 1 week the 

maximum Cu binding capacity of crihson clover DOC was still greater. Maximum 

binding capacities for the bulk extracts ranged from 0.16 mmol Cu g-l DOC for wheat 

straw [time O-Ll] to 46.4 mmol Cu g-l DOC for crimson clover [time 0-L2]. Strong 

binding site values are reasonably consistent with published values. Luster et al. 

(1 994) calculated B,, = 0.13 mmol Cu g-l DOC for chestnut leaf litter DOC. 

Kuiters and Mulder (1 992) calculated B, of between 0.75-0.91 mmol Cu g-l DOC 

for leaf and needle litter DOC and between 2.58-5.96 mmol Cu g-l DOC for a forest 

soil 0 horizon. No published values were found for agricultural materials though 

Romkens et al. (1 998) calculated Bmx for the LMW fraction of an agricultural soil 

DOC as 0.45 mmol Cu g-l DOC. While functional group chemistry is generally 

consistent within the plant kingdom, there are clearly differences in absolute and 

relative abundance of functional groups between distinct types of plant residues 

(Stroebel, 2001). Such differences would explain the variation in Bml observed 

between agricultural crops and forest leaves and needles. In terms of binding site L2, 

as already discussed, the degree of data variance at the highest applied Cu 

concentration (1 rnM Cu) suggests that interpretation of both weak binding site 

affinity and saturation binding capacity may be subject to greater error than 

interpretation of strong binding site data. As example, the maximum weak binding 

capacity value calculated by the model (46.4 mmol Cu g-l DOC) appears unrealistic 



in light of the significantly lower total charge density calculated for this amendment 

(i.e., 1 1.6 mmol, g-' C). 

Conditional stability constants for wheat straw and crimson clover DOC were 

compared with published values to explore the functional group composition of each 

class of quasiparticle binding complekes. In analyzing strong, inner-sphere binding, 

Luster et al. (1996) recorded a log 'K = 7.5 for Cu complexation with either catechol 

or histidene. They further noted a log 'K = 6.9 for strong Cu binding in a juniper leaf 

litter extract. This value was correlated with electron spin resonance (ESR) study of 

the leaf litter extract with results suggesting that such binding involved 1,2- 

dihydroxyphenols and amino acids. Martell and Smith (1977) calculated log 'K = 6.9- 

8.3 for Cu binding with aromatic amino acids. Taga et al. (1991) analyzed the 

stability of complexes formed between Cu and a peat derived humic acid (HA). They 

calculated a log 'K = 6.2-7.0 for Cu:HA and when correlated with infrared (IR) 

spectroscopic analysis concluded that strong binding was predominantly a function of 

carboxyl group content. Brown et al. (1999) recognized that aromaticity wasnot a 

necessary precondition for strong Cu binding by calculating a log 'K for Cu-citric 

acid of 6.55. The researchers noted as explanation that this acid is tri-carboxylic and 

thus has a strong potential to form Cu-ligand chelates. Evangelou et al. (2001) size 

fiactionated maize tissue DOC and concluded that as size fiaction decreased Cu- 

binding stability constants increased fiom 6.9 to 7.3. Infixed spectroscopic analysis 

revealed that carboxyl groups dominated binding, but that amine and hydroxyl groups 

were also involved. Values presented for strong binding stability constants were all 

calculated at pH 6.0 and 0.01-0.1 M ionic strength. 



Strong binding at low solution Cu concentrations thus appears to be mediated 

by multi-carboxylic acids, aromatic hydroxyl-substituted monomers, and N- 

containing functional groups. For crimson clover, the greater time O B,, (relative to 

wheat straw) was likely a function of a higher concentration of aromatic amino N, 

greater total and carboxyl charge denkity andlor higher initial percentage of Folin- 

Ciocalteu reactive soluble phenolic acids (FSP). The relative decrease in crimson 

clover B-1 over the 7 day incubation was likely affected by the diminishing 

concentration of aromatic N. As this was coupled with increases in both acidity and 

hurnification, the decrease in Bmxl plausibly corresponds to a shift fiom 2 0 + 2 N to 

a 4 0 binding geometry. While this suggests that the maximum binding capacitv of 

N-bearing sites is higher, binding affinitv appears to increase with the domination of 

0-controlled geometry. For wheat straw, while aromatic N was present in the time 0 

extract it was found at a relatively low concentration and suggests that a larger 

percentage of time 0 strong Cu binding involved 4 0 binding geometry. This 

dominance of 0-bearing sites may explain the greater Cu binding afinity of wheat 

straw DOC. 

Luster et al. (1996) defined weak binding (i.e. with high [Cu] relative to DOC 

concentration) as involving ketonic, phenolic and, likely, carboxylic functional group 

linkages and as corresponding to log 'K values within the range 3.0-6.0. Luster et al. 

(1994) found Cu:oxalate and Cu:salicylate stability constants of 5.8-5.9, suggesting 

that both aromatic and aliphatic carboxyl group-bearing acids play some role in weak 

metal binding. These researchers fiuther utilized fluorescence scans to explore Cu 

binding capacity in the context of aromatic peak location. They calculated a log 'K = 



4.8 for Cu binding with a fluorophore centered at ?L,J~L, = 3231448. This peak was 

identified as the fblvic acid peak (fluorophore D) and the authors suggested that weak 

binding was correlated with the higher molecule weight, more conjugated nature of 

this fluorophore. The association between weak binding and fblvic acids was 

supported by Brown et al. (1999) who calculated log 'K = 5.2-5.9 for Cu binding with 

a Suwannee River fblvic acid. Taga et al. (1991) defined weak binding as hydroxyl 

binding and found log 'K values between 4.9 and 5.6. Martell and Smith (1977) 

calculated stability constants for Cu binding with a suite of dicarboxylic acids and 

found log 'K values ranging between 2.6-5.1. Buffle et al. (1980) studied oak, beech, 

larch and chestnut leaves and concluded that the Cu:DOC stability constants ranged 

between 4.1-4.9. All values were calculated at pH 5.5-6.0 with 0.1-0.01 M ionic 

strength. 

In terms of weak binding for wheat straw and crimson clover bulk extracts, a 

clear pattern could not be discerned fiom the parameters studied here. In the current 

experiment, factors leading to a change in log 'Ku between time 0 and week 1 would 

include a shift toward fluorophore D and increasing retention percentages for both 

DOC and soluble phenolic acids (i.e., increasing polymerization/hurnification). If the 

anomalously high value for crimson clover time 0 is excluded, bulk extract stability 

constants are between 4.6 and 5.8. Such values for weak ligand binding are supported 

by the literature, and suggest that at high soil Cu burdens, outer sphere chelation with 

organic ligands may lead to the solubilization of low mM concentrations of Cu. While 

both carboxyl and phenol 0 likely play a role in outer sphere binding, it is the relative 



arrangement of these functional groups on increasingly polymerized macromolecules 

that determines affinity for soil metals (Kubicki et al, 1997). 

Discussion exists as to whether metals preferentially bind to the LMW 

fraction. Vulkan et al. (2002) analyzed the solution-phase speciation of metals 

extracted from soils amended with sewage sludge and concluded both that the 

majority (91%) of solution-phase Cu was complexed, and that the predominant 

complexing agent was LMW ( 4  kDa) DOC. While comparisons in the current 

experiment are not strictly between distinct molecular weights, the LMW fraction can 

be analyzed versus the bulk extract to compare relative strong binding capacities per 

standardized C concentration. For crimson clover at time 0, the LMW fraction 

strongly bound 28 pmol Cu mmol-' carboxyl charge (both defined per gram C) versus 

58 pmol Cu mmol-' carboxyl charge (c,) for the bulk extract. Strong binding is 

defined here as inner-sphere binding. Following the 7 day incubation, binding 

capacity per LMW charge site increased significantly to 48 pmol Cu mmol-' c, while 

binding capacity per bulk extract charge site decreased slightly to 53 pmol Cu mmol-' 

c,. This increase represents an increase in the relative contribution of LMW binding 

sites to the total Cu chelating capacity of crimson clover DOC. For wheat straw at 

time 0, the LMW fraction bound 22 pmol Cu mmol-' c, versus 34 pmol Cu rnrnol-' c, 

for the bulk extract. Following the 7 day incubation, binding capacity per LMW and 

bulk extract charge sites both increased (to 36 pmol Cu mmol" c, and 56 pmol Cu 

mmol-'c,, respectively). While binding capacity per charge site increased absolutely 

for the LMW wheat straw extract following incubation, the percentage contribution to 

bulk extract charge did not change. For both amendments, however, following the 7 



day incubation, the LMW fraction was responsible for at least 64% of total strong 

binding capacity as defined per standard concentration of carboxyl charge (i.e. per 

mmol c,). As the contribution of LMW DOC to total DOC decreased significantly 

over this time interval (from 71% to 15% for wheat straw and 62% to 33% for 

crimson clover) this suggests that the LMW fraction is a disproportionately effective 

strong metal chelator. 

One likely explanation for the observation that LMW fulvic acids contribute 

significantly to chelation capacity is that polymers of smaller size have enhanced 

surface area to volume ratios and thus cany a greater percentage of their acidic 

functional groups exposed on the surface of the polymer. While higher molecular 

weight polymers may have a greater overall charge density, many potential binding 

sites will be folded within the interior of hurnic polymers and geometrically restricted 

in their interactions. Kubicki et al. (1997) modeled the effect that adjacent functional 

groups have on metal binding. The researchers concluded that, at an environmentally 

relevant pH (0.0), salicylic a c i d - ~ l ~ +  interactions result from either mcnodentate 

complexes involving one carboxyl oxygen supported by one hydroxyl group H-bond, 

or covalently bonded bidentate complexes involving adjacent carboxyl and hydroxyl 

substituents. In both instances it is the proximity of a second acidic functional group 

that stabilizes the chelate. In the current experiment, the increase in LMW binding 

capacity per unit charge p& the significant increase in non-carboxyl charge density 

following incubation suggest that the model results of Kubicki et al. (1997) may 

explain the Oignificant chelating capacity of hurnified, LMW wheat straw and 

crimson clover DOC. 



Conclusions 

Solution-phase condensation reactions have been correlated with the 

stabilization of DOC and likely play a significant role in long-term carbon 

sequestration in soils. While such concepts have traditionally influenced research into 

the C dynamics of undisturbed ecosyktems, there have been fewer studies of C 

stabilization in agricultural systems following organic or conservation-oriented 

production methods. While humification is clearly a bulk process, with all stages of 

material breakdown and re-polymerization occurring sin~ultaneously in the soil, this 

experiment has demonstrated that its early stages can be effectively tracked for 

organic carbon leached fiom fresh plant materials. Monitoring the progression of 

humification in papermill residues, however, proved more difficult. These potential 

amendments were pre-processed materials with both the labile C and indigenous N 

pools already depleted. As these materials were relatively inert, little evidence of 

structural or chemical transition was visible in the soluble C pool. 

For wheat straw and crimson clover, however, early-stage humification 

progressed through increasing molar absorptivity, averaged molecular size, and both 

phenolic and total charge density, and through the polymerization of originally 

monomeric plant breakdown products as determined through transitions in 

fluorescence properties. While no individual technique employed in this study 

demonstrated this process conclusively, the cumulative picture generated was of an 

increase over time in the structural complexity of the DOC pool. Interestingly, when 

the low molecular weight (LMW) fraction of the DOC pool was examined, both the 

condensation of aromatic monomers and the corresponding increase in charge density 



were accentuated. Evidence of humification in even LMW materials suggests both the 

scale invariance of the polymerization process and provides an explanation for the 

enhanced Cu binding capacity of LMW DOC following incubation. 

Examining the metal complexation capacity of amendment DOC provided a 

relevant means of assessing the envirbnmental effects of early-stage humification. For 

wheat straw and crimson clover, DOC extracted both initially and following a 7 day 

incubation success~lly desorbed and complexed resin-bound Cu. Interpretation of 

weak, outer-sphere binding was complicated by poor replicability at high solution Cu 

concentrations. Strong, inner-sphere binding, however, was responsible for 0.1 1-0.55 

mmol Cu bound per g C with the higher values corresponding to the LMW fi-action of 

amendment extracts. For the bulk extracts, while there was no clear and consistent 

pattern of increasing binding capacity following incubation (i.e., with increasing 

degree of early-stage humification), factors affecting strong binding capacity likely 

included the availability of aromatic amino N, differences in both total and carboxyl 

charge density, and the relative percent concentration of Folin-Ciocalteu reactive 

soluble phenolic acids (FSP). For the LMW fi-action, maximum strong binding 

capacities increased with increasing degree of humification. One plausible 

explanation for this increase (relative to inconclusive results for bulk extracts) is that 

LMW hurnic materials likely carry a greater relative percentage of surface-exposed 

acidic functional groups and experience less geometric or steric hinderance to metal 

binding. One potential concern regarding such LMW soluble Cu complexes is that 

their size likely renders them mobile in soil solution. This mobility may have 



implications for soil organism toxicity, the inhibition of plant root development, and 

the leaching or runoff potential of Cu complexes into adjacent water bodies. 
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APPENDIX A: QC Report for Selected Chemical Characteristics of Amendment DOC 

Table Al .  QC report for selected chemical characteristics of amendment DOC 
Week Ca Mg K A1 Fe P NOi-N NI&+-N 

mdL 

known 
recovered 

% recovered 

known 
recovered 

% recovered 

known 
recovered 

% recovered 

known 

recovered 
% recovered 

known 

recovered 
% recovered 

known 
recovered 

1.0 

1.0 

96.5 

1.0 

1.1 

107.0 

10.0 

9.3 

92.8 

10.0 

9.1 

90.9 

10.0 

ND' 

ND 

10.0 

ND 
% recovered 92.5 ND ND 96.2 92.0 95.5 99.6 98.4 

'missing data 



APPENDIX B: Scatchard Distribution Plots of Cu-Binding Capacity 
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Figure B.1. Scatchard distribution plots for Cu biding capacity of time 0 bulk 
extract and LMW (4 kDa) fraction. A) Wheat straw B) Crimson clover 
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Figure B.2. Scatchard distribution plots for Cu binding capacity of week 1 
bulk extract and LMW ( 4  kDa) fraction. A) Wheat straw B) Crimson clover 



APPENDIX C: Fluorescence Scans 
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Figure C.1. Wheat straw bulk extract. Transition of key fluorophores between 
time 0 (I) and week 1 (II). Contour interval = 25 RllJ (relative intensity units). 
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Figure C.2. Crimson clover bulk extract. Transition of key fluorophores between 
time 0 (I) and week 1 (II). Contour interval = 25 RIU (relative intensity units). 
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Figure C.3. PPR bulk extract. Transition of key fluorophores between 
time 0 (I) and week 1 (11). Contour interval = 50 RIU (relative intensity units). 
PPR = Primary Papermill Residue 
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Figure C.4. PPR+SS bulk extract. Transition of key fluorophores between 
time 0 (I) and week 1 (m. Contour interval = 50 RIU (relative intensity units). 
PPR+SS = Primary Papermill Residue + Secondary Sludge 
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Figure C.S. Wheat straw LMW (<I kDa) fraction. Transition of  key fluorophores 
between time 0 (I) and week 1 (JI). Contour interval = 50 RJIJ (relative intensity units). 



300 320 340 360 380 400 420 440 460 480 

Emission 

Emission 

Figure C.6. Crimson clover LMW ( 4  kDa) fraction. Transition of  key 
fluorophores between time 0 (I) and week 1 (TI). Contour interval = 50 RIU 
(relative intensity units). 
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