
The University of Maine
DigitalCommons@UMaine

Electronic Theses and Dissertations Fogler Library

1998

An implementation of the El Gamal elliptic curve
cryptosystem over a finite field of characteristic P
Samuel Thomas Arslanian

Follow this and additional works at: http://digitalcommons.library.umaine.edu/etd

Part of the Computer Sciences Commons, and the Mathematics Commons

This Open-Access Thesis is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Electronic
Theses and Dissertations by an authorized administrator of DigitalCommons@UMaine.

Recommended Citation
Arslanian, Samuel Thomas, "An implementation of the El Gamal elliptic curve cryptosystem over a finite field of characteristic P"
(1998). Electronic Theses and Dissertations. 425.
http://digitalcommons.library.umaine.edu/etd/425

http://digitalcommons.library.umaine.edu?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F425&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.library.umaine.edu/etd?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F425&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.library.umaine.edu/fogler?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F425&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.library.umaine.edu/etd?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F425&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F425&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F425&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.library.umaine.edu/etd/425?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F425&utm_medium=PDF&utm_campaign=PDFCoverPages

AN IMPLEMENTATION OF THE EL GAMAL ELLIPTIC CURVE

CRYPTOSYSTEM OVER A FINITE FIELD OF CHARACTERISTIC P

By Samuel Thomas Arslanian

Thesis Advisor: Dr. Ali Ozluk

An Abstract of the Thesis Presented
in Partial Fulfillment of the Requirements for the

Degree of Master of Arts
(in Mathematics)

August, 1998

Since the earliest times, individuals and groups of individuals have been interested

in communicating sensitive information in a manner which would guarantee that such

information could not be arbitrarily received. Further, such information was to be received

by select recipients and this required that a means of secure information transmission be

found and employed. To these ends, methods of information encryption have ever since been

sought and employed. The entire study and practice of this activity, cryptology, the science

of message encryption and decryption, provides a framework for this thesis. In particular,

the development of cryptology has been influenced by some specific areas of mathematics,

employing abstract mathematical concepts and utilizing algebraic structures known as elliptic

curves. It is with respect to these structures and their utilization in specific cryptosystems,

called elliptic curve cryptosystems on which this thesis focuses. More specifically, this

thesis is concerned with the implementation of such a cryptosystem and is a demonstration

of that implementation. Additional pertinent examples, illustrations and supporting

computer programs are included to present a self-contained work.

AN IMPLEMENTATION OF THE EL GAMAL ELLIPTIC CURVE

CRYPTOSYSTEM OVER A FINITE FIELD OF CHARACTERISTIC P

By

Samuel Thomas Arslanian

B.S. University of Louisville, 1992

A THESIS

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Arts

(in Mathematics)

The Graduate School

University of Maine

August, 1998

Advisory Committee:

Ali E. Ozluk, Associate Professor of Mathematics, Advisor
William M. Snyder, Professor of Mathematics
Henrik Bresinsky, Professor of Mathematics

 ii

ACKNOWLEDGEMENTS

Since beginning this thesis, the writer has developed a greater appreciation for the

 extensive development of the theory of elliptic curves, to say nothing of its implementation.

Though the material herein draws equally from a number of sources, each are worth citing

for special mention. The historical development is treated well in Koblitz [7] from whom

also the implementation [5] and the characterization over fields of characteristic 2 were

drawn [6]. Silverman[12],[13] and Husemoller[4] give the basics for the mechanics of

computing curve groups and structures. Lidl and Niederreiter [8] was indispensable for

constructing group tables. The papers by Menezes and Vanstone [9] as well as Diffie and

Hellman[2] and Agnew, et.al. [1] helped highlight and investigate special features such as

supersingularity and practical aspects.

On a more personal note, special thanks to Doctors Henrik Brezinsky and William

Snyder for steering the writer in the proper direction during his investigation. Finally, and

above all, the writer is indebted to his advisor, Doctor Ali Ozluk, for having sparked

an interest in the subject of Algebra, an appreciation of its sublime and enduring beauty and

for having “cast the seed of germination” for this thesis.

 iii

TABLE OF CONTENTS

Acknowledgments...ii

List of Figures..v

List of Tables..vi

Cryptography: Classical and Modern

Background and Definitions...1

Classical Cryptography...1

Modern Cryptography...4

Elliptic Curves

Definition, Normal Forms and Addition Formulas..6

The Elliptic Curve y2 = x3 - 36x over QQ..16

An Elliptic Curve over F5: y2 = x3 + x + 1..19

A Characteristic 2 Supersingular Curve: y2 + y = x3 + x + 1 over F8.............23

A Characteristic 2 Non-Supersingular Curve: y2 +xy = x3 + x2 + 1...............28

An Elliptic Curve over F27: y2 = x3 + 2x2 + 1..32

Classification of Elliptic Curves over F3 up to Isomorphism.........................36

The Implementation

Imbedding...38

Computation of Square Roots in the Field..39

 Encryption and Decryption..39

The Security of Elliptic Curve Cryptosystems..45

1

iv

The Order of the Curve Group...46

Computation of Points in the Curve Group...46

A Closing Remark...47

Bibliography..49

Appendix

Programs...50

Biography of the Author..59

2

 v

LIST OF FIGURES

1. Graph of the Elliptic Curve y2 = x3 - 36x defined over R.................................18

2. Flow Diagram for Imbedding/Encryption Routine...41

3. Flow Diagram for Decryption Routine...42

 vi

3

LIST OF TABLES

 1. Table of Normal Forms with Discriminant and j-invariant...........................11

 2. Addition Table for Elements in the Elliptic Curve Group of
y2 = x3 + x + 1 over F5...21

3. Table of Elliptic Curves over Various Small Fields22

4. Multiplication Tables for F8...24

 5. Addition Table for Elements in the Elliptic Curve Group of

y2 + y = x3 + x + 1 over F8...25

 6. Addition Table for Elements in the Elliptic Curve Group of
y2 + xy = x3 + x2 + 1 over F8..29

7. Isomorphism Classes of Curves with Non-zero j-invariant over F8...............31

8. Field Elements of F27\{0}: F27 ≅ ZZ3[x] / (x3 + 2x2 + 1)33

9. Points of the Curve E: y2 = x3 + 2x2 + 1 over F27..34

10. Group Table for Elements of E: y2 = x3 + 2x2 + 1...35

4

CRYPTOGRAPHY- CLASSICAL AND MODERN

BACKGROUND AND DEFINITIONS

In order to introduce the topic at hand, a few basic definitions are in order. The

following is a list of components common to any cryptosystem and their definitions.

Plaintext: message to be sent

Plaintexts are broken up into message units

Ciphertext: message disguised by some method of encryption

Encryption: process of converting plaintext to ciphertext

Decryption: process of converting ciphertext back to plaintext

Enciphering transformation: a function taking any plaintext message unit and mapping it

to a ciphertext message unit in 1-1 correspondence.

Deciphering transformation: an inverse function of the enciphering transformation.

Hence, the following mapping:

f f-1

P C P

Cryptosystem: a messaging system with the above components

CLASSICAL CRYPTOGRAPHY

An early example of a cryptosystem is one apparently used by Julius Caesar as

follows. Using an N letter alphabet and some integer b, assign a shift transformation

given by C = f(P) ≡ P + b mod N where C is a ciphertext message unit in {0, 1, ..., N - 1}.

5

Decipher by C - b mod N to give the inverse. This system used a fixed set of values for

ciphertexts, but eventually these were varied to add security. Decryption depends on

frequency analysis to find b. We find the most frequently occurring ciphertext unit to

assign it to the most frequently used letter in the plaintext language. Decryption can be

accomplished by intercepting relatively short messages.

A slight improvement came with affine maps using a more general transformation

of Z/NZ defined by C ≡ aP + b mod N where a,b are fixed integers and (a,N) = 1.

Decryption is given by solving for P in terms of C using P ≡ a′C + b′mod N where a′ = a-1

in Z/NZ and b′ = -a-1b. If a = 1 we obtain the shift transformation above, and if b = 0 we

have a linear transformation. We can solve the resulting system of congruent equations

once we have done a frequency analysis as above to obtain two letters (most and second

most frequently used letters).

Another approach, still better, involves using digraph transformations. Plaintext

and ciphertext message units come in two letter blocks called digraphs. If the plaintext

message has an odd number of letters we add one more that will not cause confusion, say

a blank or some other dummy. Assign numerical equivalents to each digraph, say xN + y

for example where x,y are numerically equivalent to the first and second letter in the

digraph respectively. This gives a 1-1 correspondence between digraphs in the N letter

alphabet and nonnegative integers less than N2. Use an affine transformation over the

integers modulo Z/N 2. The inversion process is as given above. Define the encrypted P

to be the nonnegative integer less than N2 satisfying the congruence C ≡ aP + b mod N2.

Then the inverse transformation is comparable to the above modulo N2.

6

Continuing further, we can consider each digraph instead as a column vector in x

and y say. Picture each digraph as a point on an N x N array with each axis as a copy of

Z/NZ. This was the idea of the Vigenere cipher used for several centuries. The idea was

to treat blocks of k letters (k, fixed) as vectors in (Z/NZ)k. Some fixed vector b

remembered as a key-word allowed one to encipher by vector translation C = P + b. This

is of course almost as easy to solve as the first method.

An improvement over this method uses affine enciphering transformations on a

digraph column vector (2X1) called P. Take a 2X2 matrix A over Z/NZ and adding a

constant column vector (2X1) called B we have C = AP + B as the affine mapping.

Thus

x′ a b x e ax + by + e

 = =

y′ c d y f cx + dy + f

All the above methods share three properties. First, each cryptosystem corresponds

to a choice of parameters whose values are necessary for encryption, known as an

encryption key, and also a set of values known as a decryption key. Second, it is not

really necessary to know the decryption key given the encryption key since the effort to

determine the latter from the former is a relatively simple process given that the former is

already known, with its appropriate algorithm. Finally, the amount of time for encryption

and decryption share the same order of magnitude with respect to computation time. It is

the elimination of part or all of these features that distinguishes modern cryptography

from classical.

7

MODERN CRYPTOGRAPHY

Public Key Cryptography

A public key cryptosystem (1976, Diffie & Hellman) differs from the above

methods in that knowledge of the encryption key does not guarantee with any reasonable

probability that one can also determine the decryption key as well without prohibitively

long computations. Thus, the encryption function (called a trapdoor function) is easily

computable while its inverse is from a computation standpoint, very difficult to compute.

The function f is then said to be non-invertible, without additional information besides the

encryption algorithm and key.

One way functions (Wilkes, 1968) are similar except that even given the

additional information, computational ease is not achieved. Computation times for the

two processes vary radically with decryption being the more difficult of the two. Using

the idea of trapdoor and one-way functions, Rivest, Shamir & Adelman (1974) developed

the concept of a public key cryptosystem (RSA method) based on factoring a large

composite integer into primes factors.

RSA method: Each user chooses two extremely large primes, p,q of about 100

digits each, say. Set n = pq. Knowing how to factor n, it is easy to compute _(n) = (p -

1)(q - 1) = n + 1 - p - q. The user next chooses an integer x between 1 and _(n) such that

(x,_(n)) =1. Note that we randomly choose x,p, and q as follows. Using a random number

generator, generate a large integer m and check if m is even. If so, replace by m + 1 and

test for primality. If it is not prime increment by 2 and check again. Continue until a

prime is reached. The user computes also the multiplicative inverse of x modulo _(n), call

8

it d. The public enciphering key (n,x) is made known while the decryption key (n,d) is

kept secret. The enciphering transformation is given by f(P) ≡ Px mod n. The deciphering

transformation is given by f-1(C) ≡ Cd mod n, since these maps are inverses of each other

by the choice of d.

Discrete Log Method

Another more modern method using the trapdoor idea involves using discrete logarithms

over finite fields. Given a finite group, say Z/NZ or a finite field with multiplication, and

an element y = bx , how do we compute x = logby? Discrete log cryptosystems based on

the multiplicative group of a finite field have been shown as vulnerable to various index-

calculus attacks[11, p. 418]. Hence these are not particularly secure given the present

state of knowledge.

Elliptic Curves

By 1987, elliptic curves were being implemented in cryptosystems. An

improvement over the discrete log method does not directly use the finite fields or groups

but rather the elliptic curves defined over them[5],[11]. Elliptic curves have group

structure that allows the encryption of message units to be implemented utilizing simple

rational expressions. A correspondence with the location of points on these curves is

established with the plaintext units after appropriate imbedding. Elliptic curves are

known to provide a high degree of security and great variety for

implementation[1],[5],[11].

9

ELLIPTIC CURVES

DEFINITION, NORMAL FORMS AND ADDITION FORMULAS

A Weierstrass equation defined over a field K is a degree 3 homogeneous equation

given by

Y2Z + a1XYZ + a3YZ2 = X3 +a2X2Z + a4XZ2 + a6Z3

where the ai ∈ K, i =1,2,3,4,6. The equation is called smooth or non-singular if for all

projective points P = (X,Y,Z) ∈ P2(KKKK), KKKK an algebraic closure of K, satisfying

F(X,Y,Z) = Y2Z + a1XYZ + a3YZ2 - X3 +a2X2Z + a4XZ2 + a6Z3 = 0

we have

(∂F/∂X(P),∂F/∂Y(P),∂F/∂Z(P)) ≠ (0,0,0).

 An elliptic curve, then, is the set of all solutions in P2(K) of a smooth Weierstrass

equation defined over K. Using non-homogeneous coordinates x = X/Z, y = Y/Z, the

Weierstrass equation becomes

E: y2 + a1xy + a3y = x3 + a2x2 + a4x + a6 ai ∈ K, i = 1,2,3,4,6.

By a linear change of variables, the Weierstrass equation for an elliptic curve reduces to

what is called the normal form, of which a table has been prepared on page 11. The points

(x, y) ∈ K x K that are solutions of the equation, together with a point at infinity, can

have a group structure imposed on them if addition and an identity element are defined as

below. That the requisite properties of an abelian group are satisfied has been verified

[12]. To be able to add and double points in the curve group, necessary for any encryption

procedure, one uses simple formulas derived directly from the equation of the particular

curve. For the general case we have the following results[12].

10

First, let E be given by a Weierstrass equation as above. The group elements of E

then consists of points P = (x,y) satisfying the equation together with an identity element

identified with the point (0,1,0) at infinity. In projective space, a line L that intersects E

in the space intersects it in three points counting multiplicity. Where two of these points

are distinct in the y coordinates only, the third point of intersection is (0,1,0) at infinity

and identified as the identity of the curve group which we will label O.

Let P1 = (x1,y1) and P2 = (x2,y2). Then we define

P1 ⊕ P2 = P3 = (x3,y3) where x3 and y3 are obtained via the equations below.

The symbol ⊕ is used here to indicate addition of points in the curve group. Henceforth,

group addition of points will simply be indicated by +.

Notice first that if x1 = x2, then either y1 = y2 or y1 + y2 + a1x2 + a3 = 0 [12].

In order to add two points P1 = (x 1, y 1) and P 2 = (x 2 , y 2) , we consider the following

exhaustive list of cases.

Case 1. If x1 = x2 and y1 + y2 + a1x2 + a3 = 0 then P1 + P2 = O (the identity).

Otherwise, that is, if y1 + y2 + a1x2 + a3 ≠ 0, we have two more cases:

Case 2. If x1 ≠ x2, set

λ = y2 - y1 v = y1x2 - x1y2

 x2 - x1 x2 - x1

then a new point P3 = (x3,y3) is obtained by

x3 = λ2 + a1λ - a2 - x1 - x2 y3 = -(λ + a1)x3 - v - a3.

11

Case 3. If x1 = x2 and y1 = y2, set

λ = 3x1

2 + 2a2x1 + a4 - a1y1 v = -x1
3 + a4x1 + 2a6 - a3y1

 2y1 + a1x1 + a3 2y1 + a1x1 + a3

Then a new point P3 = (x3,y3) is obtained by

x3 = λ2 + a1λ - a2 - x1 - x2 y3 = -(λ + a1)x3 - v - a3

Note that v = yi - λxi, for i = 1,2 in cases 2 and 3. Furthermore, note that if P = (x0, y0) ∈
E,

then the additive inverse of P, -P = (x0, - y0 - a1x0 - a3).

[Geometrically, we are taking the line joining P1 and P2 (or the tangent line if P1 = P2),

picking the third intersection point ~P3 and defining P3 to be the intersection point of the

line through O and ~P3 with the curve. (Note ~P = -P as defined).]

If in any computation, we find that the denominator vanishes, then the resulting point is

taken to be point at infinity, namely O, the identity. An alternate set of expressions for

Case 3 to compute the doubling of a point are given as follows.

The x coordinate of 2P ≠ O, namely x2P, is given by

 x4 - b4x2 - 2b6x - b8 , if P = (x,y).
 4x3 + b2x2 + 2b4x + b6

12

The y coordinate of 2P, namely y2P, is given by

-x2P [3x2+2a2x+a4+a1y+a1

2x+a3a1]+x3-a4x-2a6-a3y-a1a3x-a3
2

2y+a1x+a3

where bi is defined in terms of the coefficients ai of the curve equation:

b2 = a1
2 + 4a2 b4 = a1a3 + 2a4 b6 = a3

2 + 4a6

b8 = a 12a 6 - a 1a 3a 4 + 4 a 2a 6 + a 2 a 32 - a 4
2

We also define for purposes of computation the following quantities.

(Discriminant) ∆ = -b 2
2 b 8 - 8 b 43 - 27b6

2 + 9b2 b4 b6

c4 = b2
2 - 24b4 j-invariant j(E) = c4

3/∆

The quantities ∆ and j(E) are used in classifying elliptic curves in the following.

Definitions:

A curve E satisfying ∆ = 0 is said to be singular.

If ∆≠ 0, then:

A curve E whose j-invariant j(E) = 0 is called a supersingular curve.

A curve E whose j-invariant j(E) ≠ 0 is called a non-supersingular curve.

In cryptology, any elliptic curve satisfying j(E) = 0 has been shown to be vulnerable to

certain methods of attack [10],[11]. Such curves are a relative minority of all elliptic

curves. For each class of curve with its respective j-invariant and discriminant ∆ see

Table T1. In particular settings we then have various forms of the above equations

and formulas reduced below as follows.

The remainder of this section concludes with general formulas for point doubling

13

and addition in arbitrary curves over fields of characteristic p, prime≠ 2,3, characteristic 2

and characteristic 3. In subsequent sections, the particular forms for some specific

examples of curves over finite fields of characteristic p≠ 2,3, characteristic 2 and

characteristic 3 will be given. We will look at some features of the following curves:

1) y2 = x3 - 36x defined over the rationals

2) y2 = x3 + x + 1 defined over F5

3) y2 + y = x3 + x + 1, a supersingular curve defined over F8

4) y2 + xy = x3 + x2 + 1, a non-supersingular curve defined over F8

5) y2 = x3 + 2x2 + 1, a non-supersingular curve defined over F27.

Included in the appendix is an implementation of the elliptic curve y2 = x3 + x + 1

defined over Fp, where p = 383 + 356.

14

Table 1. Table of Normal Forms with Discriminant and j-invariant

Characteristic ≠ 2,3

y2 = x3 + a4x + a6 ∆ = -16(4a4
3 + 27a6

2) j = 1728 4a4
3

 4a4
3 + 27a6

2

Characteristic 3 and j(E) ≠ 0 (Non-supersingular)

y2 = x3 + a2x2
 + a6 ∆ = -a2

3a6 j = -a2
3/a6

Characteristic 3 and j(E) = 0 (Supersingular)

y2 = x3 + a4x + a6 ∆ = -a4
3 j = 0

Characteristic 2 and j(E) ≠ 0 (Non-supersingular)

y2 + xy = x3 + a2x2 + a6 ∆ = a6 j = 1/a6

Characteristic 2 and j(E) = 0 (Supersingular)

y2 + a3y = x3 + a4x + a6 ∆ = a3
4 j = 0

We first consider curves over a field of characteristic p ≠ 2,3. The Weierstrass

normal form then becomes

 y2 = x3 + a4x + a6

Setting a1 = a2 = a3 = 0 we have the following addition formulas for distinct points.

Let P1 = (x1,y1) and P2 = (x2,y2), and P1 + P2 ≠ O: (x1 ≠ x2)

For

 λ = y2 - y1

15

 x2 - x1
and

 v = y1x2 - x1y2
 x2 - x1

we have

 x3 = λ2 - x1 - x2

y3 = -λx3 - v.

Doubling formula for yielding x2P where P = (x,y) is given by

(x4 - 2a4x2 - 8a6x + a4
2)[4(x3 + a4x + a6)]-1 and

y2P =[-x2P(3x2 + a4) + x3 -a4x - 2a6](2y)-1

All such curves are non-supersingular if a4 ≠ 0.

If a characteristic 2 non-supersingular curve has the form

y2 + xy = x3 + a2x2 + a6.

then x3 = λ2 + λ + a2 + x1 + x2

y3 = (λ + 1)x3 + v

with λ and v as before where

P1 = (x1,y1) and P2 = (x2,y2) are distinct points, P1 + P2 ≠ O.

The doubling formula yielding x2P is given by

(x4 - a6)(x2)-1 and

y2P =[-x2P(x2 + x + y) + x3](x-1).

If a characteristic 2 supersingular curve has form

y2 + a3y = x3 + a4x + a6

16

then x3 = λ2 + x1 + x2

y3 = λx3 + v + a3

with λ and v as above.

Doubling formula for x2P is given by

 x3 = (x4 + a4
2)(a3

2)-1 and

y2P = [-x2P(x2 + a4) + x(x2 - a4) + a3(y + a3)] (a3)-1

As an alternate form of the formulas for addition and doubling points of characteristic 2

non-supersingular and supersingular curves respectively we have the following[9].

Non-Supersingular Curves (j Invariant ≠ 0)

Addition Formulas P1 ≠ P2, P1 + P2 ≠ O

x3 = (y1 + y2)2(x1 + x2)-2 + (y1 + y2)(x1 + x2)-1 + x1 + x2 + a2

y3 = (y1 + y2)(x1 + x2)-1(x1 + x3) + y1 + x3

Doubling Formulas P = (x,y), 2P ≠ O

x2P = x2 + a6x-2

y2P = x2 + (x + yx-1) x2P + x2P

Supersingular (j Invariant = 0)

17

Addition Formulas

x3 = (y1 + y2)2(x1 + x2)-2 + x1 + x2

y3 = (y1 + y2)(x1 + x2)-1(x1 + x3) + y1 + a3

Doubling Formulas

x2P = (x4 + a4

2)(a3
-2)

y2P = (x2 + a4)(a3

-1)(x + x2P) + y + a3

Characteristic 3 Non-supersingular curves take the form

 y2 = x3 + a2x2 + a6

 We have the following addition formulas given by

x3 = λ2 - a2 - x1- x2

y3 = - λx3 - v

 λ and v as defined previously.

Doubling formula to obtain x2P is given by

 (x4 + a6x - a2a6)(x3 + a2x2 + a6)-1 and

y2P =[-x2P(2a2x) + x3 + a6](-y)-1.

Finally, we have the characteristic 3 supersingular curves with form

y2 = x3 + a4x + a6

where a1 = a2 = a3 = 0. The addition formulas then are given by

18

x3 = λ2 - x1 - x2

 y3 = -λx3 - v

where λ and v are as before with the doubling formula for x2P given by

 (x4 + a4x2 + a6x + a4
2)(x3 + a4x + a6)-1 and

y2P =[-x2P(a4) + x3 - a4x + a6](-y)-1.

THE ELLIPTIC CURVE y2 = x3 - 36x OVER QQ

For this particular curve, y2 = f(x) = x3 - 36x over QQ we have the following

formulas:

Addition: P1 ≠ P2, x1 ≠ x2

x3 = - x1 - x2 + ((y2 -y1)/(x2-x1))2

λ = (y2-y1)/(x2-x1)

Doubling: P1 = P2, y1 ≠ 0

x3 = -2x1 + (f′(x1)/2y1)2

λ = f′(x1)/2y1

In both cases y3 = -y1 + λ(x1 - x3).

We clearly have the points (0,0), (6,0) and (-6,0) on the curve for starters and note that (-

3,9) is also on the curve. We can generate some additional points and see also how these

fit into the curve group. Using any two(distinct) of the above given three points will

generate the other using the addition formula. So suppose we wish to add the points

P1:(-3,9) and P2:(0,0). Then

x3 = -(-3) - (0) + [-9/3]2 = 12.

19

The slope λ is given as -1. We have

 y3 = -9 + (-3)(-3-12) = 36.

Thus (x3,y3) = (12,36) = P1 + P2.

Next, let us illustrate the use of the doubling formula with the point P1 = (-3,9).

After appropriate substitutions we obtain

 x3 = 6 + (-1/2)2 = 25/4 λ = -9/18 = -1/2

Thus we have

2P1 = 2(-3,9) = (25/4, -35/8) (See Fig. F1.)

Note that there is no selection criterion for picking an intitial point. One can pick

an arbitrary point (x,y) ∈ QQ2 whose coordinates satisfy the equation. Then, quite

mechanically, we can derive multiples of a single point by doubling repeatedly. Thus one

may obtain 2P, 4P, 8P, and so on.

20

Figure 1. Graph of the Elliptic Curve y2 = x3 - 36x defined over R

AN ELLIPTIC CURVE OVER F5: y2 = x3 + x + 1

Since we are working in F5, we are interested in the 5 possibilities for the values

of x in x3 + x + 1. We check to see which ones are squares in F5. We compute the

number of points on an elliptic curve over a finite field Fp by

#E(Fp) = 1 + Σx mod p ((x3 + x + 1)/p) + 1)

where (a/p) denotes the Legendre symbol[5]. Thus one can exhaustively count the points

by this computation for curves defined over small fields. Computationally this is fine for

prime fields of say up to about 105 to 107elements. This writer had no problem using

Mathematica for curves over fields of this size. For example, #E(F100043) = 99804.

By a simple computation we get the following list:

(0,1) (0,4) (2,1) (2,4) (3,1)

 (3,4) (4,2) (4,3) Ο, the identity

Next, we write down the particular formulas for point addition and duplication.

This particular step bears more weight in dealing with larger curve groups in that one

does not generally obtain many points with which to work. However, if one can obtain a

few points and determine their order, one is able to get some idea rather quickly of the

underlying group structure. The formulas then serve in computing large orders for a

given point. Of course, the larger the curve group, the less likely one is to obtain the

order for a given point since a large number of duplications may be required to take a

point to the identity. In this example the rational expressions have the following

21

formulas.

λ = y2 - y1 if x1 ≠ x2 ,
x2 - x1

(3x1
2 + 1)/2y1 if P1 = P2, y1 ≠ 0

Finally, one computes the new coordinates for the added/doubled point to be

x3 = λ2 - x1 - x2

where the xi are non-distinct in the latter case. Then

y3 = -λ(x3 - x1) - y1

In addition to these formulas there is a convenient duplication formula for doubling

points without recomputing the x values each time. Referring back to the first section in

this thesis, the coefficients of our given curve can be checked and the ai identified. Then

the doubling formula for elliptic curves of characteristic p≠ 2 for this example becomes

x2P = (x4 - 2x2 - 3x + 1)(4x3 + 4x + 4)-1

where the appropriate reductions mod p have been made for this field. After some

computing, if P = (0,1), one obtains the points 2P = (4,2), 3P = (2,1) and 4P = (3,4) and

so on(see Table T2). Note that this group is isomorphic to ZZ9. Table T3, obtained in

similar manner by direct computation, gives a listing of some curves defined over various

small finite fields. Included are group order and discriminant for each curve.

22

Table 2. Addition Table for Elements in the
Elliptic Curve Group of y2 = x3 + x + 1 over F5

Point Order Coordinate Pair

 P 9 (0,1)

 2P 9 (4,2)

 3P 3 (2,1)

 4P 9 (3,4)

 5P 9 (3,1)

 6P 3 (2.4)

 7P 9 (4,3)

 8P 9 (0,4)

 9P 3 O

Table 3. Table of Elliptic Curves over Various Small Fields

Curve p: Field Fp Discriminant ∆ ∆(mod p) Group Order

x3+x+1 3 -1 2 4

 5 -24*31 4 9
x3+x+2 3 -1 2 4

 5 -28*7 3 4
x3+x+3 5 -24*13*19 3 4

23

 7 ″ 3 6
x3+x+4 5 -26*109 4 9

 7 ″ 3 10
x3+2x+1 3 -2 1 7

 5 -24*59 1 7
x3+2x+2 3 -2 1 1

 11 -26*5*7 4 9
x3+2x+3 7 -2 4*52*11 3 6

 13 ″ 7 18
x3+2x+4 5 -28*29 1 7

 7 ″ 3 10
x3+3x+1 7 -24*33*5 3 12

 11 ″ 7 18
x3+3x+2 5 -27*33 4 5

 7 ″ 2 9
x3+3x+3 5 -24*33*13 4 5

 7 ″ 5 6
x3+3x+4 7 -26*33*5 5 10

 11 ″ 6 14
 13 ″ 5 14

x3+4x+1 5 -24*283 2 8
 7 ″ 1 5

x3+4x+2 5 -26*7*13 1 3
 11 ″ 6 6

x3+4x+3 5 -24*499 1 3
 7 ″ 3 6

x3+4x+4 5 -28*43 2 8
 7 ″ 3 10

A CHARACTERISTIC 2 SUPERSINGULAR CURVE: y2 + y = x3 + x + 1 over F8

We continue with the first of two examples of curves defined over extensions of

F2. In this section we will be working with the model, F8 ≅ ZZ2[x]/ (x3 + x + 1) and in the

next section with F8 ≅ ZZ2[x]/ (x3 + x2 + 1). Table T4 gives the two multiplication tables

24

for F8
* for these two models. Considering first

E1: y2 + y = x3 + x + 1

We collect all (x,y) ∈ F8
* x F8

* that satisfy the equation plus any having 0 as a coordinate

and including the identity of the group (O, the point at infinity). In this curve we should

have q + 1 + (2q)1/2 points in the curve group, where q is the order of the field(of

characteristic 2, q = 2m, m odd)[9]. Since we do indeed have all 13 points we conclude

that the curve group has order 13(see Table T5). Also (u, 1) is found to be the generator

for this group.

In order to be able to compare and more clearly understand the structures of

various elliptic curves we define the notion of isomorphism for elliptic curves as

follows. Two elliptic curves are isomorphic if they are isomorphic as projective varieties.

 Briefly, two projective varieties V1, V2 over K are isomorphic over K if there exist

morphisms τ : V1 → V2 , ψ : V2 → V1 (τ, ψ defined over K), such that ψ ° τ, τ° ψ are the

identity maps on V1, V2 respectively. (For a definition of morphism of projective

varieties see [12, p.16]). The following theorem relates the notion of isomorphism of

elliptic curves to the coefficients of the Weierstrass equations that define the curves.

25

Table 4.

Multiplication Table for F8 ≅ ZZ2(u) ≅ ZZ2[x]/ (x3 + x + 1)

 u u+1 u2 u2+1 u2+u u2+u+1 1
u u2 u2+u u+1 1 u2+u+1 u2+1 u
u+1 u2+u u2+1 u2+u+1 u2 1 u u+1
u2 u +1 u2+u+1 u2+ u u u2+1 1 u2
u2+1 1 u2 u u2+u+1 u+1 u2 + u u2+1
u2+u u2+u+1 1 u2+1 u+1 u u2 u2+u
u2+u+1 u2+1 u 1 u2+ u u2 u+1 u2+u+1
1 u u+1 u2 u2+ 1 u2+u u2+u+1 1

Multiplication Table for F8 ≅ ZZ2(v) ≅ ZZ2[x]/ (x3 + x2 + 1)

 v v+1 v2 v2+1 v2+v v2+v+1 1
v v2 v2+v v2+1 v2+v+1 1 v+1 v
v+1 v2+v v2+1 1 v v2+v+1 v2 v+1
v2 v2+1 1 v2+v+1 v+1 v v2+v v2
v2+1 v2+v+1 v v+1 v2+v v2 1 v2+1
v2+v 1 v2+v+1 v v2 v+1 v2+1 v2+v
v2+v+1 v+1 v2 v2+v 1 v2+1 v v2+v+1
1 v v +1 v2 v2+1 v2+v v2+v+1 1

26

Table 5. Addition Table for Elements in the
Elliptic Curve Group of y2 + y = x3 + x + 1 over F8

P1 P2 P3 P4 P5 P6 P7
P1:(u,1) P2 P3 P4 P5 P6 P7 P8
P2:(u2+u+1,u2+u+1) P3 P4 P5 P6 P7 P8 P9
P3:(u2+u,1) P4 P5 P6 P7 P8 P9 P10
P4:(u2,0) P5 P6 P7 P8 P9 P10 P11
P5:(u+1,u+1) P6 P7 P8 P9 P10 P11 P12
P6:(u2+1,u2+1) P7 P8 P9 P10 P11 P12 O
P7:(u2+1,u2) P8 P9 P10 P11 P12 O P1
P8:(u+1,u) P9 P10 P11 P12 O P1 P2
P9:(u2,1) P10 P11 P12 O P1 P2 P3
P10:(u2+u,0) P11 P12 O P1 P2 P3 P4
P11:(u2+u+1,u2+u) P12 O P1 P2 P3 P4 P5
P12:(u,0) O P1 P2 P3 P4 P5 P6
P13:O P1 P2 P3 P4 P5 P6 P7

P8 P9 P10 P11 P12 P13
P1:(u,1) P9 P10 P11 P12 O P1
P2:(u2+u+1,u2+u+1) P10 P11 P12 O P1 P2
P3:(u2+u,1) P11 P12 O P1 P2 P3
P4:(u2,0) P12 O P1 P2 P3 P4
P5:(u+1,u+1) O P1 P2 P3 P4 P5
P6:(u2+1,u2+1) P1 P2 P3 P4 P5 P6
P7:(u2+1,u2) P2 P3 P4 P5 P6 P7
P8:(u+1,u) P3 P4 P5 P6 P7 P8
P9:(u2,1) P4 P5 P6 P7 P8 P9
P10:(u2+u,0) P5 P6 P7 P8 P9 P10
P11:(u2+u+1,u2+u) P6 P7 P8 P9 P10 P11
P12:(u,0) P7 P8 P9 P10 P11 P12
P13:O P8 P9 P10 P11 P12 O

27

Theorem(see [9]). Two elliptic curves E1(K) and E2(K) given by

E1(K): y2 + a1xy + a3y = x3 + a2x2 + a4x + a6

E2(K): y2 + A1xy + A3 y = x3 + A2 x2 + A4 x + A6

are isomorphic over K, written (E1(K)≅ E2(K)) if and only if there exists u,r,s, t ∈ K, u≠

0, such that the change of variables

ψ: (x,y) → (u2x + r,u3y + u2sx + t)

transforms equation E1 into equation E2. The relationship of isomorphism is an

equivalence relation.

The change of variables ψ is referred to as an admissible change of variables.

Note that if E1(K)≅ E2(K) and if ψ transforms E1 into E2, then the change of variables

τ: (x, y) → (u-2 (x - r), u-3 (y - sx - t + rs))

transforms equation E2 into equation E1 and is also and admissible change of variables.

Also,

ψ maps E2 onto E1 while τ maps E 1 onto E 2. Moreover, ψ ° τ is the identity map on E 1,

while τ° ψ is the identity map on E2. It should be clear that ψ maps O such that O(E 1) =

O(E 2).

If E1(K)≅ E2(K), then the change of variables transforming E1 to E2 given by ψ

yields the following set of equations:

uA1 = a1 + 2s

u2A2 = a2 - sa1 + 3r - s2

28

(*) u3A3 = a3 + ra1+ 2t

u4A4 = a4 - sa3 +2ra2 - (t + rs)a1 + 3r2 - 2st

u5A5 = a6 + ra4 + r2a2 + r3 - ta3 - t2 - rta1.

The following is a restatement of the above theorem.

Theorem. Two elliptic curves E1(K) and E2(K) are isomorphic over K if and only

if there exists u, r, s, t ∈ K, u ≠ 0 satisfying the above relations (*).

It is worth mentioning that there is a nice theorem giving the isomorphism classes

for curves of a general form with j-invariant 0, the supersingular curves, defined over any

extension of F2. An isomorphism class, then, is just the collection of elliptic curves up to

isomorphism over a given field.

Theorem(see[9]). There are 3 isomorphism classes of elliptic curves over F2
m

with j-invariant equal to 0, where m is odd.

 A representative from each class is given by

y2 + y = x3

y2 + y = x3 + x

y2 + y = x3 + x + 1

A CHARACTERISTIC 2 NON-SUPERSINGULAR CURVE: y2 + xy = x3 + x2 + 1 OVER F8

The second of the two examples is a bit more interesting in its structure. Using

the model F8 ≅ ZZ2[x]/(x3 + x2 + 1), we compute points checking which elements from the

appropriate table (see Table T4) satisfy this curve equation as before. Note that checking

29

to see which pairs of the elements in F8* are valid is a bit more tedious, since there is an

xy term on the left-hand side, so that new y values have to be computed for each x value

and checked for equality. After collecting all possible solutions for the curve equation

we employ the addition formulas given below. The appropriate formulas [9] for this

curve are given below.

Addition of Distinct Points

P1 = (x1 , y1) and P2 = (x2 , y2), P1 + P2 ≠ O:

x3 = (y1 + y2)2 ((x1 + x2)2)-1 + (y1 + y2)(x1 + x2)-1 + x1 + x2 + 1 and

y3 = (y1 + y2) (x1 + x2)-1 (x1 + x3) + x3 + y1.

Doubling Formula for a Point P1 = (x1 , y1), 2P1 ≠ O:

x3 = x1
2 + (x1

2)-1 y3 = x3x1 + (x3y1)x1
-1 + x1

2 + x3

Note that if x1 = 0, we have immediately that (x3,y3) is taken to the identity, O.

Observing the results of addition and doubling the pairs of solutions to the equation given

above, we see that this curve contains 14 points in the group(see Table T6).

30

Table 6. Addition Table for Elements in the
 Elliptic Curve Group of y2 + xy = x3 + x2 + 1 over F8

P1 P2 P3 P4 P5 P6 P7

P1:(v+1,v2) P2 P3 P4 P5 P6 P7 P8
P2:(v,v) P3 P4 P5 P6 P7 P8 P9
P3:(v2+1,v) P4 P5 P6 P7 P8 P9 P10
P4:(v2+v+1,v2+v+1) P5 P6 P7 P8 P9 P10 P11
P5:(v2+v,v2) P6 P7 P8 P9 P10 P11 P12
P6:(v2,0) P7 P8 P9 P10 P11 P12 P13
P7:(0,1) P8 P9 P10 P11 P12 P13 O
P8:(v2,v2) P9 P10 P11 P12 P13 O P1
P9:(v2+v,v) P10 P11 P12 P13 O P1 P2
P10:(v2+v+1,0) P11 P12 P13 O P1 P2 P3
P11:(v2+1,v2+v+1) P12 P13 O P1 P2 P3 P4
P12:(v,0) P13 O P1 P2 P3 P4 P5
P13:(v+1,v2+v +1) O P1 P2 P3 P4 P5 P6
P14:O P1 P2 P3 P4 P5 P6 P7

P8 P9 P10 P11 P12 P13 O
P1:(v+1,v2) P9 P10 P11 P12 P13 O P1
P2:(v,v) P10 P11 P12 P13 O P1 P2
P3:(v2+1,v) P11 P12 P13 O P1 P2 P3
P4:(v2+v+1,v2+v+1) P12 P13 O P1 P2 P3 P4
P5:(v2+v,v2) P13 O P1 P2 P3 P4 P5
P6:(v2,0) O P1 P2 P3 P4 P5 P6
P7:(0,1) P1 P2 P3 P4 P5 P6 P7
P8:(v2,v2) P2 P3 P4 P5 P6 P7 P8
P9:(v2+v,v) P3 P4 P5 P6 P7 P8 P9
P10:(v2+v+1,0) P4 P5 P6 P7 P8 P9 P10
P11:(v2+1,v2+v+1) P5 P6 P7 P8 P9 P10 P11
P12:(v,0) P6 P7 P8 P9 P10 P11 P12
P13:(v+1,v2+v +1) P7 P8 P9 P10 P11 P12 P13
P14:O P8 P9 P10 P11 P12 P13 O

31

Since the only abelian groups of order 14 are cyclic, we see that this curve group

is isomorphic to ZZ14. Further, by the table we see that P1 is a generator for the group.

We close this section with a remark about the isomorphism classes for this curve.

There is a theorem that enumerates all possible isomorphism classes for a non-

supersingular characteristic 2 curve. The following is given to clarify the meaning of

Tr(γ), the trace of γ in the theorem.

Multiplication by γ in F2
m is a linear transformation in F2

m . A linear transformation

can be represented by a matrix so Tr(γ) is simply the trace of this matrix.

Theorem([9, p.143]). There are 2(q-1) isomorphism classes of elliptic curves

with j-invariant j(E) ≠ 0 over F2
m where q = 2m . Let γ be an element of F2

m satisfying

Tr(γ) = 1 (for m odd, we can take γ = 1). A set of representatives of the isomorphism

classes is given by

 { y2 + xy = x3 + a 2x2 + a6 | a 6 ∈ (F2
m)*, a 2 ∈ { 0, γ} }.

A complete tabulation of these isomorphism classes is included in Table T7.

32

Table 7. Isomorphism Classes of Curves

with Non-zero j-invariant over F8

a2 = 0 a2 = 1

y2 + xy = x3 + 1 y2 + xy = x3 + x2 + 1

y2 + xy = x3 + α y2 + xy = x3 + x2 + α

y2 + xy = x3 + α + 1 y2 + xy = x3 + x2 + α + 1

y2 + xy = x3 + α2 y2 + xy = x3 + x2 + α2

y2 + xy = x3 + α2 + 1 y2 + xy = x3 + x2 + α2 + 1

y2 + xy = x3 + α2 + α y2 + xy = x3 + x2 + α2 + α

y2 + xy = x3 + α2 + α + 1 y2 + xy = x3 + x2 + α2 + α + 1

33

AN ELLIPTIC CURVE OVER F27: y2 = x3 + 2x2 + 1

A final example of elliptic curves, y2 = x3 + 2x2 + 1 defined over F27, completes

the survey. Once again, a multiplication table was tabulated (see Table T8) for use in

finding points of the curve group and adding and doubling formulas obtained.

Addition (P1 + P2 ≠ O):

λ = (y2 - y1)/(x2 - x1)-1 x3 = λ2 - 2 - x1 - x2

Doubling (2P1 ≠ O):

λ = x (2y)-1 x3 = λ2 - 2 - 2x1

Again, if y = 0, then doubling P=(x,y) immediately obtains the identity and for both

cases the new y coordinate is given by

y3 = -y1 + λ(x1 - x3).

 After computing by substituting the field elements and 0 in the curve equation,

we find that we have precisely 20 points for the group (Table T9). Thus, the Hasse

estimate shows that the bounds |q + 1 - n | ≤ 2√ q are satisfied where q = 33 and

q + 1 - 2√ q ≈ 17.60 ≤ 20 ≤ q + 1 + 2√ q ≈ 38.39.

Table T10 gives the group table. Some consideration and a few computations should

suffice to convince the reader that the group has structure isomorphic to ZZ2 X ZZ2 X ZZ5.

34

Table 8. Field Elements of F27\{0}

 F27 ≅ ZZ3[x]/(x3 + 2x2 + 1) ≅ ZZ3(α)

j αj

0 1
1 α
2 α2
3 α2 + 2
4 α2 + 2α + 2
5 2α + 2
6 2α2 + 2α
7 α2 + 1
8 α2 + α + 2
9 2α2 + 2α + 2

 10 α2 + 2α + 1
 11 α + 2

12 α2 + 2α
13 2
14 2α
15 2α2
16 2α2 + 1
17 2α2 + α + 1
18 α + 1
19 α2 + α
20 2α2 + 2
21 2α2 + 2α + 1
22 α2 + α + 1
23 2α2 + α + 2
24 2α + 1
25 2α2 + α

35

Table 9. Points of the Curve E: y2 = x3 + 2x2 + 1 over F27

A1 (α2 + α + 2, α + 1) A3 (α2 + 1, 2α2 + α + 2)

A2 (α2 + 1, α2 + 2α + 1) A4 (α2 + α + 2, 2α + 2)

B1 (2α + 1, α2) B2 (2α2 + 2α + 1, α2 + 2α + 2)

B3 (2α2 + 2α + 1, 2α2 + α + 1) B4 (2α + 1, 2α2)

C1 (2α2 + 2, 2α2 + 2α) C2 (α + 2, α2 + 2α)

C3 (α + 2, 2α2 + α) C4 (2α2 + 2, α2 + α)

D1 (1,1) D2 (0,1)

D3 (0,2) D4 (1,2)

O1 (α , 0) O2 (α2 + 2, 0)

O3 (2α2 + 2α + 2, 0) O

36

Table 10. Group Table for Elements of E: y2 = x3 + 2x2 + 1

A1 B1 C1 D1 A2 B2 C2 D2 A3 B3 C3 D3 A4 B4 C4 D4 O1 O2 O3 O4

A1 D2 B2 A2 C2 B3 A3 D3 C3 C4 B4 D4 A4 O4 O3 O2 O1 D1 C1 B1 A1
B1 B2 D2 C2 A2 D3 C3 B3 A3 D4 A4 C4 B4 O3 O4 O1 O2 C1 D1 A1 B1
C1 A2 C2 D2 B2 C3 D3 A3 B3 A4 D4 B4 C4 O2 O1 O4 O3 B1 A1 D1 C1
D1 C2 A2 B2 D2 A3 B3 C3 D3 B4 C4 A4 D4 O1 O2 O3 O4 A1 B1 C1 D1
A2 B3 D3 C3 A3 D4 A4 C4 B4 O4 O1 O3 O2 C1 D1 A1 B1 B2 D2 C2 A2
B2 A3 C3 D3 B3 A4 D4 B4 C4 O1 O4 O2 O3 B1 A1 D1 C1 A2 C2 D2 B2
C2 D3 B3 A3 C3 C4 B4 D4 A4 O3 O2 O4 O1 D1 C1 B1 A1 D2 B2 A2 C2
D2 C3 A3 B3 D3 B4 C4 A4 D4 O2 O3 O1 O4 A1 B1 C1 D1 C2 A2 B2 D2
A3 C4 D4 A4 B4 O4 O1 O3 O2 D1 A1 C1 B1 B2 D2 C2 A2 B3 D3 C3 A3
B3 B4 A4 D4 C4 O1 O4 O2 O3 A1 D1 B1 C1 A2 C2 D2 B2 A3 C3 D3 B3
C3 D4 C4 B4 A4 O3 O2 O4 O1 C1 B1 D1 A1 D2 B2 A2 C2 D3 B3 A3 C3
D3 A4 B4 C4 D4 O2 O3 O1 O4 B1 C1 A1 B1 C2 A2 B2 D2 C3 A3 B3 D3
A4 O4 O3 O2 O1 C1 B1 D1 A1 B2 A2 D2 C2 D3 B3 A3 C3 D4 C4 B4 A4
B4 O3 O4 O1 O2 D1 A1 C1 B1 D2 C2 B2 A2 B3 D3 C3 A3 C4 D4 A4 B4
C4 O2 O1 O4 O3 A1 D1 B1 C1 C2 D2 A2 B2 A3 C3 D3 B3 B4 A4 D4 C4
D4 O1 O2 O3 O4 B1 C1 A1 D1 A2 B2 C2 D2 C3 A3 B3 D3 A4 B4 C4 D4
O1 D1 C1 B1 A1 B2 A2 D2 C2 B3 A3 D3 C3 D4 C4 B4 A4 O4 O3 O2 O1
O2 C1 D1 A1 B1 D2 C2 B2 A2 D3 C3 B3 A3 C4 D4 A4 B4 O3 O4 O1 O2
O3 B1 A1 D1 C1 C2 D2 A2 B2 C3 D3 A3 B3 B4 A4 D4 C4 O2 O1 O4 O3
O4 A1 B1 C1 D1 A2 B2 C2 D2 A3 B3 C3 D3 A4 B4 C4 D4 O1 O2 O3 O4

37

CLASSIFICATION OF ELLIPTIC CURVES OVER F3 UP TO ISOMORPHISM

One final area of interest regarding the elliptic curves of characteristic 3 would be

to assess the actual number and structure of all the elliptic curves up to isomorphism for

both supersingular and non-supersingular curves. In the case where these curves are

defined over F3, we examine the supersingular case (j-invariant 0) and then the non-

supersingular and present a complete tabulation below.

Checking first through the list of curves(see Table T1), and making the

substitution x → x + 1 and y → y gives

C1 ≅ C2 ≅ C3 .

 In fact, all 3 of these curves have isomorphic curve groups, each being isomorphic to

Z4. On the other hand, C4, C5 and C 6 each have distinct structures as can be seen from

the tabulation.

Characteristic 3 curves with j(C) = 0

Curve Group
Isomorphic to Z4 Distinct Curves Curve Groups

C1:y2 = x3 + x C4: y2 = x3 + 2x ≅ Z2 X Z2

C2:y2 = x3 + x + 1 C5: y2 = x3 + 2x + 1 ≅ Z7

C3: y2 = x3 + x + 2 C6: y2 = x3 + 2x + 2 ≅ {O}(trivial)

38

Thus we have a

Proposition. There are exactly 4 elliptic curves defined over F3 up to

isomorphism with j-invariant j(E) = 0 and these are represented by C1, C4, C5 and C6.

A table of nonsupersingular curves with their respective j-invariants follows.

E1: y2 = x3 + x2 + 1 j(E1) = 2

E2: y2 = x3 + x2 + 2 j(E2) = 1

E3: y2 = x3 + 2x2 + 1 j(E3) = 1

E4: y2 = x3 + 2x2 + 2 j(E4) = 2

A computation shows that the remaining curves each have distinct group structures as

shown below.

Curve Group Curve Group

E1: y2 = x3 + x2 + 1 ≅ Z6 E3: y2 = x3 + 2x2 + 1 ≅ Z5

E2: y2 = x3 + x2 + 2 ≅ Z3 E4: y2 = x3 + 2x2 + 2 ≅ Z2

Proposition. There are 4 isomorphism classes of elliptic curves defined over F3

with non-zero j-invariant and they are represented by the curves E1, E2, E3 and E4.

(Notice that j(E2) = j(E 3) and j(E 1) = j(E 4) but the curves E 1, E 2, E 3 and E 4 are all in

distinct isomorphism classes.)

39

THE IMPLEMENTATION

IMBEDDING

In this final section we will discuss some imbedding algorithms, the encryption

algorithm used in this implementation and a few remarks pertaining to the computational

work involved.

 We begin by imbedding plaintexts as points on some elliptic curve E defined

over a finite field Fp. We want to do this systematically so that we can retrieve a

response plaintext from the knowledge of the coordinates of the corresponding embedded

point. Let the plaintext be denoted by m and the corresponding point Pm.

There is no polynomial time deterministic algorithm known by which we can

write down a large number of points on E over our field but probabilistic ones do exist

[5]. Also, in order to encode a large number of possible messages m, we need some

systematic way to generate points that are related to m in some way. We might use, for

example, the x coordinate of Pm.

To begin, let us consider elements of a prime field, Fp, such that p ≡ 3 mod 4 and

let y2 = f(x) be an elliptic curve over Fp. Next, we pick our plaintexts to be integers m in

the range 0≤ m ≤ (p/1000) - 1. We go about imbedding by trying to append three digits

to each m in turn, until we obtain an x, 1000m ≤ x ≤ 1000(m + 1) < p, such that f(x) is a

quadratic residue in Fp. When a y is found such that y2 = f(x), we set up a 1-1

correspondence between the point found and some plaintext unit letting Pm = (x,y). Since

f(x) is square for approximately half of all x, there is only about a 2-1000 probability that

40

the method will fail to produce a point Pm = (x,f(x)) satisfying the above criteria.

COMPUTATION OF SQUARE ROOTS IN THE FIELD

Some programming instructions were applied to generate a few large primes of

approximately 40 digits and also to test the prime p for congruence to 3 modulo 4. Since

αp-1 = 1 in the multiplicative group Fp
 *, α p = α and α(p+1) = α2. Therefore, when f(x) is a

square in Fp, then (x, f(x) (p+1)/4) is a point on the curve and hence suitable for

representing some plaintext message unit. Working in a larger field for this

implementation presented a computational challenge to compute the points. The

exponentiation to find the f(x) (p+1)/4 required a combination of modular reduction and a

special algorithm to permit rapid computation.

ENCRYPTION AND DECRYPTION

We now come to the encryption portion of the algorithm. This particular

implementation will use the method of ElGamal cryptosystems for transmitting

messages[3]. Two variations of the method and aspects of point computations are briefly

discussed. For a general flow diagram of the imbedding/encryption algorithm see Fig F2.

 Begin by fixing a finite field Fp , an elliptic curve E defined over it and a base

point B ∈ E. These must be known to any user (transmitter or receiver) but one does not

need to know the number N of points of E in this method. A receiver chooses a secret

random integer a, and computes and publishes his key, aB. To send a message Pm,

choose a random integer k and send the pair of points (kB,P m + k(aB)) corresponding to

41

the encrypted plaintext and the multiplied base point for each message unit. To read the

message, the receiver multiplies the first point in the pair by his own secret a and

subtracts the result from the second point. Thus,

Pm + k(aB) - a(kB) = Pm.

More specifically, the pair of points a user would send to a receiver are given as follows.

Let B = (xB,yB), Pm = (xPm,yPm) . Then the user sends the pair of points

{(xkB,ykB), ((xPm,yPm) + (xkaB, ykaB))}

where (xkB,ykB) and (x kaB, y kaB) are multiples k and ka of the point (x B , y B). Then the

decryption of the message is performed by simply taking the additive inverse of the point

(xakB,yakB) and by using an appropriate addition formula for the curve in use, adding this

to the point ((xPm,yPm) + (x kaB, y kaB)) to obtain the plaintext message point. Thus we

have (xPm,yPm) + (xkaB, ykaB) - (xakB,yakB) = (xPm,yPm).

In this implementation the value of k was not fixed throughout encryption. One may let

k vary since only the knowledge of the base point B and the curve equation is needed by

a receiver to decrypt a message. The receivers knowledge of their key is sufficient for

decryption.

Figure 2. Flow Diagram for
Imbedding/Encryption
(See file flowii.sam)

42

Figure 3. Flow Diagram for Decryption
(see file flowiii.sam)

Two ways of choosing a curve and a base point are mentioned here. First, one

can simply choose a random curve E over a large field Fq not of characteristic 2, i.e.,

where E has an equation of the form y2 = x3 + ax2 + bx + c and a base point B = (x,y) on

E. How this is done is illustrated using the following particular example. Given the

equation

y2 = x3 + bx + c

we can choose random elements x, y and b from Fq, q = pn. Then, any c satisfying

c = y2 - (x3 + bx)

gives the appropriate curve with a point on it. In the case of a characteristic 2 curve,

g(y) = y2 is replaced by y2 + y. Since the discriminant ∆ satisfies the requirement that

 ∆≠ 0 (since ∆ = 1), this curve is an elliptic curve, and we may set B = (x,y).

A second method involves choosing a “global” elliptic curve E defined over the

rationals, or more generally, a number field. Then pick B to be a point of infinite order on

E. Next, choose a large prime p (or a prime ideal of the ring of integers of K if our curve

is defined over an extension field K of Q) and consider the reduction of E and B mod p.

That is, for all p not dividing the discriminant ∆E of E and such that the coefficients in

the equation for E have no p in their denominators, we may consider the coefficients in

this equation mod p.

43

In both of these methods one wishes to choose the point B such that B generates a

large subgroup. To do so, one should know beforehand whether B is a point of infinite

order in the same curve defined over the rationals. For if this is the case, then it is likely

that B will generate a large subgroup [5]. The question then comes down to knowing if B

has infinite order in the same curve defined over the rationals. One can use the following

two theorems to determine the answer. These are given without proof here[13].

Theorem(Nagell-Lutz). Let E be a non-singular cubic curve defined by

E: y2 = x3 + ax2 + bx + c with integer coefficients a, b, c, and let D be the discriminant

given by D = -4a3c +a2b2 + 18abc - 4b 3 - 27c 2. Then a rational point of finite order must

have integer coordinates and either y = 0 or y divides D.

(A stronger form of the Nagell-Lutz Theorem handy for computational purposes states:

Let P = (x,y) be a rational point of finite order with y≠ 0. Then y2 D.)

Reduction Modulo p Theorem. Let E be as defined above with discriminant D

as given above. Let Φ⊆ E(QQ) be the subgroup consisting of all points of finite order. For

any prime p, let P P′ be the reduction modulo p map where Φ � E′(Fp),

P � P′ = (x′, y′) if P = (x,y),

O′ if P = O (identity element).

If p does not divide 2D, then the reduction modulo p map is an isomorphism of Φ onto a

subgroup of E′(Fp).

Now for any curve, and in particular the given curve y2 = x 3 + x + 1 of this

implementation, we may apply the theorems as follows. We notice that the discriminant

D = -31. First, by the Nagell-Lutz Theorem, any rational point of finite order must have

44

integer coordinates. At this point, we would like to apply these theorems to (0,1) and

(72,611) observing that (72,611) is a point of infinite order. Next, we can use the

reduction theorem and determine the order of Φ as follows. We first check #E(Fp) for

several primes p > 2D (here 2D = 2(-31) to obtain the following list of the orders of each

curve group. For example, #E(F67) = 56 and #E(F71) = 59. Now since Φ ⊆ E(Fp) for p_

2D, then #Φ must divide #E(Fp) since by the reduction theorem the map Φ � E′(Fp) is an

isomorphism of Φ onto a subgroup of E(Fp). But for the groups listed above, it is clear

that if #Φ #E(Fp) then #Φ must equal 1 since (56,59) = 1. Hence, the only point of

finite order of E(QQ) is O, the identity itself. It follows that the points (0,1) and (72,611)

are both good candidates for a base point B in the encryption algorithm since they will

probably generate large subgroups.

THE SECURITY OF ELLIPTIC CURVE CRYPTOSYSTEMS

Breaking a cryptosystem of the El-Gamal type requires solution of the elliptic

curve analog of the discrete log problem which is stated thus:

 Elliptic Curve Discrete Logarithm Problem: Given an elliptic curve E defined over Fq

 and points P, Q ∈ E, find x ∈ ZZ such that Q = xP, if such x exists.

It is believed that this problem will prove to be more intractable than the classical

discrete log problem and thus far, the strongest techniques known do not seem applicable

to the present encryption methods using elliptic curves [5].

45

 THE ORDER OF THE CURVE GROUP

At this point, the question arises, how large a field should one choose? Clearly,

even in a relatively small prime field, there would be enough points available in the curve

group for imbedding, so considerations for those aspects are not primary. What is

important concerns the issue of security. For the purposes of this implementation, a

prime field of 383 + 356 elements was chosen. This 39 digit integer, is close to the lower

bound for a secure curve which has been shown to be a 40 digit integer [6]. One should

seek a curve to be defined over a large enough field, such that the subgroups of the curve

group have large or small indices. Such a choice ensures security since it is known that

such curves (for example, nonsupersingular) are not vulnerable to certain types of attack

such as those utilizing index calculus methods [11].

We cannot directly determine the curve’s order or structure since simply

counting points works fine only for curves of considerably smaller order. The reason is

that the method necessary to find the order of the curve group for this implementation

would require excessive computational capabilities [6]. Now it is known that we have

good security for a curve whose order is at least as large as a 40 digit prime when dealing

with supersingular curves[6, p.157]. The same criterion was applied though this curve

has non-zero j-invariant, hence is not supersingular.

COMPUTATIONS OF POINTS IN THE CURVE GROUP

To add and double points, separate algorithms were developed based on the point
computation formulas as used over F5. The doubling algorithm takes the following
approach. One takes the number which will serve as the multiplier of a point P for some

46

multiple nP of P. Then n is expanded in binary code. For any n we can write n in binary

K
representation where n = Σ aj2j , aj ∈ {0,1}. For each binary evaluation where 1 is a

j=0

value in the j-th binary digit, take 2j and sum for each nonzero value in the binary

representation. The result is a sum of various powers of 2 that adds up to n. For small n

this is hardly worth mentioning. But say one wishes to take large multiples say of the

order of 10100, then there is clearly no substitute for this approach. For example, to raise

a value say a1000 only 15 total operations are needed to get the solution via multiplications

and additions versus 1000 by brute exponentiation.

A CLOSING REMARK

The output generated in this implementation includes a list of alphanumeric

characters typically useful in everyday written communication. This list consists of a

plaintext unit, i.e., the alphanumeric character and an assigned coordinate pair whose

coordinates are those of a point on the curve. Since the imbedding algorithm calls for

each range of x values to be computed in multiples of 1000, incremented one at a time

the programming instructions were entered to reduce these computations but still obtain

some points for each character. Thus the program is made to increment through a value

of 100 at a time between each multiple of 1000 to save time and output. Also, note that

in each case, the only digits we are concerned with are the initial three digits of the first

coordinate in the pair. This is because, when encrypting, each plaintext is actually

associated to those digits.

47

The program output for the encryption of the word “math” is also included.

First, a list of points of the curve in which the plaintext characters are imbedded is

generated. Next, an odd multiple of the base point B is obtained. The program then

takes the message character by character and picks out the corresponding point in the

character imbedding list. The program then multiplies the public key point labeled aB an

odd number times and adds the result to the point representing the imbedded character.

Finally, the pair of points representing the multiplied base point and the encrypted

plaintext are sent .

The program code for this implementation reveals that when one has reached a

multiple of the identity, further computations breakdown. Indeed, Silverman and Tate

use this fact to aid in their prime factorization scheme adopted from Lenstra[13]. We can

use this event to indicate that we have computed the order for some subgroup. We can

with a little luck obtain several such orders.

48

BIBLIOGRAPHY

1. Agnew, G.B., Mullin, R.C., Vanstone, S.A. “An Implementation of Elliptic Curve
 Cryptosystems Over F2

155”, I.E.E.E. Journal on Selected Areas of Communications, Vol.
11 No. 5, June 1993, pp. 804-813

2. Diffie Whitfield and Hellman, Martin E. “ New Directions in Cryptography”, I.E.E.E.
Transactions on Information Theory, Vol. IT-22, No. 6 November, 1976 pp. 644-654

3. ElGamal T., “A Public Key Cryptosystem and a Signature Scheme based on Discrete
Logarithms,” I.E.E.E. Transactions on Information Theory, Vol. 31, 1985 pp. 469-472

4. Husemoller, Dale Elliptic Curves Springer-Verlag, 1987

5. Koblitz, Neal“Elliptic Curve Cryptosystems”, Mathematics of Computation Vol. 48
#177 Jan ‘87 203-209

6. Koblitz, Neal “Constructing Elliptic Curve Cryptosystems in Characteristic 2”,
Advances in Cryptology: Proceedings of Crypto ‘90 Springer-Verlag 157-167

7. Koblitz, Neal A Course in Number Theory and Cryptography Springer-Verlag, 1994

8. Lidl, Rudolf and Niederreiter,Harald Encyclopedia of Mathematics and Its
Applications: Vol. 20, Finite Fields Harald Addison-Wesley Publishing Company, 1983

9. Menezes, Alfred and Vanstone, Scott “Isomorphism Classes of Elliptic Curves over
Finite Fields of Characteristic 2” Utilitas Mathematica 38 (1990), pp. 135-153

10. Menezes, Alfred J., Okamoto, Tatsuaki, and Vanstone, Scott A. “Reducing Elliptic
Curve Logarithms to Logarithms in a Finite Field” I.E.E.E. Transactions on
Information Theory, Vol. 39 No. 5, Sept. 1993 pp. 1639-1645.

11. Miller, V. “Uses of Elliptic Curves in Cryptography” Advances in Cryptology:
 Proceedings of Crypto ‘85 Lecture Notes in Computer Science 218 (1986) Springer-
 Verlag 417-426

12. Silverman, Joseph The Arithmetic of Elliptic Curves Springer-Verlag, 1985

13. Silverman, Joseph H. and Tate, John Rational Points on Elliptic Curves Springer-
Verlag, 1992

49

APPENDIX

PROGRAMS

BeginPackage["CongruentPrime"]

c:=(3^83)-2;

Print["These are the primes from 3^83-2 to "];
Print["3^83+400 that are Congruent to 3 Mod 4"];

For[t=0,t<402,t++;

If[PrimeQ[c+t]&&TrueQ[Mod[c+t-3,4]==0],
Print["3^83+",t-2," is ",c+t]]];
Unprotect[In,Out];
Clear[In,Out];

End[]

These are the primes from 3^83-2 to
3^83+400 that are Congruent to 3 Mod 4

3^83+236 is 3990838394187339929534246675572349035463
3^83+356 is 3990838394187339929534246675572349035583

(This package was used to verify that Fp was indeed a finite field
of prime order where p = 383 + 356 elements.)

Dupl[x_,y_]:= ((*This duplicates points for y^2=x^3+x+1*)

p=(3^83)+356;

Newx = Mod[Mod[PowerMod[x,4,p]-2PowerMod[x,2,p]-8x+1,p]*

PowerMod[Mod[4PowerMod[x,3,p]+4x+4,p],-1,p],p];
Lambda = Mod[Mod[3PowerMod[x,2,p]+1,p]*

PowerMod[Mod[2y,p],-1,p],p];
Nu = Mod[Mod[PowerMod[-x,3,p]+x+2,p]*PowerMod[2y,-1,p],p];
Newpty = Mod[-Lambda*Newx -Nu,p];)

Addpts[x1_,y1_,x2_,y2_]:= ((*This program adds points of *)

(*the curve group y^2=x^3+x+1*)

50

p=(3^83)+356;

Lambda = Mod[(y2-y1)*PowerMod[(x2-x1),-1,p],p];
Nu = Mod[(Mod[y1*x2,p]-Mod[x1*y2,p])*

PowerMod[x2-x1,-1,p],p];
Nextptx = Mod[PowerMod[Lambda,2,p]-x1-x2,p];
Nexty= Mod[-Lambda*Nextptx-Nu,p];

PmKab1=Nextptx;
PmKab2=Nexty;

If[x1==x2&&y1==y2,
Do[Dupl[x1,y1];
Nextptx=Newx;
Nexty=Newpty;

]];

If[x1==x2&&y1!=y2,
Do[Print["Identity has been reached,

further computations may fail"];
Break];

])

Oddmult[n_,x_,y_]:= (

(* This program finds new points on a curve E *)
(* using the duplication and addition routines *)
(* for a multiple nP of some point P on E where *)
(* n is odd. *)

(* It should be noted that for n generating a point *)
(* value of one greater than the identity, i.e., *)
(* O + 1, a point value may not be computed. *)

i=0;a=x;b=y;j=0;m=n;h=0;ssu=0;

p=(3^83)+356;

While[Floor[m] > 0,

j=Mod[m,2];
m=Floor[m/2];

Dupl[x,y];

51

If[j!=0,
For[h=1,h<i,h++;

Dupl[Newx,Newpty]];
ssu=ssu+2^i;

If[h==i&&i>=1,

Do[Addpts[a,b,Newx,Newpty];

If[x==Nextptx&&y==Nexty&&OddQ[n]==True,
Print[ssu-1, " is a multiple of Order of Subgroup"]];

If[x==Nextptx&&y==Nexty&&EvenQ[n]==True,

Print[ssu," is a multiple of Order of Subgroup"]];
a=Nextptx;
b=Nexty];

]];
Newx=0;
Newpty=0;

i=i+1];
Kmult1=Nextptx;
Kmult2=Nexty;)

Binary[n_,x_,y_]:= (

(* This program finds new points on a curve E *)
(* using the duplication and addition routines *)
(* for a multiple nP of some point P on E *)
(* where n is 2 raised to any power. *)

(* It should be noted that for n generating a *)
(* point value of one greater than the identity, *)
(* i.e.,O + 1,a point value may not be computed. *)

i=0;a=0;b=0;j=0;m=n;h=0;ct=0;chk=0;

p=(3^83)+356;

While[Floor[m] > 0,

Newx=x;
Newpty=y;

j=Mod[m,2];
m=Floor[m/2];

52

i=i+1;
If[j!=0,

For[h=1,h<i,h++;
Dupl[Newx,Newpty]];
ct=ct+1;

If[ct==1,
Do[a=Newx;
b=Newpty]];

If[ct==2,
Do[Addpts[a,b,Newx,Newpty];
ct=0;
chk=chk+1;
a=0;
b=0]];

If[chk==0&&ct==1,
key1=Newx;
key2=Nexpty;

]]])

SuprFast[x_,n_]:=(

(*This is the modular exponentiation*)
(*routine used to compute the square*)
(*root of a point on a curve. *)

v=1;t=x;u=n;p=(3^83)+356;

While[u!=0,

If[OddQ[u],v=Mod[t*v,p]];
t=Mod[t*t,p];
u=Floor[u/2]])

f[x_]:=Mod[(PowerMod[x,3,p]+Mod[x,p]+1),p];

chr[m_]:=FromCharacterCode[m];

(*This program segment obtains a list of *)
(*characters and their corresponding curve*)
(*points to be used in encryption. *)

For[m=95,m<126,m++;

scrib=0;

53

For[i=(1000m)-1,i<(1000(m+1))-1,i+=100;

If[JacobiSymbol[f[i],p]==1&&Less[scrib,1],

SuprFast[f[i],(p+1)/4];
FirstNum[i]=i;
SecNum[i]=v;

Print[chr[m]," ","(",FirstNum[i],",",SecNum[i],")"];
scrib=scrib+1;

]]]

` (96199,638980037437888504045701428611399734783)
a (97099,407400891462210333150853674387688784652)
b (98099,1183512579460980263085960569438504931187)
c (99299,1845537342405968058653005330058291591346)
d (100199,885324002290167212251211050939945624588)
e (101099,132700281707667399073464236777835492473)
f (102099,3742113120867548216510054180811595439545)
g (103499,388432628486131332886099804254378476958)
h (104099,353170475930308384648202162360896173520)
i (105099,3168184333516993997296042856190352511925)
j (106199,3025236684521334585758113882831062869655)
k (107199,98796042376014285886081461219382869141)
l (108199,383130834865097488488621334576401261219)
m (109199,3934820829704801630116070451435801664349)
n (110199,3840372591736730901350634246188652819640)
o (111199,1242914571737917737493365544851399135812)
p (112099,689372942146882812497828847004335664504)
q (113199,3109027603757293144338648065480016215496)
r (114099,3535847087175373911814302697966882322638)
s (115099,2299184535944242086339667580998578220257)
t (116299,3266063780054608413745513507237682464899)
u (117399,2283604676327804864911807583375038605791)
v (118099,1656163260722712624963123918140864967034)
w (119199,1490273550928298529290274023746874530766)
x (120099,366419241186862377505012532708313221466)
y (121099,1332787559491678113642211944499761412561)
z (122199,2073795046384097820917895255023833658213)
{ (123199,2635348364288049068951772678786870659878)

54

| (124199,2067608295478529181510583465469072522262)
} (125599,444247223105912366581029562053245546066)
~ (126499,3393543185812876309488882217936491300889)

Finder[T_]:= (

(* Finder takes a short message and obtains the corresponding *)
(* point in the imbedding list. Next, it takes that point and add*)
(*an odd multiple of the key point aB. It also finds the same od*)
(* multiple of the base point B. It then prints the pair (KB, Pm + KaB) *)
(* which is ready for transmission. K is based on the position of *)
(* the plaintext unit in the message.*)

B1=0;B2=1; (* Base Point B is fixed here. *)

SuprFast[x,n]; (* Call to SuprFast to provide a list of characters *)

 (* and the associated points of the curve. *)

Binary[2,B1,B2]; (*This instruction provides the key aB*)

aB1=key1;
aB2=key2;

(* Begin the Main Routine *)

For[j=0,j<StringLength[T],j++; (* This subroutine matches the*)
For[m=95,m<126,m++; (* character string entered in *)

(* Finder[“ ”].*)

If[TrueQ[{m}==ToCharacterCode[Part[Characters[T],j]]],
For[i=(1000m)-1,i<1000(m+1)-1,i+=100;

If[FirstNum[i]!=0,
abscissa[j]=FirstNum[i];
ordinate[j]=SecNum[i];

]]]]];
For[k=0,k<StringLength[T],k++;

Oddmult[(2*k)+1,B1,B2];
KB1=Kmult1;KB2=Kmult2;

Oddmult[(2*k)+1,aB1,aB2];
KaB1=Kmult1;KaB2=Kmult2;

Addpts[abscissa[k],ordinate[k],KaB1,KaB2];

55

Print["(",KB1,",",KB2,")","(",PmKab1,",",PmKab2,")"];

])

Note: The output below consists of a pair of points, namely
1 pair of coordinates representing the point KB, multiple K
of a Base Point B on the curve and a second pair of co-
ordinates for the point on the curve representing the encrypted
plaintext character. The second pair is for the point Pm + Kab.
Also, values of K are odd, K > 1 with K varying based on the
value of the position of the character being read in the message.
Finally, a is fixed(a = 2) and base point B = (0,1).

Finder["math"] Value Plaintext
 of K Character

(72,611), 3

(2120182538273374613423909732074790088737, m
 2097335071274777843865762439195358882258)

(3136797330506340513031676944844601989362, 5
 3580352307916379721552840580651071863032)

(1871029243194231406672470105479725471723, a
 2053606974067593281960906694888920564678)

(2132937940095601196785101439261903771580, 7
 3160407877275413282235520796170817399747)

(728936147976064104144939706891487478589, t
 3785844195617269816849677347483472508077)

(2719998170555649296149132055578342678326, 9
 36394492944495833666724834986032737527)

(3172095020457994897280937401319379987655, h
 1787604861424218667506483661868050188080)

56

BIOGRAPHY OF THE AUTHOR

Samuel T. Arslanian was born in New York, New York and attended high school

at Heidelberg Americanische OberSchule, Heidelberg, Germany. He graduated from the

University of Louisville, Louisville, Kentucky in the fall of 1992 with a bachelor’s

degree in Mathematics. After working for three years, during which time he took some

additional coursework in data processing, he enrolled at the University of Maine to

pursue a master’s degree in Mathematics. During that period he served as AGS

representative of the Mathematics Department and was initiated as member of Pi Mu

Epsilon Honorary. He is a candidate for the Master of Arts degree in Mathematics from

the University of Maine in August, 1998.

 Figure 2. Imbedding/Decryption
 Flow Diagram

 No

 Yes

 Yes

 No

 No

 Yes

 Yes

 Begin
Imbedding &
Encryption

Is Imbedding
List Available?

Enter A Plaintext
 Message
 for Encryption

Search and Match Plaintext
with Pair (xi, f(xi)(p+1)/4) in
Imbedding List to get Pm

Compute KB, a multiple
of B = (x,y), a “base”
point on curve E.

Compute K(aB), a multiple
of the receiver’s Published
Key point aB.

Add Plaintext Cipher
Pm to KaB to obtain
Pm + KaB

Last
Message
Unit?

Return

Print Encoded Message

Pairs (KB, Pm + KaB)

Transmission

Compile
Imbedding
List

Increment Range
Variable i of xi

Compute
f(xi)

Is f(xi) a
square in
the field?

Enter values
(xi,,f(xi)(p+1)/4)
into
imbedding
list and assign
to a message

Is i>
max i
in

return
return

terminate list
compilation

Go to
Main

No

 no

 yes

 Figure3. Flow Diagram for Decryption

Begin decryp-
tion routine

Input Encoded
Message Pairs:
(KB, Pm + KaB)

Compute multiples
of KB, i.e., KaB
using receiver’s
published key.

Compute additive
inverse of aKB to
obtain Pm.
-aKB+aKB + Pm =
Pm

Match
Plaintext with
value of Pm

Print Plaintext
Message

End of
Message flag?

return

terminate
decryption routine

	The University of Maine
	DigitalCommons@UMaine
	1998

	An implementation of the El Gamal elliptic curve cryptosystem over a finite field of characteristic P
	Samuel Thomas Arslanian
	Recommended Citation

	tmp.1321462302.pdf.kY5oq

