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The objective of this thesis is to study the distribution of the number of 

principal ideals generated by an irreducible element in an algebraic number 

field, namely in the non-unique factorization ring of integers of such a field. In 

particular we are investigating the size of M(x) ,  defined as 

M ( x )  = C 1, where x is any positive real number and N ( a )  is the norm 
o z r r e d .  
lN(-)lS= 

of a .  We finally obtain asymptotic results for h l (x ) .  
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1 INTRODUCTION 

In an  abstract algebra course, the student learns that  the concept of a prime 

and an irreducible element does not coincide in an  integral domain without 

unique factorization. 

This idea prompted us to  ask for a characterization of irreducibles in familiar 

integral domains where unique factorization need not hold-namely, the ring of 

integers of an  algebraic number field. 

Moreover, having studied the distribution of prime numbers in an analysis 

course where we obtained the asymptotic result 

x 
T(X) = C 1 - -. x + m  , 

o<s 
log x ' . - 

p p r i m e  

we were prompted to  study the distribution of irreducibles in an algebraic num- 

ber field. Of course, after doing a literature search, we found an abundance of 

work already done in this area, mostly in the last thirty years or so. 

The  purpose of this thesis, then, is t o  further investigate the distribution 

of irreducibles and hence expand our knowledge on this particular subject. We 

shall obtain, as a result of our analysis, an asymptotic formula for the distri- 

bution which gives the already known main term and the  second largest term 

which appears t o  be new. 



2 THE DIRICHLET SERIES p(s) 

Let K be an algebraic number field, i.e. a finite degree extension of the 

rational number field, Q ,  and let OK denote its ring of integers. We denote by 

N(x)  the norm of an element x from K to  Q .  Also, we denote by N a  the norm 

of an ideal a of O K .  Furthermore, let C1 = Cl(K) denote the class group of K 

and h = h (K)  the class number, i.e. the order of Cl(K).  

In studying the distribution of the irreducibles, we introduce the following 

function. 

Definition I 

where s is a complex number with real part 0 > 1 

Here the sum is over the principal ideals generated by irreducible elements 

of O K .  This sum converges for 0 > 1. We obviously do not wish to  count all 

associates of an irreducible, since there are infinitely many when the unit group 

is infinite, i.e. anytime K is not Q or an imaginary quadratic number field 

Ultimately, we shall be interested in the "summatory" function given by 

Definition 2 

where x is any positive real number. 

We shall determine properties of p(s) first and then use a Tauberian theorem 

to obtain information about the distribution of M(x) .  



To this end, consider the following. Write C1 = {cl = 1 ,  cs, . . . , c h ) .  

Definition 3 For each positive integer m ,  let 

h 

Dm = {k = (k,, . . . , kh) E N," : n C:J mdn 1, k, + . . - + kh = m ) .  
j=1 

k, min 
where n ci = 1 means that n cfl  = 1 and if n cfi = 1 for some ti such that 

0 5 ti 5 ki for i = 1,. . . , h ,  then ti = 0 for all i or ti = ki for all i .  W e  define 

No to mean Z>O. 

min . Notice that = is equivalent to guaranteeing that a product of elements 

is 1 but no nontrivial subproduct is 1. Hence the product gives a "minimal" 

representation of 1. 

Definition 4 The Davenport constant of C1, denoted by D or D(Cl), is the 

largest positive integer m such that Dm is nonempty. 

The Davenport constant is defined as above for any finite abelian group. It 

is not known in general what the relation is between the Davenport constant 

and the structure of the group. 

One fact we can see easily is the following lemma. 

Lemma 1 The Davenport constant is not larger than the order of the group, 

i. e. 

D < h. 

Proof. Suppose D > h and suppose for some integer m > h,  



for aj elements of the group. Consider -4 = { a l ,  ala2,  . . . , a1 . . . a,). Since A is 

a subset of the group 

k e and hence the elements of A are not distinct so we have nj,, aj = n j = l  a j ,  for 

some k < P. Hence n;=,+, aj = 1, contradicting the minimal representation 

above. 

To help clarify the previous definitions, consider the following two examples. 

Suppose that the class number h of K is 2. Then let C1 = ( 1  = c l ,  a  = c 2 )  

where a2 = 1. We start by determining Dm. For m = 1,  the only minimal 

representation of 1  is 1  mAn 1; hence Dl = { ( 1 , 0 ) ) .  For m = 2, the only minimal 

min 
representation is aa = 1; hence V 2  = { ( 0 , 2 ) ) .  Notice that the Davenport 

constant, D = 2. 

Now suppose that the class number of h of K is 3. Then let 

C1 = { c l , a  = c2, b  = c 3 )  where a2 = b. We start by determining Dm. For 

m = 1,  the only minimal representation of 1  is 1  "An 1; hence Dl = { ( 1 , 0 , 0 ) ) .  

For m = 2,  the only minimal representation is ab mdn 1; hence V 2  = { ( 0 , 1 , 1 ) ) .  

Finally for m = 3 ,  we have two minimal representations of the identity: 

min aaa = 1  and bbb m2n 1, and thus V 3  = { ( 0 , 3 ,  O ) ,  ( 0 , 0 , 3 ) ) .  Notice that the 

Davenport constant, D = 3. 

We now consider the following proposition which gives a connection between 

irreducibles and prime ideals. First, let us denote the set of nonzero prime ideals 

of OK by p.  



Proposition 1 

for any complex s with u > 1 and C is defined to be 1 when ki = 0.  
a i 

Proof. For k E Dm,  define 

d k  - = { a  : a = al . . . ah, ai = pil . . . p i k i ,  some pij E P n c i )  

where ai = 1 if pil . . .piki is an empty product. Now let A = U A k  - where the 

union is over all k in U,Dm. By the uniqueness of the factorization of ideals into 

prime ideals, we see that this union is disjoint. Moreover, by the multiplicativity 

of the norms, we have 

where ai are as appears in the definition of Ak. NOW notice that if a E A, then - 

a E Ak - for some E Dm. Thus the ideal class [a] containing a satisfies 

k ,  mjn ["I = [al][a2] ' ' ' [ a h ]  m.1 ' ' ' p i k ; ]  = n cr - 1, 

by definition of Dm. Hence a = ( a )  for some non-zero, non-unit integer a  in 

h 
O K .  But notice that a  must be irreducible for otherwise [a] = n cik i  = 1 

i= 1 

would not be a minimal representation of 1. 

Conversely, if a  is irreducible, then ( a )  E Ak - for some k by the uniqueness 

of the factorization of ideals into prime ideals; namely, 



for some ki E NO and pij E P n ci .  0 

Next, we examine the righthand sum in the proposition above. 

Proposition 2 Let  k be a nonnegative integer and c a n y  class in C1. T h e n  

where the  last s u m  is taken  over  tuples for which the  components  are distinct 

pr ime ideals of the  class c and if k = 0 t h e n  the  e m p t y  s u m  i s  defined t o  be 1 

Proof. Suppose the ideal a = pl . . .pk for some pi E T' n c. For j = 1,. . . , k, 

let ij be the number of distinct prime ideals among the p l ,  . . . , pk which occur 

exactly j times in this product. Notice that il + 2i2 + . . . + kik = k. Denote the 

i j  prime ideals by pjl , . . . , pji, . Hence 

But this means that if for each j we sum over (pill . . . , pji, ) E ( P  n c ) ' ~  , then 

a will be counted i l ! .  . .ik! times. Thus we must divide by this number in each 

summand. 

To help clarify the formulas, let us consider the following examples. Suppose 

that the class number h of K is 2. Then by what we did above, we know that 

the Davenport constant, D = 2. By Propc xit ion 1 we have, 



where the terms on the righthand side are determined by (1, O), (0,2) E UmDm,  

respectively. Now, by Proposition 2, for i = 2, 

where the terms on the righthand side of this last equality are determined by 

the ordered pairs: (2,0, ), (0, I ) ,  respectively. 

Now suppose that the class number h of K is 3. Then by what we did above, 

we know that the Davenport constant, D = 3. By Proposition 1 we have, 



where the terms on the righthand side are determined by 

( l , O , O ) ,  ( 0 , 1 ,  l ) ,  ( 0 , 3 , 0 ) ,  ( 0 , 0 , 3 )  E U m V m ,  respectively. Now, by Proposition 2,  

for i = 2,3 ,  

where the terms on the righthand side of this last equality are determined by 

the ordered triplets: ( 3 , 0 ,  O ) ,  ( 1 , 1 ,  O ) ,  ( 0 , 0 ,  l ) ,  respectively. 

Now we come up with a convenient description of p(s ) .  To this end we define 

the following family of polynomials. 

Definition 5 Let k be a positive integer and z l ,  . . . , zk independent variables. 

Then  

Moreover, let 

Po ( z )  = 1. 

We then have the following proposition. 

Proposition 3 Let k be a nonnegative integer and c any class i n  C1. Then  



where 

Proof. Let Sk be the symmetric group on (1,. . . , k}; let 

p = ( p l , . . . , p k )  E ( P ~ c ) ~ ;  and for any a E S k  define up  - = (p , ( l ) , . . . ,p , (k)) .  

Let C ( a )  be the conjugacy class of a in Sk, i.e. C ( a )  = {yay-' : y E S k } .  

Since every permutation is a product of disjoint cycles, let 

be a factorization of a into disjoint cycles, where uj E No and for each j 

and i = 1, .  . . , uj, qj, are the distinct j-cycles, say qji = (ajil . . . aji j)  with 

ajie E (1,. . . , k}, and with the convention that  1-cycles are included so that 

Uj,i{ajil,. . . , ajij} = (1,. . . , k}. Recall that  T E C(a)  if and only if T has the 

same type of cycle decomposition, i.e. if 

into disjoint cycles with the same conventions as above, then ui = uj for 

j = 1 , .  . . , k (see, for example [I]). Notice then that a conjugacy class in S k  is 

k determined uniquely by a k-tuple, ( u l , .  . . , uk) E Nt with Cj=l juj  = k. Any 

permutation in the conjugacy class has a cycle decomposition determined by 

the uj's as above. Moreover, recall that  

since we can permute disjoint cycles and have cyclic permutations of elements 

in a cycle. Again see [I]. 



Next let 6 E Sk, C p  be the sum over all k-tuples in (P u c ) ~ ,  and - 

Np_ = Npl . . . pk . Now notice 

x Np-" x Ndp-" - 
P P - - 

"11'11 up=p 

since 6p is just a permutation of the pi's. Then notice that - 

x Np_-S = x Np-', - 
P P - - 

"p=p '"'-lp=ll 

for any y E Sk, for 

by changing the variable of summation. But by what we did above we see that 

if T E C ( u ) ,  then 

k Also, notice that if a = n j = ,  q,1 . . . qjUj is a cycle decomposition as described 

above, then 

where pij are all distinct and X E S k .  Moreover since the order of Sk is equal 

to the number of conjugacy classes times the number of elements in each class 

and since each C ( a )  in Sk is determined uniquely by a k-tuple, ( v l ,  . . . , vk) with 



where z j  = C p  N p - j S  and where Cc(,) is the sum over all conjugacy classes 

of S k  and a is an element of the class C ( a ) .  

Now we have 

where S k ( p )  - = { a  E S k  : a p  = p ) ,  the stabilizer subgroup of p. Given - - - 

p  - E ( P  n C )  k ,  define 

4 p )  =!L= ( ~ l , . . . , ~ k ) ,  

where vj = # { p j l ,  . . . ,p,,, ) with pji those components of p  - occurring exactly 

j  times. Hence C j v j  = k .  Then notice that  

Then we may write 

Now, let p  - = ( j p j i )  be a element of ( P  n c ) ~  with pji all distinct and 

where j p j i  meanspji occurs j  times in p. - Notice that  there are k ! / ( ( l ! ) " l  . . . (k!)"I,)  

different permutations of p. - Hence if we use a bijection of P n c  with N t o  put 

a well ordering < on P n c ,  then we have 



since the k!/((l!)"l . . . (k!)"'.) different permutations of p - cancelled with 

Now if we ignore the ordering in the last sum then we would be counting 

each term Q ! . . . uk! times more than we should. Therefore, 

by Proposition 2. This establishes the proposition. 

We now have the following useful corollary to  Proposition 3. 

Corollary 1 

where 



Proof. By Proposition 1 ,  

By Proposition 3, 

where Pk(g) = Pk(z1,. . . , zk) and z j  = CpEPnc N p - j S .  Hence 

For the next proposition, write 

where 

and 

It is well known that gi(s) is regular at s = 1 (a stronger version of this result 

will by proven in the following section, see Proposition 5). We then have 

Proposition 4 

where 



where if  = ( k l , . . .  , kh), then 

where the double bar indicates that the product of the sums is taken over 

where 

Proof. First use the definition of the polynomials Pk(z )  to expand p(s)  in 

Proposition 3, where the indices of summation are v,j for i = 1, . . . , h and 

j = l , . . . ,  ki. Hence 

where if ki = 0 then '&Vil ,,,, - 1. Now 
, V i & ; )  - 

sum over the v,l first in which case we get 

in the righthand most sum above, 

f gi)ull Zi2ui2 . . . zEk,  pik t  = 



with p as defined in the statement of the proposition. Next expand 

zzY1 = (e + gi)"" using the binomial theorem as 

Then 

by switching the order of summations and where the b's are defined as above. 

But then 

with the given limits of summation since the largest value p can take is 

m = ki + . . . + kh and the smallest value it can take is 0 and with a as defined 

above. 

But now 

Hence 

by switching the order of summation where we have m = max(1,p) since m 

must be 2 1 and > p. Thus 



as desired. 

Now we rewrite the ak,, in Proposition 4 in a form more convenient for 

winning an  explicit formula for c, for "large" p. 

Corollary 2 

where 
D-u 

with 

where the double bar indicates that the product of the sums is taken over 

y + . . . + vh = v and (as above) 

D 
Proof. In Proposition 4 we have p ( s )  = C c, ti' and letting v = m - p gives 

,=o 

Now letting X i  = ki - v i l ,  we have 

where the double bar is as defined in Proposition 4. Making a final change of 

variables where vi = ki - pi, we have 

k l  k h  h 1 "' k,! 



where the double bar indicates that the product of the sums is taken over 

y + . . . + uh = u and p k , , k , - A ,  is as defined above. 0 

From this corollary we extract the following corollary. 

Corollary 3 Let 

Then 

2) 

iii) If D 2 2, then 

Proof. Since parts i) and iz) can be done similarly, we only present the proof 

for part iii). 

By Corollary 2 for D 2 2, 



Now in the first sum (where v  = O ) ,  

where the double bar indicates that 

vl + . . . + vh = 0. Thus for v  = 0, 

since p k ;  ,ki = 1. 

the product of the sums is taken over 

For the second sum (where v  = I ) ,  

where the double bar indicates that the product of the sums is taken over 

4 + . . . + vh = 1. SO for exactly one i, vi = 1 and the remaining (h - 1) v's are 

0. Thus for the first case, 

since p k i , k ;  = 1 and pk,,k;-l = 0 and for the latter case, the previous sum (with 

upper limit 0 now) is 1. Hence for v  = 1, 

For the last sum (where v  = 2), 

where the double bar indicates that the product of the sums is taken over 

vl + . . . + vh = 2. Hence we must consider two cases. For case 1, vi = 2 for 



exactly one i and the remaining ( h  - 1) v's are 0.  Whence 

For case 2, vi = 1 for exactly two distinct i's and the remaining ( h  - 2) u's 

are 0. Whence 

where each sum is over the same expression as in Corollary 2 with vi = 1. 

Therefore for v = 2. 

Thus we have the desired form for c o - 2  a 

We further obtain the following expressions for p(s) for some fields with 

small class number. 

Corollary 4 i) Suppose D = 1 whence h = 1.  Then 

ii) If D = 2 so h = 2, say Cl = {I  = cl ,  c 2 ) ,  then 

Proof. In light of the formulas for the c, above, it suffices to  compute Dm for 

each of the groups listed. As we have already computed these for the class group 

of order 2 we consider the other case. 



Let C1 = (1 = cl) .  Then we have only one minimal representations of 1, 

namely 1 "Zn 1, implying that  Dl  = (1). Using this with the previous corollary 

yields 2). 



3 T H E  S U M M A T O R Y  F U N C T I O N  M ( x )  

Having established formal properties of the Dirichlet series p(s) ,  we now 

use well-known results relating a Dirichlet series to its associated summatory 

function as in 121. 

Let 

be a Dirichlet series where s = a + i t  with a,, a ,  t real numbers and an > 0. 

As in 121, we have the following definition 

Definition 6 We let A be the set of those Dirichlet series f ( s )  as above but 

satisfying the following three additional properties: 

(i) for all x ,  y E R such that 1 5 x < y ,  

for some cl > 0,  0 < 1 where the constants depend on f ( s )  only 

(ii) There exists a nonnegative integer k and functions gJ ( s )  for j = 0 , .  . . , k ,  

such that 

for a > 1 and such that gk(1) # 0 and g j ( s )  is regular for a > 1 and can be 

analytically continued to a regular function in the region R given b y  

for some cz > 0. 



(iii) In  the region R 

for some cg > 0. 

Lemma 2 I f f  ( s )  satisfies (i), then f ( s )  converges for all complex s with a > 1. 

Proof. Let x = 1 in property (2) above. We then have, 

where cl and Q are as defined previously. So 

00 

for any 6 > 0. Now applying Theorem 2, page 156 of [5], we have E 3 
n=l  

converges for a > 1. Ul 

We now present the following weaker form of Kaczorowski's "Main Lemma" 

given in [2], which will be sufficiently strong for our purposes. 

Theorem 1 (Corollary to  Kaczorowski's Main Lemma) Let 

00 f ( s )  = E n = l  annPs  be a Dirichlet series i n  A as defined above. Let 

S ( x )  = En,, a n ,  the summatory function associated with f ( s ) .  Then there 

exists a constant cq > 0 such that for all x > e e ,  

as x + oo, where the di are complex numbers given by 



with 

where C is the path of integration consisting of the segment (-oo, -11 of the lower 

side of the real axis (so that the argument of log z is -n), the circumference of 

the unit  circle taken counter-clockwise, and the segment [-I, -oo) of the upper 

side of the real axis. 

The proof may be found in [2] where we take Case I and q = 0 in the Main 

Lemma. 

Lemma 3 Let m be an  integer. Then  

a)  Bmm = 0 for all m > 0 ,  

b) Bm,m-l = m for all m > 1 ,  

c )  Brn,m-2 = ( 7 ) ~  for all m > 2 and ~2 = Jc ez  log2 z x 1.15. 

Proof. Since a) and b) can be done similarly, we only present the proof for c). 

Hence from Theorem 1, we have 

Now 

where 



00 

I3 = /; eYezr log2 (uez")e'" du. 

Since 

1 
2 

I1 = e-" [log u - in]  ( -1 )  du = -1 e-" [log2 u - 2in logu + ( i n )2 ]  du 

and 

m m 

13  = 1 e-"[logu + ili12(-1) du = - 1 e-" [log2 u + 2in logu + ( i n )2 ]  du 

= 1, -e-" [log2 u + 2in log u - n'] du, 

Now simplifying I2 we have, 

-i J_: ~ Z ~ C O ~ O  e B sin B (cos 8 + i sin 8 )  dB 

+ i sin(sin 8 )]  [COS 8 + i sin 81 dB 

- - -i /-" 02 cOs e ~ ( 9 )  dB1 (*) 

where p(8) = cos(sin 8 )  cos 8-sin(sin 8 )  sin 8+i (cos(sin 8)  sin 8 + sin(sin 8 )  cos 8 )  . 

Letting 8 = -8 we get, 

By adding (*) t o  the last equation, we have 

212 = -2i 1" 82eC0ss [cos(sin 8 )  cos 8 - sin(sin 8 )  sin 81 do. 



Therefore, 

l2 = -i [rr @ p s @  [cos(sin 8) cos B - sin(sin 8) sin B] dB. 

Hence 

2 1 
t c 2 = -  ezlog z d z = - -  

2 i i  
/' h(B) dB - 2 lU eFY logu du F; 1.15, 

27r -= 

where 

h(B) = B2eCoSe (cos(sin 8) cos B - sin(sin 8) sin 8) . 

Corollary 5 Let dj  be defined as i n  the theorem above. Then 

2) if k > 1 ,  

dk-1 = 1, 

where tc2 is as defined in  Lemma 3. 

Proof. Consider 2). From Theorem 1, 

By Lemma 3, Bk-l,k-l = 0 and Bk,kPl = k. Hence dk-1 = 1. 

Consider ii). From Theorem 1, 



k  BY Lemma 3,  B k - 2 , k - 2  = 0, B ~ -  l , k - 2  = k - 1, and ~ k , k - 2  = ( 2 )  n 2 .  Hence 

We now apply these results to p(s) to obtain information about M ( x ) .  Our 

goal a t  this point is to show that p(s) belongs to the class A. To this end, we 

need to review some facts from algebraic number theory. 

Let K be an algebraic number field of degree n over Q ,  where the degree of 

the extension is denoted as n = [K : Q], with class group Cl(K) = C1 of order 

h. Let 6 denote the character group of C1, i.e. the group of homomorphisms 

from C1 into the multiplicative group C * .  As usual, we denote the principal 

character, i.e. the constant character 1, by either xo or simply by 1. 

Let x be an arbitrary character on C1, then we define the L-series 

where the sum is over all (nonzero) integral ideals of K .  

If x = 1, the principal character, then 

the Dedekind zeta function of K .  

As is well known, L(s,  X )  converges absolutely and uniformly on compact 

subsets in the half plane a > 1. Moreover, since the norm map N is multiplica- 

tive on the set of ideals of K ,  we have 



for all a > 1 and where the product is taken over all (nonzero) prime ideals of 

K. It is also known that in the half plane a > 1 - l l n ,  where n  = [K : Q], the 

series for L (s,  X) converges, if x # xo, and L(s, X) is regular there, see 

Theorem 7, page 163 in [ 5 ] .  On the other hand, ( ~ ( s )  has a continuation into 

the same half plane but with a simple pole a t  s = 1 with (nonzero) residue aK. 

We now state two further properties of L(s,  x).  See 121. 

I) In the region RK given by 

L(s, X) does not vanish, where CK depends on K but not on X. 

11) In the region RK for It( 2 1, we have 

where the implied constant depends only on K. 

Now, since L(s, X) is nonzero in the region above, we see that log L(s ,  X) is 

defined and regular in this region. 

Proposition 5 Let c be an ideal class of C1. Then 

for a > 1 

Proof. We first write 



This follows since 

Using the orthogonality relations of characters, we have 

But then on the other hand, notice that 

Hence 

Notice that this proposition allows us to analytically continue CpEc N p P S  

in the region RK. 

Corollary 6 Let 



Then 

hence regular in R K .  In  particular, 

where a~ is the residue of CK(s) a t  s = 1 

Proof. Write CK(S) as & ( s  - l)CK(s). Then 

Hence gc(s) is regular in R K .  

Theorem 2 The Dirichlet series p(s)  belongs to A 

Proof. (See [2]) Write p(s)  = annPs ,  where a, denotes the number of 
- 

principal ideals ( a ) ,  with a irreducible and IN(a)l  = n .  Obviously, a, > 0. 

Now we show p(s)  satisfies conditions (i)-(iii) of class A. Consider (i). By 

Landau, [4], we know 

Nosx 

where a~ is the residue of CK(s) a t  s = 1 and n = [K : Q].  But then for 



where the left hand side involves only principal ideals whose norm is within the 

given limits whereas the right hand side involves any ideal with specified norm. 

Thus p(s) satisfies (i). 

Now we consider (ii) and (iii). Let C1 = { e l ,  . . . , ch) . Then by Corollary 1, 

where the sum is over g = (y , . . . , uh) with 0 5 Vi 5 D ,  Z i l  = xpEc, NP-', 

and g,(s) - are functions regular in the half plane u > 112, since the functions 

are combinations of powers of z i j  for j >_ 2.  Hence by Proposition 5, p(s) is a 

finite sum of terms of the form 

for which g(s) is regular in the half plane u > 112, k and kx are nonnegative 

integers, and the product is over some subset of nonprincipal characters on C1. 

Therefore 

where 



But then by property I) above, h,(s) also satisfies I) which implies G(s)  satisfies 

(ii). Moreover, by 11) we have 

showing that G(s) satisfies (iii). As any finite sum of these G(s) also satisfy (ii) 

and (iii), we see that p(s) does, too. Hence p(s) is in A, as desired. 0 

We now apply this result to M(x) .  

Theorem 3 Let K be an algebraic number field with class number h and asso- 

ciated Davenport number D .  Then 

0 - 2  x x 
M ( x )  = ~ c ~ h - ~ -  (log log x ) ~ - '  + DCD h-" - 1 dj  (log log x)' 

log x logx j=o 

where the d, are given in Theorem 1 with g, = h-Ic, (1). 

Proof. By Proposition 4, 

Now apply Theorem 1 with g j  = h-jc j ( l ) .  Hence 

0 - 2  
x x 

M ( x )  = DcDhPD - (log log x ) ~ - '  + ~ c ~ h - ~  
log x 

since for any E > 0 

(log log x ) " ~  1 1 << - << - 0 
log2 x log2-' x 1og3I2 

As an immediate corollary we have, 



Corollary 7 

x 
M(X)  - D C ~ ~ - ~ -  (loglog x ) ~ - '  

log x 

Compare this with Theorem 1 of [3]. 

But we also get the following corollary. 

Corollary 8 For D 2 2, 

x 
M(x) = - (C(1og log x ) ~ - '  + ~ ( 1 0 ~ 1 0 ~  x ) ~ - ~ )  

log x 

where 

and where 

x 
E(x)  = - ( l ~ ~ l o ~ x ) ~ - ~  

log x 

i f D  2 3  and 

x 
(log x)3/2 

if not. 

Proof. F'rom Corollary 5 ,  

Let B = D c ~ h - ~  . do-2. Applying Theorem 3 gives us the desired result. 

As a special case we have the following corollary. 



Corollary 9 Let K be a number field with class number 2. Denote by c the 

nonprincipal ideal class of C1. Finally, let x be the nonprincipal character on  

C1, hence ~ ( c )  = - 1. Then 

1 x 1 x x 
M(x )  = --loglogx + i(4(1 + gc( l ) )  + ~ 2 ) ~  

4 log x 

where 

Proof. From Corollary 8 and Corollary 3 i ) ,  

Similarly from Corollary 8 and Corollary 3 iz), 

where g,(l) is as defined in Corollary 6. a 

Notice that of all fields with class number two, the main term in the asymp- 

totic expression of M(x) is independent of the field whereas the second term 

seems to depend more on the arithmetic of K. 
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