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In some statistical analyses, researchers may encounter the problem of analyzing 

correlated 2x2 table with a structural zero in one of the off diagonal cells. Structural zeros 

arise in situation where i t  is theoretically impossible for a particular cell to be observed. 

For instance, Agresti (1990) provided an example involving a sample of 156 calves born 

in Okeechobee County, Florida. Calves are first classified according to whether they get a 

pneumonia infection within certain time. They are then classified again according to 

whether they get a secondary infection within a period after the first infection clears up. 

Because subjects cannot, by definition, have a secondary infection without first having a 

primary infection, a structural void in the cell of the summary table that corresponds with 

no primary infection and has secondary infection is introduced. For discussion of this 

phenomenon, see Tang and Tang (2002), and Liu ( 1  998). 

The risk ratio (RR) between the secondary infection, given the primary infection, 

and the pr~mary infection may be a useful measure of change in the pneumonia infection 



rates of the primary infection and the secondary infection. In this thesis, we will first 

develop and evaluate the large sample confidence intervals of RR. Then we will 

investigate the tests for RR and the power of these tests. An example from the literature 

will be provided to illustrate these procedures. Simulation studies will be carried out to 

examine the performance of these procedures. 
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Chapter 1 

INTRODUCTION 

In order to compare two groups, statistical inference of the risk ratio, under 

independent binomial sampling, has been extensively discussed in the literature (Gart and 

Nam, 1988). However, there are situations in  which the assumption of independent 

binomial sampling is not valid. Agresti (2002) has given an example in which calves 

were first classified according to whether they got primary infection and then reclassified 

according to whether they developed a secondary infection within a certain time period 

after the first infection cleared up. In this case, when assessing the risk ratio between a 

secondary infection, given a primary infection and the primary infection, the responses 

are taken from the same group of subjects and are not independent. Therefore, the 

statistical procedures, under independent binomial sampling are not appropriate. So the 

data can be summarized as 

Table 1.1. Probability of Each Cell. 

Notice that calves having no primary infection cannot have secondary infection 

and hence the frequency of such event is zero in the above table. This is known as 

Primary 

Infection 

Yes 

No 

Total 

P I *  

P 2 2  

Secondary Infection 

Yes 

PI  I 

0 

No 

P 12  

P22 



structural zero as opposite to sampling zero. See Agresti (2002, page 392) for discussion 

and for the explanation. 

In order to analyze such bivariate tables, Lui (2000) discussed the interval 

estimation of the simple difference between the proportion of the primary infection and 

the secondary infection, given the primary infection. He developed three asymptotic 

interval estimators using Wald's test statistic, the likelihood ratio test and the basic 

principle of Fieller's theorem. The simulation studies concluded that the asymptotic 

confidence interval using likelihood ratio test consistently perform well in all the 

situations. 

On the other hand, Lui (1998) discussed the estimation of the risk ratio (RR) 

between a secondary infection, given a primary infection, and the primary infection. He 

developed three asymptotic interval estimators using Wald's test statistic (Agresti, 2002; 

Casella and berger, 2001) the logarithmic transformation, and Fieller's theorem (Casella 

and berger, 200 I). On the basis of his simulation studies, he concluded that when the 

underlying probability of primary infection is large, all three estimators perform 

reasonably well. When the probability of primary infection is small or moderate, the 

interval estimator using the logarithmic transformation outperforms the other two 

estimators when the sample size does not exceed 100. In addition, the coverage 

probability of this estimator consistently exceeds the nominal value in all situations. 

In addition to the references cited above, Tang and Tang (2002) studied small 

sample statistical inference for RR in a correlated 2 X 2 table with a structural zero in one 

of the off diagonal cells. 



The purpose of the present investigation is to further study the statistical inference 

in the case of 2 X 2 correlated table with a structural zero. In section 2, we review the 

three confidence intervals of RR studied by Liu (1998) and derive a fourth confidence 

interval based on Rao's score test. An example is provided to compare the results. 

Simulation studies are carried out in section 3 to compare the performance of these four 

confidence intervals in terms of the coverage probability and the length of the confidence 

interval. The length of confidence interval estimated by Rao's score method is always 

shortest. However, the coverage probability of confidence interval by Rao's score method 

is low. 

In section 4, we derive the Rao's score test for testing Ho: RR = 1 and compare 

the four tests with respect to the power by means of extensive simulation studies. The 

simulation studies suggest the Rao's score method is more consistent than the other three 

methods although it is not the most powerful test. Actually, there is no consistent most 

powerful test in this study. 

Finally, in Chapter 5, we present some conclusion and comments. 



Chapter 2 

DERIVATION OF CONFIDENCE INTERVALS 

In this chapter, we will first give some notations used throughout this research and 

briefly introduce the delta method that are needed to develop asymptotic confidence 

interval estimators of RR. Then we will illustrate the detailed steps to derive four 

asymptotic estimators of RR. 'Three of these were proposed by Liu (1998), and are based 

on Wald's test statistic, the logarithmic transformation, and Fieller's theorem. In addition 

to these, we propose a Rao's score test statistic to construct confidence interval of RR. 

2.1. Notation 

Consider a sample of n subjects, who are first classified according to whether they 

get a primary infection. After the primary infection clears up, subjects are reclassified 

according to whether they get a secondary infection within a certain time. Then possible 

results are as following: 

Table 2.1. Observed Frequencies. 

Pri rnary 

Infection 

Yes 

No 

Total 

Total 

n ~ .  = n12 + n22 

n 2 2  

n 

Secondary Infection 

Yes 

121 I 

0 

n~ I 

No 

1212 

1122 

n12 + n22 



The corresponding probabilities are: 

Table 2.2. Corresponding Probabilities. 

Note that the estimators of the probabilities are = n l1  I n ,  j12 = n12 I n ,  

and @22 = n22 I n .  A ~ S O P I .  = P I I  +p12, P I I  +p12 +p22 = 1, IZI. = ~ I I  + n12 and n11 + n12 + 

Primary 

Infection 

n22 = n. The risk ratio (RR) between a secondary infection, given a primary infection and 

Yes 

No 

Total 

2 the primary infection is defined as RR = @I 11 y I .)I p I. = p 1 I 1 p 1. . 

Total 

P I*  = P I I  + P12 

P22 

1 

Secondary Infection 

Suppose that we take a random sample of n subjects. Then the random vector (nil, 

nlz, nzz) follows the trinomial distribution 

Yes 

P I  I 

0 

P I  I 

Givenn, if we know rill and n12 then n?:! =n -n11  -n.12. GivenRR andpll ,  thenp12=p1.  

-1711 = - , ~2 = I - PI. = I - . Therefore in the terms of parameters RR 

No 

PI?  

P22 

P12 + P22 

and pl I ,  the above trinomial distribution can be expressed as follows: 
7 7 

2.2. Delta Method 

If a function g(x) has derivatives of order r, then for any constant a,  the Taylor 

( i )  

polynomial of order r about a is T,. ( x )  = zr ,=o (a)  (X - a)' 
i ! 



The remainder from the approximation by the Taylor polynomial, g(x)  - T,(x) always 

tends to zero faster than the higher-order explicit term, that is, 

g ( x )  -TI. ( x )  
lim.v+,, = 0 

(x- a)' 

For the statistical application of Taylor's Theorem, we are most concerned with the first- 

order Taylor polynomial, that is, an approximation using just the first derivative. 

Let XI, . . ., Xk be random variables with means 8,, . . ., Qk, and define X = (XI, . . ., 

Xk) and 8 =(el, . . . , Ok). Suppose there is a differentiable function g ( X )  (an estimator of 

some parameter) for which we want an approximate estimate of variance. 

Define 

The first-order Taylor polynomial expansion of g about 8 i s  

g ( x )  = g ( 6 )  + g; ( @ ( x i  - 6 ; )  + Remainder 
(=I 

For our statistical approximation we approximate g(x)  as 

g ( x )  = g ( 8 )  + x:;, g;  (@)(xi  - 8; - 

Now, we take expectations on both sides of above approximation to get 

E , ( g ( X ) )  = g ( @ )  + I k  !=I g ; ( @ ) E , ( x ;  - 8 ; )  =g(@) 

We can now approximation the variancc of g(X) by 



This approximation is very useful because it gives a variance formula using only simple 

variance and covariance. 

2.3. Variance-Covariance Matrix of the Estimators 

The risk ratio (RR) in our problem is given by RR = P(Secondary Infection I 

2 Primary Infection) 1 P(Prirnary Infection) = (p~~lpl . ) lp l -  = PIIJPI- = pl11@11 +p1212. 

Let RR = 9 for the purpose of typing convenient. 

Since cp is a function of p l  1 and pl., we shall derive the variance-covariance 

matrix of p11 and PI.. 

Vnr(@,,) = Var(nll In) = ~ a r ( n , , ) l n ~  = nPl1(1- p 1 1 ) / n 2  = pIIC1- p I l ) / n  

Similarly, Var(fi,, ) = p,. (1 - p,. ) l n . 

Cov(j l l  ,@,.I = Cov(@,, ,$,I + @ I 2 1  = Var(b11) + Cov(P,1 @I,) 

=plr( l  - P I I ) / ~  - P I I  p12/n 

= PI  I p22ln. 

Hence the variance-covariance matrix of P I ,  , @,, is given by 

2.4. Confidence Interval by Wald's Test Statistic 

A 

n P  X L e t q = L = '  
* 2 , then E (Xl )  = p I I  and E(X2)  = pl, = 0,. 
PI. x,2 



XI Let g ( x )  = -, then 
x,z 

A 

The variance of RR is as follows: 

1 
- 2 p 1 1  ) 2 ~ a r ( ~ , )  + 2(,)(- V a r ( g ( X ) )  = ( - - ; - ) 2 ~ a r ( ~ l  ) + (T - 2 p 1 1  ) C 0 v ( X 1 ,  X , )  

P  I. PI. PI .  PI :  

- 1 P ~ , - P ~ ~ >  P P ~ . - P ~ * I  P I I P * ~  -- +- 
4 5 

PI. n P: n PI. I?- 

- L [  p l I ( l -  p l I ) + - ( l -  +I; P I I  - ~ 1 2 ) -  4 ~ ~ ~ ( 1 -  P I !  - ~ 1 2 1 1  

n( P;'. > PI.  PI .  Ir 

Thus, the variance of ( ~ ) " ' ( R R -  RR) is ( I -  4 P 1 l )  , denoted as var, . We can 
PI.  

estimate this variance by using vir, = I j l  I ( 1  - I ) 1 j:, . 

The asymptotic (1-a)100% confidence interval for RR is then 

(1 -a) 100% confidence interval is (dl, dt,), where 



2.5. Confidence Interval by Logarithmic Transformation 

A 

When n is small, the normal approximation of the sampling distribution of RR 

may not be accurate enough to allow the interval estimator by the above method to 

perform well. To alleviate this problem, Liu (1998) applied logarithmic transformation on 

RR, which had been successf~~lly applied in interval estimation of the risk ratio for cohort 

studies (Katz et al., 1978; Liu, 1995). 
A 

Define f 2 ( x 1 ,  x,) = log(x, / x,') Note that .f '~(bII 9 61,) = log(RR) 

A 

The variance of RR is as follows: 



Therefore, the C.I. for ln(RR) is 

Thus, 

C.I. for ln(RR) is (r,, r,,), and C.I. for RR is (e  , e " ) . 

2.6. Confidence Interval by Fieller's Theorem 

Following Fieller's theorem (Casella and Berger, 2001), Liu (1998) defined that 

Z = j1, - RR(njk - bl.) J ( n  - 1) 



Then &Z has asymptotic normal distribution with mean = 0 and variance = var, by use 

of the delta method and the central limit theorem again. 

= ) I ,  - q(nP,', - 51. 1 l(n - 1) 

E ( z ) =  P I ,  -v:. = o  

Let F,, = X I ,  PI, = X ,  and g ( x , , x , ) = Z = x ,  -q(nx;  -x,)l(n-I), then 

s, (x) = 1 

+ 2(1)(-C(2r7pl- - l ) )cov(x ,  ,x,)  
n - l  



- 2 ~ ( 2 r ~ P I .  - I)PI I P22 ] 
n-l  

Thus, the variance of &Z , var-3, is as follows: 

Thus, for large n 



The above can be written as a quadratic inequality: A(RR~)  + B(RR) + C 5 0, where 

If both A > 0 and B~ - 4AC > 0, then the asyn~ptotic 1- a confidence interval of 

RR for large n is given by [ f~ ,  f,,], where fl = max [(- B - ( B ~  - ~ A C ) " ~ ) / ( ~ A ) , O ]  and f,, = 

[(- B + (B' - ~ A C ) " ~ ) / ( ~ A ) .  

2.7. Confidence Interval by Rao's Score Test Statistic 

Suppose that XI,  . . ., X, are a random sample from a distribution with p.d.f.,f(x; 

9 ,  where 8= (81, . . . , 4)' is a vector of unknown parameters taking on value in a set S. 

I ?  

Let L ( 0 )  be the likelihood function for 6 .  then L(0) = n f (xi;$) . Let 6 be a point in 
1 =I 

set S at which L(8 )  is maximized; then 6 is the maximum likelihood estimate of 8. It is 

usually obtained by solving the following maximum likelihood equations. 

u; (e)  = 
a log L(e) 

= O , w h e r e i =  1, ..., k. a ej 

The U,(B)'s are called scores, and the k x 1 vector U(8) = [U1(B), . . ., uk(8)lT is called the 

score vector (Lawless, 1982). U(@ has mcan 0 and covariance matrix I ( @ ,  with entries 

- a 2  l o g ~ ( e )  
I , ,  (0) = E( ) where i, j = 1, . . . , k.  ae,ao, 



The matrix I ( @  is called the Fisher information matrix. The matrix In, with entries 

is a consistent estimator of I ( @  under mild conditions (Lawless, 1982). 

In addition, U ( @  is asymptotically distributed as Nk[O, I ( @ ] .  Therefore, under the 

hypothesis Hn: 8= 6, u ( ~ , , ) I ( B , ) - I  u (19,) is asymptotically distributed as xi,  . We can 

use i t  to test Ho: 0= 6 and to obtain confidence interval of 8. 

In our case, the p.d.f. f(x; 8) is as follows: 

The likelihood function for RR is 



The entries of the Fisher information matrix are as follows: 

- a jog L(B) 
Iii (8) = E( 1 ,  where i,,j = 1, ..., 2. aeia je, 

- a ?  109 L ( V ,  p I I )  
I , ,  ( 8 )  = E (  

3 2u,  
) 

- "$2 n - n , ,  -nI2 - - + 
4&(1-&I2 4&( f i -& l2  

Thus, the information matrix is given by 

and its inverse matrix is given by 



Therefore, for testing the hypothesis Ho: RR = RRo, 

UI (v7 P I  1 lT  I(v: P I  I )-I UI (97 P I  I ) 

is asymptotically distributed  as^:,, . 

The Chi-square test statistic is 

where, 

Therefore, the test statistic is given by 

To obtain the CI of RR, we will solve the following equation for RR. 



This leads us to solve the following two quadratic equations for JRR as forms 

A ~ ~ + B , & + C , = O  and A , ~ + B , ~ ~ + c ~ = O  

Suppose there are four distinctive roots as RRl > RR2 > RR3 > RRJ, then CI of RR 

will be RR2 - max(RR3, 0). If there are only three distinctive roots, then CI of RR is 0. It 

is impossible that there are only two distinctive roots or one roots since A1 = A2 > 0,  B1 > 

B2, and C I  < C? unless n 1 1 = 12 or 11 I I = 0. In the case n 1 ,  = n, Rao's score method cannot 

apply to obtain CI of RR because the denominators of above expressions will be zero. In 



the case rill = 0, all the methods are not applicable. Therefore, we apply the commonly 

used adjustment for sparse data in the contingency table analysis by adding 0.5 to each nu 

to avoid this limitation. 

2.8. Example 

To illustrate above four methods, we consider the calves' example again (Agresti 

2002). 156 calves were born in Okeechobee County, Florida. Calves are first classified 

according to whether they get a pneumonia infection within 60 days after birth. They are 

then classified again according to whether they get a secondary infection within 2 weeks 

after the first infection clears up. We have n I I = 30,rz 1 2 = 63, and 1722 = 63. With these 

A 

given data, the estimate of risk ratio RR is 0.541. Applying interval estimators developed 

previously, we obtain the 95% confidence intervals of RR as in Table 2.1. 

Table 2.3.95% Confidence Intervals of RR for Four Methods in Calves Example 

Method C.I. Length of C.I. 

W ald [0.367,0.715] 0.342 

Log [0.392,0.746] 0.354 

Fieller [0.38 1, 0.7461 0.365 

Score [0.464, 0.6601 0.196 



From this table we can see that score method gets the shortest length. Since all 

upper limits of resulting confidence intervals are less than 1, the primary infection does 

generate a natural immunity to reduce the likelihood of a secondary infection. 



Chapter 3 

SIMULATION STUDIES TO EVALUATE 

THE PERFORMANCE OF THE FOUR CONFIDENCE INTERVALS 

3.1. Generation of the Data 

In order to evaluate and compare the performance of the four methods, described 

earlier, in constructing confidence intervals of RR, we have written SAS programs to 

generate data sets with different parameter combinations. Then, for each method, we 

calculate the average length of the confidence intervals and the coverage probability. 

We selected three sample size n = 50, 100, 200, four primary infection rate pi ,  = 

0.2,0.3,0.5,0.8, and four values of the risk ratio RR = 0.25,0.5, 1 .O, 1.5 for generating 

data. 

Notice that havingpl, and RR (cp)  one can obtain 1 .  Thus the parameters of the 

model become p1, and 9. We generate data set according to the following trinomial 

distribution: 

For each parameter combination (n, pi , ,  and RR) ,  10, 000 data sets were 

generated. Then we can estimate pl I for each data set. Next, we calculate the lower bound 

and upper bound of 95% CI for each data set. The length of 95% CI is the upper bound 

minus the lower bound. 



The coverage probability of confidence interval is determined by the following 

way. First, calculate confidence interval. Then check whether the parameter RR was 

covered by the confidence interval. If the parameter RR equal or greater than the lower 

bound and equal or less than upper bound, then we say that RR was covered by the 

confidence interval. Otherwise, RR was not covered by the confidence interval. Count the 

number that RR was covered by the confidence interval for all generated data sets for 

each parameter combination. Then the coverage probability is number of RR was covered 

by the confide~~ce interval divided by simulation times for each parameter combination. 

In this study the simulation times are 10,000. 

3.2. Results of Simulation 

The primary results of the simulation study are displayed through Figure 3.2, 

Figure 3.3, and Table 3.1. From Figure 3.2 we can see that the lengths of confidence 

interval of Rao's score method is lowest among the four methods. However, the coverage 

probability (Figure 3.3) of Rao's score method is too low when comparing with other 

three methods. 



I Trinomial Distribution I 
I Parameters: i, p 1 ., RR I 

Different Parameter Combinations 

\ \ 

pl. = 0.2 PI.  = 0.5 
RR = 0.25 RR= 1 RR= 1.5 

. . . . . . 10000 

Mean: Coverage probability: 
verage over a1 The number of RR was covered 

100,OO data sets. by CI divided by 10,000. 

Length of CI 

Figure 3.1. The Flow Chart of Si~nulation Study. 

Does CI cover RR? 



Figure 3.2. The Length of Confidence Interval of the Simulation Study. 



---Log - I 

--n- Fieller I 

RR 0.25 0.5 1 1 1 1.5 0 .25  0.5 1 1 1 1.5 0 . 2 5  0.5 1 1 1.5 0.251 0.5 1 1 1 
Figure 3.3. The Coverage Probability of the Simulation Study. 



Table 3.1. The Coverage Probability and Length of the 95% Confidence Intervals for 
the Risk Ratio between a Secondary Infection, Given a Primary Infection, and the 
Primary Infection. 



Chapter 4 

HYPOTHESIS TEST 

4.1. Wald Test Statistic 

We have proved in Chapter 2 that A(@- 9) is asymptotic normal distribution 

with mean = 0 and variance = varl for large n. For the nu11 hypothesis test Ho: q =  B, the 

test statistic is: 

If T I  > Zd2, or T I  < -Zd2, we will reject Ho and accept H I .  Otherwise, we will 

accept Ho. 

4.2. Logarithmic Transformation Test Statistic 

For large n, &(ln(@) - In(p))  is asymptotic normal distribution with mean = 0 

and variance = var? (see Chapter 2). For the null hypothesis test Ho: RR = RRo, the test 

statistic is: 



If T2 > Zd2, or T2 < -Zd2, we will reject Ho and accept HI: RR # RRo. Otherwise, 

we will accept Ho. 

4.3. Fieller's Test Statistic 

Once again, we have proved that &[B,, - q(npl, * - $, , ) l (n  - 1)] I & is 

asymptotically normal distributed with mean = 0 and variance = vur3 for large n  in 

Chapter 2. For the null hypothesis test Ho: RR = RRo, the test statistic is 

T, =J;;[B, ,  - P ~ ( @ ~ , ~  - blI) l (n-1)1/&Z 

If T3 > Zd2, or T3 < -Zd2, we will reject Ho and accept H I :  RR # RRo. Otherwise, 

we will accept Ho. 



4.4. Score Test Statistic 

It is showed that u (y, p, , )l(y, p, , )-I  U(y, p,  , ) is asymptotically distributed 

, . For testing the hypothesis Ho: RR = RRo, the test statistic is 

where, 

Therefore, 

If T4 > x(:, I ,  we will reject Ho and accept HI:  RR # RRo. Otherwise, we will 

4.5. Example 

For the calves example, we have n = 156,rzl 1 = 30, nlz = 63, and nzz = 63. For the 

hypothesis test: Ho: RR = I vs. H I :  RR # 1, the four test statistics are as in Table 4.1 



Table 4.1. Test Statistic of Four Methods in Calves Example. 

Method 

Test Statistic p-value Test Statistic p-value 

N/A:s ::: 
W ald -5.169 1.18~10-7 

Log -3.743 9.10~10-5 NI A 

Fieller -3.607 1.55~10-4 N/ A 

Score 19.706 9 . 0 3 ~  10-6 26.7 14 2.36~10-7 

* We have two ways to estimate nlliscrrzce par.nirrc.terp, One is direct estirnate pll  by 

kI I = nl I 1 , s)~~.bol ized by pl 1-D. Anotl~er kvuy is M(ixinzum Likelihood Estimation (MLE) of 

p I (Tang and Tang 2002), syrnbolizetl by p I -M. 

:::'%It is nor upplicclble for Wclld, Log, alrd Fieller metltorls in calculating test statistic when pll-M is 

wed.  Since j, I is ohtainecl by solviilg irl.uxinzum liltelihood equation. Then we use tlze formula 

P I  1 RR = 7 to cstinuzte p,. $,. = d m .  Therefore, 
PI. 

= & [ j l l  - RR,(n-- " I  $ , , ) l ( n  - l ) ] l &  = 0 when RR, = 1. 
RR, 

Tlzu.~, n.o nzatter cvlzat kind of dcitrta, T I ,  T2, atltl T I  are a h ~ a y s  be zero f R R o  = 1. 



Chapter 5 

POWER OF THE TESTS AND SIMULATION RESULTS 

5.1. Introduction 

The power of a statistical test is the probability of rejecting the null hypothesis Ho 

when the alternative hypothesis is true (Montgomery, Runger and Hubele. 2004). 

We know that for any estimator of 6 of 8 which satisfies 

n"2(6- 8 )  -+ ~ ( 0 ,  g(8)2) 

An approximate a level Neyman-Pearson test can be constructed based on the critical 

112 region { z  : rz 1 8 - 8, 1 1 g(8,) 2 c} , where a satisfies 

and @(.) is the standard normal distribution fiinction. 

Welsh (1996) showed that under the local alternative hypotheses of the form H I :  8 

= 6,, = 6 + ~ n " ,  the power of test with critical region { z  : nu' I 6 - 8, I / g(Qo) > c) is 

provided n H 2  I 6 - el, I /  g(O,,) is asymptotically normal under H I  and ,y is continuous and 

positive at go. 



From this, we can develop the formula for calculating the power of first two tests 

in Chapter 4. 

5.2. Power of Wald Test 

We know that &(@ - q) is asymptotic normal distribution with mean = 0 and 

variance = var,. For the hypothesis test Ho: RR = RRo vs. HI :  RR = RR, = RRo + 611n''~, 

where 5, = ~"*(RR,,  - RRo), according to Welsh (1996), the power of this test is: 

112 @ - P ~ ~  = P{/z - I12 ; H,} + P(n  - 
& 6 



5.3. Power of Logarithmic Transformation Test 

&(ln(@) - In(p)) is asymptotic normal distribution with mean = 0 and variance = 

var2. The hypothesis test Ho: RR = RRo vs. H I :  RR = RR, is equivalent to the hypothesis 

test Ho: lnRR = lnRRo v.r. H I :  lnRR = InRR,, = lnRRo + ~ z l n " ~ ,  where c2 = ~ ' " ( I ~ R R ,  - 

InRRo). The power of this test is: 



5.4. Power of Fieller Test and Rao's Score Test 

Exact expressions for power of Fieller and Rao's score tests are difficult to obtain. 

We will use empirical power calculation instead of exact power calculation in these two 

cases in our simulation study for the power of the tests. 

To compute empirical power with a = 0.05, we first generate many data sets for 

each sample size and parameters combination. For each data set, we will calculate 

Fieller's and Score's test statistic under H I .  The proportion of test statistic great than 

Zd2(1 .96) or less than - Zc(/2(-1.96) for Fieller test, and the proportion of test statistic great 

than X2(a, (3.8 1) for Rao's score test represents the empirical power of these two test 

with type I error a = 0.05, respectively. 

5.5. Simulation Study 

To compare the power of the four tests about RR in the Chapter 4, we will 

generate large number and variety of data sets according to trinomial distribution with 

different sample size and parameter combinations. We have selected three sample size rz 

(50, 100, 200), four primary infection rate pl, (0.2, 0.3, 0.5,0.8), and four risk ratio RR 

(0.25, 0.5, 1.0, 1.5) with four methods (Score, Walcl, Log, and Fieler), two estimations of 

p l  (D and M) and two kind of power calculation methods (empirical power (E) and exact 

power(X)). 

We first generated 10, 000 data sets for cach combination of sample size and 

parameters. Then we will estimate pl I in two ways ( p l  1-D and pll-M) for each data set. 

By using pl I-D we will calculate the empirical power for all four tests and exact power 

for Wald's test and logarithmic transformation test. Since we do not have the expression 



for power calculation for score test and Fieller's test, we can not calculate the exact 

power for these two tests. By using p11-M we can only calculate the empirical power of 

score test because all other three tests are not applicable in pl [-M situation. We have 

shown that why all other three tests not applicable in M situation in the end of Chapter 4. 

See the process of simulation study (Figure 5.1). 

5.5.1. Comparison Between Empirical Power and Exact Power 

Figure 5.2. shows that empirical power and exact power are general match each 

other, especially for Wald test, those two power are very close to each other in most 

points. For the Log test, although the trend is same, the difference is also obvious. 

5.5.2. Comparison Between Score-M-E and Score-D-E 

Score-D-E does not perform well because it has unexpected high power at point 

HI = 1 (Figure 5.3.). 

5.5.3. Comparison of Four Methods 

The empirical power simulation study indicates that the power of score-M-E test 

is consistent than these of the other tests although it is not the most powerful test 

(Figure.5.4.-6.). 



Parameter Combinations 

it = 50 n = 200 
1'1. = 0.2 171. = 0.2 pl.  = 0.8 
RR = 0.5 RR = 0.5 RR = 1.5 

I 

Empirical Exact Empirical 
Power Power Power 

Compare four methods 

Figure 5.1. The Flow Chart of Simulation Study. 
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Figure 5.7. Empirical Power at the Points Ho: RR = 1 vs. H I :  RR = I .  



Table 5.1. The Power of the Tests---Simulation Results. 

PI. 

0.2 

0.2 

0.2 

0.2 

0.2 

0.2 

0.2 

0.3 

0.3 

0.3 

n = 50 

RR 
in H1 

0.25 

0.5 

0.75 

1 

1.25 

1.5 

1.75 

0.25 

0.5 

0.75 

Score- 
M -E 

0.438 

0.162 

0.062 

0.043 

0.055 

0.1 35 

0.178 

0.721 

0.274 

0.079 

Wald- 
D-E 

0.03 1 

0.014 

0.027 

0.08 1 

0.174 

0.260 

0.309 

0.273 

0.079 

0.038 

Log- 
D-E 

0.492 

0.237 

0.101 

0.045 

0.020 

0.022 

0.032 

0.752 

0.347 

0.1 3 1 

Fieller- 
D-E 

0.126 

0.040 

0.023 

0.02 1 

0.044 

0.048 

0.113 

0.454 

0.199 

0.077 

Wald- 
D-X 

0.223 

0.125 

0.079 

0.094 

0.157 

0.243 

0.337 

0.389 

0.177 

0.084 

Log- 
D-X 

0.198 

0.1 15 

0.066 

0.050 

0.066 

0.1 15 

0.198 

0.38 1 

0.201 

0.087 



Table 5.1. The Power of the Tests---Simulation Results (continued). 

P 1. 

0.2 

RR 
in H1 

0.25 

Score- 
M-E 

0.673 

Wald- 
D-E 

0.2 1 1 

Log- 
D-E 

0.675 

Fieller- 
D-E 

0.296 

Wald- 
D-X 

0.344 

Log- 
D-X 

0.331 



Table 5.1. The Power of the Tests---Simulation Results (continued). 

- - 

n = 200 

P I .  

0.2 

0.2 

Score- 
M-E 

0.892 

0.452 

RR 
in H1 

0.25 

0.5 

Wald- 
D-E 

0.614 

0.205 

Log- 
D-E 

0.897 

0.495 

Fieller- 
D-E 

0.688 

0.312 

Wald- 
D-X 

0.612 

0.283 

Log- 
D-X 

0.565 

0.302 
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