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ABSTRACT. By fit ting a very simple atmos p heric impurity model to high
reso lu tion data on  ice accumula tion and contaminan t  !1uxes in the GIS P2 ice core, we 
h ave estimated changes in the atmospheric con cen trations of solub le major ions, 
i nsol u ble particu lates and lOBe d u ri ng the t ransit ion from glacia l  to Holocen e  
con d  i t ions. For man y species, changes i n  concentration i n  t h e  ice typical I y 
overes t imate a tmospheric changes, and changes in nux to t h e  ice typica l ly  
u nde rest imate a tmospheric c h anges, because t imes of  increased atmospheric 
con t aminant loading are also times of reduced s nowfall .  The model in terpolates 
between the nux and coneen trat ion records by explici  t ly allowing [or wet- and d ry
deposi tion processes. Compared to the warm Preboreal that followed, we estimate that  
t h e  atmosphere over Greenland sam pled by snow accumulated d u ri n g  the Younger 
Dryas cold even t  con tained on average four-seven t imes the insoluble particulates and 
n early seven times the soluble calcium derived from continental sources, and abo u t  
t h ree times the sea sal t b u t  only s l ig h tly  more cosmogenic lOBe. 

INTRODUCTION 

Onc goal of ice-core s tudies is to est imate past atmos

phe ric concen t rations  of certain sol uble and insol  u ble 

contaminant species. Concelllrations of these species can 

be measured in ice cores and nuxes to the ice sheet can be 

calc u lated in some cases. However, the relation between 
atmospheric concen t ration and ei ther concelllration in 

the ice or nux to the ice is not d i rect ( Davidson, 1989). 

deposi t ion  (air-to-snow t ransfer with o u t  an associated 
water  t ransfer; e.g. Davidson, 1989). As discussed in t he  

Model section below, dry deposition o[  a contaminant  

species i nc reases wit h  i t s  atmospheric concentration; all 

other t h ings being equal ,  more material w i l l  fall out of air 

wi t h  more impurities. If on ly dry deposition occurred, t h e  
nux o f  some cOlllamin a n t  to the snow su rface 1V0uld be 
proportional to its atmospheric concen t ra t ion.  

Some contaminan t  flux to an ice sheet occ urs by wet 

deposition (the contaminant fal ls wi th in  or at tached to a 
snowflake, ei t her  because the con t aminan t served as a 

condensation nucleus or because t he contaminan t was 

scavenged by t h e  fal l ing snownake ) and some by dry 

'vVet  deposition i ncr eases with atmospheric concen

t ration and with the  ice- accumulation rate; air wi t h  

more impu rities wi l l  p roduce snowflakes  wit h  more 
impu ri  t ies and more s nowflakes wil l  bri  ng  down more 

imp u r i t i e s .  I f  o n ly wet  deposit i on  occu rred,  t he 
concen tration of a contaminant in  snow wou ld  be  
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proportional to i ts concen tra tion III the a tmosphere 

sam pled by rha t snO\\· . T n the general case, wi rh both wet 

and dry deposition, the ba lance between t hem must be 

assessed to derive the atmospheric concen tra t ion from 

measurements on the ice. 

Here, we estima te \'ariations in a tmospheric concen

tra tions over mil lennia by extending a simp le model for 

wet and dry deposition .  \Ve test th is model using lOBe 

d ata and then apply t he model to es t i mat e  changes in 

atmospheric loadings of sea salt and con t ine n t ally derived 

materials through the Younger Dryas osci l l a tion.  

DATA 

The Greenland Ice Sheet Project II (GISP2) deep ice 

core was collected 28 km west of the summit  of the 
Greenland ice sheet (72.6° N, 38.5° W, 3200 m elevation 

( H odge and others, 1 990)). Modern mean annual 

temperature is about -31°C, modern mea n accumulation 

is about 0 .24m year I of ice and melt i ng occurs only 

about once per century or less frequently (Alley and 
Olhers, 1993; Alley alld Ana ndakrishnan,  1995). 

:-Iany of the data used here have been presented and 

discussed elsewhere (Alley a nd others , 1 993; Mayewski 

and ot hers , 1993a) . The lOBe data are presen ted for the  

first t ime and will be expanded upon in  subsequent 

publicat ions (manuscrip ts i n  preparation by R .  C. Finkc l ,  

K .  :\Tishiizumi, and oth ers) . The partic ul a t e data  were 

summarized brieO), by Mershon and Zie l inski (1993) and 

lI'ill be publ ished elsewhere (T\1.Sc. thesis in preparation 

by G. R. M ershon; paper in preparation by G .  R. 

:-fershon a nd G. A. Zieli nsk i). "'e req u ire con taminant  

concent ra t ions in the ice (in units such as molecules or 

pan icles m 3), Ouxes to the ice (molecules or panicles 
') I . 

m - year , calcu la ted as the  product of the concen tra l ion 
and the ice accumulation or Oux in m year-I) and the age 
relative to the major late-glacial clima tic events (e.g. 

Johnsen and ot hers , 1 992; Alley and oth ers, 1993; Taylor 
and others,  1993b). 

Ice-core ages were de termined by coun t ing annual 
indi cators (\isible strata, oscillations in electrical conduct

i\'ity, \'ariat ions in laser-light scattering from dust ,  plus 

oxygen-isotop ic and chemical  vari a ti o n s  a t  certain 

depths). Absolute-age es t ima l es were checked against 

fall-out from historically d a ted volcanoes over the most 

recent 2000 years and agains t independen t ages for major 

events during the deglacia t ion . Assigned ages are believed 
to be accura te to bctter than 3% through t h e  Late Glacial 

and 1-2% t hrough the Holocene (Taylor and others, 

1992; Allcy and others , 1 993). 

Accumulation rates were estimated fro m  annual-layer 

thicknesses by correcting for the layer t h i n ning caused by 

the spreading and stretch i ng of the ice sh ee t during its 

00\\'. La ye r thicknesses pred ic ted for the ice core by 

Schott and others (1992) were exceedingl y accurate, so 
\Ve si mply scaled the Oow corrections from their model 

(Alley and others , 1 993). Further w ork on ice-Oow 

corrections  (Bolzan and others, 1995; Cu tIer and others, 

1995) in ge neral supports the Sch0tt a n d  others (1992) 
reconstructions. The time in tervals conside red here are 

shor t enough that any "d rift" between d ifferen t recons

truc t ions o\\'ing to ice-sheet thickness change s should be 

504 

small enough to be ignored . All d ata discussed here are 

from much sha ll ower than the zone of flow di s turbances 

near the bed (Ta ylor and others, 1993a; Alley a n d  others, 

1995) . 

Data on co ncentrations of soluble major anions  and 

cat ions (sulfate , n itrate, ammonium, chloride, sodium, 
potassium, m agnesium and ca lc i um) are from M ayewski 

and others ( 1 993a), who in terpreted the high- resolution 
time series of t h ese spec ies . Approximately b i-yearly 

samples were an alyzed , rang ing from 0.07 to 0.21 m in 

length and con tain ing one to a few years but  typ ically 2-3 

years. 

Insoluble particulates were measured in a class 100 

clean room us i ng an Elzone 280PC (Coulter-type) 

particle coun ter equipped wi t h  a 30.308/km orifice. 

Grain-size d e  terminations were made in 64 separate 

ch annels rang i ng  from 0.67 to 12.88 jJ,m. The 64 

channels can be grouped into five bands without mueh 

loss of detail , avoiding some n oi se associa ted with the 

narrow channels and also sim plifying data a nalysis and 

presentation Uv1ershon and Zielinski ,  1 993; p a per in 

prepara tion  by G.R. :-1ershon). We briefly summarize 

results from those five bands a n d  from the finest channel 

within the finest  band (0.67-0.70 jJ,m); full re s ul ts will be 

presented el sewhere (paper i n  preparation by G. R. 

Mershon and  G .  A. Zielinski). Major- ion and p ar t iculate 

sampling used t h e  same dep t h ranges and s ample sizes. 
The eluent u sed for the chemical samples was a weak 

acid that would have increa sed dissolution of calcium 

carbonate d us t; t hus, some d us t  should be measured in 

both data sets .  
lOBe was measured on sa m ples of core mel ted in the 

field. After the addition of carrier, Be was concen tra ted 

from I to 2 kg of mel twater us ing ion-exchange chromato
graphy . The B e  was puri fied a t  the U nivers ity of 

California-Sa n  Diego and the l OBe measured by accel

era tor mass spectrometry at the Lawrence L ivermore 

Na tional Laboratory Center [or Accelerator Mass Spect

rometry (Davi s and others, 1990). Samples ranged from 

1 .4 to 3.4 m i n  l ength or typically 25 to 1 00 years per 
sample. 

Major-ion a n d  particulate data extend from 1 I 322 to 

1 4 035 years before AD 1950 (ABP) , or 1657- 1 762 m depth 

in the ice core, which spans the i nteresting t ime p eriod of 

the lat ter par t  of the Bolling/Allerbd (BA) warm event, 

the entire Younger Dryas (YD) cold event and the earlier 

part of the warm Preboreal (PB) that followed the 

Younger Dryas  (Fig. I). 

To conside r separate climate states, we s ub- set the 

partic ulate  a n d  chemical d a t a  and eliminated regions 

near trans i t ions  ( 1 1 637-11 759 ABP or 1675- 1 680 m for 
the PB/YD tra nsi t ion and 1 2 854-13 049 ABP or 1 710-

1718 m [or the Y D/BA transi t ion) to leave samp l es clearly 

represen tat i ve of the time periods under cons iderat ion. 

This lea\'es s ub-sets of 145 PB samples, 299 YD samples 

and 232 BA s amples for which we have major-ion 

chemical data, particulate d a t a  and average ice fluxes. 

For 
lOBe, the major effect of eliminating dat a  near the 

transitions is to reduce the st a t ist ical confidence without 

changing the results , so we retained all of the d at a .  We 

also examine some lOBe da ta  ex tending through t he BA 

and into the G lacial Maxi m u m  or Oldest Dryas (OD) 

(Fig. I ) .  
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Fig. I. Time series oJ jlllXfS oJ calcium (to/) pmzel), 

chloride (second down), 11) Be (third down) and water (ice 

accumulatioll: bollom panel) /)Iolled against age in )'UtrS 
before AD 1950 jar t/ze GISP2 ice core. COlleentrations III 
each data set have been normalized b)i diuiding b)' the mean 

oj that data set to allow dis/J/rl)' on similar scales. rl'e 

extended the 11) Be alld iee-J7u� records sOlllewhat Jurther 

tlwn the chloride and m/eium records to test the effect oj the 

extra data points on the statistiml validity oJ the results, as 

described ill the te\l. The aeClllllu/ation-rate record has 

beell smoothed to the sam/)!illg interml oJ the c/zemical 

species to which it was cOIl7/){lred; jar the younger .mm/Jles, 

we dis/Jla), the resolution oJ the ({{Ieium anr/ chloride 

sam/)les: Jar the older /)art. ll'e ShOll' the lou:er mollltion oj 

the lOBe samples. 

MODEL 

Model principles 

The simplest plausible model (e.g. Legrand, 1987; 

Da\idson, 1 989; \\'hung and others, 1 994) relating 

contaminant flux to atmospheric concentration and ice 

flux is 

fi = f..:l Ci + k2Cib, 

fi = hib. (1) 

Hcre, fi is the flux of' contaminant species 'i, Ci is the 

atmospheric concentration of' this species. b is the ice

accumulation rate. k1 is the dry-deposition \'elocity, k2 is 

the dimensionless scavenging ratio (or precipitation and 

Ki is the concentration of' the contaminant species in the 

Ice core. 

Assume initially that kl and k2 are constants (wc 

discuss this assumption in the l\lodcl test section, below). 

Then Equation ( I ) shows thaL. if dry deposition dom

inates (k2C;b« k1Ci), the flux of' somc contaminant to 

the ice sheet will be proportional to its atmospheric 

concentration. If' \\ct deposition dominates (!.;2Cib» 
k1Ci), the concentration of' some contaminant in the ice 

shect will be proportional to its concentration in the 

atmosphere sampled by the accumulated snow. In the 

general case \\'ith both wet and dry deposition, an 

increase in snolV accumulation with constant atmos

pheric concentration of' a contaminant wil l  increase the 

flux of that contaminant to the ice shect but decreasc thc 

concentration of' that contaminant in the accumulated 

snow. 

Data on ice-core contamillallts usually arc reponed as 

concentra tions or, \\'here sno\\' accu m ulation is known 

accurately enough, as concen trations and fluxes (e.g. 

J\Jayewski and others, 1993a, b). For sites dominated by 

IVet deposition, the time scries of' conccntration prm'ides 

the better estimate oC atmospheric loading, \\·hereas for 

sites dominated by dry deposition thc time series of' flux 

provides the better estimate. Here, we present the 

simplest physically based method to interpolate betwcen 

changes in flux and changes in conccntration so as to 
estimate changes in con taminal1l a tmosphC'l'ic loading for 

sites with both wet and dry deposition. 

During a climatic regime such as the Younger Dryas, 

the atmospheric concentration wil l havc some a\'erage 

ntiue, Ci. Ice accumulation will \'ary from veal' to year, 

owing in part to local eflrects. Years of localh- high ice 

accumulation will ha\'(' a larger contaminant flux than 

years oC local ly low ice accumulation, because wet 

deposition wil l  bring down more contaminants during 

the high-accumulation years than during the 10\\'

accumulation years. Thus, if kl and k2 arc constants 

(sce below), a plot of' contaminant flux (fi) vs ice 

accumulation (b) should produce a straight line with 

slope k2C; and interccpt kJJ;. Thc intercept (the 

contaminant flux extrapolated to I.ero ice accumulation) 

can be takcn as an approximation of the dn'-de position 

rate (sec Discussion) and the additional flux is wet 

deposi tion. 

\\'e expect de\·iatiolls 0(' indi\'id ual data points from 

this line o\\'ing to \',Hiations in  the atmospheric 

concen tra tion, Ci, from its mean \'alue, Ci. De\·ia tions 

may a lso be caused by measuremenl crror, time variation 

of' kl or !.-2, or other processes not included in the model. 

Errors in chemical-concentration and particle-concent

ration measurements arc \\'CII-character il.ed and not 

large. :'lisidcntilication 0(' annual markers in the ice 

core is possible. HO\\'('\ 'Cr, in rccent times when \\'C can 

chcck our main counting methods against independent 

annual-Iavcr indicators and absolute-time horizons, our 

counts arc quite accurate (Ta\' lor and othcrs, 1 992; Alley 

and others, 1993); thus, wc beliC\'C that errors fi'om this 

source are not large or at Icast arc not svstematic. 

Model applicability 

The model in Equation ( I ) clearly is not as complex as 

the atmosphere. Hm\'e\' cr, this model IJro\'ides a good (it 

to data from southern Greenlalld on merhanesulfonate 

fluxes o\'er the last Cew centuries (\\'hung and others, 

1994). It also accurately fits modern data on spatial 

distribution ol'fluxes of sea salt and sulfate, and to a lesser 

extent nitrate, in East I\ntarctica (Legrand, 1 987). 

lce-flux/contaminant-flux (b. f) plots 0(' our data for 

dilTe-rent climatic e\'Cnts and (or diflrcrent contaminants 

generally sho\\' positi\'(' slopes, as expected fi·om the 

model. For each of' eight soluble ionic species and six 

insoluble particulate size classes in each 0(' three time 

periods (the Bolling/Allerbd BA), Younger Dryas YD) 

and Preboreal (PB) sub-scts as described abm'e), simple 

reglTsslon analvsis on (b. f) plots produces positi\'C slopes 
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tor all of the PB and VD cases and 12 of the 14 BA cases, 
with all but one of the PB and VD cases different from 
zero with> 95% confidence based on the standard t-tesL. 
(Only five of the BA cases are significantly different trom 
zero; see below.) Because f is calculated as the product of 
concentration, K" and accumulation rate, b, a tendency 
for positive slope is built into the analysis. However, we 
can exclude many possible circumstances that would 
produce zero or negative slopes and invalidate our model. 

For example, if wet deposition were extremely 
inefficient, contaminant nux would be independent of 
ice flux, which is not observed. Similarly, if wet deposition 
were extremely efficient, then contaminant flux would 
become independent ot ice nux with increasing ice flux, 
yielding a horizontal line tor high b on a (b, f) plot. \Ve 
observe no such tendency tor curvature to horizontal with 
increasing b. Mixing of samples from different populations 
could yield (b, f) data arrays with negative slopes if 
contaminan t source strengths are higher for populations 
with lower average ice nux. When we combine the PB, 
VD and BA populations into a single group, we do obtain 
negative slopes for most contaminants. For separate times, 
the BA accounts lor all except one of the (b, f) slopes that 
are not positive with > 95% confidence, suggesting 
mixing o[ populations in the BA only. Indeed, inspection 
of the data sets shO\\·s that m uch of the BA is si milar to the 
PB but with short VD-like events, also suggesting mixing 
of populations. 

Correlation coefficients, T, for the (b, f) linear 
regressions for different times and contaminants range 
from 0.6 down to 0.1 and average 0.3; thus, significant 
variability not included in our model must be present, as 
expected. The reader will recall from the standard t-test 
(e.g. Till, 1974), the minimum significant correlation 
coefficient tor data sets with a large number of points, n, 
scales approximately with 1/..;n. For our data sets and for 
a one-tailed test with 95% confidence, T >::::0 0.1 is 
significan L. 

To compare climatic regimes from different time 
intervals t = u and t = v, we assume that the processes of 
contaminant removal from the atmosphere did not 
change and thus that kl and k2 are constan ts. (\Ve test 
this assumption in the next section and find that it is 
consistent with available data [or one species.) Then the 
ratio, R,u:v, of the slopes on a (b, f) plot from the two 
regimes should equal the ratio of the intercepts and of the 
average atmospheric concentrations 

The two lines for the two time intervals have three rather 
than four free parameters: one slope, one intercept and 
the ratio Ri'IJ:v. Of these th ree parameters, the ratio is most 
directly interpretable and so of greatest paleoclimatic 
interest. 

To conduct the joint linear regression with the 
constraint in Equation (2), we use a simple inverse 
tcchniq ue based on a generalization ot Newton's method 
to minimize the total variance of the model. The diagonal 
elemen ts ot the covariance matrix retu rned by the 
inversion are the variances o[ the model parameters (see 
Press and others, 1988). We find that the lines produced 
by this joint linear regresslOn are statistically indist-
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inguishable from those produced by separate linear 
regressions from the two time periods considered; 
examples are included in Figure 2 and are listed in 
Tables I and 2. We [a\·or the joint regression based on 
physical reasoning and on the reduction in uncertainty 
gained from this physical reasoning but we tabulate some 
results of separate regressions for readers who may be 
more familiar with this treatment. As with the individual 
regressions, we find statistically significant results using 
this joint-regression technique. 

Model test 

We first test the model against lOBe data and show that 
any variations in kj and k2 between the cold VD and the 
warm PB are sufficiently "small" to be ignored [or this 
species. In subsequent sections, we use this result and 
assumptions about behavior of other species to estimate 
that C changes about three-fold for sea salt, seven-fold tor 
continentally derived soluble calcium and four-fold to 
seven-fold for insoluble particulates from VD to PB; thus, 
"small" variations in the constants are those less than a 
few tens of per cen t. We use lOBe for the model test, 
because we can estimate the ratio R���PI3 using 
independent means, to test the model parameters derived 
from GISP2 lOBe data. 

lOBe is a long-lived (1.5 x 106 year) radioactive 
nuclide produced by cosmic rays, mostly by spallation 
reactions in the atmosphere, with about two-thirds of the 
prod uction in the stratosphere and one-th i rd in the 
troposphere (La I and Peters, 1967). Residence time is 
almost a year in the stratosphere but only about 3 weeks 
in the troposphere. 

lOBe production can change in response to changes in 
the galactic cosmic-ray nux ([or example, caused by 
supernovas), or in response to changes in shielding o[ the 
Earth from cosmic rays (caused by changes in solar 
activity or in the Earth's magnetic field). Small variations 
in production occur correlated with sun-spot activity 
(Beer and others, 1983, 199 0), events o[ increased 
production have occurred about 35000 and perhaps 
60 000 ABP, probably in response to supernovas or 
magnetic field events (Raisbeck and others, 1987, 1992) 
and slow variations in production similar to those tor 14C 
may have occurred in response to slow changes in the 
Earth's magnetic field (Lal, 1992). However, prod uction 
probably has been nearly constant for our purposes (that 
is, variations on the order of 10% or less) over the most 
recent deglaciation includi n g  our study interval 
(McHargue and Damon, 1991; Lal, 1992; Mazaud and 
others, 1992; Raisbeck and others, 1992). 

Figure I shows the time series ot lOBe flux during the 
deglaciation and Figure 2a shows how lOBe varies with 
accumulation rate for the various time intervals con
sidered. It appears that both dry deposition (the intercept 
in Figure 2a) and wet deposition are important in the 
lOBe nux in central Greenland. 

Because of the likelihood that lOBe production has 
been nearly constant, we can use Figure 2 to test whether 
our model fi ts the data, and th us whether kj and k2 have 
been (nearly) constant over time. We do so by using 
simple arguments about atmospheric processes to show 
that changes in the behavior of the lOBe nux between cold 
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(glacial  or s tadial) a n d  warm ( i n tergl acial or i n terst a d i a l ) 
t i m es must fal l  b e tween rather n arrow l imits if kl a n d  k2 
a r e  cons tan ts a n d  t h a t  t h e  observed beha viol' fal ls  
bet ween these l i m i ts .  

Over most of t h e  world (where precipi tation rates  a re 
h i gher than in c e n tral  Greenland ) ,  m ost  l OBe is rem oved 
from the atmosp here by wet deposi t ion ( YlcHargue and 
D amon, 1991) . D uri ng cold periods,  s u ch as the You n ger  
D ry as or the O l d es t  Dryas, res u l ts ri'om atmosp h e ri c  
general c irc u l a t i o n  models i n d i c a t e  t h a t  t h e  g l o b a l  
precipi tation rat e  was e i ther u n c h a nged o r  red uced by 
only a few per cen t  from warm periods such as tod ay (e.g.  
K u t z b ac h  and G ue t t e r ,  1986 ;  L a u tenschlager a n d  
H e rterich, 1990; J o u ss a u me, 1993) .  If l OBe were glo b a l l y  
m ixed i n  the t roposphere, i ts a tmospheric concen t r a t i o n  
would b e  sim i l a r  d u ring cold a n d  warm periods beca use 
n e i t h er prod u c t i o n  nor remo v a l  rates wou l d  h av e  
c h a nged m uch o v e r  t i me. D u ri n g  cold period s ,  t h e  
locally red uced s nowfall  in cen tral  Greenland w o u l d  
c a use the  l OBe f l  u x  t o  b e  r e d  u c e d  t here. ( Be c a  u s e  
Greenland receives s u c h  a small fra c t ion o f  t h e  global  
l OBe flux,  a c h a nge in  deposi t ion in G reenland would 
h ave a negligible effect on t h e  a t m ospheric loadi n g  of a 
globally m ixed species . ) Assu ming no c h ange ofk] a n d  k2 ,  
we would find i n  t h is constan t-atmospheric-concen t r a ti o n  
l i m i t  that  RT��� warm (const. cone. )  = l .  

However, t h e  3 week tropospheric residence t i  m e  o f  
l O B e  is not long e n o u g h  f o r  com p l e t e  global mixing i n  t h e  
t ro posphere. S u ppose instead t h a t' :no l ateral m i x i n g  o f  

3.0 ,------n----,-----,---------,---------, 

0.0 '-___ � ___ ______' ____ � ___ ----L ___ ----' 
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Normalized Ice Flux 

Fig. 2. Normalized fluxes oJ lOBe (a) , calcium (b) , and 

chloride (c) , plotted against normalized flux of waler 

( ice-accumulation rate)  Jar aJJproximateLy bi-yearLy 

samples. Populations rejJresenting Lhe Preboreal ( PB) 

and Younger Dryas ( YD)  are shown Jar calcium and 

chloride. BoLling/ALLerod (BA)  and Oldest Dryas ( OD) 

points also are shown Jar lOBe; BA data plo t  between OD 

and rD Jar calcium and chloride . Lines obtained by the 

joil1t regression oJ YD and PB data using our model are 

shown dashed extending to their intemjJLs Jar P B and r D 
Jar calcium and chloride, and Jar P B + BA and 

YD + OD Jar f()Be. Tile shorter, solid-line segments 

in (b)  and (c) are the individual regression lines Jar the 

YD on!), and Jar the PE only. 

l OBe occ urs in the atmosphere, so t h a t  t h e  fl ux of l OBe to 
G reenl a n d  is  constant  over t ime. r f  w e t  deposit ion i s  
signifi c a n  t ,  the red uced pl'eci pit ation a n d  wet deposi t ion 
d uring cold periods would in crease the a t mospheric  
residence t i m e  and thus  t h e  atmospheric concen t rat ion 
of  l OBe i n  a i r  sampled by G reenlandic accu m u lation. Thc 
i ncreased a tmospheric concen tration would increase the 
dry-deposi t ion f1 ux.  Observing from Figur e  2 a  that  dry 
and wet deposition are a bo u t  equal i n  cold periods, wc 
can calc ulate from Eq u a tions ( I )  and ( 2 )  that t h i s  
cons t a n t -fl ux l imit  wi t h  kl a nd k2 const a n t  would yield 
RT���: wann (const . flux. )  = l . 5 between cold and warm 
period s .  ( If all  f 1ux were d ry depos i t i o n  a t  all t imes ,  
changes i n  precipi tat ion from cold to  warm periods would 
not a ffec t  the atmospher ic  concen tra tion,  giving R = 1 

between cold and warm t i mes. I f  all  fl ux were wet  
depos i t i o n  at  al l  t imes,  t hen constant fl u x  wi th  h alved 
preci p i t a t ion would req u i re doubled concentration i n  
cold t i m es ,  or R = 2 ,  ass u ming a l inea/ model .  W i t h  both 
dry and wet  deposit ion i m portant , R fal l s  bet ween t h ese .  
We make the ass u m p t i o n  that  preci p i t a t ion and acc u m 
ulat ion a re approxim a tely  equal  here. ) 

Agai n ,  t his l imi t  is u n l i kely to be correc t .  The modern 
tropos ph e ri c  resi dence t i m e  of about 3 weeks ( Lal and 
Peters, 196 7 ) , which m ay h ave lengthened d uring t h e  
Younger Dryas, is enough t o  allow m i x i ng t o  occur 
beyond the immediate N orth Atlant ic  Ocean, where t h e  
Younger Dryas cold e v e n t  i s  bel ieved to  have been 
s trongest (e .g. Rind and o t h ers, 1986) . Th us,  we expect 
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Table 1 .  RatIOs between rounger Dl)aS ( J  D) , Preboreal (PB) 

and Bollingj AlleriJ(1 ( BA )  atmospheric chemical concentratiolls, 

together with the standard deviations oJthe ratios, determinedJrolll 

the joint regression with the ratio of the slo/}es equal to tlte ratIO DJ 

the interce/}ts. Because ratIOs were calcuLated between /} airs oJ 

times ( YD :  PB, Y D : BA , BA : PB) rather than jitting aiL 

three times at Ollce, the product ( r D : BA) x ( BA : P B) is not 

identical to the single ratio ( rD : PB) , although thl'J! are similar. 

We also cal{l/lated, jor lOBe on0' . YD : ( PB + BA )  

= J.21 ± 0.89 and ( FD +  OD) . (PB + BA )  = J.27± O.72, 
lchere 0 D is the cold OLdest DI)as; in Figure 3 we use ph}Sical 

as weLL as statistical constraints to obtain ( YD + 0 D) : 

(PB + BA) = 1.22± 0.39. The main efJect oJ using these 

eX/landed cold : warm data sets jor lOBe is to reduce the statistical 

IIneertaint)' oJ the ratios. The ratios oJ sLo/m ji-OIl1 separate 

regressions are also shown Jor the rD : P B case; Jar lOBe 

rD + O D : PB + BA . this }ields 1 .52 ± 0. 70. The sejJarate 

regressions tend to ),ield slight0' I({};ger mlios than the jOlllt 

regression bllt In 110 case is the difference highly significant 

Chemi(({t Rafia DJ atmoJjJ/zeri{ concentratiolls 

.Joint regression Se/Jarale 

regresslOll 

V D . PB BA . PB Y D :  BA YD PB 

, oBe 1 . 1 8 ± 2 1 6  1 03 ± 0 .47 1 .2 1  ± 0 .90 0 43 ± 1 . 1 8  

C l  2 . 96 ± 0 �8 1 .48 ± 0 .22 1 . 76 ± 0 .23  4 . 2 7 ± 1 . 1 5  

Ca 6 . 95 ± 1 . 69 1 . 63 ± 043 3 65 ± 0 5 1  1 0 .48 ± 5 04 

\,la 3 . 5 3  ± O. 73 1 . 64 ± 0.28 2 .02 ± 0 . 2 7  4 . 7 3 ±  1 . 73 

K 3 . 35 ± 0 64 1 . 43 ± 0 . 2 3  2.08 ± 0 . 2 7  3 .53 ± 1 .44 

l\ lg  3 . 7 3 ± 0 7 7  1 . 3 7 ± 0 25 2 .38 ± 0 . 3 3  4.83 ± 1 . 52 

NO, 1 . 1 4 ± O .23 0 .83 ± 0 .09 1 . 33 ± 0 . 2 1  1 . 4 5 ± 0. 1 7  

N H ,  1 . 30 ± O.26 0 .83 ± 0 .09 1 .5 1  ± O . 2 3  3 . 7 7  ± 2 .69 

SO,  

Si;::e 

2 . 0 3 ± 0 42 1 . 20 ± 0 . 1 7  1 .6 1  ± O . 2 3  2 .�8 ± 1 . 28 

Tab le 2. Ratios between Younger D I)!as ( YD ) , Preboreal 

(P B) and BaLLing/ A LLerod ( BA )  atmos/)/teric concent

rations oJ insoluble /Jarticulates, together with the stalldard 

deviatio ns a/the ratios, determined/ram thejoint regresslOll 

with the mtio of tlte slopes equal to the ratio of the 

mtercej)ts. Because mtios were calculated b e tween fJairs oJ 

times ( YD :  PB, rD :  BA , BA : PE) rather than Jilling 

all three times at once, the jJroduct ( YD :  BA) x 
( BA : PB) IS n o t  iden t ica l  t o  the  s i ngle  ratio 

( YD : P B ) ,  although they are similar. The ratios oJ 

slojJes Ji om sejJarate regressions are also shown Jar the 

Y D : P B case. The separate regressions tend to }ield 

slightly larger ratios than the jomt regression bu t  in no case 

is the difference highly significant 

Ratio of almoJjJheric colleenlralionJ 

Joint regre,\,Iioll 

YD : PB BA : PB V D : 131\ 

Se/lOrale 

regression 

VD : PB 

0.57-0 . 7 0  3 . 96 ± O 69 1 1 7 ± O . 20 3 34 ± 0 5 3 3 . 9 1 ± 1I 7  

0 .57 0 . 7 5  4 09 ± 0 7 1  1 2 9 ± O . 2 1  2 .87  ± 0 . 3 8  4.�8 ± 1 . 38 

0 . 75- 1 .4 4.33 ± 0 75 1 34 ± 0 22 2 88 ± 0 3 7  4.63 ± 1 . 56 
1 .4 2.0 5 . 24 ± 0 98 1 5 7 ± 0.28 2 90 ± 0 3 6 5 35 ± 2. 1 4  

2.0 3 . 0  5 85 ± 1 1 5  1 5 7  ± 0.32 2 90 ± 0 3 5 6 1 2 ± 3 . 1 6  

3 .0  1 0 . 0  7 .42 ± 1 58 185 ± 0.40 3 1 1 ± 0 3 7 848 ± 5.07 
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that 1 < R;,ff�:\V<lrm < 1 . 5  for l OBe between t h e  Younger 

Dryas and Preboreal times, if kl and k2 are cons tants .  

Thus far,  our data set inc ludes many l OBe samples 

from the cold Younger Dryas (n = 2 1 ) ,  the w arm Bollingj 

Allerod (n = 28) and the cold Oldest  Dryas (n = 22 ) but  

only a few from the warm Preboreal (n = 5 ) .  \!Ve have 

applied our  model to \'arious combinations of  t hese, as 

shO\\ n in Table  I .  The resu l t  is t h a t  1 < RT���: warm < 1 .5 ,  

as expected , wi th a suggest ion that R falls towards the 

lower end of t h is range. 

To improve the stat ist ical confidence of t his result ,  we 

also have cond ucted the a n alysis while enforcing the 

physical cons traint  that  the dry deposi t ion and wet 

deposi tion arc posi t i \'e ( i .e .  s lopes and i n tercepts are 

posi t ive ;  F ig .  3 ) .  We ca lc u l a t e  (he  mean  and the 

uncerta inty ( 51 vn, where 5 is the sample s tandard 

deviation; e . g .  Till , 1 974, cha pter 4) of cold-period and 

warm-period d a t a  on the ehemical-flux/ice-flux plot .  If 
we eonstruc t  p a i rs of l ines w i t h  posit ive slopes and positive 

intercepts through these means such that the  ra t io of their 

slopes eq ua l s  the ratio o[ t h ei r  in tercepts ,  t h e  l imiting 

values [or R i�?6�: wann occur  as dry depos i t ion ( the  

in tercept)  appro aches zero and as wet depos i tion ( the 

slope) approaches zero. If wc then calcu la te R for t hese 

l imiting cases, and allow [or t h e  slvn uncer ta inty  in the 

mean \'alues, we obtain RT���: warm = 1 .22 ± 0 .39 .  This  is 

almost identical  to our previous result b u t  w i th  smal ler 

uncertai nty because of great e r  constra in t  by p hysical 

reasonlllg. 

The obscrvcd behavior of l OBe and ice flux from cold 

to warm periods (R = 1 .22 ± 0.39 ) is s ta t is t ic al ly  indis

t inguishable from the behavior expected if our model is 

correct (R = 1 .25  ± 0.25 ) . We conclude t h a t  any var

i ations t ha t  h ave occurred in kl and k2 for l OBe h ave been 

small, on t h e  order of tens of per cent or less. 
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Fig. 3.  A lternative w(!)! to estimate  RT��� warm . The mean 

values oJ n ormalized chemical and Ice fluxes Jar warm 

( P B  + BA) and Jar cold ( YD  + OD) /miods ,  and 

their ullcertainties, are shown by the small crosses. 

Regression lines through these means, having the ratio oJ 

their slopes equal to tlte ratio of their intercepts and having 

j)ositive slopes and intercepts, a re limited by the s olid and 

dashed lines shown. This range, when increased to allow 

Jar t h e  s m a ll uncerta i n ty in  the means ,  y ie lds 
Ri��� warm = J .22 ± 0.39. 
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T h e  tendency for R cold : warm to be a t  the  low end of  i t s  lOBe 
poss ib le  range is cons istent with a i r  m asses affect ing 

Greenland tha t  exper ienced smaller red uctions in  prec ip

i t a tion d ur ing cold periods than did Greenland; however, 

this result  i s  s ta t i s t ica l ly  val id a t  less  than the  one  

standa rd-deviat ion l eve l ,  so  we  cannot  insist on i t . 

Further ,  more-carefu l  analysis of t h e  l OBe data IS I II 
progress and may a l low more-refined conclusions to b e  

drawn . 

RESULTS 

Insoluble particulates 

We now wish to app ly  th i s  model to o th er species. How

ever, some care is required . The l OB e  used i n  our modcl 

tes t  i s  bel ieved to be deposited a t tached to "accum u l

a t ion-mode" (0 . 1 - 1 p,m ) sulfate panicles ,  which probably  

h ave  h ad nearly  cons tan t  grain-size d i s t r ibution through 

the en tire period o f  i n t e rest ( reviewed b y  McHargue and 

Damon ( 1 99 1 ) ) .  S tric t ly ,  we have tested the model on ly  

for t h ese panicles . Thro ugh a string o f  explicit assump

t ions  (which we argue  a re reasonable assumptions) , w e  

now apply our model t o  other sizes a n d  t ypes o f  part ic les 

and to bu lk  chemis try .  The  analysis p a t h  is sketched i n  

Table 3 .  

Resu l ts of app l i ca t ion  o[ the model t o  the data are  

shown in  Table 2 [or five s i z e  c la sses of  insol u b l e  

part icu lates and [or t h e  smallest par t icu late channel  

measured (0.67-0 . 7  p,m) . The smal les t  c hannel, and t h e  

smal lest  o f  the five s ize classes, fal l  w i t h i n  t h e  accumul

a t ion m ode presumab ly  occ upied by the  l OBe-bear ing 

sulCa t e  particles. I f  we assume that  the model is val id [or 

part ic les  in t h e  accumula tion mode, we find t ha t  t h e  

Tab le 3. Path JoLLowed to achieve conclusions oJ this 

pajJer. The model tests and assumjJ tions outlined here are 

described more fuLly in the text 

Test or assuml)tioll 

Compare model result  to i ndep
endent estimate of' l OB e  bcha \ -
lor 

Ass u m e  l OBe allached to acc u m 
ulat ion- mode suifatc part icles 

Ass u m e  model valid for a l l  
acculll u l a t ion-mocle panicles 

Assume model ,alid for a l l  
part i cl es 0 ( '  onc size 

Test for grai n -size-depenclen t 
removal efficiency by conlpar
ing bulk insoluble p a rt i c u l a tcs 
to grain-size-speciflc I-esults  
using assumed grain-s ize based 
on nloclern measuremen ts  

Assume bulk measures arc acc ur
ale for soluble chemicals 

Resutt 

l\ l odel v a l i d  for l OBe. Small 
warm colel change i n  l OBe 

� I odel \'alid 1'01' acul11ulation-
1110de sulfate particles 

4 x change in aCCLl tn Ul al io tl
mode i nsol u ble particles P B  to 
VD 

Greater c h ange for coarser i nsol
uble p a rt i cles.  to 7 x lor  fel\' 
fllll size 

Real but small d i fference ( order 0[' 
1 0 % )  

3 x sea-s a l t  i ncrease P B  V D .  7 x 
cOll l i nell tal-calciunl increase 
PB V D  

atmosphere sampled by snow accumula ted during the  

Younger Dryas conta i ned a bo u t  four t imes  the  insoluble 

particu l a te s  of the Preborea l in this size range. If we 

assume t h a t  the  model is va l id  for comparisons within any 

size class,  we find that the c hange in atmospheric load ing 

from Younger Dryas to Preboreal was la rger for coarser 

particles than [or finer par t i c l es and exceeded se\'en-fold 

for the coarsest parti cles measured here . 

The d ata  in Table 2 s h ow that the insoluble part

iculates in the a tmosphere were on a\'erage coarser d u ri ng 

the YD t h a n  d uri ng t h e  PE. This is cons is tent with a 
vari ety of  da ta  comparing part iculates in ice from glacia l  

and inte rg lacial  c l imates  in G reenland and Antarct ic ice 

cores ( e . g . Thompson, 1 9 7 7 ;  Pet i t  and o thers, 1 98 1 ;  

Mershon and Zielinsk i ,  1 99 3 ) . The model parameters k\  
and k2 proba bly are increasing functions o f  grain-size for 

part ic le s izes that are s ignificant  in mass loading of the  

atmosph e re (e .g . v\T a rn e c k ,  1 988; S c h umann ,  1 99 1 ;  

H illamo a nd o thers, 1 99 3 ) . Th us, fl ux of con taminan ts 

to the i c e,  a n d  concentra t i on  in the ice, m a y  increase from 

warm to cold l imes beca u se of increased atmospheric 
removal e ffi ciency of coa rsened grain-sizes during cold 

t imes as well as because o f  high er atmospheric loadi ngs 

during cold t imes. 

Because  i nsoluble panicula tes arc measu red in bands 

w i t h  non -zero wid t h ,  co a rsen ing of t h e  grain -s iz e 
distribu t ion  shifts the average size wi th in  a n  in terval 
slight ly .  H owe\ er, we ca lcu late that th i s  e ffect  is  not 

significan t  in our resu l ts , e x c e p t  possi bly fOl- the coarsest 

in terval ,  w h ich is broade r t h a n  the others. N [ ost  measures 

of gra in -s ize distri bu t ion [o r a tmosp heri c con taminan ts  

form smoo t h curves when plo t t ed againsl  t h e logari t h m  of 

particle ra d i us.  We plo t t ed t h e  res u l t s  for t h e  fi\'C bro a d  

band s shown in  Table 2 aga i ns t t he parti cle  radius,  dre\\' 

a smooth cu rve through t h em and t h e n  compared this  

smooth c u n'e to resu l ts fro m  a nalysis of n a r rower s ingle  
channels .  

The g e n e ral  result i s  t h a t  t he broad bands do sligh t l y  

overes t ima te  the  YD : PE ch a nge, a s  expec t ed .  For the  

finest ch an ne l , th i s  overes t i m a t e  a moun ts to a bou t 2 %  of  

the  ra t io ( 3 .96 \ s  ;::::;4 .02 ) .  F o r  nll-io us c h a nnels in t h e  
coarsest b a n d ,  the O\'eres t i m a te a\'erages a bout  1 0 % .  In  

com parison ,  the  cun 'e- li t t ing  errors are t ypic a l ly 20% of  

t h e  r a t i os, so these d i fferences are n o t  high l y  signi fican t . 

The coarsest band is the widest  considered and so would 
be exp ec t ed to have t h e la rgest errors . The coarser 

indiv idual channels have very few part i cles in them per 

sample, c a u s ing the eun 'e- f i t t i ng errors to  be  la rger than 

for t h e  b a nds combining seve ra l channels . 
Nex t ,  we wish to a p p l y  o u r  model t o  d a t a on soluble 

con t a m i n a n t s .  However, o u r  meas u re m e n t s  c a nnot  yield 
part ic le-s i ze  dis tribu tions [or soluble species but  only total 

concentrat ions ill the ice .  Thi s  is eCj ui\ 'a l e n t  t o  ha\'ing 

only a s ingle band for part i culates .  (We are conf ident  t h a t  
t h e  pa r t icu la te-size classes sam pled cap t ure t h e  part ic

ulates t h a t  contribute s ign i ficantly to t h e  mass fl ux. ) 

Again, i [  t h e  grain-size d i s t ribu tion o f  t he  part icles  
carrying so lu ble speci es c o arsened between cl imate s t ates 
and the c oa rser pan i cl es a re removed m ore efTicicn t l y ,  

our model  would m is in te rp re t the  in crea sed removal 

efficiency o f  t h e  coarser pa rt i cles as an increased atmos

pheric load ing. The atmospheric sampling efforts under 

way in  cen t ra l Green l a n d  ( e . g .  Bergin and o t hers, 1 994; 
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D i b b  and others, 1 994) eventually should allow model

based assessments of t h e  m agnitude of this effect.  Pend i ng 

fu rther results from such stud ies, we cannot fully account 

for t h e  effects of grain-size changes b u t  wc can use o u r  

p a r t i c u l a t e  data t o  e s t i m a t e  t h e  magnit ude o f  possible 

errors. 

To treat our insoluble-particulate d a t a  as if they were 

collected in the same m anner as soluble-chemical data, for 

each sample we summed the particulates in each channel 

to obtain the total mass and then we a pplied the model to 

these s u m med data. Comparing the YD to the PB, we 

obtain a ratio of 6.47 for these particulate-mass data. 

I[ we knew the size distribu tion of p articles in t h e  

atmosphere a t  any t i m e ,  w e  could t h e n  calculate t h e  

c ha n g e  in a tmospheric mass loading and t h e  b i a s  

in trod uced b y  grain-size-dependent  removal processe s .  

F o r  example, w e  find t h a t  t h e  0.67�0 . 7 0  J.Lm particu l at e  

channel s hows a Y D  : PE r atio of 3 . 96 .  I[ t h e  atmospheric 

m ass loading during YD and PB were a l most entirely o f  

p articles in this size c l a s s  ( w i t h  coars e r  p articles bein g  

important i n  the i c e  only because o f  a n  extremely strong 

size-dependence of kl and k2) ,  then our b u  lk estimate of a 

YD : PE change in a tmospheric m ass l o ading of 6 . 4 7  

would b e  about 60% higher than the a c t ual change o f  

3 . 96 .  I f  I J.L m  particles dominated t h e  a t m ospheric mass 

loading, the calcu lated 6.47 would exceed the actual 4 . 3 3  

b y  almost 50% . 

H owever, most d a t a  suggest t h a t  t h e  atmospheric 

loading of continentally derived m a terial and sea salt  is 

dominated by slightly coarser particle s .  Hillamo and 

others ( 1 993 )  showed that for sea-salt  and continen t a l  

aerosols at Dye 3,  southern Greenland,  s ampled during 

March 1 989, the mass distribution typically showed a 

p e a k  near 2 J.Lm. This  is consistent w i t h  a range of other 

results  from remote sites (see Warneck,  1 988 ,  chapter 7 ) .  

I f we note that grain-size distributions in t h e  ice core fro m  

t h e  P E  are sligh tly coarser t h a n  those fro m  recent times, 

and t h ose from the YD a r e  even coarser,  it  i s  reasonable to 

suggest that the change we calc ulate in atmospheric 

load i ng for 2 pm parti c l es or sligh tly coarser parti cles 

comes close to the actual c hange in mass loading in t h e  

atmosphere.  The d i ffe rence between the change in this  

s ize a n d  the change c a l c ulated b y  a p plication of our 

model to total  particle m asses in the i c e  is the result o f  

particle-size-dependen t removal processes c o rn  bined w i  t h  

changes i n  particle-size d istribution. 

Two chan nels come closest to 2 J.L m  size: the I . 4� 

2 . 0  J.Lm channel, with  a Y D : PB ratio of 5 . 2 4  and the 2 . 0� 

3 . 0  J.Lm channel, with a YD : PE ratio of 5 .86, vs the 

model-obtained res ult for total partic u l a t e  massses i n  the 

ice o f  6.47 .  By fi tt ing smoothed c urves to number-con

centration data plotted against the logarithm of the 

p a r ticle sizes considered ( usually referred to as d N  / dlnR; 

e . g. W arneck, 1 988) , we o b tain a Y D : P E  ratio of 5.5 for 

the a tmospheric loading of 2 pm particles .  This is abo u t  

17% l ovver t h a n  we o b t a i n  from b u l k  analysis o f  t h e  

p a rticles .  We therefore suggest that  a n a l ysis of t h e  bulk 

data overes timates the c hange from P E  t o  Y D  by approx

i m a tely this much or less .  

Several factors may play a role in the small  magnit u d e  

of t h i s  effect. I f  processes such a s  fi l t ra t i o n  of parti cle

laden air below the snow surface ( C u n n ingham and 

Waddington, 1 993;  Hillamo and others,  1 99 3 ) or scaven-
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ging by falling snowOakes a r e  sufficien tly vigorous, they 

may remove essentially all p articles from t h e  air so that 

size-dependent fractionation i s  unimportan t .  The change 

in grain-size of particles a p p ears small (only a few tenths 

of a m i cron between the m ass-weighted m e a n  size in the 

ice for YD and PE) and m a y  not be large eno ugh to affect 

the results  s ignificantly. 

The c ha nge in particle-size distributions fro m  cold to 
warm peri o d s  was proba b l y  l arger for the c o ntinentally 

derived m at e rials that pro d u c e  the insolu b l e  p artic ulates 

we study t h a n  for sea s a lt or most other chemicals 

( reviewed i n  Warneck ( 1 98 8 ) ) . We therefore s uggest that 

application o f  our model to b ul k  measures o f  con taminant 

loading, such as are obtai n ed from wet chemical  analyses, 

produces an overestim a te of changes in a t mospheric 

loading fro m  cold to warm p e riods which nonetheless is 

fairly close to being acc u r a te .  We expect t h a t  ongoi ng 

atmospheric  research will a llow better esti m a tes of this 

bias b u t  t h a t  i t  is on the ord e r  of 1 0 % .  We do not correct 

for this  b i a s .  

Soluble :marine and continental lIlajor ions 

For clarity, we concentrate o n  chloride, which is domin

ated b y  m a ri n e  sources, and c alci um, which is dominated 

by con tinental  sources ( e . g .  Clausen and Langway, 1 989; 

Delmas and Legrand, 1 989 ;  M a  yewski and o th ers, 1 990) , 

although we tabulate data on other ions for interested 

readers ( T a ble I ) .  The C l : Na weight r a t i os averaged 

over each o f  the time periods are close to sea-water values 

(2 .45 ± 0 . 06 PE, 1 .89 ± 0 .03  VD, 2 . 2 1  ± 0 .06  EA, ;::::; 1 . 82 

sea water ) . C l  and i\a give s t atistically indistinguishable 

results in o u r  analyses, so we do not address the q uestion 
or which is t h e  better marine indicator ( nor c an we easily 

resolve c hanges in the gas - p h ase behavior of C l ,  because 

the marine signal is dominant) . The s m all  sea-salt 

contri b u t i o n  to sulfate h as not been corre c t e d  for here. 

?vfagnesiu m  has marine as well as continental sources and 

potassiu m  m a y  have signifi c a nt biomass-b u rning as well 

as con tinen tal-d ust sources ( e .g .  Clausen and Langway, 

1 989; Delmas and Legrand , 1 989; Mayewski and others, 

1 990) . I n  general, the behavior of magnesi u m  and potass

ium in o u r  d a t a  falls somewhere between t h e  continental 

calcium a n d  the marine sodium and chloride.  Nitrate, 

sulfate and a mmonium h av e  more-comp l i c ated sources 

and atmospheric chemistry ( Clausen and L angway, 1 989; 

Delmas and Legrand, 1 989 ;  M ayewski and o thers, 1 990; 

Legrand and o thers, 1 99 2 ) ,  and we leave consideration of 

them for o t h e r  studies; we t a b ulate results for t hese species 

strictly as a service to interested readers, and offer no 

interpretations or conclusions . 

Applic a tion of our model to the d a ta yields the 

regression lines shown in Figure 2, and the r atios and 

uncertainties  listed in Table I .  The simple i nterpretation 

is that t h e  cold YD atmosp here over Greenland sampled 

by acc u m ul a ted snow showed a th ree-fold i n c rease in the 

concentration of sea salt and a seven-fold i n crease in the 

concentration of conti nentally derived soluble calcium, 

compared to the warm PE a tm osphere that fol lowed . The 

B A  was generally warm b u t  i ncluded m u ch variability, 

and a t m o s p h eric con c e n t r a tions of sea s a l t ,  soluble 

calcium and most of the o t h er chemicals  s t udied here 

fell between the PE and Y D  values. 
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Because we do not  h ave samples w i t h  very low 

accum ula t ion  rates, the in tercepts i n  Figure 2 req u ire 

long extrapola tions of the regression lines and so are not 

stat is t ical l  y wel l-constrai ned ( also see D iscussion ) . Th us 

we are u nable to draw any  strong concl us ions about 

relative i mportance of dry vs wet deposit ion for individual 

species. However, the best est imate of the frac t ion of total 

flux con tr ibu ted by dry deposi tion in the YD exceeds that 

[or the PB [or every ion considered . If we average the per 

cent contr ibution of dry d eposit ion to tota l  flux for all 

species in the PB and com pare to the YD, we f ind that dry 

deposi t ion was more important  i n  the YD than  in the PB 

with > 90% confidence ( 1 8% YD vs I 1 %  PB dry 
deposi t ion [or the mean o[ the best estim ates [or the 

eigh t m ajor ions) . 

S imi lar ly ,  d ry depos i t ion provided a l a rger fraction o[ 

the total flux  of insolub le  part iculates d ur i ng cold times 

than d uring warm times (43% YD vs 26% PB dry 

depos t ion [or the mean of the  best est imates of the  five size 

bands) . I n  addi tion, dry deposit ion is somewhat more 

importa n t  for insoluble part icu lates t h an for soluble 

con taminants  and dry deposi t ion is more i mportant for 

coarser part ic les than [or finer ones (4 7 % Y D ,  30% PB 

for the two coarser bands, vs 38% YD, 2 2 %  PB for the  

two fi ner ones ) . 

I f  dry d eposi t ion were identically zero, then we would 

expect concen t ra t ion of a contaminant in the ice core to 
be proport ional  to i ts a t m ospheric concen t ra t ion. The 

contribut ion of dry deposi t ion to total fl ux is typically 

rather low, especially in the warm periods, which means 

t ha t  concen t ra t ions in  t h e  ice provid c  fa i rl y  good 

estima tes o[ concentra t ions in the atmosphere at this s i te  

(Table 4 ) , a l t hough the  ful l  analysis presen ted here 

should provide a bet ter est imate .  Were d ry deposit ion 

dominan t  (as i s  possible for some species in  cen t ra l  regions 

of East Antarctica (Legrand,  1 987 ;  Davidson, 1 989) ) , 

then chemical  flux would t rack atmospheric concent

ration more closely than would concentra t ion i n  the ice. 

Table 4. Ratios between Younger Dlyas ( YD) and 
Preboreal ( P  B) concentrations oJ insoluble particulates, 
soluble calcium and soluble clzloride, determined Fom 
fluxes to the ice shee!, our model alld co1lcentrations l1Z the 
Ice sheet 

SjJecies PB : rD ratio Fom 
FLux ModeL Concent-

ratioll 

SoLuble 
Ca 4 . 1 1  6.95 8 .00 

Cl 1 . 59 2 .96 3.07 

Particulates size (pm) 

0.67-0 . 70 2 . 29 3 .96 4 .76  

0 .67 0 . 75 2 . 3 3  4.09 4.84 

0 . 75- 1 . 4 2 . 58 4 .33  5 .37  

1 . 4 -2 . 0  3 . 29 5 .24 6.84 

2 .0 3 . 0  3 .8 1  5 .86 7 .94 

3 .0- 1 0 .0 4· .64 7 .42 9.67 

DISCUSSION 

I t  is difficu l t  to overstate the com plexity of the  p hysical 
and chemica l  p rocesses l ead i n g  to the arch iva l  o[ 

a t mospheric contaminants in an ice sheet .  M uc h  p rogress 

h as been made  i n  understand ing these processes (e.g. 

D avidson and o thers, 1 985; Dibb and others ,  1 992; 

J affrezo and o thers, 1 993) bu t t h e  goal of invert ing an ice
core record for t he  ful l  su i te o[  a tmospheric condi tions 

tha t  prod uced i t  remains elusive. Pending success of  that 

e ffort, s impli f ied treatments such as this onc may h ave a 

p lace in ice-core analyses. 

Analogy migh t  be drawn to s tab le isotopic p a leother

mometry. The l i s t  of possible factors that affec t  i so topic 

temperatures is long - changes in source region,  t rans

port path, snow drift ing, sub l imation, seasona l i ty  of 

precipitat ion, e t c . ,  as well as changes in tempera t ure. 

Ye t ,  in  many c ases, isotopic ratios provide  accurate 

paleot hermometers (e.g. Peel and  others, 1 988 ;  Cuffey 

and others, 1 992 ,  1 994) . 

Some of our  assumptions merit  further di scuss ion .  We 

equate the i n tercept on a water-fl ux/impurity-fl u x  (b- f) 
plot with the  d ry-deposi t ion rate .  However, Legrand 

( 1 987 )  wrote  t h a t  th is was "debatable" . A f irst  obvious 

d i fTerence is t h a t  Legrand considered the spat ia l  variat

ions of impur i ty  and  water flux bu t  i ce-core in terpre t a t ion 

i s  a temporal s t udy .  As shown by Peel and others ( 1 988) 

for a possibly a n a logous case , spa t ia l  gradients of s t able

isotopic rat ios m a y  be signi f icant ly  di fferen t  from t he 

temporal ones o[ i n terest .  

A second [ac t or is that ,  because we have not i den t i fied 
any years wi t h  very low water f lux (b, or snow accum

ulat ion) , the in tercept is poorly constrained becau se of the 

need for long extrapolat ions. \ V e  a lso cannot observe any 

tendency for cu rva tu re of the b- f d ata at small  b . S hou ld 

curvat ure occ u r  owing to a great er efficiency o[ a t mos

pheric snow-ou t  a t  small b, then our i ntercept va l ues are 

curve-fi t t ing parameters that  overest imate the t rue  dry

deposi t ion ra t e .  ( The opposi t e  cun'ature, req u i ri ng 

greatly i nefTi c ien t snow-ou t a t  low snowfall ra tes, is 
ph ysically implaus ible . ) Reversi b le  deposi t ion o[ species 

w i th  gaseous phases ( includ ing water vapor) a l so would 

com plicate the ident ification of the i ntercept as  t h e  dry

deposition ra te  ( Bergin and others ,  1 994) . Howe\'er, the 

lack of any c lear  c u n'at ure in t h e  da ta  wc do h ave, and 

the success o[ o u r  model tes t ,  lead us to t rus t  our 
in terpretation o[  the intercept as  a good estima te  of the 

d ry-deposi tion ra te .  
We wish to  em phasize that  th i s  and a l l  of  our  model 

tests are based on our data. They  thus are s i t e-specific. 

Be[ore techniques  such as this can be used with con fidence 

at other si tes ,  si m i lar  tests mus t be cond ucted . \N e m igh t 

speculate, for example, that  some of our successes are 

rela ted to the low i m portance of d ry deposi t ion a t  G I S P2 ,  

and that resu l t s  possibly cou ld d i ffer a t  sites with a higher 

ratio of dry to to ta l  deposi t ion where any errors re la ted to 

ident i fication of t h e  intercept wi th the dry-deposi t ion  rate 

would be more i m portan t .  

The  low correla t ion coeffic ien t s  for regression  l i nes on 

b- f plots a t  f irs t  might alarm readers, suggesting t h a t  the 

model does not f i t  t he data .  I n  fac t ,  the statist ical ana lyses 

give great conf idence that i m p u ri ty  flux f does increase 

with water fl ux  b [or almost all species and parti cu l a te-size 
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c lasses i n  the V D  and the PB, and for many i n  t h e  BA. 

Low correlation coefficients bu t  h igh  t values are perfect ly 

consistent provided there is s ignificant variab i l i ty  or 

"noise" in the system (e.g. Ti l l ,  1 9 74) . Such variab i l i ty 

is observed in the  contaminan t  da ta  and is expected . 

Suppose, for example, that someone had cond ucted a 
s imi lar study i n  t h e  eas tern Un i ted S tates over t h e  last 

cen tury. It is a reasonable expec t a t ion that a large s ignal 

would have been evident from the d ustbowl of the 1 930s. 

But ,  because we ha\'e taken 1 000 year-long cl imate s t ates, 

we lump dustbowl- type events wi t h  non-dustbowl years, 

L i t tl e  I ce Age type  events with M edieval Warm Period 

type events, and so on to produce a "noisy" data se t  t hat 

cannot be described completely by assuming a constant 

source strengt h and atmospheric loading (see Mayewski 

and others, 1 993b) 

G iven two reference points o r  a reference l i ne  (for 

example, the s lope and intercept of the regression l ine 

t h rough some selected part of the  Holocene data se t ) , our 

model  can be appl ied to a single d ata point to prod uce an 

estimate of changes in atmospheric loading relat ive to  the 

reference s ta te .  Thus, we can estimate a tmosph eric 
loadings wi th the same time reso lu t ion as the sampl ing 

scheme, which may be of interest i n  some s tud ie s .  'Ve 
h ave chosen to  focus on longer i n t e rvals because we cou ld 

test our model over longer t imes, and because we  cou ld 

use the many da ta  points wi t h i n  a long interval  to 
est i mate uncerta in t ies as well as averages; however, we 

hope to examine  high-resolution resu l ts in the fut ure .  

M any other possible complicat ing factors may exis t  for 

th is model, including correlations between accumula t ion

rate variations and atmospheric-concentration variat ions 

wi th in  a cl imatic regime. However, the model test using 
l OBe data indicates that model errors are small for l OBe, 

that  t hey affect the VD and PB populations eq ua l ly 

(hence they largely cancel out  when VD : PB rat ios are 

formed) , or tha t  there are high ly  fortuitous offse t t ing 

effects . We consider the final possibil i ty to be h ighly 

unl ikely (although wc obviously will be seeking further 

\'erification as more data become available) . We d o  not 

worry too much about the other t wo, because our  resu lts 

are valid under both . 

\Ve cannot ,  of course, abso lu t ely  exclude the possib

i l i ty  that the model works for l OBe but not for o ther 

species. We note tha t  we chose to test the model against  
l OBe, and we est imated the l im i t ing  behaviour of  l OBe, 

beforc we had anal yzed the l OBe d a ta ;  thus, any c la im for 

un iq ueness of l OBe would req u i re  a surprising coi ncid

ence. The avai l abi l i ty of insoluble-parti cuI  ate da ta  w i t hin 

s ize classes al lows us to elimina te  grain-size-d ep e ndent 

c hanges in atmospheric-depos i t ion processes as s igni ficant 

complicating fac tors in interpret i n g  the part iculate  d ata,  

and the l imi ted available data suggest that grai n -size 

changes have not grea tly compl ica ted applicat ion of the 

model to soluble- impurity data. We therefore believe that  
the  model provides a working tool for est imating c hanges 

in average atmospheric loadings of contaminants over ice 

sheets. 

Notice that, if d ry and wet deposi t ion sample  d i fferent 

l evels of the a tmosphere with d ifferent concentra tions  of 

some contamina n t  at  a t ime, the s imilarity of the results 

we obtain from jo in t  and separate regressions (Tables I 

and 2) indicates that  the proportional changes i n  t hose 
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conce n trations between c l imate states are similar. vVere 

the proportional changes different,  t h e  ratio of slopes 

returned  by the separate regressions wou ld differ from t h e  

ratio of i n tercepts, caus ing the lines from the i ndividu a l  

regressions to differ fro m  those of t h e  joi n t regression .  T h e  

errors l i s ted i n  Tables I and 2 are large enough t h a t  w e  

cann o t  exc lude t h e  possibil ity o f  some such a l t i tude

vary ing changes i n  concentrations but  we cannot dem

onstrate  them either. 

CONCLUSIONS 

Studies  of contaminant  concentrations in and fluxes to ice  

cores h ave provided great  i nsights in to changes in sources, 

transport  paths and effects of aerosols (e .g. Peti t  and 

others ,  1 98 1 ;  Herron and Langway, 1 985 ;  Harvey, 1 988;  

Thompson and others ,  1 988; M ayewski and others ,  
1 993a) . However, some uncertain ty  has always been 

attached to the i n terpretat ion of a tmospheric loadings 

because of the poorly q uanti fied rol e  of changes in wet  

and d ry deposition. The availabil i ty of  annually resolved 

ice cores from regions of simple ice flow allows us to 

esti m a te changes in snow accumulat ion,  and thus to 
es t i m a t e  changes i n  a tmospheric loadings with l ess 

uncer ta in ty than p reviously .  The s i m ple mode l  of 

Equat ions ( I ) and (2) is a first attempt  at doing so. 
vVe certainly have not "solved" a tmospheric-removal 

pro b l e ms. Ful l  physical  models of removal processes (e .g .  

Davidson, 1 989) even t ually should  replace regression 

models such as ours.  However, we argue that our s imple 

model  i mproves o n  t h e  use e i ther  of  contam i n a n t  
concent ra tion in i c e  or  o f  contaminant flux t o  ice sheets  
to es t i mate changes i n  a tmospheric loadings. 

Appl i cat ion of o u r  model produces estimates tha t ,  

com pared to  the  warmer  Preboreal t ha t  followed , t h e  

atmosphere over cen t ra l  Greenland sampled by snow 
accu mula ted during the Younger Dryas cold event  

con t ained on average abou t th ree t i mes the sea sa l t ,  

seven t imes the  cont inen tally derived soluble calc ium and 

four  t imes (for sub-fLm d ust ) to seven t imes (for several

J.im d ust )  the cont inentally derived insoluble particles, 

but only slightly more l OBe; uncerta i n t ies from curve

fi t t ing typically are 20% of the ra tios. Processes by which  

chemicals were transferred to the ice sheet were s imi lar  

during  the two periods, or at least had similar net  effe c ts 

(wi t h i n  on the order  of 1 0% ) .  Dry deposi  tion was more 

important during t h e  Younger D ryas than during the  

Preboreal bu t  wet deposit ion was more important t han  

dry d eposition for mos t  species d u ring  cold a s  well as  

warm periods. Thus ,  contaminant concentration i n  t h e  

G I SP2 ice core fol low a tmospheric concentrations more 

closely than do con taminant fluxes to the ice sheet .  For 

the Younger Dryas to Preboreal c l imat ic trans i t ion,  

changes in con taminan t  concentra t ions overes ti m a te 

atmospheric changes by about 20% and changes i n  

fluxes underest imate a tmospheric changes b y  about 40% 

(Table  4) . 

Given sufficien t ly  large data sets of chemical  or  

particu late concentrat ions and annu al - layer thicknesses 

in regions of simpl e  ice flow, it should be possible to use 

the techn iques out l ined here to improve estimates of 

changes i ll atmosph er ic  concentration of many chemical  
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o r  par t i cu la te  spec Ies In many l o c a t ions and t i me 

i n t e rvals ,  and to p rovide t ime series wi th  high t i me 

resol u t ion as wel l as the low-resol u tion  comparisons 

o fTered here.  \ Ve an t ic ipa te th a t t h e  recons t ruc t ed 

changes in atmospher ic  loadings wi l l  p rove usefu l  i n  a 

var ie ty  of paleocl i m a t ic s tudies rela ted to recons t ru c t i ng 

w i  n d  speeds,  sou rce  regions,  c h an ges in rad i a  t i  ve  

sca t t ering in  t he  a tmosphere, e t c . ,  a n d  we  arc pursu ing 
some such studies .  
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