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A 200 year sulfate record from 16 Antarctic ice cores and
associations with Southern Ocean sea-ice extent

Daniel DIXON, Paul A. MAYEWSKI, Susan KASPARI, Karl KREUTZ,
Gordon HAMILTON, Kirk MAASCH, Sharon B. SNEED, Michael J. HANDLEY

Climate Change Institute, Department of Earth Sciences, University of Maine, 303 Bryand Global Sciences Center,
Orono, ME 04469-5790, USA

E-mail: daniel.dixon@maine.edu

ABSTRACT. Chemistry data from 16, 50–115m deep, sub-annually dated ice cores are used to
investigate spatial and temporal concentration variability of sea-salt (ss) SO4

2– and excess (xs) SO4
2–

over West Antarctica and the South Pole for the last 200 years. Low-elevation ice-core sites in western
West Antarctica contain higher concentrations of SO4

2– as a result of cyclogenesis over the Ross Ice
Shelf and proximity to the Ross Sea Polynya. Linear correlation analysis of 15 West Antarctic ice-core
SO4

2– time series demonstrates that at several sites concentrations of ssSO4
2– are higher when sea-ice

extent (SIE) is greater, and the inverse for xsSO4
2–. Concentrations of xsSO4

2– from the South Pole site
(East Antarctica) are associated with SIE from the Weddell region, and West Antarctic xsSO4

2–

concentrations are associated with SIE from the Bellingshausen–Amundsen–Ross region. The only
notable rise of the last 200 years in xsSO4

2–, around 1940, is not related to SIE fluctuations and is most
likely a result of increased xsSO4

2– production in the mid–low latitudes and/or an increase in transport
efficiency from the mid–low latitudes to central West Antarctica. These high-resolution records show
that the source types and source areas of ssSO4

2– and xsSO4
2– delivered to eastern and western West

Antarctica and the South Pole differ from site to site but can best be resolved using records from spatial
ice-core arrays such as the International Trans-Antarctic Scientific Expedition (ITASE).

INTRODUCTION

Reliable instrumental records of Earth’s climate have only
been collected since the late 19th century; of these, high-
resolution records of Southern Hemisphere climate are
geographically sparse and rarely extend back more than
50 years. A longer perspective on climate variability can be
obtained by studying natural archives that provide proxies
for past climate, such as tree rings, sediment cores and
ice cores.

Antarctic ice cores are a valuable resource for recon-
structing the climate of the past because they can provide
sub-annually resolved, continuous proxy records of atmos-
pheric temperature, atmospheric circulation, precipitation,
the El Niño–Southern Oscillation and sea-ice extent, among
others (Jouzel and others, 1983; Mayewski and others, 1995,
2004; Cullather and others, 1996; Kreutz and others, 1997,
2000a; Meyerson and others, 2002). Furthermore, strong
teleconnections link the continent to the mid- and low
latitudes (Carleton, 1992), ensuring that records of Southern
Hemisphere climate are captured in the chemistry of its
snow and ice layers.

Sulfate (SO4
2–) is one of the major chemical species

present in Earth’s atmosphere, and its aerosols are involved in
many important atmospheric processes. SO4

2– aerosols play
a significant role in the heat budget of the global atmosphere,
mainly through the scattering of incoming solar radiation and
through indirect effects involving clouds (Charlson and
others, 1990). SO4

2– from large explosive volcanic eruptions
significantly affects stratospheric chemistry, inducing a
higher catalytic destruction rate of ozone and resulting in
enhanced levels of ultraviolet-B (UV-B) radiation at the
Earth’s surface (Berresheim and others, 1995).

The isolated Antarctic continent is an ideal place to study
natural atmospheric SO4

2– variability, thanks to its remote-
ness from major anthropogenic SO4

2– sources that can
confound the investigation of natural variability compared
to more populated regions (Shaw, 1982; Legrand and
Mayewski, 1997).

Sulfate sources and transport pathways
Sea-salt (ss) SO4

2– reaches West Antarctica almost exclu-
sively through the lower troposphere, and as a result can
contribute over 25% of the total SO4

2– budget to coastal and
low-elevation sites (Dixon and others, 2004). Interpreting the
significance of excess (xs) SO4

2– concentrations in Antarctica
is complicated because the xsSO4

2– arrives from a variety of
sources. The major source is biogenic xsSO4

2– that results
from vigorous biological activity in the surrounding oceans
during the Southern Hemisphere summer months (Bates and
others, 1992; Legrand and Mayewski, 1997). The strong
seasonality of biogenic xsSO4

2– production and transport
results in well-defined annual peaks in all of the ice-core
records used in this study (Dixon and others, 2004). Biogenic
source xsSO4

2– reaches a peak from November to January
(Minikin and others, 1998) and arrives in West Antarctica via
two major transport pathways. Biogenic xsSO4

2–, produced
south of 608 S (Minikin and others, 1998), is transported
mainly through the lower troposphere, whereas biogenic
xsSO4

2–, primarily from low–mid-latitude sources, is trans-
ported through the mid–upper troposphere (Shaw, 1982;
Legrand and others, 1992; Minikin and others, 1998). The
ssSO4

2– fraction reaches a peak during the winter/spring
transition, when intense cyclonic activity and intrusions of
lower-tropospheric marine air masses are common (Legrand
and others, 1992; Whitlow and others, 1992; Hogan, 1997).
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Other important sources of West Antarctic xsSO4
2– are

volcanic eruptions and the multiple-source stratospheric
SO4

2– layer that is comprised of background volcanic,
biogenic and potentially anthropogenic contributions. Vol-
canic xsSO4

2– input to West Antarctica from large explosive
eruptions is episodic. The major transport pathway for this
source of xsSO4

2– is the mid–upper troposphere and strato-
sphere (Legrand and Delmas, 1987; Dibb and Whitlow,
1996; Legrand and Wagenbach, 1999). The stratospheric
contribution of SO4

2– is generally assumed to be minimal
(Legrand, 1997; Bergin and others, 1998) except after large
explosive volcanic eruptions (Legrand and Delmas, 1987;
Dibb and Whitlow, 1996). Volcanic xsSO4

2– from small
volcanic eruptions may travel through the lower troposphere
but usually does not travel far from the eruption source.

The influence of lower-tropospheric air masses dimin-
ishes with increasing elevation and distance from the coast,
causing ssSO4

2– concentrations to decrease concurrently.
The influence of mid–upper tropospheric and stratospheric
air masses on coastal sites is minor (Minikin and others,
1998; Legrand and Wagenbach, 1999) compared to higher-
elevation interior areas. As a result, large explosive volcanic
eruptions are most clearly distinguished in ice-core xsSO4

2–

records from higher-elevation interior areas.
Polynyas are an important local source of ssSO4

2–

and xsSO4
2– in coastal Antarctic precipitation. Although

relatively small in area, coastal polynyas are areas of
considerable sea-ice production and salt flux in winter,
and regions of greatly enhanced primary and secondary
production in summer (Arrigo and Van Dijken, 2003;
Kaspari and others, 2005). The largest polynya in the
Southern Ocean is the Ross Sea Polynya, which is one of
the most biologically productive regions around Antarctica
(Arrigo and others, 1998). It forms annually as a result of the
strong katabatic winds flowing off the Ross Ice Shelf into the
southwestern Ross Sea (Bromwich and others, 1992).

Traditionally, bubble bursting at the open-ocean water
surface was considered to be the sole source of sea-salt
aerosols in Antarctic precipitation, but more recently
Southern Ocean sea-ice extent (SIE) has been shown to play
an important role in controlling concentrations of ssSO4

2– in
coastal Antarctic precipitation through the formation of
highly saline frost flowers on the surface of new sea ice
(Wagenbach and others, 1998; Rankin and others, 2000,
2002). Highly saline brine forms at the surface of new sea
ice, and below –88C sodium sulfate decahydrate (mirabilite:
Na2SO410H2O) precipitates from the brine (Richardson,
1976). This process produces aerosols strongly depleted in
SO4

2– relative to Na+ from the brine (Rankin and others,
2002). Several studies report negative winter xsSO4

2– values
from aerosol, snow and ice-core samples at coastal sites
(Mulvaney and Peel, 1988; Wagenbach and others, 1998),

Fig. 1. Location map of sites for all ice cores used in this study. RA, RB and RC represent core sites RIDS-A, RIDS-B and RIDS-C, respectively.
Red lines (A–B, C–D and E–F) are transects referred to in Figure 2. Map created using the RADARSAT-1 Antarctic Mapping Project (RAMP)
digital elevation model (Liu and others, 2001).
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indicating that the brine associated with frost flowers is a
dominant source of marine aerosols to coastal sites in
winter. However, Kreutz and others (2000b), using the Siple
Dome ice core, and Kaspari and others (2005), using
International Trans-Antarctic Scientific Expedition (ITASE)
cores, show that the ice-core sea-salt record is a proxy for
the strength and position of the Amundsen Sea low,
indicating that wind strength is still a major control of sea-
salt aerosols in Antarctic precipitation whether the aerosols
are derived from frost flowers or the open-ocean surface.

SIE is also linked to concentrations of xsSO4
2– in the

Antarctic atmosphere (Welch and others, 1993; Peel and
others, 1996; Meyerson and others, 2002; Curran and
others, 2003) via its strong, consistent association with the
methanesulfonate (MS) seasonal cycle of marine product-
ivity (Minikin and others, 1998). Peel and others (1996)
show that in areas adjacent to the Weddell Sea, extensive
sea-ice cover appears to suppress emissions of the xsSO4

2–

precursor dimethylsulfide (DMS). However, other studies
reveal a positive relationship between increased MS at
coastal sites and increased SIE in adjacent longitudinal
ocean sectors (Welch and others, 1993; Curran and others,
2003). Meyerson and others (2002) note a positive relation-
ship between South Pole MS concentrations and Amundsen–
Ross region SIE.

In this study, chemistry data from 16, 50–115m deep,
sub-annually dated ice-core records (Fig. 1) are used to
investigate recent spatial and temporal concentration vari-
ability of the soluble ssSO4

2– and xsSO4
2– in ice cores over

West Antarctica. We investigate associations between the
xsSO4

2– and ssSO4
2– concentration time series from each

core and SIE and we discuss the importance of the SIE–SO4
2–

correlations in terms of the 1940 background xsSO4
2– rise

observed in our previous study (Dixon and others, 2004).

METHODOLOGY
The ice cores used in this study were collected during
Antarctic field seasons 1994–2001. The eight older cores
(SP-95, SDM-94, RIDS-A, -B and -C, CWA-A and -D and

Up-C) were sectioned using the ultra-clean procedures
described in Buck and others (1992). The eight new US
ITASE cores were sampled at high resolution using the
University of Maine melter system (up to 50 samplesm–1;
Table 1) to develop sub-annually resolved time series
(Dixon and others, 2004). To prevent contamination, only
the inner portion of each core was sampled, and, prior to
melting, the ends of each core section were scraped using a
sterile surgical stainless-steel blade. Each sample was
analyzed for its soluble major-ion content (Na+, K+, Mg2+,
Ca2+, Cl–, NO3

–, SO4
2–) using a Dionex1 DX-500 ion

chromatograph coupled to a Gilson1 autosampler, and
concentrations are reported in mg L–1 (ppb). To determine
anion (Cl–, SO4

2– and NO3
–) concentrations, the chromato-

graph was set up with an AS-11 column with 6mM NaOH
eluent. For cation (Na+, Ca2+, Mg2+ and K+) concentrations,
a CS-12a column with 25mM MSA eluent was used. All ion
concentrations are determined with an accuracy of better
than 0.1 ppb.

The high-resolution section of every ice core is dated by
matching seasonal peaks from each of the major-ion time
series in accord with seasonal timing identified by previous
research (e.g. Whitlow and others, 1992; Wagenbach, 1996;
Legrand and Mayewski, 1997; Kreutz and Mayewski, 1999;
Dixon and others, 2004). The counting of annual peaks
between known large explosive volcanic events in our ion
records, such as the 1815 eruption of Tambora, Indonesia,
the 1883 eruption of Krakatau, Indonesia, the 1963 eruption
of Agung, Indonesia, and the 1991 eruption of Pinatubo,
Philippines, confirms that each year is preserved in each
high-resolution ice-core record and allows a dating accur-
acy of better than 1 year (Dixon and others, 2004).

Each ice-core SO4
2– time series is separated into its

primary constituents, ssSO4
2– and xsSO4

2–, using the tech-
nique described by O’Brien and others (1995). The ssSO4

2–

fraction is calculated by applying a standard sea-water ratio
of 30.61(Na+), 1.1(K+), 3.69(Mg2+), 1.16(Ca2+), 55.04(Cl–)
and 7.68(SO4

2–) to the ion concentrations in each sample
(Holland, 1978). The concentration values are reduced
incrementally according to this ratio until a value of zero is

Table 1. Information for each ice core used in this study

Location Lat. Long. Elev. Mean acc. Distance
from
open
water

ssSO4

conc.
(1952–91
mean)

xsSO4

conc.
(1952–91
mean)

ssSO4 :
xsSO4

(1952–91
mean)

Depth High-res.
time period

Sampling
resolution

Samples
a–1 (high-
res. mean)

8 S 8W m cmw.e. a–1 km ppb ppb ppb m years AD cm

ITASE 01-6 76.0968 89.0147 1232 39.7 320 7.1 29.9 0.24 18 2000–1978 2.1–3.6 28
ITASE 01-5 77.0593 89.1375 1246 36.5 400 6.8 29.4 0.23 114 2002–1781 1.5–3.5 23
ITASE 01-3 78.1202 95.6463 1633 2.7 370 4.2 24.9 0.17 71 2002–1859 1.5–3.2 20
ITASE 01-2 77.8436 102.9103 1353 2.5 295 6.4 30.8 0.21 71 2002–1890 1.7–4.1 27
ITASE 00-1 79.3831 111.2286 1791 2.3 475 5.7 30.0 0.19 105 2001–1651 1.6–3.5 13
ITASE 00-4 78.0829 120.0764 1697 9 460 7.9 37.2 0.21 58 2001–1799 1.4–3.1 13
ITASE 00-5 77.6821 123.9914 1828 4.6 400 8.1 53.7 0.15 60 2001–1708 2–6.4 8
RIDS-A 78.7300 116.3300 1740 3.6 440 6.2 28.0 0.22 150 1996–1831 3 & 60 11
RIDS-B 79.4600 118.0500 1603 4.8 535 5.9 39.1 0.15 60 1996–1926 3, 20, & 30 9
RIDS-C 80.0100 119.5600 1530 1.1 580 5.8 45.7 0.13 60 1996–1905 2, 3, & 25 9
Siple Dome-94 81.6481 148.7900 620 1.8 385 32.7 82.4 0.40 150 1995–1891 2 & 25 10
Up-C 82.4391 135.9720 525 1.5 640 21.5 85.7 0.25 28 1996–1870 3 7
CWA-(A) 82.3671 119.2855 950 4.5 850 13.1 46.1 0.28 93.5 1994–1939 3 & 40 9
ITASE 99-1 80.6200 122.6300 1350 3.6 640 11.8 40.3 0.29 58 2000–1713 2–4.3 8
CWA-(D) 81.3723 107.2750 1930 1.3 735 5.5 30.3 0.18 50.5 1994–1952 3 & 60 13
South Pole-95 90.0000 0.0000 2850 8.2 1300 2.6 52.6 0.05 71 1992–1487 2 6
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reached in one of the six ion concentrations. The ion that
reaches zero concentration first is considered to be the
conservative ion for that sample, and the concentration
values for the other five ions are recorded. These become the
excess (xs) concentrations for that sample. This technique is
used in preference to the total-Na+ conservative method
because it takes all of the sea-salt ions into account when
calculating sea-salt concentrations and therefore lessens the
likelihood of a possible ssSO4

2– to Na+ ratio bias caused by
frost flower fractionation (Rankin and others, 2002).
Previous research reveals no significant correlations be-
tween snow ion concentration and accumulation rate for
Antarctic glaciochemical series in general (e.g. Mulvaney
and Wolff, 1994; Kreutz and Mayewski, 1999; Kreutz and
others, 2000a) or for the glaciochemical series used in this
study (Dixon and others, 2004), so flux corrections for
accumulation were not applied.

In order to characterize and compare the total ssSO4
2–

and xsSO4
2– concentration at each ice-core site, we calcu-

late mean values for the period 1952–91 (Fig. 2). We use
1952–91 because this is the longest time period for which
we have a large number of continuous ice-core time series
(mean value for site 01-6 is calculated from 1978–91, the
full length of the record). Raw ssSO4

2– and xsSO4
2– time

series for the last 200 years are plotted to determine the
seasonal and longer-term variance in each of the ice-core
SO4

2– records (Fig. 3).
Linear correlations of annually averaged ssSO4

2– and
xsSO4

2– concentrations from each core vs SIE data from
1973 to 1996 (Jacka, 1983) are performed (the Up-C core is
not used because of data gaps) to determine how SIE is
related to SO4

2– concentrations at the South Pole and across
West Antarctica. The annual xsSO4

2– concentration is
calculated for each year from June to June (referred to as
type A), and the annual ssSO4

2– concentration is calculated
from January to January (type B), as these periods best cover
the annual concentration peak in each SO4

2– time series.
The SIE data were compiled from satellite-derived maps
(US Navy and US National Oceanic and Atmospheric
Administration Joint Ice Center) which by definition have
the ice edge determined by a sea-ice concentration of
>15% (Jacka, 1983, and monthly updates). For each month

(January 1973–December 1996), a latitudinal position of the
sea-ice edge is available for every 108 of longitude
(Simmonds and Jacka, 1995), yielding 36 separate time
series. The only missing data are for August 1975 for all
longitudes. The August average (1973–96) for each longitude
series was substituted for these missing values. The SIE data
are annually averaged from June to June (A) and from
January to January (B), resulting in annual SIE records that
span the time periods 1974–96 and 1973–96 respectively.
Correlations are performed between the xsSO4

2– (A) and SIE
(A) data and the ssSO4

2– (B) and SIE (B) data. Longitudinal
SIE segments that correlate above 95% significance are
plotted on polar stereographic maps of Antarctica (see
Table 2 for corresponding r values).

RESULTS AND DISCUSSION
50 year mean concentrations
Sites 01-6, 01-5, 01-3, 01-2, 00-1, 00-4 and 00-5 are
located along transect A–B from eastern to central to
western West Antarctica (Fig. 1). The sites increase in
elevation from �1200m to �1800m from east to west.
Mean xsSO4

2– concentrations along this transect display
relatively uniform values from eastern to central West
Antarctica, and an increase from central to western West
Antarctica (Fig. 2). The increase in mean xsSO4

2– concen-
tration towards the west is believed to be the result of
increased downward flow of sulfate-laden air from the mid–
upper atmosphere over the Executive Committee Mountain
Range, inferred from atmospheric flow models in this area
(Guo and others, 2003).

Ice-core sites RA, RB and RC are located in a �300 km
northeast–southwest transect (C–D) descending from the ice
divide into the Ross Ice Shelf catchment area (Fig. 1).
Concentrations of xsSO4

2– along this transect exhibit an
increasing trend toward site RC (Fig. 2), most likely as a
consequence of closer proximity to the turbulent atmos-
phere over the Ross Ice Shelf area (Kreutz and Mayewski,
1999) and the biological productivity of the Ross Sea
Polynya. Concentrations of ssSO4

2– remain relatively
constant over the spread of sites 01-6, 0-5, 0-3, 0-2, 0-1,
0-4, 0-5, RA, RB and RC.

Fig. 2. Mean excess (red) and sea-salt (blue) sulfate concentrations in ppb for the years 1952–91 for each ice core used in this study. Green
dots represent elevation in meters. Purple dots represent distance from nearest open water in kilometers. Red lines (A–B, C–D and E–F) are
transects from Figure 1 (not to scale).
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Fig. 3. Raw excess (red lines) and sea-salt (green lines) sulfate concentrations in ppb for the years 1800–2002 for each ice core used in this
study. Black lines (excess) and blue lines (sea salt) represent 35- to 51-point running averages. Vertical lines represent 5 year increments.
Shaded areas represent periods of increased xsSO4

2– input from known global-scale volcanic events.
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Sites SDM-94, Up-C, CWA-A, 99-1, CWA-D and SP-95
lie on transect E–F and range in elevation from 620m at the
edge of the Ross Ice Shelf to 2850m at South Pole (Fig. 1).
Concentrations of xsSO4

2– decrease with increasing eleva-
tion up to site CWA-D, and the trend reverses between
CWA-D and SP-95 (Fig. 2) as a result of multiple input
sources (tropospheric and stratospheric) for xsSO4

2– in this
area (Proposito and others, 2002; Dixon and others, 2004).
Concentrations of ssSO4

2– along the same transect decrease
steadily toward South Pole with increasing elevation and
distance from the coast, indicating a single lower-tropo-
spheric source for marine ions that reach the polar plateau.

Raw concentrations
Plots of raw (unprocessed) ssSO4

2– and xsSO4
2– concen-

trations against time (Fig. 3) illustrate the large (more than an
order of magnitude in some cases) increases in xsSO4

2–

immediately following several global-scale large explosive
volcanic eruptions (Tambora (1815), Cosiguina, Nicaragua
(1835), Krakatau (1883), Agung (1963) and Pinatubo (1991))
in the sub-annually resolved data from all cores except
SDM-94, Up-C and CWA-A (Dixon and others, 2004).

The majority of the West Antarctic ice-core sites in this
study (01-6, 01-5, 01-3, 01-2, 00-1, 00-4, 99-1, RA, RB, RC,
Up-C, CWA-A and CWA-D) have high annual xsSO4

2–

variance, commonly displaying low winter xsSO4
2– concen-

trations in the 0–10 ppb range. Site 01-5 (Fig. 3) has high
xsSO4

2– concentration variance and low winter xsSO4
2–

concentrations, but it contains numerous large xsSO4
2–

peaks that are not related to global-scale volcanic eruptions
because they do not appear at any other site and do not
correspond to historic global-scale volcanic events. The
large peaks in 01-5 may be a result of local volcanism,
biogenic xsSO4

2– input from nearby polynyas, or evaporite
dust input from the nearby Ellsworth Mountains. The most
likely cause for the majority of these large peaks is evaporite
dust because of coincident large Ca2+ peaks.

Site SP-95 (Fig. 3) maintains a relatively high xsSO4
2–

baseline (�50ppb) and low (�30–70ppb) variance through-
out the year compared to other sites. It also contains
unusually large (sometimes more than an order of magni-
tude above the mean) xsSO4

2– signatures from global-scale

volcanic eruptions. The SP-95 xsSO4
2– volcanic signatures

are a result of its high (�2850m) elevation and direct access
to upper-tropospheric/stratospheric air masses (Dixon and
others, 2004).

Non-volcanic xsSO4
2– concentrations at site 00-5 (Fig. 3)

are similar in structure to those at SP-95 (high background,
low variance) during several short periods over the last
200 years (e.g. 1942–47, 1908–13) but are similar to the
majority of West Antarctic sites for the remainder of the
record (low winter values, high variance). The change in
xsSO4

2– deposition style at site 00-5 may reflect changes in
the strength of downward airflow over the Executive
Committee Range (as discussed earlier). Periods of strength-
ened downward flow may cause the xsSO4

2– signature at
site 00-5 to be more similar to that at SP-95.

The mean xsSO4
2– concentrations at SDM-94 (Fig. 3)

frequently decrease to �30 ppb, comparable to, or lower
than, the mean ssSO4

2– concentration at that site, suggesting
a high event frequency of at least one of the major xsSO4

2–

sources to the site, probably marine biogenic xsSO4
2–. The

low elevation and proximity to the coast of the SDM-94 site
signify that its major SO4

2– sources are sea salt and marine
biological productivity from the adjacent ocean area.
Therefore, a likely cause for the observed xsSO4

2– fluctua-
tions is variability of Ross Sea climatic conditions. Interest-
ingly, the xsSO4

2– fluctuations in the SDM-94 record are not
observed at Up-C or CWA-A as would be expected from
events of this magnitude. Another reason for the inde-
pendent behavior of SDM-94 xsSO4

2– concentrations may
be the location of the site. The SDM-94 core site is located
on the top of a 600m high dome; this protruding geography
may prevent certain air masses from reaching the ice-core
drill site and could well be a factor regarding the unique
character of the glaciochemical concentrations.

Almost every core in this study has a mean ssSO4
2– to

xsSO4
2– ratio between 0.13 and 0.29 (Table 1); the

exceptions are SP-95 with a ratio of 0.05, and SDM-94
with a ratio of 0.40. The low ratio at SP-95 is caused by a
combination of extremely low ssSO4

2– concentrations
resulting from its high elevation and distance from the
coast, and the fact that xsSO4

2– concentrations at this site
maintain a relatively constant baseline (�50 ppb) and low

Table 2. Pearson’s r values for the 95% and 99% significance level in correlations between annually averaged sea-ice extent and annually
averaged xsSO4 and ssSO4 concentrations

ssSO4–SIE (B) correlation r ¼ 95% r ¼ 99% xsSO4–SIE (A) correlation r ¼ 95% r ¼ 99%

01-6 ssSO4 0.456 0.575 01-6 xsSO4 0.456 0.575
01-5 ssSO4 0.405 0.516 01-5 xsSO4 0.414 0.526
01-3 ssSO4 0.405 0.516 01-3 xsSO4 0.414 0.526
01-2 ssSO4 0.405 0.516 01-2 xsSO4 0.414 0.526
00-1 ssSO4 0.405 0.516 00-1 xsSO4 0.414 0.526
00-4 ssSO4 0.405 0.516 00-4 xsSO4 0.414 0.526
00-5 ssSO4 0.405 0.516 00-5 xsSO4 0.414 0.526
RIDS-A ssSO4 0.414 0.526 RIDS-A xsSO4 0.423 0.537
RIDS-B ssSO4 0.414 0.526 RIDS-B xsSO4 0.423 0.537
RIDS-C ssSO4 0.414 0.526 RIDS-C xsSO4 0.423 0.537
SDM-94 ssSO4 0.423 0.537 SDM-94 xsSO4 0.433 0.549
CWAA ssSO4 0.433 0.549 CWAA xsSO4 0.444 0.561
99-1 ssSO4 0.497 0.623 99-1 xsSO4 0.514 0.641
CWAD ssSO4 0.433 0.549 CWAD xsSO4 0.444 0.561
SP-95 ssSO4 0.456 0.575 SP-95 xsSO4 0.468 0.59
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(�30–70 ppb) variance throughout the year. The high
ssSO4

2– to xsSO4
2– ratio at SDM-94 is a result of extremely

high ssSO4
2– concentrations resulting from proximity to the

Ross Ice Shelf edge and Ross Sea Polynya.

Sea-ice correlations
Linear correlation between monthly values of SIE and
monthly values of SDM-94 xsSO4

2– (from 1973–94) was
performed to determine if SIE exhibited any significant
associations with xsSO4

2– concentrations in precipitation
(Fig. 4). We chose SDM-94 to begin with because it is the
nearest to open water of our low-elevation sites. The
monthly values were calculated by resampling the original
time series to 12 samples per year based on the assumption
that the annual xsSO4

2– peak occurs near the December/
January transition (Minikin and others, 1998). The results
show that the strongest correlations are obtained when
records are lead/lagged 2–3months. This is because the
maximum and minimum SIE occurs in September/October
and March/April respectively and the xsSO4

2– peak falls on
the December/January transition. To overcome any further
possible autocorrelation problems, we resampled both time
series to annual resolution. The results for SDM-94 xsSO4

2–

and SIE reveal that the most robust correlation (r>0.6 > 99%
significance) occurs with no leads or lags. Figure 5 shows
that the strongest correlations occur with SIE from longitudes
70–808, 130–1508 and 200–2408.

Linear correlations with annually averaged SIE from
1973–96 were also performed on the annually averaged
xsSO4

2– and ssSO4
2– records from each core (Figs 6 and 7)

for the full period of data overlap. With SIE calculated as a
function of latitude in Figures 6 and 7, a positive correlation
means decreased SIE when SO4

2– concentrations are high,
and a negative correlation means increased SIE when SO4

2–

concentrations are high. The statistically significant (>95%)
results show that in general the SIE closest to West Antarctic
ice-core sites, in the Ross, Amundsen and Bellingshausen
Seas, is negatively correlated with ssSO4

2– (r� 0.405–0.537)
and positively correlated with xsSO4

2– (r� 0.414–0.561)
concentrations.

West Antarctic ice-core sites (SDM-94, 00-1, 00-4, 01-3
and RIDS-A) exhibit increased concentrations of xsSO4

2–

when SIE in the Bellingshausen–Amundsen–Ross (Pacific)
region is reduced (Fig. 6). At the same time, when xsSO4

2–

concentrations at site 01-3 are higher, the SIE in the Pacific
region is reduced and the SIE in the Weddell (Atlantic)
region is increased. If the primary xsSO4

2– source for site
01-3 is the Weddell region, our result is in agreement with
several previous studies (Welch and others, 1993; Meyerson
and others, 2002; Curran and others, 2003); but if, as is more
likely, the primary xsSO4

2– source for site 01-3 is the
Bellingshausen–Amundsen–Ross region, our results suggest
that the SIE–xsSO4

2– relationship is opposite to that of
SIE–MS. The associations present in the Weddell region may
be related to the Antarctic dipole, which manifests itself as
out-of-phase retreat (advance) of sea ice in the Atlantic
(Pacific) ocean basins (Yuan and Martinson, 2000). As-
suming the latter to be true, differences between our results
and those of previous studies (Welch and others, 1993;
Curran and others, 2003) may be due to the fact that none of
our sites are truly coastal locations (although SDM-94 has
some coastal characteristics). Also, we examine xsSO4

2–

concentrations rather than MS, and the ice-core locations for
all previous studies are in East Antarctica.

Linear correlation between ssSO4
2– and SIE (Fig. 7)

reveals that concentrations of ssSO4
2– are higher at several

West Antarctic sites (CWA-A, 00-1, 00-4, 00-5, RIDS-A,
RIDS-B and CWA-D) when there is greater SIE in the
Amundsen, Ross and Bellingshausen Seas. There could be
several possible mechanisms for this association. One is
increased sea-ice production leading to greater frost flower
growth and resulting in greater volumes of highly saline
aerosols (Rankin and others, 2002; Kaspari and others,
2005). Another is increased meridional transport and higher
wind speeds over the open-ocean surface during colder
years, causing greater concentrations of ss aerosols to reach
the ice sheet (Curran and others, 1998; Kreutz and others,
2000b). The most likely explanation is that both of these
mechanisms are responsible to varying degrees for the
observed relationship between ssSO4

2– and SIE.

Fig. 5. Correlation results for SDM-94 annual excess sulfate
concentrations against every 108 annual sea-ice extent data
segment from 0 to 3608 longitude. (N ¼ 22; r� 0.433 ¼ 95%
significant; r� 0.549 ¼ 99% significant.)

Fig. 4. Correlation results for SDM-94 monthly excess sulfate
concentrations against every 108 monthly sea-ice data segment
from 0 to 3608 longitude.
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Our study of xsSO4
2– does not reveal strong associations

between longitudinal bands of SIE in the Amundsen–Ross
region and SP-95 xsSO4

2– concentrations, but it does show a
positive association between increased SP-95 xsSO4

2–

concentrations and reduced SIE in the Weddell Sea region.
The SP-95 SIE correlation of Meyerson and others (2002) is
based upon smoothed (seven-point running mean) monthly
MS and SIE values and an average SIE calculated from 1858
to 2458 longitude; this may explain why we do not see
similar correlation patterns in our study. The positive
association we observe between increased SP-95 xsSO4

2–

concentrations and reduced SIE in the Weddell Sea region
suggests that the source region for SP-95 xsSO4

2– is
probably different to that of the West Antarctic cores in
this study.

An important consideration on the sulfur budget of
West Antarctica is the effect of coastal polynyas. Three of

the four most productive Antarctic polynyas surround West
Antarctica, and the dominant polynya with respect to total
area-weighted production is in the Ross Sea, accounting for
half of the total polynya production on the entire Antarctic
continental shelf (Arrigo and Van Dijken, 2003). The peak
production in January averaged over all polynya waters is
more than three times higher than the average for the entire
offshore Southern Ocean (Arrigo and Van Dijken, 2003). As
a result, polynyas may be a significant source of both
ssSO4

2– (in winter) and xsSO4
2– (in summer) to West

Antarctic sites.

Background sulfate concentrations
There are no significant trends apparent in the robust spline-
smoothed ssSO4

2– concentrations over the last 200 years
(Fig. 8). In a previous study (Dixon and others, 2004) we
showed that a significant rise in background xsSO4

2–

Fig. 6. Correlations between annually averaged sea-ice extent and excess sulfate. All plotted sites represent correlations above 95%
significance. A ‘+’ indicates a positive correlation and a ‘–’ indicates a negative correlation for each associated ice-core site. Latitudinal
position of text has no significance. RA, RB and RC represent core sites RIDS-A, RIDS-B and RIDS-C, respectively. SD, CWA, CWD and SP
represent SDM-94, CWA-A, CWA-D and SP-95 respectively. Map created using the RAMP digital elevation model (Liu and others, 2001).
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concentrations occurs from 1940 to the present at central
West Antarctic ice-core sites (00-1, 00-4, 00-5, RIDS-A,
RIDS-B and RIDS-C; Fig. 8). We argued that the rise could
not be attributed to anthropogenic activities since it does not
show up in all our high-elevation xsSO4

2– concentration
records. Here we suggest that the 1940 xsSO4

2– rise cannot
be attributed to changes in sea-ice extent since xsSO4

2–

concentrations at sites 00-5, RIDS-B and RIDS-C are not
statistically related to SIE (in the Ross, Amundsen and
Bellingshausen Seas) above 95% significance, and sites
00-1, 00-4 and RIDS-A are not related to SIE (in the Ross,
Amundsen and Bellingshausen Seas) above 99% signifi-
cance. Figures 6 and 7 show that the core sites displaying
the strongest xsSO4

2– association with SIE are SDM-94 and
01-3; conversely sites 00-4, RIDS-A and CWA-D display the
strongest ssSO4

2– association with SIE. This suggests that
central West Antarctica is not significantly affected by lower-
tropospheric coastal air masses during the summer months
but is significantly affected by these air masses during the
winter period.

A study by Kaspari and others (2004) shows that central
West Antarctic precipitation is statistically linked to the mid–
low latitudes. This may suggest that the 1940 rise in xsSO4

2–

is related to a change in production in the mid–low latitudes
and/or increased transport from the mid–low latitudes to
central West Antarctica.

CONCLUSIONS
In this study, we present the ssSO4

2– and xsSO4
2– records

from 16 sub-annually resolved ice cores from West Ant-
arctica. There are several sources and transport pathways of
ssSO4

2– and xsSO4
2– and these vary from site to site and can

only be resolved from a multiple core study.
Linear correlations between SIE and the ssSO4

2– and
xsSO4

2– records from 15 of the cores in this study reveal
that for several sites ssSO4

2– concentrations are higher with
increased SIE, and xsSO4

2– concentrations are higher when
SIE is decreased. It is important to note that although our
results demonstrate a strong association between SIE and

Fig. 7. Correlations between annually averaged sea-ice extent and sea-salt sulfate. For details see Figure 6 caption.
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SO4
2– concentrations in West Antarctica, they do not

necessarily imply direct causal links. The two parameters
(SIE and SO4

2–) may be teleconnected to a third parameter
that forces both simultaneously. Our SIE–ssSO4

2– associ-
ation supports the concept that frost flower growth on sea
ice may be an important source of ssSO4

2– aerosol to
inland West Antarctic sites as noted by Rankin and others
(2002) and Kaspari and others (2005). Conversely, our SIE–
xsSO4

2– association suggests that during periods of de-
creased SIE in the Bellingshausen–Amundsen–Ross region,
more xsSO4

2– is deposited in West Antarctica. This latter
result does not agree with the results of previous studies
that find a positive association between elevated MS
concentrations and increased SIE (Welch and others,
1993; Curran and others, 2003) but it is consistent with
the observations of Peel and others (1996) who find that
extensive sea-ice cover tends to suppress emissions of
DMS. The association between SIE and SP-95 xsSO4

2– in
this study shows that the SP-95 site receives more xsSO4

2–

when SIE in the Weddell region is decreased, the opposite
relationship to our West Antarctic sites that receive more
xsSO4

2– when SIE in the Bellingshausen–Amundsen–Ross
region is decreased.

The out-of-phase behavior between SIE in the Weddell
region and the rest of Antarctica is a common pattern for
Southern Ocean sea ice and is evident in our SIE–SO4

2–

associations. It is most likely related to the structure of the
Antarctic dipole (Yuan and Martinson, 2001) and it
highlights the strong links between Antarctic climate and
the climate of the tropical and mid-latitude Southern
Hemisphere. Yuan and Martinson (2000) found consistent

and statistically significant teleconnection patterns linking
Antarctic SIE variations (including an out-of-phase relation-
ship between Pacific and Atlantic polar regions) to those of
mid- and low-latitude climate that are verified by our
study.

The 1940 rise in xsSO4
2– background concentrations in

our central West Antarctic ice cores cannot be attributed to
changes in SIE. The most likely explanation for this trend is
an increase in xsSO4

2– production in the mid–low latitudes
around 1940 and/or an increase in transport efficiency from
the mid–low latitudes to central West Antarctica at that
time.

The influence of coastal polynyas on the West Antarctic
SO4

2– budget is of utmost importance to the understanding
and interpretation of ice-core records. Future work should
focus on the associations between summer and winter
polynya activity and the ssSO4

2– and xsSO4
2– time series in

ice cores, particularly from western West Antarctica.
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