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Abstract
As atmospheric emissions of S have declined in the Northern Hemisphere, there has been an expectation of increased pH and alkalinity in
streams believed to have been acidified by excess S and N. Many streams and lakes have not recovered. Evidence from East Bear Brook  in
Maine, USA and modelling with the groundwater acid-base model MAGIC (Cosby et al. 1985a,b) indicate that seasonal and yearly variations
in soil PCO

2
 are adequate to enhance or even reverse acid-base (alkalinity) changes anticipated from modest decreases of SO

4
 in surface

waters. Alkalinity is generated in the soil by exchange of H+ from dissociation of H
2
CO

3
, which in turn is derived from the dissolving of soil

CO
2
. The variation in soil PCO

2
 produces an alkalinity variation of up to 15 meq L-1 in stream water. Detecting and relating increases in

alkalinity to decreases in stream SO
4
 are significantly more difficult in the short term because of this effect. For example, modelled alkalinity

recovery at Bear Brook due to a decline of 20 meq SO
4
 L-1 in soil solution is compensated by a decline from 0.4 to 0.2% for soil air PCO

2
. This

compensation ability decays over time as base saturation declines. Variable PCO
2
 has less effect in more acidic soils. Short-term decreases of

PCO
2
 below the long-term average value produce short-term decreases in alkalinity, whereas short-term increases in PCO

2
 produce short-

term alkalization. Trend analysis for detecting recovery of streams and lakes from acidification after reduced atmospheric emissions will
require a longer monitoring period for statistical significance than previously appreciated.

Keywords: CO
2
, alkalinity, acidification, recovery, soils, climate change

Introduction
In the last two decades, European and North American
countries have adopted various protocols for control of
atmospheric emissions of S (e.g. the U. S. Clean Air Act and
Amendments of 1970 and 1990). Implementation of these
protocols is underway. As a consequence of reduced
emissions of S (NADP, 1998; UN ECE, 1994), atmospheric
concentrations and deposition of SO

4
 have declined

substantially. Surface waters have responded with decreased
SO

4
 (e.g. Kopácek et al., 1998; Stoddard et al., 1999). In the

northeastern U.S., the pH of precipitation has increased
concurrently, even as NO

3
 concentrations in precipitation

have remained essentially constant. Scientists and policy
makers expected that the pH of surface waters would increase
as SO

4
 declined and the pH of precipitation rose (Reuss et

al., 1987). Monitoring studies indicate that most streams and
lakes have lower SO

4
 but many surface waters have not

responded with higher pH. For example, Clair et al. (1995)
identified many lakes and streams from Ontario to
Newfoundland, Canada, that continued to acidify, even as
SO

4
 declined in precipitation and surface waters. Driscoll et

al. (1989) believed that the lack of response of stream pH to
higher pH and decreased SO

4
 in precipitation at Hubbard

Brook Experimental Forest, New Hampshire, USA, related
to decreases in the concentrations of neutralizing base cations
in precipitation. Similarly, in the Catskill Mountains of New
York, USA, although some streams had increased pH as
stream SO

4
 declined over the last decade, some streams have

continued to acidify (Stoddard et al., 1998a,b). Across the
northeastern USA, Clow and Mast (1999) found declining
SO

4
 in precipitation and streams, but not a ubiquitous decline

in alkalinity. They suggested that the delayed response of
alkalinity may have been caused by recovering soil base-
saturation levels. In Maine, USA, Kahl et al. (1993) found
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that a group of lakes increased in alkalinity through the 1980s
in response to decreasing SO

4
. Some of these lakes, however,

have experienced declines in pH and alkalinity since 1990,
in spite of continued decline in atmospheric SO

4
 and

relatively constant NO
3
. These declines in pH were

accompanied in many cases by decreases in the concentration
of base cations in the lake water.

The enigma is that, on a regional scale, many surface waters
have experienced declines in the concentration of SO

4
, some

have had significant declines in NO
3
 (Mitchell et al., 1996;

Stoddard et al., 1999), but not all surface waters have
responded with increasing pH and alkalinity. This lack of
clear response to air pollution controls is of interest to policy
makers, as well as to scientists.

Many studies (e.g. Castelle and Galloway, 1993)
demonstrate strong seasonality for stream alkalinity and soil
PCO

2
. Spring and fall alkalinity are low compared to summer

alkalinity; these temporal relationships are linked to higher
respiration during warmer months, and dilution of
groundwater by surface runoff in the spring and fall (e.g.
Stoddard, 1987). East Bear Brook in Maine (BBWM)
(Norton and Fernandez, 1999) is an intensively studied
system where decreasing SO

4
 atmospheric deposition has

not produced an increase in stream pH and alkalinity. BBWM
is a paired catchment study underway since 1987. From 1987
to 1999, the volume-weighted mean annual alkalinity of East
Bear Brook declined from about 8 meq L-1 to 0 meq L-1. We
present empirical data from East Bear Brook on a soil PCO

2

mechanism that may partially control this longer-term decline
in the stream water alkalinity, occurring independently of
anthropogenic acidification, chemical weathering,
seasonality, and hydrological variation.

Methods
SITE DESCRIPTION AND COLLECTIONS

The Bear Brook  Watershed in Maine (BBWM) is a paired
catchment investigation of the effects of artificial
acidification on stream water chemistry, soils, and vegetation.
East Bear Brook, the reference catchment, has an area of
10 ha, an average slope of 30%, and is underlain
predominantly by Spodosols developed on till. Monitoring
since 1987 includes weekly precipitation chemistry and
volume, chemistry of approximately 250 stream samples per
year with high frequency sampling during high discharge,
and discharge measurements at five minute intervals. The
headwater stream has low alkalinity (ca. 0 meq L-1 in 1999)
and low dissolved organic carbon (DOC) (ca. 2 mg L-1). A
detailed description of the catchment, methods and results
of chemical analysis have been presented by Norton and

Fernandez (1999) and Norton et al. (1999).
We measured the concentration of soil air CO

2
 in BBWM

soil profiles for two years (1988–1990), including both
winters. Soil air tubes were established in East Bear to collect
soil air at the base of the O horizon, mid-B, and bottom of
the B. As many as 20 concurrent (one-day of collection) soil
air samples were collected at several depths in the soil and
at multiple sites. Nearly all the soils at BBWM are freely
drained and thus we assume that most groundwater below
the zone of saturation equilibrates with a PCO

2
 equivalent

to that of the lower B horizon. Here we use data only from
the lower B horizon. Fernandez et al. (1993) give details of
the methods.

Results
SUMMARY OF THE CHEMISTRY OF RUNOFF

The pH and alkalinity of waters draining a forest are
controlled by a number of factors including: supplies of
strong acid anions (SO

4
+NO

3
+Cl+F = SAA) and strong base

cations (Ca+K+Mg+Na = SBC) from the atmosphere;
chemical weathering and net ion exchange; and production
of the weak acid anions (WAA) from H

2
CO

3
 and dissolved

organic acids (from DOC). Changes in biomass may
influence several SAAs and SBCs, as well as DOC through
a variety of mechanisms. Change in alkalinity depends on
changes in the concentrations of SAA, SBC, or WAA.

SAA: The concentration of SO
4
 in precipitation at BBWM

declined gradually from 1988 to 1999, as it did in
precipitation and in many surface waters in the northeastern
USA (Stoddard et al., 1999). The decline in atmospheric
deposition has caused a decrease in SO

4
 concentration in

East Bear Brook of approximately 15 meq L-1 (15%) over
the same period (Norton et al., 1999). The concentration of
NO

3
 has been relatively unchanged in wet precipitation at

BBWM during this period. Stream concentration and export
of NO

3
 reached a peak at BBWM about 1990 but decreased

in East Bear runoff over the next nine years, as it has in
many headwater surface waters in the northeastern USA
(Mitchell et al., 1996). Volume-weighted concentration is
now about 2 to 3 meq L-1. Chloride at BBWM is apparently
derived entirely from atmospheric deposition of marine
aerosols. The concentration of Cl in precipitation varies
seasonally, with lower concentrations in the May–September
period. The outflow concentration is damped significantly
as a consequence of mixing of “old” and “new” water. Stream
Cl declined from 1978 to 1991, followed by an increase to
1999. The annual volume-weighted mean values range from
about 60 to 70 meq Cl  L-1. Sulfate from marine aerosols is,
on an equivalent basis, 10% of Cl. Thus, long-term variation
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of the SO
4
 in the marine aerosol component flux is only about

1 meq SO
4
 L-1 in stream water. Most of the stream F, about 1

meq L-1, is derived from weathering. In summary,
concentrations of some individual SAA in East Bear runoff
have remained relatively constant during the 11-year period
of observation but the sum of SAA has declined
approximately 40 meq L-1, primarily due to declines in stream
NO

3
 (15 meq L-1) and SO

4 
(20 meq L-1) (Kahl et al., 1999).

SBC: Concentrations of SBC in wet atmospheric
deposition, corrected for marine salts, were only a few meq
L-1. Thus total atmospheric SBC varied consistently with Cl.
Rates of release of SBC from chemical weathering rates,
normalised to the concentration of Si, appear to be relatively
constant from year to year (Uddameri et al., 1995). Although
there is a seasonal variation in stream chemistry associated
with ion exchange of Na and Mg (from marine aerosols) for
Ca and K (Norton and Kahl, in press), there is little net change
in the sum of SBC derived from marine aerosols. We have
not quantified biomass accumulation rate (and thus storage
of SBC) at BBWM. However, changes in net storage would
not vary strongly on a yearly basis in the absence of
harvesting, substantial defoliation, or fire. Overall, SBC have
decreased about 40 meq  L-1 in East Bear Brook through the
period of record (Norton et al., 1999). This is comparable to
the decline in SAA.

WAA: The concentration of DOC averaged close to 2 mg
L-1 over the 11 year record of stream chemistry with no long-
term systematic change. Kahl et al. (1989) and David et al.
(1992) estimated that the charge density for the organic
anions was approximately 5 meq mg-1 DOC L-1. Thus, total
organic anions are typically <10 meq L-1 and range up to 20
meq L-1 during periods of high discharge. Changes in DOC
(and related organic acidity) are likely not responsible for
the modest decline in alkalinity at East Bear Brook.

Alkalinity and pH: The paradox at East Bear Brook and at
some other localities in the northeastern USA is that as the

concentrations of SAA, dominated by SO
4
 and NO

3
, have

declined in streams and lakes, the concentrations of SBC
have declined as much or more, and alkalinity has declined,
contrary to expectation (Fig. 1). Alkalinity at East Bear Brook
has a strong seasonal pattern. It is typically low early in the
year, declines to a minimum during snowmelt and early
spring rains, climbs to a peak at very low flow (deep flow
paths), and then declines during fall rains. In 1988, minimum
alkalinity was approximately 0 meq L-1  whereas by 1999 the
pattern persisted but the minimum reached was –10 meq L-1

(Fig. 2). East Bear had become more acidic.

SOIL PCO
2

Synchronously collected samples of soil air from different
soil depths revealed a concentration gradient for CO

2
 from

0.1 to 1.0% from the O horizon to the C horizon. This depth
trend for PCO

2
 is opposite the trend in CO

2
 generation in the

soil from respiration, because CO
2
 generated in the forest

floor and uppermost mineral soil is readily lost to the
atmosphere. Production of CO

2
 decreases with depth in the

soil but CO
2
 is more efficiently retained in deeper soil pore

space resulting in increasing PCO
2
 with depth. The increase

depends on season, soil texture, and soil moisture content.
Fernandez et al. (1993) reported strong variations of PCO

2

between years, seasons, and from year to year for the same
season. The highest PCO

2
 at the base of the B horizon,

approaching 1%, occurred in the winter of 1988/89. The snow
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Fig. 1. Measured alkalinity (meq L-1) in East Bear Brook for 1988
(circles) and 1999 (crosses) for all stream samples.
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Fig. 2. (a) Percent CO
2
 in soil air (diamonds) at 50 cm in the

mineral soil (C horizon) at East Bear Brook  in Maine. Julian time
starts on October 3, 1988. January 1, 1989 and 1990 (vertical lines)
are Julian Days 89 and 454. Synchronous data are from different air
tubes on different plots.
(b) Alkalinity (triangles) of East Bear Brook during high discharge
(>0.5 ft3 sec1-, >14 L  sec1- ) for January to April for 1989 and 1990.
Synchronous data are from ISCO™ auto-samplers, typically taken

every two hours on both sides of high discharge hydrographs.
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pack was particularly deep and continuous during that winter.
In the 1989/90 winter which had an intermittent thin snow
pack, the PCO

2
 was considerably lower, sometimes

approaching 0.1%. Summer PCO
2
 in the B horizon was

typically about 0.4% (Fig. 2).
Concurrent measurement of stream chemistry, stream

discharge, and soil PCO
2
 throughout the 1988–1990 period

enabled an evaluation of the relationships among these
variables, especially controls on alkalinity. We compared the
seasonality of alkalinity (including winter) and stratified the
data by discharge. Figure 2 includes alkalinity data for only
those times when discharge exceeded 14 L s-1, approximately
1/10 of the maximum discharge over the 12-year record. We
assume that similar discharge values correspond to similar
flow paths. The high alkalinity that occurs in the summer
period (Fig. 1) is caused by less acidic flow paths with a
PCO

2
 of approximately 0.4% of an atmosphere. During the

late 1988/89 winter period, PCO
2
 approached 1%, and

alkalinity of the runoff (stratified by flow) was approximately
10 meq L-1 higher than the comparable period the following
winter, when PCO

2
 was less than 0.2% (Fig. 2). The high

PCO
2
 values of winter 1988/89 corresponded with a

continuous and extensive snowpack and higher than normal
alkalinity; the converse was true the next winter. The higher
alkalinity was associated with an increase of SBC (Ca, Mg,
and K), greater than the SAA decrease. Approximately half
the annual runoff for East Bear is associated with the spring
runoff (see Chen and Beschta, 1999, for detailed hydrology).
Consequently, this spring period of higher than normal
alkalinity influenced a considerable fraction of the volume-
weighted mean alkalinity (and base cations) for the year.

Discussion
CO

2
, WEATHERING, AND ALKALINITY

PRODUCTION

The long-term role of CO
2
 in chemical weathering is well

known. Through the dissolving of CO
2
 into water, the

formation of carbonic acid (H
2
CO

3
), and the dissociation of

H
2
CO

3
 into H1+, HCO

3
1- and CO

3
2- in equilibrium amounts,

chemical weathering and alkalinity generation are increased
over what would occur in the absence of H

2
CO

3
. Respiration

of heterotrophic microbial communities decomposing
organic matter and root respiration in soils produce elevated
concentrations of CO

2
, further increasing the rates of

chemical weathering (demonstrated empirically by Berner
and Ji-Long, 1997, for example, and modelled by Neal and
Whitehead, 1988). Weathering rates are also enhanced by
the production of organic acidity.

In freely-drained forest Spodosols at BBWM, pH varies

dramatically with depth. Within the O horizon, pH
H2O

 is
commonly <4.0, controlled largely by weak organic acidity
from partial decomposition of forest floor organic materials.
Below the O horizon in these undisturbed Spodosols there
is commonly a series of abrupt transitions between horizons.
The E horizon, where present, is highly acidic but with a
pH >4.0. This horizon is generally chemically inert, and
extremely thin, intermittent, or absent. Below the O or E
horizon is the B horizon, commonly with pH <4.5 at its top,
still below the pH at which soil PCO

2
 can affect pH

significantly. Increased pH with depth occurs as the organic
acid is precipitated, adsorbed, and metabolised, coincident
with percolating solutions encountering increasingly less
weathered alumino-silicate minerals. Lower B horizon soil
pH at BBWM is commonly between pH 4.5 and 6.0. The
higher pH with depth results in an increased role for PCO

2

in controlling acid-base chemistry in soil solutions and
groundwater.

Alkalinity is generated in the soil water by the formation
of HCO

3
- from dissolved CO

2
 in soil water:

CO
2
 + H

2
O = H1+ + HCO

3
1- (1)

The H1+ produced by reaction (1) reacts with an Al solid
phase (e.g., Al(OH)

3
) in the soil:

3H1+ + Al(OH)
3
 = Al3+ + 3H

2
O (2)

Most soil cation exchange sites have a higher affinity for
trivalent Al than for di- or monovalent base cations.
Consequently an exchange of cations between dissolved and
solid phases results:

Al 3+ + (BC)
3
-X = Al-X + 3BC1+ (3)

where BC1+ represents a base cation and X represents the
soil exchange complex. The net result of reactions (1), (2),
and (3) is the production of bicarbonate alkalinity in the soil
water (Fig. 3a,b). If soil air PCO

2
 decreases below long-term

average values, less CO
2
 dissolves in the percolating soil

water, the pH of the soil water tends to be higher than average
(particularly if the soil pH approaches or is greater than 5),
the soil solutions are less aggressive at chemical weathering
and net adsorption of exchangeable cations occurs. A higher-
than-average pH along any preferential flow path produces
net adsorption of exchangeable cations (including SBC),
decreasing the export of base cations (SBC). The alkalinity
of the soil water is determined, in the short term, by this ion
exchange equilibrium. As the groundwater emerges to a
stream, excess CO

2
 is degassed partially (Norton and



87

Long-term and seasonal variations in CO
2
: linkages to catchment alkalinity generation

Henriksen, 1983; Jones and Mulholland, 1998; Neal et al.,
1998). Virtually all headwater streams have overpressures
of CO

2
, including East Bear Brook. During degassing, the

pH increases but alkalinity is unaffected because the water
is no longer in contact with soil. Modest alkalinity changes
may occur because of interaction between the emergent
groundwater and the stream substrate (Norton et al., 2000)
and precipitation of hydroxide phases (e.g. Fe and Mn)
caused by increased oxidation potential. For lower than
normal soil PCO

2
, the stream water would have lower SBC,

accompanied by lower HCO
3
1-, i.e. lower alkalinity. If base

saturation in the soil complex is very low, alkalinity variations
are induced through interaction with the Al soil complex
and soil water (Figure 3b). East Bear Brook responses include
variation in the export of both SBC and Al. Degassing of
CO

2
 there results in the precipitation of Al in the stream (Roy

et al., 1999), with no net alkalinity production. David and
Vance (1989) subjected B-horizon soil material from the
BBWM site to leaching under PCO

2
 ranging from

atmospheric (10-3.5 atm) to pure (100%) CO
2
 (1 atm) and

found that alkalinity ranged from –5 to 163 meq L-1, consistent
with the mechanism described above. Their data also suggest
that the soils are in equilibrium with a PCO

2
 higher than 10–

3.5, because the average alkalinity is higher than –5 meq L-1.
It is concluded that episodic or short-term decreases in PCO

2

in the soil result in lower alkalinity in runoff at BBWM.
Episodic or short-term increases in PCO

2
 produce short-term

higher alkalinity. This is somewhat counterintuitive because

long-term elevated PCO
2
 produces long-term acidification

of surface water.
Observed variations in soil air PCO

2
 appear to affect

alkalinity to the same quantitative extent as recent changes
in SO

4
 or NO

3
 concentrations in streams and lakes, and thus

obscure (or enhance) the expected alkalinity recovery as SO
4

concentrations decline. Although SO
4
 concentrations in

surface waters are generally declining, soil PCO
2
 can vary

concurrently and on a short time scale. The hypothesis was
evaluated by estimating the magnitude of alkalinity changes
expected to result from changes in SO

4
 concentrations or

from changes in soil PCO
2
. These estimates are derived using

the process-based model of soil acid-base chemistry, MAGIC
(Cosby et al., 1985a, b).

MODELLING BBWM RESPONSE

Cosby et al. (1996) applied the MAGIC model to the Bear
Brook catchments for the period 1987 to 1992. The lumped
parameter model was calibrated to two years of pre-treatment
data on the manipulated catchment (West Bear) as well as to
four years of data from the reference catchment (East Bear).
MAGIC reproduced fairly well the observed stream water
chemistry trends in both the treatment and reference
catchments for SO

4
 and SBC. Residuals for the treated

(predicted minus observed chemistry) were least if the West
Bear data were used for the West Bear calibration. Both
catchments had similar observed patterns (but different
absolute values) of alkalinity, pH, and Al. The patterns

Atmosphere

Soil Water

Stream Water

Al-X

BC-X

CO2

Al(OH)3

HCO3

BC+

BC+

H+ Al 3+

HCO3

A

Al-X

Al(OH)3

HCO3

H+ Al 3+

Al 3+

Al 3+

H+   OH -

Al(OH)3

CO2

CO2

B

HCO3

Fig. 3. Conceptual model of the influence of PCO
2
 on (a) Export of exchangeable base cations

(BC1+) from soils with high base saturation and (b) Export of exchangeable Al (Al3+) from soils
with very low base saturation. East Bear Brook is intermediate in base saturation.
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differed from some of the MAGIC prediction, suggesting
that some process was occurring that was not correctly
represented or parameterised in the model. The 1996
calibration of MAGIC for the East Bear catchment was
modified for this paper by dividing the soil into an upper
organic horizon and a lower inorganic horizon. The modified
model was used to simulate the responses of stream water
alkalinity to variations in observed SO

4
 concentrations and

PCO
2
 in the soil air. As SO

4
 decreases in atmospheric

deposition, MAGIC predicts a concurrent decrease in SO
4

and increase in alkalinity of the stream water. However,
episodically decreasing CO

2
, can reduce or even reverse the

increase in alkalinity.
Three different 20-year simulations were run:

(1) The base case simulation assumed no changes in either
SO

4
 concentrations (atmospheric input and stream values

for 1991) or soil PCO
2
 (set at 0.25%).

(2) Responses to altering SO
4
 concentrations in soil water,

with soil PCO
2
 unchanged were examined and the

resultant changes in simulated alkalinity relative to the
base case simulation were calculated (Fig. 4).

(3) Soil PCO
2
 in the lower horizon soil was varied while

SO
4
 concentrations were held constant at 1991 values

(Fig. 4).

The three simulations began with observed 1991 conditions.
By the end of years 1, 10, and 20 of the base case simulation
(SO

4
 and PCO

2
 unchanged), alkalinity of East Bear had

declined to 6.9, 2.4, and –3.8 meq L-1, respectively (Fig. 5).
That is, East Bear continued to acidify at 1991 levels of
atmospheric S and N deposition and for a constant soil air
PCO

2
 of 0.25% in the lower B horizon. This base case

response for alkalinity is similar to the actual behavior of
East Bear since 1987.

A step decrease in SO
4
 concentration of 20 meq L-1 resulted

in a simulated alkalinity after the first year following the
decrease that was 4 meq L-1 higher than the base case stream
alkalinity for year one. Similarly, a decrease in soil PCO

2
 to

0.05% resulted in a simulated stream alkalinity in year one
that was 4 meq L-1 lower than the base case alkalinity for
year one. If the 0.2% PCO

2
 decrease and the 20 meq SO

4

L-1 concentration decrease occur simultaneously, there would
be no detectable stream alkalinity (or pH) response to the
SO

4
 concentration reduction in year 1 (Fig. 4). These

simulations strongly support the hypothesis that “reasonable”
changes in soil PCO

2
 can produce changes in stream

alkalinity that are of the same magnitude as alkalinity changes
expected from declining stream SO

4
 concentrations.

Ten years into the simulation, the base case stream alkalinity
declined approximately 5 meq L-1 as East Bear continued to
acidify from the excess SO

4
. Relative to the base case

alkalinity, the step decrease in SO
4
 of 20 meq L-1 resulted in

an alkalinity increase of 7 meq L-1. At 20 years, the decrease
in SO

4
 produced an increase in alkalinity of 9 meq L-1 relative

to the base case (the alkalinity of which had declined 11 meq
L-1 since year 1). At 10 and 20 years, because of the low
PCO

2
 of 0.25% for the base case, it is not possible to decrease

PCO
2
 enough to compensate for the 20 meq L-1 decrease in

SO
4
. This change in response through time is caused by cation

depletion in the soil to the point where changes in SO
4
 are

accompanied by a nearly 1:1 response in acidic cations,
largely H+. At East Bear Brook, acidification or alkalization
from changes in PCO

2
, relative to the base case, could not

be sustained for more than a few decades because of
continued soil acidification.
The ratio of (the slope of the curve [D alkalinity:D SO

4
]) to

(the slope of the curve [D alkalinity:D PCO
2
]) in any year

can be used to establish a “compensation factor” for no net
change in alkalinity for that year. This ratio expresses the
increase (decrease) in PCO

2
 that offsets an increase (decrease)

in SO
4
 concentration such that alkalinity does not change.

Figure 4 shows that if CO
2
 is doubled for ten years, the

alkalinity remains nearly constant relative to the base case.
The opposite effects of H

2
SO

4
 and H

2
CO

3
 are caused by their

appearance on opposite sides of the alkalinity relationship:

SSBC – SSAA = alkalinity =
SWAA – S(H+ + Al(OH)

n
+3-n) (5)
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Fig. 4. Alkalinity change relative to the base case (1991
concentration of SO

4
2-) expected at East Bear Brook from variations

of stream SO
4
 and soil PCO

2
 for 1, 10, and 20 years. Dashed lines

are for SO
4
. Solid lines are for PCO

2
. Squares are the 1-year

response. Triangles are the 10-year response. Circles are the 20-
year response. For example, if SO

4
2- decreased 20 meq  L-1, alkalinity

would increase 4, 7, or 9 meq L-1 over 1, 10, and 20 years,
respectively, relative to the base case.
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Increased net cation adsorption because of decreased soil
air PCO

2
 is charge-compensated in the stream by decreased

formation of HCO
3
- and increased H+. However, as SO

4
 from

the input of H
2
SO

4
 increases, the charge balance for the higher

SO
4
 is provided by higher concentrations of base cations

and increased H+. Thus, changes in alkalinity from variations
in soil PCO

2
 and SO

4
 may be additive or cancel each other.

The compensation factor is (D PCO
2
, %)/(D SO

4
, meq L-1);

the values for East Bear Brook are –0.013, 0.024 and –0.050
for the 1st, 10th, and 20th years, respectively. The increase
with time indicates that the potential for changes of soil PCO

2

to offset changes of SO
4
 concentration declines with time.

For the conditions observed in East Bear Brook soils, the
factors suggest that PCO

2
 effects could obscure or delay

alkalinity increases in response to SO
4
 concentration. The

impact of a doubling of PCO
2
 (to 0.5%) for 1 and 10 years,

or ramping the PCO
2
 to 2× over ten years is shown in Fig. 5.

By 20 years the alkalinity increases related to SO
4
 reduction

should be observed, in spite of any reasonable variation for
soil PCO

2
.

IMPLICATIONS OF ALKALINITY CHANGES DRIVEN

BY VARIABLE SOIL CO
2

The increases in alkalinity expected from decreases in
atmospheric deposition of strong mineral acid anions may
be obscured by decreases in soil PCO

2
, a process that may

persist for several years due to systematic climate change.
Conversely, increased PCO

2
 will cause enhanced alkalinity

production. This would confuse documentation of recovery
in surface water alkalinity associated with S emission
reductions. Because of the effect of variable PCO

2
, long-

term monitoring is necessary to determine the efficacy of S
emission control strategies. Surface water recovery from
acidification will, most likely, not be monotonic, an extremely
important consideration for evaluation of air pollution control
policy.

The amount of short-term production of higher alkalinity
due to higher PCO

2
 is controlled by site characteristics prior

to the changes. In systems that are more acidic than East
Bear, the response of stream alkalinity to changes in CO

2

would be smaller. More alkaline systems would be more
responsive and the effect would persist longer. These
conclusions are consistent with the empirical findings of
Stoddard et al. (1998a,b) who demonstrated that the
magnitude of trends in acid/base variables (alkalinity and
SBC) are related to the acidity of the system.

Is there evidence for annual decline in soil PCO
2
, other

than that caused by strong seasonality? The authors are not
aware of any regional or site-specific integrated programme
of soil PCO

2
 monitoring to demonstrate trends for this

parameter. The northeastern U.S.A. has experienced some
of the warmest years on record during the 1990s. Warmer
summer conditions may increase both microbial and root
respiration in the soil. Increased soil PCO

2
 should result in

an enhancement of the alkalinity recovery attributed
(mistakenly) to SO

4
. However, Rustad and Fernandez (1998)

found that experimental warming of spruce-fir soils in the
snow-free period in Maine produced increased respiration
and an increase in efflux of CO

2
, but PCO

2
 in the lower soil

horizon was not significantly higher, even though the
temperature at 50 cm depth was increased by 5oC. The effect
of such a temperature increase was investigated at the mini-
catchment scale by Wright (1998). He found that the major
result of increased air CO

2
 (to two times atmospheric) plus

warming of soil by 5oC was an increased mobilization of
NO

3
 to runoff. Nitrate decreased through the 1990s at East

Bear Brook. A decline in soil PCO
2
, despite increased

temperature and possibly increased soil respiration, could
result from lower soil moisture content and greater efflux of
soil CO

2
. For this reason, the O horizon of a forest rarely has

high PCO
2
, despite high respiration rates, due to rapid

exchange between forest floor gas phases and the open
atmosphere. However, atmospheric warming in the winter
period may cause a reduction in the temporal extent of the
snow-pack, permitting loss of soil CO

2
 and thereby reducing

alkalinity of spring runoff from rain and snowmelt.
There are several alternative explanations for the continued

decline in alkalinity at East Bear Brook concurrent with
declining SO

4
 in the stream water:

(1) Perhaps the catchment is still acidifying from excess
SO

4
, even as atmospheric loading of SO

4
 has declined

to produce stream concentrations 15 meq L-1 below 1991

Fig. 5. Projected response in alkalinity of East Bear Brook to
deposition of SO

4
 atmospheric at 1991 values to (a) a one-year

doubling of soil PCO
2
 (solid line), (b) a doubling of soil PCO

2
 for 10

years (dashed line), and (c) a 10-year ramp to doubled soil PCO
2

(dotted line).
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values. This explanation appears likely for East Bear.
However, the BBWM soils adjust rapidly to changes in
atmospheric deposition of SO

4
 and they should have been

close to equilibrium at BBWM in 1991, having been
subjected to higher loading prior to 1991. Under 1991
conditions, modelling suggests that East Bear apparently
would slowly acidify, decreasing in alkalinity about
0.5meq L-1 yr-1. If soil CO

2
 were increased by 0.4% to a

long-term average of 0.65%, it would take approximately
40 years for alkalinity to decline to values achieved in
the same period with the base case conditions (1991 SO

4

and PCO
2
). Thereafter, the system with elevated CO

2

would be more acidic than for the base case conditions
in the model simulation. Before that occurs, labile carbon
for production of CO

2
 in soils might become limiting.

(2) Dillon et al. (1997) suggested that drought affecting
central Ontario lakes resulted in lowering of the water
table and release of SO

4
, oxidized from reduced S in

organic matter. This mechanism would operate well in
wetland-rich systems, but not at East Bear, which has
no wetlands.

(3) Webster et al. (1990) argued that acidification of some
seepage lakes was strongly influenced by the moisture
budget; lower water supply resulted in evaporative
concentration of acidic components. At East Bear Brook,
there have been no obvious changes in hydrology that
parallel the decline in alkalinity from 1988 to 1999.

(4) Driscoll et al. (1989) suggested that declines in
atmospheric deposition of base cations may cause a
decline in stream base cations, and thus alkalinity. Base
cations have declined little, if at all, at BBWM from
1988 to 1999.

(5) Lastly, as SO
4
 inputs to soil water decline, the rate of

base saturation loss should decline. However, the implied
net adsorption should be less than the decline in SO

4
. At

BBWM and at many other localities, the decline in base
cations in stream waters exceeds the decline in SO

4
.

Summary
Variations in soil PCO

2
 at BBWM caused by variation in the

snow pack appear to be responsible for variation of alkalinity
production during the winter and early snow-melt period.
The magnitude of variation (+/- 10 meq L-1) is comparable to
the increase in alkalinity expected by the reduction in
atmospheric SO

4
 from 1990 to 1999. Soil PCO

2
 and surface

water data with sufficient detail, and linked in space and
time, are not available from appropriate catchments to
determine the extent to which declines in soil PCO

2
 may

cause declining stream and lake alkalinity in the northeastern
USA and elsewhere. Theory, some field data, and limited

experiments, indicate that variations in soil PCO
2
 may

introduce significant uncertainty into the interpretation of
time series for acid-sensitive surface waters. It is important,
therefore, that this mechanism not be overlooked, so that
policy and evaluations of trends in air emissions, precipitation
chemistry, and surface water chemistry are based on
understanding.
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