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Abstract 

The Gulf of Maine experiences annual closures of shellfish harvesting due to the 

accumulation of toxins resulting from harmful algal blooms of the dinoflagellate 

Alexandrium spp.  If ingested by humans, these toxins can cause paralytic shellfish 

poisoning.  The factors affecting the timing, location, and magnitude of these events 

remain poorly understood.  Previous work found no obvious correlations between Gulf of 

Maine oceanographic variability and interannual variability in toxicity in the strongly 

tidally mixed eastern Maine coastal region in the vicinity of Cobscook Bay.  Using 21 

years (1985-2005) of Maine Department of Marine Resources shellfish toxicity data, 

interannual variability in two metrics of annual toxicity, maximum magnitude and 

integrated total annual toxicity, are examined for relationships to a suite of environmental 

variables.  Consistent with earlier work, no correlation was found between toxicity and 

oceanographic variables, even when individual station toxicity was compared to very 

proximate variables such as local sea surface temperature and river discharge.  However, 

correlations between toxicity and two variables indicative of local weather, dew point and 

atmospheric pressure, both suggest a link between increased toxicity and clearer skies/ 

drier air.  As no correlation was evident between toxicity and local precipitation, we 

hypothesize that the link is through light availability in this persistently foggy section of 

coast. 
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1.  Introduction 

 Harmful algal blooms (HABs) caused by the dinoflagellate Alexandrium spp. 

necessitate shellfish bed closures in the Gulf of Maine.  These dinoflagellates produce 

compounds called saxitoxins, (Anderson et al., 1994) neurotoxins that if ingested in a 

large enough quantity, can cause paralytic shellfish poisoning (PSP).  Saxitoxins affect 

neuroreceptors in the brain causing paralysis, eventually shutting down the body if left 

untreated.  Marine shellfish become toxic to humans when they ingest the algae from 

these HABs through filter feeding.  Shellfish bed closures in Maine occur episodically 

throughout the spring, summer, and fall most commonly in early summer and in the fall, 

the latter usually being smaller in magnitude (Anderson, 1997).   

To protect human health, since 1958 the Maine Department of Marine Resources 

(DMR) has monitored Maine shellfish for toxicity levels throughout each season (Bean et 

al., 2005).  Samples are collected approximately weekly at about 100 stations along the 

coast and a mouse bioassay is used to determine a toxicity score.  Scores approaching 80 

µg/ 100g tissue, the quarantine toxicity level set by the United States Food and Drug 

Administration, result in shellfish bed closures.  Economic losses due to closures can be 

substantial, totaling $14.8 million in lost output for Maine businesses in 2005 (Athearn, 

2005).  However, links between the space and time variability of shellfish toxicity levels 

and environmental variability remain poorly understood.  Furthermore, environmental 

processes controlling Alexandrium spp. dynamics in the Gulf of Maine remain the subject 

of ongoing research. 

Previous work shows strong ecological heterogeneity along the coast of Maine 

among a wide assortment of marine distributions and processes (Hale, 2010) including 
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HAB impacts (Thomas et al., 2010; Bean, 2005), most likely linked to strong gradients in 

oceanographic conditions influencing the coast (Anderson, 1997; Pettigrew et al., 2005; 

Townsend et al., 2005).  Superimposed on the residual cyclonic circulation of the gulf 

that creates southwestward flow along the Maine coast, tidal forcing increases from the 

southwest to the northeast.  Southwestern portions of the coast are therefore downstream, 

experience reduced tidal mixing and strong seasonal surface temperature cycles.  Warm, 

stratified, nutrient deplete conditions prevail during the summer.  Eastern portions are 

upstream and experience some of the strongest tidal mixing in the world.  These portions 

are subjected to relatively strong advective alongshore flow of the cold Eastern Maine 

Coastal Current, and have a reduced seasonal temperature cycle, remaining relatively 

cold, nutrient replete, and well mixed throughout the year.   

Cobscook Bay is a strongly denticulated inlet lying near the Canadian border at 

the northeastern end of the Maine coast near the mouth of the Bay of Fundy (Figures 1 

and 2).  With a mean tidal range of 5.7 meters, tidal forcing is extremely strong in this 

region resulting in an average flushing time of about two days for Cobscook Bay (Brooks 

et al., 1999).  All water entering the bay flows through a complex island archipelago and 

a narrow, relatively shallow, entrance channel and is therefore strongly mixed.  Water 

entering the bay is potentially influenced by a number of sources.  Freshwater influences 

include drainage into Cobscook Bay itself, which is relatively minor, discharge from the 

Saint Croix River at the head of Passamaquoddy Bay (Figure 1) and influences from the 

Saint John River, located upstream of the region, the largest riverine freshwater input into 

the Gulf of Maine (Figure 1).  Oceanic water influencing Cobscook Bay arrives from the 

eastern portion of the entrance to the Bay of Fundy.  These waters originate from the 
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Nova Scotia Current that travels around the Nova Scotia peninsula and into the Bay of 

Fundy, where it is influenced by Gulf of Maine water at the upstream portion of the 

Eastern Maine Coastal Current.   

Environmental factors influencing the timing and distribution of Alexandrium spp. 

populations in the Gulf of Maine are the subject of ongoing research.  The populations 

begin each spring in two major Alexandrium cyst beds (Libby and Anderson, 2010) and 

spread through the Gulf of Maine by the Maine coastal currents.  Previous work suggests 

that there are discrete regions of Alexandrium populations that are controlled by unique 

factors, both oceanographic and environmental.  Toxins within these dinoflagellates vary 

with region, generally becoming less toxic the further south the population (Anderson, 

1997; Etheridge and Roesler, 2005).  Nutrient and light availability also regulate offshore 

bloom dynamics (Townsend et al., 2001) with larger densities of Alexandrium present in 

regions of higher surface light and nutrient availability. 

Early work suggested that wind-driven upwelling and coastal freshwater 

advection might be related to toxicity along the southern coast of Maine (Franks and 

Anderson, 1992 (a) and 1992 (b)).  A broad survey of 21 years of interannual variability 

of shellfish toxicity along the Gulf of Maine coast (Thomas et al., 2010) found strong 

oceanographic links to sea surface temperature patterns and surface Ekman transport 

driven by wind stress along the southwestern, downstream portion of the Maine coast.  

However, this work could not identify oceanographic factors linked to coastal toxicity 

variability in regions along the colder upstream eastern Maine coast, including stations in 

Cobscook Bay.  Here I expand on this earlier work in three ways.  The focus is 

specifically on far eastern regions of the Gulf of Maine.  I analyze interannual toxicity 
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variability at individual stations rather than statistically clustered groups of stations.  

Lastly, I compare these to an expanded list of oceanographic and atmospheric factors 

more local to the toxicity sampling sites of this eastern Maine coast. 

 

2.  Data and Methods 

2.1 Toxicity Data and Metrics 

Twenty-one years of shellfish toxicity data from 1985 to 2005 were obtained from 

the Maine Department of Marine Resources.  The original data comprised over 64,000 

records, measured in over 10 different species, with approximately 350 stations sampled 

at least once between 1985 and 2005.  Of these stations, about 100 were sampled 

~weekly each year along the Gulf of Maine providing a clear picture of seasonal patterns 

within each year.  I use only those stations sampled multiple times each year.  Nine 

stations are in the Cobscook Bay area (Figure 2) with the others spread along the rest of 

the Maine coast.  Toxicity records are collected between March 1 and November 1 of 

each year.  To avoid biases based on species-specific rates of toxin uptake and 

depuration, this study focuses on toxicity records only from the genus Mytilus that 

account for approximately 58 percent of records. 

Following protocols outlined in Thomas et al. (2010) the toxicity time series at 

each station, in each year, was reduced to two metrics of interannual variability; 

Magnitude of Toxicity and Integrated Annual Toxicity.  To reduce bias by single 

measurements, Magnitude of Toxicity is calculated as the mean of the three highest 

toxicity measurements at a station for a given year.  This was calculated only for stations 

and years with at least 10 valid toxicity measurements.  Integrated Annual Toxicity is 
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calculated as the mean of all toxic values in a year greater than zero performed for 

stations and years with at least five toxicity values of zero or above.  These metrics 

provide related, but slightly differing views of how toxic a station was in each year. 

 

2.2 Environmental Data 

Mean daily river discharge data from the Saint John (site 1014000) and Saint 

Croix (site 1021000) rivers (Figure 1) are available from the United States Geological 

Survey for the period 1985-2005.  From these I calculated mean monthly discharge in 

each calendar month in each study year for each river. 

 Multiple daily satellite-measured sea surface temperature records of the Gulf of 

Maine are collected by the Satellite Oceanography Laboratory at the University of Maine 

and produced into monthly mean images.  Monthly data spanning the period 1985-2005 

were subsampled at two stations located near the northern end of Grand Manan Island 

and over Manan Basin (Figure 1) to create interannual time series of surface ocean 

temperature in the vicinity of Cobscook Bay. 

 Air temperature and precipitation records are from the Eastport International 

Airport (Figure 1).  Precipitation data are received as monthly total precipitation over the 

study period and air temperatures are monthly means. 

 Relative humidity, atmospheric pressure, and dew point are available from the 

Bangor International Airport (Figure 1).  All were received as daily averages over the 

study period.  I calculated mean monthly values for each data set for comparison with the 

toxicity metrics.  
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2.3 Analysis 

 The nonparametric Spearman Rank correlation is used to quantify the 

relationships between concurrent interannual variability of the two toxicity metrics and 

the suite of environmental metrics over the 21 year study period.  I use nonparametric 

statistics because tests of the underlying distribution of the toxicity data suggested non 

normal distributions. 

 

3.  Results and Discussion 

 Neither of the sea surface temperature time series nor river discharge from either 

the Saint John or the Saint Croix rivers was found to have a strong relationship with 

either metric of interannual toxicity pattern (Tables 1 and 2).  A few stations show 

significant correlations in some months, but here we seek persistent correlations across 

many stations.  This lack of relationship is consistent with the results of Thomas et al. 

(2010) who found no relationship between interannual variability in the toxicity of 

eastern Maine station groups and Gulf of Maine sea surface temperature or Penobscot 

River discharge.  Here I show similar results but tested against rivers and sea surface 

temperature locations more proximate to the eastern stations and applied to individual 

stations.  One possible mechanism explaining this lack of interaction is the strong tidal 

mixing.   

As phytoplankton, Alexandrium require both light and nutrients, and previous 

work suggests that cell distribution patterns in the open Gulf of Maine are linked to 

circulation and hydrographic characteristics (Townsend et al., 2001, 2005).  Along the 

eastern Maine coast and in Cobscook Bay, however, the strong tidal mixing may be 



7 
 

sufficient to remove the effects of interannual variability in nutrient availability imposed 

by varying river discharge or sea surface temperature.  Our results also imply that 

interannual variability in any chemical constituents in the local rivers have no measurable 

link to toxic variability.  Correlational analysis of the atmospheric factors air temperature, 

relative humidity, and precipitation showed no or only weak relationships with the 

magnitude of annual toxicity and integrated annual toxicity (Tables 1 and 2).   

 Atmospheric pressure has a positive correlation with toxicity in Cobscook Bay, 

Maine, (Table 1 and Figures 3 and 4) especially the mean monthly atmospheric pressure 

in early spring (March).  Lower atmospheric pressure generally indicates storms and poor 

weather conditions while higher atmospheric pressure indicates fewer storms and less 

cloudy skies.  The positive correlation indicates that increased atmospheric pressure is 

associated with increased toxicity suggesting higher toxicity reading during years with 

less stormy weather. 

 Mean early summer (June) dew point has a negative correlation with toxicity in 

Cobscook Bay, Maine (Table 1 and Figures 5 and 6).  Higher dew point indicates 

unstable, moist air which causes cloudy weather and storms.  Lower dew point indicates 

stable, dry air of poor cloud-forming potential.  The negative correlation indicates that on 

interannual scales, increased dew point is associated with decreased toxicity, meaning 

that years with less air moisture and fewer storms generally have higher toxicity values.  

This is consistent with the relationship observed for atmospheric pressure.   

 Analysis of the relationships between these two atmospheric factors and toxicity 

metrics at all stations along the Maine coast shows correlations strongest north of 

Penobscot Bay, especially in Cobscook Bay (Figures 7 and 8).  These results show a 
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similar disconnect of the Cobscook Bay Alexandrium population from those along the 

western Maine coast as was seen in Thomas et al. (2010).  Isolation of this population and 

the resulting difference in environmental linkages may be related to the secluded nature 

of the bay or the different hydrographic conditions due to regional tidal mixing. 

 Two atmospheric factors with strong correlations in Cobscook Bay suggest 

increased atmospheric water content and cloudy weather results in a decrease in toxicity.  

Our data is not capable of inferring causality but plausible mechanisms can be suggested.  

During years with reduced storms, more sunlight would reach phytoplankton possibly 

increasing coastal ocean productivity.  Increased phytoplankton productivity would 

include an increased growth and reproduction rate of Alexandrium providing increased 

HAB concentration to the mussels.   

Another possible mechanism suggested by the observed relationships is that 

increased sunlight may affect the toxicity of individual cells.  Toxin concentrations 

within Alexandrium cells vary among species and physiological conditions causing some 

to be more toxic than others (Anderson et al., 1994).  Environmental conditions may 

allow for variability of dominant species within Alexandrium populations affecting the 

toxicity readings.  Previous studies have also shown that the toxicity of Alexandrium cells 

is affected by environmental factors such as temperature and irradiance which may also 

contribute to interannual variability (Etheridge and Roesler, 2005).   

Another mechanism resulting in interannual variability of shellfish toxicity is 

variable filtering rates of the organisms.  Studies show variability of feeding rates of 

Mytilus edulis due to many environmental factors including cell vertical particle flux, 

temperature, and seston abundance and composition, many of which were not evaluated 
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in this study (Cranford and Hill, 1999).  Also, studies of the bivalve Mya arenaria found 

that a natural genetic mutation, usually found in organisms with repeated exposure to 

HABs, increases their resistance to toxins allowing them to more quickly accumulate 

toxins than those without the mutation (Bricelj et al., 2010 and Connell et al., 2007).  It is 

unknown whether other shellfish species undergo similar mutations, but these changing 

conditions could contribute to interannual variation in toxicity levels not only in the 

present, but as a long term effect.   

 

4.  Conclusions 

 Previous work examining links between interannual variability in Maine coastal 

shellfish toxicity and environmental variability found no relationships between regionally 

averaged Cobscook Bay area measurements and Gulf of Maine oceanographic metrics. 

Our results confirm these findings, even after treating individual site locations within the 

Cobscook Bay area and examining very local oceanographic measurements.  However, I 

show that two locally varying environmental metrics indicative of weather conditions are 

correlated with 21 years of shellfish toxicity in Cobscook Bay at a number of sampling 

sites. Correlations between toxicity and atmospheric pressure and dew point both indicate 

that sunnier and drier weather is associated with higher toxicity levels. Such correlations 

were evident at only a few scattered stations further west along the Maine coast where 

previous work has shown toxicity interannual variability has closer links to 

oceanographic factors. It is possible that the extremely strong tidal mixing in the 

Cobscook Bay region reduces interannual variability of most oceanographic signals. 

While our data are incapable of addressing causality or examining mechanisms, our 
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results found no parallel correlations between shellfish toxicity and local precipitation, 

river discharge or air temperatures, suggesting that any interaction with weather may be 

through light availability.  This region is characterized by recurrent strong spring/summer 

fog, a phenomena that would be reduced in years of higher atmospheric pressure and 

lower atmospheric water content. The mechanisms of interaction are beyond the scope of 

the present work, but increased light availability may lead to increased Alexandrium cell 

densities, changes in cell toxin content, or differences in shellfish filtering/depuration 

rates.  Results reported here support the continued intensive monitoring and archiving of 

shellfish toxicity scores from a wide diversity of regions along the Maine coast. It is 

evident that strong geographic differences in both oceanographic interannual variability 

and the interaction of Alexandrium-induced shellfish toxicity with environmental 

conditions make the application of models developed in only one region, or region-

specific models unlikely to be applicable to such a heterogeneous coastline.  More 

importantly, factors beyond variability in ocean conditions, such as local weather, need to 

be taken into account in future studies focused on assisting management forecasts. 
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Table 1.  Correlation (r) between monthly environmental metrics and Integrated Annual 

Toxicity.  Significance levels:  95%, 90%, and “ - “ indicates no significant correlation. 

 

Environmental Metric Station Month 

  
March April May June July August 

Air Temperature 320 - - - - - - 

 
321 -0.39 -0.47 - - - - 

 
333 - -0.40 - - - - 

 
336 - - - - - - 

 
338 -0.41 - - - - - 

 
343 - - - - - - 

 
346 - - - -0.40 - -0.42 

 
351 - - - - - -0.62 

  353 - - - -0.41 - -0.47 

Relative Humidity 320 - - - - - - 

 
321 - - - - - - 

 
333 - - - -0.38 - - 

 
336 - - - - - -0.41 

 
338 - - - - - - 

 
343 - - - - - - 

 
346 - - - - - - 

 
351 - - - - - - 

  353 - - - - - - 

Precipitation 320 - - 0.39 - - - 

 
321 - - 0.43 - - - 

 
333 -0.41 - 0.41 - - - 

 
336 - - - - 0.51 - 

 
338 -0.46 - - - - - 

 
343 -0.41 - - - - - 

 
346 - - - - 0.44 - 

 
351 - - - - - - 

  353 - - - - - - 

Dew Point 320 - - - - - - 

 
321 - - - - - - 

 
333 - - - -0.53 - - 

 
336 - - - - - - 

 
338 - - - -0.38 - - 

 
343 - - - -0.45 - - 

 
346 - - - -0.54 - - 

 
351 - - - - - - 

  353 - - - -0.47 - - 
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Atmospheric Pressure 320 0.47 - - - 0.50 - 

 
321 0.48 - - - - - 

 
333 0.54 - - - 0.41 - 

 
336 - - - - - - 

 
338 0.54 - - - - - 

 
343 0.43 - - - - - 

 
346 0.40 - - - - - 

 
351 - - - - - - 

  353 - - - - - - 
St. Croix River 
Discharge 320 -0.42 - - - - - 

 
321 -0.43 - - - - - 

 
333 - - - - - - 

 
336 - - - - - - 

 
338 -0.47 - - - - - 

 
343 - - - - - - 

 
346 - - - - - - 

 
351 - - - - - - 

  353 -0.47 - - - - - 
St. John River 
Discharge 320 - - - - -0.41 - 

 
321 - - - - - - 

 
333 - - - - - 0.47 

 
336 - - - - - 0.40 

 
338 - - - - - - 

 
343 - - - - - - 

 
346 - - - - - 0.76 

 
351 - - - - - 0.38 

  353 -0.38 - - - - 0.68 
Sea Surface 
Temperature 320 0.49 - - - - - 

Manan Basin 321 - - - - - - 

 
333 - - - - - - 

 
336 0.38 - - - - - 

 
338 - - - - - - 

 
343 - - - - - - 

 
346 - - - - - - 

 
351 - - - - - - 

  353 - - - - - - 
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        Sea Surface 
Temperature 320 - - - - - - 
North of Grand 
Manan 321 - - - - - - 

 
333 - - - - - - 

 
336 - - - - - - 

 
338 - - - - - - 

 
343 - - - - - - 

 
346 - - - - - - 

 
351 - - - - - - 

  353 - - - - - - 

 

 

Table 2.  Correlation (r) between monthly environmental metrics and Magnitude of 

Annual Toxicity.  Significance levels:  95%, 90%, and “ - “ indicates no significant 

correlation. 

 

Environmental Metric Station Month 

  
March April May June July August 

Air Temperature 321 -0.37 -0.47 - - - - 

 
333 - - - - - - 

 
336 - - -0.41 - - - 

 
338 -0.38 - - - - - 

 
343 - - - - - - 

 
351 - - - - - -0.56 

  353 - - - -0.42 - -0.40 

Relative Humidity 321 - - - - - - 

 
333 - - - - - - 

 
336 - - - - - -0.41 

 
338 - - - - - - 

 
343 - - - - - - 

 
351 - - - - - - 

  353 - - - - - - 

Precipitation 321 - - 0.44 - - - 

 
333 -0.41 - 0.42 - - - 

 
336 - - - - 0.49 - 

 
338 -0.44 - - - - - 

 
343 -0.39 - - - - - 

 
351 - - - - - - 

  353 - - - - - - 
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        Dew Point 321 - - - - - - 

 
333 - - - -0.51 - - 

 
336 - - - - - - 

 
338 - - - -0.40 - - 

 
343 - - - -0.42 - - 

 
351 - - - - - - 

  353 - - - -0.50 - - 

Atmospheric Pressure 321 0.49 - - - - - 

 
333 0.52 - - - 0.42 - 

 
336 - - - - - - 

 
338 0.54 - - - - - 

 
343 0.38 - - - - - 

 
351 - - - - - - 

  353 - - - - - - 
St. Croix River 
Discharge 321 -0.43 - 0.37 - - - 

 
333 - - - - - - 

 
336 - - - - - - 

 
338 -0.43 - - - - - 

 
343 - - - - - - 

 
351 - -0.41 - - - - 

  353 -0.47 - - - - - 
St. John River 
Discharge 321 - - - - - - 

 
333 - - - - - 0.48 

 
336 - - - - - - 

 
338 - - - - - - 

 
343 - - - - - - 

 
351 - - - - - 0.38 

  353 -0.40 - - - - 0.69 
Sea Surface 
Temperature 321 - - - - - - 

Manan Basin 333 - - - - - - 

 
336 0.41 - - - - 0.42 

 
338 - - - - - - 

 
343 - - - - - - 

 
351 - - - - - - 

  353 - - - - - - 

Sea Surface 321 - - - - - - 
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Temperature 

North of Grand 
Manan 333 - - - - - - 

 
336 - - - - - - 

 
338 - - - - - - 

 
343 - - - - - - 

 
351 - - - - - - 

  353 - - - - - - 
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Figures 
 

 
Figure 1. The Gulf of Maine study area showing data sources (blue dots), Saint Croix 

River, Saint John River, and other important landmarks. 

 

 
Figure 2. Cobscook Bay study area showing station locations and important landmarks. 

Maine, USA 

Passamaquoddy Bay 

Bay of Fundy 

Cobscook Bay 



20 
 

 

 

 

 

 

 

 

 

 
Figure 3.  Cobscook Bay showing station-specific correlation significance between 

Integrated Annual Toxicity and mean March atmospheric pressure.  Strong correlation 

95% significance and weak correlation 90% significance. 
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Figure 4.  Cobscook Bay showing station-specific correlation significance between 

Magnitude of Annual Toxicity and mean March atmospheric pressure.  Strong correlation 

95% significance and weak correlation 90% significance. 

 

 
Figure 5.  Cobscook Bay showing station-specific correlation significance between 

Integrated Annual Toxicity and mean June dew point.  Strong correlation 95% 

significance and weak correlation 90% significance. 
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Figure 6.  Cobscook Bay showing station-specific correlation significance between 

Magnitude of Annual Toxicity and mean June dew point.  Strong correlation 95% 

significance and weak correlation 90% significance. 

 

 
Figure 7.  Integrated annual toxicity correlated with June dew point along the whole Gulf 

of Maine.  Strong correlation 95% significance and weak correlation 90% significance. 
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Figure 8. Integrated annual toxicity correlated with March atmospheric pressure along 

the whole Gulf of Maine.  Strong correlation 95% significance and weak correlation 90% 

significance. 
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