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Abstract 

 The symbiosis between the mollusc Elysia chlorotica and chloroplasts of its algal 

prey, Vaucheria litorea, has challenged the understanding of chloroplast biology. E. 

chlorotica feeds on and retains the algal chloroplasts within its digestive cells. The 

chloroplasts remain photosynthetically active for months in the animal’s cells devoid of 

the algal nucleus which encodes approximately 90% of the proteins required for the 

chloroplasts. To help explain the ability of E. chlorotica to maintain functionally active 

chloroplasts, horizontal gene transfer (HGT) of V. litorea nuclear genes to the E. 

chlorotica genome has been hypothesized. However, the extent of HGT, as well as the 

transcriptional viability of putatively transferred genes, is still largely unknown. To better 

understand the genetic composition of E. chlorotica, optimization of a fluorescent in situ 

hybridization (FISH) procedure was performed on both V. litorea and E. chlorotica to 

develop a direct molecular tool to understand the genetic components involved in this 

symbiosis. Successful FISH analysis of the chloroplast Rubisco gene (rbcL) was 

accomplished using whole-mounts of both E. chlorotica and V. litorea. Whole-mount 

FISH analysis of the E. chlorotica nuclear β-actin gene was accomplished in 

aposymbiotic E. chlorotica larvae. Sectioned, adult E. chlorotica tissue was successfully 

hybridized for both the rbcL and β-actin genes. The development of the FISH technique 

for use on whole-mount sea slugs and intact heterokont algal filaments is the first direct 

application of FISH and can help elucidate the genetic components required to maintain 

this remarkable symbiosis. 
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Literature Review 

E. chlorotica – V. litorea symbiosis. 

 The long-term sequestration of functional algal chloroplasts by sacoglossan 

molluscs or sea slugs (referred to as kleptoplasty) provides a remarkable example of 

modern endosymbiosis evolution.  The green, “solar-powered” sea slug Elysia chlorotica 

Gould, 1870, has been one of the most studied examples of long-term kleptoplasty 

(reviewed by Rumpho et al. 2011). During feeding on the siphonaceous, coenocytic 

heterokont alga Vaucheria litorea C. Agardh, E. chlorotica suctorally ingests the cellular 

components of the algal filament (Trench 1975). V. litorea chloroplasts are not digested 

upon ingestion, but become incorporated, most likely through phagocytosis, into the cells 

lining the digestive tract of E. chlorotica. The chloroplasts remain within the cytosol of 

these cells for the duration of the mollusc’s lifespan, conferring a new metabolic 

capability (photosynthesis) to the sea slug (Gibson et al. 1986, Green et al. 2000). E. 

chlorotica can be sustained in laboratory culture under starvation conditions for 9-12 

months, living photoautotrophically on the photosynthate of the chloroplasts within its 

digestive cells (Green et al. 2000). This chloroplast association is not transferred 

vertically, rather, chloroplast-free eggs are deposited by green, photosynthetically active 

adult sea slugs and develop through a planktonic veliger stage in which the larvae 

selectively filter feed on unicellular algae prior to metamorphosis (Harrigan and Alkon 

1978; Trowbridge 2000). Upon reaching metamorphic competentency, exposure to V. 

litorea induces metamorphosis, with veligers crawling out of their shells and immediately 

incorporating the chloroplasts into their digestive cells after feeding on V. litorea (West et 

al. 1984; Pelletreau unpublished data).  
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Horizontal gene transfer between multicellular eukaryotes. 

 Although the chloroplasts do not divide in the sea slug, de novo protein synthesis 

(of both chloroplast and algal nuclear genes) and carbon dioxide fixation continue in the 

absence of the algal nucleus, upon which the chloroplasts are dependent for algal nuclear 

encoded proteins (Mujer et al. 1996; Pierce et al. 1996; Rumpho et al. 2008, 2009). In 

order to provide key photosynthetic transcripts for the chloroplasts, horizontal gene 

transfer (HGT) from the algal nucleus to the sea slug nucleus has been indirectly 

demonstrated using mainly PCR analysis investigating algal nuclear-encoded 

photosynthesis genes (Hanten and Pierce 2001; Pierce et al. 2003, 2007, 2009; Rumpho 

et al. 2008, 2009; Schwartz et al. 2010). However, recent transcriptome analysis of 

kleptoplastic Elysia sp. has indicated a varying extent of transcripts produced from 

putative HGT genes. For example, no algal nuclear related transcripts were found in 

initial and partial transcriptome studies of adult E. chlorotica (Rumpho et al. 2011) or E. 

timida and Plakobranchus ocellatus (Wägele et al. 2011). In a second transcriptome 

study of E. chlorotica concurrent with sequencing the V. litorea genome, 52 transcripts 

were identified in the E. chlorotica transcriptome matching algal nuclear genes, 27 of 

which were related to chloroplast metabolism and function (Pierce et al. 2012).  

 

Fluorescent in situ hybridization.  

 The ambiguity of potential HGT events in E. chlorotica necessitates the use of a 

more direct molecular approach to investigate the genomic content of the sea slug. With 

the development of non-isotopic in situ hybridization techniques, the ability to utilize 

labeled DNA or RNA probes has been applied to numerous systems. After fixing a 
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sample in a buffered fixative that ensures proper retention of cellular nucleic acid 

locations, samples are incubated with a tagged nucleic acid probe under conditions that 

favor the formation of probe-target sequence duplexes. Commercially available probes 

have been developed for target sequences routinely examined, such as bacterial 16S 

probes and probes covering all human and mouse chromosomes. Novel probes are 

routinely synthesized by investigators for a sequence of interest, through either direct 

incorporation of a labeled nucleotide triphosphate or by secondary labeling of a modified 

nucleic acid backbone. Successful hybridization of probe(s) to target sequences can then 

be detected with fluorescent or colorimetric techniques. The advantages of using 

sequence specific probes designed to hybridize to a sequence of interest allows direct 

access of the target sequence.  

 The application of in situ hybridization can be modified to answer a varied range 

of questions. Bacterial symbionts can be identified at various taxonomic levels depending 

upon the specificity of the probes used (Kaiwa et al. 2011), as well as algal symbionts in 

both vertebrate (Kerney et al. 2011) and invertebrate hosts (Loram et al. 2007). FISH has 

been used to identify HGT events of the intracellular bacterium Wolbachia to host 

arthropods (Aikawa et al. 2009; Nikoh et al. 2008), of a diatom freeze protection gene to 

the crustacean Stepho longipes (Kiko 2010), and of a poly-glutamate synthase gene in 

cnidarians (Denker et al. 2008). Few studies, however, have usdd FISH to identify targets 

in molluscs. Cytogenetic  FISH studies using isolated metaphase chromosomes of marine 

molluscs have been used determine chromosome structure (Vitturi et al. 2000a, 2000b), 

and developmental expression of genes relating to neurogenesis were identified in veliger 

larvae of Gibbula varia (Samadi and Steiner 2010) and Aplysia californica (Heyland et 
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al. 2010), but few studies have used adult mollusc tissues. To localize DNA sequences in 

E. chlorotica and its algal prey V. litorea, a protocol for FISH was optimized to identify 

genes in both the chloroplast genome (Rumpho et al. 2008) and the sea slug nuclear 

genome. Utilizing DNA probes for potential HGT genes, FISH could help elucidate the 

extent of any HGT events as well as what genes are present together within the E. 

chlorotica genome.  

Materials and Methods 

Algal culturing conditions.  

 Unialgal cultures of V. litorea and Isochrysis galbana were cultured in artificial 

sea water (ASW; Instant Ocean©) at 32 PSU at 24ºC supplemented with a modified f/2 

medium on a 12:12 L:D cycle. V. litorea cultures were subcultured biweekly in 

progressively lower (16 and 8 PSU) salt concentrations, followed by an increase in salt 

concentration (16 and 32 PSU).   

 

Animal collection and maintenance.  

 Wild E. chlorotica were collected from populations in Martha’s Vinyard, MA, in 

November, 2011, and maintained at 10ºC in aerated ASW at 32 PSU on a 12:12 L:D 

cycle. To induce egg laying, 4-6 animals were removed to 24ºC and placed in 1 L of 

ASW with access to V. litorea. Egg ribbons were collected immediately, rinsed 

thoroughly in 0.2 μm filtered autoclaved ASW (faASW) and transferred to 500 ml of 

faASW supplemented with 2.5 mg ml
-1

 of chloramphenicol (Capo et al. 2009). After 

hatching, E. chlorotica veliger density was determined using a Nikon SMZ-800 

stereomicroscope and maintained in faASW at a density of 10 veliger ml
-1

 and fed 
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unialgal cultures of I. galbana daily at a concentration of 1 x 10
5
 cells ml

-1
. Cultures were 

washed twice a week by filtering the veligers through a 50 μm Nytex mesh and gently 

spraying with faASW before being returned to fresh faASW supplemented with 

chloramphenicol (2.5 mg ml
-1

). The development of veligers was observed twice weekly 

until physical markers of metamorphic competency (dark pigment on the caudal tip, and a 

loss of velum) were obtained. Competent veligers were collected by straining through a 

120 μm Nitex mesh, gently rinsed by spraying with faASW, and transferred to culturing 

dishes containing 500 ml of faASW and V. litorea to induce metamorphosis. Successfully 

metamorphosed F2 E. chlorotica were allowed to feed on V. litorea for one month at 

24ºC and subsequently maintained at 10ºC on a 12:12 L:D cycle in aerated ASW and 

allowed to feed on V. litorea ad libitum (Pelletreau unpublished data).     

 

Chloroplast isolation.  

 Chloroplasts were isolated from V. litorea filaments following Rumpho et al. 2009 

as follows. Algae (~0.5 g wet weight) was homogenized in 50 ml of ice-cold grinding 

buffer (GB; 0.1 M 4-[2-hydroxyethyl] piperazine-1-ethanesulfonic acid [HEPES]/KOH, 

0.9 M sorbitol, 2 mM MgCl2, 4 mM Na2- ethylenediaminetetraacetic acid [EDTA], 10 

mM Na ascorbate, 2% BSA; pH 7.5). The filtered homogenate was centrifuged in a 

Beckman JA 25.5 rotor at 1200g  for 5 min (4ºC) and the pellet resuspended in 5 ml of 

GB and filtered through a 20 μm Nytex mesh. The chloroplast extract was layered on top 

of a 25%/75% Percoll gradient and centrifuged for 20 min at 8000g (4ºC) using a JA 25.5 

rotor. Chloroplasts at the interphase were collected by aspiration and washed twice in GB 

without BSA and centrifuged at 1500g for 5 min (4ºC) in a JA 25.5 rotor. The final 
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chloroplast pellet was dissolved in resuspension buffer (0.1 M HEPES, 0.45 M sorbitol, 

10 mM MgCl2) and stored protected from light at 4ºC. Chloroplasts were examined by 

phase contrast microscopy prior to hybridization to determine the relative percentage of 

chloroplasts with intact membranes. 

 

DNA isolation.  

 Genomic DNA was extracted from V. litorea and E. chlorotica using DNAzol 

(Molecular Research Center, Inc., Cincinnati, OH, USA) isolation protocol. V. litorea and 

E. chlorotica samples (~0.2 g fresh weight each) were ground in liquid nitrogen and 

homogenized in DNAzol isolation reagent (3:1 volume:weight). Organic solutes were 

removed with the addition of 1% mercaptoethanol and chloroform (1:1 

chloroform:DNAzol) and rocked gently for 15 min at 24ºC. Samples were centrifuged at 

12,000g for 10 min. The DNA was precipitated with 100% ethanol at -20ºC, followed by 

a second chloroform extraction. DNA was precipitated with the addition of 3 M sodium 

acetate and cold 100% ethanol. The precipitated DNA was collected by centrifugation at 

12,000g for 10 min. The pellet was washed with 75% ethanol and suspended in LoTE 

buffer (3 mM Tris-HCl, 0.2 mM EDTA; pH 8.0). DNA concentration was determined 

using a NanoDrop 100 spectrophotometer (Thermo Scientific). 

 

DNA cloning and sequencing.   

 The chloroplast control probe for the V. litorea Rubisco large subunit (rbcL) 

was amplified from V. litorea DNA by PCR to produce an 892 base pair (bp) probe with 

primers 5’CCTTAATACAACTGCAG and 5’CCTTTATTTACAGCATAC (Green et al. 
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2000). A 160 bp probe for E. chlorotica β-actin was generated using the primers 

5’ACGAGGCTCAGTCCAAGAGA and 5’GGAGCCTCTGTGAGCAAGAC. PCR 

conditions used to amplify each gene included 1X enzyme reaction buffer (Promega, 

Madison, WI, USA), 25 mM MgCl2, 10 mM deoxynucleotide triphosphate (dNTP) mix, 

forward and reverse primers (10 μM each), and 1.25 U GoTaq® DNA Polymerase 

(Promega). Cycle conditions were: 94ºC for 2 min, 40 cycles of 94 ºC for 1 min, 49 ºC 

for 1 min, and 72 ºC for 1 min followed by a final elongation at 72 ºC for 10 min. PCR 

products were separated using a 1% agarose gel in TAE buffer (40 mM Tris-HCl, 20 mM 

acetic acid, 1 mM EDTA) and visualized by ethidium bromide staining and UV 

transillumination. PCR products were stored at -20 ºC for no more than 24 hr before 

cloning into the pGEM-T Easy Vector System (Promega). Plasmids containing rbcL and 

β-actin  were sequenced at the University of Maine DNA Sequencing Facility with SP6 

primers to ensure sequence identity. 

 

Fluorescent probe synthesis.  

 DNA for generating fluorescent probes was generated by PCR amplification of 

transformed rbcL plasmid with rbcL forward and reverse primers and the β-actin  

plasmid with β-actin  forward and reverse primers. FISH probes were synthesized from 1 

μg of amplified DNA using the FISH Tag
TM

 DNA Multicolor Kit (Invitrogen) according 

to the manufacturer’s specifications. RbcL probes were labeled with AlexaFluor® 488 

(excitation/emission 488/519 nm) and E. chlorotica β-actin probes were labeled with 

either AlexaFluor® 555 or AlexaFluor® 594 (excitation/emission 555/565 nm and 
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590/615 nm, respectively). Probes were stored protected from light at -20ºC and used 

within 2 weeks of synthesis.    

 

Sample preparation for in situ hybridization.  

 All sea slug and algal samples for FISH analysis were fixed in 4% 

paraformaldehyde in PIPES buffer (50 mM piperazine-N,N′-bis(2-ethanesulfonic acid) 

[PIPES], 100 mM KCl, 2 mM EDTA, 10 mM ethylene glycol tetraacetic acid [EGTA], 5 

mM MgCl2, 200 mM NaCl, 5% dimethyl sulfoxide) at 4ºC overnight (Mine et al. 2001). 

Isolated chloroplasts were fixed the same day that they were isolated to obtain intact 

chloroplasts for hybridization. E. chlorotica F2 generation animals were anesthetized in 

ASW containing 7% (w/v) MgCl2 to allow the parapodia to be fixed in an open body 

position. E. chlorotica veligers hatched from chloroplast-free eggs were collected within 

24 hrs after release from the egg ribbon and fixed prior to any feeding. Chloroplasts and 

veligers were collected by centrifugation at 5000g following fixation and each buffer 

treatment. Veligers were processed post-fixation to remove the shells by washing 3 times 

for 10 min in PIPES buffer followed by digestion with 0.5% trypsin for 15 min. Actively 

growing V. litorea filaments were rinsed briefly in deionized water and cut into ~2 cm 

long segments before fixation. All samples were washed 3 times for 10 min each in 

PIPES buffer after fixation and dehydrated in a graded ethanol series from 70% to 100% 

and stored at -20ºC until hybridization. 
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RbcL in situ hybridization. 

 Fixed V. litorea filaments, isolated chloroplasts, and E. chlorotica F2 generation 

samples were removed from -20ºC and rehydrated in 3 washes with PIPES buffer at 24ºC 

and equilibrated in prehybridization buffer (25% formamide in PIPES buffer) for 10 min 

at 24ºC. Hybridization solution (50% formamide in PIPES buffer, 1 μg ml
-1

 salmon 

sperm DNA) containing either 100 or 200 ng of labeled rbcL probe DNA was added and 

samples heated in a 95ºC water bath for 5 min to denature probe and target DNA. 

Hybridization was carried out overnight at 40ºC followed by a high stringency wash in 

post-hybridization buffer (50% formamide in PIPES buffer) at 45ºC for 10 min, and 3 

washes for 10 min each in PIPES buffer. Samples were viewed using an Olympus 

Fluoview® Confocal Microscope equipped with AlexaFluor® 488 filters 

(excitation/emission 488/519 nm) to visualize bound rbcL probe-gene duplexes and Cy5 

filters (excitation/emission 635/664 nm) to visualize chlorophyll autofluorescence. The 

depth (z-plane) of the microscope was adjusted to include the entire algal filament 

diameter, and adjusted to include the entire height of digestive diverticula in imaged E. 

chlorotica. Serial 1 μm z-plane sections were compiled into stacked images. 

 

Rehybridization of E. chlorotica and V. litorea filaments.  

 Samples hybridized with 100 ng of rbcL probe were rehybridized immediately 

after initial viewing with the confocal microscope. Samples were washed 3 times in 

PIPES buffer for 10 min each and then equilibrated in prehybridization buffer for 10 min. 

Hybridization solution containing 100 ng of the labeled rbcL probe was added to each 

sample to increase the effective probe concentration, and the samples were heated in a 
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95ºC water bath for 5 min to denature probe DNA, target DNA, and previously 

established probe-target duplexes. Samples were hybridized overnight at 40ºC followed 

by a high stringency wash in post-hybridization buffer at 45ºC for 10 min, and 3 washes 

for 10 min each in PIPES buffer. Samples were viewed using an Olympus Fluoview® 

Confocal Microscope equipped with AlexaFluor® 488 filters to visualize labeled rbcL 

probe-gene duplexes and Cy5 filters to visualize chlorophyll fluorescence. Combined z-

stacked images were obtained as above. 

 

β-actin in situ hybridization.  

 E. chlorotica F2 animals and veligers were removed from -20ºC and rehydrated in 

3 washes with PIPES buffer at 24ºC and equilibrated in prehybridization buffer for 10 

min at 24ºC. Hybridization solution containing either 200 or 400 ng of labeled β-actin  

probe DNA was added to the samples and heated in a 95ºC water bath for 5 min. 

Hybridization was carried out overnight at 40ºC followed by a high stringency wash in 

post-hybridization buffer (50% formamide in PIPES buffer) at 45ºC for 10 min, and 3 

washes for 10 min each in PIPES buffer. Samples were incubated with DAPI (5 μg ml
-1

) 

for 10 min to label DNA followed by 3 washes with PIPES buffer. Samples were viewed 

using an Olympus Fluoview® Confocal Microscope equipped with DAPI filters to 

visualize labeled total nuclear DNA regions, AlexaFluor® 594 filters 

(excitation/emission 543/618 nm) to visualize labled β-actin -gene duplexes, and Cy5 

filters  to visualize chlorophyll autofluorescence. The focal plane of the microscope was 

adjusted to include the entire veliger body. Compiled z-stacked images were obtained as 

above. 
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Sectioned E. chlorotica in situ hybridization 

 E. chlorotica F2 generation animals were fixed and dehydrated as described 

above. Sea slugs were embedded in paraffin wax and 10 μm longitudinal sections were 

prepared by the University of Maine Animal Health Lab. Slides containing E. chlorotica 

sections were permeabilized with proteinase K (5 μg ml
-1

) in reaction buffer (2 mM Tris-

HCl, pH 8.0, 2 mM CaCl2) at 37ºC for 10 min. Proteinase digestion was stopped by 

rinsing slides with reaction buffer containing 50 mM MgCl2 followed by two washes in 

PIPES buffer for 5 min. Slides were post-fixed in PIPES buffered 4% paraformaldehyde 

for 10 min at room temperature and washed 3 times with PIPES buffer. AlexaFluor® 488 

tagged rbcL and AlexaFluor® 555 β-actin  probes were denatured for 5 min in a 95ºC 

water bath and added to hybridization buffer. Hybridization mixture containing denatured 

probes was added to slides at a final concentration of 200 ng of each labeled probe per 

slide. Slides were heated on a heatblock at 75ºC for 10 min followed by slow cooling to 

40ºC and overnight hybridization. Slides were washed at 45ºC in post-hybridization 

buffer for 10 min, and 3 washes for 10 min each in PIPES buffer at room temperature. 

Slides were incubated with labeled probes and visualized as described above, with 

AlexaFluor® 568 filters (excitation/emission 543/603 nm) to visualize β-actin  

hybridization.  The focal plane of the microscope was adjusted to include the entire depth 

of each section imaged. Sections were scanned with a single excitation wavelength at a 

time and the images from each filter set compiled using NIH Image J (Rasband 1997).  
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Results 

In situ hybridization to the control chloroplast gene rbcL.  

 Chloroplasts isolated from V. litorea were hybridized with the 892 bp rbcL 

AlexaFluor® 488 probe. In situ hybridization was limited to areas within isolated 

chloroplasts (Fig. 1A, green). Analysis of compiled depth field images (z-stacks) of 

fluorescence from isolated chloroplasts revealed rbcL hybridization at multiple levels of 

depth within the chloroplasts and not a single location. When rbcL was hybridized to 

whole-mount E. chlorotica and V. litorea samples (at a probe concentration of 100 ng) 

minimal probe fluorescence was detected (Figs. 2 and 3, respectively). RbcL fluorescence 

was minimal, with the majority of chloroplasts did not contain any in situ rbcL signal. 

Samples of both E. chlorotica and V. litorea initially hybridized with 100 ng of rbcL 

probe were serially hybridized immediately after examining for in situ signals with a 

second treatment with 100 ng of rbcL probe. The increased effective probe concentration 

produced a greater in situ rbcL fluorescent signal. The chloroplast morphology of the 

algal filaments as well as nearly ubiquitous chlorophyll fluorescence indicated lysis of 

chloroplasts during the in situ protocol. Serially hybridized E. chlorotica samples 

exhibited foci of FISH signal colocalization with chlorophyll fluorescence (Figs. 2F, 

yellow). Serially hybridized V. litorea filaments also had a stronger in situ rbcL signal 

following the second hybridization, but displayed a greater loss of tissue integrity 

following multiple denaturation steps (Figs. 3F, yellow). 

Whole-mount in situ hybridization of  β-actin.  
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 Whole E. chlorotica veligers were hybridized with the 160 bp β-actin  probe (Fig. 

4). Post-hybridization of the veliger nuclei with the DNA binding fluorophore DAPI (Fig. 

4A) allowed the identification of nuclear regions within the newly hatched veliger’s cells. 

The β-actin  FISH fluorescent signal (Fig. 4B) was detected in regions which also stained 

with DAPI (Fig. 4C, white), indicating successful hybridization of the β-actin  probe to 

the E. chlorotica nuclear gene. Little background fluorescent signal was detected in any 

non-nuclear regions of the veligers. Adult E. chlorotica, however, had no specific FISH 

signal from the labeled β-actin  probe (Fig. 5).  Fluorescence from the labeled β-actin  

probe (Fig. 5B) had no specific localization in E. chlorotica samples and minimal 

colocalization with DAPI labeled E. chlorotica DNA (Fig. 5C).  

 

FISH to sectioned E. chlorotica samples. 

 Sectioned E. chlorotica samples were hybridized with labeled rbcL and β-actin  

probes (Fig. 6). FISH signal could be detected for both β-actin  (Fig. 6B) and rbcL probes 

(Fig. 6C). The FISH signal for β-actin  was isolated to DAPI labeled E. chlorotica 

nuclear DNA (Fig. 6D, white). Chlorophyll autofluorescence was not observed in any of 

the chloroplasts in the fixed and sectioned tissues, however alignment of the rbcL FISH 

signal with the DIC overlay showed successful hybridization to chloroplasts of the 

digestive diverticula with the rbcL probe (Fig. 6E).  

 

Discussion 

 The development of a FISH protocol to further characterize HGT in the 

kleptoplastic sea slug E. chlorotica could allow greater insight into the mechanisms of 
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chloroplast maintenance and long-term photosynthetic activity in the absence of the host 

algal nucleus. While studies using PCR to identify photosynthetic genes of interest have 

identified putative HGT events, the discrepancy between PCR studies and large-scale 

transcriptome analysis highlights the importance of developing a wider toolkit for the 

understanding of this remarkable symbiosis.  

 FISH analysis of the Rubisco large subunit gene in V. litorea chloroplasts within 

both E. chlorotica and the alga are the first instances of successful applications of FISH 

to either organism. Localization of in situ signal to multiple depths of the spherical, 

isolated V. litorea chloroplasts is consistent with the known presence of multiple copies 

of the chloroplast genome in chloroplasts (Choquet and Wollman 2002). While FISH 

analysis of plant samples is often used with non-chloroplast tissue due to interfering 

chlorophyll fluorescence, the chloroplasts in E. chlorotica can be used as qualitative 

markers of tissue integrity when optimizing the hybridization steps during FISH. The 

ubiquitous distribution of chlorophyll autofluorescence in V. litorea filaments suggests 

tissue degradation during the in situ protocol, necessitating more work in the necessary 

fixation procedure needed for stable V. litorea filaments.  

 The ability to access the nuclear genome of E. chlorotica using FISH is of 

particular interest to better understand the role of HGT in the maintenance of captured 

chloroplasts. FISH probing of E. chlorotica veligers with fluorescent probes specific for 

E. chlorotica β-actin allowed the FISH signal to be observed in the nuclei of newly 

hatched veligers. While the veliger stage of development is aposymbiotic, genes that have 

been horizontally transferred to E. chlorotica and stably integrated into the nuclear 

genome should be accessible targets for FISH probing in veligers. The small size of the 
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newly hatched veligers allows visualization of most of the animal nuclei in one viewing 

field, making FISH a powerful tool to visualize HGT related genes to determine if they 

have been successfully integrated into the E. chlorotica germline. While the veliger stage 

is aposymbiotic, transcriptional profiling of E. chlorotica development using FISH with 

RNA probes can help elucidate the roles of potential transcripts required in the 

establishment of chloroplast symbiosis. In the neurological model organism Aplysia 

californica, mRNA-FISH was combined with microarray profiling to elucidate 

developmental transcription and localization of transcripts related to neurological 

development as well as metamorphic competence (Heyland et al. 2010). The utilization 

of FISH as a direct molecular approach to target genes of interest in E. chlorotica could 

allow the building of a better understanding of the genomic stability as well as the 

transcriptional profile in a non-model organism without a currently sequenced genome.  

 FISH analysis of adult E. chlorotica using the fluorescent β-actin DNA probe did 

not produce a successful FISH signal in the adult whole-mount sea slugs. While the rbcL 

probe was successful in penetrating the sea slug tissue and FISH signal was detected in 

chloroplasts, the β-actin  fluorescence was diffuse throughout the cells. Potentially, 

copies of the β-actin transcript could have been left undegraded in the cytoplasm of E. 

chlorotica cells, and binding of similar sequences with the β-actin  probe to cytoplasmic 

transcripts could have limited the ability of the probe to produce specific a FISH signal.  

 In sectioned, adult E. chlorotica tissue, both the Rubisco and β-actin genes were 

able to be successfully hybridized to the chloroplast and sea slug nuclear genome, 

respectively. FISH detection of rbcL in sectioned material produced a more uniform 

labeling of chloroplasts compared to whole-mount material, with FISH signal similar to 
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that seen in isolated chloroplasts. While chlorophyll autofluorescence could not be 

detected in sectioned samples, chloroplasts could be visualized in the DIC image of the 

sectioned material, which also matched the location of the FISH rbcL signal. FISH 

detection of β-actin was accomplished in the sectioned E. chlorotica adult, however 

multiple foci appeared within the DAPI labeled E. chlorotica nuclear DNA. These 

multiple FISH β-actin signals could be due to multiple copies of the β-actin gene in the E. 

chlorotica genome, as 12 actin isoforms are present in the gastropod Placopecten 

magellanicus (Patwary et al. 1996) and 4 isoforms in the gastropod Patella vulgata (Van 

Loon et al. 1993).        

 Development of a fluorescent in situ hybridization technique to use with E. 

chlorotica and V. litorea would provide a powerful cytological tool to better understand 

the genetic mechanisms supporting this long-term, functional chloroplast symbiosis. The 

inconsistencies between HGT studies and transcriptome sequencing experiments 

necessitate the use of more techniques in order to draw conclusions on the genetic basis 

of plastid maintenance in an animal. The ability to successfully identify the E. chlorotica 

nuclear β-actin gene in both veliger and sectioned E. chlorotica nuclear DNA using FISH 

provides an opportunity for the technique to be employed on other nuclear genes of 

interest. Application of FISH to HGT studies using both V. litorea and E. chlorotica can 

help determine the extent of HGT in this symbiosis. While DNA probes were used in this 

study, the protocol for FISH in E. chlorotica and V. litorea could be applied to RNA 

probes to identify the transcripts of HGT genes. The combined application of using 

DNA-FISH to identify HGT genes as well as RNA-FISH to identify HGT transcripts 

could provide the foundation for how to employ larger sequencing studies.  
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Figure 1:  The Rubisco large subunit (rbcL) gene was successfully hybridized in V. 

litorea isolated chloroplasts. (A) Intact, isolated chloroplasts were successfully 

hybridized with AlexaFluor® 488 (green) tagged rbcL probe. (B) Chlorophyll 

autofluorescence (red) was visualized with a Cy5 filter set. (C) Merged rbcL in situ signal 

and chlorophyll fluorescence channels with DIC overlay show successful probe 

penetration of isolated chloroplasts by the rbcL probe and hybridization to the V. litorea 

rbcL gene. (Scale bar = 10 μm)  
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Figure 2:  Whole-mount E. chlorotica FISH targeting of the chloroplast Rubisco (rbcL) 

gene. (A-C) E. chlorotica hybridized with 100 ng of AlexaFluor® 488 tagged rbcL probe 

had little FISH signal. (A) Minimal rbcL signal was seen in sea slugs hybridized with 100 

ng of probe (green, arrows). (B) Chlorophyll fluorescence (red) could be visualized in E. 

chlorotica diverticula using a Cy5 filter set. (C) Merged rbcL hybridization and 

chlorophyll channels. Few chloroplasts show successful in situ labeling of the rbcL gene. 

(D-F) E. chlorotica serially hybridized with AlexaFluor® 488 tagged rbcL probes had a 

greater degree of in situ hybridization. (D) RbcL in situ hybridization had a high degree 

of in situ signal (green) with minimal background labeling following the second 
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hybridization. (E) Intact chloroplasts (red) within the diverticula were still present after a 

second hybridization. (F) Merged rbcL in situ signal and chlorophyll channels show 

chloroplasts containing successfully hybridized rbcL genes (yellow). (Scale bar = 10 μm) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3:  Whole-mount FISH analysis of V. litorea filaments targeting the chloroplast 

Rubisco (rbcL) gene. (A-C) V. litorea filaments hybridized with 100 ng of AlexaFluor® 

488 (green) tagged rbcL probe. (A) RbcL FISH signal was seen in filaments hybridized 

with 100 ng of probe. (B) Intact chloroplasts can be visualized in V. litorea filaments 
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using a Cy5 filter set to view chlorophyll autofluorescence (red). (C) Merged rbcL 

hybridization and chlorophyll channels show few chloroplasts successfully hybridized 

with the rbcL gene (yellow). (D-F) V. litorea serially hybridized with AlexaFluor® 488 

tagged rbcL probe had a greater degree of in situ hybridization to the chloroplast gene. 

(D) RbcL in situ hybridization detected with a set had a high degree of in situ signal 

(green) than the first hybridization. (E) Chloroplasts (red) are still present after the second 

hybridization of the filament, however the stability of the algal tissue appears to have 

been damaged during the hybridization process due to the diffuse chlorophyll 

fluorescence. (F) Merged rbcL in situ signal and chlorophyll channels show chloroplasts 

containing successfully hybridized rbcL genes (yellow). A greater degree of successful 

FISH of rbcL was accomplished in the second hybridization. (Scale bar = 10 μm) 
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Figure 4:  A newly hatched, unfed E. chlorotica veliger used for in situ hybridization to 

detect the nuclear β-actin gene. (A) Veliger nuclei were visualized by post-hybridization 

labeling with DAPI (blue). (B) Veliger probed with AlexaFluor® 594 (green) tagged β-

actin had distinct regions of in situ signal. (C) Merged DAPI and β-actin channels 

indicate in situ hybridization of the nuclear β-actin gene to E. chlorotica nuclei (white) 

with minimal non-nuclear labeling. (D) DIC overlay of the merged DAPI and β-actin 

channels allow all nuclei of the veliger to be visualized in a single viewing field. (Scale 

bar = 10 μm) 
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Figure 5:  Whole-mount FISH analysis of adult E. chlorotica targeting the nuclear β-actin 

gene did not localize to nuclear regions. (A) Sea slug nuclei were visualized by post-

hybridization labeling with DAPI (blue) (B) AlexaFluor® 594 (green) tagged β-actin 

probes aggregated non-specifically in E. chlorotica tissue. (C) Merged DAPI, 

AlexaFluor® 594, and chlorophyll Cy5 (red) channels show no specific nuclear labeling 

of sea slug β-actin genes. (Scale bar = 10 μm)    
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Figure 6:  E. chlorotica FISH analysis of sectioned adult tissue successfully targeting the 

nuclear β-actin gene and the chloroplast Rubisco gene. (A) Sea slug nuclei were 

visualized by post-hybridization labeling with DAPI (blue). (B) AlexaFluor® 568 

(yellow) tagged β-actin probe was able to be successfully hybridized to sectioned E. 

chlorotica tissue. (C) AlexaFluor® 488 (green) tagged rbcL probe localized exclusively 

to chloroplast DNA. (D) Merged DAPI, AlexaFluor® 488, and AlexaFluor® 568 images 
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show the selectivity of each probe for the rbcL and β-actin  genes, respectively. The 

nuclear β-actin gene was successfully hybridized with the β-actin probe (white). (E) 

Intact chloroplasts can be seen in the DIC overlay of merged fluorescent images. No 

chlorophyll autofluorescence was detectable in the sectioned tissues.  (Scale bar = 10 μm)    
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