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[1] The analytical force balance traditionally used in glaciology relates gravitational
forcing to ice surface slope for sheet flow and to ice basal buoyancy for shelf flow. It is
unable to represent stream flow as a transition from sheet flow to shelf flow by having
gravitational forcing gradually passing from being driven by surface slope to being driven
by basal buoyancy downslope along the length of an ice steam. This is a serious defect,
because ice streams discharge up to 90% of ice from ice sheets into the sea. The defect is
overcome by using a geometrical force balance that includes basal buoyancy,
represented by the ratio of basal water pressure to ice overburden pressure, as a source of
gravitational forcing. When combined with the mass balance, the geometrical force
balance provides a holistic approach to ice flow in which resistance to gravitational flow
must be summed upstream from the calving front of an ice shelf. This is not done in the
analytical force balance, and it provides the ice-thinning rate required by gravitational
collapse of ice sheets as interior ice is downdrawn by ice streams. INDEX TERMS: 1645

Global Change: Solid Earth; 1863 Hydrology: Snow and ice (1827); 1827 Hydrology: Glaciology (1863);

3210 Mathematical Geophysics: Modeling; KEYWORDS: glaciology, geometrical force balance, ice, flow
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1. Introduction

[2] A holistic approach to ice sheet modeling, based on a
geometric force balance, is presented to show how ice
sheets can trigger rapid climate change by undergoing large,
rapid changes in size and shape that radically alter climatic
equilibrium. This approach departs from that by Hughes
[1992, 1998] by including ice thinning or thickening over
time, and by extending the solution to ice flow that may or
may not end in water.
[3] Ever since Orowan [1949] took the first step in

transforming glaciology from a descriptive branch of geol-
ogy into a quantitative branch of physics, an underlying
assumption has been that glacial flow can be quantified
adequately by balancing local forces at a point. Specifically,
a gravitational driving force proportional to the product of
ice thickness and ice surface slope induces downslope ice
motion that is resisted primarily by the shearing force at the
bed, and secondarily by shearing forces along the sides of a
flowband and longitudinal extending or compressive forces
along the length of the flowband [Nye, 1951]. It is known
that side shear is negligible for slow uniform ‘‘sheet flow’’
in continental ice sheets [Nye, 1959], but can exceed basal
shear in ice streams, which are fast currents of ice that drain
up to 90% of ice sheets [e.g., Hughes, 1977; Echelmeyer et
al., 1994; Whillans and Van der Veen, 1997]. Longitudinal
forces were considered to arise primarily from changes in
the surface mass balance, bed topography, and ice-bed
coupling [e.g., Van der Veen, 1999, pp. 236–244]. That

all of these forces could be balanced locally remained an
underlying assumption of ice sheet dynamics after Mahaffy
[1976] showed how one-dimensional flowband models
could be converted into two-dimensional grid point models
in the map plane. Map-plane models typically balance the
local gravitational force against only the local basal shear
force at grid points [e.g., Budd et al., 1984; Fastook, 1992;
Huybrechts, 1990, 1994; Greve, 1997].
[4] Challenges to this assumption began when Thomas

[1973a, 1973b] showed that ‘‘shelf flow’’ in floating ice
shelves could be severely retarded by shear along the sides
of embayments that confine an ice shelf and by shear over
or around sites of local grounding which produce ice
rumples or ice rises, respectively, on the surface of an ice
shelf. These resisting forces could not balance gravitational
forces locally because they exerted a cumulative effect from
the calving front to the grounding line of a given ice-shelf
flowband. This was the first demonstration that a holistic
approach was needed in modeling flow of ice shelves, an
approach used by Thomas and MacAyeal [1982] in force
balance calculations at a grid-like set of locations on the
Ross Ice Shelf in Antarctica. The ‘‘back force’’ resisting
gravitational forcing at each grid point was determined by
subtracting the observed ice velocities from those calculated
using the Weertman [1957a] expression for an unconfined
ice shelf.
[5] A challenge to the assumption that a local balance of

forces was adequate to describe ice sheet dynamics was
presented by Hughes [1992] on the grounds that ice streams
discharged up to 90% of ice from ice sheets, that stream flow
was transitional between sheet flow and shelf flow, and that a
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holistic approach to ice stream dynamics was needed to
describe the transition. The centerpiece of this holistic
approach was a geometrical force balance in which, for a
given ice thickness, gravitational forcing was controlled
mainly by ice surface slope at the head of an ice stream and
mainly by ice height above water when the ice stream
becomes afloat. Ice height above water was controlled by
basal buoyancy so gravitational forcing for ice stream
dynamics could be represented by a transition from surface
slope to basal buoyancy along the downstream length of an
ice stream. Resistance to gravitational forcing was provided
not only by the ‘‘back forces’’ in the ice shelf beyond the
ice stream, but also by basal shear, side shear, and longi-
tudinal extension or compression, all summed cumulatively
upstream along the ice stream. This is the holistic approach.
Other holistic approaches to modeling ice streams that
indirectly invoked basal buoyancy were developed by
MacAyeal [1989] and Hulbe and MacAyeal [1999].
[6] The geometrical force balance, unlike an analytical

force balance, allows gravitational forcing at each point
along a flowband or in a map-plane grid of points to be
partitioned between contributions from surface slope and
basal buoyancy, as represented by the ratio of basal water
pressure PW to ice overburden pressure PI. This partitioning
is represented by the difference in areas of triangles whose
areas are the gravitational force per unit width of a flow-
band. Partitioning can be determined only if all downstream
forces resisting stream flow are calculated and summed
from the calving front to the grounding line of an ice shelf
and then up the ice stream supplying the ice shelf. In this
holistic approach, reductions of downstream resisting
forces, notably disintegration of the buttressing ice shelf,
can be transmitted almost instantaneously up an ice stream
and result in accelerated downdraw of interior ice and
gravitational collapse of the ice sheet [Hughes, 1986,
1998, pp. 7–11]. Reliance on only a local balance of forces
will not deliver these positive feedbacks, and leads to the
unwarranted conclusion that ice sheets respond only slowly
and passively to climate change through changes in their
mass balance. In fact, ice sheets may trigger climate change
by rapid collapse and discharge of ice driven by inherent
internal positive feedback mechanisms [Heinrich, 1988;
Andrews and Tedesco, 1992].
[7] Demonstrating the capacity of ice sheets to undergo

rapid changes that might give rise to rapid climate change is
not the goal of this investigation. Rather, it is to lay the
foundation upon which a demonstration might be based.
Sections 2 through 5 review conventional glaciological
treatments for gravitational thinning rates of free and
confined ice shelves. Sections 6 through 8 extend these
treatments to include thinning of ice streams in a geomet-
rical force balance.
[8] Section 2 shows how the linear increase with depth

through ice of longitudinal and vertical stresses sxx and szz
can be represented by triangles, with the difference in area
of triangles being the respective longitudinal gravitational
forces per unit flowband width for shelf flow and for sheet
flow. Section 3 shows how ice-thinning rates along the
flowband are related to the mass balance and the longitu-
dinal strain rate for transitions from sheet flow to stream-
flow to shelf flow. Section 4 introduces basal buoyancy into
the force balance for fully buoyant freely floating ice,

calculates the longitudinal buoyancy force, and converts it
into a longitudinal deviator stress. The flow law of ice is
then used to convert that stress into the longitudinal strain
rate in the mass balance. Section 5 combines the mass
balance in section 3 with the longitudinal strain rate in
section 4 to obtain the ice thickness gradient of an ice shelf
along a flowband from its calving front back to its ground-
ing line. It includes the effect of resistance from side shear,
which is then converted into a longitudinal compressive
stress that opposes the gravitational longitudinal extending
stress.
[9] Section 6 introduces basal buoyancy factor PW/PI for

ice streams. It can increase from nearly zero to nearly one
downstream, and it reduces the longitudinal deviator stress
for shelf flow. Its corresponding longitudinal strain rate is
combined with the mass balance and stresses resisting flow
to give the typically concave surface of stream flow. This
concave surface is transitional from the convex surface of
sheet flow as PW/PI ! 0 to the flat surface of shelf flow as
PW/PI ! 1. Section 7 shows how the geometrical force
balance is related to the traditional analytical force balance.
The two are the same, but the geometrical force balance
relates the longitudinal deviator tensile stress to PW/PI.
Section 8 is more speculative and concludes the study. It
discusses how variations of PW/PI might allow the concave
surface of an ice stream to become the convex profile of an
ice lobe if it ends on land instead of in water, and how PW/PI

might trigger gravitational collapse of an ice sheet or halt
collapse.

2. A Geometrical Representation of Gravity
Forces

[10] A geometrical representation of longitudinal gravita-
tional forcing is illustrated in Figure 1. It shows that for both
floating and grounded ice, gravitational motion by horizon-
tal spreading along x and vertical thinning along z occurs
because horizontal stress sxx is slightly less compressive
than vertical stress szz, so that sxx � szz is a tensile
longitudinal deviatoric stress sT that deviates from the
hydrostatic (lithostatic for ice) state of stress for which there
is no ice motion. For ice thickness hI in Figure 1, the
longitudinal gravitational driving force along x per unit
transverse width of ice along y is the shaded area that lies
between the sloping lines showing the respective increase of
sxx and szz with depth through the ice for both floating and
grounded ice. With syy = szz, so transverse strain rate _eyy = 0,
Figure 1 represents a plane-strain condition. For floating ice
with a draught hW below water, the shaded area results from
an ice elevation of height hI � hW floating above water, and
this gravitational force is balanced by the tensile force hI
(sxx � szz), both being forces per unit width of ice. For
grounded ice, the shaded area results from a change �h in
ice elevation along horizontal distance �x because
grounded ice has a surface slope �h/�x, with �h = �hI
for a horizontal bed. This produces a tensile gravitational
force hI (sxx � szz) = �hI�szz that is balanced by a basal
drag force tO�x, where tO is the basal shear stress in ice,
and�szz/�x remains finite as�x! 0. As with floating ice,
these are forces per unit width of ice. The force balance in
both cases is obtained by using the difference in area of
triangles formed from the linear increase of compressive
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stresses sxx and szz with depth through the ice. This
difference is caused by basal buoyancy for floating ice
and by surface slope for grounded ice. It provides a
geometrical force balance based on representing gravita-
tional forcing by the areas of triangles. It was used explicitly
by Robin [1958] in his treatment of ice-shelf spreading and
implicitly by Nye [1952] in his treatment of ice-sheet
spreading.
[11] A danger of the geometrical force balance shown in

Figure 1 and subsequent figures is that it creates the false
impression that sxx � szz varies through the ice thickness,
so that longitudinal strain rate _exx varies vertically. Neither is
true. Both sxx � szz and _exx are constant in the z direction.
To make this point, the shaded triangle that represents sxx �
szz should be replaced by a rectangle having constant sxx �
szz along z and having the same area as the triangle. This
would emphasize that the size of the shaded area is the
important feature in the geometrical force balance, not the
shape of the shaded area.
[12] Ice streams discharge upwards of 90% of ice into the

sea for both the ice sheets of Greenland and Antarctica. Ice
streams are therefore the primary vehicles by which an ice
sheet becomes an ice shelf. This ‘‘march to the sea’’ is, of
course, offset by precipitation over the ice sheets that
continually supplies new ice, so that ice lost by the force
balance is returned in greater or lesser measure by the mass
balance, causing the ice sheets to grow or shrink. Since

stream flow is the primary vehicle by which sheet flow
becomes shelf flow, the gravitational driving force for ice
streams should involve both the surface slope and basal
buoyancy of ice, with surface slope dominating at the head
of an ice stream where sheet flow becomes stream flow, and
basal buoyancy dominating at the foot of an ice stream
where stream flow becomes shelf flow. This was done by
combining the mass balance with a geometrical force
balance [Hughes, 1992]. However, most glaciologists still
use only the ice surface slope when treating sheet flow and
stream flow, reserving basal buoyancy only for treatments
of shelf flow. This is a fundamental defect in glaciology
because it ignores a major component of gravitational
forcing by which ice sheets discharge ice into the sea.
[13] An attempt to correct this defect is made by first

writing the equation for mass balance in a way that
emphasizes the longitudinal strain rate _exx, since it arises
from ice flow produced by the stress difference sxx � szz.
Then the geometrical force balance is applied to longitudi-
nal spreading of a tabular iceberg, an ice shelf grounded at
one end, an ice shelf grounded at one end and along both
sides, and an ice stream that supplies the ice shelf. This
approach illustrates the power of the geometrical force
balance as it is applied from the most simple to the most
complex glacial system. Unlike earlier applications of the
geometrical force balance [Hughes, 1996, 1998], ice thin-
ning or thickening over time is also included in this

Figure 1. A geometrical representation of gravitational forcing in floating and grounded ice. (a) Floating
ice having constant thickness. (b) The gravitational driving force per unit width of ice is the shaded area
between the increase with depth of compressive stresses szz and sxx for floating ice. (c) Sloping ice
grounded on a horizontal bed. (d) The gravitational driving force per unit width of ice is the shaded area
between compressive stresses szz + �szz and szz for grounded ice over incremental upslope length �x. In
this and subsequent figures, the shaded areas in Figures 1b and 1d are the horizontal gravitational force
per unit width. Vertical distributions of these areas do not cause vertical variations in horizontal strain rate
_exx. The size of the shaded areas in Figures 1b and 1d are important, not their shape. The same is true of
the shaded areas in Figures 2, 3, 4, and 6. To emphasize that _exx is constant through the ice thickness, all
these shaded areas could be replaced by rectangles having the same area and a constant width,
representing longitudinal deviator stress, in the z direction.
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application. Advantages of this approach are discussed and
appropriate conclusions are drawn.

3. Mass Balance for Longitudinal Creep in Ice

[14] An ice sheet generally creeps by longitudinal exten-
sion in the accumulation zone and by longitudinal compres-
sion in the ablation zone as it responds to the mass balance.
In the mass balance, ice has thickness hI at distance x from
the origin of axes x, y, z, with x and y in horizontal
directions, x positive against ice flow and y positive abeam
of ice flow, and z positive upward in the vertical direction.
In this treatment, x is positive toward the center of ice
spreading, and follows ice flowbands having variable width
wI. The mass balance for constant ice accumulation rate a,
variable ice thickness hI, and ice velocity ux (negative ux
because ice flows in the minus x direction) must allow for
an ice thickening (positive) or thinning (negative) rate of

dhI=dt ¼ aþ hI _ezz � uxdhI=dx

¼ a� hI 1þ _eyy=_exx
� �

_exx � uxdhI=dx; ð1Þ

where _exx, _eyy, and _ezz are respective longitudinal, transverse,
and vertical strain rates such that �exx + �eyy + �ezz = 0 in order
to conserve ice volume, and dhI/dx is the ice thickness
gradient. Strain rates are related to velocity gradients as
follows:

_eij ¼ 1=2 @ui=@jþ @uj=@i
� �

; ð2Þ

with indices i, j = x, y, z in all combinations according to
standard tensor notation. Mass balance conservation also
requires that for a flowband of variable width wI at
upstream distance x, where wI = wO, hI = h0, and ux = u0
at x = 0, for average width �wI and average thickening or
thinning rate d�hI /dt along x, assuming d�wI /dt � d�hI /dt and
can be ignored,Z x

O

�w @h=@tð Þdx � d�hI=dt
� �

�wIx ¼ a�wIx� wIhIux � w0h0u0ð Þ: ð3Þ

In applications of equation (3) used here, x = 0 is at the
ice-shelf calving front, as required in a holistic approach,
and where w0, h0, and u0 are relatively easy to measure.
[15] Combining equations (1) and (3), and solving for ice

thickness gradient dhI/dx,

dhI

dx
¼

wIhI a� dhI=dtð Þ � hI 1þ _eyy=_exx
� �

_exx
� �

a� d�hI=dt
� �

�wIxþ w0h0u0
: ð4Þ

If flowband width wI changes an incremental amount �wI

over incremental length �x, where equation (2) gives _exx =
�ux/�x for incremental velocity change �ux along �x,
then _eyy = (�w/w)�ux/�x for mean velocity �ux along �x. In
equation (4),

_eyy
_exx

¼ �wI=wIð Þ�ux=�x

�ux=�x
¼ �wI�ux

wI�ux
: ð5Þ

[16] Equation (4) applies for sheet flow, stream flow, and
shelf flow. For one-dimensional linear flow, wO = wI = �wI ,

and _eyy = 0. For mass balance equilibrium, @hI=@t ¼
@�hI=@t ¼ 0 and equation (4) becomes

dhI

dx
¼ hI a� hI _exxð Þ

axþ h0u0
: ð6Þ

For shelf flow that can diverge and converge along x, the ice
slab in Figure 1 creeps uniformly to the right and left so that
dhI/dx = 0, and equation (4) becomes

dhI=dt ¼ a� hI _exx þ _eyy
� �

¼ aþ hI _ezz: ð7Þ

When the ice slab in Figure 1 is a tabular iceberg,
_exx ¼ _eyy ¼ �1=2_ezz.

4. Force Balance for Creep of Buoyant Ice

[17] The vertical force balance at the base of the ice slab
in Figure 1 requires that a downward gravitational body
force FB is offset by an upward compressional force FC such
that

FB � FC ¼ mIgz � PIAz ¼ rI hIAzgz � PIAz ¼ 0; ð8Þ

where mI is the ice mass, rI is ice density, Az is the basal area
of the ice slab over length x and width wI, gz is the vertical
acceleration vector due to gravity, and PI is the ice
overburden pressure at the base of the slab. The vertical
force balance for an equivalent mass mW of water is

FB � FC ¼ mWgz � PWAz ¼ rWhWAzgz � PWAz ¼ 0; ð9Þ

where rW is water density. In equations (8) and (9), area Az =
wIx is a vector in the z direction and gives the direction of
vertical forces FC. Equations (8) and (9) give

PI ¼ rI ghI ; ð10aÞ

PW ¼ rWghW ; ð10bÞ

PW

PI

¼ rWhW

rI hI
; ð10cÞ

where gravity is now represented by the scalar g because PW

and PI are scalars. For ice having full, partial, and no
support from basal buoyancy, PW/PI = 1, 0 < PW/PI < 1, and
PW/PI = 0, respectively. Ratio PW/PI is therefore a measure
of ice-bed coupling. For the floating ice slab in Figure 1,
PW/PI = 1 so hI = (rW/rI) hW is the buoyancy condition. The
gravitational driving force in Figure 1 arises from ice height
h = hI � hW above water for shelf flow, compared to ice-
height change �h in length �x for sheet flow, where a =
�h/�x is the local ice surface slope as �x ! 0. Note that
ice height h is elevation above sea level, whereas ice
thickness hI is elevation above the bed. In both cases, ice
moves in the horizontal direction to displace air. The
horizontal force balance for the floating ice slab can be
performed at either end of the slab, where average ice
pressure �PI = 1/2PI on area (Ax)I = wIhI of ice is only partly
offset by average water pressure �Pw = 1/2PW on area (Ax)W =
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wIhW of water, so the force balance requires a deviatoric
tensile stress sT on area (Ax)I,

�PI Axð ÞI��PW Axð ÞW�sT Axð ÞI¼ 0: ð11Þ

Substituting for �PI and �PW using equations (10a) and (10b)
for PI and PW,

1=2rI ghIð ÞwIhI � 1=2rWghWð ÞwIhW � sTwIhI ¼ 0: ð12Þ

Applying the geometrical force balance, the first two terms
are the difference in areas of the force triangles for the
floating ice slab in Figure 1. Areas (Ax)I and (Ax)W are
unequal positive and negative horizontal vectors that make
sT positive (tensile), since �PI and �PW are scalars and �PI = �PW

for buoyant ice. Solving equation (12) for sT,

sT ¼ 1=2rI ghI 1� rI=rWð Þ: ð13Þ

Equation (13) was first derived by Weertman [1957a]. As
seen in Figure 1, sT is tensile because pressure P in the ice
slab is the average of compressive stresses, sxx, syy, and szz,
where syy = szz but sxx < szz for linear flow along x because
stretching of ice by strain rate _exx makes sxx less
compressive than syy and szz. According to the flow law
of ice, using the standard tensor notation [Nye, 1953],

_eij ¼ sn�1
e =An

� �
s0ij; ð14Þ

where n is a viscoplastic creep parameter such that n = 1 for
viscous creep and n = 1 for plastic creep, A is an ice
hardness parameter that depends on ice temperature and
crystal fabric, sij

t is a deviator stress that causes creep
deformation, and se is an effective creep stress that is
related to the second invariant of deviator stresses 1/2sij

tsji
t

such that 2se
2 = sij

tsji
t . Since skk is the first invariant of

applied stresses sij, such that skk = 3P, flow is caused by
deviator stresses sij

t that deviate from the lithostatic and
hydrostatic spherical symmetry of P for ice and water,

s0ij ¼ sij � 1=3dijskk ¼ sij � 1=3dij sxx þ syy þ szz
� �

¼ sij � dijP;

ð15Þ

where dij is the Kronecker delta for which dij = 1 when i = j
and dij = 0 when i 6¼ j. Then, since sxx

0 + syy
0 + szz

0 = 0 from
equation (15) and syy

0 /sxx
0 = _eyy/_exx from equation (14),

sT ¼ sxx � szz ¼ s0xx þ P
� �

� s0zz þ P
� �

¼ s0xx � s0zz
¼ s0xx þ s0xx þ s0yy

� �
¼ 2s0xx þ s0yy ¼ 2þ s0yy=s

0
xx

� �
s0xx

¼ 2þ _eyy=_exx
� �

s0xx: ð16Þ

The expression for se uses sij
0 = sji

0 because stress is a
symmetrical tensor and uses sij

0 /sxx
0 = _ei j/ _exx by

equation (14),

se ¼ 1=2s0ijs
0
ji

� �1=2

¼ 1=2 s02xx þ s02yy þ s02zz þ 2s2xy þ 2s2yz þ 2s2zx
� �h i1=2

¼ 1

2
þ 1

2

_eyy
_exx


 �2

þ 1

2

_ezz
_exx


 �2

þ
_exy
_exx


 �2
"

þ
_eyz
_exx


 �2

þ
_ezx
_exx


 �2
#1=2

s0xx

ð17Þ

Combining equations (14) and (17) for _eij = _exx,

_exx ¼
1

2
þ 1

2

_eyy
_exx


 �2

þ 1

2

_ezz
_exx


 �2

þ
_exy
_exx


 �2
"

þ
_eyz
_exx


 �2

þ
_ezx
_exx


 �2
#n�1

2

� s0xx
A


 �n

¼ R s0xx=A
� �n

; ð18Þ

where R is a scalar that captures the invariant property of
se. For linear creep along x, _exx = �_ezz and _eyy = _exy = _eyz =
_ezx = 0, so that sT = 2s0xx in equation (16) and R = 1 in
equation (18).

5. Creep of a Partly Grounded Ice Shelf

[18] The spreading rate for floating ice is obtained by
using the flow law given by equation (18) to link strain rate
_exx in equation (7) for the mass balance to tensile stress sT
given by equations (13), (16), and (18) for the force balance,

_exx ¼ R
s0xx
A


 �n

¼ R
rI ghI

2 2þ _eyy=_exx
� �

A
1� rI

rW


 �" #n

: ð19Þ

Equation (19) gives the Weertman [1957a] strain rate for a
freely floating ice shelf. For linear flow of buoyant ice, _eyy= 0,
R = 1, and equations (7) and (19) give

dhI

dt
¼ a� hI _exx ¼ a� hI

rI ghI
4A

1� rI
rW


 �� �n
: ð20Þ

[19] An ice shelf grounded at one end cannot thin
uniformly because ice crossing the grounding line has a
thickness gradient and velocity that differs from the creep
thinning rate _ezz of floating ice. Figure 2 shows an ice shelf
of length L that calves at x = 0, where ice thickness hI is
specified as h0 and inland ice reaches the calving front at
negative velocity u0. The equilibrium ice thickness gradient
for floating ice is given by equation (6) with _exx given by
equation (19) when _eyy = 0 and R = 1 for linear flow,

dhI

dx
¼ ahI

axþ h0u0
� h2I
axþ h0u0

rI ghI
4A

1� rI
rW


 �� �n
: ð21Þ

Equation (21) was originally derived by Van der Veen
[1983], who took h0, u0, and x = 0 at the ice-shelf grounding
line with x positive downslope, so that u0 is positive.
[20] To prevent lateral spreading, the ice shelf must be

grounded along its sides and have constant width wI. The
compressive force FC provided by lateral drag is

FC ¼ sCAx ¼ sCwIhI ¼ �tSAy ¼ 2�tS�hI x; ð22Þ

where sC is a longitudinal compressive stress acting on
transverse area Ax = wIhI for ice thickness hI at distance x
from the calving front and �tS is an average side shear stress
acting on side areas Ay = 2�hIx having average ice thickness
�hI along distance x, so that

sC ¼ 2�tS�hI x
wIhI

¼ 2�tS
wIhI

Z x

0

hIdx: ð23Þ
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Tensile stress sT in equation (13) is then replaced by sT +
sC, so that

sT ¼ 1=2rI ghI 1� rI=rWð Þ � sC : ð24Þ

Equation (19) with 2s0xx = sT + sC then gives the Thomas
[1973a, 1973b] strain rate for a linear ice shelf buttressed
along its sides (as in a fjord),

_exx ¼
rI ghI
4A

1� rI
rW


 �
� sC
2A

� �n
: ð25Þ

Equation (25) applies for plane strain in which width wI is
constant for a linear ice shelf grounded at the back and
sides, so that along the centerline _eyy = _exy = _eyz = _ezx = 0 and
_exx = �_ezz gives R = 1 in equation (18).

6. Creep of a Partly Buoyant Ice Stream

[21] Assume that stream flow begins as sheet flow for
which PW/PI ! 0 and ends as shelf flow for which PW/PI !
1. Then basal buoyancy must be included in the horizontal
force balance along the ice stream. Let equation (4) give the
ice thickness gradient, with x positive upslope from the ice-
shelf calving front, where x = 0, hI = h0, and ux = u0 is the
negative ice velocity, as shown in Figure 3. The horizontal

force balance is calculated for the vertical cross-section at
distance x upstream from the calving front.
[22] The shaded area of the force triangle in Figure 3

gives the horizontal force (sT + sC)wIhI caused when sxx
is less compressive than szz and causes longitudinal
extending strain rate _exx because PW/PI increases down-
slope. If PW/PI decreases downslope, sT + sC is negative
because sxx is more compressive than szz and _exx is
negative for compressive flow. This can happen if an
ice stream moves faster upslope than downslope, such as
Kamb Ice Stream (formerly Ice Stream C) in Antarctica
[Joughin et al., 2002]. Basal buoyancy makes no contri-
bution to ice flow when hW = 0, so that PW/PI = 0 in
equation (10c), sxx = szz, _exx = 0 and the area of the
force triangle in Figure 3b is 1/2PIhI = 1/2rIghI

2 using
equation (10a). When sxx < szz, that area is reduced by
the areas of triangle 1, rectangle 2, and triangle 3, to give
the shaded area in Figure 3b. These areas are 1/2(PI �
PW)[hI � (rW/rI)hW] for triangle 1, (PI � PW)(rW/rI)hW for
rectangle 2, and 1/2PWhW for triangle 3. Equating the shaded
area to (sT + sC)hI gives the geometrical force balance
because it uses these geometrical representations of force.
Triangle 1 is the force per unit width in ice not supported by
basal water pressure PW, and rectangle 2 shows that szz at the
base of triangle 1 is transmitted totally to the bed. Triangle 3

Figure 2. A geometrical representation of gravitational forcing for an ice shelf that thins seaward of its
grounding line. (a) The concave ice thickness profile for shelf flow. (b) The gravitational driving force per
unit width of ice is the shaded area between the increase with depth of compressive stresses szz and sxx in
floating ice.
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is the force per unit width that is supported totally by basal
water pressure PW. The horizontal force balance is then

1=2PIhI � 1=2 PI � PWð Þ hI � rW=rIð ÞhW½ � � PI � PWð Þ
� rW=rIð ÞhW � 1=2PWhW � sT þ sCð ÞhI ¼ 0; ð26Þ

where 1/2PIhI is the total area of triangle 1, rectangle 2,
triangle 3, and the shaded area. Using equations (10) and
solving for sT,

sT ¼1=2PI � 1=2 PI � PWð Þ 1� PW=PIð Þ � PI � PWð Þ PW=PIð Þ
� 1=2PW rI=rWð Þ PW=PIð Þ � sC

¼ 1=2PI 1� rI=rWð Þ PW=PIð Þ2�sC

¼ 1=2rI ghI 1� rI=rWð Þ PW=PIð Þ2�sC : ð27Þ

[23] Setting sT = 2s0xx for linear stream flow in plane strain,
as represented by Figure 3 for _eyy = 0 and R = 1, equation (27)
can be substituted for s0xx in equation (18), which then gives
_exx for the mass balance. Then the ice thickness gradient of
stream flow is given by equation (6) for mass balance
equilibrium,

dhI

dx
¼ hIa

axþ h0u0
� h2I
axþ h0u0

� rI ghI
4A

1� rI
rW


 �
PW

PI


 �2

� sC
2A

" #n

:

ð28Þ

Taking hR as bedrock height above (positive) or depth
below (negative) sea level, so h = hI + hR is ice height
above sea level, ice surface slope �h/�x = �hI/�x +
�hR/�x is

�h

�x
¼ hIa

axþ h0u0
� h2I
axþ h0u0

rI ghI
4A

1� rI
rW


 �
PW

PI


 �2

� sC
2A

" #n

þ�hR

�x
: ð29Þ

[24] Note that equation (28) for stream flow reduces to
equation (21) for linear shelf flow when PW/PI = 1 and
sC = 0. Compressive stress sC arises from side shear
stress tS averaged over distance x from the calving front
of the ice shelf and basal shear stress tO averaged over
distance x � L from the ice-shelf grounding line. Com-
pressive force FC is

FC ¼ sCAx ¼ �tSAy þ �tOAz ¼ sCwIhI ¼ 2�tS�hI xþ �tO�wI x� Lð Þ;
ð30Þ

where Ax = wIhI is the transverse cross-sectional area at
distance x upslope from the calving front, Ay = 2�hIx is the
side area for average ice thickness �hI from x to the ice-shelf

Figure 3. A geometrical representation of gravitational forcing for an ice stream that thins downstream
and supplies ice to an ice shelf. (a) The concave ice thickness profile for stream flow that becomes shelf
flow. (b) The gravitational driving force per unit width of ice is the shaded area between the increase with
depth of compressive stresses szz and sxx in ice that is supported both by basal water and the bed.
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calving front, and Az = �wI (x � L) is the basal area for an ice
stream of average width �wI . Solving for sC,

sC ¼ 2�tS�hI x
wIhI

þ �tO�wI x� Lð Þ
wIhI

¼ 2�tS
wIhI

Z x

0

hIdxþ
�tO�wI x� Lð Þ

wIhI
:

ð31Þ

Since tS, t0, and hI change continuously along x, it
would be useful if these contributions to sC could be

incorporated into equation (28) for �hI/�x at successive
steps of incremental length �x, width wI, and height hI
above the bed where the ice column touches the bed at
distance x upstream from the ice-shelf calving front and
basal water pressure PW would support water of height
hW above the bed, as seen in Figure 4a. At incremental
distance �x upstream, these heights would be hI + �hI
and hW + �hW, where �hI and �hW can be positive or
negative. Ice elevation h above sea level increases by

Figure 4. A geometrical representation of gravitational forcing showing an incremental addition to
forcing for an ice stream that thins downstream and supplies ice to an ice shelf. (a) The concave ice
thickness profile for stream flow that becomes shelf flow. Gravitational driving forces are applied to the
vertical ice column. Ice thickness gradient �hI/�x contributes to gravitational forcing only through
surface slope�h/�x =�hI/�x ��hR/�x. (b) The gravitational driving force per unit width of ice on the
upstream side of the ice column is the shaded area between the increase with depth of compressive
stresses szz + �szz and sxx + �sxx in distance �x. Gravitational forcing is caused by surface slope �h/
�x, basal buoyancy PW/PI, and gradient �(PW/PI)/�x in basal buoyancy. (c) The gravitational driving
force per unit width of ice on the downstream side of the ice column is the shaded area between the
increase with depth of compressive stresses szz and sxx. Ice is supported partly by the bed and partly by
basal water along �x, where �szz makes szz more negative (more compressive) and �sxx can make sxx
more or less negative (compressive), but makes sxx more negative here. Gravitational forcing is caused by
basal buoyancy PW/PI.
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�h, so �h/�x is the ice surface slope in incremental
distance �x.
[25] The horizontal force balance on the ice column in

Figure 4 duplicates the forces in Figure 3 and over
incremental length �x adds side shear force FS = 2tS
(hI+ 1/2�hI)�x, basal shear forceFO = tOwI�x, and positive
or negative increment�sT to the tensile force FT so that sT at
x becomes sT + �sT at x + �x due to positive or negative
change �hW in hW. In the geometrical force balance, hori-
zontal force per unit width (sT + �sT)(hI + �hI) at x + �x
offsets the shaded area in Figure 4b. This shaded area on the
upslope side of the ice column is area 1/2(PI +�PI)(hI +�h)
minus the combined areas of triangle 1, rectangle 2, and
triangle 3. The geometrical force balance for the horizontal
direction is then

1=2 PI þ�PIð Þ hI þ�hð Þ � 1=2 PI � PWð Þ hI � rW=rIð ÞhW½ �
� PI � PWð Þ rW=rIð ÞhW � 1=2PWhW

� sT þ�sTð Þ hI þ�hIð Þ � sChI
� 2tS hI þ 1=2�hIð Þ�x=wI � tO�x

¼ 0: ð32Þ

Note that the first left-hand term in equation (32) is the
gravitational term that depends on ice elevation change �h,
not on ice thickness change �hI. It is possible for �hI to
result only from bed elevation change �hR, so that �hI =
�hR and�h = 0. In this case there is no gravitational forcing
due to surface slope because �h/�x = 0 [Hughes, 1998, pp.
144–145], but there is still gravitational forcing due to basal
buoyancy, as represented by PW/PI. Ice thickness hI is
important because deviatoric stresses sT +�sT and tS act on
respective areas wI (hI + �hI) and 2 (hI + 1/2�hI)�x to give
forces that resist the gravitational force. Compare Figure 4a
with Figure 4b to see this distinction. The gravitational force
represented geometrically by the shaded area in Figure 4b is
applied in Figure 4a to an ice column that has a sloping top
surface and a flat horizontal bottom surface, so that surface
slope �h/�x enters into the gravitational terms of the force
balance but bed slope �hR/�x and ice thickness gradient
�hI/�x do not. However, ice thickness gradient �hI/�x
does enter into the resisting terms of the force balance and
into the mass balance.
[26] Second-order terms containing �PI�h, �sT�hI,

and �hI�x can be ignored in equation (32). For example
1/2�PI�h is the area of the small unshaded and unnum-
bered triangle at the top of the geometrical representation of
forces in Figure 4b, and it vanishes as �x shrinks to zero,
even though �h/�x remains a finite surface slope. Making
these simplifications and solving equation (32) for the first
term using PI + �PI = rIg(hI + �h) and using equation
(10c) to introduce PW/PI,

1=2rI g hI þ�hð Þ hI þ�hð Þ ¼ 1=2 PI � PWð Þ hI � hIPW=PIð Þ
þ PI � PWð ÞhIPW=PI

þ 1=2PWhI rI=rWð Þ PW=PIð Þ
þ sThI
þ sT�hI þ hI�sT þ sChI
þ 2tShI�x=wI þ tO�x: ð33Þ

Ignoring the term containing �h2, setting hIPI = rIghI
2 from

equation (10a), dividing by �x, and solving for rIghI�h/
�x:

rI ghI�h=�x ¼ �1=2hIP
2
W=PI þ hIPW

�
�hIP

2
W=PI

�
=�x

þ 1=2hI½ rI=rWð ÞP2
W=PI þ sThI þ sT�hI

þ hI�sT þ sChI �=�xþ 2tShI=wI þ tO
¼ �1=2hI 1� rI=rWð Þ½ P2

W=PI

� �
þ hI sT þ sCð Þ

�
=�xþ sT�hI=�xþ hI�sT=�xþ 2tShI=wI þ tO:

ð34Þ

To keep the first right-hand term from becoming infinite
as �x shrinks to zero, it is necessary that, using equation
(10a),

sT ¼ 1=2 1� rI=rWð Þ P2
W=PI

� �
� sC

¼ 1=2rI ghI 1� rI=rWð Þ PW=PIð Þ2�sC : ð35Þ

Then equation (34) becomes

rI ghI�h=�x ¼ sT�hI=�xþ hI�sT=�xþ 2tShI=wI þ tO
¼ � sThIð Þ=�xþ 2 hI=wIð ÞtS þ tO: ð36Þ

The expression for sT given by equation (35) includes the
contribution to sT from ice thickness hI and basal
buoyancy, represented by PW/PI, such that sT + sC = 0
when PW/PI = 0. Longitudinal extension of ice on a
frozen bed, where PW/PI = 0, is assumed to be much
smaller than extension when PW/PI > 0 for ice sliding on
a thawed bed, so sT can be ignored when PW/PI is
insignificant. This is an assumption that is reasonable for
ice streams, but not at ice divides [Weertman, 1973].
Equation (36) is obtained from the force balance when
PW/PI is ignored; for example, see Van der Veen’s [1999]
equation (3.3.12), in which Rxx = sT and Rxy = tS at
y = wI/2).
[27] When PW/PI cannot be ignored because it causes

sT, equation (35) can be differentiated to give the
longitudinal gradient �sT/�x, where �hI = hI + 1/2�hI
and �wI = wI + 1/2�wI in distance �x and �wI = 0 for
plane strain,

�sT
�x

¼ rI g
2

1� rI
rW


 �
PW

PI


 �2 �hI

�x
þ hI

� PW=PIð Þ2

�x

" #

��sC
�x

¼ rI g
2

1� rI
rW


 �
PW

PI


 �2 �hI

�x
þ hI

"
� PW=PIð Þ2

�x

#

� 2�hI�x �tS=�xð Þ þ �wI�x �tO=�xð Þ
wI þ�wIð Þ hI þ�hIð Þ

¼ rI g
2

1� rI
rW


 �
PW

PI


 �2 �hI

�x
þ hI

� PW=PIð Þ2

�x

" #

�
2 �hI=wI

� �
�tS þ�tO

hI þ�hI

� �
: ð37Þ

Substituting equation (37) for �sT/�x in equation (36) and
collecting terms containing �hI/�x, where �sS and �tO
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are small compared to tS and tO, respectively, and can be
ignored,

rI ghI�h=�x ¼ rI ghI 1� rI=rWð Þ PW=PIð Þ2�sC
h i

�hI=�x

þ 1=2rI gh
2
I 1� rI=rWð Þ� PW=PIð Þ2=�x

þ 2 hI=wIð ÞtS þ tO: ð38Þ

Substituting equation (28) for �hI/�x into equation (38)
and solving for surface slope �h/�x,

�h

�x
¼ 1� rI

rW


 �
PW

PI


 �2

�sC

( )
hIa

axþ h0u0

(

� h2I
axþ h0u0

rI ghI
4A

1� rI
rW


 �
PW

PI


 �2

� sC
2A

" #n)

þ hI

2
1� rI

rW


 �
� PW=PIð Þ2

�x
þ 2tS
rI gwI

þ tO
rI ghI

: ð39Þ

[28] Equation (39) allows sC in equation (28) to be
determined at each �x step from values of tS, tO, hI, and
�(PW/PI) at these steps, so that sC is cumulative for all �x
steps along x. This is the holistic approach to ice sheet
modeling. For an ice sheet on a frozen bed, PW/PI = sC =
tS = 0 and equation (39) reduces to [Nye, 1952]

�h

�x
¼ tO

rI ghI
: ð40Þ

For an unconfined linear ice shelf, PW/PI = 1, sC = tS =
tO = 0 and �h/�x = (1 � rI/rW) �hI/�x, so that equation
(39) reduces to [Van der Veen, 1983],

�hI

�x
¼ hIa

axþ h0u0
� h2I
axþ h0u0

rI ghI
4A

1� rI
rW


 �� �n
: ð41Þ

For a linear tabular iceberg, �hI/�x = 0 and equation (41)
reduces to [Weertman, 1957]

a

hI
¼ rI ghI

4A
1� rI

rW


 �� �n
: ð42Þ

[29] The ice-thinning rate for converging or diverging
sheet flow, stream flow, and shelf flow is given by solving
equation (4) for dhI/dt numerically integrated upstream from
the ice-shelf calving front, where x = 0 and w0, h0, and u0
are specified (u0 is negative ice velocity),

dhI

dt
¼ a� hI 1þ _eyy=_exx

� �
_exx �

w0h0u0 þ a� d�hI=dt
� �

�wIx

hIwI

� �
dhI

dx
:

ð43Þ

In equation (43), _eyy/_exx = �wI�ux/wI�ux in incremental
length �x, _exx is approximated by equation (19) modified
for stream flow as in equation (35), with sC given by
equation (31),

_exx ¼ R
rI ghI

2 2þ _eyy=_exx
� �

A
1� rI

rW


 �"
� PW

PI


 �2

� sC
2þ _eyy=_exx
� �

A

#n

;

ð44Þ

and �hI/�x is approximated by equation (38) for mass
balance equilibrium,

�hI

�x
¼ rI ghI�h=�x� 1=2rI gh

2
I 1� rI=rWð Þ� PW =PIð Þ2=�x� 2 hI=wIð ÞtS � tO

rI ghI 1� rI=rWð Þ PW =PIð Þ2�sC
:

Equation (43) is solved iteratively, with d�hI /dt = 0 in the
first iteration and summed along x for successive �x steps
in subsequent iterations. Solutions of equation (43) require
knowing _exx and _eyy or calculating them from variations of
ux and wI along x for an ice sheet flowband; see
equation (5). Equation (45) is for stream flow, in which
0 < PW/PI < 1. It reduces to the basal drag equation t0 =
rIghI�h/�x when PW/PI = sC = tS = 0 for frozen-bed
sheet flow, and it reduces to the basal buoyancy equation
�h/�x = (1 � rI/rW)�hI/�x when PW/PI = 1 and sC =
tS = t0 = 0 for free-floating shelf flow.
[30] Basal shear stress t0 in equation (45) can be related

to PW/PI if it is assumed that a downstream increase in PW/
PI is linked to progressive drowning or burying of bedrock
bumps by basal water or water-saturated basal till that
cannot support a basal shear stress. In the Hughes [1998,
pp. 105–106] extension from sheet flow to stream flow of
the Weertman [1957b] theory of basal sliding, bedrock
bumps shaped like cubes are replaced by bumps shaped
like pyramids having average height � and average sepa-
ration �0. Then ice melts under high pressure at the top of
pyramids and ice creeps under high stress at the base of
pyramids, with both processes giving equal but slower ice
sliding rates at the same distance �o below the peaks for
pyramids of all sizes. The average separation between �o

for all pyramids is �0
0, where �0/�

0
0 is equivalent to the

controlling bed roughness factor in the Weertman [1957b]
theory for basal sliding in sheet flow. In stream flow,
however, basal water or water-saturated till progressively
drowns or buries bedrock pyramids in the downstream
direction, so that �0

0 increases and causes an effective
reduction in �0/�

0
0. Stream flow develops from sheet flow

with PW/PI � 0 and ends in shelf flow with PW/PI � 1.
Depth lo of water or till at the bed leaves �o � lo as the
undrowned or unburied pyramid height. Then (�0 � l0)/
�0
0 = (�0/�

0
0)(1 � l0/�0), which is represented by (�0/�

0
0)

(1 � PW/PI)
c, where c is an empirical constant. The Weert-

man [1957b] sliding law extended to embrace both sheet
flow and stream flow would have the form

us ¼
tO

Bo �o=�0
o

� �2
1� PW=PIð Þ2c

" #m

¼ tO
B 1� PW=PIð Þ2c

" #m

; ð46Þ

where us is the basal sliding velocity, Bo is a basal sliding
parameter, B = Bo (�0/�

0
0)
2 incorporates bed roughness,

and m = (n + 1)/2 is a viscoplastic parameter that
incorporates n in the flow law of ice. Equation (46) gives
us for sheet flow when PW/PI ! 0, gives us for streamflow
when 0 < PW/PI < 1, and is indeterminate for shelf flow
because tO = 0 when PW/PI = 1. The expression for tO in
equation (45) that equation (46) gives is

tO ¼ B 1� PW=PIð Þ2cu1=ms : ð47Þ

ð45Þ
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Since us nearly equals surface ice velocity ux for ice
streams, measuring ux, wI, hI, �hI/�x, and �h/�x allows
PW/PI to be calculated along an ice stream from equations
(45) for specified values of B, m, and tS. Values of tS
range from 80 kPA to 250 kPA for Whillans Ice Stream
[Raymond et al., 2001]. Calculated values of PW/PI could
then be compared to measured values in boreholes along
the centerline of an ice stream. Engelhardt and Kamb
[1997] could have done this for Whillans Ice Stream.
[31] Equation (46) can be related to an empirical sliding

law [e.g., Budd et al., 1979] as follows:

us ¼
P2c
I tO

B PI � PWð Þ2c

" #m

¼ CtmO
PI � PWð Þs ; ð48Þ

provided that C = PI
s/Bm and s = 2 � c � m. However, basal

sliding theory has not progressed to allow this level of
precision. Empirically, m � 3 and s � 1, for which c � 1/6.
Equation (46) has the advantage of relating PW/PI to water
depth lo, which is calculated from the volume of basal
water from place to place that is produced by the Johnson
[2002] map-plane model of subglacial hydrology. His
model then provides a physical basis for calculating PW/PI

along ice streams, and PW/PI becomes the dynamic link for
coupling models of ice sheets with models of subglacial
hydrology [Johnson and Fastook, 2002].

7. Comparing the Analytical and Geometrical
Force Balances

[32] In general, the dynamic components of an ice sheet
are ice domes, ice streams, and ice shelves. Ice streams are
the vehicles for concentrating sheet flow spreading from ice
domes because they discharge up to 90% of ice from ice
sheets into the sea, where an ice sheet becomes afloat as a
calving ice shelf. The major variable for quantifying this
transformation from fully grounded ice to fully floating ice
is the basal buoyancy factor PW/PI, which in sheet flow is
zero for a frozen bed or nearly zero for a thawed bed and in
shelf flow is unity. In stream flow, PW/PI increase, usually
irregularly, from nearly zero to unity from the head to the
foot of the ice stream at the ice-shelf grounding line.
[33] The importance of PW/PI has been overlooked in

glaciology because pioneering work on the force balance
considered only a local balance of gravitational driving
forces resisted by kinematic forces. All these forces act on
an ice column, illustrated in Figure 1 for sheet flow, and
lead to equation (40). The local force balance is in all the
books [see Hütter, 1983; Paterson, 1994; Hooke, 1998;
Hughes, 1998; Van der Veen, 1999]. Forces are balanced on
a vertical column of ice whose gravitational motion is
resisted by basal shear stress tO, side shear stress tS, and
the gradient @(hIsT)/@x that includes longitudinal deviator
stress sT; see equation (36). When modeling advance and
retreat of ice sheets over time, it is customary to consider
only tO as resisting gravitational forcing, with tO linked to
ice thickness and ice surface slope; see equation (40). This
procedure is a result of an analytical force balance that leads
to the equilibrium equations (also called the momentum
equations), which in tensor form can be written as

@sij=@jþ rI gi ¼ 0: ð49Þ

When x and y are horizontal and z is vertical upward in the
ice column, for i = z with gz = �g,

@szx=@xþ @szy=@yþ @szz=@zþ rI gz ¼ 0: ð50Þ

Only the last two terms are important, so equation (50) can
be integrated to give, for z = 0 at the base,

szz ¼ �
Z 0

szz
dszz ¼ rI gz

Z hI

z

dz ¼ �rI g hI � zð Þ: ð51Þ

This gives the linear variation of szz with z, shown for the
geometrical force balance in Figures 1 through 4, but with
z = 0 at the base of the ice, where szz = PO = PI. When i = x,

@ 2s0xx � rI g hI � zð Þ
� �

=@xþ @sxy=@yþ @sxz=@z ¼ 0; ð52Þ

where sxx = 2s0xx + szz when _eyy = 0, as shown by equation
(16). Ignoring s0zxx and sxy, integrating equation (52) gives

tO ¼ �
Z O

tO
dsxz ¼ �rI g

Z hI

0

@ hI � zð Þ=@x½ �dz

¼ �rI ga
Z hI

0

d hI � zð Þ ¼ rI ghIa: ð53Þ

This is identical to equation (40) obtained from the
geometrical force balance for linear sheet flow, where a =
�h/�x is the surface slope as �x ! 0.
[34] Equation (52) can also be integrated for linear shelf

flow along x, as shown by Van der Veen [1999, pp. 35–36,
128]. Integrating over z, noting that s0xx is constant through
hI and @sxy/@y = @sxz/@z = 0 for a linear ice shelf with z =
h at its surface and z = h � hI at its base,

@

@x

Z h

h�hI

2s0xxdz ¼
@

@x

Z h

h�hI

rI g h� zð Þdz ¼ rI g hI
dh

dx
¼

@ 2s0xxhI
� �
@x

:

ð54Þ

Substituting h = (1 � rI/rW) hI for full basal buoyancy (PW/
PI = 1),

rI ghI 1� rI=rWð ÞdhI=dx ¼ 1=2rI g 1� rI=rWð Þd h2I
� �

=dx

¼ d 2s0xxhI
� �

=dx: ð55Þ

[35] Multiplying by dx, integrating, and solving for s0xx,

s0xx ¼ 1=4rI ghI 1� rI=rWð Þ; ð56Þ

where the constant of integration is zero because s0xx = 0
when hI = 0. Equation (56) is identical to equation (13)
obtained from the geometrical force balance, since sT = 2s0xx
for a linear ice shelf.
[36] These integrations of the equilibrium equations dem-

onstrate that no procedure exists for relating s0xx to PW/PI, as
was done using the geometrical force balance to obtain
equation (35), in which sT = 2s0xx when _eyy = 0. Although
PW/PI contributes to s0xx in the analytical force balance
expressed by equation (52), the explicit relationship given
by equation (27) when sT = 2s0xx is provided only by the

HUGHES: GEOMETRICAL FORCE BALANCE IN GLACIOLOGY EPM 8 - 11



geometrical force balance. The analytical force balance
provides solutions only for PW/PI = 0 (linear sheet flow)
and PW/PI = 1 (linear shelf flow). For these analytical
solutions in the map-plane, see Greve [1997] for sheet flow
and Weis et al. [1999] for shelf flow.
[37] To complete this comparison, it should be noted that

rI was assumed to be constant with depth in ice and bending
at the ice-shelf calving front caused by the asymmetry of
sxx � szz shown in Figure 1 was ignored. Robin [1958]
shows how sxx � szz is affected by ice density that increases
with depth due to compaction of snow, and Reeh [1968]
shows how sxx � szz causes bending near the calving front.
These features have no serious effect on the geometrical
force balance. At some distance behind the calving front,
sxx � szz, and therefore _exx, is constant through the ice
thickness. It should also be noted that the geometrical force
balance is coupled through longitudinal strain rate _exx to a
mass balance to show that side shear and basal shear forces
are cumulative upstream from the ice-shelf calving front.
Therefore an ice column cannot be treated in isolation, as in
the analytical force balance. Finally, basal buoyancy factor
PW/PI is a statistical ratio over basal area �wI�x in numerical
integrations of equations (43) through (45). In this area, PW/
PI = 0 where the bed is frozen, PW/PI ! 0 where the bed is
only dampened when thawed, PW/PI ! 1 where basal water
is able to drown most bedrock bumps or supersaturate basal
till, and PW/PI = 1 when ice floats above the bed. Therefore
PW/PI is a measure of the availability of basal water. It may
be that values of PW/PI needed to fit the concave profiles of
ice streams are statistical combinations of PW/PI � 0 and
PW/PI � 1 along a given ice stream. Poor hydraulic
conductivity between these patches is required to keep 0 <
PW/PI < 1 over area �wI�x in a statistical sense. It is unclear
how the distribution of PW/PI in space and time can be
related to theories for subglacial hydrology, such as those
developed by Weertman [1972], Kamb [2001], and Johnson
[2002]. However, it seems reasonable that water under ice
streams has tortuous flow paths from sites of basal melting
where PW/PI! 1 to sites of basal freezing where PW/PI! 0,
while avoiding sites where PW/PI = 0 because the bed is
frozen.

8. Discussion and Conclusions

[38] The geometrical force balance has a major advantage
over the analytical force balance because it includes basal
buoyancy, represented by PW/PI, as well as surface slope
�h/�x. Basal buoyancy allows a continuous transition from
sheet flow to stream flow to shelf flow by allowing PW/PI to
increase downslope from PW/PI � 0 to PW/PI � 1 along the
length of an ice stream.
[39] The analytical force balance requires that for a given

ice thickness, gravitational forcing depends only on the ice
surface slope. In ice streams, however, the concave
ice surface requires the surface slope to approach zero as
ice velocity increases downstream. Concave ice stream
surface profiles were originally generated simply by letting
basal shear stress tO in equation (40) approach zero in the
downstream direction [Hughes, 1981]. When the mass
balance equation is applied to these concave longitudinal
ice stream profiles, however, ice streams then acquire the
property of a perpetual motion machine in which velocity

increases as gravitational forcing given by equation (40)
decreases. This dilemma is avoided in a geometrical force
balance because basal buoyancy replaces surface slope as
the source of gravitational forcing in the downstream
direction, and becomes dominant when the ice stream
becomes a floating ice shelf. Basal buoyancy pushes ice
up into the air above sea level, so that ice floating above
water moves forward to displace air. An ice surface slope
also allows ice to move forward and displace air in the
downslope direction. Hence both basal buoyancy and sur-
face slope allow forward gravitational motion.
[40] Engelhardt and Kamb [1997] report that PW/PI is

close to unity near the head of Whillans Ice Stream
(formerly Ice Stream B), such that basal water rises above
sea level in boreholes to the bed, which means there is
not perfect hydraulic conductivity to the sea. Basal water
at this distance x from the ice front is being discharged
downstream. Whether the seaward gradient of basal water
pressure may fall to zero over time to establish hydraulic
equilibrium is unknown. The derivation leading to equa-
tions (24) and (25), which then led to all subsequent
equations containing the quantity hI(1 � rI/rW) for the
height of ice floating above water, depends on perfect
hydraulic conductivity between water under the ice and
water in front of the ice, as illustrated in Figures 1
through 3.
[41] Terrestrial ice streams that end on land as ice lobes,

such as those along the southern margin of the former
Laurentide Ice Sheet at the Last Glacial Maximum, are
not buttressed by water at their fronts. If basal buoyancy
also provides gravitational forcing for those ice streams,
then basal water generated beneath terrestrial ice streams
must either freeze beneath the ice lobes to become regela-
tion ice, or soak into an aquifer, or be discharged around the
perimeter of the ice lobe, or some combination of these. For
all of these scenarios, there is no ‘‘back force’’ from water
pressure acting on ice below sea level at the ice front, as
there is for floating ice shelves and, presumably, for ice
streams that supply the ice shelves. Nonetheless, the geo-
metrical force balance as derived here includes a ‘‘back
force’’ of water pushing against floating ice, so that hI(1 �
rI/rW) = 0.1 hI for rI = 900 kg/m3 and rW = 1000 kg/m3. For
the geometrical force balance to apply to both marine and
terrestrial ice streams, this quantity should be replaced by
hI[1 � fW(rI/rW)], where fW is a water-buttressing fraction at
the ice front where x = 0 that pushes against portion hIfW(rW/
rI) of buoyant ice thickness hI[1 � fW(rI/rW)][PW/PI]

2 at
distance x upstream from the ice front. Then fW = 1 when the
ice front is fully floating and fW = 0 when it is fully
grounded. When basal water at distance x rises higher than
the elevation of water at the ice front, as observed for some
West Antarctic ice streams, then 0 < fW < 1 such that fW
satisfies the geometrical force balance. Figure 5 shows two
Antarctic flowbands along which fW probably varies. A
cartoon showing how gravitational forcing is increased
when fW < 1 is shown in Figure 6 for a flowband from
the West Antarctic ice divide to Pine Island Bay by way of
Thwaites Glacier. Ice in this region is now thinning rapidly
[Zwally et al., 2002a].
[42] The holistic approach applies to all ice streams,

whether they end as an ice shelf floating in water where
fW = 1, as an ice wall grounded in water where 0 < fW < 1, or
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as an ice lobe grounded on dry land where fW = 0. Including
fW in equation (27) for sT, with sC given by equation (31)
and rIhI = rWhW for floating ice,

sT ¼ 1=2rI ghI 1� fW rI=rWð Þ½ � PW=PI½ �2�sC

¼ 1=2rI ghI PW=PIð Þ2�1=2rI ghI fW rI=rWð Þ PW=PIð Þ2�sC

¼ rI ghI
2

PW

PI


 �2

�fW
hW

hI


 �
rWghW

2


 �
PW

PI


 �2

� 2�tS�hI x
wIhI

� �tO x� Lð Þ
hI

: ð57Þ

When multiplied by wIhI, equation (57) is the longitudinal
force balance. Equation (57) highlights gravitational forcing
in the first right-hand term resisted by water buttressing,
side shear, and basal shear in the second, third, and fourth
right-hand terms, respectively. Now consider a flowband on
a frozen bed from a grounded ice margin where fW = L = 0
to a subglacial lake where PW/PI = 1. Assume �tS = tS = 0
and �t0 = t0 is constant along x. Integrate equation (40) for a
horizontal bed so that hI = h gives the parabolic flowband
profile x = (rIg/2t0)hI

2. Then equation (57) gives sT = 0
above the subglacial lake.

[43] Therefore, I maintain that gravitational forcing in ice
streams has three components: surface slope �h/�x, basal
buoyancy PW/PI, and water buttressing fW, all represented
geometrically in Figure 6. These components are not
independent of each other. For example, suppose the termi-
nal ice lobe of a terrestrial ice stream lies on a bed of ice-
cemented permafrost that suddenly thaws and becomes slop
that provides no basal traction for the overlying ice. The ice
lobe will thin rapidly as PW/PI = 0 becomes PW/PI = 1,
under the lobe. If basal meltwater creates a lake that floats
the ice margin, then fW = 0 becomes fW = 1 over time. These
changes in PW/PI and fW cause surface slope �h/�x to
change all along the length of the ice stream. The holistic
approach to ice sheet modeling is necessary in order to
quantify how these three components of gravitational forc-
ing interact with each other and with forces that resist
gravitational motion along an ice stream. Basal water
pressure increases locally to provide the gravitational forc-
ing needed to overcome downstream resistance to ice flow
when the ice lobe is frozen to its bed. This buildup in
mountain glaciers leads to glacial surges when upslope ice-
bed uncoupling due to high PW/PI propagates downslope to
the terminus [Kamb et al., 1985]; why not in ice streams,
thereby allowing ice sheets to trigger rapid climate change?

Figure 5. An Antarctic location map. The heavy lines show a West Antarctic flowband from the ice
divide to Pine Island Bay by way of Thwaites Glacier, and an East Antarctic flowband from a subglacial
lake at Vostok to the Ross Ice Shelf by way of Byrd Glacier.
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[44] A requirement of the geometrical force balance is
that basal water will flow down the gradient �PW/�x in
an ice stream. This gradient can be both outward toward
the ice sheet margin and inward toward interior ice domes
that are frozen to the bed, provided that the gradient
causes hW given by equation (10b) to decrease in both
directions. Basal water flowing inward tends to pry the ice
sheet loose from its bed, thereby hastening its gravitational
collapse. This tendency has been proposed as the mecha-
nism now driving gravitational collapse of the West
Antarctic Ice Sheet into the Ross Sea embayment by ice
stream surges [Hughes, 1975], a process having some
observational support [Bindschadler, 1997]. It is opposed
by outward flow of ice that acts like a rolling pin
squeezing basal meltwater toward the ice sheet margin,
especially along ice streams, and by freezing of basal
meltwater as it comes in contact with colder interior ice.
[45] The concept of gravitational forcing by basal buoy-

ancy, quantified by PW/PI, is inherent in the geometrical
force balance. It provides a description of how ice streams
behave and how they can destabilize an ice sheet, thereby

hastening gravitational collapse and rapid climate changes
triggered by rapid collapse. Further investigation of this
concept awaits a fuller understanding of subglacial hydrol-
ogy. Progress toward this goal requires a map-plane model
of subglacial hydrology, similar to the one developed by
Johnson [2002] that can be coupled to a map-plane model
for ice sheets [Johnson and Fastook, 2002]. The ice sheet
model must generate ice streams by incorporating gravita-
tional forcing due to basal buoyancy. No such ice sheet
models exists at present. Both models should be holistic, so
that processes near the ice sheet margin and beyond the
margin, quantified by water buttressing fW at the margin,
affect flow of interior ice and water at the bed.
[46] As an incentive to accomplish this task, consider as a

thought experiment the consequences of rejecting water
buttressing fW. Ice over subglacial Lake Vostok in central
East Antarctica is 4 km thick [Kwok et al., 2000], and PW/
PI = 1. This ice moves very slowly because gravitational
forcing arises from a tiny surface slope due to a small ice-
thickness gradient. There is no gravitational forcing by basal
buoyancy because ice is firmly grounded around the entire

Figure 6. A cartoon showing how decreasing buttressing water fraction fW can increase gravitational
forcing along the West Antarctic flowband shown in Figure 5. (a) The flowband profile showing that fW =
1 along the part of Thwaites Glacier floating in Pine Island Bay, and 0 < fW < 1 up the grounded part of
Thwaites Glacier to the ice divide. (b) Reducing fW increases the shaded area that geometrically
represents the gravitational force per unit flowband width by adding the shaded strip between (sxx +
�sxx) and fW (sxx + �sxx) at flowband distance x + �x from the calving front. (c) Reducing fW increases
the shaded area by adding the shaded strip between sxx and fWsxx at flowband distance x from the calving
front.
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Figure 7. A cartoon showing how basal buoyancy, defined as the ratio of basal water pressure PW to ice
overburden PI, might trigger gravitational collapse of an ice sheet. (a) Gravitational force FI in ice is
balanced by shear force FS on a frozen horizontal bed, where PW/PI = 0. (b) Water rising at the ice margin
creates a calving ice wall that retreats distance L to where FI is balanced by gravitational force FW in
water against the wall, tensile force FT in ice behind the wall, and FS in ice frozen to the bed. (c) Water
rises high enough convert the calving ice wall into a floating ice shelf where PW/PI = 1, with ice at the
grounding line still balanced by FW at the calving front and by FT and FS behind the grounding line,
where ice is still frozen to the bed. (d) Basal buoyancy propagates upslope from the grounding line,
converting sheet flow into stream flow where 0 < PW/PI < 1 at the bed, thereby lowering the ice surface in
gravitational collapse. (e) Basal buoyancy propagates both upslope and downslope in the ablation zone of
Figure 7a, where surface meltwater can reach the bed through crevasses, thereby lowering the ice surface
in gravitational collapse upslope and extending the ice margin as an ice lobe downslope.
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perimeter of the lake, so sT = 0 because sC = 1/2rIghI [1 �
fW (rI/rW)] in equation (57). Now imagine the lake was
extended along the ice flowband that enters the Ross Ice
Shelf through Byrd Glacier, as shown in Figure 5. Then sC
would drop drastically, being caused only by �tS in equation
(23), where tS � 250 kPa seems to be an upper limit
[Raymond et al., 2001]. With PW/PI = 1 and fW = 1 causing
full flotation fully buttressed by water along this flowband,
equation (54) gives sT + sC = 1800 kPa for ice above Lake
Vostok. The ‘‘pulling power’’ due to basal buoyancy would
be substantial. Just across the East Antarctic ice divide, such
a lake may have found an outlet to the sea by draining into
Lambert Glacier, with enormous downdraw of East Antarc-
tic ice as a result [Denton and Hughes, 2002]. Now remove
water buttressing at Lake Vostok, so that fW = 0 removes the
water buttressing term from equation (57). Then sT + sC =
18,000 kPa. The two results keep sT about the same only if
sC increases ten-fold when fW = 1 is replaced by fW = 0.
Otherwise sTwill pull ice out much faster after fW decreases.
[47] Now consider the flowband from Lake Vostok to

Byrd Glacier, for which x = 900 km and �hI � 3 km [Drewry,
1983]. Along the flowband, assume that �tS = 100 kPa
averaged from ts = 0 at Lake Vostok to ts = 200 kPa at Byrd
Glacier [Whillans et al., 1989], with hI = 4 km and wI =
230 km at Lake Vostok across the flowband to Byrd Glacier
[Kwok et al., 2000]. The longitudinal back force sCwIhI at
Lake Vostok is caused by side shear force 2�tS�hIx along the
flowband, which gives sC � 600 kPa from equation (23).
Equation (57) gives sT + sC � 1800 kPa when fW = 1 and
18,000 kPa when fW = 0. Then sT � 1200 kPa and sT �
17,400 kPa, respectively. A ten-fold increase in sC is not
possible for floating ice, so catastrophic downdraw of ice by
sT must take place unless basal grounding increases sC by
including basal shear stress tO in the force balance.
[48] An ice stream 700 km long, grounded above sea

level, and possibly uncoupled from the bed by meltwater
originating from a subglacial volcano at the head of the ice
stream, drains the northeast part of the Greenland Ice Sheet
[Fahnestock et al., 2001a, 2001b; Day, 2002]. It qualifies as
a terrestrial ice stream, rather than a marine ice stream,
because it is grounded above sea level except near its
terminus. Taking n = 3 and setting fW = 0 to remove the
water buttressing term from equation (57), this ice stream
would have an extending strain rate some three orders of
magnitude greater than seen in a marine ice stream of
comparable size. There is nothing in its dynamics, or in
the glacial geological record for ice lobes of the former
Laurentide Ice Sheet, to demonstrate that terrestrial ice
streams without water buttressing in equation (57) have
1000 times the long-term extending strain rate because of a
frictionless bed that is observed for marine ice streams
grounded below sea level and buttressed by seawater, but
also on a frictionless bed. Clark [1992, 1994, 1995] showed
that southern Laurentide ice lobes were thin, hence ice-bed
coupling was poor. Short-term catastrophic advance of ice
lobes would be inevitable. Again, a definitive answer to this
question will not emerge until ice sheet models that allow
variations in both PW/PI and fW are coupled to models of
subglacial hydrology, both models being in the map plane.
This requires holistic modeling.
[49] Figure 7 is a cartoon showing how basal buoyancy

might trigger gravitational collapse of an ice sheet. Basal

shear stress tO is kept constant when PW/PI = 0 for a frozen
bed along a flowband of variable height hI and constant
width wI, with x = 0 at the ice margin, horizontal along the
flowband, and positive toward the ice divide. The bed is
horizontal for simplicity. An ice sheet lies on a frozen bed
and fW = 0 at the ice margin in Figure 7a. The longitudinal
gravitational force in ice is FI = �PIwIhI = 1/2rIgwIhI

2 and is
balanced by longitudinal shear force at the bed FS = tOwIx,
giving the parabolic profile x = (rIg/2t0)hI

2. Water rises at
the ice sheet margin in Figure 7b, causing fW to increase and
calving retreat over length L such that x = (rIg/2t0)hI

2 � L
gives the ice sheet profile upslope from the calving ice wall.
Resistance to FI is now from FW = �PWwIhW = 1/2rWgwIhW

2

for water height hW, from longitudinal tensile force FT =
sTwIhI for local tensile stress sT at the ice wall, and from
FS = tOwIx between the ice wall and the ice divide. Water
rises high enough to float the ice wall in Figure 7c,
converting it into a floating ice shelf, so that fW = 1. Force
FI at the grounding line is resisted by FT and FS toward the
ice divide and FW at the calving front of the ice shelf, with
PW/PI = 0 for ice grounded along x > 0 and PW/PI = 1 for ice
floating along x < 0. Basal buoyancy propagates toward the
ice divide in Figure 7d, keeping fW = 1 but with �PW and hW
decreasing to zero over a distance where 0 < PW/PI < 1
upslope from the grounding line, thereby triggering gravi-
tational collapse by lowering the ice surface in stream flow.
Basal buoyancy propagates toward both the ice divide and
the ice margin where fW = 0 in Figure 7e, perhaps as surface
meltwater reaches the bed through crevasses [Zwally et al.,
2002b] in the ablation zone of Figure 7a. Then the ice
stream lengthens in both directions, causing gravitational
collapse toward the ice divide and extending the ice margin
as an ice lobe being uncoupled from the bed. Like extending
subglacial Lake Vostok to the sea, a massive ice stream
surge would occur when basal thawing beneath the ice lobe
reaches the ice margin.
[50] As a final thought, suppose an ice stream floats on a

bed of mercury, which has a density rM � 14 rW. Then (rI/
rW) in equation (57) is replaced by rI/rM � rI/14 rW and sT
increases by an order of magnitude. This result is also
obtained for fW (rI/rW) when fW � 1/14. Both greatly
increase the ice thickness that can move forward to displace
air.
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