
The University of Maine The University of Maine

DigitalCommons@UMaine DigitalCommons@UMaine

Honors College

5-2012

Development of Oxidizer Flow Control for use in Hybrid Rocket Development of Oxidizer Flow Control for use in Hybrid Rocket

Motors of the Scientific Sounding Rocket Scale Motors of the Scientific Sounding Rocket Scale

Luke Saindon
lcsaindon714@gmail.com

Follow this and additional works at: https://digitalcommons.library.umaine.edu/honors

 Part of the Mechanical Engineering Commons

Recommended Citation Recommended Citation
Saindon, Luke, "Development of Oxidizer Flow Control for use in Hybrid Rocket Motors of the Scientific
Sounding Rocket Scale" (2012). Honors College. 33.
https://digitalcommons.library.umaine.edu/honors/33

This Honors Thesis is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted
for inclusion in Honors College by an authorized administrator of DigitalCommons@UMaine. For more information,
please contact um.library.technical.services@maine.edu.

https://digitalcommons.library.umaine.edu/
https://digitalcommons.library.umaine.edu/honors
https://digitalcommons.library.umaine.edu/honors?utm_source=digitalcommons.library.umaine.edu%2Fhonors%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=digitalcommons.library.umaine.edu%2Fhonors%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.library.umaine.edu/honors/33?utm_source=digitalcommons.library.umaine.edu%2Fhonors%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:um.library.technical.services@maine.edu

DEVELOPMENT OF OXIDIZER FLOW CONTROL FOR USE IN HYBRID ROCKET

MOTORS OF THE SCIENTIFIC SOUNDING ROCKET SCALE

by

Luke C. Saindon

A Thesis Submitted in Partial Fulfillment
of the Requirements for a Degree with Honors

(Mechanical Engineering)

The Honors College

University of Maine

May 2012

Advisory Committee
 Senthil S. Vel, Professor of Mechanical Engineering
 Michael Peterson, Professor of Mechanical Engineering
 Michael T. Boyle, Associate Professor of Mechanical Engineering
 Mark Haggerty, Rezendes Preceptor for Civic Engagement
 David Morrison, Assistant Professor of Mechanical Engineering Technology

ABSTRACT

To successfully build a rocket engine with variable thrust you must devise a

reliable and robust oxidizer flow control system. The goal of this thesis is to contribute

to the goal of building a variable thrust (throttled) hybrid rocket engine, which could

eventually be used to power scientific sounding rockets. A variable thrust hybrid engine

would increase reusability, flexibility, and capability of almost any small rocket.

Specifically, this thesis work regards the development of the closed loop oxidizer

flow control system. To do this, a small test rig was built in the lab that consists of all the

components in an actual rocket engine except for the combustion chamber. Using this

apparatus the behavior of water in the system was analyzed, including the

characterization of the oxidizer flow control valve and the response of the system to

various controller parameters. By having a process perfected for characterizing a system

with water it makes the process much easier when done with the more exotic oxidizer

materials such as nitrous oxide and carbon dioxide.

iii

ACKNOWLEDGEMENTS

Very warm and special thanks to my advisor, Dr. Senthil Vel, who stuck with me

through several major adaptions of my topic and goals. There would be no thesis to read

without his help, by providing much insight on control systems as well as lending lab

space and equipment.

My committee was invaluable as well. Dr. Morrison was excellent help regarding

electrical hardware, and spent many hours looking technical spec sheets for me as well as

helping with the data acquisition. Dr. Boyle was an excellent source for all

thermodynamic questions and provided much calming insight. Dr. Haggerty was

excellent outside perspective and kept me on track by knowing the right questions to ask,

and was a huge help with the honors reading list. Lastly, Dr. Peterson is owed huge

thanks for allowing me to conduct the experiment in Crosby lab, and integrate it closely

with my senior design project which he was in charge of.

The development of the thesis topic was inspired by the subject of my senior

design project, the building and flying of a sounding rocket. The team I worked with:

Alex Morrow, Ryan Means, Robert Miller III, Josh Mueller, and Gerard Desjardins were

all incredibly patient to allow me to work on an honor’s thesis is parallel with our senior

project. Many thanks go to them as well.

Lastly, the professionals from the Mavericks Civilian Space Foundation, Marshall

Space Flight Center, Ames Research Center, Space Propulsion Group, Maine Space

Grant Consortium, and Applied Thermal Sciences are all owed a warm thank you for

helping me with the design process and educating me regarding hybrid motors.

iv

TABLE OF CONTENTS

Chapter 1: introduction and Motivation ..1

1.1 Final Goals of Thesis ..2

1.2 Layout of this Thesis...4

1.3 Hybrid Motor Basics and Background ..5

1.4 Hybrids and throttling, Flow Control Technology and its challenges8

Chapter 2: Introduction to control systems ... 11

2.1 PID controller basics ... 12

2.2 Implementing an Oxidizer Flow Controller ... 14

Chapter 3: Test Setup: Description of Apparatus .. 16

3.1 Tanks and Piping .. 16

3.1.1 Control Valve Assembly .. 23

3.1.2 Oxidizer Tank .. 25

3.2 Instrumentation and Data Acquisition ... 30

3.3 Description of LabVIEW Program .. 33

3.4 Description of Arduino Program ... 37

3.4.1 Manual Arduino Program ... 38

3.4.2 Valve Characterization Program ... 40

3.4.5 Closed Loop Flow Control Program ... 41

Chapter 4: Modeling the system ... 43

v

4.1 Assumptions about the system .. 43

4.2 Governing equations ... 45

4.3 Modeling the valve response (effects of delay).. 48

4.4 MATLAB simulation description and explanation 48

Chapter 5: Testing Procedure ... 54

5.1 Characterizing the Valve ... 54

5.1.1 System Preparation from a Cold Start ... 54

5.1.2 Running a Test ... 56

5.1.3 Resetting for another Test ... 56

5.1.4 System Shutdown ... 57

5.2 Testing the Control System ... 57

5.2.1 System Preparation from a Cold Start ... 58

5.2.2 Running a Test ... 58

5.2.3 Resetting for another Test ... 58

5.2.4 System Shutdown ... 58

Chapter 6: Post Processing ... 59

6.1 VF Plot Post Processing .. 59

6.2 Control System Analysis Post Processing ... 67

Chapter 7: Results .. 69

7.1 Valve Characterization.. 69

vi

7.2 Control System Results ... 74

Chapter 8: Discussion of results ... 82

Chapter 9: Conclusion .. 85

Appendix A: Simulink Model Screenshots………………………………………87

Appendix B: VF Plot Post Processing MATLAB Code…………………………90

Appendix C: Controller Analysis Post Processing MATLAB Code…………….94

Appendix D: Manual Arduino Code……………………………………………..99

Appendix E: Specific Angle Arduino Code……………………………………105

Appendix F: Controller Arduino Code…………………………………………109

Appendix G: Technical Data Sheets……………………………………………116

Appendix H: Design Summary of a Possible Hybrid Motor…………………...134

Appendix I: Technical Drawings……………………………………………….168

Biography of the Author………………………………………………………..201

vii

TABLE OF FIGURES

Figure 1: P&ID Diagram of Experimental Setup .. 18

Figure 2: Photograph of Apparatus ... 20

Figure 3: CAD Rendering of Apparatus ... 20

Figure 4: Photograph of Nitrogen Fill Station ... 21

Figure 5: Photograph of Upper Tank Bulkhead .. 22

Figure 6: CAD Rendering of Valve Assembly .. 24

Figure 7: Photograph of Valve Assembly ... 25

Figure 8: CAD Rendering of Oxidizer Tank End .. 28

Figure 9: CAD Rendering of Upper Oxidizer Tank Bulkhead 29

Figure 10: CAD Rendering of Lower Oxidizer Tank Bulkhead 29

Figure 11: System Instrumentation and Wiring... 31

Figure 12: Motor controller .. 32

Figure 13: Step motor power supply ... 32

Figure 14: Arduino micro controller ... 32

Figure 15: 5VDC power supply .. 32

Figure 16: NI chassis and modules ... 32

Figure 17: DAQ Block Diagram ... 34

Figure 18: DAQ Front Panel .. 35

Figure 19: Screenshot of DAQ Assistant Configuration...................................... 36

Figure 20: Screenshot of Arduino Compiler ... 38

Figure 21: Bernoulli's Streamline ... 46

Figure 22: Overall Block Diagram ... 49

viii

Figure 23: Controller Block Diagram ... 49

Figure 24: Simulation Plant Subsystem .. 51

Figure 25: Tank Simulation Subsystem .. 52

Figure 26: Mass Curve Noise ... 62

Figure 27: Mass Flow Curve Noise .. 63

Figure 28: Temperature Noise .. 64

Figure 29: Pressure Noise... 65

Figure 30: Step Command Noise .. 66

Figure 31: Direction Command Noise .. 66

Figure 32: Enable Command Noise .. 67

Figure 33: VF Plotted Against Valve Position and Pressure Drop 70

Figure 34: XY Plane of VF Surface .. 70

Figure 35: XZ Plane of VF Surface .. 71

Figure 36: YZ Plane of VF Surface .. 71

Figure 37: VF vs. Valve Position dP=10psi .. 72

Figure 38: VF vs. Valve Position dP=20psi .. 72

Figure 39: VF vs. Valve Position dP=40psi .. 72

Figure 40: VF vs. Valve Position dP=85psi .. 72

Figure 41: VF vs. Pressure Drop POS=35deg ... 73

Figure 42: VF vs. Pressure Drop POS=55deg ... 73

Figure 43: VF vs. Pressure Drop POS=75deg ... 73

Figure 44: VF vs. Pressure Drop POS=90deg ... 73

Figure 45: System Mass Flow Response for KI=20, KP=20 75

ix

Figure 46: System Mass Flow Response for KI=5, KP=10 75

Figure 47: System Mass Flow Response for KI=2, KP=10 76

Figure 48: System Mass Flow Response for KI=5, KP=2 76

Figure 49: System Pressure Response for KI=5, KP=10 77

Figure 50: System Pressure Response for KI=2, KP=10 77

Figure 51: Variety of System Mass Flow Responses .. 79

Figure 52: Variety of System Pressure Responses .. 80

x

LIST OF EQUATIONS

Equation 1: PID Controller ... 12

Equation 2: Noise Amplification Upon Differentiation 13

Equation 3: Determining Step Interval from Valve Angular Velocity 42

Equation 4: Mass flow based on pressure drop and valve position 46

xi

LIST OF TABLES

Table 1: System P&ID Diagram ... 18

Table 2: Control Valve Design ... 24

Table 3: Instrumentation Details... 31

Table 4: DAQ Inputs and Outputs .. 37

xii

VARIABLE DEFINITIONS

KI Integral Proportionality Constant

KP Proportionality Constant

θ Valve Angular Position

•

θ
Valve Angular Velocity

•

φ
Motor Angular Velocity

φ Motor Angular Position

N Number of motor steps

KI Controller Integral Proportionality Constant

KP Controller Proportional Constant

KD Controller Differential Proportionality Constant

L Valve Factor Multiplier

VF Valve Factor

DLoss System Loss Coefficient

ρ Density

P Pressure

P∆ Pressure differential (pressure drop across the system)

1

CHAPTER 1: INTRODUCTION AND MOTIVATION

The ability to throttle a rocket motor increases its flexibility such that it can be

used in a variety of applications, and performs more efficiently. Throttling liquid

propellant motors has been perfected and executed already; the SSME’s (Space Shuttle

Main Engines) throttle from 64-109%. Solid propellant motors have no throttling or

shutdown capabilities, but are simple and robust. Hybrid rocket motors use a fuel and

oxidizer combination of two different phases, most commonly a solid fuel and liquid

oxidizer. They have much of the simplicity of a solid motor with more safety and with

the potential to be as controllable as a liquid motor. Building a simple thrust control

system for a sounding rocket sized hybrid motor would be a boon for scientific rocketry

since many payloads require a gentler launch than can be achieved with a conventional

solid motor, which is the most common vehicle at this time. Liquid propellant motors

provide throttling, but they are undesirable at the scientific sounding rocket scale for

other reasons such as: complexity, cost, and higher mass fractions.

Sounding rockets are smaller launch vehicles that carry scientific payloads to sub-

orbital altitudes, usually in the 100,000 ft range and higher. The ultimate launch method

for some of these payloads is one that, as mentioned above, is gentler in the ascent. Solid

rocket engines tend to start with a hard kick and generate extremely high g-loading

during flight, as high as 20-30 g’s. If a throttled hybrid motor was developed then the

user of the rocket could program the motor’s control system to produce a desired thrust

curve which would minimize the payload loading produced by hard acceleration. Motors

can produce equal amounts of impulse but in very different ways; either high thrust for a

short duration or low thrust for a long duration. The latter produces the smoother ride

2

into the upper atmosphere, while also usually achieving a higher efficiency (less fuel for

an equal altitude). In simple terms, it takes a lot of energy to push through the thick

lower atmosphere at a high speed. Much like it takes less energy to walk calmly through

a pool instead of attempting to run. By precisely tailoring the thrust curve using a control

system on a hybrid rocket engine would allow the flight profile to be highly optimized,

allowing higher altitudes for the same quantity of fuel, while avoiding the expense and

complexity of a full liquid system.

1.1 Goals of the Thesis

The objective of this honors thesis is to help develop such a throttled hybrid

rocket motor for use on scientific sounding rockets. While building a complete rocket

engine was the original plan, it soon became apparent that we did not have the facilities

necessary to safely ground test such an engine in Maine. Instead, a mockup of the

complete oxidizer flow path, from the oxidizer tank through the control valve and all the

way into the injector was developed in the lab and only the response of the oxidizer

system was investigated.

This honors thesis investigates the process of feeding an oxidizer from a holding

tank, through a control valve, and into the combustion chamber injector. A computer

model of this oxidizer feed system will be built in Simulink and then the actual hardware

will be tested in the lab to fine tune the many parameters of the computer model such that

reality matches prediction. Simulink is a block diagram based numerical solver, and is a

component of MATLAB. Water will be used in the place of the oxidizer, but if the

process of system characterization is repeated any fluid could be modeled with equal

3

accuracy. Since a hybrid rocket engine is throttled by controlling the flow of oxidizer

through this feed system, a controller will be implemented in the lab setup. In summary,

the goals of this thesis will include:

• Create an accurate computer model of the oxidizer feed system. The

largest unknown in the system is the flow control valve itself. Therefore a

large component of this thesis work is to fully characterize this valve.

• Develop a controller used to monitor and adjust the oxidizer mass flow.

Once the flow control valve is characterized the system can be simulated

in the computer, parameters for a control system can be determined, and

then the flow control system can be tested in the lab to see how closely the

computer simulation matches reality.

Additional goals include documenting the most efficient and effective methods of

performing the above goals such that new oxidizer fluids can be quickly characterized

and a control system tuned to effectively control the flow of the new fluid; and draw

parallels between the lab bench test and applications on actual hybrid rocket engines such

that this thesis investigation will be useful in the development of flight engines.

Understanding the way water behaves in a system identical to that which would

feed an actual combustion chamber with an oxidizer is an excellent base of knowledge

that would be necessary to build this ideal throttled hybrid engine. All of this will be

done at the same scale and in way that would be possible in an actual sounding rocket.

By working within the size limits of the sounding rocket airframe it is possible to build a

motor with a conservative thrust estimate of 1200 lbf; delivering a total of 120,000 Ns of

4

impulse. For perspective that would put the engine in the Q scale range of rocket motor,

if one is familiar with the traditional nomenclature of rocket motor sizing. Most little

model Estes rockets are in the A-D range, where each subsequent letter has double the

impulse of the one before it. A well-designed control system must allow the hybrid to be

throttled within a 3:1 range (the minimum thrust would be a third of the max thrust).

Total burn time would be a maximum of 30 seconds, governed mostly by the limited

oxidizer capacity.

Interestingly, in parallel to this project a Mechanical Engineering senior design

project is building a sounding rocket that requires an engine of similar size. Therefore all

of the experimental apparatus has been designed with a hybrid motor which could power

this sounding rocket in mind. Later in this written thesis Appendix H looks at the design

and simulation of a complete motor, not just the oxidizer feed system.

1.2 Overview of the Thesis

Now that some foundation as to what motivated this thesis has been presented it is

advantageous to understand the general layout of this written document. First, a more

detailed view of how hybrid motors work will be presented; as well as how oxidizer flow

control could be implemented on an actual motor. Throughout these discussions many

examples of current hybrid projects as well as a state of the art will be given.

Focusing more on the contents of this thesis regarding the flow control itself an

introduction and explanation of control systems will be given, as well as how a control

system will be implemented in this project. A review of the PID controller specifically

and how it is used in this thesis will be covered.

5

In order to meet the goals set, an experimental apparatus and supporting software

must be developed. A detailed description of the test apparatus will be next, explaining

the hardware and software as well as the data acquisition system used. The experimental

results will be used to fine tune the simulation model, this data will be displayed and

described in the results section. No model is useful without verification, no matter how

fancy the simulation process there needs to be some data somewhere to back it up.

The difficult part of the thesis involves the accurate modeling of the system,

particularly of the control valve. What it means to characterize the flow control valve

will be presented; as well as the methods used to simulate and model the system as a

whole within MATLAB. The assumptions made in the simulation process are also very

important to understand, since any real system is much too complicated to model in

perfect exactitude. Therefore the assumptions will be made clear.

1.3 Hybrid Motor Basics and Background

For perspective it is important to have some basic understanding of the operation

of hybrid motors, this will also help demonstrate how the fluctuation of oxidizer flow

could result in the fluctuation of thrust. Understanding some basics about these motors

helps put the thesis work in perspective. As explained earlier, a hybrid motor uses a

liquid oxidizer and a solid fuel to create the necessary chemical components for

combustion within the combustion chamber. Theoretically it is possible to have a solid

oxidizer such as ammonium perchlorate and a liquid fuel instead, but very little work has

been done with this. Hybrids, in general, are much less understood than either liquid or

solid propellant motors. Their main appeal is to be safer than solids, cheaper and simpler

6

than liquids; however they maintain much of the throttling ability and adaptability of

liquids. There are disadvantages as well, and will be covered shortly.

The oxidizer is fed from a holding tank through an injector which atomizes the

oxidizer inside the combustion chamber. As the oxidizer moves across the surface area

of the solid fuel grain a thin layer of fuel vaporizes and allows combustion to be

sustained. Some ignition source of enough energy to begin vaporizing the solid fuel must

be used before oxidizer is introduced and the engine throttled up. One of the largest

disadvantages of hybrids is the limited source of fuel. The solids can only vaporize at the

exposed surface and can only do so at a finite rate for a given amount of oxidizer. The

speed at which the solid fuel can vaporize for a given mass flow of oxidizer is called the

fuel regression rate, and it is very important to understand the characteristics of a fuel and

how it burns with a specific oxidizer before a motor can be confidently and safely

designed. Engineers are constantly attempting to find new ways of increasing the

regression rate of fuels such that the surface area can be reduced and total fuel volume

increased to create more compact high thrust motors. One option is to use a wax based

fuel, which instead of vaporizing from a solid state at a fairly limited rate first melts into

a liquid boundary layer. This liquid layer can actually be caught up in the gas streams

headed to the nozzle and become airborne while burning; effectively increasing the

surface area of fuel exposed to oxidizer. Much like spray can be picked up from the tips

of white cap waves on a stormy day. Paraffin fuels are now being investigated as a

primary fuel source for many hybrid engines. If implemented correctly, paraffin could

nearly negate the regression rate problems of other fuels such as HTPB, and provide

7

ample fuel for a given flow of oxidizer. There are still a lot of teething problems with

paraffin hybrids, largely burn stability.

The use of hybrid rocket engines is fairly limited at this point in time, but they are

becoming more popular and used in a wider range of vehicles. Possibly the most famous

application was in SpaceShipOne, built by Scaled Composites. This vehicle is designed

for sub-orbital flights up to 100 km, and is powered by a Helium supercharged Nitrous

Oxide and HTPB hybrid motor. They successfully competed for the Ansari X-prize in

2004 for launching a manned aircraft to an altitude greater than 328,000 ft and doing so

twice in less than 14 days. Scaled Composites is currently working on a SpaceShipTwo

and has partnered with a Richard Branson company called Virgin Galactic to provide

tourist service to suborbital space. SpaceShipTwo will use a much larger version of the

hybrid motor in its little brother.

Another demonstration of hybrid propulsion will be with Sierra Nevada’s Dream

Chaser vehicle. The Dream Chaser will use two hybrid motors to boost into LEO (low

earth orbit) to provide cargo and shuttling service to the ISS. The hybrid motors are

those used in SpaceShipOne. SpaceDev is responsible for the motor’s design and is

actually a component of the Sierra Nevada Corporation. These particular hybrid motors

are not throttled, and are using the better understood, but lower performance, HTPB as

fuel. If a paraffin version of these motors could be developed and a throttling system

implemented the hybrid motor would become a much more appealing option for many

other vehicles.

A variety of sounding rockets and other conventional rocket vehicles have tried

using hybrid propulsion, all with varied success. Some failures could have been easily

8

avoided, such as Amroc’s stuck oxidizer valve which caused the oxidizer to only slowly

flow into the combustion chamber. This allowed enough flame to incinerate the rocket

without moving it an inch. A team from New Zealand just launched a hybrid sounding

rocket, but failed to recover the second stage, no fault of the hybrid, however.

At the moment, one of the most promising efforts is being led by Stanford

University with support from NASA Ames research center. The so called Peregrine

project will be a 100 km sounding rocket powered by a 10 in diameter paraffin and liquid

oxygen hybrid. The project is also getting support from Space Propulsion Group, the

industry leader in paraffin hybrids. As of yet the motor has no closed loop thrust control

system.

1.4 Hybrids and throttling, Flow Control Technology and its challenges

Throttling rocket engines is not a trivial affair, no matter the engine. Solid

propellant motors cannot be throttled, once lit they burn until all the fuel is consumed.

Some control over the thrust curve can be achieved by being clever with grain design or

fuel composition variations radially within the grain; such that the exposed surface area

or volatility of the fuel changes in a certain way over time thus changing the thrust curve.

There certainly is no shutting a solid motor down once ignited.

Throttling liquid propellant motors is the most common and best understood at the

present. In a liquid engine you have direct control over the flow of oxidizer and the fuel,

by using valves in the feed lines. To reduce thrust you must reduce the chamber pressure.

Reducing pressure in the combustor is as simple as reducing the amount of fuel and

oxidizer fed into the system. Usually to burn at maximum efficiency the motor requires

9

more oxidizer than fuel (by mass) therefore the flow of oxidizer has to be cut more than

the flow of fuel in order to maintain ideal operating conditions. With a liquid propellant

engine you can control this oxidizer to fuel ratio (O/F) directly, allowing the engine to

operate as efficiently as possible at any given thrust level.

Hybrid motors, since they use a solid fuel and a liquid oxidizer, are a little less

precise when it comes to throttling. The operator only has control of the oxidizer flow,

and the fuel flow is a function of oxidizer flow. This goes back to the regression rate idea

that was discussed earlier. Now that this is a coupled system the change in oxidizer flow

also means a change in fuel flow. In a simple sense, cutting the flow of oxidizer cuts the

flow of fuel because the regression rate is a function of mass flux in the fuel port.

However, usually the motor will only operate at ideal O/F ranges for one specific mass

flow of oxidizer. At all other throttled points the motor will not be running at maximum

efficiency. This is a tradeoff. The hybrid offers increased simplicity, and lower costs

than a liquid propellant motor, but does not have the potential to be quite as efficient at

all thrust levels. It is a mid-point between solid motors and liquid motors. Further

exploration into the specific design of a hybrid motor is presented in Appendix H, and

looks at the O/F tradeoffs in more detail.

Hybrids, as well as most other rocket motors are currently thrust controlled by

varying the flow of fuel and oxidizer manually, and does not use a closed loop control

system to verify that the engine is providing the correct thrust. In other words, a desired

thrust curve is achieved by spending a lot of time characterizing a specific motor such

that the operator knows that if you specify a curve of oxidizer mass flow over time then

you will get a desired thrust curve over time. This is fine as long as you don’t change the

10

desired curve, and that the motor is operating exactly like it was designed and

characterized to run.

If a hybrid motor could be fitted with a controller that measures thrust, computes

how different the thrust is from a reference thrust curve, and then adjusts the flow of

oxidizer accordingly, then you could have a much more robust and versatile system. It is

a method of control that is used in a variety of other engineering applications, but never

routinely on launch vehicles to allow the launch team to optimize the thrust curve. The

ultimate scenario is that this hybrid is developed such that a team interested in using it as

a booster for a payload could determine the optimized thrust curve which maximizes

altitude or some other parameter while minimizing the cost of launch (i.e. by using less

fuel). In theory, once the thrust curve has been determined it can be loaded into the

booster computer memory and the PID control system will enable the motor to follow the

curve by using a closed loop to constantly monitor the actual system performance. If the

motor is reliable and stable at a wide range of thrust levels then this should be a fairly

simple task. The work of this thesis investigates the performance of a specific

tank/valve/driver/injector setup in controlling the mass flow of water. Having this

experience will be invaluable when it comes to designing the rest of the motor. The idea

of having the capability of loading any curve into the control system at a moment’s notice

and having the motor follow that curve is an exciting prospect. Other possibilities

include real time control of thrust via radio link or some other input. The robust nature of

a closed loop control system opens all sorts of exciting possibilities.

11

CHAPTER 2: INTRODUCTION TO CONTROL SYSTEMS

A well designed control system can be one of the most elegant systems

encountered in engineering. They add a huge amount of functionality and usability to

many designs. Through the use of a controller, a system can be forced to almost perfectly

follow a desired reference signal. However, what makes the use of a control system

special is that it has no high level knowledge of the system which it is controlling. It uses

very simple logic to create extremely complex results, making it very robust.

The general idea is that there is some reference curve that you want your system

to adhere to. An example would be the angular velocity of an electric motor over time.

Perhaps you want the angular velocity to follow a specified curve, regardless of the load

on the motor. If you knew the load to be applied you could feed the motor a pre-

determined voltage vs. time signal that would keep the angular velocity at the desired

level. This, however, is a very fragile way of executing the task; what if some parameters

in the system change? It would be inconvenient to re-characterize the motor input

anytime this happened. Instead, use a controller that constantly compares the actual

motor rpm with the reference curve; resulting in an error value. The controller uses this

error value to either increase or decrease the input to the system (voltage to the motor in

this case). If the motor slows down due to a load then the controller reads an rpm lower

than reference and gets a larger error value. This large error results in the controller

increasing the voltage to the motor. If the error was opposite in sign then the controller

would decrease the voltage to the motor.

12

2.1 PID controller basics

The next question is how the controller arrives at a system input based on an error

signal. It is important that the controller does not actually know anything directly about

the system when it goes about determining this input value, since that would increase

complexity of the controller, increasing error and decreasing the robustness. There are

three main means of computing the system input: direct proportionality to error;

derivative proportionality to error; and integral proportionality to error. The term “PID

controller” may sound familiar; where the P stands for proportional, the D for derivative,

and I for integral. One does not need to use all three methods, often just a proportional

controller is necessary, or a PI, or even a PD controller. Each of the methods has its

benefits and drawbacks. Equation 1 shows how the controller output signal is generated

from the error term.

() ()() ()() ()





++= ∫ te

dt
dKDdtteKIteKPtinput ***

Equation 1: PID Controller

If only a proportional multiplier is used then the system will tend to always have

an offset from the reference. This is because unless the proportionality constant is very

large then as the error goes to zero, the input the controller delivers to the system

decreases to zero as well. Some equilibrium point is found, but there will always be

some error between the reference and response. Proportional controllers are very simple

and stable, however.

An integral controller is used to get rid of the offset that is developed with only a

proportional controller. This makes a PI controller very common. The integral method

13

integrates the error over time. Therefore the offset generated by the proportional

controller will slowly build up over time and the integral component will see this as a

need for a larger system input and thus draws the actual system output closer to the

reference signal. The problem with integral controllers is their tendency to overshoot the

reference and then oscillate about it for a significant amount of time.

The overshoot problem is where the derivative controller comes in. The derivate

component senses how quickly the error value is changing. If the error is increasing

quickly then the derivative portion of the controller will increase the input more

drastically to counter the increasing error. On the flip side, when the error is actually

quite close to the reference signal and not changing all that fast the derivative controller

calls for gentler and less dramatic system input. They are very useful for systems with a

lot of momentum that like to overshoot and maintain oscillations for long durations. The

trouble with derivative controllers is that they are very sensitive to noisy system output,

and can make the controller output (system input) an amplified version of the system

output that quickly spirals out of control. Careful filtering is necessary to use a derivative

controller effectively. If you look at Equation 2, where y(t) is a noise component of an

error signal being fed to the controller and ω is large since the noise is usually of high

frequency, you can see that differentiating it creates large amplitudes, ωε , that can cause

erratic and undesirable controller output to the system.

() ()

())cos(

sin

tty
dt
d

tty

ωωε

ωε

=

=

Equation 2: Noise Amplification upon Differentiation

14

2.2 Implementing an Oxidizer Flow Controller

For this thesis a controller will be used to monitor and correct the mass flow of

oxidizer. In this case the controlled quantity is the “oxidizer” (water) flow through the

system. There will be a reference curve of mass flow vs. time and the controller will

attempt to maintain the system so that the actual mass flow matches the reference mass

flow rate. In order for the controller to compute an error value it must have a reading of

the system output (mass flow). This will be accomplished by hanging the oxidizer tank

from the ceiling with a load cell. The weight of the tank can be differentiated over time

to get the mass flow out of the system. The controller will then take this error value and

run it through a PID controller to get an input for the system. The controller output or

system input will be an angular velocity of the valve (ie CCW at 95 rpm). When the

motor responds to this and starts changing the valve position at this particular rate then

the oxidizer flow will change and the controller will reassess the situation. Hence the

term closed loop control.

Eventually, when this oxidizer flow control is attempted on a throttled hybrid

motor the only difference will be how the mass flow of oxidizer is measured. Instead of

having a direct measurement from a load cell, the controller will use a chamber pressure

measurement from the combustion chamber. From this pressure measurement a good

approximation of motor thrust can be determined, and this motor thrust can be then

compared to a thrust vs. time reference curve to generate an error signal which the

controller can use. Thrust is primarily a function of oxidizer mass flow (there are some

other minor factors), therefore the thrust control and the oxidizer mass flow problems are

15

very interrelated. If a controller for mass flow is developed then there is a lot of

necessary knowledge that can be used for the application on a working motor.

16

CHAPTER 3: TEST SETUP: DESCRIPTION OF APPARATUS

The oxidizer feed apparatus that is setup for this experiment represents a possible

system which could be implemented on a hybrid motor of the size to be used in the Ursa

class sounding rocket (Project Ursa is the name given to the University of Maine

sounding rocket project). Much of the apparatus is designed and built as it would appear

on an actual rocket motor. The tank is constructed to size and shape of a possible flight

tank, and is hooked up to a flow control valve operated by a stepper motor. This stepper

motor and valve were designed to consume power and fit in space that would be available

onboard the vehicle. An injector is mounted aft of the control valve. The only missing

element is the combustion chamber itself. Technical drawings of all the components are

available in Appendix I, which presents the plans for a hypothetical hybrid motor and

therefore includes other components in addition to the oxidizer tank.

3.1 Tanks and Piping

The injector is a multiport showerhead type, with a 1” NPT inlet. At 300 psi of

pressure drop across the valve and injector the predicted flow of water through the system

is 3.3 kg/s or about 65gal/min. These flow capacities are sufficient for the proposed

rocket motor design presented in Appendix H. Since water will be tested at first and is

not self-pressurizing at atmospheric conditions, nitrogen gas will be used to create the

necessary pressure drop between the tank and the atmosphere. Table 1 displays a P&ID

(Piping and Instrumentation Diagram) of the system as it is constructed for this

experiment. A computer rendering and photograph of the actual test rig are presented in

17

Figures 2- 5 along with some of the basic components labeled. The specification sheets

for the major components can be found in Appendix G.

The nitrogen fill and the water fill locations as well as a load cell are on top of the

oxidizer tank. The nitrogen fill bottle sits strapped to an I-beam nearby and fills the

oxidizer tank through a length of nylon pressure hose. The nitrogen fill has a pressure

relief valve with a higher flow capacity than the regulator and has a lower relief pressure

than any component’s pressure rating. At the nitrogen supply bottle a regulator reduces

the pressure from the tank to the desired system pressure; two gauges allow the tank

pressure and the supply pressure to be read. Asides from the main tank shutoff there are

two additional valves at the nitrogen tank, one shuts off the nitrogen supply to the

oxidizer tank and the other allows a purge of the system. Purging the system is necessary

either when completing a set of tests, or while refilling the oxidizer tank with water since

the ullage gasses need somewhere to go while being displaced with water.

At the top oxidizer tank bulkhead there is a valve that shuts off the water supply,

this valve is necessary so that when the tank is pressurized by nitrogen the garden hose

which supplies the water isn’t also pressurized since it isn’t a rated component. The load

cell is attached to the center of the bulkhead and allows the tank to hang straight. On

either end of the load cell ball joints are used so that the cell can only be put in perfect

tension. From the ball joints the tank is shackled to a chain which runs over a ceiling

truss.

18

Table 1: System P&ID Diagram

Figure 1: P&ID Diagram of Experimental Setup

1 DOT bottle containing gaseous nitrogen
• initially at 2500psi
• Type K
• 244 Cu ft. of Nitrogen at STP Conditions

2 Main bottle shutoff valve
• CGA-580 Connection

3 Nitrogen bottle pressure gauge
• 0-4000psi Range

4 Nitrogen supply pressure regulator
• 0-500psi Capability

5 Nitrogen supply pressure
• 0-500psi Range

6 Pressure shutoff valve
• 3000psi Rated
• 3/8” FNPT

19

• Ball Type
7 Flexible nylon pressure hose

• 750psi Rated
• 3/8” OD Nylon

8 Load cell
• 0-500lb
• See Appendix G for details

9 Pressure relief valve
• 750psi set pressure

10 System purge valve
• Identical to item 6

11 Water fill hose
• Garden Hose

12 Water fill valve
• Identical to item 6

13 Oxidizer tank
14 Oxidizer tank pressure transducer

• 0-1000psi range
• See Appendix G for details

15 Oxidizer flow thermocouple
• Type T
• Ungrounded
• Open Tip

16 Step motor driven oxidizer flow control valve (see next section for more details)
17 Injector

• 1” FNPT
• 12 port
• 35deg spray angle
• See Appendix G for details

20

Figure 2: Photograph of Apparatus

Figure 3: CAD Rendering of Apparatus

21

Figure 4: Photograph of Nitrogen Fill Station

22

Figure 5: Photograph of Upper Tank Bulkhead

1 Water and nitrogen fill
2 Load Cell

23

3.1.1 Control Valve Assembly

The flow control valve, at least for now, is a ½” stainless steel ball valve. This

ball valve is actuated by a NEMA 17 step motor. The step motor does not have the

necessary torque to turn the ball valve directly; therefore it needs to be run through a

reducing gearbox. The gearbox in question is a right angle worm drive which has a 30:1

gear ratio. To sense when the valve is fully open and fully closed there are two limit

switches that are activated by an arm which is attached to the valve stem. The Arduino

will keep track of valve position, but when it is initially powered on it needs to find a

home position, and to do that it needs the input from a limit switch of some kind. The

gearbox was specified to have very low slop, however, the valve stem fits loosely in the

valve ball itself; this is accounts for almost all of the system drivetrain slop. It amounts

to approximately ½ turn of the step motor shaft before the valve ball begins to rotate.

This means there is roughly 6 degrees of slop at the valve. The slop must be accounted

3 Oxidizer Tank
4 Control Valve Assembly
5 Pressure Transducer
6 Injector
7 Nitrogen Bottle Pressure Gauge
8 Nitrogen Feed Pressure Gauge
9 Pressure Regulator
10 Nitrogen Fill Valve
11 Nylon Pressure Hose
12 System Purge Valve
13 Nitrogen Fill Bottle
14 Pressure Relief Valve
15 Water Fill Valve

• Identical to nitrogen fill valve and purge valve
16 Load Cell
17 Oxidizer Upper Bulkhead
18 Oxidizer Tank Casing
19 Nylon Pressure Hose
20 Water Fill Hose

24

for every time the valve changes direction. Figure 6 is a labeled computer rendering of

the valve assembly. Figure 7 is a photograph of the valve assembly. As a reminder,

drawings of this assembly can be found in Appendix I.

Table 2: Control Valve Design

Figure 6: CAD Rendering of Valve Assembly

25

Figure 7: Photograph of Valve Assembly

1 ½” SCH 40 stainless steel pipe nipple
2 ½” stainless steel ball valve

• See Appendix G for details
3 Aluminum motor mount assembly

• See Appendix I for drawings
4 Limit switch indicating the valve is open

• STSP momentary button switch
5 Coupling from gearbox to valve stem

• See Appendix I for drawings
6 Limit switch activator arm

• See Appendix I for drawings
7 Limit switch indicating the valve is closed

• Identical to item 4
8 Right angle 30:1 worm box

• See Appendix G for details
9 NEMA 17 step motor

• See Appendix G for details

3.1.2 Oxidizer Tank

The overall tank is machined from extruded aluminum and capped at both ends

with flat aluminum bulkheads, held in place with spiral snap rings and sealed with double

3/16” CS Viton O-rings. The tank casing is designed such that it could serve as the

26

airframe of the rocket booster section. The upper bulkhead has a port for water fill and a

second port for nitrogen fill. The lower bulkhead contains a large port for the injector

and a second smaller port for a pressure transducer.

The oxidizer tank was designed to fail axially, with a bulkhead failure. Building

the tanks from aluminum also reduces the risk of fragmentation if a radial failure was to

occur. The tank was designed to withstand 1000 psi, however, in reality; it will be

unlikely that it will see anything close to this. All factors of safety are calculated with a

tank pressure of 1000 psi. The minimum factor of safety in the axial direction was 1.4,

due to bulkhead strength; snap ring groove factors of safety are approximately 2.0. The

radial factor of safety is 2.56.

The oxidizer tank casing is machined from 6061 T6 extruded aluminum tubing,

9.5 in OD and .25 in wall thickness. Figure 8 shows a more detailed view of the tank

casing end, both ends are identical. Appendix I contains the technical drawings of the

tank casing, Figure 8 is simply meant to point out the major design points of the tank

casing.

Under pressure, flat plates are not great as tank ends; there was a significant

concern with their structural integrity. Therefore an FEA was performed on them to

confirm they were up to the job. Figure 9, shows renderings of the upper and lower

bulkheads. Appendix I supplies technical drawings. Both bulkheads are machined from

1” thick 6061-T6 aluminum plate.

The snap rings are of the spiral type; the ones used on the oxidizer tank are made

by Smalley PN: WH-900. They are rated for 102,130 lbf of radial force, in our particular

case the snap ring groove itself will fail before then. The O-rings are made from Viton

27

with a 3/16” cross-sectional diameter and a dash number of 365. The O-rings were

sourced from MSC industrial supply with a PN: 02246064, manufactured by APG.

28

Figure 8: CAD Rendering of Oxidizer Tank End

29

Figure 9: CAD Rendering of Upper Oxidizer Tank Bulkhead

Figure 10: CAD Rendering of Lower Oxidizer Tank Bulkhead

1 Large lap area to join oxidizer tank casing to the rest of the airframe if ever used
on a vehicle

2 Snap ring grooves
3 Area machined true on casing ID to provide seat for tank bulkheads
4 O-rings
5 Tab to hang tank
6 Nitrogen fill port (1/4” NPT)
7 Water fill port (1/4” NPT)
8 O-ring glands

30

9 Oxidizer feed port (1/2” NPT)
10 Pressure transducer port (1/4” NPT)
11 O-ring glands

3.2 Instrumentation and Data Acquisition

The pressure transducer, thermocouple, load cell, and step motor inputs are all

recorded on a data acquisition system. The step motor receives input from an Omega

Engineering motor controller, which in turn is sent signals from an Arduino

microcontroller. The microcontroller handles the control system algorithm and therefore

also receives input from the load cell. Figure 11 lays out the wiring of the system.

A word about the motor controller: There are three inputs, one is a step

command, one is a direction command, and the last is an enable command. They all

operate on a 0 or 5V digital input, and are optically isolated from the rest of the

controller. The controller will cause the step motor to move one step (1.8deg) for one on-

off cycle of the step command input. The actual step is triggered when the signal drops

back to 0V. The direction input defines the direction of the step motor, either 0V or 5V.

The physical direction of the motor shaft depends on the motor being used. Lastly the

enable command causes the controller to lock the position of the motor and ignore all

other input; the motor is locked when the enable pin has 5V and is enabled when the pin

is at 0V. This is slightly counter intuitive.

The data acquisition system involves the use of a National Instruments chassis

and modules, details are all available in Table 3. 5VDC is supplied to the load cell and

pressure transducer, this power source is also monitored by the DAQ. 24VDC is supplied

to the Omega Engineering step motor controller, this is a separate supply tailored for the

particular motor controller used. Lastly, power for the Arduino is supplied by USB cable

31

from a laptop. The same laptop is also connected to the DAQ chassis. Figures 12-16

provide photographs of actual components. Remember to refer to Appendix G for

specific technical information on any of the major components.

Table 3: Instrumentation Details

Figure 11: System Instrumentation and Wiring

1 Laptop
2 Sensor power supply
3 Pressure transducer
4 Arduino microcontroller
5 Omega Engineering step motor controller
6 Omega Engineering step motor power supply
7 Thermocouple
8 9205 NI module
9 9219 NI module
10 NI Chassis
11 Step motor control valve
12 Load Cell
13 USB Cable

32

14 Step motor control cable
15 Motor step command
16 Load cell signal
17 Motor direction command
18 Thermocouple signal
19 NI module to chassis connection
20 5V power
21 24V power for step motor controller
22 Limit Switch Signal
23 Valve Limit Switches

Figure 12: Motor controller

Figure 13: Step motor power

supply
Figure 14: Arduino micro controller

Figure 15: 5VDC power supply

Figure 16: NI chassis and modules

33

3.3 Description of LabVIEW Program

The physical setup of the DAQ system has already been discussed, there is some

setup required on the software side as well. National Instruments distributes the DAQ

chassis and modules and also supports a software suit called LabVIEW, which is what

was used for this thesis work. LabVIEW, much like MATLAB, uses a visual block and

wire method to program the DAS. Figure 17 shows the VI block diagram. Figure 18

shows the program front panel where the user interacts with the program. This front

panel is linked to the block diagram; certain function blocks in the diagram create certain

user interfaces on the front panel. Since time and expertise were limited, the DAQ

Assistant block was used to collect the data, which is essentially a wizard that allows you

to choose which DAQ module you wish to use and then walks you through wiring the

input to the module correctly. Figure 19 shows how one of the channels within the DAQ

Assistant is setup.

34

Figure 17: DAQ Block Diagram

1 Loop, causing the DAQ to continuously sample rather than collect a finite number
of points

2 Stop button to end data acquisition
3 DAQ Assistant as described below, and shown in Figure 19
4 Filename block used to specify the name of the data file to which the collected data

will be stored
5 Write to file block used to store the data to a text file or similar
6 Graph block, allows the user to watch the data in real time as it is being collected.

35

Figure 18: DAQ Front Panel

1 Output graph, created by the graph block in the block diagram
2 Stop button
3 Filename input

36

Figure 19: Screenshot of DAQ Assistant Configuration

In Figure 19 the display which sets up the thermocouple is being shown. The

wizard allows you to select the min and max temperatures expected to be seen, what units

to read the thermocouple in, and very importantly the type of thermocouple. In this case

it’s a type J. In the process of setting up this channel, the user also has the option to

choose which module to use for the data collection, in this case the 9219 was chosen for

the thermocouple. The wonderful part of the wizard is the ease at which you can scale

37

system output. Each of the inputs going to the DAQ is a voltage signal, some in the

millivolt range and some in the 5V range. Table 4 lists each of the DAQ inputs in greater

detail and exactly how they are scaled, it also lists the order in which they appear in

columns when written in the tab delimitated text file. If you have a calibration curve for

a sensor it is very simple to configure a calibration function for a specific channel which

converts the voltage, current, or resistance signal into another wanted quantity such as

weight, temperature, or a variety of other outputs.

Table 4: DAQ Inputs and Outputs
Name Text Doc

Order
Channel Module Sensor

Output
Scaled Quantity

Time 1 NA NA NA Time (sec)

Thermocouple 2 Ai0 9219 Voltage Temperature (deg C)

Load Cell 3 Ai1 9219 Voltage Weight (lbm)

Pressure Transducer 4 Ai2 9219 Voltage Pressure (psi)

Motor Step Signal 5 1 9205 Voltage Voltage (V)

Motor Direction

Signal

6 2 9205 Voltage Voltage (V)

Motor Enable Signal 7 3 9205 Voltage Voltage (V)

3.4 Description of Arduino Program

The program that runs on the Arduino microcontroller is worthy of a more in-

depth description; there are several different programs that are currently written for the

Arduino which are used throughout the scope of this thesis. One is simply a manual

valve control, where you can use a switch to select either open or closed. This is useful

for testing the mechanical aspects of the valve or for trouble shooting. The second

38

program is used for characterizing the valve, and allows a specific valve angle to be

specified and loaded into memory. Lastly, there is the controller program which is used

to run the closed loop flow control. All the programs are written in Arduino’s compiler

and can be easily downloaded via a USB link into the chip whenever desired. The code

is written in C++, the compiler has many built in functions, however. A screenshot of the

program can be seen in Figure 20. All Arduino software is open source.

Figure 20: Screenshot of Arduino Compiler

3.4.1 Manual Arduino Program

Again, this program is used to allow manual control of the valve being open or

closed, and is the most basic of the three programs. Understanding the way it operates,

39

however, is the basis to understanding how all the other programs operate as well. A

complete printout of the code is available in Appendix D, with an expanded explanation

of what is shown below.

 At the beginning of the loop the Arduino first reads in the inputs which it

receives, such as the high/low values from the valve limit switches, as well as a small

manual switch which the user can use to define the direction of motor travel. The next

part of code brings the motor back to a home position when it is powered on. The way

which the code is setup now is such that “home” is defined as “valve closed”. The

Arduino knows that the valve has reached the closed position when the limit switch is

activated and grounds the associated input pin on the Arduino board. The Arduino does

not allow the rest of the code in the “void loop” to be executed until the limit switch

indicating a closed position is activated AND the manual direction switch is commanding

the motor to move in the closed direction. For example, if when the valve is powered on

it is already in the open position and the valve direction switch is commanding the valve

to open, the Arduino will cause the motor to shut the valve fully (regardless of user input)

and will not allow user control until the direction select switch is also commanding the

motor to close.

There is a second pin on the Arduino which gives the motor controller the step

command. The step pin oscillates at a rate defined in the initialization portion of the

code. The pin is set high or low using a small “if” statement that keeps track how long

the step pin is high or low and switches the value after the appropriate interval.

Note that the step pin is oscillating whenever the Arduino has power; the motor is

only stopped by using the enable command on the motor controller. For example, when

40

the valve is fully open and the limit switch pulls the associated Arduino pin to 0V, the

code sends a high signal to the enable pin which causes the motor controller to lock the

step motor in the current position. All the while the step pin continues to oscillate; its

output is simply ignored.

Very importantly there is the code which keeps the valve from going beyond 90

degrees open and 0 degrees closed. This is important because if the valve goes much

further beyond these bounds it will bind. To prevent this from happening there are the

two limit switches that are activated by the valve stem. As described before, whenever a

limit switch is activated it grounds a pin on the Arduino board. If the input pin for either

limit switch is activated AND the current direction selection is in the direction of that

limit switch a signal is sent to the enable port of the motor controller and the motor is

locked in position.

3.4.2 Valve Characterization Program

Generating the necessary information to characterize the valve is a large portion

of this thesis work, and requires its own program. As will be explained later in the thesis,

characterizing the valve will require repeated runs of the apparatus, all at different valve

positions. The valve will be held a constant position for the duration of a flow test, then

the tank will be refilled and the valve brought to a different position for a new test. The

program is identical to the user controlled program, with the exception of losing user

direction control, and an additional condition that causes the motor to be locked in

position at the desired angle instead of continuing until it reaches a limit switch.

41

Appendix E contains a printout of the user controlled Arduino code with additional

explanation.

Once the valve has executed the commands that brings it to the home position and

the user has flipped the direction control switch to “open”, the Arduino begins to count

step cycles with a simple variable that goes up by one every time the step pin completes a

cycle; an additional “if” statement compares the step count to the desired angle, and if the

step count is greater than the desired angle it locks the motor position.

3.4.5 Closed Loop Flow Control Program

This is the most complex of the programs, and is used to run the closed loop flow

control. Unlike the previous two programs, the Arduino will be looking for input from

the load cell as well as generating output for the flow control valve. At the heart, the step

commands are sent in the same way as the other two programs, except that the step

interval is variable, the same initialization sequence to bring the valve to the home

position is also implemented. The variable step size allows the angular velocity of the

motor to be adjusted beyond either on/off. The program now also receives an analog

input from the load cell. The Arduino then differentiates this mass measurement to get a

mass flow reading which can be compared to the reference signal. Depending on the

error, an appropriate valve angular velocity is determined, which is then converted into a

given step interval. Since the motor controller has a minimum step interval that it can

recognize there are saturation limits placed to constrain how small the step interval can be

made. Appendix F contains a copy of the code along with a much more detailed

description.

42

This desired angular valve angular velocity must be translated into the mentioned

step interval for the motor, if the input is small (ie a low angular velocity) then the step

interval must be longer (ie a larger pause between step commands), higher angular

velocity means a short step interval. The derivation of the equation that converts a valve

angular velocity to a step interval is shown below.

()

()

()

()

() 







+










=









+










=



















=+

∴

+=



















=









=










==

∫

∫

∫

∫
•

•
•

•

deg
deg30*2****

deg8.1
10*1sec)int(

deg
deg30*2****

deg8.1
int(sec)

deg
deg30*2*secint

deg8.1

:
deg
deg30*2*secint

deg8.1

deg
deg30

2*secint

deg8.1
_

6

dterrorKIerrorKP

step
step

dterrorKIerrorKP

step
step

step

step
dterrorKIerrorKP

dterrorKIerrorKP

also

step

step

step
step

RPMMotor

µ

θ

φθ

φ

Equation 3: Determining Step Interval from Valve Angular Velocity

Lastly, there are two “if” statements that determine the direction of the motor depending

on whether the “input” (ie valve angular velocity) is positive or negative. The limit

switch protection is also still in place to prevent the valve from binding.

43

CHAPTER 4: MODELING THE SYSTEM

Once the valve is characterized the results will be used in a computer model of the

oxidizer flow system. The hope is that an accurate model of the system can be made on

the computer such that tests can be run in MATLAB instead on the actual test rig, which

will allow more rapid tuning of the control system as well as provide a characterized

component (the oxidizer feed system) to a simulation of an entire motor setup when the

time for that arrives.

4.1 Assumptions about the system

In order to model the system it was necessary to make several assumptions about

the way the oxidizer behaves as a fluid, how the control valve operates, and the blow

down process that occurs as the oxidizer leaves the tank. The assumptions made during

this investigation will now be presented:

Incompressible fluid, since water will be used it was assumed that the fluid is

incompressible, therefore no cavitation at the injector or the control valve was accounted

for. It also means that any choking effects at the injector were ignored. This assumption

may prove to be the most problematic when transitioning to the real oxidizer, which will

most likely be nitrous oxide. Nitrous oxide behaves as an incompressible fluid, while it

remains a fluid. However, under the pressures and temperatures we will be working with

the nitrous is very close to the saturated vapor phase. This means that any pressure drops

through the control valve could very easily result in momentary vaporization of the fluid,

resulting in compressible gas pockets. These gas pockets (cavitation) may severely

choke the flow if they occur, this will have to be investigated in detail once the system is

44

characterized using a fluid other than water. Carbon dioxide has very similar properties

to nitrous oxide and would serve as a cheaper and safer analog and therefore a stepping

stone to nitrous. Due to time limits carbon dioxide will not be tested in the scope of this

thesis. The valve, injector, and controller can be characterized in the same way as with

water; the results may be very different. The concern is a drastic drop in system flow

capacity when using fluids near their vapor pressure.

Fluid temperature, the temperature of the fluid is considered the constant room

value. The fluid temperature will be monitored just before it enters the control valve, but

there are no compensations for that temperature measurement in the simulations. Since

the fluid is also considered incompressible it follows that the density of the fluid is then

also considered constant when using Bernoulli’s equation and the energy equations

involved with the fluid dynamics of the system. Large swings in temperature have not

been observed and therefore this is deemed a reasonable approximation.

To simulate the system accurately the pressure in the oxidizer tank needs to be

known so that the pressure drop across the flow path can be determined. This pressure

drop, of course, is the key component to understanding and predicting the mass flow of

fluid. As will be explained in more detail later in the report, the ullage space within the

tank will be supercharged with nitrogen and the system will blow down to atmospheric

pressure. Modeling this blow down process involved making several assumptions about

the behavior of the nitrogen. Firstly, it was considered to be an ideal gas. The

compressibility factor never drops below approximately .95. As detailed later this also

involved assumptions about the ideal gas constant used. Secondly, only the nitrogen

constituent of the ullage gas was considered. In reality there will be a mixture of water

45

vapor and nitrogen. After each run, the tank will be completely flooded with nitrogen,

which will reduce the buildup of water vapor in proportion to the nitrogen. The biggest

assumption, which may warrant further investigation, is that the process is considered

adiabatic, in other words there is no heat transfer between the tank and the surrounding

environment. The blow down durations are relatively short, roughly 30 seconds,

therefore this assumption seemed reasonable as a first pass.

4.2 Governing equations

Now that the general layout of the system is presented the operation of each of the

components can be explored in more detail. Then the simple equation used in the

simulation will be presented. First of all the control valve itself will be examined.

The control valve is of the ball type; therefore it operates from open to close over

a 90 degree rotation. Unfortunately the loss coefficients through the valve do not vary

linearly from these two extremes. Regardless of whether the flow response is directly

proportional to the valve position or not, one of the variables that significantly affect

oxidizer flow is valve position. The second significant factor is the pressure drop which

is present across the flow path. In this simulation, the flow through the control valve was

limited to two factors, the valve position, and the pressure drop. A variable, called

(coined for this experiment) the valve factor, or VF, was defined such that a surface of

VF plotted against valve position and pressure drop could be created. Using this new

variable and the equation for mass flow of an incompressible fluid from Bernoulli’s

equation the approximate mass flow response of the system can be put in the form of

Equation 7. A loss coefficient was added. The streamline used is shown in Figure 21.

46

()

loss

loss

D
L

PVFVF

VFL
D

Pm

2

,

2

=

∆=

××=
∆

=

θ

ρρ


Equation 4: Mass flow based on pressure drop and valve position

Figure 21: Bernoulli's Streamline

The second version of Equation 7 shows a variable named “VF”, VF is the above

mentioned “Valve Factor”. VF varies between 0 and 1, depending on the valve position

and pressure drop. 0 would represent no flow, and 1 would represent maximum system

flow. The max flow was based on achievable upper bounds. The trend between the 0

and 1 for a constant pressure drop and varying valve position is not linear. VF also lumps

47

the mass flow’s dependency on the square root of pressure. A figure of the VF surface is

presented in the results section of this report, figure 32. The Valve Factor takes into

account the trends in the system as the valve opens and closes and pressure falls, but does

not translate valve position and pressure drop into an actual mass flow number. There are

also other losses in the system, such as the injector, and the tubing. This residual

resistance of the system as well as the constant which multiplies VF to give actual mass

flow numbers is all contained in the “L” coefficient, which is called the “VF multiplier”.

The VF multiplier (L) is chosen such that when the valve is fully open the predicted mass

flow is appropriate for a given pressure drop across the tubing, injector, and open valve.

Once again, this means that VF serves only as a proportional term to correct for valve

position and pressure drop. Constant parasitic losses in the system are accounted for in

the VF multiplier (L). Finding good values of VF as a function of valve position and

pressure drop is one of the primary and most necessary objectives of having a working

simulation the system. Note that the square root of density is left as a separate term, but

since one of the system assumptions was that of an incompressible fluid this will remain

effectively as a third constant.

Initial values of L and VF were estimated for the first pass using the data sheets

from the injector manufacturer and valve manufacturer as well as a Darcy friction factor

calculation for losses in the tubing. Note: an arbitrary pressure drop had to be assigned

the valve factor value of 1 (ie the maximum expected pressured drop to be seen), in this

case 85 psi of pressure drop. Of course the maximum flow will be with the valve wide

open, 90 deg. All other pressure drop/valve positions were scaled from this position; you

can see that the back corner of Figure 32 is the position chosen for VF to be 1.

48

4.3 Modeling the valve response (effects of delay)

In reality the response of the valve to the input of the controller is somewhat

flawed. The main component of this, and the only thing accounted for in the simulation,

is the slop within the mechanism. The step motor that controls the valve is severely

geared down; therefore any slop in the gearing is amplified by the time it reaches the

motor shaft. The motor has roughly 180 degrees of free rotation before the slop is taken

up at the valve. This is modeled by adding a backlash block in the Simulink model.

4.4 MATLAB simulation description and explanation

The entire system simulation is performed within MATLAB, within MATLAB

there is a package called Simulink which specifically designed for use with control

systems. All computations are carried out in a Simulink block model, but all of the

variables within the code are initialized using an .m file, the actual Simulink model is

also run from the .m file using the “Sim” command. This way all that needs to be done to

run a simulation is open the .m file and execute, the Simulink model will be run in the

background without being touched by the user. Data from the model is saved to the

workspace and then plotted by the m. file, displaying the reference curve and the

simulated response superimposed. Once actual mass flow curves are experimentally

found a third “measured” mass flow curve can be added to the plot.

Simulink uses a block model flowchart layout, making the design of a simulation

fairly easy and intuitive. Blocks are connected with wires to control the flow of

calculations. Blocks can be as simple as an arithmetic operation, or they can be a

complicated string of embedded code that the user writes. Usually a group of operations

49

are consolidated into a subsystem, such that overall the model looks cleaner and is easier

to follow. Figure 21 shows the top level Simulink model used. A breakdown of the

entire Simulink model can be found in Appendix A.

Figure 22: Overall Block Diagram

The block labeled “Step” is the reference curve. This is the curve that the

controller will be attempting to force the system output towards. In this example, it is a

simple step input, however, this block can be modified to be any desired signal shape.

The feedback loop, which was discussed earlier, joins this reference curve in a simple

addition/subtraction block. This results in the error signal which is fed into the controller

subsystem. Figure 22 displays the controller subsystem block.

Figure 23: Controller Block Diagram

50

The controller subsystem has the capability to be a complete PID controller, even

if the full functionality may not be used. The error signal is feed into three branches, one

for the proportional controller, one for the integral controller, and one for the derivative

controller. The signal is then differentiated, integrated, or left alone before it is

multiplied by the appropriate coefficients. The three signals are then summed before

being used as the controller output/system input. If only part of the controller

functionality is desired the appropriate controller constant can be set to zero in the

program initialization sequence (the .m file). The output of the controller is a command

for the angular velocity of the valve (a direction and rotational speed). In the actual

apparatus this will be translated into a “stepinterval” for the motor controller.

Now that the flow has passed through the controller subsystem the simulation

must now predict how the system will respond to this controller output. This is the

purpose of the “plant” block. This is where the angular velocity input is translated into a

new valve position and ultimately a mass flow through the oxidizer system. Figure 23

shows the plant subsystem.

51

Figure 24: Simulation Plant Subsystem

The first block that the input signal goes through is the “valve motor”, this is

where the valve angular velocity signal is translated into valve position. A diagram of

this block can be found in Appendix A. Essentially what happens is the angular velocity

is fed through an integral block which outputs angular position (theta). The time delay

involved with drivetrain slop is also handled here with a backlash block. Lastly, the

controller may specify a very high angular velocity. However, the motor can only

provide a certain speed; often not as high as the controller would like. This is called

saturation, and the simulation needs to account for it. In this “valve motor” block there

are limits that filter the controller signal to truncate it when it reaches these mins and

maxes. The controller also does not understand the idea that the valve may already be

completely open or closed; if the mass flow is lower than it wants but the valve is

actually already fully open the controller will still attempt to open it further. Therefore,

there needs to be a second set of saturation parameters that keep the valve from opening

52

any further or closing any further than it physically can. This is similar to the limit

switches on the actual apparatus.

The VF table block is really the heart of the simulation, and perfecting its contents

is an important goal. This block is a lookup table that contains the value of the valve

factor (VF). There are two inputs to this block, theta (valve position) and pressure drop

across the oxidizer flow path. From these two parameters the value of VF can be looked

up. A 3D surface plot of this lookup table can be seen in the results section, Figure 32.

During the valve characterization progressed, the contents of this lookup table was fine-

tuned such that simulation matched results.

Now that a mass flow has been calculated given the angular velocity output of the

controller, the last major simulation step in the plant is to calculate the behavior of the

fluid in the oxidizer tank. This step is needed since a new pressure drop will be needed in

the next simulation loop. A diagram of the tank plant subsystem is shown in figure 24.

Figure 25: Tank Simulation Subsystem

It works by finding the change in volume of the ullage gas, this can be done because the

time step of the simulation and the instantaneous mass flow are known. If a constant

mass flow for that small amount of time is assumed then the change in mass of the tank

53

contents can be found. The water is assumed to be incompressible, therefore a change in

volume can be found. Using this change in volume and the assumption that the system is

adiabatic the final pressure can be found. The initial pressure is simply the pressure from

the previous time step. The pressure drop across the control valve is simply calculated by

subtracting atmospheric pressure from this newly found tank pressure. Also, as pressure

drops, more water vapor will enter the ullage gasses. However, this error was small and

thus ignored. The ullage is considered to be pure nitrogen for the duration of the oxidizer

tank blow down. In Figure 24 the upper branch is the calculation of ullage volume at the

current time step, whereas the lower branch has a unit delay block and represents the

ullage volume at the previous step. Using these volumes as initial and final volumes,

knowing the initial pressure, and the ratio of specific heats for nitrogen the final pressure

is found. This means the simulation loop is primed for iteration and a new error value is

found. The process is repeated.

54

CHAPTER 5: TESTING PROCEDURE

There are two main operations that this system is designed for; one is to create the

VF plot that is necessary for creating an accurate system model using this particular ball

valve. The other is for testing the performance of the flow control system once the valve

is characterized. The procedures associated with each of these operations are slightly

different, however, share many similarities.

5.1 Characterizing the Valve

First, the methods of creating a VF plot will be reviewed, including the

procedures for starting the apparatus from a cold start, running a single test, resetting for

another test, and then shutting down the system. The valve characterization method used

here is to run flow tests at constant valve position, while allowing the tank to blow down

from an initial pressure to atmospheric pressure. To get a complete VF surface it is

recommended that the apparatus be pressurized to 150 psi initially and then run with a

constant valve position; this should be repeated for valve positions from 0 to 90deg in

5deg increments.

5.1.1 System Preparation from a Cold Start

1. Power on Arduino by plugging the USB cable into the board and then into a USB

port of a computer

2. Ensure that the “Specific Angle.ino” is loaded onto the Arduino by opening the

compiler and re-downloading. Before downloading be sure to enter the desired

angle into the program.

55

3. Turn on the step motor power supply and allow the program to close the control

valve if it is not already closed.

4. Using the direction select switch, cycle the valve open closed several times to

ensure that nothing is sticking or binding. If the valve has been sitting for an

extended period of time it may be a bit sticky at first, causing the motor to falter.

This is also an opportunity to make sure the tank is empty. When done leave the

valve in the closed position.

5. Open the VI, power on the sensor power supply, and turn on the NI chassis

6. Run the DAQ program and watch the load cell readout to ensure it is zero

7. Check that valve 2, 6, and 12 in Figure 1 are closed, also ensure the regulator is

shutoff.

8. Check that valve 10 is open.

9. Open valve 12 to begin filling the tank until the load cell reads 172lbm, this will

leave the tank 91% full; the perfect amount if it will be pressurized to 150psi with

nitrogen, since it will leave 0psi by the time the tank is empty. This allows a full

range of pressure readings to be attained from a given valve position. If less

pressure is desired initially then the tank should not be filled as much, and vise

versa.

10. Shut valve 12 when the tank is at the desired level. If the tank is accidently

overfilled then command the flow valve to be opened briefly and allow water to

partially drain, and then try again.

11. Close valve 10

12. Open valve 2

56

13. Adjust regulator to 150 psi

14. Open valve 6 and allow the system to reach equilibrium

15. Check the DAQ to ensure the pressure reading is at 150psi, adjust the regulator if

necessary

16. Close valve 6

17. Stop the DAQ and discard of the old data file that was created while preparing the

system. The system is now filled with water, pressurized, and ready for the flow

valve to be opened to collect data.

5.1.2 Running a Test

1. Execute only after performing the system preparation

2. Enter a filename and file path for the data file to be stored

3. Run the DAQ VI

4. Flip the motor direction selection switch and watch the valve move to the entered

angle

5. Collect data until the load cell or pressure transducer reads 0.

6. Flip the direction select switch to close the control valve

5.1.3 Resetting for another Test

1. Change the desired angle in the Arduino compiler and re-download to the

Arduino board

2. Open valve 10

3. Run the DAQ VI

57

4. Execute steps 9-11 of “system preparation”

5. Open valve 6 and allow the system to equalize

6. Execute steps 16 and 17 of the “system preparation”

7. The system is now ready to re-run a test

5.1.4 System Shutdown

1. Close all valves

2. Open valve 10

3. Open valve 6, allow the regulator to depressurize

4. Close regulator

5. Shutdown the motor power supply

6. Turn off NI chassis

7. Unplug the Arduino from the laptop

8. The system is shutdown

5.2 Testing the Control System

In the process of tuning the control system and fine tuning the system simulation

it is necessary to test the response of the system to controller, and then compare to the

computer model. The hope is that once a good computer model is implemented, actual

tests of the control system will be fairly limited. Much of the system initialization is

similar between testing the control system and characterizing the valve.

58

5.2.1 System Preparation from a Cold Start

This is the same as the system preparation for characterizing the valve, except in

step 2 load the “controller.ino” program into the Arduino’s memory. Remember to set

the desired reference curve before downloading the program into the Arduino.

5.2.2 Running a Test

This procedure is also the same as the instructions for characterizing the valve,

except expect the valve to be constantly moving while it attempts to follow the defined

reference curve.

5.2.3 Resetting for another Test

Also the same as for valve characterization, however, re-load the Arduino

program with new controller constants instead of a new angle.

5.2.4 System Shutdown

This procedure is the same as that for the valve characterization.

59

CHAPTER 6: POST PROCESSING

Some work, such as scaling the raw sensor output into quantities like weight,

pressure, or temperature instead of pure voltage values has already been performed in the

DAQ program, as explained in the apparatus description; but there is a still lot of analysis

and manipulation that is performed after the fact in MATLAB. The operation and use of

the post processing MATLAB programs will now be explained, there are two different

programs. One constructs the VF plot, and the other analyzes the performance of the

control system.

6.1 VF Plot Post Processing

When the valve is held at a constant position while the water drains from the tank

the DAQ system is recording the mass of water over time, therefore to find the mass flow

over time the mass vs. time data must be numerically differentiated. One of the largest

challenges is getting a clean plot of the mass flow curve since there is some high

frequency noise in the mass curve. This difficulty is demonstrated with the very simple

example shown in Equation 2. The solution found for this was to use a polynomial curve

fit to get a clean line for the mass vs. time curve and mass flow vs. time. MATLAB has a

built in polynomial fitting tool, which was used after passing the data through a Savitzky-

Golay filter to slightly reduce the noise before fitting the curve. Appendix B provides a

copy of the MATLAB code used.

The data from each of the test runs is stored in a .lvm file, there is an individual

file for each valve position between 0 and 90deg in 5deg increments. Smaller increments

can be taken, depending on how accurate you want the plot to be and the amount of time

60

available to run the tests. In order for the MATLAB program to work correctly, each of

the files must have a unique name and they must all be in the same directory along with

the .m file. The first step the program needs to take is to read the data from the text files

and store it within its own variable.

Two operations are executed immediately; first the Savitzky-Golay filter is run on

the temperature, mass, and pressure data. Neither the pressure or temperature data is at

all noisy, and the mass data is quite good as well, however, the 9219 cannot sample as

quickly as the 9205 yet the NI chassis clock is set to sample at a high enough rate that the

9205 can sense the step signal from the Arduino. The step signal can be running at a

frequency as high as 500Hz, therefore the DAS records the same values from the 9219

for several consecutive time steps. This creates a stair step signal from all the 9219

sensors (load cell, thermocouple, and pressure transducer). The Savitzky-Golay filter is

very effective at linearizing this data without distorting the amplitudes.

The next step is to differentiate the mass flow vs. time curve. This is done with a

simple Euler method, find the difference between consecutive mass values and then

divide by the elapsed time between the two samples. The data which is differentiated is

the Savitzky-Golay filtered mass curve, not the unfiltered mass vs. time curve. Also,

once the curve is differentiated to find mass flow vs. time the curve is run through the

filter again. To get a very clean line for the VF plot this filtered mass flow curve is then

fitted with a 6th order polynomial. A second order fits reasonably well, but the 6th order

allows the curve to be a much more “blunt” parabola, which fits better. Figures 25-31

show sample data before any filtering has been done, and then have an overlay of the data

once the filter has been applied, and then once again when a polynomial curve fit is used.

61

The R^2 values for the curve fits are displayed beneath the charts. Inserts showing the

details of some noise are also shown. Note that the polynomial curve fit for the mass vs.

time curve is actually not used in any calculations, whereas the polynomial curve fit on

the mass flow vs. time curve is used in constructing the VF table.

The last process which occurs is to crop the data which was collected. There is a

significant amount of data at the beginning and the end of the test which involves dead

time before the valve is open or after it is closed as well as transient regions before the

valve has reached its final position. The user must look at the raw data from each test

and determine time bounds for the data. These time bounds are entered into the

processing program and all data that doesn’t fall between the start and end times is

discarded.

62

R2 polynomial/unfiltered: .9976 R2 polynomial/filtered: .9976

Figure 26: Mass Curve Noise (above) and Inset (below)

63

R2 polynomial/unfiltered: .9160 R2 polynomial/filtered: .9725

Figure 27: Mass Flow Curve Noise

64

Figure 28: Temperature Noise

65

Figure 29: Pressure Noise

66

Figure 30: Step Command Noise

Figure 31: Direction Command Noise

67

Figure 32: Enable Command Noise

6.2 Control System Analysis Post Processing

After a test of the control system has been conducted a very similar process in

MATLAB is performed to extract the mass flow vs. time curve generated during the test

run. This can be treated exactly like the mass flow vs. time curves during the

characterization process, except that the valve position is not constant. Additionally,

during the control system post processing the computer model is run such that a predicted

mass flow curve for the given controller constants, initial pressures, and reference curve

can be generated and then overlaid on the actual mass flow curve. This allows

comparison between the model and reality. An Appendix C contains the MATLAB code,

and remember that Appendix A contains the Simulink model used to model the system.

68

Once again, all of the same processes were used to measure the actual mass curve

which gets compared to the predicted curve, except for the polynomial curve fitting. The

mass flow curves with the controller proved too erratic to fit a curve reliably.

69

CHAPTER 7: RESULTS

This next section lays out the results of this thesis work divided between the

results from the valve characterization and the results from the control system

implementation.

7.1 Valve Characterization

The entire goal of the valve characterization portion of this thesis was to create a

VF surface which could be used in the computer model of the oxidizer feed system.

Figures 32-35 below display the finished VF surface. As a reminder, the value where VF

is assigned to be 1 is for a valve position of 90deg and a pressure drop of 85psi. Once the

VF plot was completed the VF multiplier was determined.

L=.147 lbm/sec

Additionally, to visualize the VF plot better Figures 36-44 show distinct slices of

the VF surface. There are four plots of constant pressure drop (10, 20, 40, and 85psi)

where the valve position changes, and another four plots where valve position is held

constant (35, 55, 75, and 90deg) while pressure varies.

70

Figure 33: VF Plotted Against Valve Position and Pressure Drop

Figure 34: XY Plane of VF Surface

71

Figure 35: XZ Plane of VF Surface

Figure 36: YZ Plane of VF Surface

72

Figure 40: VF vs. Valve Position dP=85psi

Figure 37: VF vs. Valve Position dP=10psi Figure 38: VF vs. Valve Position dP=20psi

Figure 39: VF vs. Valve Position dP=40psi

73

Figure 41: VF vs. Pressure Drop POS=35deg Figure 42: VF vs. Pressure Drop POS=55deg

Figure 43: VF vs. Pressure Drop POS=75deg Figure 44: VF vs. Pressure Drop POS=90deg

74

7.2 Control System Results

The results from the control system testing were slightly less clean and

conclusive, for a variety of reasons. They were very satisfactory for the initial

investigation that this thesis provides. Only a P and PI controller were implemented, due

to the impracticality of differentiating a noisy signal twice. There is still work to be done

on the control system model, as it is the model works fairly well. It works best at higher

values of KI and KP. The reason for the inaccuracies at the lower KI and KP values is

not fully understood yet, however some theories are presented in the next section. The

mass curves shown in the plots have all the filtering that was explained in the post

processing section performed on them except for the polynomial curve fit. Their shapes

proved too erratic to be fitted with a polynomial curve with any great deal of accuracy.

Figures 44-47 present some of the best examples, along with a couple which do

not match up as well. Figures 48-59 show some plots of the predicted and measured tank

pressure, which is an interesting side problem that ended up working out well. Next are

two sets of plots that show 30 different simulations all side by side for comparison. Look

for the explanation that follows each graph and explains how to read Figures 50 and 51.

75

Figure 45: System Mass Flow Response for KI=20, KP=20

Figure 46: System Mass Flow Response for KI=5, KP=10

76

Figure 47: System Mass Flow Response for KI=2, KP=10

Figure 48: System Mass Flow Response for KI=5, KP=2

77

Figure 49: System Pressure Response for KI=5, KP=10

Figure 50: System Pressure Response for KI=2, KP=10

78

The following figures (50 and 51) require some explanation to read, since labeling all

axes would clutter the figure. See the section immediately following the figures for a

detailed description.

79

 Figure 51: Variety of System Mass Flow Responses

80

 Figure 52: Variety of System Pressure Responses

81

Figures 50 and 51 require a little explanation. To pack the graphs as tightly

together as possible there are no units or titles displayed. The horizontal axis is time

(sec), just like Figures 44-49, the vertical axes are either mass flow in lbm/sec or pressure

drop in psi (Figure 50 and 51 respectively). The top rows of graphs are for a KP of 0,

second row for KP of 2, then 5, 10, and 20 respectively. The columns left to right are

increasing KI, from 0, 1, 2, 5, 10, and 20. The red line signifies the reference signal,

green is predicted response using the MATLAB simulation, and the blue is the measured

system response. The pressure responses did not have a reference signal, therefore red is

predicted and blue is measured.

82

CHAPTER 8: DISCUSSION OF RESULTS

As can be seen, not all of the results are in complete agreement with the model.

However, there are patterns to the discrepancies and with more development time there is

a very good chance to reconcile the model. There were several factors that contributed to

the differences: Slop in the drivetrain, poor load cell amplification, 10-bit ADC, sloshing

in the tank, a jittery direction signal, and errors in mass curve derivative to get mass flow.

Before each of the above is discussed it would be first useful to examine the

pattern of inaccuracies seen in the data. If you read the description of Figures 50 and 51

such that you understand how KI and KP are organized over the rows and columns then it

will be clear that the discrepancies are larger for the lower values of KI and KP. The

model is the most inaccurate for very low values of KI (ie 1), and is also sensitive to the

lower KP values, but not as much. Once KP is 5 or higher, and the KI is 2 or higher the

model matches up very well.

Other inaccuracies are the result of bad resolution due to noise. This is most

noticeable when the value of KI is lower; however the root cause is not the controller

constants. The weak links in the system, such as the bad ADC, all contribute to a slightly

noisy mass signal, which in turn make the mass flow curve even noisier. The controller

is then using this noisy mass flow curve to calculate a response. With improved mass

curve resolution the noise in the measured curve should be drastically improved. Keep in

mind, however, that some of the noise displayed in the results is simply from the DAS,

and does not precisely reflect actual mass flow. These difficulties have been discussed in

the post-processing section of this report. The moving average implemented as a filter on

the Arduino also helps with the noisy signal.

83

The Arduino only has 10-bit ADC, which converts the analog 0-5V signal to a

digital signal between 0 and 1023. Since the amplifier on the load cell only reaches a

value of .6V approximately the actual digital signal that reaches the Arduino is in the

range of 0-130. This is not a great deal of resolution. In future tests it would be desirable

to have at least a 12-bit ADC, possibly a 16-bit. Additionally, the amplifier itself on the

load cell is lacking. If a true 0-5V signal could be attained then the resolution of the

ADC would not be such a large issue.

Although this is accounted for in the simulation, the slop in the valve stem allows

the motor to move momentarily without affecting the system. This causes additional

oscillation of the motor which reduces its responsiveness. To solve this problem the

valve must be changed. Most of the slop is the interface between the valve stem and the

ball of the valve; which was not manufactured at Umaine. The parts that were custom

fabricated for this project had very little play.

If the maximum possible valve angular velocity is changed in the computer model

it is very easy to get the simulation and results to match up at any value of KI and KP.

However, a certain angular velocity saturation does not fit all of the KI and KP values,

therefore you can choose a value that makes the lower KI’s and KP’s match up or you

can choose a value that makes the higher KI’s and KP’s match. This may indicate that

the valve is not ever able to reach its maximum angular velocity with the lower KI and

KP values, even though the simulation predicts that the error is high enough to trigger

max velocity. One reason could be the noise in the signal, along with the slop in the

drivetrain, is causing the valve to oscillate back and forth, which effectively reduces the

max valve angular velocity. When KP and KI are higher, they are able to override this

84

tendency to reverse direction; allowing the valve velocity to be limited by the minimum

step size command sent to the motor driver (which is the saturation level the simulation

takes into account). Further investigation is required.

85

CHAPTER 9: CONCLUSION

The results of the work done match predictions to the extent that they prove

feasibility of the initial idea, there are is some room for improvement. However, for a

first pass the data and simulation were very satisfactory. Work should be done to reduce

noise, and improve the quality of the mass flow vs. time curve such that it doesn’t require

such vigorous post processing. The physical build of the test apparatus held up very well,

and the design proved to be robust and reliable, and the tank did not develop any leaks.

The only problem with hardware was with the motor controller power supply, this burnt

up despite being fuse protected. It was substituted with a computer power supply which

worked wonderfully. There is no need to buy an expensive replacement power supply.

Next steps after improving the mass flow resolution would be to characterize a

fluid similar to nitrous oxide, such as liquid CO2. Since carbon dioxide or nitrous oxide

have a much lower vapor pressure they might flash when passing through the control

valve which would reduce flow drastically as well as making the system nearly

uncontrollable. This should be tested before this flow control system is used on a rocket

motor, a different style valve might be necessary. However, the procedure established in

this report should still be applicable. Once that has been done the only step needed to

perform thrust control on a rocket motor would be to develop the conversion between

chamber pressure and mass flow. This will introduce a whole other source of noise and

error which will need to be addressed.

One area which was not explored at all in the scope of this thesis was the

optimization of the control system. At this point there was not enough time to perform

any optimization; however this would make an excellent future project. Now that the

86

simulation is working, a genetic algorithm would be the perfect optimization scheme,

since this is such a complex system. A genetic algorithm would generate a large

population of possible KI and KP combinations; run each one through the simulation to

score their performance. Performance would most likely be the least square evaluation

between the reference curve and the response. The best performing combinations or

“individuals” would then be combined to generate new combinations or “children”.

There would be a chance of mutation in the process of creating the children. These new

combinations would then be run through the simulation to be given their own score, the

process repeats until the scores level off.

Eventually this technology should be applied on an actual rocket engine. With the

development of a throttled hybrid motor it would make the creation of a reusable

sounding rocket cheaper and more adaptable, especially for launching fragile payloads

such as Cube Satellites. The Cube Satellite field has generated much interest in the

smaller vehicles. The team Ursa DeltaP sounding rocket which is being developed in

parallel to this thesis is an excellent example. The rocket was designed such that a hybrid

motor could be easily retrofitted as a booster. A maiden launch of the Delta P is

scheduled for July 27, 2012. For this first launch two solid propellant motors will be

used. The future of small LEO and suborbital launch vehicles is generally looking very

bright. Companies and individuals are realizing that the costs of Boeing and Lockheed

launch vehicles (Delta II’s, Atlas, Delta IV’s, etc) are much too high and often overkill.

With cost saving technologies expanding in the small aerospace field more individuals

and small companies can afford to do research at high altitude and supersonic speeds.

87

 APPENDIX A: SIMULINK MODEL SCREENSHOTS

Figure A1: Overall Block Diagram

Figure A2: PID Controller Block

88

Figure A3: Plant Block

Figure A4: Tank Plant Block

Figure A5: Valve Motor Block

89

Figure A6: Signal Filtering Block

90

APPENDIX B: VF PLOT POST PROCESSING MATLAB CODE

91

92

93

94

APPENDIX C: CONTROLLER ANALYSIS POST PROCESSING MATLAB

CODE

95

96

97

98

99

APPENDIX D: MANUAL ARDUINO CODE

This program is used to allow manual control of opening or closing the valve, and

is the most basic of the three programs. Understanding the way it operates, however, is
the basis to understanding how all the other programs operate as well. The first part of
the code defines all the variables used throughout the code and also initializes values. In
the manual program all variables are either integers (int), long integers (long), and some
of the variables have been defined as constants (const int). Integers can store numbers
ranging from -2^15 to ((2^15)-1). Long integers can store numbers from -2^31 to
((2^31)-1). The long integers here are used to keep track of time when measured in
micro seconds, which involve large numbers that build quickly. The constants are used
to define pin modes. For example, pin 12 is defined as the pin which will output the
motor step command.

Next the program defines the pin modes.

For example: pinMode(steppin, OUTPUT);

The variable steppin has been defined as an integer constant with a value of 12,
therefore the above line of code will tell the Arduino that pin 12 will be used as an
output.
 All of the above code operates in what has been defined as a “void setup” loop,
which is a loop that only runs once; just enough to initialize all the pin modes and define
the variables. The next chunk of code operates in the “void loop” which runs
indefinitely, re-executing the code until the Arduino is manually reset. At the beginning
of the loop the Arduino first reads in the inputs which it receives, such as the high/low
values from the valve limit switches, as well as a small manual switch which the user can
use to define the direction of motor travel.

For example: dirsel = digitalRead(dirselpin);

This command stores the high or low signal being received at dirselpin (defined
previously in the code as 8) into the variable dirsel. In this case dirsel stands for direction
select, therefore the manual direction switch is wired into the Arduino at pin 8. Arduino
has built in pull-up resistors, therefore if no input is provided to a pin that has been
enabled as a digital input it will read 5V (ie “high”) by default. If a user wishes to affect
the input, the pin is grounded in order to pull it to 0V (ie “low”). The manual direction
switch and the limit switches that indicate the valve is fully open or fully closed are all
hooked up such that when they are closed it actually provides ground to the input pins.
This may be counter intuitive; as initially it may be thought that when closed the switches
would be providing 5V to the input pins.

The next part of code that operates in the “void loop” is a “while loop” which is
used to bring the motor back to a home position when it is powered on. The way which
the code is setup now is such that home is defined as “valve closed”. The Arduino knows
that the valve has reached the closed position when the limit switch is activated and
grounds the associated input pin on the Arduino board. The “while loop” runs and does
not allow the rest of the code in the “void loop” to be executed until the limit switch is

100

activated AND the manual direction switch is commanding the valve to close. For
example, if when the valve is powered on it’s already in the open position and the valve
direction switch is commanding the valve to open, the Arduino will cause the motor to
shut the valve fully (regardless of user input) and will not allow user control until the
direction select switch is also commanding the motor to close. This is so that when the
code jumps out of the “while loop” the valve does not immediately start opening again.
This is a safety precaution. The code within the “while loop” causes the step output pin
of the Arduino to oscillate between 0 and 5V at a steady rate and the direction pin to be
set low (closing direction). The method used to oscillate the step output is described
below.

The step pin is oscillated at a rate defined in the initialization portion of the code.
The pin is set high or low using a small “if” statement which is shown below:
currentMicrosStep=micros();
if (currentMicrosStep - previousMicrosStep > stepinterval) {
 previousMicrosStep = currentMicrosStep;
 if (motorstep == HIGH)
 motorstep = LOW;
 else
 motorstep = HIGH;
 }

The first line assigns the current program time to the variable “currentMicroStep”. In the
“if” statement this current time is compared to the previous time that was stored and the
program determines if the time elapsed has been larger than the user defined
“stepinteval”. If that amount of time has elapsed then the “if” statement will execute; the
first thing done is store the current time as the previous time, that way the “if” statement
will know what time the last motor step occurred when it returns on the next loop. Next,
if the step pin is currently set to “high” then the program will set it to “low”, and vise-
versa. You can see that the “stepinterval” is actually half a period, therefore the motor
makes one step for every two “stepinterval” increments.

Note that the step pin is oscillating whenever the Arduino has power; the motor is
only stopped by using the enable command on the motor controller. For example, when
the valve is fully open and the limit switch pulls the associated Arduino pin to 0V, the
code sends a high signal to the enable pin which causes the motor controller to lock the
step motor in the current position. All the while the step pin continues to oscillate; its
output is simply ignored.

Very importantly there is the code which keeps the valve from going beyond 90
degrees open and 0 degrees closed. This is important because if the valve goes much
further beyond these bounds it will bind. To prevent this from happening there are the
two limit switches that are activated by the valve stem. As described before, whenever a
limit switch is activated it grounds a pin on the Arduino board. If the input pin for either
limit switch is activated AND the current direction selection is in the direction of that
limit switch a signal is sent to the enable port of the motor controller, causing the motor
to lock in position. The second condition for motor locking is important, otherwise once
the valve hit a limit switch it would be trapped in that position. This operation is built

101

with a single “if”, “if else”, “else” statement, and is present in both the “while loop”
which jogs the motor home on startup as well as the user controlled section of the code.

102

103

104

105

APPENDIX E: SPECIFIC ANGLE ARDUINO CODE

Generating the necessary information to characterize the valve is a large portion
of this thesis work, and requires its own program. Characterizing the valve will require
repeated runs of the apparatus, all at different valve positions. The valve will be held a
constant position for the duration of a flow test, then the tank will be refilled and the
valve brought to a different position for a new test. The program is identical to the user
controlled program, with the exception of the user defined direction, and an additional
condition causes the motor to be locked in position at the desired angle instead of
continuing until it reaches a limit switch.

Once the valve has executed the “while loop” that brings it to the home position
and the user has flipped the direction control switch to “open”, the Arduino begins to
count step cycles with a simple variable that increases by one every time the step pin
completes a cycle (ie every time the motor makes a step); an additional “if” statement
compares the step count to the desired angle, and if the step count is greater than the
desired angle it locks the motor position. The user has the ability to enter the desired
angle at the beginning of the program, and it then converted into the number of steps
using Equation 1.

30
8.1

×





=
θN

Equation 1: Angle in Degree to Step Number

The 1.8 pertains to the number of degrees the motor rotates for one step input, and

the 30 represents the gear ratio between the motor and the valve stem.

106

107

108

109

APPENDIX F: CONTROLLER ARDUINO CODE

This is the most complex of the programs, and is used to run the closed loop flow
control. Unlike the previous two programs, the Arduino will be looking for input from
the load cell as well as generating output for the flow control valve. At the heart, the step
commands are sent in the same way as the other two programs, except that the step
interval is variable, the same initialization sequence to bring the valve to the home
position is also implemented. The variable step size allows the angular velocity of the
motor to be adjusted beyond either on/off. The program now also receives an analog
input from the load cell. The Arduino then differentiates this mass measurement to get a
mass flow reading which can be compared to the reference signal. Depending on the
error, an appropriate valve angular velocity is determined, which is then converted into a
given step interval. Since the motor controller has a minimum step interval that it can
process there are saturation limits placed to constrain how small the step interval can be
made.

For the controller program there are some new variables defined, such as KI, and
KP proportionality constants. Another new aspect in this program is the type of
variables. Now that there is an analog input as well as a derivative calculation integers
are not accurate enough; especially if the desired mass flow is only .5 or 1lbm/sec.
Therefore the load measurements and the resulting mass flow calculations are all carried
out with floating point numbers.

For example: float previousloadval=0;

 At the beginning of the “void loop” there is the same exact “while loop” which
brings the valve to the home position. Before the code reaches the controller portion, the
Arduino reads in the value from the load cell using the “analogRead” command. The
Arduino has a 10-bit ADC (Analog to digital converter) therefore 0V corresponds to a
value of 0, and 5V corresponds to a value of 1023. The output from the load cell is only
0V to .6256V; therefore the load value that the Arduino sees is 0 to 128 approximately.
More resolution using a better ADC would be desirable, but at this point the setup is
workable.

 currentMicrosStep=micros();
 loadval = analogRead(loadpin);
 loadvalfilt=.999*loadvalfilt+.001*loadval;
 SAMPLEINTERVAL=ABS(CURRENTMICROSSTEP-

SAMPLEPREVIOUSMICROSSTEP);
 SAMPLEPREVIOUSMICROSSTEP=CURRENTMICROSSTEP;
 PREVIOUSLOADVAL=CURRENTLOADVAL;
 CURRENTLOADVAL=1.453*LOADVALFILT;
 MDOT=((PREVIOUSLOADVAL-

CURRENTLOADVAL)*1000000)/(SAMPLEINTERVAL);
 ERROR=MASSDOT-MDOT;
 ERRORINT=ERRORINT+(ERROR*SAMPLEINTERVAL/1000000);
 INPUT=(KP*ERROR+KI*ERRORINT);

110

 STEPINTERVAL=(ABS((1000000*1.8)/((INPUT)*2*30)));
 IF (STEPINTERVAL < STEPINTERVALMIN) {
 STEPINTERVAL=STEPINTERVALMIN;
 }

Shown above is the portion of code that determines the step interval and motor

direction based on the load value reading, these lines of code also determines the mass
flow based on the derivative of the load value reading. In other words this is the real
heart of the program. The other areas of the program regarding the step oscillation are all
very similar to the other two programs and will not be covered in much detail in this
section.

The first thing that happens is the collection of the load reading and the
conversion of the load cell digital reading stored in the “loadval” variable to a number
reflecting pounds which is stored in the “currentloadval” variable. Multiplying the digital
signal (ie 0-1023) value by 1.453 gives the weight in pounds. This constant is simply
derived, as can be seen from Equation 1. The “loadval” variable is actually filtered
before being manipulated, since there is some noise from the 10 bit ADC. This filtering
is minimal and only consists of a 1000 point moving average. This can be seen in the
third line of code above.

lbflbf 453.1
128

186
=

Equation 1: Digital Output to Weight Measurement

Where the 186lb is the weight of the water in the tank when full, and the 128 is the digital
output of the load cell when the tank is full.
 The next line is where the actual mass flow is determined by approximating the
derivative at that moment. This is stored in the variable “mdot”. The 1000000 multiplier
is because the time interval is in microseconds, and the mass flow is recorded in lbm/sec.
Remember that “previousloadval” is the weight of water at the end of the previous
sample interval and “currentloadval” is the weight of the water at the end of the current
sample interval. The time between these two samplings is, of course, the
“sampleinterval” which is measured in microseconds.
 Now that an actual mass flow is determined it must be compared to a reference
value, which is stored in a variable called “massdot” (not be confused with “mdot” which
is the actual mass flow). Subtracting the two values gives the error value that the
controller needs to operate. This program does not support a differential controller, only
proportional and integral. The error value can be used directly for the proportional
controller, but needs to be integrated over time in order to implement the integral
controller. This integrated error is called “errorint” and is found by adding the current
error value, multiplying it by the sample interval and then adding it to the previous
“errorint” value. In this way the “errorint” value keeps getting overridden each time the
error is evaluated (ie. once every “sampleinterval”).

Alone, the error and integrated error values have little use to determine a system
input, next they will need to be multiplied by the appropriate constants (KP and KI)
which will determine an angular velocity of the valve. This angular velocity then needs

111

to be translated into a step interval. The angular velocity is stored in a variable called
“input”. The equation for which is below:

int** errorKIerrorKPinput +=

Equation 2: Calculating Angular Velocity

This desired angular valve angular velocity must be translated into a step interval for the
motor, if the input is small (ie a low angular velocity) then the step interval must be
longer, higher angular velocity means a short step interval. The derivation of the
equation is shown below.

()

()

()

()

() 







+










=









+










=



















=+

∴

+=



















=









=










==

∫

∫

∫

∫
•

•
•

•

deg
deg30*2****

deg8.1
10*1sec)int(

deg
deg30*2****

deg8.1
int(sec)

deg
deg30*2*secint

deg8.1

:
deg
deg30*2*secint

deg8.1

deg
deg30

2*secint

deg8.1
_

6

dterrorKIerrorKP

step
step

dterrorKIerrorKP

step
step

step

step
dterrorKIerrorKP

dterrorKIerrorKP

also

step

step

step
step

RPMMotor

µ

θ

φθ

φ

Equation 3: Determining Step Interval from Valve Angular Velocity

Lastly, there are two “if” statements that determine the direction of the motor depending
on whether the “input” (ie valve angular velocity) is positive or negative. The limit
switch protection is also still in place to prevent the valve from binding.

112

113

114

115

116

APPENDIX G: TECHNICAL DATA SHEETS

Step Motor:

117

118

Gearbox:

119

Load Cell:

120

Pressure Transducer:

121

Injector:

122

Arduino:

Arduino Pro

The Arduino Pro is intended for advanced users who require flexibility and low-cost. It
comes with the minimum of components (no on-board USB or pin headers) to keep the
cost down. It's a good choice for a board you want to leave embedded in a project. Please
note that there are multiple variants of the board which operate at different voltages and
clock speeds. You need to know if you have the 3.3V / 8 MHz version or the 5V /
16 MHz version. The board comes without built-in USB circuitry, so an off-board USB-
to-TTL serial convertor must be used to upload sketches. For the 3.3V Arduino Pro
boards, this can be a FTDI TTL-232R-3V3 USB - TTL Level Serial Converter Cable or
the SparkFun FTDI Basic Breakout Board (3.3V). For the 5V Arduino Pro boards, use
a TTL-232R USB - TTL Level Serial Converter or the SparkFun FTDI Basic Breakout
Board (5V). (You can probably also get away with using a 5V USB-to-serial convertor
with a 3.3V board and vice-versa, but it's not recommended.)
If using the FTDI cable on Windows, you'll need to make one configuration change to
enable the auto-reset. With the board connected, open the Device Manager (in Control
Panels > System > Hardware), and find the USB Serial Port under Ports. Right-click and
select properties, then go to Port Settings > Advanced and check Set RTS on Close under
Miscellaneous Options.
For the 3.3V versions of the Arduino Pro, select Arduino Pro or Pro Mini (3.3V,
8 MHz) w/ ATmega328or Arduino Pro or Pro Mini (3.3V, 8 MHz)
w/ ATmega168 from the Tools > Board menu (depending on the microcontroller on
your board). For the 5V versions of the Arduino Pro, select Arduino Duemilanove or
Nano w/ ATmega328 or Arduino Diecimila, Duemilanove, or Nano w/ATmega168.

http://www.ftdichip.com/Products/EvaluationKits/TTL-232R-3V3.htm
http://www.sparkfun.com/commerce/product_info.php?products_id=8772
http://www.ftdichip.com/Products/EvaluationKits/TTL-232R.htm
http://www.sparkfun.com/commerce/product_info.php?products_id=9115
http://www.sparkfun.com/commerce/product_info.php?products_id=9115

123

An Arduino Pro connected to (and powered by) an FTDI USB - TTL Level Serial
Converter Cable. The green and yellow wires align with the words "green" and
"yellow" written underneath the pins.

The Arduino Pro connected to (and powered by) a SparkFun FTDI Basic Breakout
Board (prototype version) and USB Mini-B cable.

124

The external USB-to-TTL serial convertor will power the Arduino Pro, regardless of the
position of the switch. To use the board standalone, with no connection to a computer, it
can be be powered by a battery or an external power supply (wall wart). You can solder
the + and - wires of a battery connector to the corresponding holes on the board. For the
3.3V boards, you can connect a LiPo battery (with JST connector) to the JST jack.
Alternatively, solder a DC power jack into the three large holes on the board, and connect
a DC power supply (center positive). When the switch is in the "Batt" position, the board
will draw power from an attached battery; when it is in the "Ext." position, power comes
from an external power supply. In either position, the board can be powered by the 6-pin
USB header.

A 3.3V Arduino Pro powered by a 2000 mAh LiPo battery from SparkFun.

Any standard 0.1" spaced header can be soldered to the holes on the Arduino Pro. To use
every pin requires two 6-pin header and two 8-pin headers. Bare wire can also be
soldered directly to the holes. Note that the header spacing is compatible with Arduino
shields.
The text of the Arduino getting started guide is licensed under a Creative Commons
Attribution-ShareAlike 3.0 License. Code samples in the guide are released into the
public domain.

https://www.sparkfun.com/commerce/product_info.php?products_id=8483
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/

125

Step Motor Controller:

126

Step Motor Power Supply:

127

DAQ Power Supply

128

Flow Control Valv

129

130

NI 9219:

131

132

NI 9205:

133

134

APPENDIX H: DESIGN SUMMARY OF A POSSIBLE HYBRID MOTOR

135

Table of Contents

Variable Definitions ... 139

Introduction .. 139

Propellants ... 140

Nitrous Oxide ... 140

Equation 1: Vapor pressure .. 141

Equation 2: Density of the saturated liquid ... 141

Equation 3: Density of the saturated gas ... 141

Equation 4: Specific enthalpy of the saturated liquid 141

Equation 5: Specific enthalpy of the saturated gas 141

Equation 6: Constant pressure specific heat of saturated liquid 141

Equation 7: Constant pressure specific heat of the saturated gas 141

Table 1: Constants used in above equations.. 142

Paraffin .. 142

Equation 8: Fuel regression rate, where Gox is the oxidizer flux in

g/cm^2*s ... 143

Stoichiometric Oxidizer to Fuel Ratios.. 143

Figure 1: Gamma as a function of oxidizer to fuel ratio, generated by CP

Technology's CHEM program .. 145

Figure 2: Adiabatic flame temperature as a function of oxidizer to fuel ratio,

generated by CP Technology's CHEM program .. 145

Figure 3: Characteristic velocity as a functon of oxidizer to fuel ratio,

generated by CP Technology's CHEM program .. 146

136

Simulating the Motor Performance ... 146

Figure 4: Overall simulation flow chart .. 147

Determining Nozzle Geometry ... 147

Equation 9: Ideal gas law ... 148

Equation 10: Isentropic expansion ... 148

Equation 11: Changes in enthalpy through the isentropic expansion 148

Equation 12: Speed of sound .. 148

Equation 13: Mach number .. 148

Equation 14: Gas velocity at the exit cone of the nozzle 148

Equation 15: Expansion ratio ... 148

Combustion Chamber Modeling ... 149

Equation 16: Characteristic velocity defined .. 150

Equation 17: Thrust ... 150

Equation 18: Specific impulse.. 150

Equation 19: Characteristic length ... 150

Oxidizer Tank Modeling ... 150

Liquid Emptying Regime .. 151

Equation 20 ... 151

Equation 21 ... 151

Figure 5: Control volume used in tank drainage analysis 151

Equation 22 ... 151

Equation 23 ... 151

Equation 24 ... 151

Equation 25 ... 152

Equation 26 ... 152

137

Equation 27 ... 152

Equation 28 ... 152

Equation 29 ... 152

Figure 6: Interpolation to find temperature at a discrete time increment .. 153

Gas Emptying Regime .. 153

Equation 30: Ideal gas law including compressibility 153

Figure 8: Compressibility factor for nitrous oxide 154

Equation 31: The temperature ratio redefined ... 155

Equation 32 ... 155

Equation 33 ... 155

Figure 9: Comparison of nitrous oxide drainage simulations to real data. 156

Mass Flow between Oxidizer Tank and Combustion Chamber Modeling 156

Thrust Control .. 156

Figure 10: Control system block diagram ... 157

Equation 34: Mass flow from pressure and temperature 157

Equation 35: Equation 14 re-written... 158

Equation 36: Equation 34 re-written... 158

Equation 37: Simplified thrust equation ... 158

Simulation Results.. 159

Table 2: Constants and Initial Values used in the Simulations 159

Figure 11: Motor simulation with no controller 160

Figure 12: Motor simulation data with a controller 162

Hybrid Motor Physical Design.. 164

Figure 13: Rendering and description of possible motor design 164

Oxidizer Tank... 165

138

Combustion Chamber ... 165

Combustion Chamber Casing .. 165

Figure 14: Rendering of combustion chamber nozzle end 165

Nozzle and Post Combustion Chamber ... 166

Figure 15: Rendering of nozzle and post combustion chamber 166

Combustion Chamber Upper Bulkhead ... 167

Figure 16: Combustion chamber injector bulkhead 167

139

Variable Definitions

Introduction

This report gives an overview of the proposed Q4200 hybrid rocket motor for

team Ursa’s Delta P sounding rocket as the design currently stands. It also reviews how
these designs were developed. The honors thesis scope is the beginning of the work to
validate this design, and including this appendix that details the design of an actual motor
gives the rest of the thesis a better sense of relevance and perspective.

The general design scheme of this particular motor is to use self-pressurizing
nitrous oxide fed into a combustion chamber containing paraffin wax. All simulation of
motor performance has been done from scratch in MATLAB, with the exception of C*
and chamber temperature calculations. These have been computed using John
Wickman’s CHEM program. A combustion efficiency of 90% has been assumed.
Details regarding fuel regression rate, efficiencies, L* computations, and similar
combustion parameters are all detailed in this report. What may be the most difficult part
of the motor design is the implementation of the thrust control system which is discussed
in the thesis.

Physically, the motor is constructed of extruded aluminum 6061-T6 tubing. The
nitrous oxide tank would be used as the airframe of the rocket booster section. Rough
calculations show that the current oxidizer tank has ample factor of safety to be used as a

140

structural component. The combustion chamber is a separate pressure vessel from the
oxidizer tank. The tank end closers are flat plates of aluminum with double O-ring seals.
Detailed finite element analysis has been completed on these pieces. The bulkheads are
held within the tubing via spiral snap rings. The nozzle will be canvas phenolic with a
graphite throat insert.

Propellants

The choice of propellants, nitrous oxide and paraffin should be justifiable. They

are becoming a more and more common combination of propellants, for several reasons.
Mainly, because nitrous oxide is self-pressurizing and paraffin has an extremely high
regression rate. Similar regression rates can’t be achieved with HTPB, especially without
lots of experience and plenty of additives.

Nitrous Oxide

Nitrous oxide was the choice oxidizer simply because handling a cryogenic fluid

such as liquid oxygen is beyond our ability at this time. In the future liquid oxygen may
become a high specific impulse option, but with short development times it is not
practical. In addition, handling liquid oxygen on the launch site is impractical for our
budget. Curve fit data for many thermodynamic properties are shown in “Thermo-
physical Properties of Nitrous Oxide” published by IHS. Secondly, nitrous oxide is self-
pressurizing. The original plan was to have onboard pressure tank that would maintain
1200psi in the main oxidizer tanks; this did boost the specific impulse up to about 260sec.
However, the system added a hefty 40lbs to the total motor weight. The efficiency gain
was not enough to outweigh the loss in thrust to weight ratio (in our case). Without the
pressure system, max specific impulse dropped to the 220-230sec range. In this scenario
the nitrous oxide tank pressure is in the 750-850psi range, depending on the ambient
temperature. Exact nitrous pressures are predicted on the in the motor simulation as a
function of time. Without the space being taken up by the nitrogen pressure tanks an
additional 30% nitrous oxide could also be carried.

A main disadvantage to the nitrous oxide is the high oxidizer to fuel ratio
required. This will be discussed later. A main misconception is that the only energy
released is from the fuel being oxidized by the oxygen content in the nitrous oxide. In
fact, a larger proportion of the total energy is from the nitrous oxide decomposing. All of
this was taken into account by CP technology’s CHEM program. Once this extra energy
is taken into account, the performance of nitrous oxide is not all that bad.

To get thermodynamic properties of the saturated nitrous oxide, curve fits derived
in the paper “Thermo-physical Properties of Nitrous Oxide” published by HIS were
used. The equations are given below, and the referenced constants are in table 1.

141

Equation 1: Vapor pressure

Equation 2: Density of the saturated liquid

Equation 3: Density of the saturated gas

Equation 4: Specific enthalpy of the saturated liquid

Equation 5: Specific enthalpy of the saturated gas

Equation 6: Constant pressure specific heat of saturated liquid

Equation 7: Constant pressure specific heat of the saturated gas

Tr, and Pr represents the reduced temperature and pressure of the saturated

nitrous, where the critical pressure and critical temperature are as follows:

Critical Temperature: 309.57 K
Critical Pressure: 7251. kPa
Critical Density: 452. kg/m3

142

Table 1: Constants used in above equations
Property b1 b2 b3 b4 b5 Range of

Applicability
Vapor
Pressure

-6.719 1.360 -1.378 -4.051 -90C-36C

Liquid
Density

1.723 -0.840 0.511 -0.104 -90C-36C

Vapor
Density

-1.009 -6.288 7.503 -7.905 629 -90C-36C

Liquid
Enthalpy

-200 116.043 -917.225 794.779 -589.587 -90C-36C

Vapor
Enthalpy

-200 440.055 -459.701 434.081 -485.338 -90C-36C

Liquid
Specific Heat

2.500 .023 -3.801 13.095 -14.518 -90C-36C

Vapor
Specific Heat

132.632 .052 -.365 -1.202 .536 -90C-36C

Paraffin

Paraffin is a little harder to justify, as it would be just as easy to fabricate a fuel

grain from HTPB or HDPE. The appeal was the ability to get a high regression rate with
decent specific impulse. The addition of metal to a HTPB and HDPE grain increases
their regression rate, never to the level of carefully formulated paraffin, but the specific
impulse reduces since metal increases the molecular weight of the gasses. High gas
velocity in the nozzle and low gas density is more efficient than high mass density and
lower velocity.

If you can get the paraffin to burn efficiently an increase of roughly 180% in
regression rate can be realized over HTPB. This is using just raw, unmixed, versions of
paraffin and HTPB; no metalizers or other additives. This is according to AIAA 2011-
5680, “ballistic and rheological characterization of paraffin fuels” by L.Galfetti. Other
AIAA papers show similar results, but this is the best source I’ve found.

Having this high regression rate means that for an equivalent mass flow of fuel
you can have a much shorter fuel grain. Since the needed nitrous oxide volume requires
a fairly large diameter tank unless an excessively long rocket is to be built; a short squat
fuel grain uses the space much more effectively. Another nice thing about paraffin is that
the exponent in the regression rate formula (regression rate=a*Gox^n) is nearly .5, even a
little bit lower. This means that the mass flow of oxidizer goes up as the fuel port
diameter increases, or at least stays the same. For HTPB and HTPE, even with additives,
the exponent is in the .6 to .7 range; which means the fuel mass flow takes a nose dive
with an increasing fuel port radius. This makes these fuels ill-suited for the short stubby
grain configuration. Exact fuel properties used in simulation are shown in Table 2. The
regression rate information shown is from several hybrid experiments from Stanford,
shown in their paper: “Design and Development of a 100km Nitrous Oxide/Paraffin
Hybrid Rocket Vehicle.” Additional regression rate information is detailed in the paper:

143

AIAA 2009-5113 “Effect of a Diaphragm on Performance and Fuel Regression of a
Laboratory Scale Hybrid Rocket Motor Using Nitrous Oxide and Paraffin” by Matthias
Grosse.

Of course, it can’t be all good news. Mixing of paraffin and nitrous oxide has
been difficult, often resulting in low C* efficiencies. This problem is discussed in AIAA
2009-5113 “Effect of a Diaphragm on Performance and Fuel Regression of a Laboratory
Scale Hybrid Rocket Motor Using Nitrous Oxide and Paraffin” by Matthias Grosse. He
reports a C* efficiency of 86.7% with an L* value of .4m, by modification using
diaphragms within the combustion chamber he was able to achieve 96.6% efficiency.
We do not have the time to develop such a device. Our motor luckily has a much higher
L* value. The exact behavior of our hybrids L* curve is discussed in the results section.
An optimistic 90% C* efficiency is being used in the simulations. A concern is that a
short, high volume combustion chamber that has the same L* as a long narrow one will
not result in an equivalent effect on mixing efficiency. The short wide geometry of our
chamber remains a major question, even though our L* values are high (upwards of
1.5m). L* is defined as the volume of the combustion chamber divided by the area of the
throat.

The regression rate formula that was used is shown below, Equation 8. The

source of the values for the coefficient and exponent were taken from AIAA paper:
“Effect of a Diaphragm on Performance and Fuel Regression of a Laboratory Scale
Hybrid Rocket Motor Using Nitrous Oxide and Paraffin” by Matthias Grosse.

555.N
m/s .000472

*

=
=

=

A
where

GoxA
dt
dr N

Equation 8: Fuel regression rate, where Gox is the oxidizer flux in g/cm^2*s

Stoichiometric Oxidizer to Fuel Ratios

The exact variety of paraffin has not been decided yet. A microcrystalline

structure would be most desirable, in order to keep shrinkage to a minimum, however a
cheap and accessible paraffinic wax sources has presented itself to our team. The carbon
chain length has very little effect on stoichiometric mixture ratio. Therefore, a simulation
could be built and optimized without knowing exact paraffin variety. Below is the
stoichiometric fuel ratio for a 30 carbon paraffin chain.

144

488.9
422*1

44*91/

44

422

)91()31()30()91()1(

30

30

22226230

2

2

===

=

=

++→+

Paraffin

ON
mass

ON

Paraffin

M
M

FO

mol
gM

mol
gM

NOHCOONHC

Now looking at a 40 carbon paraffin chain:

473.9
562*1

44*121/

44

562

)121()31()40()121()1(

30

40

22228240

2

2

===

=

=

++→+

Paraffin

ON
mass

ON

Paraffin

M
M

FO

mol
gM

mol
gM

NOHCOONHC

As you can see, the difference is practically negligible.

Many properties in the combustion chamber obviously depend on the oxidizer to

fuel ratio. Using the CHEM program flame temperature curves, C* curves, and gamma
curves as a function of oxidizer to fuel ratio were found. Figure 1 shows gamma as a
curves as a function of oxidizer to fuel ratio were established. Figure 1 shows gamma of
the combustion gasses, Figure 2 shows the adiabatic flame temperature, and Figure 3
shows the C* curve.

145

Figure 1: Gamma as a function of oxidizer to fuel ratio, generated by CP Technology's CHEM
program

Figure 2: Adiabatic flame temperature as a function of oxidizer to fuel ratio, generated by CP
Technology's CHEM program

146

Figure 3: Characteristic velocity as a functon of oxidizer to fuel ratio, generated by CP Technology's
CHEM program

Simulating the Motor Performance

Knowing approximately how well the motor will perform before building is

absolutely critical. For the purpose of having a full understanding the thermo and physics
behind the motor, a scratch built program was used; this was coded into MATLAB. By
using our own program made adapting it to specific design subtleties much easier. There
are four main components of the simulation, the drainage of the nitrous oxide tank; the
combustion chamber behavior; the predicted mass flow of nitrous oxide from the oxidizer
tank to the combustion chamber; and the control of the main oxidizer valve position. The
valve control system is, of course, the subject of the main report, and will only be lightly
touched upon in this report. Just about all the derivations in the following sections are
pulled from Sutton’s “Rocket Propulsion Elements.” Figure 4 shows a very basic block
diagram of the simulation process.

147

Determining Nozzle Geometry

Before either the combustion chamber or oxidizer tank behavior can be modeled

accurately we must know the nozzle geometry. This mainly means finding the expansion
ratio based on the average chamber pressure and a chosen atmospheric pressure. The
average chamber pressure and operating atmospheric pressure are chosen before the
simulation is run, and then the expansion ratio can be calculated as a constant to be used
in the rest of the code. Throat diameter is guessed, and then the simulation is run to see
resulting chamber pressure. If the pressure is too high then the throat diameter is slightly
increased and the simulation is run again. Therefore through a short iterative process a
desirable throat diameter can be found.

To find the expansion ratio:

Oxidizer
Mass Flow:

Determine
oxidizer mass flow
based on pressure
difference between

combustion chamber
and oxidizer tank as
well as the oxidizer

Oxidizer
Tank Simulation:

Determine
oxidizer tank pressure

based on the
previous mass flows

out

Combustio
n Chamber
Simulation:

Combustio
n chamber pressure

and thrust
predictions, based on
oxidizer mass flow in

Controller:
Adjust

oxidizer control valve
based on whether the
chamber pressure is

higher or lower than a
reference

Figure 4: Overall simulation flow chart

148

RTPv =
Equation 9: Ideal gas law

1

1
−

−









=










=

k

x

y
k

k

y

x

y

x

v
v

P
P

T
T

Equation 10: Isentropic expansion

() ()yxxyyx TTcpVVhh −=−=− 22

2
1

Equation 11: Changes in enthalpy through the isentropic expansion

kRTa =
Equation 12: Speed of sound

kRT
VM =

Equation 13: Mach number

If Equations 9, 10, and 11 are combined and you define x=1 as the state within the

combustion chamber, and y=2 as the state at the exit cone of the nozzle. The velocity in
the combustion chamber is considered negligible and is not considered. You get
Equation 14, relating velocity at the exit cone to chamber pressure, atmospheric pressure,
and chamber temperature.

























−

−
=

−1

2

1
12 1

1
2 k

k

P
PRT

k
kV

Equation 14: Gas velocity at the exit cone of the nozzle
Combining Equation 11 with Equation 14, and 13 you can find the expansion

ratio as function of the chamber pressure and atmospheric pressure.

























−

−
+















 +

==

−

− k
k

kkt

P
P

k
k

P
Pk

A
A

1

1

2

1

1

21
1

2

1
1
1

2
11

ε

Equation 15: Expansion ratio

When a new throat area is chosen before a simulation run the area of the exit cone

can be determined, which is needed to get the velocity at that exit plane. The above
expansion ratio is only a function of the atmospheric pressure where the nozzle exhausts,
and the combustion chamber pressure. Therefore, the nozzle is only optimized at that
particular chamber/atmospheric pressure combination; so the average values of those
pressures were used. At launch the nozzle will be over expanded, and at full altitude it
will be under expanded.

149

Combustion Chamber Modeling

The modeling of the combustion chamber all starts with a known mass flow of

nitrous oxide. This mass flow stays constant for a single small time step before it is
recalculated based on a new pressure drop between the nitrous oxide tank and the
combustion chamber. The entire motor simulation uses a loop which steps through the
simulation duration by small delta times. To explain the modeling of the combustion
chamber this section will walk through all the steps in one time loop, these steps start
with the above mentioned mass flow of nitrous oxide. At the start of each loop there are
several pieces of information that are known:

• Current fuel port bore diameter. For the first time step this is simply the initial

bore diameter, for subsequent time steps the diameter is simply assigned as the
diameter at the previous time step.

• Oxidizer mass flow. For the first time step this is said to be zero, however, since
the initial pressure in the nitrous oxide tank is quite high a new non-zero mass
flow is computed at the next time step; and away you go. A new oxidizer mass
flow is computed each time step using the difference between combustion
chamber pressure and nitrous oxide tank pressure along with the position of the
oxidizer control valve.

• Motor geometry. For now, the simplification that motor geometry does not
change throughout the burn has been made. In other words the nozzle throat does
not erode. See the previous section regarding nozzle geometry calculations.

To make the process easier to visualize the combustion chamber analysis will be

broken into a series of steps.

1. Calculate the area of the fuel port using the known port radius at the beginning of
the time step

2. Calculate the flux of oxidizer down the fuel port using the area of the port and the
known oxidizer mass flow

3. Use the regression rate formula presented in the propellants section of this report
to calculate the current regression rate of the fuel grain.

4. Calculate the new fuel port radius using the newly found regression rate; this
value will be used in the next time step to calculate the oxidizer mass flux.

5. By knowing the regression rate, the length of the time step and the current fuel
port radius a fuel mass flow during the current time step can be computed.

6. Oxidizer to fuel ratio and total mass flow can then be easily found since the
oxidizer mass flow is known and the fuel mass flow is known.

7. Using the curve fits shown in Figure 1,2, and 3 along with the newly found
oxidizer to fuel ratio a C* value; flame temperature (assumed to be the
combustion chamber temperature); and current gamma values for this time
iteration can be found.

8. The C* from the curve fit is the value if the motor was burning at 100%
efficiency. To correct this, the curved fitted C* is multiplied by the assumed
efficiency of 90%.

150

9. Using Equation 16 and the corrected C* value the chamber pressure can be found.

m
AP

C t


1* =

Equation 16: Characteristic velocity defined

10. Using Equation 14 the velocity at the exit cone of the nozzle can be found.
11. Thrust as a function of total mass flow and nozzle exit cone velocity is computed

using Equation 17. This neglects pressure thrust.

2VmF =
Equation 17: Thrust

12. Calculate specific impulse, for interest only, using equation 18.

gm
FIs


=

Equation 18: Specific impulse

13. Calculate the characteristic length using equation 19 as a function of total
combustion chamber volume and nozzle throat area. V-post is the volume of the
combustion chamber beyond the end of the fuel grain.

t

postport

A
VLA

L
+

=
*

*

Equation 19: Characteristic length

14. Keep track of total fuel and oxidizer burned as well as the total impulse.

Oxidizer Tank Modeling

Like the combustion chamber, the simulation of the oxidizer tank depends on a

constant oxidizer mass flow which is sustained for the duration of a small time step. As
mentioned, a new oxidizer mass flow is computed after each time step based on the
pressure drop between the oxidizer tank and the combustion chamber as well as the
current position of the oxidizer control valve. The important parameters that need to be
solved for at each time step are the nitrous oxide tank pressure and nitrous oxide density.
There are two regimes of oxidizer tank modeling, one when there is still liquid in the
tank, and a second regime once all the liquid has drained from the tank and only gas is
flowing into the combustion chamber. I have used a similar method to what is shown in
“Modeling the Nitrous Run Tank Emptying” by Aspire Space. However, some aspects of
their methods seemed a little numerically unstable, so Dr. Boyle from the University of
Maine assisted in coming up with a new routine; which is based on the above paper, but
very different in some ways. In the MATLAB script there is an “if” statement that

151

Sat

Sat

Mass

switches the simulation from liquid flow to gas flow once all of the liquid is expelled
from the tank.

Liquid Emptying Regime

While liquid remains in the tank the nitrous

oxide is saturated. There are a couple of really good
curve fit regimes for nitrous oxide. Which were
presented in Equations 1-7 along with Table 1.
There are curves for the vapor pressure, saturated
liquid density, saturated vapor density, enthalpy of
the saturated liquid, enthalpy of the saturated vapor,
and several other properties; all as a function of
temperature. The basic strategy to solve for the
nitrous oxide pressure and density over time is to
take a first law analysis of the entire tank; the control
volume used is shown in Figure 5.

Let

TTT vapliq ==
Equation 20

Write the first law:

∫ ∫+∂
∂

=− dAVhdvu
t

QW normalρρ

Equation 21

Work and heat transfer go to zero and the

integrals can be shown as:

exitVC h
t
mU

t ∂
∂

+
∂
∂

= ..0

Equation 22

Break up the total internal energy within the control volume as such:

vapliqVC UUU +=..
Equation 23

t
U

t
U

t
U vlVC

∂
∂

+
∂
∂

=
∂

∂ ..

Equation 24

Figure 5: Control volume used in tank
drainage analysis

152

Breaking each of the partials on the RHS of Equation 24 down and then insert
into equation 22 results in Equation 25:

e
v

v
v

v
l

l
l

l h
t
m

t
m

u
t

u
m

t
m

u
t

u
m

∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

=0

Equation 25

This equation relies on a differential time step, whereas the simulation uses a

finite time step. Equation 17 can be written to use a finite step.

ll
vv

v
vv

v
ll

l
ll

l mh
t
mmu

t
uum

t
mmu

t
uum ′+

∆
′−′′′+

∆
′−′′′+

∆
′−′′′+

∆
′−′′′=0

Equation 26

All variables in equation 26 are known, a double prime indicates the new value,

and a single prime indicates the value at the current step. All the single prime values are
the double prime values from the last iteration, so those are known. If you take a small
temperature step then you can find all the new values for specific internal energy and
enthalpy. However, there is no way of knowing how long it took to take that small
temperature step, so the new masses of vapor and liquid are not known; since their values
depend on time due to the mass flow out of the vessel. In addition, some of the liquid
evaporates to maintain vapor pressure. There is an additional piece of information
needed, which are Equations 27, 28 and 29.

vl

TotalvTotal
l vv

mvVm
′′−′′
′′′′−

=′′

Equation 27

tmmm TotalTotal ∆−′=′′ 
Equation 28

lTotalv mmm ′′−′′=′′

Equation 29

Now the only unknown value after combining Equations 26, 27, 28 and 29 is the

time step; which can be algebraically solved for, albeit messy. In fact it’s so messy the
algebra was performed in MatchCad and then inserted into the MATLAB code. There is
one last problem; we now know the time it takes for a finite temperature change.
However, the loop works on a fixed time step, not a fixed temperature step. A
temperature at a finite time step can be approximated via interpolation, see Figure 6.

153

By repeating the process and using the double prime values as the single prime

values during the next time step, the pressure, density, and any other thermodynamic
property can be plotted through time.

Gas Emptying Regime

The gas phase of the tank emptying was modeled as an ideal gas that is corrected

using a compressibility factor. The compressibility factor diagram is shown in Figure 7.
The ideal gas law including a compressibility factor is shown in Equation 30.

RTZP ρ=

Equation 30: Ideal gas law including compressibility

Figure 6: Interpolation to find temperature at a discrete time increment

154

Figure 7: Compressibility factor for nitrous oxide

According to “Modeling the Nitrous Run Tank Emptying” by Aspire Space (who have
published their simulation results compared to test data) the properties of nitrous oxide
follow a line drawn from the critical point to the pressure=0, z=1 point. Since there has
been luck using the compressibility factor in the past simulations I figured that it
wouldn’t hurt to keep using it. The expansion is considered isentropic. The general
process of simulation is as follows:

1. The first time the gaseous regime is initiated is when the mass of the liquid

nitrous reaches zero.
2. The current and future mass of nitrous in the tank is known by integrating the

nitrous oxide mass flow.
3. By looking at equation 10 and substituting Equation 30 for the density ratio on the

RHS you can derive Equation 32. Equation 31 is simply found by determining
the temperature ratio in terms of Equation 30 and setting density equal to tank
volume divided by mass.

1
1

−
−









=










=

k

x

y
k

k

y

x

y

x

v
v

P
P

T
T Eq. 10(repeated): Isentropic expansion

155









=

22

11

1

2

1

2

mZ
mZ

P
P

T
T

Equation 31: The temperature ratio redefined

1

11

22

1

2

−









=

k

mZ
mZ

T
T

Equation 32

Equation 32 relates the initial and final temperatures to initial and final

compressibility factors as well as to initial and final masses.

4. Equation 32 is all well and good, but the final compressibility factor is unknown
because it relies on final pressure, which in turn depends on final temperature. To
solve this problem a converging sub-loop be used. To do this we need another
equation that relates mass and compressibility factor purely to pressure without a
direct dependence on temperature. This is achieved by setting equation 31 and 32
equal to each other.

k

mZ
mZ

P
P









=

21

22

1

2

Equation 33

5. The sub-loop then behaves as such:
a. Guess final Z
b. Find the final temperature using Equation 32, the initial Z is known from

the previous time step, the final mass is known from the mass flow and
step duration, the initial mass is known from the last time step, and the
initial temperature is known from the previous time step. The equation
also uses the guessed Z2 value.

c. Using this new temperature compute the final pressure using Equation 31.
d. Based on this final pressure find a new final Z using Equation 33.
e. Find a new final temperature using this newly computed Z value. If this

new final temperature is different from the final temperature found with
the guessed Z then adjust Z and start again. Repeat until a Z value is
converged upon.

6. Once the final Z is found the tank pressure and oxidizer density can be found,
which is what’s needed from the oxidizer tank simulation.

As explained earlier, the general modeling scheme used was originally taken from

the paper: “Modeling the Nitrous Run Tank Emptying” by Aspire Space. My numbers
seem to match up to theirs fairly well, and they have had good luck matching simulation
results to test results; which can be seen in Figure 8 which is data supplied in the above
report.

156

Figure 8: Comparison of nitrous oxide drainage simulations to real data

Mass Flow between Oxidizer Tank and Combustion Chamber Modeling

This step determines the oxidizer mass flow into the combustion chamber based

on the pressure drop and oxidizer control valve position. This is covered in more detail
within the main report, but is mentioned here for the sake of a complete report. There are
several factors in the flow path of the nitrous oxide that prevent the mass flow from being
infinite for a given pressure drop.

• Losses in pipe leading to oxidizer control valve
• Losses in the control valve itself, this is a function of valve position
• Losses in pipe leading to the injector
• Losses in the injector

As explained in the main report in more detail, you can use the pressure drop
between oxidizer tank and combustion chamber; a valve position; loss coefficients of the
tubing and injector; and a VF surface to predict the mass flow of oxidizer through the
injector system.

Thrust Control

157

The last portion of the simulation is the thrust control system, which determines
the valve position. This much like the control system used in the main portion of the
thesis, but instead of just controlling the mass flow of oxidizer the thrust of the motor is
controlled. As can be seen from earlier in this appendix, the thrust is primarily a function
of oxidizer mass flow. Therefore controlling the thrust is similar to controlling the mass
flow. When in flight the controller will only know the combustion chamber pressure,
which is a function of oxidizer mass flow. The next step is to convert the chamber
pressure into a thrust measurement. Figure 9 shows the block diagram for the control
system.

One tricky part of the control system is to take the measurable chamber pressure

and convert that to the equivalent thrust. When the motor is on the rocket the control
system will not be able to measure thrust directly. The problem lies in the fact that thrust
depends on several variables besides chamber pressure. Mass flow was known in the
simulation, based on regression rate and a few other things, but the controller will not
have access to either of these numbers. There is a way of getting the total mass flow
indirectly as a function of chamber temperature and pressure. Sutton presents an
equation for finding the total mass flow.

1

1
1

1
1

2

kRT
k

kPA
v
VA

m

k
k

t
t

tt

−
+









+
==

Equation 34: Mass flow from pressure and temperature

Figure 9: Control system block diagram

158

Equation 34 is equation 3.24 in Sutton’s Propulsion Elements.

If we review Equation 14:

























−

−
=

−1

2

1
12 1

1
2 k

k

P
PRT

k
kV Eq. 14 (Repeated): Speed at the exit cone of the

nozzle

Now both components of thrust are known so that we can write the momentum

thrust as:

2VmF = Eq. 17 (Repeated)

By inserting equations 14 and 34 into equation 17 you can find momentum thrust,

which is what the controller will compare to a reference thrust. However, you can
quickly see that there are chamber temperature terms in the expression as well.
Temperature cannot be easily measured, but luckily both functions are more strongly
related to P than T. For the sake of the controller we assumed that T was some
reasonable average value throughout the operating cycle of the engine. That means all
the terms in Equations 14 and 34 are constant except for P. Equation 14 could be now
thought of as Equation 36, and Equation 35 could now be thought of as Equation 37.

()
()

k
k

PBDV
−

−=
1

12 *
Equation 35: Equation 14 re-written

D and B are constants.

 ()1* PQm =

Equation 36: Equation 34 re-written

Q is a constant.

If you combine Equations 17, 35, and 36 you get what is shown as the “P to F

conversion” in Figure 9. This conversion from pressure to thrust would be handled
within the Arduino before the PID controller is applied.

()
()

1

1

1 *** PQPBDF k
k−

−=
Equation 37: Simplified thrust equation

Throughout the static firing process the values of D, B and Q can be fine-tuned to

reflect actual motor behavior.

159

Simulation Results

At this point in time none of the geometry factors have been overly scrutinized,

beyond several iterations of hand adjustment to find parameters that seem to work well.
Some of the general considerations have been: the need for a large L* to keep mixing
good; nozzle geometry that creates an optimal and safe pressure drop; fuel port diameter
that keeps the fuel grain from being over-burnt, resulting in a chamber hotspot; and of
course, designing the motor to produce about 125,000Ns of impulse and a 2500lbf max
thrust. All the results use the regression data presented earlier in the report; and motor
geometry shown in table 2.

Table 2: Constants and Initial Values used in the Simulations

Description Value Unit
Simulation Duration 20 Sec
Simulation Time Step .01 Sec
Gravity 9.807 m/s^2
Fuel Grain Length .4 m
Initial Fuel Port Radius .05 M
Nozzle Throat Area .005 m^2
Nozzle Expansion Ratio 4
Nitrous Tank % Ullage 5 %
C* Efficiency 90 %
Initial Nitrous Oxide Temperature 293 K

160

Figure 10: Motor simulation with no controller

161

Figure 10 contains the plots from a simulation run where the there was no
controller used, the valve was set to fully open (90 deg) and left there. This gives a good
idea of the motor’s natural behavior and also ensures that the pressure differential
between the combustion chamber and oxidizer tank won’t get too small, resulting in the
risk of backflow from the combustion chamber. All the initial values in Table 2 are valid,
as well as the regression data earlier in the report. The plots include: chamber pressure,
oxidizer pressure, pressure drop between the oxidizer tank and combustion chamber,
chamber temperature, thrust, specific impulse, total accumulated impulse, characteristic
length, grain port radius, regression rate, nitrous oxide mass flow into the combustion
chamber, fuel mass flow off the paraffin fuel grain, oxidizer to fuel ratio, accumulated
propellant mass burned, remaining nitrous oxide in run tank, oxidizer tank temperature,
and feed nitrous density.

Figure 11 contains the plots from a controlled simulation. All of the same data is
presented along with a couple of new plots. One is the valve position rate, which is the
speed at which the valve is changing, and the other is the current valve position. The
thrust plot also now has a second curve on it which represents a desired thrust profile.
This profile is simply a preliminary design which came from the other members of the
team. Everything simulates fine, except at the end the motor runs out of nitrous and isn’t
able to quite match the last portion of the curve. You can also notice that there are
saturation points on the control system, one is the max valve position rate, and the others
are the max valve positions. Based on max motor rpm the maximum valve position rate
was set to 100deg/sec; of course the min and max valve positions are simply open (90
deg) and closed (0 deg). For both tests the initial port radius has been set such that there
is approximately a half an inch of remaining paraffin lining the combustion chamber
when the firing is complete, this will act as a heat insulator. There is also a phenolic
lining around the fuel grain for additional protection.

162

Figure 11: Motor simulation data with a controller

163

Hybrid Motor Physical Design
Of course MATALB is all well and good, but the physical design is just as

important. This document is only concerned with the motor design it does not cover how
the motor is mounted within the rocket airframe, or the testing platform; what is worth
noting, however, is that no thrust is transmitted through the valve and tubing between the
oxidizer tank and combustion chamber. This is simply a proposed design and requires
further development. Before such a large motor is manufactured it would also be
practical to build several smaller motors and attempt to control them.

As a general overview, the oxidizer tank and the combustion chamber will be
formed from aluminum. End closers will be flat aluminum plate held in the tubing with
internal snap rings. There will be a small pre and post combustion chamber area in the
motor which will be insulated with a thick layer of canvas phenolic. The nozzle will also
be canvas phenolic with a small graphite insert in the throat. The fuel grain will have
roughly .5in of remaining material at the end of the burn, but this can be adjusted by
changing the initial port radius. The fuel grain will also be cast in a thin walled phenolic
tube. A concern is the paraffin slumping away from the combustion chamber walls near
the end of the burn since the test motor will be horizontal; a possible solution may lay in
the design of the fuel grain insulator. If it is constructed in such a way as to give the
grain something to latch onto it could support the grain walls near the end of the burn
when they are getting thin.

The injector is a radially arranged 12 port, 35deg spray angle, full cone, atomizing
injector designed and built by BETE spraying systems. Based on the flow characterizing
done by BETE it will be able to handle the required oxidizer mass flow. The oxidizer
control valve is simply a Swagelok ½” stainless ball valve, activated by a NEMA 17 step
motor which is run through a 30:1 reducing gearbox. The step motor is run by an Omega
Engineering 2035 motor controller; which in turn gets the direction, enable, and step
commands from an Arduino-Pro microcontroller. This is the part of the design that was
tested in the thesis, of course. It is covered in detail in the main report and therefore will
not be repeated here.

Figure 11 shows an overall picture of the motor and its components, more detailed
sections are to follow. Appendix I displays technical drawings of the entire hybrid motor.

164

Figure 12: Rendering and description of possible motor design

165

Oxidizer Tank

The oxidizer tank design is the same as what is presented in the main thesis, and

will not be repeated here.

Combustion Chamber
The combustion chamber will generally see lower pressures than the oxidizer

tank; however, it will also see more pressure spikes and unpredictable behavior.
Therefore it was also designed to withstand 1000psi, and all factors of safety are based on
that pressure. Again, the combustion chamber was designed to fail axially. The radial
factor of safety is 3.61, and a minimum factor of safety due to snap ring groove failure is
1.98. Appendix D presents the strength checks performed on the combustion chamber.

Combustion Chamber Casing

Like the oxidizer tank, the combustion chamber casing is formed from extruded

6061-T6 aluminum. For size reasons 8” pipe was selected, which has an OD of 8.625in
and a wall thickness of .3125”; the combustion chamber could have been used as the
airframe of the rocket as well but it lies in the area where fins would have to be welded to
the rocket body. Since welding directly to the combustion chamber would make the
temper unknown we decided to avoid this situation by making the combustion chamber
fit within the airframe. The thrust from the motor is transmitted to the rocket body by an
external snap ring. Figure 13 shows the nozzle end of the combustion chamber and
points out some of the important design aspects.

Figure 13: Rendering of combustion chamber nozzle end

1) Groove for
external snap
ring

2) Nozzle
retaining ring
groove

1

2

166

Nozzle and Post Combustion Chamber

The nozzle and post combustion chamber is built from a combination of canvas

phenolic and graphite. The nozzle throat is machined from graphite and will be bonded
to the outer portion of the phenolic nozzle using RTV red high temperature silicon. This
construction was used to limit the heat conduction from the nozzle throat to the aluminum
combustion chamber. It also helps reduce the temperature gradients in the graphite which
could lead to fracture. The other component is the insulator for the post combustion
chamber, since something is needed to keep the flame from coming in direct contact with
the aluminum combustion chamber. This insulator was simply going to be machined
from canvas phenolic, and is made separate from the nozzle so that it can be easily
replaced after each burn. Figure 14 displays a rendering of this region of the combustion
chamber.

Figure 14: Rendering of nozzle and post combustion chamber

1) Outer nozzle shell
(canvas phenolic)

2) Nozzle throat insert
(graphite)

3) Nozzle retaining ring
4) Nozzle load distribution

ring
5) Post combustion

chamber insulator
6) Lap joints to discourage

hot gas propagation
7) Viton O-rings

3

6

4

6

5

2

1

7

167

Combustion Chamber Upper Bulkhead

The upper bulkhead of the combustion chamber is very similar to the bulkheads

on the oxidizer tank, no FEA results are included with this report but the bulkhead has
been shown to be adequate. Figure 15 shows a rendering of the bulkhead, the major
difference is the female threaded section where the injector is mounted. Like the oxidizer
tank bulkheads the combustion chamber bulkheads are made from 6061 T6 1” thick plate.

Figure 15: Combustion chamber injector bulkhead

Combustion Chamber Bulkhead, looking at it from the nozzle end of the motor

1) Male 1” NPT connection for the injector
2) Combustion chamber pressure transducer ¼” NPT port
3) O-ring grooves

3

2

1

168

APPENDIX I: TEST SETUP TECHNICAL DRAWINGS

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

BIOGRAPHY OF AUTHOR

I grew up on Deer Isle off the coast of Maine where I was home-schooled until

attending Deer Isle Stonington High School. I started my interest in aerospace at this

time, building several high power rockets and my own hybrid rocket motor for my senior

project. I’m currently finishing at the University of Maine after working on a mechanical

engineering degree. During the summer of 2010 I worked at Applied Thermal Sciences

with a grant from Maine Space Grant Consortium. While there I helped with their ramjet

propulsion project. The summer of 2011 was spent at NASA’s Marshall Space Flight

Center working on an optical mass gauging system. Asides from aerospace projects I’ve

also enjoyed my time starting Umaine’s formula SAE team, we’re attending our first

competition in May of 2011. This honors thesis is in parallel with my senior capstone

project which is a scientific sounding rocket which is expected to reach 150k ft, and be

launched in early summer.

In addition to engineering I enjoy the arts as well, and have always found time for

additional art classes. I plan on spending some time to explore the arts before settling on

a career path. In the summers when I’m not interning I guide sea kayaks off the coast.

	Development of Oxidizer Flow Control for use in Hybrid Rocket Motors of the Scientific Sounding Rocket Scale
	Recommended Citation

	Honors_Thesis_Luke_Saindon_2012
	Appendix A-Simulink Model Screenshots
	Appendix B-VF Plot Post Processing MATLAB Code
	Appendix C-Controller Analysis Post Processing MATLAB Code
	Appendix D-Manual Arduino Code
	Appendix E-Specific Angle Arduino Code
	Appendix F-Controller Arduino Code
	Appendix G-Technical Data Sheets
	Appendix H-Design Summary of a Possible Hybrid Motor
	Table of Contents
	Variable Definitions
	Introduction
	Propellants
	Nitrous Oxide
	Paraffin
	Stoichiometric Oxidizer to Fuel Ratios

	Simulating the Motor Performance
	Determining Nozzle Geometry
	Combustion Chamber Modeling
	Oxidizer Tank Modeling
	Liquid Emptying Regime
	Gas Emptying Regime

	Mass Flow between Oxidizer Tank and Combustion Chamber Modeling

	Thrust Control
	Simulation Results
	Hybrid Motor Physical Design
	Oxidizer Tank
	Combustion Chamber
	Combustion Chamber Casing
	Nozzle and Post Combustion Chamber
	Combustion Chamber Upper Bulkhead

	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	Biography of Author

