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ABSTRACT 

To successfully build a rocket engine with variable thrust you must devise a 

reliable and robust oxidizer flow control system.  The goal of this thesis is to contribute 

to the goal of building a variable thrust (throttled) hybrid rocket engine, which could 

eventually be used to power scientific sounding rockets.  A variable thrust hybrid engine 

would increase reusability, flexibility, and capability of almost any small rocket. 

Specifically, this thesis work regards the development of the closed loop oxidizer 

flow control system.  To do this, a small test rig was built in the lab that consists of all the 

components in an actual rocket engine except for the combustion chamber.  Using this 

apparatus the behavior of water in the system was analyzed, including the 

characterization of the oxidizer flow control valve and the response of the system to 

various controller parameters.  By having a process perfected for characterizing a system 

with water it makes the process much easier when done with the more exotic oxidizer 

materials such as nitrous oxide and carbon dioxide. 
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CHAPTER 1: INTRODUCTION AND MOTIVATION 

The ability to throttle a rocket motor increases its flexibility such that it can be 

used in a variety of applications, and performs more efficiently.  Throttling liquid 

propellant motors has been perfected and executed already; the SSME’s (Space Shuttle 

Main Engines) throttle from 64-109%.  Solid propellant motors have no throttling or 

shutdown capabilities, but are simple and robust.  Hybrid rocket motors use a fuel and 

oxidizer combination of two different phases, most commonly a solid fuel and liquid 

oxidizer.  They have much of the simplicity of a solid motor with more safety and with 

the potential to be as controllable as a liquid motor.  Building a simple thrust control 

system for a sounding rocket sized hybrid motor would be a boon for scientific rocketry 

since many payloads require a gentler launch than can be achieved with a conventional 

solid motor, which is the most common vehicle at this time.  Liquid propellant motors 

provide throttling, but they are undesirable at the scientific sounding rocket scale for 

other reasons such as: complexity, cost, and higher mass fractions. 

Sounding rockets are smaller launch vehicles that carry scientific payloads to sub-

orbital altitudes, usually in the 100,000 ft range and higher.  The ultimate launch method 

for some of these payloads is one that, as mentioned above, is gentler in the ascent.  Solid 

rocket engines tend to start with a hard kick and generate extremely high g-loading 

during flight, as high as 20-30 g’s.  If a throttled hybrid motor was developed then the 

user of the rocket could program the motor’s control system to produce a desired thrust 

curve which would minimize the payload loading produced by hard acceleration.  Motors 

can produce equal amounts of impulse but in very different ways; either high thrust for a 

short duration or low thrust for a long duration.  The latter produces the smoother ride 
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into the upper atmosphere, while also usually achieving a higher efficiency (less fuel for 

an equal altitude).  In simple terms, it takes a lot of energy to push through the thick 

lower atmosphere at a high speed.  Much like it takes less energy to walk calmly through 

a pool instead of attempting to run.  By precisely tailoring the thrust curve using a control 

system on a hybrid rocket engine would allow the flight profile to be highly optimized, 

allowing higher altitudes for the same quantity of fuel, while avoiding the expense and 

complexity of a full liquid system. 

 

1.1 Goals of the Thesis 

The objective of this honors thesis is to help develop such a throttled hybrid 

rocket motor for use on scientific sounding rockets.  While building a complete rocket 

engine was the original plan, it soon became apparent that we did not have the facilities 

necessary to safely ground test such an engine in Maine.  Instead, a mockup of the 

complete oxidizer flow path, from the oxidizer tank through the control valve and all the 

way into the injector was developed in the lab and only the response of the oxidizer 

system was investigated. 

This honors thesis investigates the process of feeding an oxidizer from a holding 

tank, through a control valve, and into the combustion chamber injector.  A computer 

model of this oxidizer feed system will be built in Simulink and then the actual hardware 

will be tested in the lab to fine tune the many parameters of the computer model such that 

reality matches prediction.  Simulink is a block diagram based numerical solver, and is a 

component of MATLAB.  Water will be used in the place of the oxidizer, but if the 

process of system characterization is repeated any fluid could be modeled with equal 
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accuracy.  Since a hybrid rocket engine is throttled by controlling the flow of oxidizer 

through this feed system, a controller will be implemented in the lab setup.  In summary, 

the goals of this thesis will include: 

• Create an accurate computer model of the oxidizer feed system.  The 

largest unknown in the system is the flow control valve itself.  Therefore a 

large component of this thesis work is to fully characterize this valve. 

• Develop a controller used to monitor and adjust the oxidizer mass flow.  

Once the flow control valve is characterized the system can be simulated 

in the computer, parameters for a control system can be determined, and 

then the flow control system can be tested in the lab to see how closely the 

computer simulation matches reality.   

 

Additional goals include documenting the most efficient and effective methods of 

performing the above goals such that new oxidizer fluids can be quickly characterized 

and a control system tuned to effectively control the flow of the new fluid; and draw 

parallels between the lab bench test and applications on actual hybrid rocket engines such 

that this thesis investigation will be useful in the development of flight engines. 

Understanding the way water behaves in a system identical to that which would 

feed an actual combustion chamber with an oxidizer is an excellent base of knowledge 

that would be necessary to build this ideal throttled hybrid engine.  All of this will be 

done at the same scale and in way that would be possible in an actual sounding rocket.  

By working within the size limits of the sounding rocket airframe it is possible to build a 

motor with a conservative thrust estimate of 1200 lbf; delivering a total of 120,000 Ns of 
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impulse.  For perspective that would put the engine in the Q scale range of rocket motor, 

if one is familiar with the traditional nomenclature of rocket motor sizing.  Most little 

model Estes rockets are in the A-D range, where each subsequent letter has double the 

impulse of the one before it.  A well-designed control system must allow the hybrid to be 

throttled within a 3:1 range (the minimum thrust would be a third of the max thrust).  

Total burn time would be a maximum of 30 seconds, governed mostly by the limited 

oxidizer capacity.   

Interestingly, in parallel to this project a Mechanical Engineering senior design 

project is building a sounding rocket that requires an engine of similar size.  Therefore all 

of the experimental apparatus has been designed with a hybrid motor which could power 

this sounding rocket in mind.  Later in this written thesis Appendix H looks at the design 

and simulation of a complete motor, not just the oxidizer feed system.   

 

1.2 Overview of the Thesis 

Now that some foundation as to what motivated this thesis has been presented it is 

advantageous to understand the general layout of this written document.  First, a more 

detailed view of how hybrid motors work will be presented; as well as how oxidizer flow 

control could be implemented on an actual motor.  Throughout these discussions many 

examples of current hybrid projects as well as a state of the art will be given.   

Focusing more on the contents of this thesis regarding the flow control itself an 

introduction and explanation of control systems will be given, as well as how a control 

system will be implemented in this project.  A review of the PID controller specifically 

and how it is used in this thesis will be covered.  
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In order to meet the goals set, an experimental apparatus and supporting software 

must be developed.  A detailed description of the test apparatus will be next, explaining 

the hardware and software as well as the data acquisition system used.  The experimental 

results will be used to fine tune the simulation model, this data will be displayed and 

described in the results section. No model is useful without verification, no matter how 

fancy the simulation process there needs to be some data somewhere to back it up.   

The difficult part of the thesis involves the accurate modeling of the system, 

particularly of the control valve.  What it means to characterize the flow control valve 

will be presented; as well as the methods used to simulate and model the system as a 

whole within MATLAB.  The assumptions made in the simulation process are also very 

important to understand, since any real system is much too complicated to model in 

perfect exactitude.  Therefore the assumptions will be made clear.   

 

1.3 Hybrid Motor Basics and Background 

For perspective it is important to have some basic understanding of the operation 

of hybrid motors, this will also help demonstrate how the fluctuation of oxidizer flow 

could result in the fluctuation of thrust.  Understanding some basics about these motors 

helps put the thesis work in perspective.  As explained earlier, a hybrid motor uses a 

liquid oxidizer and a solid fuel to create the necessary chemical components for 

combustion within the combustion chamber.  Theoretically it is possible to have a solid 

oxidizer such as ammonium perchlorate and a liquid fuel instead, but very little work has 

been done with this.  Hybrids, in general, are much less understood than either liquid or 

solid propellant motors.  Their main appeal is to be safer than solids, cheaper and simpler 
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than liquids; however they maintain much of the throttling ability and adaptability of 

liquids.  There are disadvantages as well, and will be covered shortly.   

The oxidizer is fed from a holding tank through an injector which atomizes the 

oxidizer inside the combustion chamber.  As the oxidizer moves across the surface area 

of the solid fuel grain a thin layer of fuel vaporizes and allows combustion to be 

sustained.  Some ignition source of enough energy to begin vaporizing the solid fuel must 

be used before oxidizer is introduced and the engine throttled up.  One of the largest 

disadvantages of hybrids is the limited source of fuel.  The solids can only vaporize at the 

exposed surface and can only do so at a finite rate for a given amount of oxidizer.  The 

speed at which the solid fuel can vaporize for a given mass flow of oxidizer is called the 

fuel regression rate, and it is very important to understand the characteristics of a fuel and 

how it burns with a specific oxidizer before a motor can be confidently and safely 

designed.  Engineers are constantly attempting to find new ways of increasing the 

regression rate of fuels such that the surface area can be reduced and total fuel volume 

increased to create more compact high thrust motors.  One option is to use a wax based 

fuel, which instead of vaporizing from a solid state at a fairly limited rate first melts into 

a liquid boundary layer.  This liquid layer can actually be caught up in the gas streams 

headed to the nozzle and become airborne while burning; effectively increasing the 

surface area of fuel exposed to oxidizer.  Much like spray can be picked up from the tips 

of white cap waves on a stormy day.  Paraffin fuels are now being investigated as a 

primary fuel source for many hybrid engines.  If implemented correctly, paraffin could 

nearly negate the regression rate problems of other fuels such as HTPB, and provide 
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ample fuel for a given flow of oxidizer.  There are still a lot of teething problems with 

paraffin hybrids, largely burn stability. 

The use of hybrid rocket engines is fairly limited at this point in time, but they are 

becoming more popular and used in a wider range of vehicles.  Possibly the most famous 

application was in SpaceShipOne, built by Scaled Composites.  This vehicle is designed 

for sub-orbital flights up to 100 km, and is powered by a Helium supercharged Nitrous 

Oxide and HTPB hybrid motor.  They successfully competed for the Ansari X-prize in 

2004 for launching a manned aircraft to an altitude greater than 328,000 ft and doing so 

twice in less than 14 days.  Scaled Composites is currently working on a SpaceShipTwo 

and has partnered with a Richard Branson company called Virgin Galactic to provide 

tourist service to suborbital space.  SpaceShipTwo will use a much larger version of the 

hybrid motor in its little brother. 

Another demonstration of hybrid propulsion will be with Sierra Nevada’s Dream 

Chaser vehicle.  The Dream Chaser will use two hybrid motors to boost into LEO (low 

earth orbit) to provide cargo and shuttling service to the ISS.  The hybrid motors are 

those used in SpaceShipOne.  SpaceDev is responsible for the motor’s design and is 

actually a component of the Sierra Nevada Corporation.  These particular hybrid motors 

are not throttled, and are using the better understood, but lower performance, HTPB as 

fuel.  If a paraffin version of these motors could be developed and a throttling system 

implemented the hybrid motor would become a much more appealing option for many 

other vehicles. 

A variety of sounding rockets and other conventional rocket vehicles have tried 

using hybrid propulsion, all with varied success.  Some failures could have been easily 
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avoided, such as Amroc’s stuck oxidizer valve which caused the oxidizer to only slowly 

flow into the combustion chamber.  This allowed enough flame to incinerate the rocket 

without moving it an inch. A team from New Zealand just launched a hybrid sounding 

rocket, but failed to recover the second stage, no fault of the hybrid, however. 

At the moment, one of the most promising efforts is being led by Stanford 

University with support from NASA Ames research center.  The so called Peregrine 

project will be a 100 km sounding rocket powered by a 10 in diameter paraffin and liquid 

oxygen hybrid.  The project is also getting support from Space Propulsion Group, the 

industry leader in paraffin hybrids.  As of yet the motor has no closed loop thrust control 

system. 

 

1.4 Hybrids and throttling, Flow Control Technology and its challenges 

Throttling rocket engines is not a trivial affair, no matter the engine.  Solid 

propellant motors cannot be throttled, once lit they burn until all the fuel is consumed.  

Some control over the thrust curve can be achieved by being clever with grain design or 

fuel composition variations radially within the grain; such that the exposed surface area 

or volatility of the fuel changes in a certain way over time thus changing the thrust curve.  

There certainly is no shutting a solid motor down once ignited. 

Throttling liquid propellant motors is the most common and best understood at the 

present.  In a liquid engine you have direct control over the flow of oxidizer and the fuel, 

by using valves in the feed lines.  To reduce thrust you must reduce the chamber pressure.  

Reducing pressure in the combustor is as simple as reducing the amount of fuel and 

oxidizer fed into the system.  Usually to burn at maximum efficiency the motor requires 
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more oxidizer than fuel (by mass) therefore the flow of oxidizer has to be cut more than 

the flow of fuel in order to maintain ideal operating conditions.  With a liquid propellant 

engine you can control this oxidizer to fuel ratio (O/F) directly, allowing the engine to 

operate as efficiently as possible at any given thrust level. 

Hybrid motors, since they use a solid fuel and a liquid oxidizer, are a little less 

precise when it comes to throttling.  The operator only has control of the oxidizer flow, 

and the fuel flow is a function of oxidizer flow.  This goes back to the regression rate idea 

that was discussed earlier.  Now that this is a coupled system the change in oxidizer flow 

also means a change in fuel flow.  In a simple sense, cutting the flow of oxidizer cuts the 

flow of fuel because the regression rate is a function of mass flux in the fuel port.  

However, usually the motor will only operate at ideal O/F ranges for one specific mass 

flow of oxidizer.  At all other throttled points the motor will not be running at maximum 

efficiency.  This is a tradeoff.  The hybrid offers increased simplicity, and lower costs 

than a liquid propellant motor, but does not have the potential to be quite as efficient at 

all thrust levels.  It is a mid-point between solid motors and liquid motors.  Further 

exploration into the specific design of a hybrid motor is presented in Appendix H, and 

looks at the O/F tradeoffs in more detail. 

Hybrids, as well as most other rocket motors are currently thrust controlled by 

varying the flow of fuel and oxidizer manually, and does not use a closed loop control 

system to verify that the engine is providing the correct thrust.  In other words, a desired 

thrust curve is achieved by spending a lot of time characterizing a specific motor such 

that the operator knows that if you specify a curve of oxidizer mass flow over time then 

you will get a desired thrust curve over time.  This is fine as long as you don’t change the 
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desired curve, and that the motor is operating exactly like it was designed and 

characterized to run. 

If a hybrid motor could be fitted with a controller that measures thrust, computes 

how different the thrust is from a reference thrust curve, and then adjusts the flow of 

oxidizer accordingly, then you could have a much more robust and versatile system.  It is 

a method of control that is used in a variety of other engineering applications, but never 

routinely on launch vehicles to allow the launch team to optimize the thrust curve.  The 

ultimate scenario is that this hybrid is developed such that a team interested in using it as 

a booster for a payload could determine the optimized thrust curve which maximizes 

altitude or some other parameter while minimizing the cost of launch (i.e. by using less 

fuel).  In theory, once the thrust curve has been determined it can be loaded into the 

booster computer memory and the PID control system will enable the motor to follow the 

curve by using a closed loop to constantly monitor the actual system performance.  If the 

motor is reliable and stable at a wide range of thrust levels then this should be a fairly 

simple task.  The work of this thesis investigates the performance of a specific 

tank/valve/driver/injector setup in controlling the mass flow of water.  Having this 

experience will be invaluable when it comes to designing the rest of the motor.  The idea 

of having the capability of loading any curve into the control system at a moment’s notice 

and having the motor follow that curve is an exciting prospect.  Other possibilities 

include real time control of thrust via radio link or some other input.  The robust nature of 

a closed loop control system opens all sorts of exciting possibilities. 
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CHAPTER 2: INTRODUCTION TO CONTROL SYSTEMS 

A well designed control system can be one of the most elegant systems 

encountered in engineering.  They add a huge amount of functionality and usability to 

many designs.  Through the use of a controller, a system can be forced to almost perfectly 

follow a desired reference signal.  However, what makes the use of a control system 

special is that it has no high level knowledge of the system which it is controlling.  It uses 

very simple logic to create extremely complex results, making it very robust. 

The general idea is that there is some reference curve that you want your system 

to adhere to.  An example would be the angular velocity of an electric motor over time.  

Perhaps you want the angular velocity to follow a specified curve, regardless of the load 

on the motor.  If you knew the load to be applied you could feed the motor a pre-

determined voltage vs. time signal that would keep the angular velocity at the desired 

level.  This, however, is a very fragile way of executing the task; what if some parameters 

in the system change?  It would be inconvenient to re-characterize the motor input 

anytime this happened.  Instead, use a controller that constantly compares the actual 

motor rpm with the reference curve; resulting in an error value.  The controller uses this 

error value to either increase or decrease the input to the system (voltage to the motor in 

this case).  If the motor slows down due to a load then the controller reads an rpm lower 

than reference and gets a larger error value.  This large error results in the controller 

increasing the voltage to the motor.  If the error was opposite in sign then the controller 

would decrease the voltage to the motor. 
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2.1 PID controller basics 

The next question is how the controller arrives at a system input based on an error 

signal.  It is important that the controller does not actually know anything directly about 

the system when it goes about determining this input value, since that would increase 

complexity of the controller, increasing error and decreasing the robustness.  There are 

three main means of computing the system input: direct proportionality to error; 

derivative proportionality to error; and integral proportionality to error.  The term “PID 

controller” may sound familiar; where the P stands for proportional, the D for derivative, 

and I for integral.  One does not need to use all three methods, often just a proportional 

controller is necessary, or a PI, or even a PD controller.  Each of the methods has its 

benefits and drawbacks.  Equation 1 shows how the controller output signal is generated 

from the error term. 

( ) ( )( ) ( )( ) ( )





++= ∫ te

dt
dKDdtteKIteKPtinput ***  

Equation 1: PID Controller 
 

If only a proportional multiplier is used then the system will tend to always have 

an offset from the reference.  This is because unless the proportionality constant is very 

large then as the error goes to zero, the input the controller delivers to the system 

decreases to zero as well.  Some equilibrium point is found, but there will always be 

some error between the reference and response.  Proportional controllers are very simple 

and stable, however. 

An integral controller is used to get rid of the offset that is developed with only a 

proportional controller.  This makes a PI controller very common.  The integral method 



 

13 

integrates the error over time.  Therefore the offset generated by the proportional 

controller will slowly build up over time and the integral component will see this as a 

need for a larger system input and thus draws the actual system output closer to the 

reference signal.  The problem with integral controllers is their tendency to overshoot the 

reference and then oscillate about it for a significant amount of time. 

The overshoot problem is where the derivative controller comes in.  The derivate 

component senses how quickly the error value is changing.  If the error is increasing 

quickly then the derivative portion of the controller will increase the input more 

drastically to counter the increasing error.  On the flip side, when the error is actually 

quite close to the reference signal and not changing all that fast the derivative controller 

calls for gentler and less dramatic system input.  They are very useful for systems with a 

lot of momentum that like to overshoot and maintain oscillations for long durations.  The 

trouble with derivative controllers is that they are very sensitive to noisy system output, 

and can make the controller output (system input) an amplified version of the system 

output that quickly spirals out of control.  Careful filtering is necessary to use a derivative 

controller effectively.  If you look at Equation 2, where y(t) is a noise component of an 

error signal being fed to the controller and ω is large since the noise is usually of high 

frequency, you can see that differentiating it creates large amplitudes, ωε , that can cause 

erratic and undesirable controller output to the system. 

( ) ( )

( ) )cos(

sin

tty
dt
d

tty

ωωε

ωε

=

=
 

Equation 2: Noise Amplification upon Differentiation 
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2.2 Implementing an Oxidizer Flow Controller 

For this thesis a controller will be used to monitor and correct the mass flow of 

oxidizer.  In this case the controlled quantity is the “oxidizer” (water) flow through the 

system.  There will be a reference curve of mass flow vs. time and the controller will 

attempt to maintain the system so that the actual mass flow matches the reference mass 

flow rate.  In order for the controller to compute an error value it must have a reading of 

the system output (mass flow).  This will be accomplished by hanging the oxidizer tank 

from the ceiling with a load cell.  The weight of the tank can be differentiated over time 

to get the mass flow out of the system.  The controller will then take this error value and 

run it through a PID controller to get an input for the system.  The controller output or 

system input will be an angular velocity of the valve (ie CCW at 95 rpm).  When the 

motor responds to this and starts changing the valve position at this particular rate then 

the oxidizer flow will change and the controller will reassess the situation.  Hence the 

term closed loop control. 

Eventually, when this oxidizer flow control is attempted on a throttled hybrid 

motor the only difference will be how the mass flow of oxidizer is measured.  Instead of 

having a direct measurement from a load cell, the controller will use a chamber pressure 

measurement from the combustion chamber.  From this pressure measurement a good 

approximation of motor thrust can be determined, and this motor thrust can be then 

compared to a thrust vs. time reference curve to generate an error signal which the 

controller can use.  Thrust is primarily a function of oxidizer mass flow (there are some 

other minor factors), therefore the thrust control and the oxidizer mass flow problems are 
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very interrelated.  If a controller for mass flow is developed then there is a lot of 

necessary knowledge that can be used for the application on a working motor.   
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CHAPTER 3: TEST SETUP: DESCRIPTION OF APPARATUS 

The oxidizer feed apparatus that is setup for this experiment represents a possible 

system which could be implemented on a hybrid motor of the size to be used in the Ursa 

class sounding rocket (Project Ursa is the name given to the University of Maine 

sounding rocket project). Much of the apparatus is designed and built as it would appear 

on an actual rocket motor.  The tank is constructed to size and shape of a possible flight 

tank, and is hooked up to a flow control valve operated by a stepper motor.  This stepper 

motor and valve were designed to consume power and fit in space that would be available 

onboard the vehicle.  An injector is mounted aft of the control valve.  The only missing 

element is the combustion chamber itself.  Technical drawings of all the components are 

available in Appendix I, which presents the plans for a hypothetical hybrid motor and 

therefore includes other components in addition to the oxidizer tank. 

 

3.1 Tanks and Piping 

The injector is a multiport showerhead type, with a 1” NPT inlet.  At 300 psi of 

pressure drop across the valve and injector the predicted flow of water through the system 

is 3.3 kg/s or about 65gal/min.  These flow capacities are sufficient for the proposed 

rocket motor design presented in Appendix H.  Since water will be tested at first and is 

not self-pressurizing at atmospheric conditions, nitrogen gas will be used to create the 

necessary pressure drop between the tank and the atmosphere.  Table 1 displays a P&ID 

(Piping and Instrumentation Diagram) of the system as it is constructed for this 

experiment.  A computer rendering and photograph of the actual test rig are presented in 
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Figures 2- 5 along with some of the basic components labeled.  The specification sheets 

for the major components can be found in Appendix G.  

The nitrogen fill and the water fill locations as well as a load cell are on top of the 

oxidizer tank.  The nitrogen fill bottle sits strapped to an I-beam nearby and fills the 

oxidizer tank through a length of nylon pressure hose.  The nitrogen fill has a pressure 

relief valve with a higher flow capacity than the regulator and has a lower relief pressure 

than any component’s pressure rating.  At the nitrogen supply bottle a regulator reduces 

the pressure from the tank to the desired system pressure; two gauges allow the tank 

pressure and the supply pressure to be read.  Asides from the main tank shutoff there are 

two additional valves at the nitrogen tank, one shuts off the nitrogen supply to the 

oxidizer tank and the other allows a purge of the system.  Purging the system is necessary 

either when completing a set of tests, or while refilling the oxidizer tank with water since 

the ullage gasses need somewhere to go while being displaced with water.   

At the top oxidizer tank bulkhead there is a valve that shuts off the water supply, 

this valve is necessary so that when the tank is pressurized by nitrogen the garden hose 

which supplies the water isn’t also pressurized since it isn’t a rated component.  The load 

cell is attached to the center of the bulkhead and allows the tank to hang straight.  On 

either end of the load cell ball joints are used so that the cell can only be put in perfect 

tension.  From the ball joints the tank is shackled to a chain which runs over a ceiling 

truss. 

 

 

 



 

18 

 

Table 1: System P&ID Diagram 

 
Figure 1: P&ID Diagram of Experimental Setup 

1 DOT bottle containing gaseous nitrogen 
• initially at 2500psi 
• Type K 
• 244 Cu ft. of Nitrogen at STP Conditions 

2 Main bottle shutoff valve 
• CGA-580 Connection 

3 Nitrogen bottle pressure gauge 
• 0-4000psi Range 

4 Nitrogen supply pressure regulator 
• 0-500psi Capability 

5 Nitrogen supply pressure 
• 0-500psi Range 

6 Pressure shutoff valve  
• 3000psi Rated 
• 3/8” FNPT 
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• Ball Type 
7 Flexible nylon pressure hose 

• 750psi Rated 
• 3/8” OD Nylon 

8 Load cell 
• 0-500lb 
• See Appendix G for details 

9 Pressure relief valve 
• 750psi set pressure 

10 System purge valve 
• Identical to item 6 

11 Water fill hose 
• Garden Hose 

12 Water fill valve 
• Identical to item 6 

13 Oxidizer tank 
14 Oxidizer tank pressure transducer 

• 0-1000psi range 
• See Appendix G for details 

15 Oxidizer flow thermocouple 
• Type T 
• Ungrounded 
• Open Tip 

16 Step motor driven oxidizer flow control valve (see next section for more details) 
17 Injector 

• 1” FNPT 
• 12 port 
• 35deg spray angle 
• See Appendix G for details 
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Figure 2: Photograph of Apparatus 

 
 

Figure 3: CAD Rendering of Apparatus 
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Figure 4: Photograph of Nitrogen Fill Station 
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Figure 5: Photograph of Upper Tank Bulkhead 

1 Water and nitrogen fill 
2 Load Cell 
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3.1.1 Control Valve Assembly 

The flow control valve, at least for now, is a ½” stainless steel ball valve.  This 

ball valve is actuated by a NEMA 17 step motor.  The step motor does not have the 

necessary torque to turn the ball valve directly; therefore it needs to be run through a 

reducing gearbox.  The gearbox in question is a right angle worm drive which has a 30:1 

gear ratio.  To sense when the valve is fully open and fully closed there are two limit 

switches that are activated by an arm which is attached to the valve stem.  The Arduino 

will keep track of valve position, but when it is initially powered on it needs to find a 

home position, and to do that it needs the input from a limit switch of some kind.  The 

gearbox was specified to have very low slop, however, the valve stem fits loosely in the 

valve ball itself; this is accounts for almost all of the system drivetrain slop.  It amounts 

to approximately ½ turn of the step motor shaft before the valve ball begins to rotate.  

This means there is roughly 6 degrees of slop at the valve.   The slop must be accounted 

3 Oxidizer Tank 
4 Control Valve Assembly 
5 Pressure Transducer 
6 Injector 
7 Nitrogen Bottle Pressure Gauge 
8 Nitrogen Feed Pressure Gauge 
9 Pressure Regulator 
10 Nitrogen Fill Valve 
11 Nylon Pressure Hose 
12 System Purge Valve 
13 Nitrogen Fill Bottle 
14 Pressure Relief Valve 
15 Water Fill Valve 

• Identical to nitrogen fill valve and purge valve 
16 Load Cell 
17 Oxidizer Upper Bulkhead 
18 Oxidizer Tank Casing 
19 Nylon Pressure Hose 
20 Water Fill Hose 
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for every time the valve changes direction.  Figure 6 is a labeled computer rendering of 

the valve assembly.  Figure 7 is a photograph of the valve assembly.  As a reminder, 

drawings of this assembly can be found in Appendix I. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2: Control Valve Design 

 
Figure 6: CAD Rendering of Valve Assembly 
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Figure 7: Photograph of Valve Assembly 

1 ½” SCH 40 stainless steel pipe nipple 
2 ½” stainless steel ball valve 

• See Appendix G for details 
3 Aluminum motor mount assembly 

• See Appendix I for drawings 
4 Limit switch indicating the valve is open 

• STSP momentary button switch 
5 Coupling from gearbox to valve stem 

• See Appendix I for drawings 
6 Limit switch activator arm 

• See Appendix I for drawings 
7 Limit switch indicating the valve is closed 

• Identical to item 4 
8 Right angle 30:1 worm box 

• See Appendix G for details 
9 NEMA 17 step motor 

• See Appendix G for details 
 

3.1.2 Oxidizer Tank 

The overall tank is machined from extruded aluminum and capped at both ends 

with flat aluminum bulkheads, held in place with spiral snap rings and sealed with double 

3/16” CS Viton O-rings.  The tank casing is designed such that it could serve as the 
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airframe of the rocket booster section.  The upper bulkhead has a port for water fill and a 

second port for nitrogen fill.  The lower bulkhead contains a large port for the injector 

and a second smaller port for a pressure transducer. 

The oxidizer tank was designed to fail axially, with a bulkhead failure.  Building 

the tanks from aluminum also reduces the risk of fragmentation if a radial failure was to 

occur.  The tank was designed to withstand 1000 psi, however, in reality; it will be 

unlikely that it will see anything close to this.  All factors of safety are calculated with a 

tank pressure of 1000 psi.  The minimum factor of safety in the axial direction was 1.4, 

due to bulkhead strength; snap ring groove factors of safety are approximately 2.0.  The 

radial factor of safety is 2.56. 

The oxidizer tank casing is machined from 6061 T6 extruded aluminum tubing, 

9.5 in OD and .25 in wall thickness.  Figure 8 shows a more detailed view of the tank 

casing end, both ends are identical.  Appendix I contains the technical drawings of the 

tank casing, Figure 8 is simply meant to point out the major design points of the tank 

casing.  

Under pressure, flat plates are not great as tank ends; there was a significant 

concern with their structural integrity.  Therefore an FEA was performed on them to 

confirm they were up to the job.  Figure 9, shows renderings of the upper and lower 

bulkheads.  Appendix I supplies technical drawings.  Both bulkheads are machined from 

1” thick 6061-T6 aluminum plate. 

The snap rings are of the spiral type; the ones used on the oxidizer tank are made 

by Smalley PN: WH-900.  They are rated for 102,130 lbf of radial force, in our particular 

case the snap ring groove itself will fail before then.  The O-rings are made from Viton 
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with a 3/16” cross-sectional diameter and a dash number of 365.  The O-rings were 

sourced from MSC industrial supply with a PN: 02246064, manufactured by APG. 
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Figure 8: CAD Rendering of Oxidizer Tank End 
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Figure 9: CAD Rendering of Upper Oxidizer Tank Bulkhead 

 
Figure 10: CAD Rendering of Lower Oxidizer Tank Bulkhead 

1 Large lap area to join oxidizer tank casing to the rest of the airframe if ever used 
on a vehicle 

2 Snap ring grooves 
3 Area machined true on casing ID to provide seat for tank bulkheads 
4 O-rings 
5 Tab to hang tank 
6 Nitrogen fill port (1/4” NPT) 
7 Water fill port (1/4” NPT) 
8 O-ring glands 
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9 Oxidizer feed port (1/2” NPT) 
10 Pressure transducer port (1/4” NPT) 
11 O-ring glands 
 

3.2 Instrumentation and Data Acquisition 

The pressure transducer, thermocouple, load cell, and step motor inputs are all 

recorded on a  data acquisition system.  The step motor receives input from an Omega 

Engineering motor controller, which in turn is sent signals from an Arduino 

microcontroller.  The microcontroller handles the control system algorithm and therefore 

also receives input from the load cell.  Figure 11 lays out the wiring of the system. 

A word about the motor controller:  There are three inputs, one is a step 

command, one is a direction command, and the last is an enable command.  They all 

operate on a 0 or 5V digital input, and are optically isolated from the rest of the 

controller.  The controller will cause the step motor to move one step (1.8deg) for one on-

off cycle of the step command input.  The actual step is triggered when the signal drops 

back to 0V.  The direction input defines the direction of the step motor, either 0V or 5V.  

The physical direction of the motor shaft depends on the motor being used.  Lastly the 

enable command causes the controller to lock the position of the motor and ignore all 

other input; the motor is locked when the enable pin has 5V and is enabled when the pin 

is at 0V.  This is slightly counter intuitive.   

The data acquisition system involves the use of a National Instruments chassis 

and modules, details are all available in Table 3.  5VDC is supplied to the load cell and 

pressure transducer, this power source is also monitored by the DAQ.  24VDC is supplied 

to the Omega Engineering step motor controller, this is a separate supply tailored for the 

particular motor controller used.  Lastly, power for the Arduino is supplied by USB cable 
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from a laptop.  The same laptop is also connected to the DAQ chassis.  Figures 12-16 

provide photographs of actual components.  Remember to refer to Appendix G for 

specific technical information on any of the major components. 

Table 3: Instrumentation Details 

 
Figure 11: System Instrumentation and Wiring 

1 Laptop 
2 Sensor power supply 
3 Pressure transducer 
4 Arduino microcontroller 
5 Omega Engineering step motor controller 
6 Omega Engineering step motor power supply 
7 Thermocouple 
8 9205 NI module 
9 9219 NI module 
10 NI Chassis 
11 Step motor control valve 
12 Load Cell 
13 USB Cable 
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14 Step motor control cable 
15 Motor step command 
16 Load cell signal 
17 Motor direction command 
18 Thermocouple signal 
19 NI module to chassis connection 
20 5V power 
21 24V power for step motor controller 
22 Limit Switch Signal 
23 Valve Limit Switches 

 

 
Figure 12: Motor controller 

 
Figure 13: Step motor power 

supply  
Figure 14: Arduino micro controller 

 
Figure 15: 5VDC power supply 

 
Figure 16: NI chassis and modules 
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3.3 Description of LabVIEW Program 

The physical setup of the DAQ system has already been discussed, there is some 

setup required on the software side as well.  National Instruments distributes the DAQ 

chassis and modules and also supports a software suit called LabVIEW, which is what 

was used for this thesis work.  LabVIEW, much like MATLAB, uses a visual block and 

wire method to program the DAS.  Figure 17 shows the VI block diagram.  Figure 18 

shows the program front panel where the user interacts with the program.  This front 

panel is linked to the block diagram; certain function blocks in the diagram create certain 

user interfaces on the front panel.  Since time and expertise were limited, the DAQ 

Assistant block was used to collect the data, which is essentially a wizard that allows you 

to choose which DAQ module you wish to use and then walks you through wiring the 

input to the module correctly.  Figure 19 shows how one of the channels within the DAQ 

Assistant is setup. 
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Figure 17: DAQ Block Diagram 

1 Loop, causing the DAQ to continuously sample rather than collect a finite number 
of points 

2 Stop button to end data acquisition 
3 DAQ Assistant as described below, and shown in Figure 19 
4 Filename block used to specify the name of the data file to which the collected data 

will be stored 
5 Write to file block used to store the data to a text file or similar 
6 Graph block, allows the user to watch the data in real time as it is being collected. 
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Figure 18: DAQ Front Panel 

1 Output graph, created by the graph block in the block diagram 
2 Stop button 
3 Filename input 
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Figure 19: Screenshot of DAQ Assistant Configuration 
 

In Figure 19 the display which sets up the thermocouple is being shown.  The 

wizard allows you to select the min and max temperatures expected to be seen, what units 

to read the thermocouple in, and very importantly the type of thermocouple.  In this case 

it’s a type J.  In the process of setting up this channel, the user also has the option to 

choose which module to use for the data collection, in this case the 9219 was chosen for 

the thermocouple.  The wonderful part of the wizard is the ease at which you can scale 
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system output.  Each of the inputs going to the DAQ is a voltage signal, some in the 

millivolt range and some in the 5V range.  Table 4 lists each of the DAQ inputs in greater 

detail and exactly how they are scaled, it also lists the order in which they appear in 

columns when written in the tab delimitated text file.  If you have a calibration curve for 

a sensor it is very simple to configure a calibration function for a specific channel which 

converts the voltage, current, or resistance signal into another wanted quantity such as 

weight, temperature, or a variety of other outputs. 

Table 4: DAQ Inputs and Outputs 
Name Text Doc 

Order 
Channel Module Sensor 

Output 
Scaled Quantity 

Time 1 NA NA NA Time (sec) 

Thermocouple 2 Ai0 9219 Voltage Temperature (deg C) 

Load Cell 3 Ai1 9219 Voltage Weight (lbm) 

Pressure Transducer 4 Ai2 9219 Voltage Pressure (psi) 

Motor Step Signal 5 1 9205 Voltage Voltage (V) 

Motor Direction 

Signal 

6 2 9205 Voltage Voltage (V) 

Motor Enable Signal 7 3 9205 Voltage Voltage (V) 

    

3.4 Description of Arduino Program 

The program that runs on the Arduino microcontroller is worthy of a more in-

depth description; there are several different programs that are currently written for the 

Arduino which are used throughout the scope of this thesis.  One is simply a manual 

valve control, where you can use a switch to select either open or closed.  This is useful 

for testing the mechanical aspects of the valve or for trouble shooting.  The second 
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program is used for characterizing the valve, and allows a specific valve angle to be 

specified and loaded into memory.  Lastly, there is the controller program which is used 

to run the closed loop flow control.  All the programs are written in Arduino’s compiler 

and can be easily downloaded via a USB link into the chip whenever desired.  The code 

is written in C++, the compiler has many built in functions, however.  A screenshot of the 

program can be seen in Figure 20.  All Arduino software is open source.   

 

Figure 20: Screenshot of Arduino Compiler 
 

3.4.1 Manual Arduino Program 

Again, this program is used to allow manual control of the valve being open or 

closed, and is the most basic of the three programs.  Understanding the way it operates, 
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however, is the basis to understanding how all the other programs operate as well.  A 

complete printout of the code is available in Appendix D, with an expanded explanation 

of what is shown below. 

 At the beginning of the loop the Arduino first reads in the inputs which it 

receives, such as the high/low values from the valve limit switches, as well as a small 

manual switch which the user can use to define the direction of motor travel.  The next 

part of code brings the motor back to a home position when it is powered on.  The way 

which the code is setup now is such that “home” is defined as “valve closed”.  The 

Arduino knows that the valve has reached the closed position when the limit switch is 

activated and grounds the associated input pin on the Arduino board.  The Arduino does 

not allow the rest of the code in the “void loop” to be executed until the limit switch 

indicating a closed position is activated AND the manual direction switch is commanding 

the motor to move in the closed direction.  For example, if when the valve is powered on 

it is already in the open position and the valve direction switch is commanding the valve 

to open, the Arduino will cause the motor to shut the valve fully (regardless of user input) 

and will not allow user control until the direction select switch is also commanding the 

motor to close.  

There is a second pin on the Arduino which gives the motor controller the step 

command.  The step pin oscillates at a rate defined in the initialization portion of the 

code.  The pin is set high or low using a small “if” statement that keeps track how long 

the step pin is high or low and switches the value after the appropriate interval. 

Note that the step pin is oscillating whenever the Arduino has power; the motor is 

only stopped by using the enable command on the motor controller.  For example, when 
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the valve is fully open and the limit switch pulls the associated Arduino pin to 0V, the 

code sends a high signal to the enable pin which causes the motor controller to lock the 

step motor in the current position.  All the while the step pin continues to oscillate; its 

output is simply ignored. 

Very importantly there is the code which keeps the valve from going beyond 90 

degrees open and 0 degrees closed.  This is important because if the valve goes much 

further beyond these bounds it will bind.  To prevent this from happening there are the 

two limit switches that are activated by the valve stem.  As described before, whenever a 

limit switch is activated it grounds a pin on the Arduino board.  If the input pin for either 

limit switch is activated AND the current direction selection is in the direction of that 

limit switch a signal is sent to the enable port of the motor controller and the motor is 

locked in position.  

 

3.4.2 Valve Characterization Program 

Generating the necessary information to characterize the valve is a large portion 

of this thesis work, and requires its own program.  As will be explained later in the thesis, 

characterizing the valve will require repeated runs of the apparatus, all at different valve 

positions.  The valve will be held a constant position for the duration of a flow test, then 

the tank will be refilled and the valve brought to a different position for a new test.  The 

program is identical to the user controlled program, with the exception of losing user 

direction control, and an additional condition that causes the motor to be locked in 

position at the desired angle instead of continuing until it reaches a limit switch.  
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Appendix E contains a printout of the user controlled Arduino code with additional 

explanation. 

Once the valve has executed the commands that brings it to the home position and 

the user has flipped the direction control switch to “open”, the Arduino begins to count 

step cycles with a simple variable that goes up by one every time the step pin completes a 

cycle; an additional “if” statement compares the step count to the desired angle, and if the 

step count is greater than the desired angle it locks the motor position. 

 

3.4.5 Closed Loop Flow Control Program 

This is the most complex of the programs, and is used to run the closed loop flow 

control.  Unlike the previous two programs, the Arduino will be looking for input from 

the load cell as well as generating output for the flow control valve.  At the heart, the step 

commands are sent in the same way as the other two programs, except that the step 

interval is variable, the same initialization sequence to bring the valve to the home 

position is also implemented.  The variable step size allows the angular velocity of the 

motor to be adjusted beyond either on/off.  The program now also receives an analog 

input from the load cell.  The Arduino then differentiates this mass measurement to get a 

mass flow reading which can be compared to the reference signal.  Depending on the 

error, an appropriate valve angular velocity is determined, which is then converted into a 

given step interval.  Since the motor controller has a minimum step interval that it can 

recognize there are saturation limits placed to constrain how small the step interval can be 

made.  Appendix F contains a copy of the code along with a much more detailed 

description. 
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This desired angular valve angular velocity must be translated into the mentioned 

step interval for the motor, if the input is small (ie a low angular velocity) then the step 

interval must be longer (ie a larger pause between step commands), higher angular 

velocity means a short step interval.  The derivation of the equation that converts a valve 

angular velocity to a step interval is shown below. 
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Equation 3: Determining Step Interval from Valve Angular Velocity 
 

Lastly, there are two “if” statements that determine the direction of the motor depending 

on whether the “input” (ie valve angular velocity) is positive or negative.  The limit 

switch protection is also still in place to prevent the valve from binding. 
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CHAPTER 4: MODELING THE SYSTEM 

Once the valve is characterized the results will be used in a computer model of the 

oxidizer flow system.  The hope is that an accurate model of the system can be made on 

the computer such that tests can be run in MATLAB instead on the actual test rig, which 

will allow more rapid tuning of the control system as well as provide a characterized 

component (the oxidizer feed system) to a simulation of an entire motor setup when the 

time for that arrives. 

 

4.1 Assumptions about the system 

In order to model the system it was necessary to make several assumptions about 

the way the oxidizer behaves as a fluid, how the control valve operates, and the blow 

down process that occurs as the oxidizer leaves the tank.  The assumptions made during 

this investigation will now be presented: 

Incompressible fluid, since water will be used it was assumed that the fluid is 

incompressible, therefore no cavitation at the injector or the control valve was accounted 

for.  It also means that any choking effects at the injector were ignored.  This assumption 

may prove to be the most problematic when transitioning to the real oxidizer, which will 

most likely be nitrous oxide.  Nitrous oxide behaves as an incompressible fluid, while it 

remains a fluid.  However, under the pressures and temperatures we will be working with 

the nitrous is very close to the saturated vapor phase.  This means that any pressure drops 

through the control valve could very easily result in momentary vaporization of the fluid, 

resulting in compressible gas pockets.  These gas pockets (cavitation) may severely 

choke the flow if they occur, this will have to be investigated in detail once the system is 
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characterized using a fluid other than water.  Carbon dioxide has very similar properties 

to nitrous oxide and would serve as a cheaper and safer analog and therefore a stepping 

stone to nitrous.  Due to time limits carbon dioxide will not be tested in the scope of this 

thesis.  The valve, injector, and controller can be characterized in the same way as with 

water; the results may be very different.  The concern is a drastic drop in system flow 

capacity when using fluids near their vapor pressure. 

Fluid temperature, the temperature of the fluid is considered the constant room 

value.  The fluid temperature will be monitored just before it enters the control valve, but 

there are no compensations for that temperature measurement in the simulations.  Since 

the fluid is also considered incompressible it follows that the density of the fluid is then 

also considered constant when using Bernoulli’s equation and the energy equations 

involved with the fluid dynamics of the system.  Large swings in temperature have not 

been observed and therefore this is deemed a reasonable approximation. 

To simulate the system accurately the pressure in the oxidizer tank needs to be 

known so that the pressure drop across the flow path can be determined.  This pressure 

drop, of course, is the key component to understanding and predicting the mass flow of 

fluid.  As will be explained in more detail later in the report, the ullage space within the 

tank will be supercharged with nitrogen and the system will blow down to atmospheric 

pressure.  Modeling this blow down process involved making several assumptions about 

the behavior of the nitrogen.  Firstly, it was considered to be an ideal gas.  The 

compressibility factor never drops below approximately .95.  As detailed later this also 

involved assumptions about the ideal gas constant used.  Secondly, only the nitrogen 

constituent of the ullage gas was considered.  In reality there will be a mixture of water 
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vapor and nitrogen.  After each run, the tank will be completely flooded with nitrogen, 

which will reduce the buildup of water vapor in proportion to the nitrogen.  The biggest 

assumption, which may warrant further investigation, is that the process is considered 

adiabatic, in other words there is no heat transfer between the tank and the surrounding 

environment.  The blow down durations are relatively short, roughly 30 seconds, 

therefore this assumption seemed reasonable as a first pass. 

 

4.2 Governing equations 

Now that the general layout of the system is presented the operation of each of the 

components can be explored in more detail.  Then the simple equation used in the 

simulation will be presented.  First of all the control valve itself will be examined. 

The control valve is of the ball type; therefore it operates from open to close over 

a 90 degree rotation.  Unfortunately the loss coefficients through the valve do not vary 

linearly from these two extremes.  Regardless of whether the flow response is directly 

proportional to the valve position or not, one of the variables that significantly affect 

oxidizer flow is valve position.  The second significant factor is the pressure drop which 

is present across the flow path.  In this simulation, the flow through the control valve was 

limited to two factors, the valve position, and the pressure drop.  A variable, called 

(coined for this experiment) the valve factor, or VF, was defined such that a surface of 

VF plotted against valve position and pressure drop could be created.  Using this new 

variable and the equation for mass flow of an incompressible fluid from Bernoulli’s 

equation the approximate mass flow response of the system can be put in the form of 

Equation 7.  A loss coefficient was added.  The streamline used is shown in Figure 21. 
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Equation 4: Mass flow based on pressure drop and valve position 
  

 

Figure 21: Bernoulli's Streamline 
 

The second version of Equation 7 shows a variable named “VF”, VF is the above 

mentioned “Valve Factor”.  VF varies between 0 and 1, depending on the valve position 

and pressure drop.  0 would represent no flow, and 1 would represent maximum system 

flow.  The max flow was based on achievable upper bounds.  The trend between the 0 

and 1 for a constant pressure drop and varying valve position is not linear.  VF also lumps 
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the mass flow’s dependency on the square root of pressure.  A figure of the VF surface is 

presented in the results section of this report, figure 32.  The Valve Factor takes into 

account the trends in the system as the valve opens and closes and pressure falls, but does 

not translate valve position and pressure drop into an actual mass flow number.  There are 

also other losses in the system, such as the injector, and the tubing.  This residual 

resistance of the system as well as the constant which multiplies VF to give actual mass 

flow numbers is all contained in the “L” coefficient, which is called the “VF multiplier”.  

The VF multiplier (L) is chosen such that when the valve is fully open the predicted mass 

flow is appropriate for a given pressure drop across the tubing, injector, and open valve.  

Once again, this means that VF serves only as a proportional term to correct for valve 

position and pressure drop.  Constant parasitic losses in the system are accounted for in 

the VF multiplier (L).  Finding good values of VF as a function of valve position and 

pressure drop is one of the primary and most necessary objectives of having a working 

simulation the system.  Note that the square root of density is left as a separate term, but 

since one of the system assumptions was that of an incompressible fluid this will remain 

effectively as a third constant. 

Initial values of L and VF were estimated for the first pass using the data sheets 

from the injector manufacturer and valve manufacturer as well as a Darcy friction factor 

calculation for losses in the tubing.  Note: an arbitrary pressure drop had to be assigned 

the valve factor value of 1 (ie the maximum expected pressured drop to be seen), in this 

case 85 psi of pressure drop.  Of course the maximum flow will be with the valve wide 

open, 90 deg.  All other pressure drop/valve positions were scaled from this position; you 

can see that the back corner of Figure 32 is the position chosen for VF to be 1.  
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4.3 Modeling the valve response (effects of delay)   

In reality the response of the valve to the input of the controller is somewhat 

flawed.  The main component of this, and the only thing accounted for in the simulation, 

is the slop within the mechanism.  The step motor that controls the valve is severely 

geared down; therefore any slop in the gearing is amplified by the time it reaches the 

motor shaft.  The motor has roughly 180 degrees of free rotation before the slop is taken 

up at the valve.  This is modeled by adding a backlash block in the Simulink model. 

4.4 MATLAB simulation description and explanation  

The entire system simulation is performed within MATLAB, within MATLAB 

there is a package called Simulink which specifically designed for use with control 

systems.  All computations are carried out in a Simulink block model, but all of the 

variables within the code are initialized using an .m file, the actual Simulink model is 

also run from the .m file using the “Sim” command.  This way all that needs to be done to 

run a simulation is open the .m file and execute, the Simulink model will be run in the 

background without being touched by the user.  Data from the model is saved to the 

workspace and then plotted by the m. file, displaying the reference curve and the 

simulated response superimposed.  Once actual mass flow curves are experimentally 

found a third “measured” mass flow curve can be added to the plot. 

Simulink uses a block model flowchart layout, making the design of a simulation 

fairly easy and intuitive.  Blocks are connected with wires to control the flow of 

calculations.  Blocks can be as simple as an arithmetic operation, or they can be a 

complicated string of embedded code that the user writes.  Usually a group of operations 
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are consolidated into a subsystem, such that overall the model looks cleaner and is easier 

to follow.  Figure 21 shows the top level Simulink model used.  A breakdown of the 

entire Simulink model can be found in Appendix A. 

 

Figure 22: Overall Block Diagram 
 

The block labeled “Step” is the reference curve.  This is the curve that the 

controller will be attempting to force the system output towards.  In this example, it is a 

simple step input, however, this block can be modified to be any desired signal shape.  

The feedback loop, which was discussed earlier, joins this reference curve in a simple 

addition/subtraction block.  This results in the error signal which is fed into the controller 

subsystem.  Figure 22 displays the controller subsystem block. 

 

Figure 23: Controller Block Diagram 
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The controller subsystem has the capability to be a complete PID controller, even 

if the full functionality may not be used.  The error signal is feed into three branches, one 

for the proportional controller, one for the integral controller, and one for the derivative 

controller.  The signal is then differentiated, integrated, or left alone before it is 

multiplied by the appropriate coefficients.  The three signals are then summed before 

being used as the controller output/system input. If only part of the controller 

functionality is desired the appropriate controller constant can be set to zero in the 

program initialization sequence (the .m file).  The output of the controller is a command 

for the angular velocity of the valve (a direction and rotational speed).  In the actual 

apparatus this will be translated into a “stepinterval” for the motor controller.   

Now that the flow has passed through the controller subsystem the simulation 

must now predict how the system will respond to this controller output.  This is the 

purpose of the “plant” block.  This is where the angular velocity input is translated into a 

new valve position and ultimately a mass flow through the oxidizer system.  Figure 23 

shows the plant subsystem. 
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Figure 24: Simulation Plant Subsystem 
 

The first block that the input signal goes through is the “valve motor”, this is 

where the valve angular velocity signal is translated into valve position.  A diagram of 

this block can be found in Appendix A.  Essentially what happens is the angular velocity 

is fed through an integral block which outputs angular position (theta).  The time delay 

involved with drivetrain slop is also handled here with a backlash block.  Lastly, the 

controller may specify a very high angular velocity.  However, the motor can only 

provide a certain speed; often not as high as the controller would like.  This is called 

saturation, and the simulation needs to account for it.  In this “valve motor” block there 

are limits that filter the controller signal to truncate it when it reaches these mins and 

maxes.  The controller also does not understand the idea that the valve may already be 

completely open or closed; if the mass flow is lower than it wants but the valve is 

actually already fully open the controller will still attempt to open it further.  Therefore, 

there needs to be a second set of saturation parameters that keep the valve from opening 



 

52 

any further or closing any further than it physically can.  This is similar to the limit 

switches on the actual apparatus. 

The VF table block is really the heart of the simulation, and perfecting its contents 

is an important goal.  This block is a lookup table that contains the value of the valve 

factor (VF).  There are two inputs to this block, theta (valve position) and pressure drop 

across the oxidizer flow path.  From these two parameters the value of VF can be looked 

up.  A 3D surface plot of this lookup table can be seen in the results section, Figure 32.  

During the valve characterization progressed, the contents of this lookup table was fine-

tuned such that simulation matched results. 

Now that a mass flow has been calculated given the angular velocity output of the 

controller, the last major simulation step in the plant is to calculate the behavior of the 

fluid in the oxidizer tank.  This step is needed since a new pressure drop will be needed in 

the next simulation loop.  A diagram of the tank plant subsystem is shown in figure 24. 

 

Figure 25: Tank Simulation Subsystem 
 

It works by finding the change in volume of the ullage gas, this can be done because the 

time step of the simulation and the instantaneous mass flow are known.  If a constant 

mass flow for that small amount of time is assumed then the change in mass of the tank 
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contents can be found.  The water is assumed to be incompressible, therefore a change in 

volume can be found.  Using this change in volume and the assumption that the system is 

adiabatic the final pressure can be found.  The initial pressure is simply the pressure from 

the previous time step.  The pressure drop across the control valve is simply calculated by 

subtracting atmospheric pressure from this newly found tank pressure.  Also, as pressure 

drops, more water vapor will enter the ullage gasses.  However, this error was small and 

thus ignored.  The ullage is considered to be pure nitrogen for the duration of the oxidizer 

tank blow down.  In Figure 24 the upper branch is the calculation of ullage volume at the 

current time step, whereas the lower branch has a unit delay block and represents the 

ullage volume at the previous step.  Using these volumes as initial and final volumes, 

knowing the initial pressure, and the ratio of specific heats for nitrogen the final pressure 

is found.  This means the simulation loop is primed for iteration and a new error value is 

found.  The process is repeated. 
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CHAPTER 5: TESTING PROCEDURE 

There are two main operations that this system is designed for; one is to create the 

VF plot that is necessary for creating an accurate system model using this particular ball 

valve.  The other is for testing the performance of the flow control system once the valve 

is characterized.  The procedures associated with each of these operations are slightly 

different, however, share many similarities.   

 

5.1 Characterizing the Valve 

First, the methods of creating a VF plot will be reviewed, including the 

procedures for starting the apparatus from a cold start, running a single test, resetting for 

another test, and then shutting down the system.  The valve characterization method used 

here is to run flow tests at constant valve position, while allowing the tank to blow down 

from an initial pressure to atmospheric pressure.  To get a complete VF surface it is 

recommended that the apparatus be pressurized to 150 psi initially and then run with a 

constant valve position; this should be repeated for valve positions from 0 to 90deg in 

5deg increments. 

 

5.1.1 System Preparation from a Cold Start 

1. Power on Arduino by plugging the USB cable into the board and then into a USB 

port of a computer 

2. Ensure that the “Specific Angle.ino” is loaded onto the Arduino by opening the 

compiler and re-downloading.  Before downloading be sure to enter the desired 

angle into the program. 
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3. Turn on the step motor power supply and allow the program to close the control 

valve if it is not already closed. 

4. Using the direction select switch, cycle the valve open closed several times to 

ensure that nothing is sticking or binding.  If the valve has been sitting for an 

extended period of time it may be a bit sticky at first, causing the motor to falter.  

This is also an opportunity to make sure the tank is empty.  When done leave the 

valve in the closed position. 

5. Open the VI, power on the sensor power supply, and turn on the NI chassis 

6. Run the DAQ program and watch the load cell readout to ensure it is zero 

7. Check that valve 2, 6, and 12 in Figure 1 are closed, also ensure the regulator is 

shutoff. 

8. Check that valve 10 is open. 

9. Open valve 12 to begin filling the tank until the load cell reads 172lbm, this will 

leave the tank 91% full; the perfect amount if it will be pressurized to 150psi with 

nitrogen, since it will leave 0psi by the time the tank is empty.  This allows a full 

range of pressure readings to be attained from a given valve position.  If less 

pressure is desired initially then the tank should not be filled as much, and vise 

versa. 

10. Shut valve 12 when the tank is at the desired level.  If the tank is accidently 

overfilled then command the flow valve to be opened briefly and allow water to 

partially drain, and then try again. 

11. Close valve 10 

12. Open valve 2 
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13. Adjust regulator to 150 psi 

14. Open valve 6 and allow the system to reach equilibrium 

15. Check the DAQ to ensure the pressure reading is at 150psi, adjust the regulator if 

necessary 

16. Close valve 6 

17. Stop the DAQ and discard of the old data file that was created while preparing the 

system.  The system is now filled with water, pressurized, and ready for the flow 

valve to be opened to collect data. 

 

5.1.2 Running a Test 

1. Execute only after performing the system preparation 

2. Enter a filename and file path for the data file to be stored 

3. Run the DAQ VI 

4. Flip the motor direction selection switch and watch the valve move to the entered 

angle 

5. Collect data until the load cell or pressure transducer reads 0. 

6. Flip the direction select switch to close the control valve 

 

5.1.3 Resetting for another Test 

1. Change the desired angle in the Arduino compiler and re-download to the 

Arduino board 

2. Open valve 10 

3. Run the DAQ VI 
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4. Execute steps 9-11 of “system preparation” 

5. Open valve 6 and allow the system to equalize 

6. Execute steps 16 and 17 of the “system preparation” 

7. The system is now ready to re-run a test 

 

5.1.4 System Shutdown 

1. Close all valves 

2. Open valve 10 

3. Open valve 6, allow the regulator to depressurize 

4. Close regulator 

5. Shutdown the motor power supply 

6. Turn off NI chassis 

7. Unplug the Arduino from the laptop 

8. The system is shutdown 

 

5.2 Testing the Control System 

In the process of tuning the control system and fine tuning the system simulation 

it is necessary to test the response of the system to controller, and then compare to the 

computer model.  The hope is that once a good computer model is implemented, actual 

tests of the control system will be fairly limited.  Much of the system initialization is 

similar between testing the control system and characterizing the valve. 
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5.2.1 System Preparation from a Cold Start 

This is the same as the system preparation for characterizing the valve, except in 

step 2 load the “controller.ino” program into the Arduino’s memory.  Remember to set 

the desired reference curve before downloading the program into the Arduino. 

 

5.2.2 Running a Test 

This procedure is also the same as the instructions for characterizing the valve, 

except expect the valve to be constantly moving while it attempts to follow the defined 

reference curve. 

 

5.2.3 Resetting for another Test 

Also the same as for valve characterization, however, re-load the Arduino 

program with new controller constants instead of a new angle. 

 

5.2.4 System Shutdown 

This procedure is the same as that for the valve characterization. 
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CHAPTER 6: POST PROCESSING  

Some work, such as scaling the raw sensor output into quantities like weight, 

pressure, or temperature instead of pure voltage values has already been performed in the 

DAQ program, as explained in the apparatus description; but there is a still lot of analysis 

and manipulation that is performed after the fact in MATLAB.  The operation and use of 

the post processing MATLAB programs will now be explained, there are two different 

programs.  One constructs the VF plot, and the other analyzes the performance of the 

control system. 

 

6.1 VF Plot Post Processing 

When the valve is held at a constant position while the water drains from the tank 

the DAQ system is recording the mass of water over time, therefore to find the mass flow 

over time the mass vs. time data must be numerically differentiated.  One of the largest 

challenges is getting a clean plot of the mass flow curve since there is some high 

frequency noise in the mass curve.  This difficulty is demonstrated with the very simple 

example shown in Equation 2.  The solution found for this was to use a polynomial curve 

fit to get a clean line for the mass vs. time curve and mass flow vs. time.  MATLAB has a 

built in polynomial fitting tool, which was used after passing the data through a Savitzky-

Golay filter to slightly reduce the noise before fitting the curve.  Appendix B provides a 

copy of the MATLAB code used. 

The data from each of the test runs is stored in a .lvm file, there is an individual 

file for each valve position between 0 and 90deg in 5deg increments.  Smaller increments 

can be taken, depending on how accurate you want the plot to be and the amount of time 
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available to run the tests.  In order for the MATLAB program to work correctly, each of 

the files must have a unique name and they must all be in the same directory along with 

the .m file.  The first step the program needs to take is to read the data from the text files 

and store it within its own variable. 

Two operations are executed immediately; first the Savitzky-Golay filter is run on 

the temperature, mass, and pressure data.  Neither the pressure or temperature data is at 

all noisy, and the mass data is quite good as well, however, the 9219 cannot sample as 

quickly as the 9205 yet the NI chassis clock is set to sample at a high enough rate that the 

9205 can sense the step signal from the Arduino.  The step signal can be running at a 

frequency as high as 500Hz, therefore the DAS records the same values from the 9219 

for several consecutive time steps.  This creates a stair step signal from all the 9219 

sensors (load cell, thermocouple, and pressure transducer).  The Savitzky-Golay filter is 

very effective at linearizing this data without distorting the amplitudes. 

The next step is to differentiate the mass flow vs. time curve.  This is done with a 

simple Euler method, find the difference between consecutive mass values and then 

divide by the elapsed time between the two samples.  The data which is differentiated is 

the Savitzky-Golay filtered mass curve, not the unfiltered mass vs. time curve.  Also, 

once the curve is differentiated to find mass flow vs. time the curve is run through the 

filter again.  To get a very clean line for the VF plot this filtered mass flow curve is then 

fitted with a 6th order polynomial.  A second order fits reasonably well, but the 6th order 

allows the curve to be a much more “blunt” parabola, which fits better.  Figures 25-31 

show sample data before any filtering has been done, and then have an overlay of the data 

once the filter has been applied, and then once again when a polynomial curve fit is used.  
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The R^2 values for the curve fits are displayed beneath the charts.  Inserts showing the 

details of some noise are also shown.  Note that the polynomial curve fit for the mass vs. 

time curve is actually not used in any calculations, whereas the polynomial curve fit on 

the mass flow vs. time curve is used in constructing the VF table. 

The last process which occurs is to crop the data which was collected.  There is a 

significant amount of data at the beginning and the end of the test which involves dead 

time before the valve is open or after it is closed as well as transient regions before the 

valve has reached its final position.  The user must look at the raw data from each test 

and determine time bounds for the data.  These time bounds are entered into the 

processing program and all data that doesn’t fall between the start and end times is 

discarded. 
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R2 polynomial/unfiltered: .9976  R2 polynomial/filtered: .9976 

 

Figure 26: Mass Curve Noise (above) and Inset (below) 
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R2 polynomial/unfiltered: .9160  R2 polynomial/filtered: .9725 

 

Figure 27: Mass Flow Curve Noise 
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Figure 28: Temperature Noise 
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Figure 29: Pressure Noise 
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Figure 30: Step Command Noise 

 

Figure 31: Direction Command Noise 
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Figure 32: Enable Command Noise 
 

6.2 Control System Analysis Post Processing 

After a test of the control system has been conducted a very similar process in 

MATLAB is performed to extract the mass flow vs. time curve generated during the test 

run.  This can be treated exactly like the mass flow vs. time curves during the 

characterization process, except that the valve position is not constant.  Additionally, 

during the control system post processing the computer model is run such that a predicted 

mass flow curve for the given controller constants, initial pressures, and reference curve 

can be generated and then overlaid on the actual mass flow curve.  This allows 

comparison between the model and reality.  An Appendix C contains the MATLAB code, 

and remember that Appendix A contains the Simulink model used to model the system. 
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Once again, all of the same processes were used to measure the actual mass curve 

which gets compared to the predicted curve, except for the polynomial curve fitting.  The 

mass flow curves with the controller proved too erratic to fit a curve reliably. 
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CHAPTER 7: RESULTS 

This next section lays out the results of this thesis work divided between the 

results from the valve characterization and the results from the control system 

implementation. 

 

7.1 Valve Characterization 

The entire goal of the valve characterization portion of this thesis was to create a 

VF surface which could be used in the computer model of the oxidizer feed system.  

Figures 32-35 below display the finished VF surface.  As a reminder, the value where VF 

is assigned to be 1 is for a valve position of 90deg and a pressure drop of 85psi.  Once the 

VF plot was completed the VF multiplier was determined. 

 

L=.147 lbm/sec 

 

Additionally, to visualize the VF plot better Figures 36-44 show distinct slices of 

the VF surface.  There are four plots of constant pressure drop (10, 20, 40, and 85psi) 

where the valve position changes, and another four plots where valve position is held 

constant (35, 55, 75, and 90deg) while pressure varies.   
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Figure 33: VF Plotted Against Valve Position and Pressure Drop 
 

 

Figure 34: XY Plane of VF Surface 
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Figure 35: XZ Plane of VF Surface 
 

 

 

Figure 36: YZ Plane of VF Surface 
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Figure 40: VF vs. Valve Position dP=85psi 

Figure 37: VF vs. Valve Position dP=10psi Figure 38: VF vs. Valve Position dP=20psi 

Figure 39: VF vs. Valve Position dP=40psi 
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Figure 41: VF vs. Pressure Drop POS=35deg Figure 42: VF vs. Pressure Drop POS=55deg 

Figure 43: VF vs. Pressure Drop POS=75deg Figure 44: VF vs. Pressure Drop POS=90deg 
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7.2 Control System Results 

The results from the control system testing were slightly less clean and 

conclusive, for a variety of reasons.  They were very satisfactory for the initial 

investigation that this thesis provides.  Only a P and PI controller were implemented, due 

to the impracticality of differentiating a noisy signal twice.  There is still work to be done 

on the control system model, as it is the model works fairly well.  It works best at higher 

values of KI and KP.  The reason for the inaccuracies at the lower KI and KP values is 

not fully understood yet, however some theories are presented in the next section.  The 

mass curves shown in the plots have all the filtering that was explained in the post 

processing section performed on them except for the polynomial curve fit.  Their shapes 

proved too erratic to be fitted with a polynomial curve with any great deal of accuracy. 

Figures 44-47 present some of the best examples, along with a couple which do 

not match up as well.  Figures 48-59 show some plots of the predicted and measured tank 

pressure, which is an interesting side problem that ended up working out well.  Next are 

two sets of plots that show 30 different simulations all side by side for comparison.  Look 

for the explanation that follows each graph and explains how to read Figures 50 and 51. 
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Figure 45: System Mass Flow Response for KI=20, KP=20 
 

 

Figure 46: System Mass Flow Response for KI=5, KP=10 
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Figure 47: System Mass Flow Response for KI=2, KP=10 
 

 

 

Figure 48: System Mass Flow Response for KI=5, KP=2 
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Figure 49: System Pressure Response for KI=5, KP=10 

 

Figure 50: System Pressure Response for KI=2, KP=10 
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The following figures (50 and 51) require some explanation to read, since labeling all 

axes would clutter the figure.  See the section immediately following the figures for a 

detailed description. 
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 Figure 51: Variety of System Mass Flow Responses 
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 Figure 52: Variety of System Pressure Responses 
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Figures 50 and 51 require a little explanation.  To pack the graphs as tightly 

together as possible there are no units or titles displayed.  The horizontal axis is time 

(sec), just like Figures 44-49, the vertical axes are either mass flow in lbm/sec or pressure 

drop in psi (Figure 50 and 51 respectively).  The top rows of graphs are for a KP of 0, 

second row for KP of 2, then 5, 10, and 20 respectively.  The columns left to right are 

increasing KI, from 0, 1, 2, 5, 10, and 20.  The red line signifies the reference signal, 

green is predicted response using the MATLAB simulation, and the blue is the measured 

system response.  The pressure responses did not have a reference signal, therefore red is 

predicted and blue is measured. 
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CHAPTER 8: DISCUSSION OF RESULTS 

As can be seen, not all of the results are in complete agreement with the model.  

However, there are patterns to the discrepancies and with more development time there is 

a very good chance to reconcile the model.  There were several factors that contributed to 

the differences: Slop in the drivetrain, poor load cell amplification, 10-bit ADC, sloshing 

in the tank, a jittery direction signal, and errors in mass curve derivative to get mass flow. 

Before each of the above is discussed it would be first useful to examine the 

pattern of inaccuracies seen in the data.  If you read the description of Figures 50 and 51 

such that you understand how KI and KP are organized over the rows and columns then it 

will be clear that the discrepancies are larger for the lower values of KI and KP.  The 

model is the most inaccurate for very low values of KI (ie 1), and is also sensitive to the 

lower KP values, but not as much.  Once KP is 5 or higher, and the KI is 2 or higher the 

model matches up very well. 

Other inaccuracies are the result of bad resolution due to noise.  This is most 

noticeable when the value of KI is lower; however the root cause is not the controller 

constants.  The weak links in the system, such as the bad ADC, all contribute to a slightly 

noisy mass signal, which in turn make the mass flow curve even noisier.  The controller 

is then using this noisy mass flow curve to calculate a response.  With improved mass 

curve resolution the noise in the measured curve should be drastically improved.  Keep in 

mind, however, that some of the noise displayed in the results is simply from the DAS, 

and does not precisely reflect actual mass flow.  These difficulties have been discussed in 

the post-processing section of this report.  The moving average implemented as a filter on 

the Arduino also helps with the noisy signal. 
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The Arduino only has 10-bit ADC, which converts the analog 0-5V signal to a 

digital signal between 0 and 1023.  Since the amplifier on the load cell only reaches a 

value of .6V approximately the actual digital signal that reaches the Arduino is in the 

range of 0-130.  This is not a great deal of resolution.  In future tests it would be desirable 

to have at least a 12-bit ADC, possibly a 16-bit.  Additionally, the amplifier itself on the 

load cell is lacking.  If a true 0-5V signal could be attained then the resolution of the 

ADC would not be such a large issue. 

Although this is accounted for in the simulation, the slop in the valve stem allows 

the motor to move momentarily without affecting the system.  This causes additional 

oscillation of the motor which reduces its responsiveness.  To solve this problem the 

valve must be changed.  Most of the slop is the interface between the valve stem and the 

ball of the valve; which was not manufactured at Umaine.  The parts that were custom 

fabricated for this project had very little play. 

If the maximum possible valve angular velocity is changed in the computer model 

it is very easy to get the simulation and results to match up at any value of KI and KP.  

However, a certain angular velocity saturation does not fit all of the KI and KP values, 

therefore you can choose a value that makes the lower KI’s and KP’s match up or you 

can choose a value that makes the higher KI’s and KP’s match.  This may indicate that 

the valve is not ever able to reach its maximum angular velocity with the lower KI and 

KP values, even though the simulation predicts that the error is high enough to trigger 

max velocity.  One reason could be the noise in the signal, along with the slop in the 

drivetrain, is causing the valve to oscillate back and forth, which effectively reduces the 

max valve angular velocity.  When KP and KI are higher, they are able to override this 
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tendency to reverse direction; allowing the valve velocity to be limited by the minimum 

step size command sent to the motor driver (which is the saturation level the simulation 

takes into account).  Further investigation is required. 
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CHAPTER 9: CONCLUSION 

The results of the work done match predictions to the extent that they prove 

feasibility of the initial idea, there are is some room for improvement.  However, for a 

first pass the data and simulation were very satisfactory.  Work should be done to reduce 

noise, and improve the quality of the mass flow vs. time curve such that it doesn’t require 

such vigorous post processing. The physical build of the test apparatus held up very well, 

and the design proved to be robust and reliable, and the tank did not develop any leaks.  

The only problem with hardware was with the motor controller power supply, this burnt 

up despite being fuse protected.  It was substituted with a computer power supply which 

worked wonderfully.  There is no need to buy an expensive replacement power supply. 

Next steps after improving the mass flow resolution would be to characterize a 

fluid similar to nitrous oxide, such as liquid CO2.  Since carbon dioxide or nitrous oxide 

have a much lower vapor pressure they might flash when passing through the control 

valve which would reduce flow drastically as well as making the system nearly 

uncontrollable.  This should be tested before this flow control system is used on a rocket 

motor, a different style valve might be necessary.  However, the procedure established in 

this report should still be applicable.  Once that has been done the only step needed to 

perform thrust control on a rocket motor would be to develop the conversion between 

chamber pressure and mass flow.  This will introduce a whole other source of noise and 

error which will need to be addressed.   

One area which was not explored at all in the scope of this thesis was the 

optimization of the control system.  At this point there was not enough time to perform 

any optimization; however this would make an excellent future project.  Now that the 



 

86 

simulation is working, a genetic algorithm would be the perfect optimization scheme, 

since this is such a complex system.  A genetic algorithm would generate a large 

population of possible KI and KP combinations; run each one through the simulation to 

score their performance.  Performance would most likely be the least square evaluation 

between the reference curve and the response.  The best performing combinations or 

“individuals” would then be combined to generate new combinations or “children”.  

There would be a chance of mutation in the process of creating the children.  These new 

combinations would then be run through the simulation to be given their own score, the 

process repeats until the scores level off. 

Eventually this technology should be applied on an actual rocket engine.  With the 

development of a throttled hybrid motor it would make the creation of a reusable 

sounding rocket cheaper and more adaptable, especially for launching fragile payloads 

such as Cube Satellites. The Cube Satellite field has generated much interest in the 

smaller vehicles.  The team Ursa DeltaP sounding rocket which is being developed in 

parallel to this thesis is an excellent example.  The rocket was designed such that a hybrid 

motor could be easily retrofitted as a booster.  A maiden launch of the Delta P is 

scheduled for July 27, 2012.  For this first launch two solid propellant motors will be 

used.  The future of small LEO and suborbital launch vehicles is generally looking very 

bright.  Companies and individuals are realizing that the costs of Boeing and Lockheed 

launch vehicles (Delta II’s, Atlas, Delta IV’s, etc) are much too high and often overkill.  

With cost saving technologies expanding in the small aerospace field more individuals 

and small companies can afford to do research at high altitude and supersonic speeds.  
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 APPENDIX A: SIMULINK MODEL SCREENSHOTS 

 

 

Figure A1: Overall Block Diagram 
 

 

Figure A2: PID Controller Block 
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Figure A3: Plant Block 
 

 

Figure A4: Tank Plant Block 
 

 

Figure A5: Valve Motor Block 
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Figure A6: Signal Filtering Block 
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APPENDIX B: VF PLOT POST PROCESSING MATLAB CODE
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APPENDIX C: CONTROLLER ANALYSIS POST PROCESSING MATLAB 

CODE 
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APPENDIX D: MANUAL ARDUINO CODE 

 
This program is used to allow manual control of opening or closing the valve, and 

is the most basic of the three programs.  Understanding the way it operates, however, is 
the basis to understanding how all the other programs operate as well.  The first part of 
the code defines all the variables used throughout the code and also initializes values.  In 
the manual program all variables are either integers (int), long integers (long), and some 
of the variables have been defined as constants (const int).  Integers can store numbers 
ranging from -2^15 to ((2^15)-1).  Long integers can store numbers from -2^31 to 
((2^31)-1).  The long integers here are used to keep track of time when measured in 
micro seconds, which involve large numbers that build quickly.  The constants are used 
to define pin modes.  For example, pin 12 is defined as the pin which will output the 
motor step command. 

Next the program defines the pin modes.   
 
For example: pinMode(steppin, OUTPUT); 
  

The variable steppin has been defined as an integer constant with a value of 12, 
therefore the above line of code will tell the Arduino that pin 12 will be used as an 
output. 
 All of the above code operates in what has been defined as a “void setup” loop, 
which is a loop that only runs once; just enough to initialize all the pin modes and define 
the variables.  The next chunk of code operates in the “void loop” which runs 
indefinitely, re-executing the code until the Arduino is manually reset.  At the beginning 
of the loop the Arduino first reads in the inputs which it receives, such as the high/low 
values from the valve limit switches, as well as a small manual switch which the user can 
use to define the direction of motor travel. 

 
For example:  dirsel = digitalRead(dirselpin); 
  

This command stores the high or low signal being received at dirselpin (defined 
previously in the code as 8) into the variable dirsel.  In this case dirsel stands for direction 
select, therefore the manual direction switch is wired into the Arduino at pin 8.  Arduino 
has built in pull-up resistors, therefore if no input is provided to a pin that has been 
enabled as a digital input it will read 5V (ie “high”) by default.  If a user wishes to affect 
the input, the pin is grounded in order to pull it to 0V (ie “low”).  The manual direction 
switch and the limit switches that indicate the valve is fully open or fully closed are all 
hooked up such that when they are closed it actually provides ground to the input pins.  
This may be counter intuitive; as initially it may be thought that when closed the switches 
would be providing 5V to the input pins. 

The next part of code that operates in the “void loop” is a “while loop” which is 
used to bring the motor back to a home position when it is powered on.  The way which 
the code is setup now is such that home is defined as “valve closed”.  The Arduino knows 
that the valve has reached the closed position when the limit switch is activated and 
grounds the associated input pin on the Arduino board.  The “while loop” runs and does 
not allow the rest of the code in the “void loop” to be executed until the limit switch is 
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activated AND the manual direction switch is commanding the valve to close.  For 
example, if when the valve is powered on it’s already in the open position and the valve 
direction switch is commanding the valve to open, the Arduino will cause the motor to 
shut the valve fully (regardless of user input) and will not allow user control until the 
direction select switch is also commanding the motor to close.  This is so that when the 
code jumps out of the “while loop” the valve does not immediately start opening again.  
This is a safety precaution.  The code within the “while loop” causes the step output pin 
of the Arduino to oscillate between 0 and 5V at a steady rate and the direction pin to be 
set low (closing direction).  The method used to oscillate the step output is described 
below.   

The step pin is oscillated at a rate defined in the initialization portion of the code.  
The pin is set high or low using a small “if” statement which is shown below: 
currentMicrosStep=micros(); 
if (currentMicrosStep - previousMicrosStep > stepinterval) { 
    previousMicrosStep = currentMicrosStep; 
    if (motorstep == HIGH) 
      motorstep = LOW; 
    else 
      motorstep = HIGH; 
  } 
  
The first line assigns the current program time to the variable “currentMicroStep”.  In the 
“if” statement this current time is compared to the previous time that was stored and the 
program determines if the time elapsed has been larger than the user defined 
“stepinteval”.  If that amount of time has elapsed then the “if” statement will execute; the 
first thing done is store the current time as the previous time, that way the “if” statement 
will know what time the last motor step occurred when it returns on the next loop.  Next, 
if the step pin is currently set to “high” then the program will set it to “low”, and vise-
versa.  You can see that the “stepinterval” is actually half a period, therefore the motor 
makes one step for every two “stepinterval” increments. 

Note that the step pin is oscillating whenever the Arduino has power; the motor is 
only stopped by using the enable command on the motor controller.  For example, when 
the valve is fully open and the limit switch pulls the associated Arduino pin to 0V, the 
code sends a high signal to the enable pin which causes the motor controller to lock the 
step motor in the current position.  All the while the step pin continues to oscillate; its 
output is simply ignored. 

Very importantly there is the code which keeps the valve from going beyond 90 
degrees open and 0 degrees closed.  This is important because if the valve goes much 
further beyond these bounds it will bind.  To prevent this from happening there are the 
two limit switches that are activated by the valve stem.  As described before, whenever a 
limit switch is activated it grounds a pin on the Arduino board.  If the input pin for either 
limit switch is activated AND the current direction selection is in the direction of that 
limit switch a signal is sent to the enable port of the motor controller, causing the motor 
to lock in position.  The second condition for motor locking is important, otherwise once 
the valve hit a limit switch it would be trapped in that position.  This operation is built 
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with a single “if”, “if else”, “else” statement, and is present in both the “while loop” 
which jogs the motor home on startup as well as the user controlled section of the code. 
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APPENDIX E: SPECIFIC ANGLE ARDUINO CODE 
 

Generating the necessary information to characterize the valve is a large portion 
of this thesis work, and requires its own program.  Characterizing the valve will require 
repeated runs of the apparatus, all at different valve positions.  The valve will be held a 
constant position for the duration of a flow test, then the tank will be refilled and the 
valve brought to a different position for a new test.  The program is identical to the user 
controlled program, with the exception of the user defined direction, and an additional 
condition causes the motor to be locked in position at the desired angle instead of 
continuing until it reaches a limit switch. 

Once the valve has executed the “while loop” that brings it to the home position 
and the user has flipped the direction control switch to “open”, the Arduino begins to 
count step cycles with a simple variable that increases by one every time the step pin 
completes a cycle (ie every time the motor makes a step); an additional “if” statement 
compares the step count to the desired angle, and if the step count is greater than the 
desired angle it locks the motor position.  The user has the ability to enter the desired 
angle at the beginning of the program, and it then converted into the number of steps 
using Equation 1. 

30
8.1

×





=
θN  

Equation 1: Angle in Degree to Step Number 
 
The 1.8 pertains to the number of degrees the motor rotates for one step input, and 

the 30 represents the gear ratio between the motor and the valve stem. 
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APPENDIX F: CONTROLLER ARDUINO CODE 
 

This is the most complex of the programs, and is used to run the closed loop flow 
control.  Unlike the previous two programs, the Arduino will be looking for input from 
the load cell as well as generating output for the flow control valve.  At the heart, the step 
commands are sent in the same way as the other two programs, except that the step 
interval is variable, the same initialization sequence to bring the valve to the home 
position is also implemented.  The variable step size allows the angular velocity of the 
motor to be adjusted beyond either on/off.  The program now also receives an analog 
input from the load cell.  The Arduino then differentiates this mass measurement to get a 
mass flow reading which can be compared to the reference signal.  Depending on the 
error, an appropriate valve angular velocity is determined, which is then converted into a 
given step interval.  Since the motor controller has a minimum step interval that it can 
process there are saturation limits placed to constrain how small the step interval can be 
made. 

For the controller program there are some new variables defined, such as KI, and 
KP proportionality constants.  Another new aspect in this program is the type of 
variables.  Now that there is an analog input as well as a derivative calculation integers 
are not accurate enough; especially if the desired mass flow is only .5 or 1lbm/sec.  
Therefore the load measurements and the resulting mass flow calculations are all carried 
out with floating point numbers. 
 
For example: float previousloadval=0; 
 
 At the beginning of the “void loop” there is the same exact “while loop” which 
brings the valve to the home position.  Before the code reaches the controller portion, the 
Arduino reads in the value from the load cell using the “analogRead” command.  The 
Arduino has a 10-bit ADC (Analog to digital converter) therefore 0V corresponds to a 
value of 0, and 5V corresponds to a value of 1023.  The output from the load cell is only 
0V to .6256V; therefore the load value that the Arduino sees is 0 to 128 approximately.  
More resolution using a better ADC would be desirable, but at this point the setup is 
workable. 

                currentMicrosStep=micros(); 
    loadval = analogRead(loadpin); 
      loadvalfilt=.999*loadvalfilt+.001*loadval; 
    SAMPLEINTERVAL=ABS(CURRENTMICROSSTEP-

SAMPLEPREVIOUSMICROSSTEP); 
    SAMPLEPREVIOUSMICROSSTEP=CURRENTMICROSSTEP; 
    PREVIOUSLOADVAL=CURRENTLOADVAL; 
    CURRENTLOADVAL=1.453*LOADVALFILT; 
    MDOT=((PREVIOUSLOADVAL-

CURRENTLOADVAL)*1000000)/(SAMPLEINTERVAL); 
    ERROR=MASSDOT-MDOT; 
    ERRORINT=ERRORINT+(ERROR*SAMPLEINTERVAL/1000000); 
    INPUT=(KP*ERROR+KI*ERRORINT); 
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    STEPINTERVAL=(ABS((1000000*1.8)/((INPUT)*2*30))); 
    IF (STEPINTERVAL < STEPINTERVALMIN) { 
      STEPINTERVAL=STEPINTERVALMIN; 
    } 
 
Shown above is the portion of code that determines the step interval and motor 

direction based on the load value reading, these lines of code also determines the mass 
flow based on the derivative of the load value reading.  In other words this is the real 
heart of the program.  The other areas of the program regarding the step oscillation are all 
very similar to the other two programs and will not be covered in much detail in this 
section. 

The first thing that happens is the collection of the load reading and the 
conversion of the load cell digital reading stored in the “loadval” variable to a number 
reflecting pounds which is stored in the “currentloadval” variable.  Multiplying the digital 
signal (ie 0-1023) value by 1.453 gives the weight in pounds.  This constant is simply 
derived, as can be seen from Equation 1.  The “loadval” variable is actually filtered 
before being manipulated, since there is some noise from the 10 bit ADC.  This filtering 
is minimal and only consists of a 1000 point moving average.  This can be seen in the 
third line of code above. 

lbflbf 453.1
128

186
=  

Equation 1: Digital Output to Weight Measurement 
 
Where the 186lb is the weight of the water in the tank when full, and the 128 is the digital 
output of the load cell when the tank is full. 
 The next line is where the actual mass flow is determined by approximating the 
derivative at that moment.  This is stored in the variable “mdot”.  The 1000000 multiplier 
is because the time interval is in microseconds, and the mass flow is recorded in lbm/sec.  
Remember that “previousloadval” is the weight of water at the end of the previous 
sample interval and “currentloadval” is the weight of the water at the end of the current 
sample interval.  The time between these two samplings is, of course, the 
“sampleinterval” which is measured in microseconds. 
 Now that an actual mass flow is determined it must be compared to a reference 
value, which is stored in a variable called “massdot” (not be confused with “mdot” which 
is the actual mass flow).  Subtracting the two values gives the error value that the 
controller needs to operate.  This program does not support a differential controller, only 
proportional and integral.  The error value can be used directly for the proportional 
controller, but needs to be integrated over time in order to implement the integral 
controller.  This integrated error is called “errorint” and is found by adding the current 
error value, multiplying it by the sample interval and then adding it to the previous 
“errorint” value.  In this way the “errorint” value keeps getting overridden each time the 
error is evaluated (ie. once every “sampleinterval”).   

Alone, the error and integrated error values have little use to determine a system 
input, next they will need to be multiplied by the appropriate constants (KP and KI) 
which will determine an angular velocity of the valve.  This angular velocity then needs 
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to be translated into a step interval.  The angular velocity is stored in a variable called 
“input”.  The equation for which is below: 

 
int** errorKIerrorKPinput +=  

Equation 2: Calculating Angular Velocity 
 
This desired angular valve angular velocity must be translated into a step interval for the 
motor, if the input is small (ie a low angular velocity) then the step interval must be 
longer, higher angular velocity means a short step interval.  The derivation of the 
equation is shown below. 
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Equation 3: Determining Step Interval from Valve Angular Velocity 
 
Lastly, there are two “if” statements that determine the direction of the motor depending 
on whether the “input” (ie valve angular velocity) is positive or negative.  The limit 
switch protection is also still in place to prevent the valve from binding. 
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APPENDIX G: TECHNICAL DATA SHEETS 

Step Motor:          
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Gearbox:
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Load Cell: 
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Pressure Transducer: 
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Injector: 
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Arduino: 

Arduino Pro 

The Arduino Pro is intended for advanced users who require flexibility and low-cost. It 
comes with the minimum of components (no on-board USB or pin headers) to keep the 
cost down. It's a good choice for a board you want to leave embedded in a project. Please 
note that there are multiple variants of the board which operate at different voltages and 
clock speeds. You need to know if you have the 3.3V / 8 MHz version or the 5V / 
16 MHz version.  The board comes without built-in USB circuitry, so an off-board USB-
to-TTL serial convertor must be used to upload sketches. For the 3.3V Arduino Pro 
boards, this can be a FTDI TTL-232R-3V3 USB - TTL Level Serial Converter Cable or 
the SparkFun FTDI Basic Breakout Board (3.3V). For the 5V Arduino Pro boards, use 
a TTL-232R USB - TTL Level Serial Converter or the SparkFun FTDI Basic Breakout 
Board (5V). (You can probably also get away with using a 5V USB-to-serial convertor 
with a 3.3V board and vice-versa, but it's not recommended.) 
If using the FTDI cable on Windows, you'll need to make one configuration change to 
enable the auto-reset. With the board connected, open the Device Manager (in Control 
Panels > System > Hardware), and find the USB Serial Port under Ports. Right-click and 
select properties, then go to Port Settings > Advanced and check Set RTS on Close under 
Miscellaneous Options. 
For the 3.3V versions of the Arduino Pro, select Arduino Pro or Pro Mini (3.3V, 
8 MHz) w/ ATmega328or Arduino Pro or Pro Mini (3.3V, 8 MHz) 
w/ ATmega168 from the Tools > Board menu (depending on the microcontroller on 
your board). For the 5V versions of the Arduino Pro, select Arduino Duemilanove or 
Nano w/ ATmega328 or Arduino Diecimila, Duemilanove, or Nano w/ATmega168. 
 
 

http://www.ftdichip.com/Products/EvaluationKits/TTL-232R-3V3.htm
http://www.sparkfun.com/commerce/product_info.php?products_id=8772
http://www.ftdichip.com/Products/EvaluationKits/TTL-232R.htm
http://www.sparkfun.com/commerce/product_info.php?products_id=9115
http://www.sparkfun.com/commerce/product_info.php?products_id=9115
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An Arduino Pro connected to (and powered by) an FTDI USB - TTL Level Serial 
Converter Cable. The green and yellow wires align with the words "green" and 
"yellow" written underneath the pins. 
 
 

 
The Arduino Pro connected to (and powered by) a SparkFun FTDI Basic Breakout 
Board (prototype version) and USB Mini-B cable. 
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The external USB-to-TTL serial convertor will power the Arduino Pro, regardless of the 
position of the switch. To use the board standalone, with no connection to a computer, it 
can be be powered by a battery or an external power supply (wall wart). You can solder 
the + and - wires of a battery connector to the corresponding holes on the board. For the 
3.3V boards, you can connect a LiPo battery (with JST connector) to the JST jack. 
Alternatively, solder a DC power jack into the three large holes on the board, and connect 
a DC power supply (center positive). When the switch is in the "Batt" position, the board 
will draw power from an attached battery; when it is in the "Ext." position, power comes 
from an external power supply. In either position, the board can be powered by the 6-pin 
USB header. 
 
 

 
A 3.3V Arduino Pro powered by a 2000 mAh LiPo battery from SparkFun. 
 
Any standard 0.1" spaced header can be soldered to the holes on the Arduino Pro. To use 
every pin requires two 6-pin header and two 8-pin headers. Bare wire can also be 
soldered directly to the holes. Note that the header spacing is compatible with Arduino 
shields. 
The text of the Arduino getting started guide is licensed under a Creative Commons 
Attribution-ShareAlike 3.0 License. Code samples in the guide are released into the 
public domain. 
 

 

https://www.sparkfun.com/commerce/product_info.php?products_id=8483
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
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Step Motor Controller: 
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Step Motor Power Supply: 
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DAQ Power Supply 
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Flow Control Valv
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NI 9219: 
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NI 9205: 
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APPENDIX H: DESIGN SUMMARY OF A POSSIBLE HYBRID MOTOR 
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Variable Definitions 

 

Introduction 
 
This report gives an overview of the proposed Q4200 hybrid rocket motor for 

team Ursa’s Delta P sounding rocket as the design currently stands.  It also reviews how 
these designs were developed.  The honors thesis scope is the beginning of the work to 
validate this design, and including this appendix that details the design of an actual motor 
gives the rest of the thesis a better sense of relevance and perspective.   

The general design scheme of this particular motor is to use self-pressurizing 
nitrous oxide fed into a combustion chamber containing paraffin wax.  All simulation of 
motor performance has been done from scratch in MATLAB, with the exception of C* 
and chamber temperature calculations.  These have been computed using John 
Wickman’s CHEM program.  A combustion efficiency of 90% has been assumed.  
Details regarding fuel regression rate, efficiencies, L* computations, and similar 
combustion parameters are all detailed in this report.  What may be the most difficult part 
of the motor design is the implementation of the thrust control system which is discussed 
in the thesis. 

Physically, the motor is constructed of extruded aluminum 6061-T6 tubing.  The 
nitrous oxide tank would be used as the airframe of the rocket booster section.  Rough 
calculations show that the current oxidizer tank has ample factor of safety to be used as a 
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structural component.  The combustion chamber is a separate pressure vessel from the 
oxidizer tank.  The tank end closers are flat plates of aluminum with double O-ring seals.  
Detailed finite element analysis has been completed on these pieces.  The bulkheads are 
held within the tubing via spiral snap rings.  The nozzle will be canvas phenolic with a 
graphite throat insert. 

Propellants 
  
The choice of propellants, nitrous oxide and paraffin should be justifiable.  They 

are becoming a more and more common combination of propellants, for several reasons.  
Mainly, because nitrous oxide is self-pressurizing and paraffin has an extremely high 
regression rate.  Similar regression rates can’t be achieved with HTPB, especially without 
lots of experience and plenty of additives. 

Nitrous Oxide 
 
Nitrous oxide was the choice oxidizer simply because handling a cryogenic fluid 

such as liquid oxygen is beyond our ability at this time.  In the future liquid oxygen may 
become a high specific impulse option, but with short development times it is not 
practical.  In addition, handling liquid oxygen on the launch site is impractical for our 
budget.  Curve fit data for many thermodynamic properties are shown in “Thermo-
physical Properties of Nitrous Oxide” published by IHS.  Secondly, nitrous oxide is self-
pressurizing.  The original plan was to have onboard pressure tank that would maintain 
1200psi in the main oxidizer tanks; this did boost the specific impulse up to about 260sec.  
However, the system added a hefty 40lbs to the total motor weight.  The efficiency gain 
was not enough to outweigh the loss in thrust to weight ratio (in our case).  Without the 
pressure system, max specific impulse dropped to the 220-230sec range.  In this scenario 
the nitrous oxide tank pressure is in the 750-850psi range, depending on the ambient 
temperature.  Exact nitrous pressures are predicted on the in the motor simulation as a 
function of time.  Without the space being taken up by the nitrogen pressure tanks an 
additional 30% nitrous oxide could also be carried. 

A main disadvantage to the nitrous oxide is the high oxidizer to fuel ratio 
required.  This will be discussed later.  A main misconception is that the only energy 
released is from the fuel being oxidized by the oxygen content in the nitrous oxide.  In 
fact, a larger proportion of the total energy is from the nitrous oxide decomposing.  All of 
this was taken into account by CP technology’s CHEM program.  Once this extra energy 
is taken into account, the performance of nitrous oxide is not all that bad. 

To get thermodynamic properties of the saturated nitrous oxide, curve fits derived 
in the paper “Thermo-physical Properties of Nitrous Oxide” published by HIS were 
used.  The equations are given below, and the referenced constants are in table 1. 

 
 



141 

 

 
Equation 1: Vapor pressure 

 

 
Equation 2: Density of the saturated liquid 

 

 
Equation 3: Density of the saturated gas 

 

 
Equation 4: Specific enthalpy of the saturated liquid 

 

 
Equation 5: Specific enthalpy of the saturated gas 

 
Equation 6: Constant pressure specific heat of saturated liquid 

 

 
Equation 7: Constant pressure specific heat of the saturated gas 

 
 
 
Tr, and Pr represents the reduced temperature and pressure of the saturated 

nitrous, where the critical pressure and critical temperature are as follows: 
 
Critical Temperature: 309.57 K 
Critical Pressure: 7251. kPa 
Critical Density: 452. kg/m3 
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Table 1: Constants used in above equations 
Property b1 b2 b3 b4 b5 Range of 

Applicability 
Vapor 
Pressure 

-6.719 1.360 -1.378 -4.051  -90C-36C 

Liquid 
Density 

1.723 -0.840 0.511 -0.104  -90C-36C 

Vapor 
Density 

-1.009 -6.288 7.503 -7.905 629 -90C-36C 

Liquid 
Enthalpy 

-200 116.043 -917.225 794.779 -589.587 -90C-36C 

Vapor 
Enthalpy 

-200 440.055 -459.701 434.081 -485.338 -90C-36C 

Liquid 
Specific Heat 

2.500 .023 -3.801 13.095 -14.518 -90C-36C 

Vapor 
Specific Heat 

132.632 .052 -.365 -1.202 .536 -90C-36C 

 

Paraffin 
 
Paraffin is a little harder to justify, as it would be just as easy to fabricate a fuel 

grain from HTPB or HDPE.  The appeal was the ability to get a high regression rate with 
decent specific impulse.  The addition of metal to a HTPB and HDPE grain increases 
their regression rate, never to the level of carefully formulated paraffin, but the specific 
impulse reduces since metal increases the molecular weight of the gasses.  High gas 
velocity in the nozzle and low gas density is more efficient than high mass density and 
lower velocity. 

If you can get the paraffin to burn efficiently an increase of roughly 180% in 
regression rate can be realized over HTPB.  This is using just raw, unmixed, versions of 
paraffin and HTPB; no metalizers or other additives.  This is according to AIAA 2011-
5680, “ballistic and rheological characterization of paraffin fuels” by L.Galfetti.  Other 
AIAA papers show similar results, but this is the best source I’ve found. 

Having this high regression rate means that for an equivalent mass flow of fuel 
you can have a much shorter fuel grain.  Since the needed nitrous oxide volume requires 
a fairly large diameter tank unless an excessively long rocket is to be built; a short squat 
fuel grain uses the space much more effectively.  Another nice thing about paraffin is that 
the exponent in the regression rate formula (regression rate=a*Gox^n) is nearly .5, even a 
little bit lower.  This means that the mass flow of oxidizer goes up as the fuel port 
diameter increases, or at least stays the same.  For HTPB and HTPE, even with additives, 
the exponent is in the .6 to .7 range; which means the fuel mass flow takes a nose dive 
with an increasing fuel port radius.  This makes these fuels ill-suited for the short stubby 
grain configuration.  Exact fuel properties used in simulation are shown in Table 2.  The 
regression rate information shown is from several hybrid experiments from Stanford, 
shown in their paper: “Design and Development of a 100km Nitrous Oxide/Paraffin 
Hybrid Rocket Vehicle.”   Additional regression rate information is detailed in the paper: 
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AIAA 2009-5113 “Effect of a Diaphragm on Performance and Fuel Regression of a 
Laboratory Scale Hybrid Rocket Motor Using Nitrous Oxide and Paraffin” by Matthias 
Grosse. 

Of course, it can’t be all good news.  Mixing of paraffin and nitrous oxide has 
been difficult, often resulting in low C* efficiencies.  This problem is discussed in AIAA 
2009-5113 “Effect of a Diaphragm on Performance and Fuel Regression of a Laboratory 
Scale Hybrid Rocket Motor Using Nitrous Oxide and Paraffin” by Matthias Grosse.  He 
reports a C* efficiency of 86.7% with an L* value of .4m, by modification using 
diaphragms within the combustion chamber he was able to achieve 96.6% efficiency.  
We do not have the time to develop such a device. Our motor luckily has a much higher 
L* value.  The exact behavior of our hybrids L* curve is discussed in the results section.  
An optimistic 90% C* efficiency is being used in the simulations.  A concern is that a 
short, high volume combustion chamber that has the same L* as a long narrow one will 
not result in an equivalent effect on mixing efficiency.  The short wide geometry of our 
chamber remains a major question, even though our L* values are high (upwards of 
1.5m).  L* is defined as the volume of the combustion chamber divided by the area of the 
throat. 

  
The regression rate formula that was used is shown below, Equation 8.  The 

source of the values for the coefficient and exponent were taken from AIAA paper: 
“Effect of a Diaphragm on Performance and Fuel Regression of a Laboratory Scale 
Hybrid Rocket Motor Using Nitrous Oxide and Paraffin” by Matthias Grosse. 
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dt
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Equation 8: Fuel regression rate, where Gox is the oxidizer flux in g/cm^2*s 
  

Stoichiometric Oxidizer to Fuel Ratios 
 
The exact variety of paraffin has not been decided yet.  A microcrystalline 

structure would be most desirable, in order to keep shrinkage to a minimum, however a 
cheap and accessible paraffinic wax sources has presented itself to our team.  The carbon 
chain length has very little effect on stoichiometric mixture ratio.  Therefore, a simulation 
could be built and optimized without knowing exact paraffin variety.  Below is the 
stoichiometric fuel ratio for a 30 carbon paraffin chain. 
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Now looking at a 40 carbon paraffin chain: 
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As you can see, the difference is practically negligible. 
 
Many properties in the combustion chamber obviously depend on the oxidizer to 

fuel ratio.  Using the CHEM program flame temperature curves, C* curves, and gamma 
curves as a function of oxidizer to fuel ratio were found.  Figure 1 shows gamma as a 
curves as a function of oxidizer to fuel ratio were established.  Figure 1 shows gamma of 
the combustion gasses, Figure 2 shows the adiabatic flame temperature, and Figure 3 
shows the C* curve. 
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Figure 1: Gamma as a function of oxidizer to fuel ratio, generated by CP Technology's CHEM 
program 

 
Figure 2: Adiabatic flame temperature as a function of oxidizer to fuel ratio, generated by CP 
Technology's CHEM program 
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Figure 3: Characteristic velocity as a functon of oxidizer to fuel ratio, generated by CP Technology's 
CHEM program 

 

Simulating the Motor Performance 
 
Knowing approximately how well the motor will perform before building is 

absolutely critical.  For the purpose of having a full understanding the thermo and physics 
behind the motor, a scratch built program was used; this was coded into MATLAB.  By 
using our own program made adapting it to specific design subtleties much easier.  There 
are four main components of the simulation, the drainage of the nitrous oxide tank; the 
combustion chamber behavior; the predicted mass flow of nitrous oxide from the oxidizer 
tank to the combustion chamber; and the control of the main oxidizer valve position.  The 
valve control system is, of course, the subject of the main report, and will only be lightly 
touched upon in this report.  Just about all the derivations in the following sections are 
pulled from Sutton’s “Rocket Propulsion Elements.”  Figure 4 shows a very basic block 
diagram of the simulation process.     
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Determining Nozzle Geometry 
 
Before either the combustion chamber or oxidizer tank behavior can be modeled 

accurately we must know the nozzle geometry.  This mainly means finding the expansion 
ratio based on the average chamber pressure and a chosen atmospheric pressure.  The 
average chamber pressure and operating atmospheric pressure are chosen before the 
simulation is run, and then the expansion ratio can be calculated as a constant to be used 
in the rest of the code.  Throat diameter is guessed, and then the simulation is run to see 
resulting chamber pressure.  If the pressure is too high then the throat diameter is slightly 
increased and the simulation is run again.  Therefore through a short iterative process a 
desirable throat diameter can be found. 

 
To find the expansion ratio: 
 

Oxidizer 
Mass Flow: 

Determine 
oxidizer mass flow 
based on pressure 
difference between 

combustion chamber 
and oxidizer tank as 
well as the oxidizer 

  

Oxidizer 
Tank Simulation: 

Determine 
oxidizer tank pressure 

based on the 
previous mass flows 

out  

Combustio
n Chamber 
Simulation: 

Combustio
n chamber pressure 

and thrust 
predictions, based on 
oxidizer mass flow in 

Controller: 
Adjust 

oxidizer control valve 
based on whether the 
chamber pressure is 

higher or lower than a 
reference 

Figure 4: Overall simulation flow chart 
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RTPv =  
Equation 9: Ideal gas law 
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Equation 10: Isentropic expansion 
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Equation 11: Changes in enthalpy through the isentropic expansion 
 

kRTa =  
Equation 12: Speed of sound 

 

kRT
VM =  

Equation 13: Mach number 
 
If Equations 9, 10, and 11 are combined and you define x=1 as the state within the 

combustion chamber, and y=2 as the state at the exit cone of the nozzle.  The velocity in 
the combustion chamber is considered negligible and is not considered.  You get 
Equation 14, relating velocity at the exit cone to chamber pressure, atmospheric pressure, 
and chamber temperature. 
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Equation 14: Gas velocity at the exit cone of the nozzle 
Combining Equation 11 with Equation 14, and 13 you can find the expansion 

ratio as function of the chamber pressure and atmospheric pressure. 
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Equation 15: Expansion ratio 
 
When a new throat area is chosen before a simulation run the area of the exit cone 

can be determined, which is needed to get the velocity at that exit plane.  The above 
expansion ratio is only a function of the atmospheric pressure where the nozzle exhausts, 
and the combustion chamber pressure.  Therefore, the nozzle is only optimized at that 
particular chamber/atmospheric pressure combination; so the average values of those 
pressures were used.  At launch the nozzle will be over expanded, and at full altitude it 
will be under expanded. 
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Combustion Chamber Modeling 
 
The modeling of the combustion chamber all starts with a known mass flow of 

nitrous oxide.  This mass flow stays constant for a single small time step before it is 
recalculated based on a new pressure drop between the nitrous oxide tank and the 
combustion chamber.  The entire motor simulation uses a loop which steps through the 
simulation duration by small delta times.  To explain the modeling of the combustion 
chamber this section will walk through all the steps in one time loop, these steps start 
with the above mentioned mass flow of nitrous oxide.  At the start of each loop there are 
several pieces of information that are known: 

 
• Current fuel port bore diameter.  For the first time step this is simply the initial 

bore diameter, for subsequent time steps the diameter is simply assigned as the 
diameter at the previous time step. 

• Oxidizer mass flow.  For the first time step this is said to be zero, however, since 
the initial pressure in the nitrous oxide tank is quite high a new non-zero mass 
flow is computed at the next time step; and away you go.  A new oxidizer mass 
flow is computed each time step using the difference between combustion 
chamber pressure and nitrous oxide tank pressure along with the position of the 
oxidizer control valve. 

• Motor geometry.  For now, the simplification that motor geometry does not 
change throughout the burn has been made.  In other words the nozzle throat does 
not erode.  See the previous section regarding nozzle geometry calculations. 

 
To make the process easier to visualize the combustion chamber analysis will be 

broken into a series of steps. 
 

1. Calculate the area of the fuel port using the known port radius at the beginning of 
the time step 

2. Calculate the flux of oxidizer down the fuel port using the area of the port and the 
known oxidizer mass flow 

3. Use the regression rate formula presented in the propellants section of this report 
to calculate the current regression rate of the fuel grain. 

4. Calculate the new fuel port radius using the newly found regression rate; this 
value will be used in the next time step to calculate the oxidizer mass flux. 

5. By knowing the regression rate, the length of the time step and the current fuel 
port radius a fuel mass flow during the current time step can be computed. 

6. Oxidizer to fuel ratio and total mass flow can then be easily found since the 
oxidizer mass flow is known and the fuel mass flow is known. 

7. Using the curve fits shown in Figure 1,2, and 3 along with the newly found 
oxidizer to fuel ratio a C* value; flame temperature (assumed to be the 
combustion chamber temperature); and current gamma values for this time 
iteration can be found. 

8. The C* from the curve fit is the value if the motor was burning at 100% 
efficiency.  To correct this, the curved fitted C* is multiplied by the assumed 
efficiency of 90%. 
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9. Using Equation 16 and the corrected C* value the chamber pressure can be found. 
 

m
AP

C t


1* =  

Equation 16: Characteristic velocity defined 
 

10. Using Equation 14 the velocity at the exit cone of the nozzle can be found. 
11. Thrust as a function of total mass flow and nozzle exit cone velocity is computed 

using Equation 17.  This neglects pressure thrust. 
 

2VmF =  
Equation 17: Thrust 

 
12. Calculate specific impulse, for interest only, using equation 18. 
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Equation 18: Specific impulse 
 

13. Calculate the characteristic length using equation 19 as a function of total 
combustion chamber volume and nozzle throat area.  V-post is the volume of the 
combustion chamber beyond the end of the fuel grain. 
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Equation 19: Characteristic length 
 

14. Keep track of total fuel and oxidizer burned as well as the total impulse. 

Oxidizer Tank Modeling 
 
Like the combustion chamber, the simulation of the oxidizer tank depends on a 

constant oxidizer mass flow which is sustained for the duration of a small time step.  As 
mentioned, a new oxidizer mass flow is computed after each time step based on the 
pressure drop between the oxidizer tank and the combustion chamber as well as the 
current position of the oxidizer control valve.  The important parameters that need to be 
solved for at each time step are the nitrous oxide tank pressure and nitrous oxide density.  
There are two regimes of oxidizer tank modeling, one when there is still liquid in the 
tank, and a second regime once all the liquid has drained from the tank and only gas is 
flowing into the combustion chamber.  I have used a similar method to what is shown in 
“Modeling the Nitrous Run Tank Emptying” by Aspire Space.  However, some aspects of 
their methods seemed a little numerically unstable, so Dr. Boyle from the University of 
Maine assisted in coming up with a new routine; which is based on the above paper, but 
very different in some ways.  In the MATLAB script there is an “if” statement that 
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Mass 

  

 

switches the simulation from liquid flow to gas flow once all of the liquid is expelled 
from the tank. 

Liquid Emptying Regime 
 
While liquid remains in the tank the nitrous 

oxide is saturated.  There are a couple of really good 
curve fit regimes for nitrous oxide.  Which were 
presented in Equations 1-7 along with Table 1.  
There are curves for the vapor pressure, saturated 
liquid density, saturated vapor density, enthalpy of 
the saturated liquid, enthalpy of the saturated vapor, 
and several other properties; all as a function of 
temperature.  The basic strategy to solve for the 
nitrous oxide pressure and density over time is to 
take a first law analysis of the entire tank; the control 
volume used is shown in Figure 5. 

 
Let  

TTT vapliq ==  
Equation 20 

  
 
Write the first law:  
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Equation 21 
 
Work and heat transfer go to zero and the 

integrals can be shown as: 
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Equation 22 
 
Break up the total internal energy within the control volume as such: 
 

vapliqVC UUU +=..  
Equation 23 
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Figure 5: Control volume used in tank 
drainage analysis 
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Breaking each of the partials on the RHS of Equation 24 down and then insert 
into equation 22 results in Equation 25:  
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Equation 25 
 
This equation relies on a differential time step, whereas the simulation uses a 

finite time step.  Equation 17 can be written to use a finite step. 
 

ll
vv

v
vv

v
ll

l
ll

l mh
t
mmu

t
uum

t
mmu

t
uum ′+

∆
′−′′′+

∆
′−′′′+

∆
′−′′′+

∆
′−′′′=0  

Equation 26 
 
All variables in equation 26 are known, a double prime indicates the new value, 

and a single prime indicates the value at the current step.  All the single prime values are 
the double prime values from the last iteration, so those are known.  If you take a small 
temperature step then you can find all the new values for specific internal energy and 
enthalpy.  However, there is no way of knowing how long it took to take that small 
temperature step, so the new masses of vapor and liquid are not known; since their values 
depend on time due to the mass flow out of the vessel.  In addition, some of the liquid 
evaporates to maintain vapor pressure.  There is an additional piece of information 
needed, which are Equations 27, 28 and 29. 
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Equation 27 
 

tmmm TotalTotal ∆−′=′′   
Equation 28 

 
lTotalv mmm ′′−′′=′′  

Equation 29 
 
Now the only unknown value after combining Equations 26, 27, 28 and 29 is the 

time step; which can be algebraically solved for, albeit messy.  In fact it’s so messy the 
algebra was performed in MatchCad and then inserted into the MATLAB code.  There is 
one last problem; we now know the time it takes for a finite temperature change.  
However, the loop works on a fixed time step, not a fixed temperature step.  A 
temperature at a finite time step can be approximated via interpolation, see Figure 6.  
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By repeating the process and using the double prime values as the single prime 

values during the next time step, the pressure, density, and any other thermodynamic 
property can be plotted through time. 

Gas Emptying Regime 
 
The gas phase of the tank emptying was modeled as an ideal gas that is corrected 

using a compressibility factor.  The compressibility factor diagram is shown in Figure 7.  
The ideal gas law including a compressibility factor is shown in Equation 30. 

 
RTZP ρ=  

Equation 30: Ideal gas law including compressibility 
 
 
 
 
 
 
 

 

    

 

 

 

Figure 6: Interpolation to find temperature at a discrete time increment 
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Figure 7: Compressibility factor for nitrous oxide 
 

According to “Modeling the Nitrous Run Tank Emptying” by Aspire Space (who have 
published their simulation results compared to test data) the properties of nitrous oxide 
follow a line drawn from the critical point to the pressure=0, z=1 point.  Since there has 
been luck using the compressibility factor in the past simulations I figured that it 
wouldn’t hurt to keep using it.  The expansion is considered isentropic.  The general 
process of simulation is as follows: 

 
1. The first time the gaseous regime is initiated is when the mass of the liquid 

nitrous reaches zero. 
2. The current and future mass of nitrous in the tank is known by integrating the 

nitrous oxide mass flow. 
3. By looking at equation 10 and substituting Equation 30 for the density ratio on the 

RHS you can derive Equation 32.  Equation 31 is simply found by determining 
the temperature ratio in terms of Equation 30 and setting density equal to tank 
volume divided by mass. 
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Equation 32 
 
Equation 32 relates the initial and final temperatures to initial and final 

compressibility factors as well as to initial and final masses. 
 

4. Equation 32 is all well and good, but the final compressibility factor is unknown 
because it relies on final pressure, which in turn depends on final temperature.  To 
solve this problem a converging sub-loop be used.  To do this we need another 
equation that relates mass and compressibility factor purely to pressure without a 
direct dependence on temperature.  This is achieved by setting equation 31 and 32 
equal to each other. 
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Equation 33 
 

5. The sub-loop then behaves as such: 
a. Guess final Z 
b. Find the final temperature using Equation 32, the initial Z is known from 

the previous time step, the final mass is known from the mass flow and 
step duration, the initial mass is known from the last time step, and the 
initial temperature is known from the previous time step.  The equation 
also uses the guessed Z2 value. 

c. Using this new temperature compute the final pressure using Equation 31. 
d. Based on this final pressure find a new final Z using Equation 33. 
e. Find a new final temperature using this newly computed Z value.  If this 

new final temperature is different from the final temperature found with 
the guessed Z then adjust Z and start again.  Repeat until a Z value is 
converged upon. 

6. Once the final Z is found the tank pressure and oxidizer density can be found, 
which is what’s needed from the oxidizer tank simulation. 
 
As explained earlier, the general modeling scheme used was originally taken from 

the paper: “Modeling the Nitrous Run Tank Emptying” by Aspire Space.  My numbers 
seem to match up to theirs fairly well, and they have had good luck matching simulation 
results to test results; which can be seen in Figure 8 which is data supplied in the above 
report. 
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Figure 8: Comparison of nitrous oxide drainage simulations to real data 

 

Mass Flow between Oxidizer Tank and Combustion Chamber Modeling  
  
This step determines the oxidizer mass flow into the combustion chamber based 

on the pressure drop and oxidizer control valve position.  This is covered in more detail 
within the main report, but is mentioned here for the sake of a complete report.  There are 
several factors in the flow path of the nitrous oxide that prevent the mass flow from being 
infinite for a given pressure drop. 

• Losses in pipe leading to oxidizer control valve 
• Losses in the control valve itself, this is a function of valve position 
• Losses in pipe leading to the injector 
• Losses in the injector 

As explained in the main report in more detail, you can use the pressure drop 
between oxidizer tank and combustion chamber; a valve position; loss coefficients of the 
tubing and injector; and a VF surface to predict the mass flow of oxidizer through the 
injector system.   

Thrust Control 
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The last portion of the simulation is the thrust control system, which determines 
the valve position.  This much like the control system used in the main portion of the 
thesis, but instead of just controlling the mass flow of oxidizer the thrust of the motor is 
controlled.  As can be seen from earlier in this appendix, the thrust is primarily a function 
of oxidizer mass flow.  Therefore controlling the thrust is similar to controlling the mass 
flow.  When in flight the controller will only know the combustion chamber pressure, 
which is a function of oxidizer mass flow.  The next step is to convert the chamber 
pressure into a thrust measurement.   Figure 9 shows the block diagram for the control 
system. 

 
 

 
One tricky part of the control system is to take the measurable chamber pressure 

and convert that to the equivalent thrust.  When the motor is on the rocket the control 
system will not be able to measure thrust directly.  The problem lies in the fact that thrust 
depends on several variables besides chamber pressure.  Mass flow was known in the 
simulation, based on regression rate and a few other things, but the controller will not 
have access to either of these numbers.  There is a way of getting the total mass flow 
indirectly as a function of chamber temperature and pressure.  Sutton presents an 
equation for finding the total mass flow. 
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Equation 34: Mass flow from pressure and temperature 
  

Figure 9: Control system block diagram 
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Equation 34 is equation 3.24 in Sutton’s Propulsion Elements. 
 
If we review Equation 14: 
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nozzle 
 
Now both components of thrust are known so that we can write the momentum 

thrust as:  
 

2VmF =   Eq. 17 (Repeated) 
 
By inserting equations 14 and 34 into equation 17 you can find momentum thrust, 

which is what the controller will compare to a reference thrust.  However, you can 
quickly see that there are chamber temperature terms in the expression as well.  
Temperature cannot be easily measured, but luckily both functions are more strongly 
related to P than T.  For the sake of the controller we assumed that T was some 
reasonable average value throughout the operating cycle of the engine.  That means all 
the terms in Equations 14 and 34 are constant except for P.  Equation 14 could be now 
thought of as Equation 36, and Equation 35 could now be thought of as Equation 37. 
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Equation 35: Equation 14 re-written 

 
D and B are constants. 
 
 ( )1* PQm =  

Equation 36: Equation 34 re-written 
 
Q is a constant. 
 
If you combine Equations 17, 35, and 36 you get what is shown as the “P to F 

conversion” in Figure 9.  This conversion from pressure to thrust would be handled 
within the Arduino before the PID controller is applied. 
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Equation 37: Simplified thrust equation 

 
Throughout the static firing process the values of D, B and Q can be fine-tuned to 

reflect actual motor behavior.  
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Simulation Results 
  
At this point in time none of the geometry factors have been overly scrutinized, 

beyond several iterations of hand adjustment to find parameters that seem to work well.  
Some of the general considerations have been: the need for a large L* to keep mixing 
good; nozzle geometry that creates an optimal and safe pressure drop; fuel port diameter 
that keeps the fuel grain from being over-burnt, resulting in a chamber hotspot; and of 
course, designing the motor to produce about 125,000Ns of impulse and a 2500lbf max 
thrust.  All the results use the regression data presented earlier in the report; and motor 
geometry shown in table 2. 

 
Table 2: Constants and Initial Values used in the Simulations 

Description Value Unit 
Simulation Duration 20 Sec 
Simulation Time Step .01 Sec 
Gravity 9.807 m/s^2 
Fuel Grain Length .4 m 
Initial Fuel Port Radius .05 M 
Nozzle Throat Area .005 m^2 
Nozzle Expansion Ratio 4  
Nitrous Tank % Ullage 5 % 
C* Efficiency 90 % 
Initial Nitrous Oxide Temperature 293 K 
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Figure 10: Motor simulation with no controller 
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Figure 10 contains the plots from a simulation run where the there was no 
controller used, the valve was set to fully open (90 deg) and left there.  This gives a good 
idea of the motor’s natural behavior and also ensures that the pressure differential 
between the combustion chamber and oxidizer tank won’t get too small, resulting in the 
risk of backflow from the combustion chamber.  All the initial values in Table 2 are valid, 
as well as the regression data earlier in the report.  The plots include: chamber pressure, 
oxidizer pressure, pressure drop between the oxidizer tank and combustion chamber, 
chamber temperature, thrust, specific impulse, total accumulated impulse, characteristic 
length, grain port radius, regression rate, nitrous oxide mass flow into the combustion 
chamber, fuel mass flow off the paraffin fuel grain, oxidizer to fuel ratio, accumulated 
propellant mass burned, remaining nitrous oxide in run tank, oxidizer tank temperature, 
and feed nitrous density.  

Figure 11 contains the plots from a controlled simulation.  All of the same data is 
presented along with a couple of new plots.  One is the valve position rate, which is the 
speed at which the valve is changing, and the other is the current valve position.  The 
thrust plot also now has a second curve on it which represents a desired thrust profile.  
This profile is simply a preliminary design which came from the other members of the 
team.  Everything simulates fine, except at the end the motor runs out of nitrous and isn’t 
able to quite match the last portion of the curve.  You can also notice that there are 
saturation points on the control system, one is the max valve position rate, and the others 
are the max valve positions.  Based on max motor rpm the maximum valve position rate 
was set to 100deg/sec; of course the min and max valve positions are simply open (90 
deg) and closed (0 deg).  For both tests the initial port radius has been set such that there 
is approximately a half an inch of remaining paraffin lining the combustion chamber 
when the firing is complete, this will act as a heat insulator.  There is also a phenolic 
lining around the fuel grain for additional protection. 
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Figure 11: Motor simulation data with a controller 
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Hybrid Motor Physical Design 
Of course MATALB is all well and good, but the physical design is just as 

important. This document is only concerned with the motor design it does not cover how 
the motor is mounted within the rocket airframe, or the testing platform; what is worth 
noting, however, is that no thrust is transmitted through the valve and tubing between the 
oxidizer tank and combustion chamber.  This is simply a proposed design and requires 
further development.  Before such a large motor is manufactured it would also be 
practical to build several smaller motors and attempt to control them. 

As a general overview, the oxidizer tank and the combustion chamber will be 
formed from aluminum.  End closers will be flat aluminum plate held in the tubing with 
internal snap rings.  There will be a small pre and post combustion chamber area in the 
motor which will be insulated with a thick layer of canvas phenolic.  The nozzle will also 
be canvas phenolic with a small graphite insert in the throat.  The fuel grain will have 
roughly .5in of remaining material at the end of the burn, but this can be adjusted by 
changing the initial port radius.  The fuel grain will also be cast in a thin walled phenolic 
tube.  A concern is the paraffin slumping away from the combustion chamber walls near 
the end of the burn since the test motor will be horizontal; a possible solution may lay in 
the design of the fuel grain insulator.  If it is constructed in such a way as to give the 
grain something to latch onto it could support the grain walls near the end of the burn 
when they are getting thin. 

The injector is a radially arranged 12 port, 35deg spray angle, full cone, atomizing 
injector designed and built by BETE spraying systems.  Based on the flow characterizing 
done by BETE it will be able to handle the required oxidizer mass flow.  The oxidizer 
control valve is simply a Swagelok ½” stainless ball valve, activated by a NEMA 17 step 
motor which is run through a 30:1 reducing gearbox.  The step motor is run by an Omega 
Engineering 2035 motor controller; which in turn gets the direction, enable, and step 
commands from an Arduino-Pro microcontroller.  This is the part of the design that was 
tested in the thesis, of course.  It is covered in detail in the main report and therefore will 
not be repeated here. 

Figure 11 shows an overall picture of the motor and its components, more detailed 
sections are to follow.  Appendix I displays technical drawings of the entire hybrid motor. 
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Figure 12: Rendering and description of possible motor design 
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Oxidizer Tank 
 
The oxidizer tank design is the same as what is presented in the main thesis, and 

will not be repeated here. 

Combustion Chamber 
The combustion chamber will generally see lower pressures than the oxidizer 

tank; however, it will also see more pressure spikes and unpredictable behavior.  
Therefore it was also designed to withstand 1000psi, and all factors of safety are based on 
that pressure.  Again, the combustion chamber was designed to fail axially.  The radial 
factor of safety is 3.61, and a minimum factor of safety due to snap ring groove failure is 
1.98.  Appendix D presents the strength checks performed on the combustion chamber. 

Combustion Chamber Casing 
  
Like the oxidizer tank, the combustion chamber casing is formed from extruded 

6061-T6 aluminum.  For size reasons 8” pipe was selected, which has an OD of 8.625in 
and a wall thickness of .3125”; the combustion chamber could have been used as the 
airframe of the rocket as well but it lies in the area where fins would have to be welded to 
the rocket body.  Since welding directly to the combustion chamber would make the 
temper unknown we decided to avoid this situation by making the combustion chamber 
fit within the airframe.  The thrust from the motor is transmitted to the rocket body by an 
external snap ring.  Figure 13 shows the nozzle end of the combustion chamber and 
points out some of the important design aspects. 

 
Figure 13: Rendering of combustion chamber nozzle end 

1) Groove for 
external snap 
ring 

2) Nozzle 
retaining ring 
groove 
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Nozzle and Post Combustion Chamber 
 
The nozzle and post combustion chamber is built from a combination of canvas 

phenolic and graphite.  The nozzle throat is machined from graphite and will be bonded 
to the outer portion of the phenolic nozzle using RTV red high temperature silicon.  This 
construction was used to limit the heat conduction from the nozzle throat to the aluminum 
combustion chamber. It also helps reduce the temperature gradients in the graphite which 
could lead to fracture.  The other component is the insulator for the post combustion 
chamber, since something is needed to keep the flame from coming in direct contact with 
the aluminum combustion chamber.  This insulator was simply going to be machined 
from canvas phenolic, and is made separate from the nozzle so that it can be easily 
replaced after each burn.  Figure 14 displays a rendering of this region of the combustion 
chamber. 

 

 
Figure 14: Rendering of nozzle and post combustion chamber 

1) Outer nozzle shell 
(canvas phenolic) 

2) Nozzle throat insert 
(graphite) 

3) Nozzle retaining ring 
4) Nozzle load distribution 

ring 
5) Post combustion 

chamber insulator 
6) Lap joints to discourage 

hot gas propagation 
7) Viton O-rings 
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Combustion Chamber Upper Bulkhead 
 
The upper bulkhead of the combustion chamber is very similar to the bulkheads 

on the oxidizer tank, no FEA results are included with this report but the bulkhead has 
been shown to be adequate.  Figure 15 shows a rendering of the bulkhead, the major 
difference is the female threaded section where the injector is mounted.  Like the oxidizer 
tank bulkheads the combustion chamber bulkheads are made from 6061 T6 1” thick plate. 

 

 
Figure 15: Combustion chamber injector bulkhead 

 
Combustion Chamber Bulkhead, looking at it from the nozzle end of the motor 
 

1) Male 1” NPT connection for the injector 
2) Combustion chamber pressure transducer ¼” NPT port 
3) O-ring grooves 
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APPENDIX I: TEST SETUP TECHNICAL DRAWINGS 
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