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Abstract 

Abomasal worms are a major cause of small ruminant disease.  Differentiation of 

the most pathogenic nematode, H. contortus, from the other common species can be 

difficult using standard diagnostic fecal floatation techniques because the ova are similar 

in size and morphology.  Known pure culture H. contortus fecal samples from West 

Virginia University were used to develop morphologic assays using FITC-labeled lectin 

agglutination and immunocytochemistry to identify species of abomasal worms.  These 

assays were applied to assess disease due to abomasal worms on selected small ruminant 

farms in Maine.  The diagnostic tests were used to test the hypothesis that H. contortus is 

the most common internal parasite found on sheep and goat farms in Maine.   
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Introduction 

  Gastrointestinal nematodes Haemonchus contortus, Ostertagiai ostertagii, and 

Trichostrongylus axei live in the abomasum and cause disease in sheep and goats.  

Parasitism results in economic losses to Maine producers, particularly the large organic 

component of the industry.  Based on accessions to the Maine Animal Health Lab, it 

appears that nematode infections and associated production losses are prevalent in Maine.  

However, there are not currently any labs in the Northeastern U.S. that offer diagnostic 

testing to determine the species of nematode infecting an animal.  Lack of species-

specific information makes it difficult for veterinarians to advise clients on management 

of parasitic infections.  Differentiation of the most pathogenic nematode, H. contortus, 

from the other common species can be difficult using standard diagnostic fecal floatation 

techniques because the ova are similar in size and morphology (Fig. 1) . Current 

diagnostic techniques for identification and differentiation between nematode species 

involve a time-consuming and expensive larval culture procedure.   

 

Fig. 1. Nematode ova. Image by Amanda Chaney.   

Haemonchus contortus, O. ostertagii, and T. axei are invertebrate nematodes that 

belong to the family Trichostrongylidae and live in the abomasum of sheep and goats.  
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Each species displays a similar life cycle in which adult female abomasal worms produce 

eggs that are passed with feces to contaminate pastures (Bowdridge, 2005).  While on 

herbage, the eggs exsheath to form first stage larvae (L1).  First stage larvae then shed 

their cuticle to form second stage larvae, which molt and develop into third stage larvae 

(L3).  Third stage larvae are the infective juvenile worms that migrate up the blade of 

grass and are consumed by the host.  Once in the abomasum, L3 molt to form fourth (L4)  

and then fifth (L5) stage larvae before they mature to adult stage parasites that are 

capable of reproduction and continuation of the life cycle (Fig. 2).  If conditions are 

unfavorable, the L4 larvae can enter hyperbiosis, a period when the larvae arrest 

development in the lining of the abomasum.  Triggers that arrest development are either 

hostile immunity or unfavorable environmental conditions such as dry or very cold 

periods of weather, when larvae deposited in the feces would not survive.  When 

environmental conditions improve, development continues and the life cycle is 

completed.  Triggers to continue development are not fully understood.  It has been 

suggested that the hormonal changes that occur in the female around parturition cause a 

waning of resistance to parasites.  Decreased immunity causes the larvae to emerge from 

arrest and the resulting parasite load is known as the spring rise (Kahn, 2005).   

 
Fig. 2. The life cycle of a nematode.  Image from 

http://www.basonevoice.org, modified by Amanda Chaney. 
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While the life cycles of H. contortus, O.ostertagii, and T. axei are very similar, 

there are physiologically important differences in the life cycle which leads to differences 

in their pathogenicity and economic impact.  Third stage H. contortus larvae are ingested 

and develop into fourth stage larvae (L4) in the lumen of the abomasum within forty-

eight hours.  Fourth stage larvae have a small buccal cavity with several teeth (Fig. 3) that 

are used to pierce the mucosal cavity and feed on blood.  The final molt occurs within 

three days and the adult worms lay eggs and continue to feed on blood.  Blood feeding 

causes severe anemia that results in decreased pigmentation of the mucus membrane (Fig. 

4).  Haemonchus contortus infection also causes edema due to hypoprotonemia that is 

commonly seen as bottle jaw (Fig. 5) (Schmidt and Roberts, 1981).  Emaciation is also a 

result of H. contortus infection; in the chronic phase of the disease, edema of the 

abomasum can cause an increase in pH, which leads to gastric dysfunction and further 

weight loss (Merial Australia, 2011).  The severity of infection determines the level of 

production loss and may result in death.   

 

Fig. 3. Head region of H. contortus, showing teeth located in buccal 

cavity. Image from www.sheepandgoat.com 
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Fig. 4. Mucus membrane of anemic sheep. Image from 

www.sheepandgoat.com   

 

Fig. 5. Bottle jaw in sheep.  Image from www.sheepandgoat.com  

Third stage Ostertagia larvae inhabit abomasal (gastric) glands, where they molt 

to develop into L4 (Fig. 6).  Fourth stage larvae cause hyperplasia of cells of the gastric 

gland, resulting in nodules. After the final molt to reach the adult stage, the worms 

emerge from the gastric gland and cause cytolysis.  As part of the natural bodily 

response, the destroyed parietal cells are replaced with undifferentiated cells that do not 

produce the gastric juices normally secreted by the gland.  Lack of gastric juices leads to 

an increase of abomasal pH, impairing metabolism of protein and energy.  The results are 



5 
 

loss of body condition, hypoprotonemia, decreased milk production in ewes, and scours.  

Severe diarrhea may cause death (Kahn, 2005). 

  

Fig. 6. Ostertagia L4 in gastric gland of abomasum. 

http://cal.vet.upenn.edu/projects/merial/nematodes/images/el4F.JPG  

Infective L3 Trichostrongylus axei are ingested and molt in the abomasum.  The 

fourth stage larvae and the adult worms erode the villi of the abomasum.  Since villi 

contain capillaries and lymph vessels, erosion causes bleeding into the lumen of the 

abomasum. This bleeding causes dark diarrhea, decreased appetite, loss of body 

condition, and slight anemia (Merial Australia, 2011).     

Productive loss due to gastrointestinal nematode infections is an ongoing global 

problem.  In an attempt to identify the source of productive losses, several studies have 

been completed that focus on species identification.  The modified McMaster technique 

is used to determine prevalence of parasitic infection.  Individual or pooled fecal samples 

are subjected to a floatation solution and a portion of this slurry is transferred to a 

McMaster Chamber.  Nematode eggs can be visualized in the McMaster chamber and a 

quantitative egg count can be completed (Fisheries and Food Ministry of Agriculture, 

1971).   Information gained from the McMaster technique identifies whether or not 

parasite infection exists, and estimates the extent of infection based on the number of 
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eggs counted.  Eggs of Haemonchus contortus, Ostertagia, and Trichostrongylus are 

morphologically similar (Fig. 2), so it is not possible to identify the infective species 

based on microscopic evaluation of Nematode eggs (Jurasek et al., 2010).  In addition, 

new research completed in the Kaplan lab at the University of Georgia has found that L3 

morphology may not be a consistent and accurate method to differentiate between 

Ostertagia and Trichostrongylys.    

Since species identification cannot be determined from evaluation of Nematode 

eggs, researchers in the 1970’s developed a technique in which they hatched the fecal 

eggs and identified the species based on morphological differences of L3 larvae.  Eggs 

were incubated until L3 developmental stage was achieved.  The L3 were then stained 

with Grams Iodine and visualized under a microscope; species were identified based on 

shape, internal structures of the head region, and tail morphology (Fisheries and Food 

Ministry of Agriculture, 1971).  Third stage larval isolation and identification is currently 

the standard method used for identification and differentiation between Haemonchus, 

Ostertagia, and Trichostrongylus.  However, there are several downfalls to this 

identification technique.  The person completing the procedure must be trained to identify 

morphological differences in larvae, and the incubation and identification is a time-

consuming and expensive process (Jurasek et al., 2010).   

Recent studies have been conducted that aim to overcome the shortfalls of  larval 

identification.  Researchers have identified three flourescein isothiocyanate (FITC)-

labeled lectins that bind to genus-specific carbohydrates on the surface of Haemonchus, 

Ostertagia, or Trichostrongylus eggs.  Osage orange seed agglutinin binds to the eggs of 

H. contortus, O. circumcincta, and T. colubriformis. Jack bean agglutinin binds to the 
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eggs of H. contortus and O. circumcinus.  Most importantly, Peanut agglutinin binds 

selectively to H. contortus.  Since the lectins have a fluorescent tag which can be 

visualized under a fluorescent microscope, selective binding of Peanut agglutinin (PNA) 

provides a rapid, simple, and less expensive identification technique for H. contortus 

(Palmer and McCombe, 1996).  Other studies have been completed to improve certain 

aspects of the identification method.  For example, Jurasek et al.(2010) conducted a study 

that made adjustments to the PNA-FITC procedure to further reduce the time required for 

identification of H. contortus.     

Another recent study used an alternate technique for identifying anemic 

individuals that may be infected with clinically relevant levels of  H. contortus.   Kaplan 

et al. (2004) used the FAMACHA score system developed in South Africa to clinically 

identify anemic sheep.  In this system, the color of the ocular conjunctiva of sheep and 

goats is compared with the images on the FAMACHA scoring card, which ranks ocular 

conjunctiva color on a scale of one to five, with one being a red color of a healthy animal 

and five being an almost white color of a severely anemic animal.  Kaplan et al. (2004) 

tested the reliability of the FAMACHA system by comparing FAMACHA evaluation of 

animals with packed cell volume (PCV) and fecal egg counts (FEC) of the same animals.  

The study concluded that there was a correlation between eye score, PCV, and FEC.  

Anemic sheep display decreased PCV, increased FEC, and increased eye score.  Since H. 

contortus is the main parasite which causes severe anemia in sheep and goats, the 

FAMACHA system can be used to identify animals infected with this nematode.  

Identification of infected animals without extensive lab testing reduces costs while still 
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providing evidence of H. contortus infection; this information is useful in developing 

treatment plans to reduce parasite prevalence.  

Although recent research has developed assays for species-specific identification 

of abomasal worms, these techniques are not available in labs in Maine.  Gastrointestinal 

nematode infections negatively impact the Maine sheep and goat industry.  The objective 

of this project was to streamline a diagnostic procedure for species-specific identification 

that could be used by the University of Maine diagnostic lab to provide Maine famers 

with an affordable service for parasite identification.  This would benefit Maine sheep 

and goat producers by allowing them to reduce parasitic disease on their farms, thus 

increasing production.   

Materials and Methods 

Sheep fecal samples were obtained from Dr. Scott Bowdridge from the research 

farm at West Virginia University (WVU) and from several commercial sheep and goat 

farms in Maine.  The WVU fecal samples were known positive for H. contortus.  Each of 

the following techniques was applied to each sample.   

Total fecal egg count 

The Modified McMasters technique was used to obtain a total fecal egg count.  

To complete this technique, 2 grams of feces were weighed out and placed it in a 50 ml 

centrifuge tube.  A small amount of saturated sodium chloride solution (~15 ml) was 

added and the feces were allowed to soak for one minute.  The saturated sodium chloride 

solution works to dissolve the feces and allow the ova to go into solution.  A scoopula 

was used to break up the fecal pellets, and the fecal solution was run through a mesh 
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strainer to further break up the feces if needed.    Once the feces were well broken up, 

more sodium chloride was added to bring the total volume to 30 ml.  The McMasters 

chamber was prepared by wetting it then gently tapping it on paper towel to remove 

excess water.  The centrifuge tube containing the fecal slurry was rocked back and forth 

10 times and a pipette was used to draw up enough suspension to fill one chamber of the 

McMasters slide.  The rocking and pipetting procedure was repeated to fill the other side 

of the chamber (Fig. 7).  The McMasters chamber was allowed to stand for 1-2 minutes 

to allow any eggs to float to the top.  A microscope was used on 100X power to count the 

nematode eggs within 60 minutes to prevent drying or crystal formation of sample in the 

chamber.  The number of eggs per gram of feces was calculated by multiplying the total 

egg count (for both chambers) by a factor of 50 (Kaplan et al., 2011).   

 

Fig. 7. Modified McMasters Chamber. Image from http://loudoun.nvcc.edu   

Larval Identification 

The eggs in the fecal sample were hatched and L3 larvae at 7-10 days post-hatch 

were identified to determine the relative amounts of the three parasites.  To hatch the 

eggs, the feces were incubated.  Two grams of feces were weighed out and placed into a 

6in x 1in x 6 in Tupperware container with a cover.   A small amount of water was added 

to moisten the feces, and the feces were broken up with a spatula. Peat moss was mixed 
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in to form a thin layer covering the bottom of the container.  Water was sprinkled on top 

until the mixture became moist.  The covered container was incubated at 29
o
C for 7 days.   

The Baermann larval collection technique (Fig. 8)  was used to isolate the L3 

larva from the feces.  Motile L3 larvae were collected from the cultured fecal mix by 

suspending 2 g of feces in a Kimwipe paper towel.  The edges of the Kimwipe were 

folded together, and the package was placed in a glass funnel filled w/warm water (the 

funnel’s outlet was plugged to retain water).  Larvae were collected from the bottom of 

the funnel after 4-12 hours.   

 

Fig. 8. Baermann larval collection technique. Image from 

www.sheepandgoat.com  

Grams iodine was added in a 1:1 ratio to the slide to stain free living nematodes 

and to enhance visualization the internal structure of the L3 larvae.  The sample was 

viewed under the microscope to identify L3 of H. contortus, O. ostertagii, and T. axei.  

Larval counts were used to determine the relative amount of each species causing parasite 

infection.   
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Isolation of eggs 

Nematode eggs were isolated from the fecal sample to be used in the fluorescent-

labeled lectin agglutination and immunocytochemistry assays.  To isolate the eggs, the 

Modified Wisconsin Sugar Floatation Method was used.  Three grams of feces were 

weighed out and placed in a beaker.  Next, 10 ml of Sheather’s solution was added to the 

feces and the sample was mixed well to form a slurry.  The liquid portion of the slurry 

was transferred to a 15mL centrifuge tube using a funnel in between a strainer and the 

centrifuge tube.  A tongue depressor was used to press the fluid out of remaining solid 

fecal matter.  The tube was then centrifuged at 280 xg for 4 minutes.  Sheather’s solution 

was added to fill the tube until a meniscus formed just over the top of the tube.  A cover 

slip was placed onto the meniscus and the experiment was allowed to sit for a minimum 

of five minutes to allow the strongyle eggs to float to the top and collect on the cover slip.  

To remove the eggs, the cover slip was rinsed with a small amount of PBS into a 1.5mL 

Eppendorf tube.  The tube was then filled to 1.5mL with PBS and spun in the 

microcentrifuge for 2 minutes at 6000 xg to rinse the eggs.  The supernate was removed, 

and the rinsing process was repeated.  The supernate was removed and the ova in the 

pellet were isolated for the next experiment (Jurasek et al., 2010).   

A new step was added to clean the ova.  The ova were placed in a sucrose 

gradient (3 layers of sucrose at increasing densities). Ova migrated to the interface 

between the top and middle layers.     
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Fluorescent-labeled lectin agglutination test 

Once the eggs were isolated as described in the previous experiment, they were 

incubated with FITC-labeled peanut agglutinin (PNA) to identify H. contortus versus 

non-Haemonchus ova.  The peanut agglutinin lectin used was Archis hypogaea—FITC 

conjugate.       

Once the eggs were obtained from the Isolation of eggs step, enough PBS was 

added to the tube to bring the total volume to 1mL.  Half of the samples were treated with 

galactose that bound to the PNA, preventing binding of PNA to the egg surface.  This 

acted as the negative control.  To create the galactose mixture, galactose was mixed to 

10X concentration by combining 0.54g galactose to 200mL of PBS.  One hundred mL of 

the galactose solution was added to appropriate ova samples and allowed to incubate for 

1 hour.    

Next, the ova samples, both those treated with galactose and those not treated 

with galactose, were incubated with the PNA-FITC.  Thirty uL of PNA-FITC was added 

to the samples without the galactose treatment, and 35uL was added to the samples with 

the galactose treatment.  Samples were incubated for 1 hour on a rocker and in the dark.  

Then, the samples were washed two times in PBS  by adding PBS to the sample to bring 

the total volume to 1.5 ml, centrifuging at 6000 x g  for 10 seconds, and then removing 

the supernatant.  The pellet containing the eggs was re-suspended in a small amount of 

PBS buffer.  Twenty uL of each sample were pipetted from the tube and onto individually 

labeled microscope slides.  A coverslip was placed on top, and the slides were examined 

with a fluorescence microscope using FITC filters (Jurasek et al., 2010).   The presence 
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of PNA-ova binding was confirmed by bright green fluorescence of the egg when viewed 

under UV light (Fig. 4).   

HRP-labeled lectin agglutination test 

In addition to the experiments described above, we also attempted to develop an 

assay in which the Haemonchus contortus-specific PNA lectin was linked to horseradish 

peroxidase (HRP) and reacted with a substrate, tetramethylbenzidine (TMB), to produce 

a color change that indicated the presence of the species to which the lectin specifically 

bound.  The HRP is a plant-derived enzyme that catalyzes a color change when reacted 

with a specific substrate, TMB.  The resultant is a blue-colored product that becomes 

insoluble and precipitates in the vicinity of the HRP enzyme.  A microscope was then 

used to determine presence or absence of color change around the parasite to determine 

which species were prevalent in the fecal sample.     

To complete this procedure, a Corning centrifuge tube was first prepared by 

washing the filter with PBS, and then incubating the filter with PBS-Tween (1 part 

Tween-20 per 2000 parts of PBS) for 1 hour. The purpose of this was to coat non-specific 

sites on the filter.  After the hour incubation, the Corning tube was centrifuged for 10 

seconds at 6000 x g to remove the fluid.  Next, 500 ova in water were added, and the tube 

was centrifuged for 10 seconds to remove the fluid.  The ova were rinsed with 1mL PBS 

and spun down to remove the fluid.  Two different concentrations of PNA-HRP was then 

added, either a 100x or a 400x, and the sample was allowed to incubate for 1 hour at 

room temperature.   After the incubation, the sample was centrifuged for 10 seconds to 

remove the fluid before undergoing several washes.  The washes consisted of 2 washes 
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with PBS-Tween and 1 wash with PBS.  To wash, 1mL of solution was added to the 

sample, and the sample was centrifuged to remove the fluid.  Once the washes were 

completed, 0.5mL of the substrate, TMB, added.  At time zero, and every five minutes 

after, a drop of sample was viewed under the microscope.  Once a blue shell formed 

around the ova, the reaction was stopped by spinning down the tube, then rinsing once 

with PBS-Tween and once with PBS.  The ova were then resuspended in ~200uL of PBS 

to obtain a concentrated sample for microscopic evaluation.  Before transferring to a 

slide, the ova were displaced from the membrane by gently pipetting up and down several 

times before removing all fluid from the Corning centrifuge tube into a fresh tube.   

Results  and Discussion 

Total Fecal Egg Count 

The Modified McMasters technique was applied to a fecal sample obtained from 

Old Oak Farm in Maxfield, Maine.  Greta, an Ewe, had 1500 strongyles/g and ~100 

coccidia/g.  Stella, an Ewe, had 400 strontyles/g and 1250 coccidia/g (Table 1).  The 

main purpose of this experiment was to ensure that the technique could be replicated. 

 Strongyles/g  Coccidia/g  

Greta (ewe)  1500  100  

Stella (ewe)  400  1250  

Table. 1. Results of  total fecal egg count for Old Oak Farm in Maxfield, Maine.   
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Larval Identification 

Feces from Old Oak Farm in Maxfield, Maine were placed in larval culture to 

obtain L3 larvae for larval identification.  For the first trial, 10g of feces were combined 

with 10g of peat moss.  When the sample was viewed under a microscope 7 days later, 

there were many free-living nematodes.  An explanation could be that the peat moss 

contained many free-living nematodes that contaminated the sample. 

For the second trial, the peat moss was first autoclaved to destroy any microbes 

before being mixed with the feces.  This resulted in a clean L3 sample, which was 

beneficial for larval identification purposes.    

The L3 larvae were combined with grams iodine and viewed under the 

microscope at 40X to identify Haemonchus versus non-Haemonchus nematodes.  It was 

learned from the University of Georgia Parasitology Laboratory that larval identification 

cannot be used to determine the difference between Trichostrongylus and Ostertagia as 

was previously believed.    

Fluorescent-labeled lectin agglutination test results: West Virginia University (WVU) 

samples   

It was found that fresh ova treated with PNA-FITC fluoresced.  The ova was first 

visualized using visible light, as depicted in Figure 9A, and then the same ova was 

visualized using fluorescent light, as depicted in Figure 9B.  Since the whole egg 

fluoresced (Fig. 9B), this means that the FITC-PNA bound to the entire surface of the 

egg, indicating the egg belongs to the species H. contortus.  This result was expected 
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since the sample was known H. contortus positive, and PNA binds specifically to H. 

contortus.   

        
Fig. 9. Fresh FITC-labeled H. contortus  ova without (A) and with (B) UV light. 

Image by Amanda Chaney  

 

The fresh ova sample that was treated with galactose did not display fluorescence.  

No fluorescence indicated that the galactose saturated the PNA, meaning the negative 

control worked and that the PNA-FITC binding was specific for galactose residues on the 

surface of the Haemonchus ova’s “egg shell.”   

The H. contortus ova that were preserved in 5% formalin fluoresced.  While it 

was expected that the H. contortus ova would fluoresce, it was beneficial to determine 

that these eggs would fluoresce even after treatment with formalin.  This discovery is 

beneficial since it may be required to preserve eggs to prevent hatching before 

diagnostics can be completed.  The 5% formalin ova that contained galactose did not 

fluoresce, except for one egg in the sample showed slight fluorescence.  The egg that 

fluoresced could indicate that the galactose did not completely saturate the lectin in this 

sample.   
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Fig. 10. Formalin FITC-labeled H. contortus  ova without (A) and with (B) UV 

light. Image by Amanda Chaney  

The sample that contained ova that were originally preserved in 5% formalin, but 

were subsequently transferred to a 50% EtOH solution, had inconclusive results because 

there were too many bubbles on the slide to see the ova.  One explanation for why the 

EtOH slides were not usable is because alcohol has a different density than water or PBS, 

so the eggs may not float to the top as they do on the other slides.  This makes it difficult 

to locate the ova using the microscope.  Results of FITC-labeled lectin agglutination test 

for WVU ova is summarized in Table 2. 

Sample 
Haemonchus 

contortus Positive 

Haemonchus 

Contortus  Negative 

Unsuccessful 

Test 

Fresh Ova X 
  

5% Formalin X 
  

5% Formalin, 

50% EtOH   
X 

Table 2. FITC-labeled lectin agglutination test results for WVU ova.   
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The final sample was the L3 larva, which did not fluoresce.  This  result was 

unexpected because the larvae should contain the same sugars on the surface as ova, and 

thus, the PNA-FITC should be able to bind to the larvae.  Lack of fluorescence could be 

due to the inability of the lectins to penetrate the larvae cuticle, so no binding could 

occur.  Aside from the PNA-FITC binding, the non-fluorescent result was also not 

expected because the L3 larvae actually auto-fluoresce using the fluorescent system at the 

University of Georgia (personal communication).   

Fluorescent-labeled lectin agglutination test results: Maine sheep and goat farm samples 

 No fluorescence of the samples occurred, indicating that the sheep was infected 

with non-Haemonchus nematodes, either T. axei or O. ostertagii.  However, it is possible 

that the sheep was infected with H. contortus based on clinical signs, but no eggs were 

being shed due to the season (hyperbiosis of H. contortus in the cold winter months).   

HRP-labeled lectin agglutination test results:  

The HRP-labeled lectin agglutination test was completed on fecal samples from 

WVU that had been preserved in 5% formalin for five weeks.  To date, only one trial has 

been completed, and no negative control was used.  For known H. contortus positive ova, 

at time zero after TMB was added, no, or patchy, precipitation occurred (Fig 7).  At a 

time of 5 minutes, patchy precipitation occurred on the surface of the ova (Fig 7).  At a 

time of 10 minutes, blue precipitate covered the surface of the egg.  At a time of 20 

minutes, the precipitate started to fan out from the ova surface (Fig 7).  Similar results 

occurred for both concentrations of PNA-HRP, but the 400x concentration seemed to 

have more non-specific binding of enzyme and resulting precipitate.  The reaction was 
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stopped at 10 minutes by a series of washes.  However, the washes seemed to remove 

some of the precipitate from the ova surface.  Therefore, more work needs to be 

completed to determine the best way to stop the reaction.   

 

 

Fig. 11. H. contortus ova treated with PNA-HRP 0, 10, and 20 minutes after TMB 

was added. Image by Amanda Chaney. 

Conclusions 

The Modified McMasters technique, the larval identification technique, and the 

fluorescent-labeled lectin agglutination test using PNA-FITC for H. contortus 

identification were streamlined.   

HRP-Labeled Lectin Agglutination test was developed, but more work needs to 

be completed.   
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Implications 

 Identification of the most pathogenic nematode, H. contortus, is important in 

treating animals with a parasitic infection.  The fluorescent-labeled PNA agglutination 

test is ready for use in the University of Maine diagnostic lab alongside the larval 

identification technique.  In-house analysis must be completed on the sensitivity and 

specificity of the procedure before it can be used alone.  As for the HRP-labeled lectin 

agglutination test, once the assay is fully developed, it will eliminate the need for an 

expensive fluorescent microscope.  This will make the identification of H. contortus more 

available to Maine farmers and veterinarians.  Overall, this research will benefit Maine 

sheep and goat producers by providing more available identification methods for internal 

parasites.  Producers will then be better able to reduce parasitic disease and the economic 

losses associated with it.      
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Appendicies 

 

Appendix 1: Original budget 

I am requesting funding to purchase the materials for lectin staining, to cover expenses of 

survey mailing, and to assist in travel expenses to attend the Sheep and Goat conference.  

I need several fluorescent-labeled lectins and galactose to complete the lectin-staining 

method of nematode egg identification.  The lectins are needed to tag and therefore 

identify certain species of nematodes. Galactose is used to bind the lectins, preventing 

their attachment to the nematode eggs; galactose is an important aspect of the 

experimental control.   

I hope to attend the UMaine Sheep and Goat Internal Parasite Seminar hosted at 

Kennebec Valley Community College.   Kennebec Valley Community College is 70 

miles from my house and will cost me $18.27 to drive the 140 miles round trip with gas 

prices being $3.55 and my Subaru averaging 27mpg.     

I hope to receive funding that would enable me to mail a survey to 35 sheep and goat 

producers throughout the state of Maine.  Such a survey would provide me with 

information such as flock or herd size, current parasite prevention and treatment 

protocols, current or previous parasite infections, and other information relevant to my 

project.  Distributing a survey is also a good way both to inform sheep and goat 

producers of our project and to communicate which farms are interested in participating 

in our study.             

  

 Supplies—         $ 

 

 Lectin from Arachis hypogaea (peanut) –FITC conjugate (1mg)  56 

 Lectin from Concanavalin A—FITC conjugate (1mg)   48 

Lectin from Methyl alpha-D-mannopyranosidase    30  

Galactose         30 

Travel to attend Sheep and Goat Internal Parasite Seminar   18.72 

Postage to mail 35 surveys       15.40 

                  Total Costs                     $198.12 
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