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I INTRODUCTION

Among the oldest and most intriguing problems of number
theory is that of the distribution of prime nunibers . {The most
important result yet obtained in this area is the Prime Nuwnber
Theorem. In order to discuss it, we shall find the following

introductory material particularly useful.

Definition. An integer p>1 that is-not the product of

two other positive integers, both smaller than p, is called

a prime nuﬁber: an integer that is not prime is called a

_composite.
Thus, for example, the numbers 2,3,5,7,11, and 13 are

"‘u.-.lw:‘ L,

\ prime, whereas 4,6,8,9,10, and 12 are composite..

| It has been.knqwn since antiquity (Euclid, about 300 B.C.)
tha: the number of primes is infinite. The proof of this fact
is guite short: Let 2,3,5,«.., plﬁe the series of primes up to
p. Now form the'nuﬁber g=(2-3+5+,.,.»p)+l. Since g is clearly
not divisible by any of the numbers 2,3,5,...0, it is therefore
either itself,prime'or_is divisiblefby a ‘prime betweenfp and qg.
In . ither case-there is a prime greater than p. ; 7 |

dowever, theré are also arbitfaril?;large gaps in the series

oo imes: Let k be any positive integexr. Now eonsider.thé |
in.  ers (k+1):i+2, (k+1):43,..., (k+1)!+k, (k+1)i+k+l, where n!
is cefined to be h(n—l)(n-2)...3-2w1, Each of theseﬁis composite
since j divides (k+l1)i+j if 2:;j5;k+1,' fhus'given any‘positive
integer k, there exisﬁ k~consecutivei¢0mp05ite ihtegers,

.
\




It is obviously important to know something about the
occurrence of prime numbers among the natural numbers. Let
TT (x) denote :the number of primes that do not exceed x.
Because of the irregualar occurrence of the primes, we cannot
expect a simple formula for [ (x). -
In a notebook published posthumously, Gauss (1777-1855)
conjectures that |
'I.‘m. TG = |
X2 X
_ ¥ ' ,
where Li X~ SEZ dt/logtt. He arrived at this conjecture by
observing that the:primes seem to have an asymptotic'density
which is 1/log x at x . Legendre (1752~1833) conjectured that
L=1lm T0 =1 jthat s, T~ X
e300 %;é’o?)( . ZcFX

This conjecture is today known as the Prime'Number Theorem

{henceforth denoted PNT). Gauss's conjecture is the'more

profound since it has since been shown that

Lix = x  + 115 + o + alx T+ eexd],
fog¥ (log 0 | (jog LA E

where  £({x) —> 0 as x becomes infinite. In an attempt to

prove the PNT, Tchebycheff (1821-1894) showed that

Co9a > ¥ < 1« (L10S =) X

kgx. hﬁk



He also proved that if the limit L in Legendre's conjecture:
existe} then L=l.
In 1859, Riemann (1826-~1866) approached the problem

indirectly and connected it thh the zeta-function

T = Z n

n=
He was not completely successful his proof had several serious

gaps. The most ;mportant of these coild not be. filled until the
properties of entire funcﬁions had been established. 1In 1876;
using Hadamard's tﬁeory,of entire functions, J. Hadamerd (1865-
1963) and de la Vallée Poussin (1866-1962) succeeded in proving
the PNT. Several of the gaps which still remaiﬁed have since
been taken care of. However, the so-called Riemann Hypothesis

(if \f(x+iy)=0 then x=lﬁ, which is most important to a more nearly

} prec1se formulation of the PNT, has so far defied all attempts at

N4

a proof or refutatlon. .

In 1948, Atle Selberg and P. Erdds succeeded'in finding an
"elementary" proof of tHe-PNT. Here "elementary" is used in the
sense of av01d1ng the use of complex varlables, Fourrler analysis,
and similar non-elementary methods employed previousl&. That ie ’
should not be construed-to‘mean "easy" will soen beceme'apparent.

The rest of this paper is devoted to such a proof of the PNT.*

*Specifically, the following proof follows closely that given

. by J.G. van der Corput (see Blbllography) which is based on

notes from the conference ErdSs gave at Amsterdam for the
"Wiskundig Genootschap" in October, 1948.



 For lé'y-dx,' one ‘h‘a‘sf"‘ :

PROOF OF THE PRIME NUMBER THEOREM

In the theory of numbers we usually consider, not the

function T(x) » but the function

G0 = Zfoap .

" which is much easier to work with. The above sum lS extended

over all prime number-s: p< x¢ It is suff_lclent to _show.that

l’iﬂ_@ apprOaches 1nas x'becomés infinite‘.

" Now &(X)f Z /oaP /o X Zl -.:Trcw)lordz&",

P"Y pP<x -

(- @céf)) S

O - 3 _TF.X) 7T<3) 33. /?3_,“"”'

Thus

(1)

A% < WE!OJ@Y &t lon i ‘_,_'" /'@;? x %)
* | ’% LI
QGO

Let us choose y=x" '. Where o (x) -Ci and - G)(x) i slowly

enough so that

Joq X —-—90 ag X— e .. g

— Q) ' R - "",\t'
. Such a e(x) ex:.sts-' ‘L.et ch} = ] —ljog l‘:—j X -
‘:F'hen x@m ( |~ fos l!ch) = .1
Now show ‘
II'M-KI‘PCQ = {'mlx I°3/°3¥ = @ :_‘

X~ oz W —> i



Il¢ o J | ' Y \ -
Jﬁ&w X 3 &y = Jim(faé [ﬂ&X ) /"8 Y) = IIM_(—'/_?EB{) jm{. jog){ = oo

Now we can use n Hop:.tal 8 Rule to show [im (_ﬂfﬁ%&j)ﬁ@:
SR | xRy

i {0){ ) i } ";2' :
1 A
y.-fm XW X0 "(I ) [ ]__‘*__s(( i )( e |
. ) i — _ i .
- g g "‘G [ B e%x {ieg Tey x’)l"] :
_ U”‘ah%)()a' |
.': Jﬁm Cl?fog XI}-—I
' X loa,'loa_v(
T [Uo Iagk——()ﬂ(’aalozeYD _1——_] (fcal%sa) xlﬁ;;k'
T x—>oo ) ' ()oa )0(35( - I)
| (’“X" . 'W)Oba gx T Oada og 02 .
| |o Joy X B
= Jﬂ'l}mw x’ ¥ (’éa I x -2) ( log Ich' -*
¥ B Cr‘)é 1‘5%)( ') ]{C’oa !ch,)z
= J;v;mm Cfa;\!ogx)s Cleg log % = 2)

Cleg bogx =) x . ¥ log X

)('I'-?d: 1 : . o Yemsas

sl _kalad Lo eimce e lkax s o
T Al T ohex



Wﬁquuation (1) now becomes

&Cx) < oo/rjy < log X + b e Gey
a eax) ocx,

ecx) ¥

Thus 90X) _y |  implies that TI<X) jog X — .y | (i.e.,PNT).
X ‘ » J

Our proof is divided into two distinct parts. The first is
devoted almost exclusively to the proof of Selberg's formula:

. ' ‘ : X .
CES. -——-——,%x E;K—&CP)‘ Gl TR s e

In the second part we will deduce the PNT from tﬁis formula. -

I Proof of Selberg's Formula.

Let MU (m) denote the Mobius function, which is defined as
B follows: B : | |
[ D gy |
| ii) ‘}L(m)=0, lf p2 leldes m for some p,
.iii) }L(m) =(~- l) ,where m—p]-__p2 .ﬁ,..prls the decompo-
sition of m into prime factors. o o |
Thus we have,/x(l)=l /&(2)—-1. /3(3)=—l- /a(4)"0: /a(5)=—1.}
}MG)—I, etc. | . | ‘ .
The functlon ’pﬁno is multlpllcatlve, that 1S'w' o
jj(ab) /LMa) /U(b), if a and b are relatlvely prlme natural -
numbers.f Thls assertlon results 1mmed1ately from the way in thch
~we have deflned }x(nﬂ “ -i o
: Lemma 1. For each 1nteger h 0, the functlon
G m ; fotd) /c)a d
(where the sum. is extended over all lelsors of m, 1nc1ud1ng 1 and

m) equals zero,,lf the natural number m: contalns more than‘h

dlfferent-prlme factorsaq"-



!
Remark: We will use this lemma only for h=0,1,2.

' Proof: For h=0 the function becomes
(2) QA=
for all integers m>1 (the sum equals 1 for m=l).

”This formﬁla is evident. Let.m=p°lt' qu,__“ p;f" e the decomposition
of m into prime factors. Since (d)y=0 if Pi2 divides d for some
Ppj. only | 4‘(‘:) + (;_) e 4‘(::) = Q,r divisors
of m have to be considered in the sum. Now the divisor d=1

contributes 1, the ('r) divisors pj.Pps...,Ppeach contribute -1,

the (9-) divisors pyPysPjP3+-+++Pr-1Pr each contribute + 1, etc.
‘ ‘ ‘ (r v
Therefore the total contribution is | - (, ) + (2) ~ - % (}’)

g = (1= i)r = 0. Thus the lemma is shown for h=0.
»h"jﬁw-ﬁi-

i

We now use finite induction on h. Assume the lemma has been
shown for h<k~l. Let h=k. Also let m=pdb, where o{21 and where

the integer D ié not divisible by the prime number p. We ﬁhen have

J

e (m 'za%P*'#Cd)-/? d -

T ek +!?dg)1< -

| —cl,[b,_-d,_[P* | .
N NS Ny ko
- éﬁo (“) %&: (fetd) log d,) &o{(ﬂ@,y@a ")

. k .
i(h} %CL) qﬂk-'y\ Cpc‘().

hea




Since m contai‘ns more. t‘h'an‘ x different prime facto":;'s‘.,'
b contains more than k-1 differen£ prime factors. Therefore
by our inductive hypothesis C)?](b)=0 for n=1,2,...,k-1. The
remaining term Cﬁf’((b') CP; (pd)=0 since @0 (pd)=0, as we have

- already shown. Therefore ‘the lemma is true for all h.

Lemmé 2. Let x>0 ana Aset
| _ 2 X - N
A = /,LCd) fcg B Cand  fem) = dlh.“_ /\Cd)
(these are clearly also functions of x).‘ Then we have
f(1)=log2x; _
f(Pd’?'idgzp + 2(log x) (log p), p prime, (21
f('pdqﬂ).=2(log p) {log q), p.q 'd’ifferent primes, ,,6 >

£ (m) --0, if m contains more than two different prlme factors.

‘Proof fa= Z}\Ccl)— /\C:)—/LLC:J/og)( = 02 ><.

‘PCP&'J T \CcD = f\Cs) + )\CP) Fo + /\Cp
f

X
/ccc;) _o Ty o+ /LLC.p) 103 I +/,¢q3 >/°5' p
J%_—-C]aay —:Qioxoazp“!* P) ';-O
. » J‘)ap +Qlc>3>( o;p . ﬁ ‘
PCP% ) =/U.CJ) !ogzs( -l-/agpglcgz- e )[ag ‘ZT a‘-/,(_c‘oz) /c:aa? [a% o
= }Da ¥ —Cléex -—[?P) '-—Cle. ¥’[03 g) + (logx - fo§ pcB)
= ;?(/03 P)(fc>3 %) :
£om) = 5_; AC%) %(Ina ;i )/LLCJJ

=

dln

T2 feddd log’x = ‘_Q')q"ax"%;{/(,c(d) fegd + % fit éogfcf



= ‘cxg'z)( -0 ','"‘2!03-'5( '.O -F @)
= 0 | . o

by the previous lemma.

T ‘ | ___’Iﬁ_*gCi_)_

Lemma 3. For x 22 the quotient is situated between

the two fixed positive bounds. (Tchebycheff s Theorem, 1851- 1852)
Remark: For the proof of Selberg's formula it suffices to

. ‘ AFCND ,
know that the upper limit of < is finite. We prove here

that the lower limit is positive because the proof is quite
similar and because we shall need this result in applying Selb‘erg:'s
formulé to the proof of the PNT.

, | ~AFxy
Proof:l. 'Let us fll‘.‘St show that the greatest limit of ~ X

is finite. Consider the natural number p= _h-Tu_l « Since the
prime factors p> n and £ 2n appear in the numerator and not in the

denominator of P, the product of these primes is a divisor of P,

2 2n Zny. —
and thus is at most equal to | + ( an) “i' O (w) + "‘; 4‘(‘ ) +1.=
(i+l)2n== 22n_ The logarithm of this product is equal to E o& p=
. L - N LpPLln
- W@n)-Yn). It follows that %(2n)=n) €log 2%= 21 log 2.

For x=2M (m an integer = 1), we obtain

@cx) {19(2 )-19¢2™" )} + {q}cg’“") '1}(2 - )}.;
(27 + 2™ - 4‘57»)/ Z |
< Qmml ) ?

J 7°
2x Jes. 2 .

A

It
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For 2m—_—l< x €2®, we therefore have
. | R .
Sexy € 19‘&"3 < g™ '10%4 < Ly fo& 2 .
so that we find that for each number x> 1

;D -
By)
2. Now let us show that the least limit of ¥ - is

‘i

positive.- The series 1,2,...,n contains ["}5’] nmultiples ofthe prime

number p (where [x] designates the greatest integer < x), (P }

multiples of p2, etc. Therefore n! contains precisely *

n
[}3] 4-“["5—;_] e factors of p. Consequently, the nunber of -

factors p appearing in P is exactly equal to

Q=51 =18,

- where the sum is extended ovex _all natural numbers o such that =»
e, , . o«
P <2n. The number of terms of Q is =

'”3?_-[

[2y1-2[y] is a function of y with period one which equals

zero in the 1nterval 0<y 4;1‘ and equals one in the 1nterva1

L £ y<1l. Therefore [2y} -2 [v] is always < 1 from Whlch lt follows ™ =i

{ W
that Q@ £ [—?—] , so that P divides the :Lnteger U def;.ned by

i ey 2n_
| {ou Z_[IZJIMP

' F"‘-’:Zn IOGP
Since
: ' | n
P = (nEdmiay 2 ) w2,
Tl s e em C o
we have

1A

n [DS & S foap

We also have

. ...._ feq 2 |
gV 2, e Tk
JZ Zw

[ Jb- ] < ’°6P N 'Faklla” P

and [ ;—ﬁ—]

il

| 7---Fm- p > Jaw .
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P <z

,P'-‘. In

Thus "n]o% .52. £ 2 laEQ*n "f‘: )oaa P

< Jon Jcalw }@C.Qh).

 We therefore find that &(2n)2{n log 2)- (log 2n) J2n. But by

.1'Hopital's Rule, we know I;‘m (Jog Zn) J2n

e -é?v(n—:) /08»2.
. bsfln ir™ A i .
:}M/l Van +§_7y] — ﬁfoga /]\/yL leg 20 4 ) = O .
W=>a }’a_fogal _ h—>as %:jh

Therefore for & =1, ‘H(there exists) N>0 a'(s'uch that) n> N =
(implies) . |

(Jo?ﬂh)m = (g Za)fan & ="}

2(n~|) 1032 5 (- f)/ﬁﬂ- |

>Uc>=&2m)/— - Ulo(?z = nfcg:). :LCM-}-I_)[O&‘Q. fara/f;qﬂv

Thus-19’(2n) ?’,I—'—(n+l)log 2 for suffigiehtly large n. If x is
sufficiently large, and if we let 2n <x<2n+2, we obtain

Gexy = %) > th-H_J /ogx > % ¥ sy 2,

from which it follows that for x> 2, '1_955:‘3 has a positive

lower bound.

Remark: The above reasoning leads us to another formula
whiich we shall‘ not need for the proof of Selberg's formula, but
which we shall use in applying this formula. We have stated
that n! contains the prime facto.r pl eiT(actly |

#H



12

lt:.mes, thus log n! Z ([P] +[ ] + ) 8 P-

Since this sum _ ( PJ+ 23 - )f P = L[P P+”Z )

pém
we find that log n! is approximately equal to [P] og P

_and their difference is at most of the order of n" gince

n Z F‘CP .) converges. - Now Z Ep] /03 P is

approxa.mately equal to P‘-‘Z f"a P | and their difference ™
is at most equal to Z 08 P 19‘(74) » Which by
PEh

.Lemma 3 (1) is at most the same order as n. In this manner we

‘ ST e ' :
obtain that Z_ "‘%‘P—' is equal to C

PEN
{ L

el ! = o

w logml = gl f 5 h

to within a bounded term. We have that for every integer h 22

loah = Ioa 01_12%%, . (}_}\_1)”‘

= hlgh = (h-leg (b= = Ch=1) g (1 + 7).

But for any natural number n we' kndw from the Ta_{rlor series
expansion that log (:l+—}-—- - %‘-, where 0 < e, <1. |
Thus n log(l+ -—) =] - Eﬁ is bounded. 'Consequently,
2 Isgh ifhoah——ch Dbythoiy + 0,
(where "f(x) is O(g(x))" denotes that. ]f(x)l< M.g(x), for some
positive constant M and for sufficiently large x.)
[oah — 0 + O,

L
DR .il%h -0t = Iy b o,

Thus-
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. 1 X :
Lemma 4: X’loa‘){ P-_«_:Zx (lbap)(loa P.)—_é o as X——» oo .

. )
Proof. Let £€>0. We have log p (logg for p>_€ x, so that

b

the expression in question is at most eqhal to

?7‘0_37( (FZL;“ (1'06¢P)(103X) 4‘%(!03?)“‘3& ‘é:-)) . -

G (EX) | G fog % 4:}
:" X X loa.x o C{C"‘ 5:\1(

where ¢ is the upper bound of Lemma 3(1l). When £ —»> 0 slowly

. enough so that feg /e — > O
. ’ ' }oa 5(
| ,
(Eix)= ]Oax satisfies thése conditions), we obtain the desired

result. !

Lemma 5:%* _?_ Lx fca p — 0 a8 ¥—wm,
X legX P"‘ﬁ? | .

the sum extending 6ver all primes p and integers o such that
oot 3 loys m%,,) FOGL) o + I (),
. ,a '

'PM £
3
b4

where k is the greatest integer such that ok ¢ 3 ;i-e-,

X ' - g

*This lemma is not as it originaily appears in van der Corput's
proof. I have altered it slightly so that it more nearly
directly applies to the proof of Lemma 6.. _

i

[
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L1

Thus | g}{ [oap S ‘XB) f‘k’l}(\/g)
F (57 )+_8__/ﬁi19'\/;)

'\9{3) . -
We know that 3 is bounded above Y (for all) y> 2 and

.

R |
D
&
IN

t . )

equals 0 for 1< y<2.

X
- < . ; - >
Thus O < i «_gﬁzﬂ) < Moo R sne Hzo
- % . N

A [oax 6’(

and O £l fof;.z. ”95\1/”’) = foe /d; 7(" S/ %s)

— a0
| ’é” /o&x /oag. \/—— /_ ;OQ
< Km ("’K‘r\ )M | 'wf\e.kt M= M
X o ' lo 3
X |
o e ' 7 X - J
! (But ﬁé:g" € 1 for all y 21) Thus the given. limit
| ‘ f(x)g. Mmoo o= o,
- o o o

The lemma is thus proved. _
Lenma 6: Y'FCM) = [_oax-'l}ch(‘) + 2 Z&C%) /08P +
X . PE® o

6(x log x). (In geheral, ©0(g{x)) designates a function of x

1‘ ' such that = _20aXD 5 o 88 Xx—> w.)
' ' : 3.\':)(.) ) _

1

Proof. From Lemma 2 we have

G ¥ - z:
| = Jos*x + (-1 + 20 xics + 2 b
. Wéxg‘cm) | [03 | - oa p 8 %P) mohe ﬁLP [G%g
| | o pK ,%
h(“"‘*;«—‘ Let us-first consider ithe second term on.the right handiside .
(RHS) . ' The '-contr."ibutibn bf' the terms with o 2:2::isvatimost
2 kg™ ZJ = 2k xR YT ket B,

_ 04’1/,;2_
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where k designates the greatest integer such that 2kS X. 8o

L ' a¥x
that the contribution is at most 2{X Xk log?x < ,%:_ log3x

equals o(x log xr), since

) fog X
b VX for>x = i fo®x sl 2 "%
o g < In g cs t
= 4 hna log ¥ =0 .
T

The contrlbutn.on of the terms with o =1 is equal to
X
P*-ZX{ IOE P +Q’O Oa'\P} éa)(z_ ID '}‘Z_(lﬂap)fodnp
=(log x) ”(9‘(::) + o(x 10g %), by Lemma 4.,

p—

Let's consider f:mally the third term of the RHS. The

. contribution of terms with, /6‘> 2 and o '>l is by Lemma 5 egual

to.. 2 Z (/a& p)(foa cb) = 4 > /083 (Z /oa P)

g PEX ﬂ<x
el | hoz . T

ZOO&% o( ﬁ/oay) —o(L C/oa‘b) ﬂ/mx)

ALY 3
f- g ﬁ/&

We show :
. X .
e Z%(’da-a o(3 /03*5)1 |
: | = 0.
%(m 3 ) |
- Now . by def:.n:.t:.on ‘—> V £>0

’_'_.,Vi“, o(ﬂ !ﬁx)
X=>00 ﬂloa_y
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{
~
N
b |
G
al”
=
S

"
HN -S;Y\?,N ‘-=>\ 0(_3?5 'IO%\'))\J Ei_}g—ﬂ }O%h[ -
Thys ’:/E,’)o I N 9’w>N_=>

.
i Tt

Z[’ 6 [‘?‘y )] ZM(/OE}Z'%? k’&l«) |

M< ﬁzM Z :
€ e (bag+ s lan
“ N | 8§;§aﬁ,z %)
Tas ,\%AXO oLy ) -
; - =0 !
55; T (3 °Ef"> | |
that- is ; - ;\;éx( z 0(30 !Daud)) o) ( Z /c? % gﬁ /06»().

Now - lim

e

lie Fm stk
I \ 2 g B k)
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since N is finite,

.wszm et (l"?r% _”f%{ﬁ log )
S (g % foax)

£
taoe)(

L

=Z | %-O = O, since V£>OJN>OBM>N
“‘.‘ ?)ﬁSN‘.ES( Da

- -
C‘b_,é foa x_)-{l(‘;—a.b%x)g_ ( cg 3 :;-ﬂ fo(grsa VB P"’WLC
< Q Z (/ba_?s )255 }o(]‘a Y)-_

| e
- Now we have that the third texm with o3 1,' /?‘«:» 2
- T’ P
- 0(7 (*’ﬁ% e i) = o2 o™ bpx)
3 Pﬂmz

- =o(x log %) Z —%ﬁ_ ’ where this sum is extended over all
. 37

primes g and all integers | /5 2 and is convergent since
2?2 T Tola-iv ol ,a . Consequently the contri-
=z 0 AR 5 -

bution of terms with g2z 2 (and’ equally that of terms with
2) is equal to o(x log x), so that the last term of the
RiHS of (3) is equal to

< Z /oafla\a» Z).\-} o(J(/cﬁS().

P%‘Ex‘

The first term is equal to

PysX

Z_ Cfoﬁg.}s)‘(fa‘a 3) - ;ﬁ foa"zp
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H

2’_ ]oap ‘03% 4— plo&?) ,;-Z\m &P 03% od‘» oy

.<J— <%
o onEx iz 5
P Wp) P> /omwg,f) -~ Q1) O-(\/f/ofx)
"1 er s
= Q%{f@ap’&f) +0C)( 6&5{)
%)
because we know that U“i is bounded as x —>m . Therefore
‘ 2
Q‘é‘ﬁ‘)“ = OCD = 1926\/76) OCx') = o ($2F)
B ‘ XD ) (,a'y _
<k ST =e- Therefore 972D =0 i log 1),

" The term O (JX log x) clearly is o(x log x).
Thus we f:Lnd that the last two terms in the RHS of (3) are
‘equal respectively to (logx) ft9'(x) + o (xlogx) and '

2 _[:19( ) log p)+ o(x log x), from wh:l.ch we have the lemma.
pEi

Lemma 7 7 For each natural number x, , i J £ !,
d=1 o ‘
Proof. Because of (2), we obtain ‘ .
' vL i A .
1 - y /X,CJD D é 1 ~ .vwhere h designates

%i =]_—jx'_‘_] » from which

/_/LaCch:r‘] . - S S

the pos:.t:l.ve nmultiples é x of d. Thus
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Consequently P :
PRI b peb ] -[¥H]

¥
‘Z\a %N <o

since éach term of the 1ast sum is £ 1 and the last term

X é . -
equals zero. ' Thus we f£ind x l}_‘ aq £ 1 + (x=l)
. . dc )

from which the lemma follows. | .

Lemmma 8: If g(t) is a menotonica;ly decreasing function,
g(t) ¥ 0 for all t>0, then

Z (ny = S Cﬁ)cH +C + O¢ CX)

[Tne X & 8 i J-

Here n runs through integers only; X can be any real number,
21; and ¢ is a constant depending only on t'ne function g(t).*"

- Proof. Since g(t) is decreasing in the :|.nterval [n,n+l],

‘ Nk :
we have g(n+l) £ S (—b dF £ g{n),

and thus 0<d, =9p -‘ S acf’)e[—(- < (n). - g(n+l). N

Therefore we have for any pos:.t:.ve integers M <N,

ﬁ d,, ZM ! gcvo— 3cva+f)} = 30\4) -—acN H) 5(M)

| This shows that the series dn converges. In partlcular,

w=1 .
we have idné gifM) . If we put C-= 5“ dn., we have
=) .
C=3d, +§ 4 =3 g~
=y

SPH—-I

e f

ﬁ(t)&%% + Ofg N+,

*Hans Rademacher, Lectures on: Elementary Number Theory
(New York, 1964), Pp- 98-99. -
The material found in van der Corput 5 Lemma 8 is. given
below in Coreollaries 8.1 and 8.2.
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i N |
It follows that i: g(n) = S; g(t)dt + ¢ + O{g(N+1)).
n= | ' ‘ , 3 _
For N=[X] this becomes
Z ' 8(1(\)--:

16m=Y

TLl+t |
S,"+8£+30L+ + C + O(gffﬂm))

. DEI | "‘Sa aH‘JcH‘ +C F O(gCXD
: o . ‘
s:ane SI_ g(-{'JcL{% 8CXJ " and o < g([ﬂ-&- l) < CG?CXU .

<~

Corollary 8.1 L = logy+C } O(,j).__ _
TR | o .
Furthermore if we let "-E(y) = Z 1%. - log v - C, then ,_Cj(y) —— 0

neY
and £ (y) logy — 0 as y — oo,

Proof. The first part follows directly from the lemma
if we simply note i:hat S‘a, _I_éJf = “"Gﬂ? = fog é,.'
For the second part, since E£ly) = 0(7&“), the two limits follow.
Corollary 8.2 DY %‘L — & [og? ‘+C —> O 35 L-—>00.

Proe;f. ‘since _- K S? "?ﬁc{f = ﬁ)ﬂjy = 4/20(‘}‘:‘/
we have Z-l—”éﬂ— “:liloag'zd@ H+C o= O(ﬁ)_’\'@ 8'——3&:),
hég . .

Lemma 9. If - (n) designates the number of divisors of n,

then E Z%lj— o= logzy + e3log Yy + cg + of(l), where c3 and
. -M.L ¢ .

- ©4 are suitably chosen constants.

Proof. Since T (n) is 'equal to the' number of paixs of
¥
natural numbers a and b such that ab = n, +he sum E MJ

is egqual to the sum Z E extended over all natural humbers

" a and b such that ab<y.
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First evaluate the contsibution of pairs a and b‘with'a=§¢§l
This contribution is increased by the egual contribution of pairs
a and b with b ﬁ'J?,'and the result must be diminished by the
.contrlbutlon of pairs a and b such that a,b<%|y.

Now apply the preceding corollarles. The contribution of

pairs a and b such that a <{§ can be wrltten in the form

< L .
@mégzﬂg“‘{%g’m e *"0“06503 SR
. :aa,- - o
3 e agﬁ | J’C.;Jg ““ﬁ’?éhﬁy

ang){fo J_(L;g +-c +O([C§é>§ 'i‘_z ,06 I +c$ +oc0§
{ 5\% +c, +oc:)g 4— 0(106&) {]oé,r +¢, +oc03 .

LT J”} 4"35-33 +C oo s
in this reasonlng c5,.c6, c7, de51gnate constants convenlently

chosen. o _ |
Finally the'cohtributiénhéf‘terms‘with a,b$(y is equal to
J—Q.'
(EE: ‘> Jg e, + 8( ‘%)
a<ly
4 Jon2. e | +~2 | ./ ' |
4 aG <, log 4t + EO%J éf?;%:l+‘ﬁk,+éﬁﬁ

, 33 4'c,ﬂé.+c‘+om.)
Thus we have shown that the lemma is true since / P ‘f‘“y y‘/ =£.
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Y ﬁ-— 103 £ - 'a(:oé 0.

Lemma 10

Proof. From Cox:ollary 8.1, the left-side member of the -

asser,tidn is equal to Cd "{Z h, +¢ + E’Cg)g
| o c“x ) .
AP ' ) ) X |
=S > v s ﬁ 4 ‘ér f—‘fa)
A dl“‘ - d=x ‘ . d £ ,

. (we have set dn=m). The first term is by (2) equal to 1 and

the second is from lemma 7 in gbsolute value <

so that it sﬁffic'es to demonstrate

S lech) - o€ by ¥).

%) dsl
Let vy = %t » Where Q(x) < 1 and ¢ (%) — 1 slowly enough so
_-DON . . ‘
that x5 5 as x—=o . (Such a O (x) exists since we have

i

foa l'ocﬂy X

‘o |
conditions.) For the numbers dcy we have HX‘BX'\ e so that

. seen on pages:id-5 that_ QCX) = |- satisfies these

-

S(d ) — 0 and the contrlbut:.on of these numbers d equals

o (3 4) = olipo:

To prove this last statement, we show that

lve > L_«fﬁ" . OCO:] - o J
N> de x% ' _—
> %

d2xl

"Now lim o(l) = O means that VYe¢>o0dnN4azn > lo(l)|< &.

oo

Thu,s\?‘e>oﬂl\la d2N = 2> d060<2a9<82/4

N £d¢ xE’ L Nsdex? d¢x®
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. . a=x® ' '
Now - I IR x X
‘ ,JZJ'OUJ SO
i 4Nz yf = hnl d o) _ 4
X>e2 Sk Koo, e L ) Q%—F\J /ﬂboo = F}CD
dsx‘éd'- Jd=x€ z g
cl=y€

Therefore we have ’ shown the g:.ven limit equals 0 as x—> Cb ‘o

So that LCLIEGL)[ oco “—-“-o(z - ) = o(>4)
, o d")(? : - JFx :

=o( £(x) + log x + c) .o(log %) since £&(x)—= 0 as x —>@ .
‘The contribution of numbers d such that y<d<x possesses at |
most the order .of‘ magnitude of {Zdé_ng ,8ince e(é(‘) .%0(%-)

= 0{(l). This sum is,-ac_cording- to COrollafy 8.1, (applied. twice,
‘the‘ -sécond time with X inéi:ead of y)l approximately equal to
log:x -'r-aJ.'.Og Yy = (l- ?)log x in such a way that.
. )Q _ Cf-— EJD% ___.; o l. Thus we obtain the desired

ld'iclﬁ %
result since l - Q(XJ —>0-

Lemma 1l: For each natural number Xk,

> ueh ) = 1
dik 7 ‘ : C
Proof. Since Twmw) T l Iy the left member of the
. - : ’ | i .

assertion can be written in the form

Y pdy > LY ST gy, o

dﬂc ,h—- ' J,“C ‘J[

. Ba-
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The contribution of divisors dj< k is zero according to (2), and
the contribution of the divisor k is equal to 1.
a X
. Lemma 12: Z I =:Q!oax + oCksy),
dé o .
Proof: From lemma 9 ‘(applied withy =3 ), the left

member of the formula can be written in the form

) Z %dl {W‘Z’Vd ,‘Z}v;“? ~ Cg foa'i — C#} .'1—,0()03.)()_,

since Z(L'A—@— ox 5—1)) = o(log x), where g(ﬁ") = oy 1)y .

. de

means that 11m gl >) = 0. Apply Corollary 8.1

X0

X
The .contribution of values of 4 £ "[‘0‘8' ¥ 1s equal to

0(;{[ ) = o(log x), since 4 £ X/IO%')(.$’ X/d > {0? X .

‘ X ' .
Thus x—as =>f03>(—7‘~oo => T —> -—-%.-Chg_cow%o,

so that °x (1) is in this case &(1).

This i 28 opev =l T gy < o(F )

= o Z }fd ) = o(log x).. The contribution of the. other values
of & :.s at most of the orderuof : o . »

2 & = leam ) *oCI xS"= ot)oﬁz)

%*‘d‘x 3 3 ]OEX 0?5 g

' From Lemmas 10 and 7 the f:.rst term if equal to U + o(log Xx),
| (R ' : 7
where U 2 Z L Z —-_L
md)

Q;E }_—_/Mc/) ?( /4)

|

thus (letting k

.U

Q kz;; -From Lemma il

W o

Q [oab( + OE%V) , Vaﬂ’ifb CO*‘lO-'a}’/
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K FSince t'he number of terms is at most 7% and each term: .<(k+l)2.
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After these preliminary consideration, we can now prove

Selberg's formula:

2
B2+ oy T 9 bgpa @ xose.

From Lemma 6 the left side has to a term whlch —0 as x»-—;-co,

the value _ xiagx Lﬂ‘@(,w). |

" We must now show that this expression approaches 2. From the

-Qefinition of the function f£{m}),

Z%Lwo 2— LMQD = 5—_)\&132! ,

dz ¥

'where h des:Lgnated the multiples £ x of 4. Consequently E J

is equal to *-j", to a term which has absolute value £1, T'he

sum Z f(m) is therefore approxn.mately equal to

)\cd) ¢« 2 X - I
x- ? = z &——2 Oa . = 2% 1(3)( +o ()(/OQx>
d&w q
from Lemma 12, and the error is at most of the orderxr of
magnitude of > | kc.J.)( == 106%'-} ¢ SO it suffices to
d€y dg % .
show that this sum is equal to o(x log x). o ' ‘ N

The contribution of the terms such  that JE (c:j < oK .

where k des:.gnates an integer ‘?O, is at most (k+1)2 “"’E 5

Consequently the sum is less than ‘
Ut 1™

(J<+|”) X .
Z = X QF 3

kK=o

thus at most of the order of x and therefore o(x 1og X).
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II Proof of PNT Using Selbera's Formula.

In this part we will employ the three following facts:

| ’\9‘()"\) o+

(1) E ’k9‘(p)lo —> 4 33 ¥ —> o

( ‘ X ylozx vy g P | )

(Selberg's Formula);

: ‘ 2S¢ .

{(2) 1lim inf 4 0, demonstrated in Lemma 3;

‘ X000 o

(3)_ ”To%x_— Z - | &s ¥-—»a@ . ', shown in
the remark follow1ng' Lemma 3.

‘ nQCxd .
From these we shall prove that ~— ¥ =—— | as x —o ,

wh:n.ch, as we have shown previously, implies PNT.

" The formula (1) shows that ”‘9(’}'[ is bounded, so that the
limits : |
- AR S
A= ]Wb Su’.bp v and o_,f-(n‘wu mF %
. W o ) : KR
exist. We have 0 €a£A, and ,ﬁ_&) -> | means that a = 1 = A,

Lemma 13: A +a = 2.

Proof. It is possible to make x become infinite in such - .

. APLX)
a way that < > A. If gdeSLgnates a fixed positive number,

,19_ (o p )>(a ~§ )P for each pld Sufflc:l.ently large and for each

number p < yx, thus 5 |
— X B~ o g

Joa‘x’ T
The last term approaches a -8 in view of (3), so that Selberg's.

formula shows that A + a - & £ 2. This is true for each positive
fixed 8 . Thus A + a <2,
If in the above reasoning we replace A,a, 8,‘ and > by a,A,-—g‘ .

and < respectively, we find that A + a 2 2. Thus A + a = 2,

1% "
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In the rest of this argumeht X —> . in such a way that

'—%F-v—)—a»A, and the number g is positive and fixed.

Lemma l4: For each fixed >\>‘a, ‘ oy
- ' li‘E P - -
ﬂo%.x Z|, P —> O
e Y ' i
if | 1s extended over numbers p-ix such that 19»( _J T
Remark: This lemma is a theorem of compensation: . if a%{(x)

is large, ’1_9’(9) is small for "almost" .each nurribe:;-_ p;.sx.’,

P.roof- Z 19( J ’oap ng Ioap )05%

& P

- Z’@CPMQSP +L49(.7))lu§5|g (Z Joré I’)

2 Zaapb Joap —(&cm)
w'here p and g are pr:.me. ; The last term is at most of the order
of x in view of (1)— applled w:.th J'x' :.nstead of X,
We can therefore write ,the rfo_rmula of Selberg also :Ln the

form

G L |
+ 2 0@ s p = Z
¥ X Jogx p |
¥ - T opex e
- If P is greater than the value u conven:.ently chosen and
_dependent on S , 19(‘*);) > (a~-5S)Tn p . There exists a
positive humber b(u) such that &[%—) > (a-~ S)—lg - b

for all p's such that %-ﬂ:. Thus the inequality is valid for

all pix
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' — ’
If we divide the sum 2%2 into EE:, and jf:‘ we obtain

;«0(%)'”% VDN SR 53 - b 2o

> (a-$dx Z:a‘ + kv v %P‘ ~ b G0,

If we substitute this result in Selberg's formula we obtain:
) e igég
A+a-§ + ()\—a)flmwp Tog ¥ Zs ¥ £2
which implies, since A+a = 2, '
1
(}\*a)(Msu{)Tga—xz,%féga
from which follows the lemma since ) -a >0 and §is an

arbitrary positive number.

Lemma 15¢: For every fixed '<A,

10813{ Zz P 7 [
if E is taken over pairs of numbers p and a ‘such that )
]Dé‘ﬁt 3 J_- 19‘ P%) °
Remark: Lemma 15‘15 a theorem of double compensation.

. o Y . ‘ A
If fﬁ?x)7is;large, 19(’5) is small for "almost" every number -
‘ y , .
p<x, and 19(?% ) is large for "almost" each pair of numbers

p < (¥ and g <X
X
Proof: If we substltute P for x in Sererg s formula,

we obtain

o) F o) gy SR,

l.
P NES
P
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Substituting this result J.n Selberg's formula gives

1.9"0() = Ux ¥o) — |03X Z { a + 0“3} '_3_& r—"ai( 9
. Where .
- Vs P”’Z’%‘/ ‘°8Y’P ¥ ( )"’ZP B CHE

By virtue of (3) we find

< ) 4v
< _anj’D_ = 2 |oa X 4 OCIoaY) y this 79'()() = ""BX + 0(,(3 .
In each termof Vv, p£{x and q"\jf; 'I'huqu "‘(pq)“‘fxzr
so that 1% (F’%) < (A+ ) P% , if x is sufficiently large.
‘If we divide V into two sums ‘ZQ and Z ,we have '
. o fo _
=AY *ms M)xz(wa —%ﬂ'ﬁ,z ),,

" where W = _ %__ (}oa 7 ‘%ﬁ —3—3—)

| | . IOOE le%
- ZJ—— G P23
pevx 3<%

> B2 {5+ ol becouse f (2
<\¥

L

4 fcéx -+ ,5 (1083();

it

We thus have

| |
e Fexr € (A+§)x — @ (4+5—,u)xZ (g%'%ﬁ'—“gi)w

from which

ot l - ll
4 (h ¥ (5 —’*f”) £ <ﬁ+évﬂ>za(’da}’9p'%i'@3—§_)
g I | |

A+ s — 52 .

?
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Consequently, {
o | (aP . g
. : — . &
. 41 (A’ —-},{/) I“’Pb SCLP [aa'?—)( ZQ_( P % )*-. S 5
from which results the lemma, since A—}Lb'o ang 5‘is an

f

arbitrary positive number.

End of the Proof: Let ¢ be any positive number such that ga<A

and let the number 8 be so small that
(4) A-ag > §e+ 26§,
Consider the sum f | f
po— N -‘—a—o P. N 'Ea',:'
Ez:a is taken over pairs of prime numbers p and g such that
v ¥ X
- b ol A
pEiX %ﬁJF , pg 2N, ’&(Pfg) > (A-8)73

. where N designates any fixed natural number.:  _ 4 is taken over

prime numbers r such thatﬂ”%ﬁ <y £opg. If <1, the sum
: /

is naturally equal to zero. ’

For each term of ZE:4 ’
b, 2.4 A Y .
P apy =opNpgVt £ ox T = oxX T =x,
if x is sufficiently large. '

.If x is sufficiently large, all the terms of j{:é satisfy

the inequality

X g
(5) I (F) 2 (a+8)F
This inequality is evident for the terms with r < pq, because theh
',‘}(i)bﬁu(_x_)b X o Xy X
v/ 2 \pg) 2 (A-S)pg 2(A-S)ar > (@+8)¥

because of (4).
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X
Consider now the terms with r >pg. If we letFr = u and
X _ .
'P_cg = v, we obtain u<v € ¢gu. If we replace x by v and by u'in

. Selberg's formu'la.‘

(IOBXD"S'CX) +QZ’19’CP.) ogp = Zb(ch +-ocx108¥33

we obta:.n by subtractlon-

log v It _!c’% w Fuy € 2v IoSV - 2ul o3 L +oCalo6u—),

: log v ﬁ"’— %u
Sw) 2 ';%38—' ) - Z2v-wy -~ 2v ( Ioa.u_, ) o).,

thus

In the second member the first term is at least qﬁ"(v) (A- S)v

and the third term is of{u), thus

9{@ > (A'-'S)\r:'-é Q,.C\)#Li;j F olwd = 24, - (_Q—A,fé?).v Focwd
- F Qu,—~<a+8)a“u,'+oca,> | |

Sz (a+£§)bu + ocu,)

beeause of (4)1and‘sineé-a7+za é,z.f'Thus_we find, if x isvlarget
enough, that | |

19’(?) '19'(&,) (34‘8)% (&+S)‘f§'

so that (5) is valld for each term of Z Consequently,
Y= X ‘ 5 :

&{r> Ca+S)r

where E & is taken over pairs p and g such that

[ X -
347: , o~ SPpg<ar,
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We thus obtain

Zs log p I"é’%

0—" ———
= | > |
r _H%P % D

3¢

=% [O% P 19'(0?>
2;;_"%§£L_ T.CQIOS X

where ¢}, cp are positive constants conveniently chosen.

[51

' Consequently,

- - | Séciwxé a =o(lc8"'x),
. =X ,
- ' Scf)>ca+SHE
from Lemma l4. We now introduce the sum
T =z — -%
PErx , g , pgeN
which is at least equal to
o . Nog p s
| Y ¥ ‘ T b
VNPT Vi €9 <YK

Each of these two factors_has, from {3), at most the order of

magnitude of log x, thus T > cj logzx, where cj is a positive
. nunber independent of X. If we let : } ;ﬂ
N . I B
-‘(_"‘W:“-‘Q } %i E E + < .}%_E . _%_3 .

where each term of the 1atter sum satisfies

peit L gl r&(ﬁ%m 8) 55

.Lemma 15 shows that this sum eguals o(log x). Thus

lap . gy o
.zz:a P 2 Cy ‘ﬁ L

B .

if x is large enough.

For a fixed value of X, we con51der the prime pairs p and q

in Z for WhJ.ch 2 "f&"" takes the mln;.mum value f{"' R

where‘;cdepends on x alone.
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— lo lo

}I P37 2
'I‘huss /(,(2__ 3 >Q_,/U,C3C)a)(.
Compar:.ng this result with (6). we obtain 7}

n -/uZ—"é———éo.

, _
Consequently to each positive £ and each natural number N there

corresponds a number t = /N such that
Lercat
thus .
E }a < g ,
f;q-< v $ot
from which &(vi’)— (+/U‘> < eqt.

. If N, thus also ‘t,is large enough, we have

Gty >(a-edot  ad (%) < (A +e) Y

AteE
p=

. Thus _ - (a Eda — < SU'
This :Lnequallty holds for each positive number 8 »s0 that
aG‘ - A 0.
Thus each pdsitive nunber T such that ao" <A satisfies also

o _
the inequality av ¢ A. This result gives nothing new if a = 0,

. . ~SCY) .

but let us apply the fact that lim inf X is pOSltlve' that is,’
_ A |

a is positive. Each number <7 possesses the propexrty

Q"‘a' < -g" « If 0_—> A/a + We obtain (5-) "‘ 5’ ;>

-’%- < 1 o 'I‘husA=a=-lsinéea'éAanda+A=2.
Thus lim 19‘_&2{2 = 4 and therefore =

X—0a .

fim XY o
X-—;-o:? ‘)C/ -

}"ax - . Q.E.D.

i
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It has lately.been possible to improve the original proof
given by Selberg and Erd8s. The older versionsgave just the

asymptotic eguality g
T~ T%—x— ' :

without an estimate of the error term

X

Foo = 0 —Tog X . -
S.A. Amitsur, E. Bombieri, W.B. Jurkat, R. Breusch, and E.
Wirsing have since given~estimates.for ﬁ(x) whigh‘app?oach the
accuracy‘dbtained'by traﬁécehdenﬁal arguments. Howé&gf;‘thése
“recént elemenfary;proofg bédqme extremely sophiéticated‘andlthé

‘  sharpéSt resultsfarelsﬁill‘dbtainable by transcendental methods.



35

- BIBLIOGRAPHY

Rademacher, Hans, Lectures on Elementary Number Theory. New York:

Blaisdell Publishing Co., 1964.

. / ' . / . L/
van der Corput, J.G. Démonstration é1lémentaire du théoreme sur

la distribution des nombres premiers. Scriptum I.

Amsterdam: Mathematisch Centrum., 1948.



	An Elementary Proof of the Prime Number Theorem
	Recommended Citation

	tmp.1332178834.pdf.Gf_jF

