The University of Maine

Digital Commons@UMaine

Honors College

5-2003

Discovering Properties of Complex Numbers by Starting with
Known Properties of Real Numbers

Esther D. Hatch
banjolelegirl@yahoo.com

Follow this and additional works at: https://digitalcommons.library.umaine.edu/honors

6‘ Part of the Mathematics Commons, and the Statistics and Probability Commons

Recommended Citation

Hatch, Esther D., "Discovering Properties of Complex Numbers by Starting with Known Properties of Real
Numbers" (2003). Honors College. 18.

https://digitalcommons.library.umaine.edu/honors/18

This Honors Thesis is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted
for inclusion in Honors College by an authorized administrator of DigitalCommons@UMaine. For more information,
please contact um.library.technical.services@maine.edu.


https://digitalcommons.library.umaine.edu/
https://digitalcommons.library.umaine.edu/honors
https://digitalcommons.library.umaine.edu/honors?utm_source=digitalcommons.library.umaine.edu%2Fhonors%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=digitalcommons.library.umaine.edu%2Fhonors%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/208?utm_source=digitalcommons.library.umaine.edu%2Fhonors%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.library.umaine.edu/honors/18?utm_source=digitalcommons.library.umaine.edu%2Fhonors%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:um.library.technical.services@maine.edu

:DIS COVERING PROPERTIES OF COMPLEX NUMBERS

BY STARTING WITH KNOWN PROPERTIES OF REAL NUMBERS

by
Esther D. Hatch

A Thesis Submitted in Partial Fulfillment
of the Requirements for a Degree with Honors
(Mathematics and Statistics)

The Honors College
University of Maine

May 2003

Advisory Committee:
Andrew Wohlgemuth, Professor of Mathematics, Advisor
George Bernhardt, Research Scientist
Clayton Dodge, Professor Emeritus of Mathematics
Ali Ozlik, Professor of Mathematics
Sydney Thomas, Associate Professor of Counselor Education, Honors College Professor




Table of Contents

Introduction to the Thesis .......cccevvinnnenennn.. fe ettt aeaenras 3
Introduction to Complex Numbers ............coooviiiniiiii 5

Geometric Representations of Complex Arithmetic ........coiviinannn. e 12
Trigonoﬁnetric FUNCHONS -.eeeiiniiiiiiiie ettt e 15
Geometry: THANGIES ....coviiiniiniii i 17
CONCIUSION ..etviiniii ittt s e e a e e enene 26
Author’'s BIography ......coeeniiniiii e ceeaens 28

J 3 (5 (=3 110 < T R, ceeeeeeaes 29




Introduction to the Thesis

The following work Completes the thesis requirement of the Honors College and
fulfills the capstone requirement in the Mathematics and Statistics Department of the
University of Maine. This thesis will record a process of discovery in which facts of
arithmetic, algebra, and calculus are conjectured for complex numbers. This will be done by
reviewing the real number system and attempting to extend known properties and uses of real
numbers to complex numbers.

This thesis is written in the spirit of the “Moore Method.” The “Moore Method” is a
method of teaching used by R.L.. Moore that depends on student discovery and original
proof. His course is open only to those who have no previous instruction in a topic, and thus
no preconceived notion of how to solve a problem.” Preconceived notions would make one
too knowledgeable for new discovery and original proof. All the proofs in the following
thesis, unless otherwise noted, are originalAproofs I thougﬁt up and wrote.

| I have studied some of the topics in this thesis, so one might ask how I can write a
thesis based on discovery. The focus of my previous mathematical education was on real
numbers. In elementary and secondary school, mathematical education focused on

computations of real numbers. Properties of real numbers were used, but not explored. For

complex numbers, all I learned before college was+v~1 =i, and that there existed a graphical
representation where real numbers are represented on the x -axis and imaginary ones on the
y-axis. The following thesis illustrates that there is much more to know about complex

numbers.

! Devlin, Keith. “The Greatest Math Teacher Ever, Part 2” Mathematical Association of
America. June 1999. 12 May 2003 4:50pm <http://www.maa.org/devlin/devlin 6 99.htmi >.
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My former studies focused on computational mathematics and not theoretical
mathematics, yet for this thesis, discovery begins with analyzing properties of real numbers.
The thesis will help me better understand properties of real numbers, because the basic facts
of arithmetic, algebra, and calculus must be identified for the real numbers before they can be
studied and extended to the complex numbers. In college, I studied complex numbers in the
undergraduate cdmplex analysis course in the fall of my senior year—the same time I began
this thesis. This complex analysis course proceeds at an accelerated rate; thus full
exploration of complex numbers and comparison to the real numbers was not possible. This
thesis is a slower study which builds a solid foundation for complex numbers.

This study gives me the opportunity to ask questions during my work and to guide my
own discoveries. As I come upon different real number topics, I have the opportunity to ask
niyself questions and discover the answers. I could never rediscover all the properties of
complex numbers; there are too many and some are beyond my scope of knowledge.
However, since this thesis is an open;ended project, I have the opportunity to pause on
certain subjeéts for more exploration and omit other subjects.

The deeper understanding of complex numbers will help me in two ways. First, by
identifying properties of real numbers that I need to explore, I strengthen my knowledge of
real numbers. Secondly, my solid understanding of the properties of real numbers and
complex numbers will be an asset when teaching high school mathematics because I will

understand the reasoning behind these and how they work in basic mathematical functions.




Introduction to Complex Numbers
The earliest appearance of a negative square root comes from Stereometria of Heron

of Alexandria and calcﬁlations made by Diophantus. Heron of Alexaﬁdﬁa was trying to.
calculate /81-144 . Instead of correctly writing ~=63 for this computation, V63 was
recorded. Diophantus had the quadratic equation 172x = 336x” + 24 for which x = 2217
Diophantus did not calculate the robts of the quadratic equation because he believed that “the
quadratic equation was not possible” since there were no rational solutions. While it is true
that there are no rational roots to that quadratic formula, he did not explore the quadratic
equation’s irrétional roots and discover the square root of a negative number.”> Later
mathematicians such as Descartes and Euler cast off square roots of negative numbers as
being unimportant.

Before any information was known about its existence or properties, mathematicians
formally manipulated the “quantity” ~~-1 and called it i. Then, in 1855, William Rowan
Hamilton (1805-1865) considered 6rdered pairs or couples (a,b) and (c,d), for a,b,c,d €ER.
He defined addition and multiplication respectively as the following:

(a.b)+(cd)=(a+chb+d) (ab)c,d)=(ac-bd,ad+bc)>
This definition of multiplication helped in discovering further properties of v-1. Some of
these properties will be shown in this thesis. |

Ordered pairs or couples are not unknown or a mystery to math students today, in fact

ordered pairs are studied in depth as vectors in Calculus ITI. Vectors are one way to visualize

and work with ordered pairs in two space, R*. Vectors have an origin at (0,0) and a

2

Nabhin, Paul J. An Imaginary Tale. Princeton, New Jersey. Princeton University Press
1998.p. 4.
? ibid, p.79-80.




directional arréw to an ordered pair. The additive properties of ordered pairs are known
because they are properties of vectors, however, in Calculus III, no mulﬁplicaﬁon is given for
vectors in R*—just addition. Furthermore, there is no good multiplication defined for R®,
the study of ordered n-tuples of real numbers. The additive properties of R and ordered pairs -
of R? are listed:

Associativity:

For real numbers, (a+b)+c=a+(b+c).

For ordered pairs, [(a,b) + (c,d)] + (e, f) = (a,b) +[(c,d) + (e, /)]-
Commutativity:

For real numbers, a+b=b+a.

For ordered pairs, (a,b) + (c,d) = (c,d) + (a,b).

Identity: :
For real numbers, There exists 0 E R such thata+0=aforallaER.
For ordered pairs,
There exists (0,0) ER? such that (a,5) + (0,0) = (a,b) foralla,b ER.
Inverse: '

For real numbers, a+(—a) =0 forallaER.
For ordered pairs, (a,b)+ (—a,—b) =(0,0) for all g,b ER.
Cancellation:
For real numbers, If a+ b=a+c, then b=c for all a,b,c ER.
For ordered pairs, -
If (a,b) + (¢,d) = (a,b) + (e, f) then (c,d) = (e, f) for all g,b,c.d,e, f ER.

Since addition and multiplication are defined for both real numbers and ordered pairs,
there may be more properties of both real numbers and ordered pairs. To ensure a thorough
examination of real number broperties that might apply to ordered pairs, we refer to Ethan D.
Bloch’s “Properties of Numbers™” found in his textbook Proofs and Fundamentals. * The
multiplicative properties or real numbers in this list will be examined to see if the properties

are still true for ordered pairs using Hamilton’s multiplication.

“*Bloch, Ethan D. Proofs and Fundamentals. Boston. Birkhauser. 2000. p.375-376.
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Multiplicative associativity for real numbers is given as (ab)c = a(bc) for all
a,b,c ER. To see if multiplicative associativity is true for coordinate pairs, consider
arbitrary pairs (a,b), (c,d), and (e, f).

First [(a,b)(c,D)(e, ) =[(ac - bd,ad + bec)l(e, f)
=[(ace - bde) - (adf + bcf),(acf — bdf) + (ade + bce)]
=[ace — bde — adf - bcf ,acf — bdf + ade + bce]

| and by rearranging terms,

=[(ace — adf) — (bde + bcf),(bce — bdf ) + (ade + acf)]
= (a,b)(ce - df}de +cf)
= (a> b )[(C, d)(e= j)]

Thus there is multiplicative associativity for coordinate pairs. -

Multiplicative commutativity for real numbers is given as ab = ba. To see if
multiplicative commutativity is true for coordinate pairs, consider arbitrary pairs
(a,b) and (c,d).-

(a,b)c,d) = (ac - bd,ad + bc)
=(ca-db,da+ cb)
=(c,d)(a,b).

The multiplicative identity for real numbers is 1. Thatis, gl =a forall aER. In
order to find if there is a multiplicative identity, we ask if there exists (x,y) such that for all
a.b ER, (ab)x,y)=(a,b).

Assume (a,b)(x,y) = (a,b) for all a,b ER. Therefore ax-by =aand bx+ay =b.
From these, we set up the two equations b(ax - by) =b(a) and -a(bx +ay) =-a(b). Adding
these two gives us —b%y —a’y = ab—ba. y(-b>—-a*)=0. Then y=0or -b*-a’*=0. If

-5 —a® =0 then a*> =-b* and a=>b =0. This cannot hold for all a,b thus y = 0. Therefore




ax = a, bx =), and x =1. Therefore, if an identity exists, it must be (1,0). By definition of
complex multiplication, (a,5)(1,0) =(a,b). Thus (1,0) is the identity. |

The multiplicative inverse for a non-zero real number a, is a number denoted by at
such that aa™ =1, where 1 is the multiplicative identity. If a multiplicative inverse (x,y)
exists for some coordinate pair (a,b), it must satisfy the equation (a,b)(x,y) = (1,0) since
(1,0) is the multiplicative identity. Given (a,b)(x,;y) = (L0) it follows that

(ax-by,ay + bx)=(1,0) so ax—by =1and ay+bx=0. For a=0, ay = -bx,and y ==,

By substitution, ax—b=2=1 and x(a + Ii =

y:

a® ~x-b2

If an inverse exists, it must be (—IiF — > ) Since (a, b)( T b_) (1,0) by
definition of complex multiplication, (m, — ) is the inverse of (a,b). In fact,
(a“?, 53 ) is seen to be the inverse of (a,b) even if only one of aorbis0. Thus

(L,, 3 ,) is the multtphcattve inverse for all a,b ER, (a,b) =0.

a?+b?

The multiplicative cancellation law for real numbers is given by:
if ¢ =0, then ac = be only if a =b. To prove the cancellation law is true for coordinate pairs,
show that if (a,6)(c,d) = (e, £)(¢,d), then (,b) = (e, f) for arbitrary pairs

(a.b), (¢c,d), and (e, f).




Assume (a,b)(c,d) = (e, f)(c,d). That is, (ac —bd,ad + bc) = (ec — fd,ed + fc)
Thus ac —bd = ec — fd and ad + bc = ed + fe.

Solve the system of equations:

c(ac - bd) =c(ec - fd) and d(ad +bc) = d(ed + fc).

This becomes ac? —bed = ec? — fed and ad” + bed = ed® + fed.
Simplifying, ac” + ad® = ec® + ed”.

Factoring, a(c” + d*) =e(c® + d°).

Thus a = e, if (c,d) =(0,0).

Substutiting a = e into ac —bd = ec — fd gives us ac —bd = ac - fa.
Thus —bd =—jfdand b = f, if d =0. Similarly, b= fif ¢ =0.
Therefore, (a,b) ={(e, f).

The reverse implication is true merely by substitution.
The distributive law for real numbers is given by: a(b + ¢) = (ab) + (ac). For

coordinate pairs, consider arbitrary pairs (a,b), (c,d), and (e, /) and show
(e, Nl(ab) +(c.d)] = (e, f)ab)+ (e, f)(c,d). We have

(e, Nlab)+(c.d)l=(e, Nla+c,b+d]
=[e(a+c)- f(b+d)e(b+d)+ f(a+c)]
=(ea+ec— fo— fd,eb+ed + fa+ fc)
=(ea— fb, fa+eb) + (ec — fd,ed + fc)
= (e, f)(a.b) + (e, f)(c.d).

Bloch lists a double negation law, that for a real number x, —(—x) = x. Thisis an
elementary property of vector spaces. The double negation property is the point on Bloch’s
list where this examination will pause.

According to The Language of Mathematics by Keith Devlin, a field is a system that
satisfies the following conditions.

1. For all m, n: m+n=n+m and nm=mn (the commutative laws for addition and

multiplication.)




2. For all m,n, k: m+(n+k)=(m+n)+k and m(nk)=(mn)k (the associative laws for addition
and multiplication.
3. For all m,n, k: k(m+n)=(km)+(kn) (the distributive law).
4. For all n: n+0=n (the additive identity law).
5. For all n: nl=n (the multiplicative identity law).
6. For all n, there is a number & such that n+k=0 (the additive inverse law).
- 7. For all m,n.k where k= O: if mk=nk, then m=n l(the cancellation law).
8. For all n other than 0, there is a k such that nk=1.>®

These axioms were shown true for coordinate pairs during the review of Bloch’é list,
and thus the set of ordered pairs with the operations of addition and coordinate pair
multiplication is a field. This field is called the complex field and denoted as C. So C is R?
with Hamilton’s additional multiplication.

The real ﬁumbers can be considered an extension of the rational numbers. Likewise
the rational numbers are an extension of integers and the integers are an extension of the set
- of natural numbers. This raises the question of whether the complex field can be considered
an extension of the real ﬁumbers.

Let R={(a,0)aER}. Thus RC C. Define a function f:R—>Rby f(a)=(a0). If
f(a)= f(b), then (a,0) = (b,0) hence a = b. Thus fis one-to-one. Also, fora (a,0) ER,
f(a)=(a,0)for (a,0) € R. Therefore fis onto. Note the following: |

fla+b)=(a+b,0)=(a,0)+(b,0)= f(a)+ f(b) and

> Devlin, Keith The Language of Mathematics. New York. W.H. Freeman and Company.
1998. p.72 & 73 :
¢ Some notation has been changed for consistency.
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f(ab)= (ab0)=(axb-0x0,ax0+bx0)=(a,0)(b,0)= f(a)f(b)- We have just shown f
preserves addition and multiplication, thus R is isomorphic to R, denoted by R=R.

Define an ordered pair of the form (a,0) fora ER as “real.” Define an ordered pair
of the form (0,a) for a ER as “imaginary.” Lastly, define i = (0,1). Note that i’ =—1 since
(0,D)(0,1) = (-1,0) = —(1,0). The simplistic definition of 2 =-1is what mathematicians
worked with before they had i = (0,1) and this simplistic definition is what most high school
students are familiar with.

We have shown C is at least a vector space over R, and using scalar multiplication,
where a is a scalar and (b,¢) is a vector, we have a(b,c) = (ab,ac). Identifymg a with (a,0)
we get (a,0)(b,¢c) = (ab-0,ac + 0) = (ab,ac). Therefore scalar multiplication is given by
complex multiplication by elements in R.

Furthermore, consider(a,b). First, (a,b) =(a+0,0 + b)=(a,0)+ (0,5). By coordinate
pair multiplication (0,6) = (5,0)(0,1). Thus (a,b) = (a,0) + (6,0)(0,1). Due to the isomorphism
between R and R , we write a for (a,0) and b for (b,0), so we can write (a,b) = a+ bi; a+bi
is used as an alternate notation.

From this we can consider that RC C.

11




Geometric Representations of Complex Arithmetic

We will now look at the geometric interpretations of the most basic mathematical

properties of complex numbers—arithmetic. In the real number system, there are four

operations: addition, subtraction, multiplication, and division. Addition and multiplication

for complex numbers have already been discussed. A visual representation can be given for

these arithmetic operations by using a vector drawing in real two space.

The addition of two coordinate pairs (a,b) and (c,d) where (a,b),(c,d)EC can be

seen in Figures 1 and 2 as vector addition.

(a.D)y+(c.d)=(a+c,b+d)

a.h)

(c.d)

(a+c,b+d)

Figure 1

Figure 2

Subtraction is the same as adding the inverse of a coordinate pair. Therefore

(a,b) - (c,d) =(a,b) + (-1)(c,d) = (a,b) + (—¢c,—~d) = (a—c,b — d). See Figures 3 and 4.

(—C,—d)

a.b) (‘c’fd) a.b)
(c.d) (a-c,b-d)
Figure 3 Figure 4
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Polar coordinates provide an alternate way of denoting poihts in R®. From
Calculus I, x = rcosf and y = rsinfl, where r is the modulus of the vector (x,y) and 6 is the
argument. Therefore (x,y) = (rcos,rsinf). Using complex multiplication:

(5,5 ¥,)(%5,Y,) = (€08 6,,1; sin 6, )(r, cosb,,r, sinb,)
' = (rr, cos 6, cos B, — 1, sinB, sinb,,xr, cos 6, sinb, + rr, sin b, cos 6,)
= r,r,(cos 6, cos B, — sin, sinb,,cos b, sinb, + sin, cos b,)
= r;r,(cos(B, + 6,),sin(f, + 6,)) by trigonometric identities.

A graphical representation of this shows that the moduli are multiplied and the arguments are

added. This is pictured in Figures 5 and 6.

n 6 (nr)
Ty “\\8 1+ 62
Fgure5 | 4, Figure 6

Polar coordinates can help visualize complex division:

B2 (o, 3% 92) ™

= (xpy1)(_2273 "2_—}72—5')

Xy +ya " X5 tYh

=(r,cos 6,1 sin 61)( 7 2050, 7 sin, )

(13 c088,)% +(73 sind, Y * (r, cosb, ) +(r sind,

=(xcosf,r sinﬂl)(

reosd, -7, sinf,
r2(cos® 6, +sin>8,) > rf (cos? 8, +sin26,)

- rycosf, -1,sinb,
=(qcosal,7181n61)(-r22 2 )

_ {1-1 cosé; cosb, —r;sin, sinf, -—rcosf;siné,
7 5 N n

= € (cos6, cos6, +sind, sin, ), 2(sinb, cosb, - cos, sind,))

+ A5 Br‘:"s b be complex multiplication)

13




= (}zcos(e1 - 62),%sin(61 - 62)) (by trigonometric identities)-

= (cos(6, —6,).sin(6, - 6,)).
Graphically, this can be interpreted as dividing the modﬁli and subtracting the arguments, as

shown in Figures 7 and 8.

L)
R
& |~

?2 ﬂ 1"’ ﬂz

Figure 7 Figure 8
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Trigonometric Functions:

Next we will examine complex exponential functions by starting with known real

. . . 2 &3 o
power series expansions of cosine and sine. We have cosy =1- %+ 4 —%-+...and

. 3 3 7 . . . . .
siny =y-2%-+%-2%-+.... The expansion of their sum looks similar to the power series

expansion of ¢, but is not equal to e*:

3 4 5 6 7
y

. 2
: Yy
COS)2+Slﬂy=1+y—-2—!'—¥+z}j+ §—5—7+... o but

x 2 .3 4 5.6 .7 ) . . @y il
€ =l+x+5+L+%4 +%4+%+%+... Inthe expansion of cos y, substitute < for -

2 NT n PIRV4 RN 2 FIRNY .
for n=2,6,10,... and &~ for £ for n=4,8,12,... . Now cosy =1+~ +2-+ 8+ . This

gives us a power series expansion of cosine with all positive signs. The same substitution

. .. . . 2.3 4.5 6.7
does not work for sin y. Rather, those substitutions give us siny = y + 23—+ 3+ +... .

We have calculated an expansion of sine that has all positive signs. However, the terms in
each numerator are not raised to the same power. Therefore, we will multiply both sides by
i: isiny =iy +(i§§3—+%)—5+ (—‘2—7+ ... . Thus

cosy+isiny=1+iy+ %+9’3’T)3+ (—"{%+ %)5-+.@6%6—+ %+ ... . This is of the same form as the
p(;wer series expansion for ¢*. Thus cosy +isiny = ”. Multiplying both sides by e gives
us e*(cosy +isiny)=e"e”. Using desired properties of exponents would give us

x iy _

ee

X+iy _ ez

e

Definition: For z=x+iy, ¢° = "(cosy +isiny).

15




We look at e to see if it fulfills exponential properties and we see

e%e® =™ (cosy, +isiny,)e”(cosy, +isiny,)

=¢&"*(cosy,cosy, +isiny,cosy, +isiny cosy, —siny,siny,)

_ it

=" (cos(y, + ¥,) +isin(y, +y,))
=™ +Xp+ (Y1 +Y2)
= ARt

= ezl +2Zp
Also, ¢® = ¢®(cos0 +isin0) = 1(1) =1.
The definition for e?can be used as an alternate way to show that all real numbers

have a mapping to the complex numbers. First, e = cosz + isinz = -1. Then for any real

number, a:
a=-a(-1)
a=-ae”™

a =-a(cosJT + isin i)
a=—a(Cosx,sin )
a=-a(-10)
a=(a0).

16




- Geometry: Triangles
A Lastly, we will look at how complex numbers and complex multiplication relate to
geometry. Only real numbers were used to discuss triangles in my high school geometry
course. To start off, we will consider triangies with vertices at poiﬁts of the complex plane.
Consider triangles with vertices 0=(0,0), A=(a,0) and a third unknown vertex B. We
wish to calculate the coordinates of B, when B satisfies various conditions. First we seek B
such that OAB is a right isosceles triangle, where ZBOA is aright angle. Itis clear that
B=(0,a) but let’s see how to compute B using complex multiplication. We know that
anything multiplied by i is rotated 90° abouf the origin in the complex plane, with no change
in magnitude of the modulus. Thatis, ai=(0,a) and |a|=|ai|. A right isosceles triangle is
created using the i rotation; it is the trianglé With vertices at (0,0), (a,0) and (O,aj as
illustrated in Figure 9.

i: 90° rotation
right, isosceles triangle

B: (0,0

o000 } A: (a0)
Figure 9

The next isosceles triangle to consider is the equilateral triangle. Instead of rotating

~ (a,0) by i or 90°, rotate (a,0) by 60°. The corresponding trigonometric triangle for 60° has
c0s60° = L and sin60° = . Thus, we will try a rotation of (£,%). (2,00, L) =(£,2E

27 2

as shown in Figuxe 10.

17




a: (0.0 .rA: (a.0)

Figure 10

If this is correct, than the three vertices of the equilateral triangle will be (0,0, (a,0),

and (% “"—) Let us find B by another route: rotate through 120° and then translate by adding

2 2

(a,0). This rotation is accomplished by a multiplication of (-2_1’§). We have

(@07 ‘5) = 2¥3y a5 drawn in Figure 11.

22 2

@0 =35
B:fi “JE) |

Zr 2

0: (00 A: @,0)

Fgure 11

Next this point must be shifted. When calculated, (&,%2) +(4,0) = (&,22 ) which is

the same point calculated using the first rotation, as illustrated in Figure 12.

(255 +(a0)=(5.55)

B{5:57)

O:(0.0) \Ai{a,ﬂ)

Hgure 12

Lastly, to check that we truly have equilateral triangles, consider the lengths of the

sides. Reconsider (a,0). The modulus of (a,0)isva®> =a. The modulus of (£, "‘2/_) is

18




V@O +(#D) = s = /%2 =Ja* = a. Lastly, check the modulus of (2,0)—(%,%5).

27 2

We seo that |(2,0)- &, 55 = Ja-9? + 0-2E) = Je-9 + =5y =

1[%’:—5 =+a> = a. In conclusion, we see that an equilateral triangle with a base of (0,0) and

(a,0), has a third vertex at (5,5~ “’z‘r) and all sides have a length of a. (Figure 13)

(2.58)+(a0)={2.2F)

=(37)

A: (g, )

Figure 13

An equilateral triangle is a special kind of isosceles triangle. To generalize the
findings on the third vertex of a triangle, consider a non-equilateral triangle. “‘We seek B such
that OAB is a 30°, 30°, 120° isosceles triangle (that is, angle B is 120°). Here (0,0) and (,0)
are the two base points. Using complex multiplication we will rotate that base by 30° to

create the other two sides of the triangle. The corresponding trigonometric functions are

cos30° ——and sin30° = 4. Therefore we will look at (a,O)( > ,2) and (a,O)( > ,2)+(a,0)

@OE,D =(=E.) and @OEE. D +(a0)=(FED +(@0) = (2""‘"— 3). Figure 14

illustrates these rotations.
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This time, unlike the 60° rotation, the same point has not been calcutated, and we must scale
the new sides accordingly. Our new triangle can be viewed as the following. Using the side

lengths for a 30°, 60°, 90° right triangle, (Figure 15) the scaling factor is 71-5

Figure 15

To verify this we must calculate %[(a,O)(”— 3)] and 1,-[(cz O)( ¥ D1+ (a,0).

L@ 0(E,D]==(E,8) = (43%) and

Fla 0)(ZE. D1+ (a0) = =3 E.2)+(a0)= (2, 55+ (a0)= (2’21[’) Now we have
obtained the same point which will be the vertex of the 120° angle of the triangle.
Another triangle of interest would be the 45°, 45°, 90° isosceles triangle, shown in

Figure 16.

45° 45° 90° Triangle

sin45° = £ and cos45” = — , therefore the rotation factor will be (2 ) We will
once again calculate B two ways. The first by a rotation of %, J as illustrated in Flgure 17

and the other way by a rotation of @‘zf—i,%) followed by a translation of (a,0). This is
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diagramed in Figures 18 and 19. We calculate (a,O)(—“lz—z-,—”Zi) = ("*25 ,%) and

(@O£.5)+ (a0)- (=52.)

B: (aao ﬁ:% 4 @a%—%

A: (a,0)

0: (6.0) A: @0) 0: (0.0 | A: (@,0)
Figure 18 Figure 19

Once again we will need a scaling factor and will look at the 45°, 45°, 90° triangle.

The ratio between the side and twice the base of the 90° triangle is —J% . This triangle is shown

in Figure 20.

45°
— _
Y
£ %
Figure 20
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Recalculating the former rotations with the scaling factor gives us the following;
HeofZ 2 €.2) ana L@ 0)EE, 2 (@0)- 682 2L ) (00)- (.5).
2.4) foﬁr the third vertex of the

Now both rotations calculate the same point B=(£,%

triangle as shown in Figure 21.

45° 45° Isosceles Triangle

The previous results can be seen in the following table.

Angle of Complex Scaling
rotation Multiplication factor
' (cos x, sin X)
60° (; I@.) 1
2?2 2
2 ' 1
30 (£.3) 5
| @8 | +

It would be interesting to look at a less common angle, 15°. Using the half angle |

formulas, cos% = /15 and sin £ = /=% we calculate that cos15° = —-‘}2’;‘6 and

sinl5° = ————“2;‘5 We will calculate the third vertex B the same two ways that we have for

previous triangles, by using complex multiplication to rotate the base by the cosines and

sines. We have (a,O)( "2*2""3_, “2‘2‘5) = (“ 2 B e V2 1E), and using the second method to
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calculate B, (a, )( V23 “5 ) +(a,0)= (“‘2'“22*“‘/5),“"22"5 ) Once again we need to find a

scaling factor. Using the 15°, 75°, 90° triangle, the ratio of the side to twice the base of the

right triangle is ‘[_ as the picture shows in Figure 22.

+3
15° 75° 90° Triangles
1
e T~
N . J
: NP R =
Figure 22

We calculate that —=|(2,0 “”’ “ = (2,292 Rationalizing the denommator gives
2'\!

us 2289 Next we calculate [(czz,O)("‘!r 1[5?”)] (a,O) (3,;,@) (i a(z;r)

It would be helpful to know the scaling factor before starting calculations so that one
doesn’t need to go back and re-calculate each rotation. Observe the following table, which

shows a pattern for the general solution £, where k is the scaling factor.

Angle of Complex Scaling
Rotation Multiplication Factor
X (cos x, sin x) k
60° (_1_ [-i) 1
22 2 ’
5 (24 5
o _ N
30 (£.3) B
(-3 1
15 ( 2;115 X 2—215 ) =

One can see that k =5 —

third vertex B of an isosceles triangle with a base of a and equal angles of x using complex
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multiplication ar

0)(cosx,sinx) and

(a,0)(=cosx,sinx) +(a,0). We will try the

Zoosx

angle 22.5° to see if our equations caleulate the same point B. We have

-1 —(a,0)(cosx,sinx) -1 —(a,0)(~cosx,sinx)+(a,0)
=5-1--(a,0)(c0s22.5°5in22.5°) =5—t=(a,0)(~c0522.5%sin22.5°) + (4,0}
- (a0 55 ~ g (O (a0
_ Ziﬁ(a&z:ﬁ,aﬁ-_) =1/_2_i_ﬁ( ol awlz_) ( 0)
=(s22%) =[-5525) (@0
= ("2", a(z;li) - (%’ 4(2—21/77)) )

Thus we have discovered a general formula for finding the third vertex of an isosceles

triangle given a base of (0,0) and (a.,0); 52—(.0)(cosx,sinx) and

7cosx

(&,0)(~cosx,sinx) + (a,0). Both of these expressions yield (£,2%x).

Hatch’s Theorem:

An isosceles triangle with base of (0,0) and (¢,0) has a third vertex of (; X “‘;”) where

angle x is a base angle. -

To show triangle AOB is isosceles, we must show that it has two sides of equal

lengths; that is, show IOBI=IABI.’

7 Ohmer, Merlin M. Elementary Geometry for Teachers. Reading, Massachusetts. Addison-
Wesley. 1969. p.111.
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Thus

— [a% , a®tan’x _ lr_a\2 2 an?
=5+ 45 - (Ta) + 2 a x
— a®+a’tan’x —_ L"_ a’tan’x
_\! 4 ~—Va + 4

—a 2 —_ 2
=4vl+tan" x =4l+tan" x

Thus triangle OAB where 0=(0,0), A=(a,0) and B= (" ‘”““") is an isosceles triangle.
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Lastly, we will show that ZAOB=x.

B (s,
21+ tan’x
0 6 O A
——
a Figure 23

Let LZAOB = 6. From Figure 23,

cosl = —==
Sl+tan”x
cosf ===
l+tan™ x
cos” 0 =—%
I+tan“x
cos’f=—%
secTX

cos> 6 =cos’* x

cosf = cosx, since all quantities here are positive.
6=x.

Therefore LZAOB =x.
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Conclusion:

Complex numbers have many properties which can be discovered by looking at
properties of real numbers. [ had studied complex numbers in a college mathematics course,
but the discovery process of this thesis was new to me. The proofs, which show these
properties of complex numbers to be true, were written solely for this thesis. This thesis
clearly shows the steps that relate the high school understanding of complex numbers to the
deeper understanding of complex numbers. That is, i2 = -1 is true because
(0,1)(0,1) = (-1,0) = —(1,0). The explanation of the equation i?=-1 andv the mapping of real
numbers to complex numbers make the complex numbers less mysterious, and more useable.

The Moore Method centers around student discovery and original proof. One original
proof in this thesis was for trigonometric functions. There are many different proofs for the
relationship between real trigonometric functions and complex trigonometric functions; this
thesis shows one I discovered. However, more importantly to this thesis than showing that
there exists a relationship is clearly showing and explaining the steps leading to my definition
of e

Hatch’s Theorem is the climax of this thesis for original proof and discovery. When I
began to write this thesis, it was not my intention to discover a theorem concerning isosceles
triangles. However, while I was searching to discover how complex multiplication could be
applied to geometric ideas, I realized that I was cloée to finding a general formula concerning
the three vertexes of a ﬁimgle, and pursued that challenge. Using the properties shown in the
beginning of the theorem, I had the tools to apply complex multiplication to geometry.
»Hatch’s Theorem could not héve been proved using complex multiplication without first

showing the multiplication’s basic properties.
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Throughout this thesis I also caught a glimpse of how mathematicians can discqver
new mathematical ideas. By starting with what one knows, and curiously wandering through
the mathematical unknown, one may discover sométhi_ng new or discover an area to pursue
further. Centering learning around discovery on one’s own is an idea that may be worked
into a high school mathematics class, where the students are asked to discover new properties
by starting with what they already know. The Moore Method of original proof and discovery

does work, even when one has already studied the subject.
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