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ABSTRACT

Bioaccumulation of trace metals in plant tissues can present 
a health risk to wildlife, and potentially to humans. The Passa-
maquoddy Tribe in Maine was concerned about health risks of 
cadmium (Cd) because of a health advisory for moose liver and 
kidney consumption due to high Cd levels. In addition to Cd, this 
study evaluated concentrations of aluminum (Al), calcium (Ca), 
copper (Cu), iron (Fe), potassium (K), magnesium (Mg), manganese 
(Mn), nickel (Ni), phosphorus (P), lead (Pb), and zinc (Zn) in four 
common terrestrial moose-browse species, associated forest soils, 
and two species of aquatic vegetation on Passamaquoddy tribal 
land in eastern Maine. Elements were organized into three groups 
(A, B, and C) based on the patterns of concentration differences in 
vegetation among ecosystem types. Elements in group A included 
the nutrients Ca, K, Mg, and P and showed a pattern of significantly 
higher concentrations in hardwood and aquatic vegetation compared 
to softwoods. Group B elements included the four metals, Cd, Cu, 
Mn, and Zn, and exhibited a pattern of higher concentrations in 
hardwoods compared to softwoods and aquatic vegetation. Group C 
elements did not fit the patterns of group A or group B and included 
the remaining four elements Al, Fe, Ni, and Pb. Total O horizon 
soil concentration means for all elements, except Ni and Pb, were 
significantly higher in hardwood compared to softwood forest types. 
This study provides uncommon and important baseline vegetation 
and soil trace metal concentrations from a remote region in Maine 
of interest to environmental professionals.  
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INTRODUCTION

Trace metals are elements found naturally in aquatic and ter-
restrial ecosystems at low concentrations from processes such as the 
weathering of parent material, volcanic eruptions, and forest fires 
(Nriagu and Pacyna 1988). Some trace metals, such as zinc (Zn), 
are essential nutrients (Taiz and Zeiger 2002) while others, such 
as lead (Pb), have no known biological function (Kabata-Pendias 
2001). Human activities, such as mining and smelting, combustion 
of fossil fuels, incineration of waste, and land application of sewage 
sludge, have significantly increased inputs of trace metals into the 
environment (Nriagu and Pacyna 1988; Adriano 2001; Kabata-
Pendias 2001; Pacyna and Pacyna 2001). 

Trace metals tend to accumulate in surface soils because of the 
strong complexation of metals by organic soil materials (Herrick and 
Friedland 1990). Soil concentrations in the vicinity of point sources, 
such as smelters, are often elevated and decrease significantly with 
distance from the source (Lobersli and Steinnes 1988; Allen-Gil et 
al. 2003; Shparyk and Parpan 2004). Deposition of trace metals 
via precipitation or dry deposition from long-range atmospheric 
transport may also contribute to soil burdens (Lindberg and Harris 
1981; Galloway et al. 1982; Hernandez et al. 2003). The increasing 
availability of trace metals in soils as a result of anthropogenic in-
puts has resulted in greater uptake of trace metals by plants (Tyler 
1972; Kabata-Pendias 2001). Bioaccumulation of trace metals in 
plant foliage and branch tips presents a health risk to wildlife, and 
potentially to human beings, if these plant tissues and wildlife are 
consumed (Pacyna and Pacyna 2001). 

Even though Maine is a relatively rural state, there are con-
cerns about trace metals such as cadmium (Cd), mercury (Hg), and 
lead (Pb). For example, there is a health advisory in Maine for the 
consumption of moose livers and kidneys due to high concentra-
tions of Cd (Gustafson et al. 2000; Maine Department of Inland 
Fish and Wildlife 2005). Determining the levels of risk involved 
and developing management and policy options to address concerns 
about trace metals in the environment often require background 
information on past and present trace metal concentrations and 
contents in soils. Unfortunately, these data are scarce and are 
often lacking for adequate temporal and spatial assessments to be 
carried out. As a result of research described in McGee (2006), data 
were developed on trace metals in a forested landscape in eastern 
Maine. The objectives of this publication are to provide data on 
element concentrations in forest soils, terrestrial foliage, tree branch 
tips, and aquatic vegetation for sites in eastern Maine that were 
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developed from a study of trace metals in the environment. These 
data are valuable for environmental professionals when assessing 
the health of an ecosystem and the levels of contamination in both 
point and non-point-source environments.

MATERIALS AND METHODS

Sites
Six terrestrial and two aquatic sites were established for veg-

etation sampling on Passamaquoddy Tribal land in T4 ND Town-
ship, henceforth T4 ND, in Hancock County, ME, in the summer of 
2004. The terrestrial sites were forested uplands consisting of three 
hardwood and three softwood sites. Aquatic vegetation was from 
two lakes, Side Pistol Pond and Middle Chain Lake. The hardwood 
sites were all within 3 km of Middle Chain Lake and the softwood 
sites were within 5 km of Side Pistol Pond. Terrestrial sites were 
selected on the basis of forest type, stand age, stand composition, to-
pography, and accessibility. Three species were selected to represent 
the hardwood forest type: red maple (Acer rubrum), big tooth aspen 
(Populus grandidentata), and paper birch (Betula papyrifera). One 
species was selected to represent the softwood forest type: balsam 
fir (Abies balsamea). The lakes were selected based on the presence 
of pondweed (Potamogeton spp.) and yellow water-lily (Nuphar 
advena), the target species for aquatic vegetation. 

Softwood stands were two-aged, closed-canopy spruce-fir forests 
subjected to selective cutting between 1995 and 1998. These stands 
appeared to have been in a continuous softwood cover type based on 
existing stand characteristics. Hardwood stands were regenerated 
on clearcuts that resulted from harvesting a mixed beech forest with 
a minor component of softwoods, between 1988 and 1992. Soils were 
Aquic Haplorthods derived from dense basal till. 

Sample Collection
At each terrestrial site, a 0.2-ha rectangular study plot was 

established and subdivided into a grid system of 80 numbered 
5-by-5-m subplots. At each plot we sampled 15 replicates of each 
species from different subplots. One field duplicate was collected for 
each species at every plot. Subplots within the grid were randomly 
selected for sampling. One of each target species that met our crite-
ria was sampled in the selected subplot. Sample tree criteria were 
that trees were in good health, at least 2.54 cm dbh, and had foliage 
on at least three branches between 1 and 2 m above ground. If a 
particular target tree species meeting the established criteria was 
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not present within the area of the selected subplot, then random 
subplot selection continued until the established number of samples 
was collected for all target tree species. 

Foliage and branch tips were collected manually from at least 
three branches per tree at heights between 1 and 2 m. A minimum 
of 20 g dry weight foliar or branch tip tissue was collected. A soil 
sample from the O horizon was collected at each tree, mid-way be-
tween the bole and the canopy drip line. The O horizon sample was 
collected using a 15-by-15-cm template to guide the quantitative 
excavation of material to the surface of the underlying mineral soil. 
Soil sample depth, subplot description, time, and weather conditions 
were recorded in the field.

At each of the two lakes, submerged aquatic vegetation was 
sampled at 5-m intervals in a counter-clockwise direction from our 
initial access point to the lake. Aquatic vegetation was collected in 
the littoral zone from a canoe. Samples were collected manually 
with gloved hands by reaching into the water and breaking the 
stem of the plant approximately 20 cm below the water surface. 
To achieve the target dry weight of 20 g per sample, several plants 
of each species present at each sampling point were combined to 
create one sample. Sampling continued until 15 replicates were 
collected for both target species of aquatic vegetation.

During July and August 2004, we collected foliage from the 
three hardwood sites, soils from both hardwood and softwood sites, 
and all aquatic vegetation samples. Trees were tagged during the 
summer sampling season where foliage and soil samples were 
collected. Branch tips were sampled during the following winter. 
During December 2004 and January 2005, we returned to the same 
subplots, located the tagged trees, and collected hardwood and 
softwood branch tips (including needles).

Contact with samples was minimized to avoid contamination. 
Laboratory gloves were worn at all times during sample collection 
and new gloves were used for each sample. Vegetation samples 
(including hardwood foliage, branch tips, and aquatic vegetation) 
were rinsed with deionized water at the time of sampling. Coniferous 
branch tips were rinsed with deionized water in the laboratory. All 
samples were placed in new pre-labeled plastic gallon-size Ziploc® 

bags. All instruments used in the collection of samples were wiped 
clean using Kimwipes® soaked in 10% trace metal grade nitric acid 
(HNO3), and then rinsed three times on each side with deionized 
water prior to use and between all sample collections in the field. 
Samples were stored on ice in coolers until delivery to the laboratory 
at the University of Maine, where they were stored in a laboratory 
refrigerator until processed for analysis.
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Sample Preparation and Analyses
All samples were oven-dried at 70°C in a forced draft oven 

for a minimum of 24 hours. Vegetation samples were ground in a 
Wiley Mill using a 20-mm stainless steel mesh screen. Soil samples 
were sieved through a 6-mm stainless steel sieve (Fernandez et al. 
1993, 2003).

Vegetation samples weighing 0.25 g were digested in 10 mL 
HNO3 using a CEM® MARS microwave oven and brought up to a 
volume of 100 mL with deionized water (EPA Method 3051A 1998). 
Soil samples weighing approximately 0.4 g were microwave digested 
in 8 mL of 1:3 aqua regia (1 part HNO3: 3 parts HCl) and brought up 
to 100 mL final volume with deionized water (EPA Method 3051A 
1998). All samples were analyzed by high resolution inductively 
coupled plasma mass spectrometry (HR-ICP-MS, Finnigan Element 
2) for aluminum (Al), Cd, copper (Cu), iron (Fe), manganese (Mn), 
nickel (Ni), Pb, and Zn. Samples were also analyzed by inductively 
coupled plasma optical emission spectrometer (ICP-OES) for calcium 
(Ca), potassium (K), magnesium (Mg), and phosphorus (P). 

Soil organic matter was estimated by loss-on-ignition (LOI) 
(Fernandez et al. 1993, 2003). Samples were dried for 24 hours in 
a forced draft oven at 70°C and then ignited for 12 hours at 450°C 
in a muffle furnace. Soil pH was determined using a ratio of 1:10 
soil to 0.01 M CaCl2 solution. 

Quality Assurance
We analyzed at least one laboratory duplicate, one laboratory 

control sample (NBS SRM 1575a or MESS-3), and one laboratory 
blank with every 10 samples analyzed and a matrix spike with 
every 20 samples analyzed.

Statistical Analyses
All data were natural log transformed to approximate the 

assumptions of normal distribution of error and constant variance. 
SYSTAT® version 110 was used for the statistical analyses. Statisti-
cal comparisons of element concentrations among vegetation species 
and sample types (foliage, branch tips, and soil concentrations) were 
determined by analysis of variance (ANOVA) at a 95% confidence 
level. A Tukey’s multiple range test was used to determine signifi-
cant differences among means. Statistical relationships between soil 
and foliage or branch tip metal concentrations were determined by 
analysis of covariance (ANCOVA) at a 95% confidence level. 
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RESULTS AND DISCUSSION

Vegetation
Plants take up essential and non-essential elements through 

roots and foliage if they are present in bioavailable forms in the 
environment. The distribution of elements within plants varies and 
is highly species and element specific (Kabata-Pendias 2001). All 
of the elements reported in this study are essential plant mineral 
nutrients with the exception of Al, Cd, and Pb, which have no known 
essential biological function. Table 1 shows descriptive statistics for 
element concentrations in plant tissue by species and sample tissue 
type (branch tip or foliage). We found some significant differences 
among plant species for all elements, but no universal patterns of 
species difference in element concentrations. There were few ele-
ments that resulted in unique differences from all other elements, 
and in the assessment of these data we found that certain groups 
and patterns emerged. Therefore, we organized the data by evaluat-
ing aggregated categories that resulted in contrasts among three 
ecosystem types (hardwood vs softwood vs aquatic) and between 
two plant tissue types for hardwood trees (branch tip vs foliage).

We averaged element concentrations from foliage and branch 
tips of big tooth aspen, paper birch, and red maple to represent 
hardwood species, of pondweed and yellow water-lily to represent 
aquatic vegetation, and balsam fir was the single species repre-
senting softwoods. Analyses on balsam fir were conducted on the 
combined needle and branch tissue. We compared concentrations 
for all elements among the hardwood, softwood, and aquatic veg-
etation types. Figures 1 through 3 show hardwood, softwood, and 
aquatic vegetation means for all elements organized by three groups 
we called A, B, and C that reflect distinct patterns of differences 
among the vegetation types.

Figure 1 shows results for group A, which includes the elements 
Ca, K, Mg, and P. Elements in this group are all essential plant mac-
ronutrients, which include the dominant base cation nutrients Ca, 
K, and Mg in soil-plant systems, and the critical essential nutrient 
P, which is often the second most commonly limiting nutrient after 
nitrogen (N) in forested ecosystems. There were significantly higher 
concentrations of group A elements in hardwood and aquatic vegeta-
tion compared to softwoods. This pattern is consistent with the com-
mon expectation found in the ecological literature that herbaceous 
and deciduous vegetation is of higher ecological “quality,” partly 
as a function of higher concentrations of essential macronutrients. 
For example, Ohlson and Staaland (2001) reported generally higher 
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element concentrations in several hardwood species, including downy 
birch (Betula pubescens) and European aspen (Populus tremula), 
compared to Scots pine (Pinus sylvestris) for all elements. Other 
examples in the literature of higher foliar nutrient concentrations 
in hardwoods than in softwoods can be found in Young and Guinn 
(1966), Alriksson and Eriksson (1998), Aerts and Chapin (2000), 
and Hagen-Thorn et al. (2004). 

Group B elements include Cd, Cu, Mn, and Zn, and there were 
higher concentrations of these elements in hardwoods compared 
to softwoods or aquatic vegetation (Figure 2). The elements in 
this group differ from those in group A in that the foliar nutrient 
concentrations of these elements were also significantly lower in 
aquatic vegetation than in hardwoods. The elements in this group 
are often referred to as trace metals, but are also essential plant 
micronutrients, with the exception of Cd. They are also often consid-
ered heavy metal pollutants when concentrations are high. Although 
the mean concentration of Mn for hardwoods was not significantly 
higher than for softwoods, the numerical pattern was similar to the 
elements in group B. Our results for group B agree with reports 
of bioaccumulation of trace metals in hardwood species by other 
authors (Ohlson and Staaland 2001; Madejon et al. 2004). 

The pattern in group B of low trace metal concentrations in 
aquatic vegetation, as opposed to the high nutrient concentra-
tions evident in group A, may be due to physiological differences 
between aquatic and hardwood species, which results in a lower 
tolerance to metals by aquatic species. Trace metal concentrations 
in aquatic vegetation are variable among species and are dependent 
on factors such as available concentrations in water, sediment, and 
air (Sparling and Lowe 1998; Deng et al. 2004; Klink 2004). The 
potential for high concentrations of trace metals in some species 
of aquatic vegetation has been reported in laboratory and point-
source studies (Deng et al. 2004; Kamal et al. 2004; Miretzky et al. 
2004). At our sites, aquatic vegetation may have had less exposure 
to bioavailable forms of trace metals compared to terrestrial veg-
etation. The underlying mechanisms for these group differences 
deserve further study.

Figure 3 shows group C, which is the “catchall” group for ele-
ments that did not fit the patterns of groups A or B. Group C includes 
the remaining four elements, Al, Fe, Pb, and Ni. Aluminum and 
Fe are typically in high concentrations in these soils, and Fe is an 
essential plant nutrient. Lead and Ni are trace metals; only Ni is 
a micronutrient for plants. 
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Aluminum, Pb, and Ni had a group characteristic unlike the 
other elements in that they exhibited significantly higher concentra-
tions in the softwood species, balsam fir, compared to hardwoods. 
Softwoods in northern New England forests often exhibit higher 
concentrations of foliar Al, which may reflect greater mobility of Al in 
the highly acidic soils created by softwood forests and physiological 
tolerances of these species to Al uptake. Young and Guinn (1966) 
also observed higher concentrations of Al in balsam fir compared to 
white birch, aspen, and red maple foliage at sites in Maine. Higher 
concentrations of Ni and Pb in balsam fir, compared to hardwoods, 
may also indicate greater availability in soils in addition to more 
efficient capture of atmospheric deposition in a softwood forest 
canopy that results in direct incorporation of these metals into fo-
liar tissues or soil enrichment through litterfall (Miller et al. 1993; 
Weathers et al. 2000). 

The element Fe did not fit the pattern of the group C elements 
except in its difference from the patterns of either group A or group 
B. The significantly higher Fe concentration in aquatic vegetation 
compared to both hardwood and softwood vegetation was unique 
among all elements. This may be due to the reducing environment 
of aquatic sediments, which resulted in more labile forms of Fe 
(Kalff 2002), and thus more uptake by aquatic plants. In terres-
trial ecosystems, soluble forms of Fe are generally low compared 
to total soil Fe content (Kabata-Pendias 2001). It is also unlikely 
that concentrations of Fe in aquatic vegetation in this study were 
the result of sediment “contamination” of the tissue samples, since 
the soil Fe/Al was ~0.7, whereas the aquatic vegetation Fe/Al was 
2.7, clearly indicating that a different mechanism for tissue Fe 
accumulation was involved beyond simple uptake. Indeed, if sedi-
ments were reducing, it would be expected to deplete rather than 
enrich pools of Fe.

We compared element concentrations in branch tips vs foliage 
for big tooth aspen, paper birch, and red maple. The concentrations 
of many elements, including Mn, Fe, Mg, Zn, K, and P, were signifi-
cantly higher in hardwood foliage than in branch tips. Aluminum 
and Ca were significantly higher in big tooth aspen and paper birch 
foliage compared to branch tips, although no significant differences 
were observed for red maple. Madejon et al. (2004) also observed 
higher concentrations of several trace elements in white poplar 
(Populus alba) foliage compared to branch tips. There were no 
patterns evident for Cd and Ni concentrations in foliage vs branch 
tips. Lead concentrations were significantly higher in branch tips 
than foliage for all hardwood species. Our Pb data agree with the 
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findings of Smith and Siccama (1981) and Friedland and Johnson 
(1985) who also observed higher Pb concentrations in deciduous 
branch tips compared to foliage in the northeastern U.S.A. 

Soils
Table 2 shows descriptive statistics for soil pH, LOI, and element 

concentration means for all elements by forest type. Softwood soils 
had significantly lower soil pH than hardwoods, and significantly 
higher organic matter content as estimated by LOI. These relation-
ships are consistent with the character of these forest types (Her-
rick and Friedland 1990), with lower pH in softwoods being driven 
by the larger pool of reactive functional groups on organic colloids 
and abundant weak organic acidity. All element concentrations, 
except Pb and Ni, were significantly higher in hardwood compared 
to softwood soils. Lead concentrations were significantly higher 
in softwood than hardwood soils and Ni concentrations were not 
significantly different between forest types. 

There were likely greater litter inputs of nutrients and trace 
metals to soil from hardwood compared to softwood tree species 
(Figures 1 and 2) as a result of higher rates of mineralization and 
higher concentrations of these elements in litter (Lambers et al. 
1998; Berg and Laskowski 2006). Some tree species appear to take 
up certain metals more than other tree species. For instance, bioac-
cumulation of Zn by birch trees has been reported in the literature 
(Gosz et al. 1972; Moyse and Fernandez 1987) and likely accounted 
for the high soil concentrations of Zn in hardwoods, since birch trees 
were a major component of our mixed hardwood sites. Lead concen-
trations in softwood soils were twice the concentrations in hardwood 
soils (Table 2). Higher Pb concentrations in softwoods compared 
to hardwoods agreed with Pb forest type differences reported by 
Friedland et al. (1984), but likely represents the influence of differ-
ences in atmospheric deposition rather than root uptake of Pb. As 
discussed for vegetation, softwood forests typically have higher rates 
of atmospheric deposition than hardwood forests because they have 
a greater foliar surface area for atmospheric interception (Miller et 
al. 1993). We attributed the high hardwood soil concentrations of 
Al and Fe to a greater mixing of mineral soil in the hardwood soil 
fine earth fraction (Table 2). High concentrations of both Al and Fe 
are expected in mineral soil particles compared to organic matter, 
and Table 4 shows that both elements were strongly negatively 
correlated with LOI for both forest types. This means that as the 
percentage of organic matter in the O horizon decreases, indicating 
more mineral soil mixing, the concentration Al and Fe increases. 
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Base cations, including Ca, K, and Mg, also were negatively cor-
related with LOI in both forest types (Table 4). This could indicate 
that mineral materials were also a greater source of base cations 
than organics. 

In addition to concentrations, we expressed the soil results on a 
mass-per-unit-area basis. Table 3 shows the soil content of all ele-
ments in the fine earth fraction, which is the material that passed 
through the 6-mm sieve, and organic matter content. Although 
the concentrations of most elements in hardwood soils were sig-
nificantly higher than in softwood soils and the numerical trends 
for content were similar, the soil contents for many elements were 
not significantly different between forest types. Softwood soils had 
a significantly larger mass of fine earth than hardwood soils, thus 
concentration differences between the forest types were reduced 
when the data were expressed on an areal basis. Given the high 
variability in these data, there was no significant difference between 
forest types in content, although concentrations were significantly 
different for Al, Ca, Cd, Cu, Fe, K, and P. The content of all elements 
were positively correlated with mass of the fine earth fraction and 
organic matter content (Table 3).

Table 4. Significant correlations (r) between element concentra-
tions (mg kg-1), pH, and LOI (%). 

Hardwood Softwood

LOI pH LOI pH

pH -0.64

Al -0.82 -0.59

Ca  0.67  0.63

Cu  0.57

Fe -0.79 -0.61  0.55

K -0.63  0.65

Mg   0.53 -0.53  0.65

Mn  0.53  0.60

Pb -0.58  
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CONCLUSIONS

This publication documents current element concentrations 
in foliage, branch tips, and soils at remote forest sites in eastern 
Maine in 2004. Vegetation and soil element concentration data from 
remote regions affected by non-point source pollution are relatively 
uncommon in the literature, yet are essential for making sound 
management and policy decisions regarding ecosystem resources, 
tracking changes in environmental quality over time, and framing 
research initiatives that will address the critical environmental 
information needs. In the absence of large, coordinated monitoring 
programs across the region, we believe it is even more important 
to document these types of data in the public record. 
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