1914

Catalog of the University of Maine, 1914-1915

University of Maine - Main

Follow this and additional works at: http://digitalcommons.library.umaine.edu/univ_publications

Part of the Higher Education Commons

Repository Citation
http://digitalcommons.library.umaine.edu/univ_publications/9

This Monograph is brought to you for free and open access by the University of Maine Publications at DigitalCommons@UMaine. It has been accepted for inclusion in Early University of Maine Publications by an authorized administrator of DigitalCommons@UMaine.
CATALOG

OF THE

UNIVERSITY OF MAINE

UNIVERSITY OF MAINE LIBRARY
ORONO, MAINE

1914-1915

Published monthly during the academic year by the University
Entered at the Orono post office as second class matter
<table>
<thead>
<tr>
<th></th>
<th>1914</th>
<th>1915</th>
<th>1915</th>
<th>1916</th>
</tr>
</thead>
<tbody>
<tr>
<td>JULY</td>
<td>JANUARY</td>
<td>JULY</td>
<td>JANUARY</td>
<td>JANUARY</td>
</tr>
<tr>
<td>S M T W T F S</td>
<td>1 2 3 4 5 6 7 8 9 10 11</td>
<td>1 2 3 4 5 6 7 8 9 10</td>
<td>1 2 3 4 5 6 7 8 9 10</td>
<td>1 2 3 4 5 6 7 8 9 10</td>
</tr>
<tr>
<td>AUGUST</td>
<td>FEBRUARY</td>
<td>AUGUST</td>
<td>FEBRUARY</td>
<td>FEBRUARY</td>
</tr>
<tr>
<td>S M T W T F S</td>
<td>1 2 3 4 5 6 7 8 9 10 11 12 13 14 15</td>
<td>1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16</td>
<td>1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17</td>
<td>1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18</td>
</tr>
<tr>
<td>SEPTEMBER</td>
<td>MARCH</td>
<td>SEPTEMBER</td>
<td>MARCH</td>
<td>MARCH</td>
</tr>
<tr>
<td>S M T W T F S</td>
<td>1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18</td>
<td>1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19</td>
<td>1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20</td>
<td>1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21</td>
</tr>
<tr>
<td>OCTOBER</td>
<td>APRIL</td>
<td>OCTOBER</td>
<td>APRIL</td>
<td>APRIL</td>
</tr>
<tr>
<td>S M T W T F S</td>
<td>1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19</td>
<td>1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30</td>
<td>1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30</td>
<td>1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31</td>
</tr>
<tr>
<td>NOVEMBER</td>
<td>MAY</td>
<td>NOVEMBER</td>
<td>MAY</td>
<td>MAY</td>
</tr>
<tr>
<td>DECEMBER</td>
<td>JUNE</td>
<td>DECEMBER</td>
<td>JUNE</td>
<td>JUNE</td>
</tr>
</tbody>
</table>
CALENDAR

FALL SEMESTER, 1914

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>September 11-15 inclusive,</td>
<td>Arrearage examinations</td>
</tr>
<tr>
<td>September 11-15 inclusive,</td>
<td>Entrance examinations</td>
</tr>
<tr>
<td>September 16, Wednesday,</td>
<td>Registration begins, 8.00 A.M.</td>
</tr>
<tr>
<td>September 17, Thursday,</td>
<td>Registration; First chapel, 10.30 A.M.</td>
</tr>
<tr>
<td>October 7, Wednesday,</td>
<td>Fall term begins, College of Law</td>
</tr>
<tr>
<td>October 12, Monday,</td>
<td>Columbus Day, a holiday</td>
</tr>
<tr>
<td>November 24, Tuesday,</td>
<td>Meeting of the Board of Trustees</td>
</tr>
<tr>
<td>November 25, Wednesday,</td>
<td>Thanksgiving recess begins, 12.00 M.</td>
</tr>
<tr>
<td>November 30, Monday,</td>
<td>Thanksgiving recess ends, 1.30 P.M.</td>
</tr>
<tr>
<td>December 11, Friday,</td>
<td>Sophomore prize declamations</td>
</tr>
<tr>
<td>December 22, Tuesday,</td>
<td>Christmas recess begins, 12.00 M.</td>
</tr>
</tbody>
</table>

1915

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>January 4, Monday,</td>
<td>Christmas recess ends, 1.30 P.M.</td>
</tr>
<tr>
<td>January 6, Wednesday,</td>
<td>Winter term begins, College of Law</td>
</tr>
<tr>
<td>January 29, Friday,</td>
<td>Fall semester ends, 5.05 P.M.</td>
</tr>
</tbody>
</table>

SPRING SEMESTER, 1915

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>January 30, Saturday,</td>
<td>Registration</td>
</tr>
<tr>
<td>February 1, Monday,</td>
<td>Spring semester begins, 8.00 A.M.</td>
</tr>
<tr>
<td>February 1, Monday,</td>
<td>Copy of junior exhibition orations to be deposited with the Registrar</td>
</tr>
<tr>
<td>February 22, Monday,</td>
<td>Washington's Birthday, a holiday</td>
</tr>
<tr>
<td>March 17, Wednesday,</td>
<td>Winter term ends, College of Law</td>
</tr>
<tr>
<td>March 24, Wednesday,</td>
<td>Spring term begins, College of Law</td>
</tr>
<tr>
<td>March 27, Saturday,</td>
<td>Spring recess begins, 12.00 M.</td>
</tr>
<tr>
<td>April 5, Monday,</td>
<td>Spring recess ends, 1.30 P.M.</td>
</tr>
<tr>
<td>April 19, Monday,</td>
<td>Patriots' Day, a holiday</td>
</tr>
<tr>
<td>April 30, Friday,</td>
<td>Outline of theses to be passed to the major instructor</td>
</tr>
</tbody>
</table>
University of Maine

April 30, Friday, Harrington prize essays to be deposited with the Registrar
May 19, Wednesday, Theses of candidates for advanced degrees to be deposited
May 30, Sunday, Memorial Day
May 31, Monday, A holiday
May 31, Monday, Complete theses to be deposited by 12.00 M.
June 2-5, Entrance examinations
June 6, Sunday, Baccalaureate address
June 7, Monday, Class Day
June 8, Tuesday, Reception by the President
June 9, Wednesday, Meeting of the Board of Trustees
SUMMER TERM
June 28, Monday, Summer Term begins, 8.00 A. M.
August 6, Friday, Summer Term ends

FALL SEMESTER, 1915

September 10-14, Arrearage examinations
September 10-14, Entrance examinations
September 15, Wednesday, Registration begins, 8.00 A. M.
September 16, Thursday, Registration; First chapel, 10.30 A. M.
October 6, Wednesday, Fall term begins, College of Law
October 12, Tuesday, Columbus Day, a holiday
November 23, Tuesday, Meeting of the Board of Trustees
November 24, Wednesday, Thanksgiving recess begins, 12.00 M.
November 29, Monday, Thanksgiving recess ends, 1.30 P. M.
December 10, Friday, Sophomore prize declamations
December 22, Wednesday, Christmas recess begins, 12.00 M.
December 22, Wednesday, Fall term ends, College of Law
Calendar

1916

January 3, Monday
Christmas recess ends, 1:30 p.m.

January 5, Wednesday
Winter term begins, College of Law

January 28, Friday
Fall semester ends, 12:00 p.m.

SPRING SEMESTER, 1916

January 29, Saturday
Registration

January 31, Monday
Spring semester begins, 8 a.m.

March 15, Wednesday
Winter term ends, College of Law

March 22, Wednesday
Spring term begins, College of Law

June 7, Wednesday
COMMENCEMENT
*BOARD OF TRUSTEES

Hon. SAMUEL WADSWORTH GOULD, B. S., President Skowhegan
Term expires April 16, 1921

EDWIN JAMES HASKELL, B. S. Westbrook
Term expires December 31, 1916

JOHN MARSHALL OAK, B. S. Bangor
Term expires April 2, 1915

Hon. CHARLES LESTER JONES Corinna
Term expires April 17, 1917

FREELAND JONES, LL. B. Bangor
Term expires May 31, 1918

Hon. WILLIAM ROBINSON PATTANGALL, M. S. Waterville
Term expires April 13, 1919

WILLIAM ALBERT MARTIN Houlton
Term expires May 7, 1920

Hon. WILLIAM HENRY LOONEY Portland
Term expires September 10, 1921

EXECUTIVE COMMITTEE

Trustees GOULD, OAK, AND F. JONES

FARM COMMITTEE

Trustees F. JONES, C. L. JONES, AND MARTIN

* With the exception of Mr. Haskell, all the members of the Board are appointed by the Governor of the State, with the advice and consent of the Council, for terms of seven years. Mr. Haskell is appointed for a term of three years by the Governor, upon nomination by the Alumni Association, in accordance with the provisions of Chapter 196 of the Public Laws of 1883.
MAINE AGRICULTURAL EXPERIMENT STATION COUNCIL

ROBERT JUDSON ALEY, Ph. D., LL. D.
CHARLES DAYTON WOODS, Sc. D.
FREELAND JONES, LL. B., Bangor
CHARLES LESTER JONES, Corinna
WILLIAM ALBERT MARTIN, Houlton
LEON STEPHEN MERRILL, M. D., Orono

President

CHARLES DAYTON WOODS, Sc. D.
Secretary

FREELAND JONES, LL. B., Bangor
Committee

CHARLES LESTER JONES, Corinna
Trustees

WILLIAM ALBERT MARTIN, Houlton

Dean of the College of Agriculture

LEON STEPHEN MERRILL, M. D., Orono

JOHN ALBERT ROBERTS, M. A., Norway
Commissioner of Agriculture

EUGENE HARVEY LIBBY, Auburn
State Grange

HOWARD LINCOLN KEYSER, Greene
State Pomological Society

RUTILLUS ALDEN, Winthrop
State Dairymen’s Association

WILLIAM GEORGE HUNTON, Cherryfield
Maine Seed Improvement Association

LEONARD CLEMENT HOLSTON, Cornish
Maine Livestock Breeders’ Association

JAMES MONROE BARTLETT, M. S.
Members

EDITH MARION PATCH, Ph. D.
of the

WARNER JACKSON MORSE, Ph. D.
Station Staff

RAYMOND PEARL, Ph. D.

HERMAN HERBERT HANSON, M. S.

FRANK MACY SURFACE, Ph. D.

Members of the Station Staff
OFFICERS OF ADMINISTRATION

OF THE UNIVERSITY

ROBERT JUDSON ALEY, President
JAMES NORRIS HART, Dean
CHARLES JOHN DUNN, Treasurer
JAMES ADRIAN GANNETT, Registrar

OF THE COLLEGES AND EXPERIMENT STATION

LEON STEPHEN MERRILL, Dean of the College of Agriculture
JAMES STACY STEVENS, Dean of the College of Arts and Sciences
CHARLES DAYTON WOODS, Director of the Experiment Station
WILLIAM EMANUEL WALZ, Dean of the College of Law
MAROLD SHERBURNE BOARDMAN, Dean of the College of Technology

OF OTHER DEPARTMENTS

RALPH KNEELAND JONES, Librarian
EDCAR RAMEY WINGARD, Director of Athletics
FRANK SHELDON CLARK, In Charge of Military Instruction
Faculty

*FACULTY OF INSTRUCTION AND INVESTIGATION

PROFESSORS

ROBERT JUDSON ALEY

President

A. B., Indiana University, 1888; A. M., 1890; Ph. D., University of Pennsylvania, 1897; LL. D., Franklin College, 1909

ROBERT JUDSON ALEY

Campus

MERRITT CALDWELL FERNALD

Emeritus Professor of Philosophy

A. B., Bowdoin College, 1861; A. M., 1864; Ph. D., 1881; LL. D., 1902; also University of Maine, 1908

MERRITT CALDWELL FERNALD

54 Main Street

JAMES MONROE BARTLETT

Chemist of the Experiment Station

B. S., University of Maine, 1880; M. S., 1883

JAMES MONROE BARTLETT

College Street

LUCIUS HERBERT MERRILL

Professor of Biological and Agricultural Chemistry

B. S., University of Maine, 1885; Sc. D., 1908

LUCIUS HERBERT MERRILL

100 Main Street

JAMES NORRIS HART

Professor of Mathematics and Astronomy

Dean of the University

B. C. E., University of Maine, 1885; C. E., 1890; M. S., University of Chicago, 1897; Sc. D., University of Maine, 1908

JAMES NORRIS HART

College Street

FREMONT LINCOLN RUSSELL

Professor of Bacteriology and Veterinary Science

B. S., University of Maine, 1885; V. S., New York College of Veterinary Surgeons, 1886

FREMONT LINCOLN RUSSELL

80 Main Street

JAMES STACY STEVENS

Professor of Physics

Dean of the College of Arts and Sciences

B. S., University of Rochester, 1885; M. S., 1888; also Syracuse University, 1889; LL. D., University of Rochester, 1907

JAMES STACY STEVENS

99 Main Street

*Arranged in groups in order of seniority of appointment
University of Maine

CHARLES DAYTON WOODS 55 Main Street
 Director of the Experiment Station
 B. S., Wesleyan University, 1880; Sc. D., University of Maine, 1905
JOHN HOMER HUDDILSTON 105 Main Street
 Professor of Greek and Classical Archaeology
 A. B., Baldwin University, 1890; also Harvard University, 1893; Ph. D.,
 University of Munich, 1887
WILLIAM EMANUEL WALZ 8 Fifth Street, Bangor
 Professor of Law
 Dean of the College of Law
 A. B., Northwestern College, 1880; A. M., 1882; LL. B., Harvard Univer­sity, 1889; Litt. D., Bowdoin College, 1911
RALPH KNEELAND JONES 26 Bennoch Street
 Librarian
 B. S., University of Maine, 1886
JACOB BERNARD SEGALL The Colonial, Bangor
 Professor of Romance Languages
 B. S. and B. L., University of Yassy, 1884; Ph. D., Columbia Univer­sity, 1893
HAROLD SHERBURNE BOARDMAN 40 Main Street
 Professor of Civil Engineering
 Dean of the College of Technology
 B. C. E., University of Maine, 1895; C. E., 1898
GEORGE DAVIS CHASE 59 Main Street
 Professor of Latin
 A. B., Harvard University, 1889; A. M., 1895; Ph. D., 1897
CAROLINE COLVIN University Inn
 Professor of History
 A. B., Indiana University, 1893; Ph. D., University of Pennsylvania, 1901
* ARTHUR CRAWFORD JEWETT
 Professor of Mechanical Engineering
 S. B., Massachusetts Institute of Technology, 1901
WARNER JACKSON MORSE 33 North Main Street
 Plant Pathologist in the Experiment Station
 B. S., University of Vermont, 1898; M. S., 1903; Ph. D., University of
 Wisconsin, 1912

* Absent on leave without pay from September 1, 1914, to September 1, 1915

10
Faculty

CHARLES PARTRIDGE WESTON
Professor of Mechanics and Drawing
College Street
B. C. E., University of Maine, 1896; C. E., 1899; A. M., Columbia University, 1902

RAYMOND PEARL
Biologist in the Experiment Station
College Street
A. B., Dartmouth College, 1899; Ph. D., University of Michigan, 1902

CHARLES BARTO BROWN
Professor of Railroad Engineering
83 Main Street
Ph. B., Yale University, 1894; C. E., 1896

WALLACE CRAIG
Professor of Philosophy
College Street
B. S., University of Illinois, 1898; M. S., 1901; Ph. D., University of Chicago, 1908

ROLAND PALMER GRAY
Professor of English
College Street
A. B., Columbia University, 1893; A. M., 1907

RALPH HARPER McKEE
Professor of Chemistry
College Street
A. B., University of Wooster, 1895; A. M., 1897; Ph. D., University of Chicago, 1901

GARRETT WILLIAM THOMPSON
Professor of German
53 Main Street
A. B., Amherst, 1888; A. M., 1891; Ph. D., University of Pennsylvania, 1907

GUY ANDREW THOMPSON
Professor of English Literature
College Street
A. B., University of Illinois, 1898; also Harvard University, 1900; A. M., 1901; Ph. D., University of Chicago, 1912

WINDSOR PRATT DAGGETT
Professor of Public Speaking
College Street
Ph. B., Brown University, 1902

MINTIN ASBURY CHRYSLER
Professor of Biology
College Street
A. B., Toronto University, 1894; Ph. D., University of Chicago, 1904

JOHN MANVERS BRISCOE
Professor of Forestry
The Colonial, Bangor
M. F., Yale University, 1909
University of Maine

LEON STEPHEN MERRILL
Director of Agricultural Extension Service
Dean of the College of Agriculture
M. D., Bowdoin College, 1889

EDGAR RAMEY WINGARD
Professor of Physical Culture
Director of Athletics
B. S., Susquehanna University, 1900; M. S., University of Pennsylvania, 1902.

ARTHUR JULIUS JONES
Professor of Education
A. B., Grinnell College, 1893; Ph. D., Columbia University, 1907

GEORGE EDWARD SIMMONS
Professor of Agronomy
B. S., Ohio Northern University, 1902; M. S., Ohio State University, 1905

GEORGE WARE STEPHENS
Professor of Economics and Sociology
Ph. B., Iowa Wesleyan College, 1904; M. A., University of Wisconsin, 1907; Ph. D., 1911

WILLIAM EDWARD BARROWS, Jr.
Professor of Electrical Engineering
B. S., University of Maine, 1902; E. E., 1908

EDGAR MYRICK SIMPSON
Professor of Law
A. B., Bowdoin College, 1894

EDITH MARION PATCH
Entomologist in the Experiment Station
B. S., University of Minnesota, 1901; M. S., University of Maine, 1910; Ph. D., Cornell University, 1911

FRANK MACY SURFACE
Biologist in the Experiment Station
A. B., Ohio State University, 1904; A. M., 1905; Ph. D., University of Pennsylvania, 1907

BLISS S BROWN
Professor of Horticulture
B. S., Michigan Agricultural College, 1903; M. S., University of California, 1911
Faculty

LAMERT SEYMOUR CORBETT

Campus

Professor of Animal Industry

B. Sc., Massachusetts Agricultural College, 1909; M. S., State University of Kentucky, 1913

FRANK SHELDON CLARK, Second Lieutenant, United States Coast Artillery, 1909; First Lieutenant, 1911

97 Main Street

Professor of Military Science and Tactics

B. S., Norwich University, 1908

HERMAN HERBERT HANSON

61 Forest Avenue

Associate Chemist in the Experiment Station

B. S., Pennsylvania State College, 1903; M. S., University of Maine, 1906

CHARLES WILSON EASLEY

7 Main Street

Associate Professor of Chemistry

A. B., Dickinson College, 1887; A. M., 1890; Ph. D., Clark University, 1908

EDSON FORBES HITCHINGS

2 Summer Street

Associate Professor of Horticulture

C. E., University of Maine, 1875; M. S., 1889

ANDREW PAUL RAGGIO

102 Main Street

Associate Professor of Romance Languages

A. B., University of Texas, 1896; A. M., Harvard University, 1902; Ph. D., 1904

LEON ELMER WOODMAN

28 Bennoch Street

Associate Professor of Physics

A. B., Dartmouth College, 1899; A. M., 1902; Ph. D., Columbia University, 1910

PAUL LEONARD BEAN

Forest Avenue

Associate Professor of Civil Engineering

B. S., University of Maine, 1904; C. E., 1910

JAMES ADRIAN GANNETT

97 Main Street

Registrar

B. S., University of Maine, 1908

ALBERT THEODORE CHILDS

55 Main Street

Associate Professor of Electrical Engineering

B. S., Worcester Polytechnic Institute, 1906; E. E., 1908
GEORGE HENRY WORSTER 234 Center Street, Bangor
 Associate Professor of Law
 LL. B., University of Maine, 1905; LL. M., 1906
HARLEY RICHARD WILLARD 32 Main Street
 Associate Professor of Mathematics
 A. B., Dartmouth College, 1899; A. M., Yale University, 1910; Ph. D., 1912
ARCHER LEWIS GROVER 3 Myrtle Street
 Associate Professor of Drawing
 B. M. E., University of Maine, 1889; B. S., 1902
ALICE MIDDLETON BORING 13 Mill Street
 Associate Professor of Zoology
 A. B., Bryn Mawr College, 1904; A. M., 1905; Ph. D., 1910
WILLIAM AMBROSE JARRETT 16 Bennoch Street
 Associate Professor of Pharmacy
 Pharm. D., Massachusetts College of Pharmacy, 1912
JULIUS ERNEST KAULFUSS Main Street
 Associate Professor of Civil Engineering
 B. S., University of Wisconsin, 1908
FRANCES ROWLAND FREEMAN 13 Mill Street
 Associate Professor of Home Economics
 B. Sc., Ohio State University, 1910; M. Sc., 1911
JAMES McCLUER MATTHEWS 35 North Main Street
 Associate Professor of Economics and Sociology
 A. B., Park College, 1903; A.M., Harvard University, 1914
JOHN CALVIN MELLETT University Inn
 Associate Professor of English
 A. B., Indiana University, 1912
DANIEL WILSON PEARCE 11 Mill Street
 Associate Professor of Education
 A. B., Indiana University, 1910; A. M., 1912
TRUMAN LEIGH HAMLIN Stillwater
 Assistant Professor of Mathematics
 A. B., Western Reserve University, 1899; M.A., University of Missouri, 1902
BARTLETT BROOKS 19 North Park, Bangor
 Assistant Professor of Law
 A. B., Harvard University, 1889; LL. B., 1902
Faculty

HARRY NEWTON CONSER, A. M. Oak Street
Assistant Professor of Botany
B. S., Central Pennsylvania College, 1883; M. S., 1886; A. M., Harvard University, 1908

LLOYD MEEKS BURCHART Forest Avenue
Assistant Professor of Chemistry
A. B., Lake Forest College, 1906; M. A., University of Maine, 1911

RALPH WOODBURY REDMAN 10 Myrtle Street
Assistant Director of Agricultural Extension Service
B. S., University of Maine, 1912

ROBERT RUTHERFORD DRUMMOND 80 North Main Street
Assistant Professor of German
B. S., University of Maine, 1905; Ph. D., University of Pennsylvania, 1909

CARL HENRY LEKBERG Forest Avenue
Assistant Professor of Mechanical Engineering
B. S., University of Maine, 1907

LAWRENCE BOYLSTON CHAPMAN Forest Avenue
Assistant Professor of Mechanical Engineering
S. B., Massachusetts Institute of Technology, 1910

HAROLD SCOTT OSLER 106 Hannibal Hamlin Hall
Assistant Professor of Agronomy
B. S., Michigan Agricultural College, 1913

RAYMOND HARMAN ASHLEY Forest Avenue
Assistant Professor of Chemistry
B. Sc., Rutgers College, 1903; M. A., Yale, 1905; Ph. D., 1906

ALBERT GUY DURGIN Middle Street
Assistant Professor of Chemistry
B. S., University of Maine, 1908; M. S., 1909

ALPHEUS CROSBY LYON 1 Pond Street
Assistant Professor of Civil Engineering
B. S., University of Maine, 1902; C. E., 1913; B. S., Massachusetts Institute of Technology, 1904

VICTOR GEORGE AUBRY 208 Hannibal Hamlin Hall
Assistant Professor of Animal Industry
B. S., Connecticut Agricultural College, 1912
University of Maine

INSTRUCTORS

EVERETT WILLARD DAVEE
Instructor in Wood and Iron Work
College Street

CHARLES JENKINS CARTER
Instructor in Machine Tool Work
Forest Avenue

* LOWELL JACOB REED
Instructor in Mathematics
B. S., University of Maine, 1907; M. S., University of Pennsylvania, 1912

MAYNIE ROSE CURTIS
Assistant Biologist in the Experiment Station
A. B., University of Michigan, 1905; A. M., 1908; Ph. D., 1913

WALTER ELWOOD FARNHAM
Instructor in Drawing
Forest Avenue

WALTER EDMUND WILBUR
Instructor in Mathematics
B. S., University of Maine, 1908; M. S., 1911

ERNEST CONANT CHESWELL
Instructor in Electrical Engineering
25 Mill Street

ROYDEN LINDSAY HAMMOND
Seed Analyst and Photographer in the Experiment Station
59 Main Street

EARLE OVANDO WHITTIER
Instructor in Chemistry
458 Hammond Street, Bangor

HARRY WOODBURY SMITH
Instructor in Bacteriology
1 Forest Avenue

EDWARD EUGENE SAWYER
Assistant Chemist in the Experiment Station
Old Town

ELMER ROBERT TOBEY
Assistant Chemist in the Experiment Station
5 Pond Street

HENRY ROBBINS BARROWS
Instructor in Biology
106 Hannibal Hamlin Hall
Ph. B., Hamilton College, 1906; M. S., 1912

* Absent on leave without pay from September 1, 1914, to September 1, 1915
Faculty

JOHN HARRY PARRY
_instructor in English
A. B., Hamilton College, 1910; A. M., 1914
53 Main Street

LEROI FRANKLIN BLISS
_instructor in English
A. B., Brown University, 1905
College Street

MICHAEL SHAPOVALOV
_82 North Main Street
Assistant Pathologist in the Experiment Station
B. A., University of Dorpat, 1903; M. S., University of Maine, 1913
53 Main Street

HERBERT SOLEY BAIN
_instructor in German
A. B., Wesleyan University, 1912
53 Main Street

DOROTHEA BEACH
_instructor in Home Economics
Mill Street

ERIC NICHOLS BOLAND
_208 Hannibal Hamlin Hall
instructor in Animal Industry_
B. Sc., Massachusetts Agricultural College, 1912; M. S., Iowa State College, 1913
North Main Street

DAVID LEE CLARK
_instructor in English
B. A., East Texas College, 1907; A. M., University of North Carolina, 1909
14 Bennoch Street

CARLETON WHIDDEN EATON
_instructor in Forestry
A. B., Bowdoin College, 1910; M. F., Yale University, 1912
112 Main Street

RALPH MAYNARD HOLMES
_instructor in Physics
B. A., University of Maine, 1911; M. A., Wesleyan University, 1913
59 Main Street

ORVILLE ALVIN JAMISON
_instructor in Animal Industry
B. Sc., Ohio State University, 1912
59 Main Street

EARL JONES
_instructor in Agronomy
B. Sc., Ohio State University, 1912; M. Sc., 1913
106 Hannibal Hamlin Hall

MARTIN ANDREW NORDGAARD
_instructor in Mathematics
A. B., St. Olaf's College, 1903; A. M., University of Maine, 1914
205 Hannibal Hamlin Hall

LILLIAN NANCY RANDALL
_instructor in Home Economics
13 Mill Street
17
University of Maine

JOSEPH SPEAR

Instructor in Mathematics

A.B., Harvard University, 1913

University Inn

JOSEPH NEWELL STEPHENSON

Instructor in Chemistry

S.B., Massachusetts Institute of Technology, 1909; M.S., Rose Polytechnic Institute, 1911

Gilbert Street

VINCENT MILO TRANSUE

Instructor in Physics

B.S., Pennsylvania State College, 1912; M.S., 1913

28 Bennoch Street

ELWOOD WHITNEY JENNISON

Instructor in Mechanical Engineering

B.S., University of Maine, 1913

233 Cedar Street, Bangor

JOHN RICE MINER

Computer in the Experiment Station

B.A., University of Michigan, 1910

38 Pine Street

MARION WILHELMINA BORDEN

Instructor in Home Economics

B.S., University of Maine, 1913

1 Mill Street

JACOB ZINN

Assistant Biologist in the Experiment Station

Agr.D., Hochschule für Bodenkultus, 1914

14 Bennoch Street

CHESTER EARL ANDREWS

Instructor in Chemistry

B.S., Syracuse University, 1913; M.S., 1914

College Street

TIMOTHY JEREMIAH CONNORS, Jr.

Instructor in Pharmacy

Pharm.D., Massachusetts College of Pharmacy, 1912

Forest Street

JAMES JOHN DONEGAN

Instructor in Civil Engineering

Ph.B., Yale University, 1909

College Street

BERT EMSLEY

Instructor in English

A.B., Harvard University, 1911

University Inn

RAYMOND FLOYD

Instructor in German

B.A., University of Maine, 1913

108 Hannibal Hamlin Hall

NORMAN RICHARDS FRENCH

Instructor in Physics

B.A., University of Maine, 1914

112 Main Street
Faculty

JOHN WHITTEMORE GOWEN Hannibal Hamlin Hall
 Assistant Biologist in Experiment Station
 B.S., University of Maine, 1914

WILLIAM GORDON JAMES 75 North Main Street
 Instructor in Electrical Engineering
 B.S., Kansas State Agricultural College, 1913

EARL EVERETT KEYES University Inn
 Instructor in English
 A.B., Indiana University, 1912

FRANÇOIS JOSEPH KUENY University Inn
 Instructor in Romance Languages
 B.â€™s L., University of Paris, 1897; L.â€™s L., Besançon, 1901

ARTHUR WHITING LEIGHTON University Inn
 Instructor in Drawing
 A.B., Lehigh University, 1913

ARTHUR BRUTON LEONARD University Inn
 Instructor in Mechanical Engineering
 M.E., Lehigh University, 1914

ALEXANDER LURIE 25 Mill Street
 Instructor in Horticulture
 B.S., Cornell University, 1914

SIDNEY WINFIELD PATTERSON Hannibal Hamlin Hall
 Instructor in Biological and Agricultural Chemistry
 A.B., Indiana University, 1913; A.M., 1914

GLEN BLAINE RAMSEY 206 Hannibal Hamlin Hall
 Instructor in Biology
 A.B., Indiana University, 1913; A.M., 1914

NEIL CARPENTER SHERWOOD Campus
 Instructor in Animal Industry
 B.S., University of Maine, 1914

HAROLD JOSEPH SHAW Bath
 Director of Farm Demonstrations, Sagadahoc County

CLARENCE WALLACE BARBER Portland
 Director of Farm Demonstration Work, Cumberland County
 B.S., University of Maine, 1912

CLARENCE ALBERT DAY Machias
 Director of Farm Demonstrations, Washington County

ARTHUR LOWELL DEERING Augusta
 Director of Farm Demonstrations, Kennebec County
 B.S., University of Maine, 1912

MORRIS DANIEL JONES Forest Avenue
 Director of Farm Demonstrations, Penobscot County
 B.S., University of Maine, 1912
University of Maine

GEORGE ALBERT YEATON
Director of Farm Demonstrations, Oxford County
Norway

WILSON MONTGOMERY MORSE
Director of Farm Demonstrations, Franklin County
Farmington

HAROLD HARLAN NASH
Director of Farm Demonstrations, York County
Sanford

GEORGE NEWTON WORDEN
Director of Farm Demonstrations, Hancock County
Ellsworth

RALPH PIKE MICHELL
In Charge of Boys Agricultural Club Work
5 Pond Street

MARIE WILHEMINA GURDY
In Charge of Girls Agricultural Club Work
University Inn

WILLIAM COLLINS MONAHAN
In Charge of Poultry Extension Work
University Inn

MAY ELLA TAFT
Cataloger in the Library
14 Bennoch Street

GENEVA ALICE REED
Assistant in the Library
College Street

ANTOINETTE TREAT WEBB
Assistant in English
1 Mill Street

ANNE ELIZABETH HARWOOD
Assistant in the Library
14 Bennoch Street

ESTELLE INEZ BEAUPRE
Assistant in Romance Languages
1 Mill Street

MARGARET JUNE KELLEY
Assistant in German
1 Mill Street

WOODBURY FREEMAN PRIDE
Assistant in Biology
206 Hannibal Hamlin Hall

B. S., University of Maine, 1914
Faculty

ROSCOE WOODS

Assistant in Mathematics
A. B., Georgetown College, 1914

ARTHUR NELSON SMITH

Assistant in Physical Training

PAUL WHEELER MONOHON
108 Hannibal Hamlin Hall
Assistant in Extension Work and Physical Training
B. S., University of Maine, 1914

LECTURERS

LUCILIUS ALONZO EMERY
E Ellsworth
Lecturer on Roman and Probate Law
A. B., Bowdoin College, 1861; A. M., 1864; LL. D., 1898

LOUIS CARVER SOUTHARD
Boston
Lecturer on Medico-Legal Relations
B. S., University of Maine, 1875; M. S., 1892; LL. D., 1904

EDWARD HARWARD BLAKE
107 Court Street, Bangor
Lecturer on Admiralty
LL. B., Albany Law School, 1875; LL. D., University of Maine, 1910

ISAAC WATSON DYER
Portland
Lecturer on Federal Jurisdiction and Procedure, and on Private Corporations
A. B., Bowdoin College, 1878

JOHN ROGERS MASON
384 Hammond Street, Bangor
Lecturer in Bankruptcy Law
A. B., Harvard College, 1869; A. M., LL. B., 1872

WILLIAM BRIDGHAM PEIRCE
25 Parkview Avenue, Bangor
Resident Lecturer on Maine Practice
B. Me., University of Maine, 1890

HENRY BURT MONTAGUE
Southbridge Mass
Lecturer on Practice and History of Law
LL. B., Cornell University, 1895; LL. D., University of Maine, 1910

LAWRENCE VIVIAN JONES
267 Pine Street, Bangor
Lecturer on Forestry Law
LL. B., University of Maine, 1910

21
COMMITTEES OF THE FACULTY

ADMISSION: Hart, the Deans
ADVANCED DEGREES: Chase, Colvin, Craig, McKee, Pearl, Segall, Walz, Willard, Woodman
ATHLETICS: Wingard, F. S. Clark, Corbett, Gannett, Grover, A. J. Jones, Kaulfuss, Worster
ATTENDANCE: C. B. Brown, Conser Lekberg, Simpson, Stephens, Wilbur
AUDITING: L. H. Merrill, Brooks, Burghart, Conser, G. A. Thompson
CHAPEL: Barrows, Matthews, L. S. Merrill, G. A. Thompson, G. W. Thompson, Woodman
EMPLOYMENT: Gannett, Corbett, Durgin, Simmons
FITTING SCHOOLS: A. J. Jones, Chase, Easley, Gray, Hart, L. S. Merrill, Pearce, Weston
HEALTH: Wingard, Ashley, Boring, Freeman, Morse, Russell
HONORS: Chrysler, Bean, Briscoe, B. S Brown, Easley, Lekberg, Willard
LIBRARY: R. K. Jones, Barrows, A. J. Jones, Redman, Willard
ORGANIZATIONS AND EXHIBITIONS: McKee, chairman
Sub-committees: Dramatics,—Daggett, C. B. Brown, Raggio
Musical—G. W. Thompson, A. J. Jones, Chrysler
Speaking and Debating,—Gray, Daggett, Stephens
Miscellaneous,—McKee, Bean, Drummond

PUBLICATIONS: Stevens, R. K. Jones
RULES: Stephens, C. B. Brown, Chapman, Conser, Drummond, Simmons
SCHEDULE: Weston, Gannett, Hamlin, the Deans
SOCIAL AFFAIRS: Huddilston, Briscoe, Colvin, Farnham, Freeman, Wingard
STUDENT AFFAIRS: Hart, the Deans, F. S. Clark, Wingard
The University of Maine is a part of the public educational system of the State. Its establishment followed the passage of an act of Congress, approved by President Lincoln, July 2, 1862, which provided that there should be granted to the states, from the public lands, "thirty thousand acres for each Senator and Representative in Congress," from the sale of which should be established a perpetual fund, "the interest of which shall be inviolably appropriated by each state which may take and claim the benefit of this act, to the endowment, support, and maintenance of at least one college where the leading object shall be, without excluding other scientific and classical studies, and including military tactics, to teach such branches of learning as are related to agriculture and the mechanic arts, in such manner as the legislatures of the states may respectively prescribe, in order to promote the liberal and practical education of the industrial classes in the several pursuits and professions in life." The act forbade the use of any portion of the principal or interest of this fund for the purchase, erection, or maintenance of buildings, and required each state accepting the benefit of the provisions of the act "to provide within five years not less than one college" to carry out its purposes.

The State of Maine accepted the land grant and gave full assent to all the provisions and conditions of the act in a resolve of the Legislature of 1863, approved March 23. The Legislature of 1865, in an act approved February 25, created a corporation to act for the State in the administration of the affairs of the College, and defined its powers and duties. The original name of the institution was the State College of Agriculture and the Mechanic Arts, but this was changed to the University of Maine by the Legislature of 1897.
The first Board of Trustees was composed of sixteen members, each county delegation in the Legislature selecting a member of the Board. The principle of county representation was abandoned in 1867, when the size of the Board was reduced.

The first class, consisting of twelve members, was admitted September 21, 1868. The faculty numbered two. By 1871-72, when the first class had become seniors, four curricula had been arranged,—Agriculture, Civil Engineering, Mechanical Engineering, and Elective.

The legislative act which created the Board of Trustees directed that its members should, "as soon as may be, arrange and make known the several courses of instruction which they will undertake at the outset of the College, and shall enlarge and improve the same whenever practicable." The development of the University has been in compliance with these directions. The College of Agriculture is the outgrowth of the original curriculum in Agriculture, the College of Technology of the curricula in Civil and Mechanical Engineering, and the College of Arts and Sciences of the Elective curriculum.

The original single curriculum of the College of Agriculture continued with but minor changes for many years. Horticulture was added in 1902, and Forestry in 1903. The School Course in Agriculture was established in 1903. The curriculum in Agriculture was divided into Agronomy and Animal Industry in 1904, and the latter was sub-divided into Animal Husbandry and Poultry Husbandry in 1909. The Extension Department was organized in 1907. Although work in Home Economics was begun some years earlier, the Home Economics curriculum was not offered until 1909.

The College of Arts and Sciences has developed gradually, as needs have been recognized, and as means have permitted, from the original Elective curriculum into an organization which not only provides required and elective courses for students in the other colleges of the University but has also a well developed entity of its own. There are now thirteen departments in which students may select their major subject,—Biology, Chemistry, Economics and Sociology, Education, English, German, Greek and Classical Archaeology, History, Latin, Mathematics and Astronomy, Philosophy, Physics, and Romance Languages.

The College of Technology has maintained from the beginning curricula in Civil and Mechanical Engineering. To these have been added Chemistry in 1874, Electrical Engineering in 1894, Pharmacy in 1895, and Chemical Engineering in 1905.
Endowment, Income, and Equipment

The College of Law was opened in 1898. It occupied quarters in the Exchange Building, at the corner of State and Exchange Streets, Bangor, until the Bangor fire of 1911. It is now located in Stewart Hall, at the corner of Union and Second Streets, Bangor.

The Maine Agricultural Experiment Station was established as a department by act of the Legislature of 1887, as a result of the passage by Congress of the Hatch Act, succeeding the Maine Fertilizer Control and Agricultural Experiment Station which had been established in 1885.

Graduate instruction has been given by various departments for many years. The first Master's degree was conferred in 1881. There is no provision for graduate work in advance of that required for the Master's degrees.

Summer schools were held in cooperation with the State Department of Education in 1895, 1896, and 1897. These were of three weeks each and they attracted chiefly teachers in elementary schools. Beginning with 1902, a Summer Term has been held annually, first of five weeks but now of six. It is designed for teachers in secondary schools and for college students who desire to take advantage of its opportunities, and it also gives some courses for those who seek an opportunity to make up entrance credits. In 1914, the departments offering courses were Chemistry, Economics and Sociology, Education, English, German, History, Home Economics, Latin, Mathematics and Astronomy, Physics, and Romance Languages.

The University is coeducational, women having been admitted since 1872, in compliance with special legislative enactment.

ENDOWMENT, INCOME, AND EQUIPMENT

The State of Maine received by the act of Congress above referred to 210,000 acres of public land from which an endowment fund of $118,300 was realized. This fund yields 5% annually.

Former Governor Abner Coburn, of Skowhegan, for many years President of the Board of Trustees, made a bequest of $100,000 to the institution. This fund yields 4% annually.

In the year of 1912, Hon. D. D. Stewart of St. Albans, as executor of the will of Levi M. Stewart, late of Minneapolis, gave the sum of $20,000 for the benefit of the College of Law. In 1914 Mr. Stewart individually donated $13,750 for the benefit of the same college.
University of Maine

Under acts of Congress approved August 30, 1890, and March 4, 1907, the University receives $50,000 annually from the United States.

Under an act of the Legislature, approved April 2, 1913, the University receives $110,000 for each of the years 1913, 1914, 1915, and 1916, for maintenance.

Under an act of the Legislature approved April 2, 1913, the University receives $95,000 for buildings for the years 1913 and 1914.

Under acts of Congress approved March 2, 1887 and March 17, 1906, the University receive $30,000 annually for the maintenance of the Agricultural Experiment Station.

For Extension Work in the College of Agriculture, $10,000 a year are available from the Federal Government, and $19,500 from the General Education Board.

Students fees and miscellaneous receipts complete the income.

LOCATION

The university campus of 370 acres has a beautiful location in the town of Orono, Penobscot County, nine miles from the city of Bangor. It contains many evergreen and deciduous trees, flowering shrubs, and plants, and a portion is in woodland. The Stillwater River, a branch of the Penobscot, forms its western boundary.

Orono is on the Maine Central railroad, and the cars of the Bangor Railway and Electric Company run through the university grounds, giving half-hour service to Bangor and Old Town. It is exactly half way between Kittery, the first town on the Boston and Maine railroad as it enters the State, and Fort Kent, on the New Brunswick border, the northern terminus of the Bangor and Aroostook railroad.

The town is one of the most attractive in Maine. It was settled in 1774, incorporated in 1806, and now has a population of over 3,500. The public schools rank well, and a considerable number of families are attracted by the educational advantages. There are four churches, at all of which students receive a cordial welcome. The climate is healthful and invigorating.

The College of Law is located at the corner of Union and Second Streets, Bangor, in what had been previously one of the most attractive private estates in the city.
Buildings

BUILDINGS AND THEIR EQUIPMENT

HANNIBAL HAMLIN HALL.—This is a men's dormitory, completed in 1911. It was named for the Honorable Hannibal Hamlin, of Hampden and Bangor. Mr. Hamlin held many offices of honor and responsibility, including that of Vice President of the United States, 1861-65. Mr. Hamlin represented Penobscot County in the original Board of Trustees, and was its first President, serving 1865-66. Constructed of brick with stone trimmings, this building is 35 feet wide and 168 feet long, and has four stories founded on a high, well lighted concrete basement, in which are located a dining room, recreation room, waiters' room, with lavatory toilet, and locker room, and room for training table. In a one-story ell adjoining the basement is the kitchen, containing the usual equipment. From the basement up, the building is separated into three sections by two 12-foot brick fire walls, which extend up through the roof. Each section has its own entrance, vestibule hall, and corridor. The first story of the central section has a reception hall and living room, with bath, lavatory, and shower bath on one side of the corridor, and on the other side the Young Men's Christian Association rooms with toilet and lavatory. The central section in the second, third, and fourth stories is divided in each story into four chambers, with shower bath and lavatories. The two end sections in each of the four stories are divided into four suites of two bedrooms and a study room, with a toilet, lavatories, and shower bath for the use of the four suites. The building is heated by steam and lighted by electricity. There are 96 rooms in the two end sections and 17 in the central section, making a total of 113 rooms above the basement. Each bedroom has an ample clothes closet.

OAK HALL.—This is a men's dormitory 42 by 83 feet, erected in 1871. It is named for Honorable Lyndon Oak, of Garland, member of the Board of Trustees, 1867-89, its Clerk, 1871-83, and President, 1883-89. It is a substantial brick building of four stories and has forty-nine rooms for students. It contains bath rooms, is heated by steam and lighted by electricity, and is connected with Hannibal Hamlin Hall by a covered passage way.

BALENTINE HALL.—The Legislature of 1913 made an appropriation for the erection of one wing of a women's dormitory. This was completed September 1, 1914. The wing is 31 by 57 feet. This building has been named Balentine Hall in honor of Elizabeth Abbott Balentine, Secretary and Registrar of the University, from 1895 to 1913. It contains accommodations for 52 women.
University of Maine

Mount Vernon House.—This is a wooden building, completed in 1898, which provides dormitory accommodations for women. It is situated near the recitation and laboratory buildings upon a site overlooking the campus, and commands a beautiful view of the river, villages, and hills. It is three stories in height, built in the colonial style, and consists of a long central portion and two wings. It contains a parlor, dining-room, kitchen, bath-room, and eighteen rooms intended for two students each. The rooms are large, well lighted, heated by steam, and provided with electric lights. A special feature is the long hall on each floor, extending sixty-six feet, and wide enough to serve as an assembly or study room. Both houses for women are under the supervision of superintendents.

University Inn.—This is a wooden building located in the village of Orono, which the university has leased for a term of years. It is occupied chiefly by instructors and has accommodations for fifty persons.

Alumni Hall.—This is a brick building, erected in 1900. It is 41 by 117 feet, with an ell 64 by 107 feet. It was given its name because funds required for its erection were subscribed by alumni of the University. The front part contains on the ground floor the offices of the President, the Dean of the University, the Registrar, and the Treasurer; the Trustees' room, the university post office, and two recitation rooms for the use of the department of Mathematics. The second floor contains the university chapel with a large pipe organ in the choir gallery, and the gymnasium and drill hall. A description of the equipment is given under the paragraph on physical training. Under the gymnasium are offices of the Professors of Physical Culture and Military Science and Tactics, the baseball cage, lockers, lavatories, and store rooms.

Aubert Hall.—This building is used by the departments of Chemistry and Physics. It is named in memory of the late Alfred Bellany Aubert, Professor of Chemistry from 1874 to 1910. It was erected in 1914 by funds appropriated by the State Legislature. It is a four story brick building, 150 by 58 feet in addition to an ell. In the part devoted to chemistry are rooms devoted to fuel and gas analysis, paper making, and pulp making, and several laboratories for various purposes. There is a lecture room which will seat 290 persons and several smaller class rooms. For the department of Physics there are laboratories for electrical measurements, mechanics and heat, optics, photometry, and several special laboratories. A special room for meteorology has been provided and there are a number of recitation rooms for each department.
Buildings

Coburn Hall.—This building was erected in 1888 for the departments of Natural History and Agriculture. It was named for ex-Governor Abner Coburn of Skowhegan, Governor of Maine, 1863-64, President of the Board of Trustees, 1867-79, and chief individual benefactor of the University. It is 47 by 64 feet, with an ell 36 by 41 feet. It is now occupied chiefly by the department of Biology and the museum. It is a brick building three stories in height. In the basement are a laboratory for animal and plant physiology, and the University Store. Connected with the basement is a small greenhouse for the use of the department of Biology. On the first floor are a research zoological laboratory, a class room for the department of History, a general laboratory, and part of the museum. On the second floor are the botanical and zoological laboratories and offices, a lecture room, and part of the museum. On the third floor are two rooms, one containing the remainder of the museum, the other forming a large lecture room.

Estabrooke Hall.—This building is named for Professor Horace M. Estabrooke, head of the department of English from 1891 until his death in 1908. It is a wooden building, formerly the Commons, remodeled in 1911 for the use of the department of English. It is 33 by 50 feet with an ell 23 by 40 feet. It contains four recitation rooms, two rooms for consultation purposes, and four offices for members of the department.

Fernald Hall.—This is the oldest building on the campus, erected 1868-70 for the department of Chemistry. It was named for Merritt C. Fernald, LL. D., the first member of the faculty appointed, who retired in 1908. He was Acting President, 1868-71, and President, 1879-93. It is 40 by 50 feet with an ell 38 by 52 feet. It is a two-story brick building, containing eighteen rooms. Upon the removal of the department of Chemistry to Aubert Hall, this building will be used chiefly for recitation rooms and offices for the departments of German and Romance Languages.

Holmes Hall.—This is a two-story brick building with high, well lighted basement, erected for the Maine Agricultural Experiment Station. The central portion was built in 1888. A part of the south wing was added in 1890, the north wing was added in 1904, the south wing was completed, and the vestibule entrance added in 1913. It is named for Dr. Ezekiel Holmes, of Winthrop, pioneer in scientific agricultural investigations, founder and first secretary of the State Board of Agriculture, founder of the Maine Farmer and its editor until his death in 1865, and most active in securing the establishment of the State College of Agriculture and Mechanic Arts as an independent institution.
University of Maine

On the ground floor are five large chemical laboratories used in the analysis of foods, feeding stuffs, fertilizers, and drugs; the laboratories of the entomologist, and the laboratory and office of the plant pathologist. The general office and mailing room, the Director's office, laboratories for seed testing and photography and the laboratories of the biologist are on the second floor. There are in a high well lighted basement, rooms for the gas machine, for the grinding and preparation of samples, laboratory for the calorimeter, culture and preparation rooms for the plant pathologists, a nitrogen laboratory, and rooms for the storage of chemicals and glassware.

The building is thoroughly equipped with apparatus for the work of agricultural investigation. An attached greenhouse is used by the entomologists and plant pathologists.

Library Building.—The Library Building is of stone, two stories above a basement which is almost entirely above the ground level, and is surmounted by a dome. It was completed in 1906. For its erection and furnishing, Mr. Andrew Carnegie gave $55,000, and the Hallowell Granite Works furnished the granite at a price that was equivalent to a gift of several thousand dollars.

The first floor contains an entrance hall, open to the dome, reference and periodical rooms, the Librarian's office, a room for reserved books, and a women's room. The second floor contains a general lecture room with seating capacity of 150, and five seminar rooms. On the walls of the gallery, the lecture room, and the delivery room is the art collection of the University. The basement contains a newspaper room, store room, janitor's room, men's room, and a room designed primarily as a meeting place for various student organizations.

The stacks are in the rear of the main building, and are freely accessible. They contain shelf room for 60,000 volumes, and a cataloger's room.

Lord Hall.—This is a brick building, completed in 1905, erected for the departments of Electrical and Mechanical Engineering. It is named for the Honorable Henry Lord of Bangor, member of the Board of Trustees, 1891-1908, and its President, 1892-1908. It consists of a main part, 82x56 feet, two stories in height, and an ell, 125-42 feet, partly of two stories and partly of one story. It contains six recitation rooms, a large drawing room, shops, laboratories, and offices. The mechanical laboratory contains the usual apparatus necessary for the study of strength of materials, steam and gas apparatus, principles of hydraulics, etc.
Buildings

For tests of materials there are two Riehlé power-operated testing machines, one of 60,000 lbs. capacity for tensile, compressive, and transverse tests, and a 20,000 pound transverse machine. These are equipped with the necessary measuring appliances. There are also gas and steam engines and apparatus necessary for the study of engine performance. The shops comprise the machine shop, forge shop, foundry, carpentry, and pattern shop. The forges are of the Sturtevant down draft type. The equipment in the electrical laboratory has been developed to parallel practical conditions as far as possible, and consists essentially of a 20 kilowatt electrical sub-station, converting from a three phase, 60 cycle, 115 volts, alternating current system to direct current by means of rotary converters and belted alternating current motors driving direct generators. In addition to volt-meters, ammeters, and watt-meters for both direct and alternating currents, the equipment includes circuit breakers, various types of transformers, three 7 1-2 kilowatt special auto-transformers giving variable pressures for experimental work and voltages for operating two and three phase rotary converters, a self starting rotary converter, a three phase generator, a three phase revolving field synchronous motor, a three phase variable speed induction motor, a single phase synchronous motor, a single phase self-starting induction motor, direct current generator and motors, and laboratory telephone equipment.

Stewart Hall.—This building is situated in Bangor, corner of Union and Second Streets. It is in one of the finest parts of the city, on the car line, in a quiet neighborhood, and within a few minutes' walk from the Penobscot County Court House, the Young Men's Christian Association, the business section of the city, and the Maine Central railroad station. The grounds about the building occupy nearly a whole square. They are surrounded by elms and afford ample space for tennis courts. The building itself is a brick structure, three stories high. There are twelve large, commodious, and well lighted rooms in the main part. Those on the first floor are used as recitation rooms; on the second floor for library and office purposes; and on the top floor for the practice court, the Maine Law Review, and recreation purposes.

Wingate Hall.—This is a brick building erected in 1891-92 for the engineering departments. It stands on the side of the White Hall, the first building erected for college uses, burned in 1890. It is named for Honorable William P. Wingate of Bangor, who first suggested and was most active in securing the location of the institution in Orono. He was a member of the Board of Trustees, 1867-84, and its President, 1879-83.
University of Maine

It is 62 by 82 feet. It is now occupied by the departments of Civil Engineering, Latin, Mechanics and Drawing, and Philosophy. In the basement are cement, concrete, and road materials testing laboratories. On the ground floor are three recitation rooms, instrument rooms, and the offices of the Dean of the College of Technology and the professors of Civil Engineering, Latin, and Mechanics and Drawing. On the second floor are two recitation rooms; the office of the Professor of Philosophy; a drawing room, filing room, and offices used by the department of Civil Engineering. On the third floor are two drawing rooms for the use of the department of Mechanics and Drawing and Civil Engineering; a filing room, and office room for use of the former department.

Winslow Hall.—This building was erected in 1908 for the various departments of the College of Agriculture. It is named in honor of the Honorable Edward B. Winslow of Portland, member of the Board of Trustees, 1898-1911, and its President, 1908-11. The ground plan measures 63 by 100 feet and the building contains over forty rooms. It is built of brick, concrete, and slate, of the Tudor style of architecture, and has four floors, including a well lighted basement for lecture rooms and laboratories. The building contains the offices, recitation rooms, and laboratories of the departments of Agronomy, Animal Industry, Bacteriology and Veterinary Science, Biological and Agricultural Chemistry, Farm Management, Forestry, and Horticulture, a sewing room and laundry for the department of Home Economics, and the office and filing room of the Extension department.

In the rear of this building is located the stock judging pavilion, which is an octagonal structure 50 feet in diameter, having a seating capacity of 600.

Dairy Building.—The dairy building, 50 x 42 feet, contains a milk room, a butter room, a cheese room, a cold storage room, a cheese-curing room, and a testing laboratory. It is supplied with all necessary appliances for teaching the most approved methods of handling milk, cream, butter, and cheese.

Farm Buildings.—The lower barn, 100 x 50 feet, contains a cow stable with 26 stalls, two grain rooms, three bull rooms, and silo; and has storage capacity for 150 tons of hay and 100 tons of silage. The upper barn, 100 x 40 feet, contains rooms for grain and storage, scales for weighing animals, and an electric motor for power. The barns are lighted by electricity and supplied with water and steam. The base-
Buildings

ments of the barn contain storage rooms for manure and roots. The sheep barn, 125 x 20 feet, and contains six large pens, a nursery, and a storage-room. Two tool houses furnish 10,000 square feet of floor room for the storage of wagons and farm machinery. A modern piggery, 28 x 40 feet in size, has been erected, which contains eight pens, together with grain and feed-cooking rooms. The farm of the University of Maine is composed of two parcels of land aggregating 473 acres, of which 120 acres are under cultivation. The cultivated land is handled according to a definite system of rotation of crops, including hoed crops, nurse crops, and hay crops. The hay acreage cuts considerably more than 150 tons annually. It is the aim of the management to make the farm support the live stock maintained upon it. The areas of permanent pasture land form a considerable part of the farm and the remainder is given up to forest and orchard areas. Highmoor Farm purchased by the State Legislature for the use of the Experiment Station, is described under that department of the University.

Horticultural Building.—The range of greenhouses just east of Holmes Hall covers about 4000 square feet of surface. The building is heated with steam and furnishes opportunity for a demonstration of the practical culture of flowers and vegetables under glass.

Infirmary.—A wooden building has been erected in the rear of Hannibal Hamlin Hall to be used in caring for any cases of infectious disease that may appear among the students. It contains a ward for women as well as one for men, with sanitary, comfortable, and convenient equipment for patients.

Observatory.—The astronomical observatory stands upon a slight elevation to the east of Alumni Hall. The equatorial room is equipped with an eight-inch refractor of the best modern construction, with finding circles, driving clock, filar micrometer, and other accessories. In the transit room is a combined transit instrument and zenith telescope of three-inch aperture, constructed by Bomberg, and a Respold vertical circle of two-inch aperture. These instruments, together with sextants, sidereal chronometer, etc., furnish excellent facilities for instruction both in descriptive and practical astronomy.

Poultry Plant.—The incubator house of the College of Agriculture consists of a two and a half story building, 25 x 40 feet, the lower portion of which is designed for an incubator room and is built of brick with non-conducting walls. On the upper floor is located a poultry laboratory. Attached to this building is a brooder house, 15 x 40 feet,
for winter brooding, equipped with a hot water heater. The fattening and killing house is 14 x 45 feet, with an interior arrangement to demonstrate crate fattening. A room 14 x 16 feet in one end of this house is used for a poultry dressing room, and is equipped with water heater and cooling tanks. The several breeds of poultry kept by the College of Agriculture are housed in colony houses of various styles and sizes, and one long laying-house, 14 x 96 feet, divided into twelve pens especially adapted for instructional purposes. The poultry plant belonging to the Experiment Station contains an incubator house 31 x 31 feet, with tenement above; a poultry house, 12 x 150 feet; a poultry house, 16 x 120 feet; a two-story house, 39 x 39 feet, containing three laboratories, feeding rooms, and storage rooms; a building containing a hospital for hens, 16 x 36 feet, and rooms for digestion experiments. The houses accommodate 700 mature birds. There are also detached brooder houses capable of caring for 2500 chicks.

ATHLETIC FIELD.—Alumni Field, so called because funds required for its construction were contributed by the Alumni Association, is located at the northern end of the campus, about 1,200 feet from the gymnasium. It contains a quarter-mile cinder track, with a 220-yard straightaway, and is graded and laid out for football, baseball, and track and field athletics. The grand-stand constructed in 1914, is 268 feet long, 20 feet high, with a seating capacity of 2100. It is of reinforced concrete construction, with wooden seats 18 inches high and 14 inches wide and with 18 inches space for passages. The isles are about 30 feet apart. The front line of the stand is three feet from the south side of the running track. The frontwall is about four feet high and the front row of seats about 3 1-2 feet above the ground level and is separated from it by a four feet walk. Provision has been made so that a roof can be added if desired.

There is also an out-door board running track 390 feet long by 12 feet wide.

CENTRAL HEATING PLANT.—The central heating station is located across the car tracks from the university buildings, on low ground so that the buildings drain by gravity to the plant, thus saving the pumping or lifting of the returns. The station is a plain red brick structure, large enough to provide room for present needs and allow for future installation of engines and generators to furnish light and power for
Libraries

the University. It contains four 150 h. p. boilers, two Worthington duplex return pumps, and scales for weighing coal. This plant supplies heat to nearly all the university buildings.

Fraternity Houses.—The local chapters of Beta Theta Pi, Delta Tau Delta, Kappa Sigma, Phi Gamma Delta, Phi Kappa Sigma, Sigma Alpha Epsilon, Theta Chi, and the Phi Eta Kappa society have built houses on the campus; the local chapter of Sigma Nu leases a house on the campus from the University; the local chapter of Lambda Chi Alpha owns a house adjoining the campus on College Street, and the local chapters of Alpha Tau Omega and Sigma Chi own houses on North Main Street. These houses accommodate from 25 to 35 students each.

Power House.—This wooden building, 30 by 56 feet, north of Alumni Hall, formerly the power and heating plant of the University, is now used exclusively for laboratory purposes in connection with the department of Mechanical Engineering. It contains two boilers, a one hundred and fifty horse-power Babcock and Wilcox and an eighty-five horse-power Otto gasolene engine, a plain slide valve engine, and two dynamos with operating switchboard.

Other Buildings.—In addition to the buildings already described, there are several others devoted to various purposes. Among these are the President's house, and five residences occupied by members of the faculty.

THE LIBRARIES

The university libraries contains more than 54,000 volumes, of which over 48,000 are in the general library, nearly 4,000 in the Agricultural Experiment Station, and nearly 4,000 in the law library. All of the Station library books are placed on the shelves of the general library except those required for constant reference by members of the Station staff. The law library is at the College of Law, Bangor. No other departmental libraries are maintained but books required by departments are taken by them from the general library for temporary use.

The general library provides a very good working collection of books. The greater part have been secured by purchase, and more than half have been added within the last ten years. Most of the books bought are selected by heads of departments to meet the needs of students and the teaching staff. Many valuable sets of general, scientific, and technical periodicals are included in the collection. The Station library is
of much value, including many sets of scientific journals. The law library is a carefully selected and useful collection, made since the Bangor fire of 1911, when the former library was completely destroyed. More than five hundred magazines and other serial publications are received regularly by the libraries.

The valuable horticultural library of Professor Welton M. Munson, a member of the university faculty from 1890 until 1907, was bequeathed by him to the University. The private mathematical library of President R J. Aley, and a considerable portion of the library of the late Professor H. M. Estabrooke, the latter particularly strong in English literature and languages, are deposited in the general library where they are available for use.

The libraries are classified by the Dewey decimal system, modified for certain classes. There is a card catalog, author, subject, and title. No restrictions are placed upon admission to the stacks.

The general library is open daily, during the academic year, from 8.00 A. M. to 5.30 P. M., and from 7.00 to 9.30 P. M., except Sundays and holidays. It is open Sunday afternoons from 2.30 to 5.30 and on holidays from 8.00 A. M. to 12.00 M. During the Summer Term it is open daily from 8.00 A. M. to 5.30 P. M., except Saturday afternoons and Sundays, and during vacations it is open daily, except Sundays and holidays, for somewhat shorter hours.

Students may borrow three volumes at a time, to be retained three weeks; if more are desired, application should be made to the Librarian. Officers of the University may borrow any reasonable number of volumes, without time limit, except that all books must be returned to the library nine days before Commencement. Other responsible persons may obtain the privileges of the library upon application to the Librarian.

It is the desire of the university authorities to make the general library as useful as possible to all citizens of the State, so that books are loaned to individuals and organizations when this may be done without interfering with the needs of faculty and students, the borrower paying transportation charges in both directions.

The libraries of the University, on June 30, 1914, numbered 55,445 volumes, made up as follows:

<table>
<thead>
<tr>
<th>Library</th>
<th>Number of Volumes</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Library</td>
<td>45,990</td>
</tr>
<tr>
<td>Agricultural Experiment Station Library</td>
<td>4,078</td>
</tr>
<tr>
<td>Estabrooke Library</td>
<td>537</td>
</tr>
<tr>
<td>Aley Mathematical Library</td>
<td>714</td>
</tr>
<tr>
<td>Law Library</td>
<td>4,126</td>
</tr>
<tr>
<td>Total</td>
<td>55,445</td>
</tr>
</tbody>
</table>
Libraries

The title of the Estabrooke and Aley libraries does not vest in the University, but the volumes in them may be used under the same regulations as those in the General Library. The Agricultural Experiment Station library is shelved in the Library Building, with the exception of a few books required for constant reference in the Station laboratories; they may not be taken from the building without special permission, except by members of the Station staff. The Law Library is kept in Stewart Hall.

The classification of the libraries is shown by the following table:

<table>
<thead>
<tr>
<th>Class</th>
<th>Volumes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bibliography</td>
<td>374</td>
</tr>
<tr>
<td>Library Economy</td>
<td>160</td>
</tr>
<tr>
<td>Encyclopedias</td>
<td>200</td>
</tr>
<tr>
<td>General Periodicals</td>
<td>2,634</td>
</tr>
<tr>
<td>Philosophy</td>
<td>655</td>
</tr>
<tr>
<td>Religion</td>
<td>641</td>
</tr>
<tr>
<td>Sociology</td>
<td>3,467</td>
</tr>
<tr>
<td>Military Science</td>
<td>510</td>
</tr>
<tr>
<td>Education</td>
<td>1,780</td>
</tr>
<tr>
<td>Philology</td>
<td>746</td>
</tr>
<tr>
<td>Natural Science (general and miscellaneous)</td>
<td>1,217</td>
</tr>
<tr>
<td>Mathematics and Astronomy (including Aley Library)</td>
<td>1,694</td>
</tr>
<tr>
<td>Physics (omitting Electricity)</td>
<td>783</td>
</tr>
<tr>
<td>Chemistry and Chemical Technology</td>
<td>1,568</td>
</tr>
<tr>
<td>Geology</td>
<td>986</td>
</tr>
<tr>
<td>Biology</td>
<td>663</td>
</tr>
<tr>
<td>Botany</td>
<td>839</td>
</tr>
<tr>
<td>Zoology</td>
<td>1,163</td>
</tr>
<tr>
<td>Useful Arts (general and miscellaneous)</td>
<td>835</td>
</tr>
<tr>
<td>Medicine (including Physiological and Biological Chemistry)</td>
<td>1,069</td>
</tr>
<tr>
<td>Pharmacy</td>
<td>229</td>
</tr>
<tr>
<td>Engineering (general)</td>
<td>1,087</td>
</tr>
<tr>
<td>Mechanical Engineering</td>
<td>631</td>
</tr>
<tr>
<td>Civil Engineering</td>
<td>875</td>
</tr>
<tr>
<td>Electrical Engineering (including Electricity)</td>
<td>591</td>
</tr>
<tr>
<td>Agriculture</td>
<td>6,657</td>
</tr>
<tr>
<td>Forestry</td>
<td>454</td>
</tr>
<tr>
<td>Home Economics</td>
<td>205</td>
</tr>
<tr>
<td>Fine Arts</td>
<td>668</td>
</tr>
<tr>
<td>Literature (general and miscellaneous)</td>
<td>751</td>
</tr>
<tr>
<td>American Literature</td>
<td>611</td>
</tr>
<tr>
<td>English Literature</td>
<td>1,507</td>
</tr>
<tr>
<td>Germanic Literature</td>
<td>1,902</td>
</tr>
<tr>
<td>Romance Literature</td>
<td>741</td>
</tr>
<tr>
<td>History (general and miscellaneous)</td>
<td>319</td>
</tr>
<tr>
<td>Geography and Description</td>
<td>623</td>
</tr>
<tr>
<td>Biography (general)</td>
<td>222</td>
</tr>
<tr>
<td>Ancient History</td>
<td>180</td>
</tr>
</tbody>
</table>
University of Maine

European History ... 790
American History ... 1,462
Miscellaneous public documents ... 8,746
Estabrooke Library, uncataloged .. 178
Law ... 4,126

Total ... 55,445

In addition to the above, there are about 12,000 pamphlets in the General Library.

MUSEUM OF NATURAL HISTORY

MINTIN ASBURY CHRYSLER
Curator of the Botanical and Zoological Collections

LUCIUS HERBERT MERRILL
Curator of the Geological Collections

The museum occupies the wing of Coburn Hall and an adjoining room in the main part of the building.

Geological Collections.—These collections, occupying the upper floor except on Saturdays and Sundays. They include the more important of the wing of Coburn Hall, are accessible daily during the college year, fragmental, crystalline, and volcanic rocks; a collection of building stones; a series designed to illustrate the rocks of the State; a general collection of more common minerals; a collection of economic minerals furnished by the United States National Museum, an educational series of rocks furnished by the United States Geological Survey; and a small collection of plant and animal fossils.

The part of the museum illustrating the mineral resources of the State may be made of great value, both from the scientific and economic standpoint. Students and others residing in the State are urged to contribute specimens from their home localities. Valuable accessions have been received from the United States National Museum.

Zoological Collections.—These collections occupy the lower floor of the wing of Coburn Hall. Some of the alcoholic and formalin material is placed in wall cases in the biological laboratories. The collections consist of a number of the larger mammals of the States; a small set of exotic mammals; a more complete working collection of native birds, birds’ nests, and eggs; an illustrative collection of the other groups of vertebrates; a rather large collection of the shells of native and exotic molluscs; and illustrative collections of the other groups, dry, alcoholic, and prepared as microscopic objects.

38
Museum

During the past year a large case containing a set of three caribou has been installed. The animals forming this group were secured by Mr. C. S. Winch as the result of an expedition to New Brunswick in November 1910, and illustrate a species which was once common in this state but has apparently become extinct.

Botanical Collections.—These collections are situated in rooms on the second and third floors of Coburn Hall. The herbarium includes several collections of considerable value, the most important of which is the one presented to the University by Mr. Jonathan G. Clark, of Bangor, and made by the late Rev. Joseph Blake. It contains more than 7,000 species of both flowering and flowerless plants, and represents more especially the flora of Maine and other New England states, but includes many forms from the western United States, Mexico, and the West Indies, and a number from many of the European and Asiatic countries, and from Africa and Australia. The late Professor Harvey left to the herbarium the general collections accumulated during his connection with the University, and his special collection of the weeds and forage plants of Maine, comprising 300 species. Other important collections are Collins’s Algae of the Maine coast, Halsted’s Lichens of New England, Halsted’s Weeds, Ellis and Everhart’s North American Fungi, Cook’s Illustrative Fungi, Underwoor’s Hepaticæ, Cummings and Seymour’s North American Lichens, and a collection of economic seeds prepared by the United States Department of Agriculture.

Collections other than the herbarium include exhibits illustrating the manufacture of paper and of cocoa, the wood and bark features of the timber trees of Maine, conifers mounted in jars, plants used in pharmacy, commercial fibres, and artificial silk. A valuable collection of fossil plants was presented by the late Professor Harvey.

ART COLLECTION

The collection consists of photographs, prints, engravings, polychrome reproductions, and plaster casts. Many of the large reproductions are framed and the entire collection has found a fitting home in the Library Building, the gallery of which is well adapted to the exhibition of many of the plaster-cast reliefs and the larger framed works. The collection is distributed on the first and second floors, in the large lecture room, and in a seminar room. In the latter is a specially constructed cabinet for the mounted photographs.
University of Maine

The entire collection numbers upwards of 4,000 reproductions of various sorts covering the fields of Classical and Renaissance architecture, sculpture, and painting. The illustrations for the Greek, Florentine, and Venetian schools are particularly representative. For much of the most important work the photographs are supplemented by lantern slides.

The University possesses many of the famous polychrome prints published by the Arundel Society. These and many other colored reproductions covering nearly all the great masters of Italian painting have been framed; and in the case of the Madonna della sedia and the Sistine Madonna the reproductions were imported in the frames which are stucco copies of the originals in Dresden and Florence.

The large lecture room in the Library Building contains examples of the work of the chief Florentine and Umbrian masters of the 14th and 15th centuries, arranged on the walls in historical sequences. The gallery of the second floor is devoted to masters of the High Renaissance.

For the study of Greek and Roman antiquity the departments of Greek and Latin have a large collection of photographs and lantern slides.

ORGANIZATIONS

Agricultural Club.—This organization is composed of students taking agricultural courses. Meetings are held throughout the college year, at which important agricultural topics are discussed by members of the club, and also by prominent speakers from this and other states.

American Chemical Society.—The Maine Section of the American Chemical Society has its headquarters at Orono. Some students in the department of Chemistry are members, and all are welcome to its meeting.

American Institute of Electrical Engineering.—This is an organization for the promotion of the student’s interest in electrical engineering work, and to keep him in touch with the latest developments in this branch of engineering activity. Membership in the branch is extended to members of the Electrical Engineering faculty, students pursuing the Electrical Engineering curriculum; and to members and associate members of the American Institute.

American Society of Mechanical Engineers.—A regularly organized branch of this society holds regular meetings for the presentation and discussion of engineering papers by members and by visiting engineers.
Organizations

Cercle Français.—The object of the Cercle Français of the University of Maine is to cultivate the spoken French language and arouse and stimulate an interest in the intellectual life of France among the students of the University. The work is carried on in French. Papers are read and discussed and addresses delivered by the members. Plays are studied with a view toward production in French. The Cercle Français meets once in two weeks.

University of Maine Society of Civil Engineering.—This society is composed of the students who are enrolled in the curriculum in Civil Engineering. The object of the society is to investigate by reading and discussion the various engineering topics of the day. Monthly lectures are given under the direction of the society by members of the faculties of this and other institutions and by practicing engineers.

The affairs of the society are controlled by the students under the advice of the department.

Deutscher Verein.—This society, organized in 1902, is composed of teachers and students. Its purpose is to stimulate interest in the various phases of German life and literature and afford practice in speaking German. The number of members is in practice limited. Meetings are held every three weeks during the academic year.

Forestry Club.—All students majoring in the curriculum in forestry are eligible for membership in the Forestry Club. The purpose of the club is to give an opportunity for presenting informal discussions and technical papers on forestry subjects, and to promote cooperation and general good fellowship among the forestry students. The meetings are semi-monthly.

Maine Masque.—This is a dramatic club which aims to make a practical study of the acted drama, and to present each year before the public one or more representative plays. Membership is determined by competitive trials to which all men undergraduates are eligible.

Pharmaceutical Association.—All students majoring in pharmacy are eligible for membership in this association. Meetings are held semi-monthly. The object of the association is to investigate by reading and informal discussions the various pharmaceutical topics of the day. Lectures are given at various times during the year by men prominent in the profession.

Christian Association.—The Christian Association, composed of men students, has for its object the promotion of Christian fellowship and aggressive Christian work. Religious services are held in the Library Building and classes for the study of the Bible are conducted on Sunday.
University of Maine

Young Women's Christian Association.—This is an organization for religious work composed of women students.

Alpha Chi Sigma.—Alpha Chi Sigma is a professional fraternity with chapters in various American colleges and universities. The members are elected from those whose major work is in the department of Chemistry.

Alpha Zeta.—The Maine chapter of Alpha Zeta, the national agricultural fraternity, was organized at the University in 1905. Chapters exist in fourteen other universities. Membership is honorary and is restricted to those attaining high class standing or to those who have shown marked ability along the lines of agricultural study and research.

Phi Kappa Phi.—The Phi Kappa Phi is an honorary society. At the end of the spring semester of the junior year the five members of the class having the highest standing are elected members, and at the end of the fall semester of the senior year the five next highest in the collegiate departments, and two from the College of Law, are added.

Tau Beta Pi.—Tau Beta Pi is an honor fraternity for engineers and has chapters in leading universities and technical schools. Elections to the fraternity take place twice a year, and are made from those juniors and seniors in engineering who have shown high mental and moral qualifications.

University Publications

Annual Report of the Trustees, President, and Treasurer, to the Governor and Council of the State.—The report of the Trustees and President includes an account of the general affairs and interests of the University for the year, and the report of the Experiment Station.

University of Maine Studies.—These are occasional publications containing reports of investigations or researches made by university officers or alumni.

Maine Bulletin.—This is a publication issued monthly during the academic year, to give information to the alumni and the general public. Among recent issues are bulletins relating to the Classical Curriculum, the Curricula in Agriculture, the Curriculum in Pharmacy, the College of Law, the College of Arts and Sciences, the College of Technology, the Curriculum in Forestry, the Courses in Education, the Summer Term, and an Alumni Directory.
Military Instruction

Timely Helps for Farmers.—This is a monthly publication issued in the interest of the farmers and schools of the State by the division of Agricultural Extension.

Annual Report of the Experiment Station and the Experiment Station Bulletins.—These give complete results of the work of investigation of the Station.

Official Inspections.—These are published by the Experiment Station, and contain the results of the work of inspection of agricultural seeds, commercial feeding stuffs, commercial fertilizers, drugs, foods, fungicides, and insecticides. The Bulletins and Official Inspections are sent free on request to any resident of Maine.

Maine Campus.—This is a journal published semi-weekly during the academic year by an association of the students.

Prism.—The Prism is an illustrated annual, published by the junior class.

Practical Husbandry.—This is a quarterly magazine published under the direction of the Agricultural Club. It is devoted to practical and technical agriculture.

Maine Law Review.—This is a magazine published under the direction of the students of College of Law. It is devoted to a discussion of law cases and other current legal problems.

MILITARY INSTRUCTION

Military instruction is required by law. The department is in charge of an officer of the regular army, detailed by the President of the United States for this purpose. United States army rifles, model 1898, ammunition, and accoutrements are furnished by the War Department. The course makes especial preparation for the duties of infantry officers of the line. The students are organized into an infantry battalion of six companies and band, officered by cadets selected for character, soldierly bearing, and military efficiency. The corps is instructed and disciplined in accordance with rules established by the President of the United States. These rules include the minimum course of instruction that must be covered, and the minimum time that must be devoted to this instruction.

The uniform prescribed by the Board of Trustees is as follows:

For commissioned officers, the olive-drab service uniforms prescribed for infantry officers of the United States Army, except that "Maine" insignia and butons are used; for non-commissioned officers and privates, the olive-drab service uniforms of the United States Army, except that
"Maine" insignia and buttons are used, and trousers instead of breeches. The total cost of the uniform is $14.15. The uniforms are procured through an authorized tailor, and are made in the best manner, of thoroughly good material. Cadets are required to wear the uniform when on military duty.

The three seniors who attain the highest standing in the military department are reported to the Adjutant General of the United States Army, and their names are printed in the Army Register. Cadets who have satisfactorily completed the course in military science receive at graduation a certificate of military proficiency and are reported to the Adjutant General of the state in which they reside.

With the exceptions noted below, all men students physically qualified are required to take military work for three hours a week during their first and second years at the University. Those physically disqualified are required to elect other work equal to one credit in lieu of military work. No fractional credit for military work will count towards graduation. Military instruction is arranged in a four years course. After the freshmen and sophomore years the work is elective. Students in the College of Law, the School Course in Agriculture, the two years curriculum in Pharmacy, and graduate students are excused from military work.

PHYSICAL TRAINING

Physical training is required of freshmen three hours per week. All other students may elect this work and receive credit. Students registered on athletic teams are excused during the regular athletic training, but no credit will be given unless the physical training is taken for the remainder of the year. Every student who registers for an athletic team must first pass a required physical examination.

The gymnasium affords excellent opportunity for physical training. On the first floor are the main offices, the office of the director, the baseball cage, lockers, bath rooms, and toilet rooms. The gymnasium proper is located on the second floor. It is supplied with an equipment of modern apparatus for heavy and light gymnastic work. There is floor space of 6,262 square feet, and an overhead running track.

The athletic field is situated a short distance from the gymnasium; it has a quarter-mile running track with a 220-yard straightaway, and is graded and laid out for football, baseball, and track and field athletics. Here men may exercise for recreation or train for active competition.
Physical Training

There are several tennis courts on the campus. On the Stillwater River canoeing may be enjoyed, as well as skating and ice hockey in the winter. All students exercising at class hours wear a regulation suit.

It is the aim of the department to encourage participation in all forms of athletic sport. In this way the benefits will become less and less confined to the few who need them least.

Instead of requiring gymnasium work of students who do not particularly need it, those who are physically fit are encouraged to register for athletic teams, with whose supervision the department is charged.

PUBLIC WORSHIP

Short exercises are held in the chapel every day except Saturday and Sunday. All undergraduate students are required to be present. Students receive a cordial welcome at all services in the churches of the village. Voluntary religious services are held each week under the direction of the Christian Association and the Young Women's Christian Association.

GENERAL INFORMATION

It is assumed that all students entering the University are willing to subscribe to the following: A student is expected to show both within and without the University respect for order, morality, and the rights of others; and such sense of personal honor as is demanded of good citizens and gentlemen.

A pamphlet containing information in regard to the selection of studies, standings and grades, absences from recitations and examinations, entrance conditions, leave of absence, attendance upon chapel, penalties, examinations, athletics, and student organizations may be obtained from the Registrar.

The quota of regular studies for each student varies from the minimum of fourteen hours to a maximum of eighteen hours in the College of Arts and Sciences, and from a minimum of seventeen hours to a maximum of twenty-two hours in the College of Technology.

In the application of this rule, two or three hours of laboratory work count as one hour.

Each student is expected to be present at every college exercise for which he is registered, including each chapel exercise.
SCHOLARSHIP HONORS

Honors for scholarship are of two kinds, general and special. General honors are awarded, at graduation, to students who attain an average grade of B after the freshman year. Special honors are granted for the satisfactory completion of an honor course in addition to the work required for a degree. An honor course must involve at least ninety recitations, or an equivalent, and be completed in one year. The methods of work are determined by the instructor, who should be consulted in each case by students desiring to take such a course. Honor courses are open to juniors and seniors who have attained an average of B in all previous work, and an average grade of A or B in all previous work of the department in which the honors are sought. A student may not register for an honor course later than the fourth week of the fall semester.

Upon the completion of a course, the student’s work will be tested by an examination, or thesis, or both, under the direction of the faculty committee on honors, and the result, together with the instructor’s report, will be laid before the faculty. Examinations for honors shall be held at such times and places as the committee on honors may appoint. They shall be distinct from any class examinations in the same course, which latter examinations the candidate for honors may or may not take, as he chooses. The honor examination shall be written and, if the committee so desires, also oral. The professors giving the courses shall submit to the committee papers for the honor examinations not later than one week before the date set for the examinations.

The students in honor courses involving laboratory work may be tested by examination, or thesis, or both, at the discretion of the committee. The faculty may grant special honors to those students who receive the approval of the committee, but shall not do so if the general work is unsatisfactory. Honors and their nature are stated upon the Commencement program and published in the annual catalog.

DEGREES

BACHELORS’ DEGREES.

The degree of Bachelor of Arts (B.A.), with specification of the major subject, is conferred upon all students who complete a curriculum in the College of Arts and Sciences. These students are required to
Degrees

fulfill the proper entrance conditions and to obtain six credits in the department in which their major work lies.

The degree of Bachelor of Science, (B. S.), in the curriculum pursued is conferred upon students who complete the prescribed work of four years in the Colleges of Agriculture or Technology.

The degree of Bachelor of Pedagogy, (B. Pd.), is conferred upon students in the College of Arts and Sciences who have completed a course in an approved high school, a course in a normal school, and two years under prescribed conditions at the University.

The degree of Bachelor of Laws (LL. B.) is conferred upon students who complete the prescribed work in the College of Law.

The degree of Pharmaceutical Chemist (Ph. C.) is conferred upon students who complete the two-year Pharmacy curriculum.

Beginning with the entering class of 1914, the degree of Ph. G. (Graduate in Pharmacy) will be conferred upon students completing the prescribed two years curriculum. The entrance requirements for this curriculum will be raised gradually from two years of high school work now required to a complete high school course, by 1919. As soon as proper courses can be provided, a three years curriculum in Pharmacy will be established, leading to the degree of Ph. C., (Pharmaceutical Chemist) requiring for entrance the completion of a four years high school course.

A minimum residence of one year is required for the attainment of any Bachelor’s degree.

Advanced Degrees

Graduate students, whether candidates for a degree or not, are required to register at the office of the University at the beginning of each semester or term. Those entering the University after that date must obtain the consent of the committee on advanced degrees before they can count a full year’s work.

Candidates for the degree of Master of Arts, Master of Science, or Master of Laws must have received the corresponding bachelor’s degree from this institution, or from one granting a fully equivalent degree.

At least one year must elapse between the conferring of the bachelor’s and the master’s degree.

No work done before the conferring of the bachelor’s degree shall be counted toward the master’s degree.

The candidate shall devote at least one year to graduate resident study and shall complete work of the equivalent of six credits or fifteen hours per week throughout a college year.
University of Maine

The courses of study for each candidate must be approved by the committee on advanced degrees not later than the fourth week of the semester or term.

A registration fee of $5 is charged, and an additional fee of $15 for examinations and diplomas is payable upon the completion of the work. One registration fee only is required of graduate students.

The curriculum shall include work in one major department or subject in which the candidate has already pursued undergraduate study for at least two years, and work in not more than two minor subjects which bear a distinct relation to the general plan or purpose of the major subject.

At least three-fifths of the work must be done in the major subject. In special cases all the work may be done in one department.

All of the work must be of advanced character and must be tested by examinations which the candidate shall pass with distinction.

The candidate shall prepare as a part of his curriculum a satisfactory thesis on some topic connected with the major subject. Theses must be deposited with the Dean of the University not later than 12 M. Monday of the week preceding Commencement. The same regulations regarding the size and styles of binding, outlined under the bachelor's degree apply here.

At the end of the course of study for the master's degree, the candidate will be required to pass an oral examination covering his work, including the thesis work. This examination shall be open to all voting members of the faculty of the University. The time for such examinations will be arranged by the Dean of the University to accord, so far as possible, with the convenience of the candidate and the major instructor, between the dates of May 15 and June 1. On May 15, the Dean of the University will notify the heads of all departments of the University of the dates set for the public oral examinations of all candidates of the year. While the examination will in each case, as a matter of course, be conducted chiefly by the members of the department in which the work has been done, any member of the faculty present at the examination has the privilege of questioning the candidate. The Committee on Graduate Study will be represented at each examination.

The professional degrees of Chemical Engineer (Ch. E.), Civil Engineer (C. E.), Electrical Engineer (E. E.), and Mechanical Engineer (M. E.) may be conferred upon graduates in the curricula in Chemistry
Expenses

or Chemical Engineering, Civil Engineering, Electrical Engineering, and Mechanical Engineering respectively, upon the presentation of satisfactory theses, after at least three years of professional work subsequent to graduation. During at least two of the years after graduation the candidate must have occupied a position of responsibility. A fee of $5.00 is required at the time of registration. A fee of $10.75 is required payable upon presentation of the thesis, which must be submitted not later than May 20. Candidates are expected to be present in person to receive their degrees.

THESES

Theses shall be printed, or typewritten in black record unless the subject matter prevents, and the paper used shall be a standard thesis paper 8 x 10 1/2 inches, which may be procured at the University Store. Care should be taken to have a margin of one inch on the inner edge, at least one-half on the outer edge, one and one-half inches at the top and one inch at the bottom of the page.

If drawings accompany the thesis they may be bound in with the rest of the pages or placed in a pocket on the inside of the back cover: or if too many for this, they may be bound separately according to personal instructions of the head of the department.

STUDENT EXPENSES

The estimates are prepared upon the basis of students living in university halls.

Estimate of Annual Expenses for Men

<table>
<thead>
<tr>
<th></th>
<th>Students from within the State</th>
<th>Students from without the State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Registration</td>
<td>$10.00</td>
<td>$10.00</td>
</tr>
<tr>
<td>Incidental s</td>
<td>20.00</td>
<td>20.00</td>
</tr>
<tr>
<td>Tuition</td>
<td>30.00</td>
<td>40.00 to $70.00</td>
</tr>
<tr>
<td>Laboratory fees</td>
<td>10.00 to $25.00</td>
<td>10.00 to 25.00</td>
</tr>
<tr>
<td>Text-books</td>
<td>10.00 to 30.00</td>
<td>10.00 to 30.00</td>
</tr>
<tr>
<td>Board 36 weeks @ $3.50</td>
<td>126.00</td>
<td>126.00</td>
</tr>
<tr>
<td>Room in a dormitory</td>
<td>36.00 to 45.00</td>
<td>36.00 to 45.00</td>
</tr>
<tr>
<td></td>
<td>$242.00 to $286.00</td>
<td>$252.00 to $326.00</td>
</tr>
</tbody>
</table>

Note. The tuition charge of $70.00 is for technology students from without the State.
University of Maine

Estimate of Annual Expenses for Women

The expenses for women are the same as for men, except that the annual charge for board and room is uniformly $170.00.

Exceptions

By legislative enactment, students in agricultural and home economics curricula are exempted from the payment of tuition charges. This applies both to students from within and without the State. For such students the above estimates should be reduced by an amount equal to the tuition charge.

Details of Laboratory Fees.

The laboratory charges indicated above are made to cover cost of material used by the students. These charges vary with the subject and length of the course. They are as follows: Agronomy, per course $1.00 to $1.50; Animal Industry, per course, $1.00 to $4.00; Bacteriology, per course, $3.00; Biological Chemistry, $3.00 to $4.00; Biology, per course, $2.00 to $3.00; Chemistry, per course, $2.00 to $5.00; Civil Engineering, per course, $2.00 to $5.00; Electrical Engineering, per course, $2.50; Horticulture, per course, $1.00 to $2.00; Mechanical Engineering, per course, $2.00; Mineralogy, per course, $2.00; Pharmacy, per semester, about $3.50; Physics, per course, $2.50 to $3.50; Shop Work, per course, $4.00 to $5.00. Laboratory fees in Home Economics are stated in connection with the description of that department.

Special Charges

A fee of $2.00 is charged a student for each special examination. Students registering after the prescribed day of registration shall pay an additional fee of two dollars. This applies to each semester of the Colleges of Agriculture, Arts and Science, and Technology; and each term of the College of Law.

Dormitory Rooms

The rooms in the Mt. Vernon House, Balentine Hall, Oak Hall, and the middle section of Hannibal Hamlin Hall accommodate two students each. All other rooms accommodate four students each.
Expenses

Dormitory charges include steam heat and electric lights. The rooms in the dormitories for men are furnished with beds, mattresses, chiffoniers, desks, and chairs. Each resident in a dormitory has bed linen and three towels laundered each week without extra charge.

Women students not living at home are required to live in one of the women's dormitories. In exceptional cases women students are allowed to live at some boarding house approved by the President. To secure the reservation of a room in a university dormitory, application, accompanied by a deposit of $5.00, should be made on or before September 1.

Deposits to Cover Expenses

Each student on or before registration day is required to make a deposit in accordance with the following table:

<table>
<thead>
<tr>
<th>Students from within the State</th>
<th>Students from without the State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students in Agriculture $95 00</td>
<td>$95 00</td>
</tr>
<tr>
<td>Students in Forestry 110 00</td>
<td>115 00</td>
</tr>
<tr>
<td>Students in Home Economics... 95 00</td>
<td>95 00</td>
</tr>
<tr>
<td>Students in Arts and Sciences... 110 00</td>
<td>115 00</td>
</tr>
<tr>
<td>Students in Technology 110 00</td>
<td>130 00</td>
</tr>
</tbody>
</table>

For a student not living in a university dormitory the above deposits are reduced by $75.00.

Expenses at the College of Law

For expenses of students in the College of Law, see the article on that college.

Communications

Communications with reference to financial affairs of students should be addressed to the Treasurer of the University of Maine.

Blanket Tax

Students generally contribute $10.00 annually to the support of athletics and the Maine Campus. This is not a university requirement, but is wholly voluntary.
KITTRIDGE LOAN FUND

This fund, amounting to nearly one thousand dollars, was established by Nehemiah Kittridge, of Bangor. It is in the control of the President and the Treasurer of the University, by whom it is loaned to needy students in the three upper classes. In the deed of gift it was prescribed that no security but personal notes bearing interest at the prevailing rate should be required. Loans are made on the conditions that the interest be paid promptly, and that the principal be returned from the first earnings after graduation.

SCHOLARSHIPS AND PRIZES

The Kidder Scholarship, thirty dollars, was endowed by Frank E. Kidder, Ph. D., Denver, Colorado, a graduate of the University of the class of 1879, and is awarded to a member of the Junior class to be selected by the President and the Faculty.

New York Alumni Association Scholarship, thirty dollars, is awarded upon conditions to be determined by the Board of Trustees. It has for some years been awarded to the student who excelled in debate.

Pittsburg Alumni Association Scholarship, tuition for one year, is awarded to a member of the junior class in the College of Technology, to be selected by the President and the professors in that college.

Western Alumni Association Scholarship, tuition for the sophomore year, is awarded to that student pursuing a regular curriculum whose deportment is satisfactory and who makes good progress in his studies during his freshman year.

Junior Exhibition Prize, fifteen dollars, is awarded to that member of the junior class who presents the best oration at the junior exhibition. In the award of this prize, both the composition and the delivery of the oration will be considered.

Clarence P. King Prize, twenty-five dollars, the gift of Mr. Clarence P. King, of Washington, D. C., is awarded to that member of the senior and junior classes who delivers the best original oration.

Sophomore Declamation Prize, fifteen dollars, for excellence in elocution, is awarded to the best speaker in the sophomore class.
Scholarship and Prizes

WALTER BALENTINE PRIZE, fifteen dollars, the gift of Whitman H. Jordan, Sc. D., LL. D., Geneva, N. Y., a graduate of the University of the class of 1875, is awarded to that member of the junior class who excels in biological chemistry.

KENNEBEC COUNTY PRIZE, twenty-five dollars, the gift of Hon. William T. Haines, LL. D., Waterville, a graduate of the University of the class of 1876, is awarded to that member of the senior class who writes the best thesis on applied electricity.

FRANKLIN DANFORTH PRIZE, ten dollars, the gift of the Hon. Edward F. Danforth, Skowhegan, a graduate of the University, of the class of 1877, in memory of his father, Franklin Danforth, is awarded to that member of the senior class in the agricultural curricula who attains the highest standing.

PHARMACY PRIZE, five dollars, is awarded to that student in the Pharmacy department who attains the highest standing in chemistry in the last year of his course.

HOLT PRIZES, the gift of Dr. Erastus Eugene Holt, of Portland, are given to the three students of the senior class who show the greatest improvement in their physical rating. The rating will be determined from deductions made from the gymnasium and class records of the students at the beginning and end of their college course by the mathematical formula for the normal earning ability of the body devised by Dr. Holt.

L. C. BATEMAN PRIZE, five dollars, is awarded to the student in the College of Agriculture who shall write the best newspaper article of one column length on “How to Keep the Boy on the Farm.”

LEWISTON JOURNAL PRIZE, ten dollars, is awarded to a student in the College of Agriculture who shall write the best article on some topic connected with agriculture, the subject and conditions being left to the Dean of the College.

AMERICAN PHARMACEUTICAL ASSOCIATION PRIZE, free membership for one year in the Association, is awarded by the faculty to the member of the senior class in Pharmacy who has made the best record in his college course.

FATHER HARRINGTON PRIZE, twenty dollars, established by Rev. John M. Harrington, pastor of St. Mary's Church, Orono, is given to that student who writes the best essay upon modern literature. It may treat of German, English, French, Spanish, or Italian literature. The essay may be limited to any one of these literatures or to a comparative study of any number of them. This is open to any student in the University.
University of Maine

Class of 1908 Commencement Cup is awarded each year to the class having the largest percentage of its membership present at Commencement.

Fraternity Commencement Cup is awarded to the fraternity, the largest percentage of whose alumni register during commencement week.

Fraternity Scholarship Cup, presented to the University by the 1910 Senior Skull Society, is awarded at Commencement to that fraternity having the highest standing in scholarship for the preceding calendar year. The cup is to be awarded for eleven years, 1910 to 1920 inclusive. The fraternity to which this cup is awarded the greatest number of times is to be the permanent owner of the cup.

Wingard Cup, the gift of Professor E. R. Wingard, is awarded to that student who has won his "M" in athletics, and who has made the greatest improvement in his studies during the year.

ADMISSION

General Requirements.—Candidates for admission should apply to the Registrar for an application card. They must present satisfactory certificates of fitness, or pass the required examinations, and make a cash deposit covering the bills of one semester. In the College of Law the fees must be paid in advance and no additional deposit is required. The University admits men and women, both residents of Maine and non-residents.

Admission to Advanced Standing.—Candidates for advanced standing are examined in the preparatory studies, and in those previously pursued by the classes they wish to enter, or in other equivalent studies. A rank of B must be attained in order to pass any course in advance. Certificates from approved schools are accepted for the preparatory work; but certificates are not accepted for any part of the college work, unless such work has been done in a college. Students transferring from another college must present a letter of honorable dismission.

Admission to Short Courses

Candidates for the two years Curriculum in Pharmacy must be at least seventeen years of age, and must have successfully completed at least two years in an approved high school. Beginning with the entering class of 1914, the entrance requirements will be gradually raised to a complete high school course in 1919.
Admission

Candidates for the two years Course in Home Economics must be graduates of a recognized high school or its equivalent, and they should have some practical knowledge of housework.

Candidates for admission to the two years School Course in Agriculture must be over fifteen years of age and prepared for advanced grammar or high school work.

Admission by Examinations

Entrance examinations are held at Orono, beginning four days before the opening of the fall semester, and on the Wednesday, Thursday, Friday, and Saturday preceding Commencement. To save expense to candidates, examination papers will be sent to any satisfactory person who will consent to conduct examinations on the days appointed in June. If possible, these examinations should be in charge of the principal of the school. Papers will not be sent at any other time. The questions are to be submitted under the usual restrictions of a written examination, and the answers returned to the University immediately, accompanied by the endorsement of the examiner. The examination must be given on the days appointed in the schedule. Applications for such examinations must be made out on blanks to be obtained from the Registrar. Candidates for admission by examination, particularly those examined at Orono in September, should present statements from their school principals regarding their fitness to take the examinations and to undertake college work.

The examinations given by the College Entrance Examination Board will be accepted by the University. These examinations will be held during the week June 14-19, 1915. All applications for these examinations must be addressed to the secretary of the College Entrance Examination Board, Post Office Sub-Station 84, New York, N. Y., and must be made upon a blank form to be obtained from the Secretary of the Board upon application.

A candidate who wishes to be examined on part of his work in advance of the year in which he proposes to enter the University may receive credit for such examination, provided he offers not less than one-half of his preparatory work. It is advised that candidates avail themselves of this privilege as far as possible. Examinations on subjects which are to be continued in college should not be taken more than one year in advance.
Admission of Graduates from Class A Schools in Maine

Graduates from Maine high schools and academies placed by the State Superintendent of Schools in Class A may be admitted upon their school records, provided they have pursued a course of study including all the subjects required for admission to the college that they propose to enter and a sufficient number of the elective subjects to make a total of fourteen and a half units.

The school record of the candidate must be certified by the Principal, upon blanks furnished by the University, and should be submitted before August 1st.

Admission by Certificate from Schools Outside of Maine

Principals of schools situated outside of Maine who desire the certificate privilege must make application to the Dean of the University, and must furnish satisfactory evidence that the course of study in the school meets the requirements for admission. Blank forms for this purpose will be supplied on request.

Certificates will not be accepted for non-graduates except in unusual cases, and then only provided the candidate is expressly recommended for admission by the Principal of the high school from which he comes. Certificates must be made out on blanks furnished by the University.

Entrance Requirements

To gain admission to any of the curricula leading to the degree of Bachelor of Arts or Bachelor of Science, 14 1/2 units must be offered by the candidates, according to the following schedules (to count one unit, a subject must be pursued for one school year, with five recitation periods a week):

For the Bachelor of Arts Curricula

Required Subjects

<table>
<thead>
<tr>
<th>Subject</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreign languages</td>
<td>count 4 units</td>
</tr>
<tr>
<td>English</td>
<td>counts 3 units</td>
</tr>
<tr>
<td>History</td>
<td>" 1 unit</td>
</tr>
<tr>
<td>Mathematics</td>
<td>" 2 1/2 units</td>
</tr>
</tbody>
</table>

Not less than two units of any foreign language may be offered. Credit for advanced work will be accepted at the rate of one unit for each year of work.
Admission

Optional Subjects (4 units to be chosen)

<table>
<thead>
<tr>
<th>Subject</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greek</td>
<td>2 or 3 units</td>
</tr>
<tr>
<td>Latin</td>
<td>2, 3, or 4 units</td>
</tr>
<tr>
<td>French</td>
<td>2, 3, or 4 units</td>
</tr>
<tr>
<td>German</td>
<td>2, 3, or 4 units</td>
</tr>
<tr>
<td>Advanced algebra</td>
<td>(\frac{1}{2}) unit</td>
</tr>
<tr>
<td>Solid geometry</td>
<td>(\frac{1}{2}) unit</td>
</tr>
<tr>
<td>Trigonometry</td>
<td>(\frac{1}{2}) unit</td>
</tr>
<tr>
<td>Chemistry (including note-book)</td>
<td>1 unit</td>
</tr>
<tr>
<td>Physics (including note-book)</td>
<td>1 unit</td>
</tr>
<tr>
<td>Physiography (one-half or one year)</td>
<td>(\frac{1}{2}) unit or 1 unit</td>
</tr>
<tr>
<td>Biology (including note-book)</td>
<td>1 unit</td>
</tr>
<tr>
<td>Botany (including note-book)</td>
<td>1 unit</td>
</tr>
<tr>
<td>Zoology (including note-book)</td>
<td>1 unit</td>
</tr>
<tr>
<td>Physiology</td>
<td>(\frac{1}{2}) unit</td>
</tr>
<tr>
<td>Ancient history (1 year)</td>
<td>1 unit</td>
</tr>
<tr>
<td>English history (1 year)</td>
<td>1 unit</td>
</tr>
<tr>
<td>American history and civil government (1 year)</td>
<td>1 unit</td>
</tr>
<tr>
<td>Mediæval and modern history</td>
<td>1 unit</td>
</tr>
</tbody>
</table>

The requirement in history must include a year of Greek and Roman history, or a year of English history, or a year of mediæval and modern history, or a year of American history and civil government. A choice will be allowed between the last half year of algebra and solid geometry for those who do not expect to continue mathematics in college.

For the Bachelor of Science Curricula

Required Subjects

<table>
<thead>
<tr>
<th>Subject</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>3 units</td>
</tr>
<tr>
<td>*Algebra</td>
<td>(\frac{3}{2}) unit</td>
</tr>
<tr>
<td>Plane geometry</td>
<td>1 unit</td>
</tr>
<tr>
<td>Solid geometry (College of Technology except Pharmacy)</td>
<td>(\frac{3}{2}) unit</td>
</tr>
<tr>
<td>French, German, or Spanish (two years of one language)</td>
<td>2 units</td>
</tr>
<tr>
<td>Sciences</td>
<td>1 unit</td>
</tr>
<tr>
<td>History</td>
<td>1 unit</td>
</tr>
</tbody>
</table>

10 units

* Candidates who have had two full years of algebra, including a review during the last year, and the use of an advanced text-book, may receive credit of two units. Such a course is recommended for those who wish to pursue a curriculum in engineering or chemistry.

57
University of Maine

Optional Subjects (4 1-2 or 5 units to be chosen)

Candidates entering a B.S. curriculum and offering four years of Latin may complete their entrance credits without a modern language, but must take in college the equivalent of the modern language entrance requirement in addition to the language scheduled in their college curriculum.

Each year of French ... counts 1 unit

" " " German .. 1 "

" " " Latin .. 1 "

" " " Greek .. 1 "

Advanced algebra .. 1/2 "

Trigonometry ... 1/2 "

†Mechanical drawing (for technical courses) 1/2 "

†Manual training (for technical courses) 1/2 "

Chemistry (including note-book) .. 1 "

Physics (including note-book) ... 1 "

Physiography (one-half year or one year) counts 1/2 unit or 1 "

Biology (including note-book) .. counts 1 "

Botany (including note-book) ... 1 "

Zoology (including note-book) ... 1 "

Physiology ... 1/2 "

Roman history ... 1/2 "

Greek history .. 1/2 "

English history .. counts 1/2 or 1 "

American history and civil government 1/2 " 1 "

† Graduates from high schools giving a full manual training course may receive credit for mechanical drawing, manual training, and free-hand drawing, on the basis of one-half unit for five forty-five minute periods per week for one year in one subject taken in the high school.

Candidates for admission to any curriculum, who are well prepared in all the required subjects, but whose high school course has included studies other than the electives mentioned above, will be allowed to substitute such as will furnish a real equivalent. Each case of proposed substitution will be considered upon its merits.

Credit for industrial and commercial subjects may be given at the discretion of the committee on admission. The total credit for these subjects will be limited to four units for admission to B.S. curricula and to two units for B.A. curricula.

58
Admission

REQUIREMENTS IN DETAIL

The following statement shows in detail the requirements in each subject:

Languages

English.—The entrance examination in English presupposes courses in composition and English literature pursued in the high school during four years. Prospective students are warned against attempting to prepare the required work in one year. Progress in composition particularly is of slow growth, and requires almost daily cultivation during a long period of time. Books, to be thoroughly enjoyed and appreciated, should be read leisurely and under favorable circumstances.

Rhetoric.—Candidates are expected to have had practice in composition for at least three days a week during the whole four years of the high school, and to have included in the latter part of their course such work in the elements of rhetoric, as for example, is contained in Carpenter's Rhetoric and Composition.

Grammar.—The examination will include questions on the syntax of sentences, and on general grammatical principles.

Weight of Composition.—The examination is mainly designed to test the candidate's ability to express his thought correctly and clearly. It is quite possible to answer all questions on the literature correctly, and yet fail on the examination as a whole because of crude and ungrammatical English. Prospective candidates are advised to give especial attention to spelling, punctuation, grammatical correctness, idiomatic words and phrases, sentence and paragraph formation.

Subjects.—The subjects for the short compositions will be taken from the A list of books; also from the candidate's general knowledge and experience.

The prescribed books are those adopted by the Conference on Uniform Entrance Requirements. The A list is for general reading. The candidate is not expected to have a detailed knowledge of these books, but such acquaintance with them as naturally follows intelligent and appreciative reading. For 1913-1915 the books in the A list are as follows:

Two books to be selected from each group.

GROUP I

(For any unit of this group a unit from any other group may be substituted). Old Testament—Comprising the chief narrative episodes
in Genesis, Exodus Joshua, Judges, Samuel, Kings, and Daniel, together with the books of Ruth and Esther. Homer—The Odyssey. (English translation.) With the omission, if desired, of Books I, II, III, IV, V, XV, XVI, XVII; the Iliad, (English translation) with the omission, if desired, of Books XI, XIII, XIV, XV, XVII, XXI. Virgil—Æneid. (English translation).

Group II

Shakespeare—Merchant of Venice, Midsummer-Night’s Dream, As You Like It, Twelfth Night, King Henry V, Julius Cæsar.

Group III

Group IV

Group V

Admission

The B list is for study: Shakespeare's Macbeth; Milton's Comus, L'Allegro, and II Penseroso; Burke's Speech on Conciliation with America, or Washington's Farewell Address, and Webster's First Bunker Hill Oration; Macaulay's Life of Johnson, or Carlyle's Essay on Burns.

French.—The admission requirements in elementary and intermediate French are those recommended by the Modern Language Association of America.

I. Elementary French.—At the end of the second year the pupil should be able to pronounce French accurately, to read at sight easy French prose, to put into French simple English sentences taken from the language of everyday life or based upon a portion of the French text read, and to answer questions on the rudiments of the grammar as defined below.

The first year's work should comprise: (1) careful drill in pronunciation; (2) the rudiments of grammar, including the inflection of the regular and the more common irregular verbs, the plural of nouns, the inflection of adjectives, participles, and pronouns; the use of personal pronouns, common adverbs; prepositions, and conjunctions; order of words in the sentences, and elementary rules of syntax; (3) abundant easy exercises, designed not only to fix in memory the forms and principles of grammar, but also to cultivate readiness in reproducing natural forms of expression; (4) the reading of 100 to 175 duodecimo pages of graduated texts, with constant practice in translating into French easy variations of the sentences read (the teacher giving the English), and in reproducing from memory sentences previously read; (5) writing French from dictation.

61
The second year's work should comprise: (1) the reading of 250 to 400 pages of easy modern prose in the form of stories, plays, or historical or biographical sketches; (2) constant practice, as in the previous year, in translating into French easy variations upon the texts read; (3) frequent abstracts, sometimes oral and sometimes written, of portions of the text already read; (4) writing French from dictation; (5) continued drill upon the rudiments of grammar, with constant application in the construction of sentences; (6) mastery of the forms and use of pronouns, pronominal adjectives, of all but the rare irregular verb forms, and of the simpler uses of the conditional and subjunctive.

Suitable texts for the second year are: About, le Roi des montagnes; Bruno, le Tour de la France; Daudet, Easier Short Tales; De la Bédollière, La Mère Michel et son chat; Erckmann-Chatrian's Stories; Foa, Contes biographiques and le Petit Robinson de Paris; Foncin, le Pays de France; Labiche and Martin, la Poudre aux yeux and le Voyage de M. Perrichon; Legouve and Labiche, la Cigale chez les fourmis; Malot, Sans famille; Mairet, la Tache du petit Pierre; Mérimée, Colomba; Extracts from Michelet; Sarcey, le Siège de Paris; Verne's Stories.

II. Intermediate French.—At the end of the third year the pupil should be able to read at sight ordinary French prose or simple poetry, to translate into French a connected passage of English based on the text read, and to answer questions involving a more thorough knowledge of syntax than is expected in the elementary course.

This should comprise the reading of 400 to 600 pages of French of ordinary difficulty, a portion to be in the dramatic form; constant practice in giving French paraphrases, abstracts, or reproductions from memory of selected portions of the matter read; the study of a grammar of moderate proportions; writing from dictation.

Suitable texts are: About's Stories; Augier and Sandeau, le Gendre de M. Foirier; Béranger's Poems; Corneille, le Cid and Horace; Coppée's Poems; Daudet, la Belle Nivernaise; La Brète, Mon oncle et mon curé; Madame de Sévigné's Letters; Hugo, Hernani and la Chute; Labiche's Plays; Loti, Pêcheur d'Islande; Mignet's Historical Writings; Molière, l'Avare and le Bourgeois gentilhomme; Racine, Athalie, Andromaque and Esther; George Sand's Plays and Stories; Sandeau, Mademoiselle de la Seiglière; Scribe's Plays; Thierry, Récits; Vigny, la Canne de jonc; Voltaire's Historical Writings.

At the end of the fourth year the pupils should be able to read at sight, with the help of a vocabulary of special or technical expressions,
Admission

difficult French not earlier than that of the seventeenth century; to write in French a short essay on some simple subject connected with the works read; to put into French a passage of easy English prose, and to carry on a simple conversation in French.

This should comprise the reading of from 600 to 1,000 pages of standard French, classical and modern, only difficult passages being explained in the class; the writing of numerous short themes in French; the study of syntax.

Suitable reading matter will be: Beaumarchais's Barbier de Sèville; Corneille's Dramas; the elder Dumas's Prose Writings; the younger Dumas's la Question d' argent; Hugo, Ruy Blas, Lyrics, and Prose Writings; La Fontaine's Fables; Lamartine, Graziella; Marivaux's Plays; Molière's Plays; Musset's Plays and Poems; Pellissier, Mouvement littéraire au XIX siècle; Renan, Souvenirs d' enfance et de jeunesse; Rousseau's Writings; Sainte-Beuve's Essays; Taine, Origines de la France contemporaine; Voltaire's Writings; Selections from Zola, Mau­passant, and Balzac.

The examination of the College Entrance Certificate Board in elementary French will be accepted for two units, and that in intermediate and advanced French for two additional units.

German.—The admission requirements in elementary and advanced German are those recommended by the Modern Language Association of America.

I. Elementary German.—The first year's work should comprise: (1) careful drill upon pronunciation; (2) memorizing and frequent repetition of easy colloquial sentences; (3) drill upon the rudiments of grammar; that is, upon the inflection of the articles, of such nouns as belong to the language of every-day life, of adjectives, pronouns, weak verbs, and the more unusual strong verbs; also in the use of the more common prepositions, the simpler uses of the modal auxiliaries, and the elementary rules of syntax and word order; (4) abundant easy exercises designed not only to fix in mind the forms and principles of grammar, but also to cultivate readiness in reproducing natural forms of expression; (5) the reading of 75 to 100 pages of graduated texts from a reader, with constant practice in translating into German easy variations upon sentences selected from the reading lesson (the teacher giving the English), and in reproducing from memory sentences previously read.
The second year's work should comprise: (1) the reading of 150 to 200 pages of literature in the form of easy stories and plays; (2) accompanying practice, as before, in translating into German easy variations upon the matter read, also in the off-hand reproduction, sometimes orally and sometimes in writing, of the substance of short and easy selected passages; (3) continued drill in the rudiments of grammar, to enable the pupil first, to use his knowledge with facility in forming sentences, and second, to state his knowledge correctly in the technical language of grammar.

Stories suitable for the elementary course can be selected from the following list: Anderson, Märchen and Bilderbuch ohne Bilder; Baum­bach, Die Nonna and Der Schwiegersohn; Gerstäcker, Germelshausen; Heyse, L'Arrabbiata, Das Mädchen von Treppi, and Anfang und Ende; Hillern, Höher als die Kirche; Jensen, die braune Erica; Leander, Träumereien and Kleine Geschichten; Seidel, Märchen; Stokl, Unter dem Christbaum; Storm, Immensee and Geschichten aus der Tonne; Zschokke, Der zerbrochene Krug.

The best shorter plays available are: Benedix, Der Prozess, Der Weiberfeind, and Günstige Vorzeichen; Elz, Er ist nicht eifersüchtig; Wichert, An der Majorsecke; Wilhelmi, Einer muss heiraten. Only one of these plays need be read, and the narrative style should predominate. A good selection of reading matter for the second year would be Andersen, Märchen or Bilderbuch, or Leander, Traumereien, to the extent of about forty pages. Afterward, such a story as Das kalte Herz, or Der zerbrochene Krug; then Höher als die Kirche, or Immensee; next a good story by Heyse, Baumbach, or Seidel; last Der Prozess.

II. Advanced German.—The work should comprise, in addition to the elementary course, the reading of about 400 pages of moderately difficult prose and poetry, with constant practice in giving, sometimes orally and sometimes in writing, paraphrases, abstracts, or reproductions from memory of selected portions of the matter read; also grammatical drill in the less usual strong verbs, the use of articles, cases, auxiliaries of all kinds, tenses and modes (with especial reference to the infinitive and subjunctive), and likewise in word order and word formation. To do this work two school years are usually required.

Suitable reading matter for the third year may be selected from such work as the following: Ebner-Eschenbach, Die Freiherren von Gem­perlein; Freytag, Die Journalisten and Bilder aus der deutschen Ver-
Admission

gangenheit, Karl der Grosse, Aus den Kreuzzügen, Doktor Luther, Aus dem Staat Friedrichs des Grossen; Fouqué, Undine; Gerstäcker, Irrfahrten; Goethe, Hermann und Dorothea and Iphigenie; Heine's poems and Reisebilder; Hoffman, Historische Erzählungen; Lessing, Minna von Barnhelm; Meyer, Gustav Adolfs Page; Moser, Der Bibliothekar; Riehl, Novellen, Burg Neideck, Der Fluch der Schönheit, Der stumme Ratsherr, Das Spielmannskind; Rosegger, Waldheimat; Schiller, Der Neffe als Onkel, Der Geisterscher, Wilhelm Tell, Die Jungfrau von Orleans, Das Lied von der Glocke, Balladen; Scheffel, Der Trompeter von Säkkingen; Uhland's poems; Wildenbruch, Das edle Blut. A good selection would be: (1) one of Riehl's novelettes; (2) one of Freytag's "pictures;" (3) part of Undine or Der Geisterscher; (4) a short course of reading in lyrics and ballads; (5) a classical play by Schiller, Lessing, or Goethe.

The examinations of the College Entrance Certificate Board in elementary German will be accepted for two units, and that in advanced German for one additional unit.

LATIN.—The entrance examination in Latin will consist of four parts as follows:

1. An examination on the elements of Latin grammar and easy translations.

2a. An examination in sight translation of Latin prose suited to test the ability of a candidate who has read from Caesar (Gallic War and Civil War) and Nepos (Lives) an amount not less than Caesar, Gallic War, I-IV.

b. Questions on the ordinary forms and constructions of Latin grammar and the translation of easy English sentences into Latin.

3a. An examination on Cicero, speeches for the Manilian Law and for Archias, with questions on subject-matter, literary and historical allusions, and grammar.

b. An examination in sight translation of Latin prose adapted to candidates who have read from Cicero (speeches, letters, and De Senectute) and Sallust (Catiline and Jugurthin War) an amount not less than Cicero, speeches against Catiline I-IV, for the Manilian Law, and for Archias.

c. A test in writing simple Latin prose which shall demand a thorough knowledge of all regular inflections, all common irregular forms, and the ordinary syntax and vocabulary of the prose authors read in school.

65
4a. An examination on Vergil, Æneid, I, II, and either IV or VI at the option of the candidate, with questions on subject-matter, literary and historical allusions, and prosody.

b. An examination in sight translation of Latin poetry adapted to candidates who have read from Vergil (Bucolics, Georgics, and Æneid) and Ovid (Metamorphoses, Fasti, and Tristia) an amount not less than Vergil, Æneid, I-VI.

A candidate may obtain separate credit for each part except in the College of Arts and Sciences. Each represents a year's work and entrance credit for one unit.

In parts 2 and 3 candidates must deal satisfactorily with both the sight and set passages, or they will not be given credit for either.

GREEK.—The grammar, including prosody; Xenophon's Anabasis, books I-IV; Homer's Iliad, books I-III; the sight translation of easy passages from Xenophon; the translation into Greek of easy passages based on the required books of the Anabasis. For the last a vocabulary of less usual words will be furnished. Equivalent readings will be accepted in place of those prescribed.

History

GREEK HISTORY.—History of Greece, to the capture of Corinth, 146 B.C.; Myers, Morey, or Botsford.

ROMAN HISTORY.—A knowledge of Roman history, down to the death of Marcus Aurelius, such as may be obtained from Allen's Short History of the Roman People, or from Myers's Rome: Its Rise and Fall, or from Morey's Outlines of Roman History.

ENGLISH HISTORY.—A knowledge such as may be obtained from Montgomery, Coman and Kendall, Terry, or Cheyney's History of England.

UNITED STATES HISTORY AND CIVIL GOVERNMENT.—A knowledge such as may be obtained from the works of Fiske, Hart, Montgomery, or McLaughlin.

Mathematics

ALGEBRA.—The four fundamental operations for rational algebraic expressions; factoring, determination of highest common factor and least common multiple by factoring; fractions, including complex frac-
Admission

tions, and ratio and proportion; linear equations, both numerical and literal, containing one or more unknown quantities; problems depending on linear equations; radicals, including the extraction of the square root of polynomials and of numbers; exponents, including the fractional and negative; quadratic equations, both numerical and literal; simple cases of equations with one or more unknown quantities, that can be solved by the methods of linear or quadratic equations; problems depending on quadratic equations; the binomial theorem for positive integral exponents; the formulas for the nth term and the sum of the terms of arithmetical and geometrical progressions, with applications.

It is assumed that pupils are required throughout the course to solve numerous problems which involves putting questions into equations. Some of these problems should be chosen from mensuration, from physics and from commercial life. The use of graphical methods and illustrations, particularly in connection with the solution of equations, is also expected.

Plane Geometry.—The usual theorems and constructions of good text-books, including the general properties of plane rectilinear figures; the circle and the measurement of angles; similar polygons; areas; regular polygons and the measurement of the circle.

Solid Geometry.—The usual theorems and constructions of good text-books, including the relations of planes and lines in space; the properties and measurement of prisms, pyramids, cylinders, and cones; the sphere and the spherical triangle.

Trigonometry.—Definitions and relations of the six trigonometric functions as ratios; circular measurement of angles; proofs of principal formulas, in particular for the sine, cosine, and tangent of the sum and the difference of two angles, of the double angle and the half angle; the product expressions for the sum or the difference of two sines or of two cosines, etc.; the transformation of trigonometric expressions by means of these formulas; solution of trigonometric equations of a simple character; theory and use of logarithms (without the introduction of work involving infinite series); the solution of right and oblique triangles, and practical applications, including the solution of right spherical triangles.

Advanced Algebra.—Permutations and combinations, limited to simple cases; complex numbers, with graphical representation of sums and differences; determinants, chiefly of the second, third, and fourth orders, including the use of minors and the solution of linear equations; numeri-
cal equations of higher degree, and so much of the theory of equations with graphical methods, as is necessary for their treatment, including Descartes's rule of signs and Horner's method, but not Sturm's functions or multiple roots.

Sciences

* Biology.—This may consist of a continuous course for one year dealing with the problems of general biology, including the study of the structure, functions, and habits of both plants and animals; a course for one year in botany alone; a course for one year in zoology alone; or a course for one-half year in human physiology. The human physiology may be arranged to form a part of the general biology, or of the zoology; but in such cases it must be treated as an integral part of the subject under consideration.

* Chemistry.—The necessary ground is covered by the following textbooks; Brownlee and others, Hessler and Smith, McPherson and Henderson, Newell.

Physical Geography (Physiography).—A satisfactory preparation may be obtained from Appleton's Physical Geography.

* Physics.—The work usually covered in one year in a good fitting school.

The requirements in botany and zoology are the same as those of the College Entrance Examination Board, and are outlined in the syllabus of the board. The note-book should include properly labelled drawings, and descriptions of experiments, representing as much of the work in this syllabus as may be practicable, and should be the record of a year's laboratory work in the subject. The making of an herbarium is optional.

* The work in these sciences must include certified note-books exhibiting the results of experimental work performed by the student. In physics forty exercises are required and in chemistry fifty exercises. These note-books should be presented at the examination. In the case of students certified in the sciences, the principal is expected to pass upon the quality of the note-books rather than send them to the University.
ORGANIZATION OF THE UNIVERSITY

The University is divided for purposes of administration into the Colleges of Agriculture, Arts and Sciences, Law, and Technology, and the Maine Agricultural Experiment Station. The policies of the University as a unit are determined by the Board of Trustees and the General Faculty, but each division regulates those affairs which concern itself alone.

COLLEGE OF AGRICULTURE

Curricula in Agronomy, Animal Husbandry, Biology, Dairy Husbandry, Forestry, Home Economics, Horticulture, Poultry Husbandry, and for Teachers of Agriculture

Two Years Course in Home Economics for Teachers; School Course in Agriculture (two years)

Short Courses; Farmers’ Week; Correspondence and Lecture Courses; Demonstration Work

COLLEGE OF ARTS AND SCIENCES

Major subjects may be selected in Biology, Chemistry, Economics and Sociology, Education, English, German, Greek and Classical Archaeology, History, Latin, Mathematics and Astronomy, Philosophy, Physics, and Romance Languages

COLLEGE OF LAW

This College is located in Bangor

COLLEGE OF TECHNOLOGY

Curricula in Chemical Engineering, Chemistry, Civil Engineering, Electrical Engineering, Mechanical Engineering, and Pharmacy, and Two Years Curriculum in Pharmacy
The college year, except for the College of Law, is divided equally into a fall semester and a spring semester. Five recitation hours a week of successful work for one semester entitle a student to one credit. The minimum regular work for a semester in the College of Arts and Sciences is fourteen hours a week (exclusive of physical training and military science) leading to two and four-fifths credits. In the College of Agriculture and the College of Technology the minimum is seventeen hours a week (exclusive of physical training and military science), leading to three and two-fifths credits. Six credits in the major subject represent the minimum requirement for a degree. In making up the quota of studies, laboratory work not requiring preparation counts as half time, unless otherwise specified. Such subjects are marked with a star (*) or dagger (†) in the detailed description of courses of instruction.
COLLEGE OF AGRICULTURE

FACULTY OF INSTRUCTION

LEON STEPHEN MERRILL, M. D.
Director of Agricultural Extension Service

LUCIUS HERBERT MERRILL, Sc. D.
Professor of Biological and Agricultural Chemistry

FREMONT LINCOLN RUSSELL, B. S., V. S.
Professor of Bacteriology and Veterinary Science

MINTIN ASBURY CHRYSLER, Ph. D.
Professor of Biology

JOHN MANVERS BRISCOE, M. F.
Professor of Forestry

GEORGE EDWARD SIMMONS, M. S.
Professor of Agronomy

LAMERT SEYMOUR CORBETT, M. S.
Professor of Animal Industry

BLISS S BROWN, M. S.
Professor of Horticulture

EDSON FORBES HITCHINGS, C. E., M. S.
Associate Professor of Horticulture

FRANCES ROWLAND FREEMAN, B. S.
Associate Professor of Home Economics

ALICE MIDDLETON BORING, Ph. D.
Assistant Professor of Zoology

HARRY NEWTON CONSER, M. S., M. A.
Assistant Professor of Botany

RALPH WOODBURY REDMAN, B. S.
Assistant Director of Agricultural Extension Service

HAROLD SCOTT OSLER, B. S.
Assistant Professor of Agronomy

HARRY WOODBURY SMITH, B. S.
Instructor in Bacteriology

HENRY ROBBINS BARROWS, M. S.
Instructor in Biology

DOROTHEA BEACH
Instructor in Home Economics
College of Agriculture

ERIC NICHOLS BOLAND, M. S. Instructor in Animal Industry
CARLETON WHIDDEN EATON, A.B., M. F. Instructor in Forestry

ORVILLE ALVIN JAMISON, B. S. in Agr.

EARL JONES, M. S.

LILIAN NANCY RANDALL

MARION WILHELMINA BORDEN, B. S.

ALEXANDER LURIE, B. S.

SIDNEY WINFIELD PATTERSON, B. S.

GLEN BLAINE RAMSEY, A.B.

NEIL CARPENTER SHERWOOD, B. S.

LAWRENCE VIVIAN JONES, LL. B.

CLARENCE WALLACE BARBER, M. S.

CLARENCE ALBERT DAY

ARTHUR LOWELL DEERING, B. S.

MAURICE DANIEL JONES, B. S.

WILSON MONTGOMERY MORSE, B. S.

HAROLD HARLAN NASH

HAROLD JOSEPH SHAW

GEORGE NEWTON WORDEN, B. S.

GEORGE ALBERT YEATON

RALPH PIKE MITCHELL

MARIE WILHELMINA GURDY, B. S.

WILLIAM COLLINS MONOHAN, B. S.

In Charge of Boys' Agriculture Club Work
In Charge of Girls' Agriculture Club Work
In Charge of Poultry Extension Work
General Information

WOODBURY FREEMAN PRIDE, B.S. Assistant in Biology
PAUL WHEELER MONOHON, B.S. Assistant in Extension Work and Physical Training

GENERAL INFORMATION

The College of Agriculture comprises the departments of Agricultural Extension, Agronomy, Animal Industry, Biological and Agricultural Chemistry, Biology, Farm Management and Agricultural Engineering, Forestry, Home Economics, Horticulture, Veterinary Science and Bacteriology. The aim of this college is to train young men for service as farmers, teachers of agriculture and the allied sciences in schools and colleges, investigators in agricultural experiment stations, and foresters; and to prepare young women to become teachers of home economics and to comprehend the problems of administration in the home and in public institutions. On entering either a four years curriculum or the two years School Course in Agriculture a student is required to fill out a practical experience blank. Those who have not had experience in general farming are required to work during at least one summer vacation on some farm approved by the faculty of the college.

The College of Agriculture has the following requirements for graduation:

1. English, one year, five hours a week, or the equivalent divided between two or three years.
2. Mathematics, the equivalent of one-half year, five hours a week.
3. Science (biology, chemistry, or physics), one year, five hours a week, of which time an important part must be occupied with laboratory work.
4. Language (French or German), the equivalent of one-half year, five hours a week.
5. Military Science and Tactics, two years, three hours a week.
6. Physical Training, one year, three hours a week.

The courses of instruction are organized as follows:

1. REGULAR CURRICULA
 The four years general curricula in Agronomy, Animal Husbandry, Biology, Dairy Husbandry, Forestry, Home Economics, Horticulture, and Poultry Husbandry, and the four years curriculum for Teachers in General Agriculture.
College of Agriculture

2. Short Courses
 The two years Teachers' Course in Home Economics
 The two years School Course in Agriculture
 The short winter courses in General Agriculture, Dairying, Horticulture, and Poultry Management
 Farmers' week

3. Extension Courses
 The correspondence courses
 The lecture courses
 The traveling schools
 The demonstration work
 The coöperative experiments

THE COLLEGE CURRICULA

The college curricula are designed for those who wish to follow general farming, animal husbandry, dairy husbandry, poultry husbandry, horticulture, home economics, chemistry as related to experiment station work, biological chemistry, bacteriology and veterinary science, biology, farm management, and forestry either as a business or as a profession.

Certain studies are fundamental to all work in agricultural lines. As many as possible of these subjects are offered in the first two years, during which the student is necessarily given no choice of subjects. By the beginning of the junior year each student must decide whether he is to specialize in Agronomy, Animal Husbandry, Dairy Husbandry, Poultry Husbandry, Horticulture, or Biology. To specialize in any one of these lines, he must during his junior and senior years take the studies given in the schedules which follow.

Students in agriculture who contemplate entering experiment station work should elect the course offered by the department of agricultural chemistry covering the qualitative and quantitative chemical analysis of fodders, fertilizers, and dairy products. They should also elect a preparatory course in quantitative chemical analysis.

One of the following curricula, embracing 150 college hours each, is required for the students taking the four years curricula in agriculture. The elective subjects are selected with the advice of the major instructor.
The College Curricula

Curriculum for the First Two Years for All Students Taking Four Years Curricula in Agriculture

FRESHMAN YEAR

<table>
<thead>
<tr>
<th>Fall Semester</th>
<th>Hours</th>
<th>Spring Semester</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agronomy 11, †4</td>
<td>2</td>
<td>Animal Industry 2</td>
<td>2</td>
</tr>
<tr>
<td>Biology 1, 2 †4</td>
<td>4</td>
<td>Animal Industry 4, †2</td>
<td>1</td>
</tr>
<tr>
<td>Chemistry 1 or 3</td>
<td>2</td>
<td>Biology 2, 2 †4</td>
<td>4</td>
</tr>
<tr>
<td>Chemistry 5, †4</td>
<td>2</td>
<td>Chemistry 2 or 4</td>
<td>3</td>
</tr>
<tr>
<td>Drawing 9, *3</td>
<td>1</td>
<td>Chemistry 6, †4</td>
<td>2</td>
</tr>
<tr>
<td>English 3</td>
<td>1</td>
<td>Drawing 10, *3</td>
<td>1</td>
</tr>
<tr>
<td>English 7</td>
<td>2</td>
<td>English 4</td>
<td>1</td>
</tr>
<tr>
<td>Military 1, *3</td>
<td>1</td>
<td>English 8</td>
<td>2</td>
</tr>
<tr>
<td>Modern Language</td>
<td>?</td>
<td>Military 2, *3</td>
<td>1</td>
</tr>
<tr>
<td>Physical Training *2</td>
<td>½</td>
<td>Modern Language</td>
<td>?</td>
</tr>
<tr>
<td>Total</td>
<td>18 ½</td>
<td>Physical Training *2</td>
<td>1</td>
</tr>
</tbody>
</table>

SOPHOMORE YEAR

<table>
<thead>
<tr>
<th>Subject</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agronomy 1, 2, *3</td>
<td>3</td>
</tr>
<tr>
<td>Animal Industry 3</td>
<td>2</td>
</tr>
<tr>
<td>Animal Industry 5, †2</td>
<td>1</td>
</tr>
<tr>
<td>Biology 3</td>
<td>2</td>
</tr>
<tr>
<td>Biological Chemistry 7</td>
<td>2</td>
</tr>
<tr>
<td>Chemistry 15, 2 †2</td>
<td>3</td>
</tr>
<tr>
<td>Mathematics 11</td>
<td>3</td>
</tr>
<tr>
<td>Military 1, *3</td>
<td>1</td>
</tr>
<tr>
<td>Poultry Husbandry 1, 2, †2</td>
<td>3</td>
</tr>
<tr>
<td>Biological Chemistry 8, 3, †4</td>
<td>5</td>
</tr>
<tr>
<td>Biology 8, 2 †4</td>
<td>4</td>
</tr>
<tr>
<td>Horticulture 2, 2 *3</td>
<td>3</td>
</tr>
<tr>
<td>Mathematics 12</td>
<td>2</td>
</tr>
<tr>
<td>Military 2, *3</td>
<td>1</td>
</tr>
<tr>
<td>Poultry Husbandry 2, 1 †2</td>
<td>2</td>
</tr>
</tbody>
</table>
College of Agriculture

Curriculum for Students Specializing in Agronomy

JUNIOR YEAR

<table>
<thead>
<tr>
<th>Subject</th>
<th>Fall Semester</th>
<th>Spring Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agronomy 13, 1 †2</td>
<td>2</td>
<td>Agricultural Chemistry 6</td>
</tr>
<tr>
<td>*Animal Industry 7, 2 4</td>
<td>4</td>
<td>Agronomy 14, 1 †2</td>
</tr>
<tr>
<td>Bacteriology 1, †6</td>
<td>3</td>
<td>Agronomy 16, 1 †2</td>
</tr>
<tr>
<td>Biology 9, 2 †6</td>
<td>5</td>
<td>Agronomy 18</td>
</tr>
<tr>
<td>English 17</td>
<td>2</td>
<td>Animal Industry 6</td>
</tr>
<tr>
<td>Elective</td>
<td>2</td>
<td>Biology 10, 2 †6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>English 18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Elective</td>
</tr>
<tr>
<td></td>
<td></td>
<td>**</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subject</th>
<th>Hours</th>
<th>Subject</th>
<th>Hours</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Agronomy 15, 1 †2</td>
<td>2</td>
<td>Farm Management 2, †4</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>*Farm Management 71, 2 3</td>
<td>3</td>
<td>*Farm Management 72, 2 3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Thesis</td>
<td>3</td>
<td>Thesis</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Elective</td>
<td>8</td>
<td>Elective</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>18</td>
<td></td>
<td>17</td>
<td></td>
</tr>
</tbody>
</table>

SENIOR YEAR

<table>
<thead>
<tr>
<th>Subject</th>
<th>Hours</th>
<th>Subject</th>
<th>Hours</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Agronomy 3</td>
<td>2</td>
<td>Farm Management 2, †4</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Agronomy 15, 1 †2</td>
<td>2</td>
<td>*Farm Management 72, 2 3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>*Farm Management 71, 2 3</td>
<td>3</td>
<td>*Farm Management 74, 2 3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Thesis</td>
<td>3</td>
<td>Thesis</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Elective</td>
<td>8</td>
<td>Elective</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>18</td>
<td></td>
<td>17</td>
<td></td>
</tr>
</tbody>
</table>

Curriculum for Students Specializing in Animal Industry

Animal Husbandry

JUNIOR YEAR

<table>
<thead>
<tr>
<th>Subject</th>
<th>Hours</th>
<th>Subject</th>
<th>Hours</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>*Animal Industry 7, 2 4</td>
<td>4</td>
<td>Agricultural Chemistry 6</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Bacteriology 1, †6</td>
<td>3</td>
<td>Animal Industry 6</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Bacteriology 3</td>
<td>2</td>
<td>Animal Industry 52, †2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Biology 51, 2 †4</td>
<td>4</td>
<td>Bacteriology 52, †6</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>English 17</td>
<td>2</td>
<td>Biology 52, 2 †4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>*Farm Management 71, 2 3</td>
<td>3</td>
<td>English 18</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>Veterinary Science 14</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>Veterinary Science 16</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

| | 18 | | | |
The College Curricula

SENIOR YEAR

<table>
<thead>
<tr>
<th>Spring Semester</th>
<th>Fall Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject</td>
<td>Subject</td>
</tr>
<tr>
<td>Agronomy 3</td>
<td>Animal Industry 54</td>
</tr>
<tr>
<td>Animal Industry 53</td>
<td>Farm Management 2, ♦4</td>
</tr>
<tr>
<td>Veterinary Science 15</td>
<td>Farm Management 72, 2 ♦3</td>
</tr>
<tr>
<td>Veterinary Science 17</td>
<td>Thesis</td>
</tr>
<tr>
<td>Veterinary Science 19</td>
<td>Elective</td>
</tr>
<tr>
<td>Thesis</td>
<td>Thesis</td>
</tr>
<tr>
<td>Elective</td>
<td>Elective</td>
</tr>
</tbody>
</table>

Dairv Husbandry

<table>
<thead>
<tr>
<th>JUNIOR YEAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animal Industry 7, 2 ♦4</td>
</tr>
<tr>
<td>Bacteriology 1, ♦6</td>
</tr>
<tr>
<td>Bacteriology 3</td>
</tr>
<tr>
<td>English 17</td>
</tr>
<tr>
<td>Farm Management 71, 2 ♦3</td>
</tr>
<tr>
<td>Elective</td>
</tr>
</tbody>
</table>

SENIOR YEAR

<table>
<thead>
<tr>
<th>Subject</th>
<th>Hours</th>
<th>Subject</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agronomy 3</td>
<td>2</td>
<td>Bacteriology 102, ♦4</td>
<td>2</td>
</tr>
<tr>
<td>Animal Industry 9, 2 ♦6</td>
<td>Farm Management 2, ♦4</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Animal Industry 51</td>
<td>Farm Management 72, 2 ♦3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Veterinary Science 15</td>
<td>Thesis</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Veterinary Science 17</td>
<td>Elective</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Thesis</td>
<td>3</td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

Elective 3

18
College of Agriculture

Poultry Husbandry

JUNIOR YEAR

<table>
<thead>
<tr>
<th>Subject</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animal Industry 7, 2 *4</td>
<td>4</td>
</tr>
<tr>
<td>Bacteriology 1, †6</td>
<td>3</td>
</tr>
<tr>
<td>Bacteriology 3</td>
<td>2</td>
</tr>
<tr>
<td>Biology 51, 2 †4</td>
<td>4</td>
</tr>
<tr>
<td>English 17</td>
<td>2</td>
</tr>
<tr>
<td>Poultry Husbandry 3, 1 †2</td>
<td>2</td>
</tr>
<tr>
<td>Elective</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>19</td>
</tr>
</tbody>
</table>

Spring Semester

<table>
<thead>
<tr>
<th>Subject</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural Chemistry 6</td>
<td>2</td>
</tr>
<tr>
<td>Animal Industry 6</td>
<td>2</td>
</tr>
<tr>
<td>Biology 52, 2 †4</td>
<td>4</td>
</tr>
<tr>
<td>English 18</td>
<td>2</td>
</tr>
<tr>
<td>Poultry Husbandry 4, 1 †2</td>
<td>2</td>
</tr>
<tr>
<td>Elective</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>18</td>
</tr>
</tbody>
</table>

SENIOR YEAR

<table>
<thead>
<tr>
<th>Subject</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agronomy 3</td>
<td>2</td>
</tr>
<tr>
<td>Farm Management 71, 2 *3</td>
<td>3</td>
</tr>
<tr>
<td>Poultry Husbandry 5</td>
<td>2</td>
</tr>
<tr>
<td>Poultry Husbandry 7, 2 †2</td>
<td>3</td>
</tr>
<tr>
<td>Thesis</td>
<td>3</td>
</tr>
<tr>
<td>Elective</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subject</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Farm Management 2, †4</td>
<td>2</td>
</tr>
<tr>
<td>Farm Management 72, 2 *3</td>
<td>3</td>
</tr>
<tr>
<td>Poultry Husbandry 6, 3 †2</td>
<td>4</td>
</tr>
<tr>
<td>Veterinary Science 12</td>
<td>2</td>
</tr>
<tr>
<td>Thesis</td>
<td>3</td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
</tr>
</tbody>
</table>

Curriculum for Students Specializing in Horticulture

JUNIOR YEAR

<table>
<thead>
<tr>
<th>Subject</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacteriology 1, †6</td>
<td>3</td>
</tr>
<tr>
<td>Biology 9, 2 †6</td>
<td>5</td>
</tr>
<tr>
<td>English 17</td>
<td>2</td>
</tr>
<tr>
<td>Horticulture 1, 2 †2</td>
<td>3</td>
</tr>
<tr>
<td>Horticulture 7, 2 †2</td>
<td>3</td>
</tr>
<tr>
<td>Elective</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subject</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural Chemistry 6</td>
<td>2</td>
</tr>
<tr>
<td>Animal Industry 6</td>
<td>2</td>
</tr>
<tr>
<td>Biology 10, 2 †6</td>
<td>5</td>
</tr>
<tr>
<td>English 18</td>
<td>2</td>
</tr>
<tr>
<td>Horticulture 4, 2 †2</td>
<td>3</td>
</tr>
<tr>
<td>Horticulture 10</td>
<td>2</td>
</tr>
<tr>
<td>Elective</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>18</td>
</tr>
</tbody>
</table>
The College Curricula

SENIOR YEAR

<table>
<thead>
<tr>
<th>Subject</th>
<th>Fall Semester</th>
<th>Hours</th>
<th>Subject</th>
<th>Spring Semester</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agronomy</td>
<td></td>
<td>3</td>
<td>Farm Management</td>
<td>2, *4</td>
<td>2</td>
</tr>
<tr>
<td>Farm Management</td>
<td></td>
<td>2</td>
<td>Horticulture 6, 2 *2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Horticulture</td>
<td>2</td>
<td>2</td>
<td>Horticulture 8, 2 *2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Horticulture 3, 2 *2</td>
<td>3</td>
<td></td>
<td>Horticulture 52 (Seminar)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Horticulture 5, 2 *2</td>
<td>3</td>
<td></td>
<td>Horticulture 12 (Thesis)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Horticulture 51 (Seminar)</td>
<td>1</td>
<td></td>
<td>Elective</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horticulture 11 (Thesis)</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td>18</td>
</tr>
</tbody>
</table>

CURRICULUM FOR STUDENTS TAKING MAJOR WORK IN BIOLOGY

JUNIOR YEAR

<table>
<thead>
<tr>
<th>Subject</th>
<th>Hours</th>
<th>Subject</th>
<th>Hours</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacteriology</td>
<td>2</td>
<td>Bacteriology 2</td>
<td>3</td>
<td>18</td>
</tr>
<tr>
<td>English 17</td>
<td>2</td>
<td>English 18</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Geology</td>
<td>3</td>
<td>Modern Language</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Modern Language</td>
<td>3</td>
<td>Plant Pathology 66 or Elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Plant Histology 61</td>
<td>4</td>
<td>Plant Physiology 62</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>or</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vertebrate Anatomy 51</td>
<td>3</td>
<td>Animal Embryology 52</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SENIOR YEAR

<table>
<thead>
<tr>
<th>Subject</th>
<th>Hours</th>
<th>Subject</th>
<th>Hours</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animal Histology 53</td>
<td>4</td>
<td>Animal Embryology 52 or</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>or Animal Physiology 55</td>
<td></td>
<td>Plant Physiology 62</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>or Advanced Botany 78</td>
<td></td>
<td>Biology Seminar 72</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Biology Seminar 71</td>
<td>1</td>
<td>Plant Pathology 66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thesis 73</td>
<td>3</td>
<td>or Advanced Botany 78</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Vertebrate Anatomy 51 or Plant Histology 61</td>
<td>4</td>
<td>or Elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Elective</td>
<td>63</td>
<td>Thesis 73</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>Elective</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

18\(\frac{1}{2}\)

79
College of Agriculture

Curriculum in Agriculture for Those Who Intend to Become Teachers of this Subject in the Public Schools

This curriculum is offered in response to a call for men capable of teaching all branches of elementary agriculture in high schools or academies. In order to receive a degree, 150 college hours, or 30 credits, must be completed.

FRESHMAN YEAR

<table>
<thead>
<tr>
<th>Subject</th>
<th>Fall Semester</th>
<th>Hours</th>
<th>Subject</th>
<th>Spring Semester</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agronomy 11, †4</td>
<td></td>
<td>2</td>
<td>Animal Industry 2</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Biology 1</td>
<td></td>
<td>4</td>
<td>Animal Industry 4, †2</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Chemistry 1 or 3</td>
<td></td>
<td>2</td>
<td>Biology 2</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Chemistry 5, †4</td>
<td></td>
<td>2</td>
<td>Chemistry 2 or 4</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Drawing 9, *3</td>
<td></td>
<td>1</td>
<td>Chemistry 6, †4</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>English 7</td>
<td></td>
<td>2</td>
<td>Drawing 10, *3</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>English 3</td>
<td></td>
<td>1</td>
<td>English 8</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Military 1, *3</td>
<td></td>
<td>1</td>
<td>English 4</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Modern Language</td>
<td></td>
<td>3</td>
<td>Military 2, *3</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Physical Training *2</td>
<td></td>
<td>1</td>
<td>Modern Language</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Physical Training 2</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18½</td>
<td></td>
<td></td>
<td>20</td>
</tr>
</tbody>
</table>

SOPHOMORE YEAR

<table>
<thead>
<tr>
<th>Subject</th>
<th>Hours</th>
<th>Subject</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animal Industry 3</td>
<td>2</td>
<td>Education 52</td>
<td>3</td>
</tr>
<tr>
<td>Animal Industry 5, †2</td>
<td>1</td>
<td>Horticulture 2</td>
<td>3</td>
</tr>
<tr>
<td>Education 51</td>
<td>3</td>
<td>Mathematics 2</td>
<td>3</td>
</tr>
<tr>
<td>Horticulture 1</td>
<td>3</td>
<td>Mathematics 4</td>
<td>2</td>
</tr>
<tr>
<td>Mathematics 1</td>
<td>3</td>
<td>Mech. Engineering 6, *4</td>
<td>1</td>
</tr>
<tr>
<td>Mathematics 3</td>
<td>2</td>
<td>Military 2, *3</td>
<td>1</td>
</tr>
<tr>
<td>Mech. Engineering 3, *4</td>
<td>1½</td>
<td>Poultry Husbandry 2, 1 †2</td>
<td>2</td>
</tr>
<tr>
<td>Military 1, *3</td>
<td>1</td>
<td>Electives</td>
<td>3</td>
</tr>
<tr>
<td>Poultry Husbandry 1, 2, †2</td>
<td>3</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>19½</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

80
The College Curricula

Junior Year

<table>
<thead>
<tr>
<th>Subject</th>
<th>Fall Semester</th>
<th>Spring Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agronomy 1, 2 *3</td>
<td>3</td>
<td>Agronomy 14, 1 †2</td>
</tr>
<tr>
<td>Education 55</td>
<td>3</td>
<td>Biology 6</td>
</tr>
<tr>
<td>English 17</td>
<td>2</td>
<td>Chemistry 16</td>
</tr>
<tr>
<td>Geology 5</td>
<td>3</td>
<td>English 18</td>
</tr>
<tr>
<td>Horticulture 3</td>
<td>3</td>
<td>Modern Language</td>
</tr>
<tr>
<td>Modern Language</td>
<td>3</td>
<td>Veterinary Science 14</td>
</tr>
<tr>
<td>Elective</td>
<td></td>
<td>Veterinary Science 16</td>
</tr>
</tbody>
</table>

Senior Year

<table>
<thead>
<tr>
<th>Subject</th>
<th>Fall Semester</th>
<th>Spring Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agronomy 3</td>
<td>2</td>
<td>Animal Industry 6</td>
</tr>
<tr>
<td>Animal Industry 7</td>
<td>4</td>
<td>Animal Industry 8, 1 *3</td>
</tr>
<tr>
<td>Bacteriology 1, †6</td>
<td>3</td>
<td>Agricultural Chemistry 6</td>
</tr>
<tr>
<td>Biological Chemistry 1</td>
<td>5</td>
<td>Biology 8</td>
</tr>
<tr>
<td>Physics 5</td>
<td>5</td>
<td>Horticulture 4, 2 †2</td>
</tr>
<tr>
<td>Veterinary Science 15</td>
<td>2</td>
<td>Physics 4, *5</td>
</tr>
<tr>
<td>Veterinary Science 17</td>
<td>1</td>
<td>Electives</td>
</tr>
</tbody>
</table>

Total Credits:

- Junior Year: 19
- Senior Year: 17

The Forestry Curriculum

A complete undergraduate curriculum is arranged which will serve as the basis not only for practical work in forestry, but also for a liberal education. During the first two years much attention is given to biology and civil engineering, both of which are important fundamental subjects upon which are built the more technical forestry courses. A knowledge of the principles of forestry in its different branches is gained by the student, and considerable practical work is done in the forest. The woodlands belonging to the University, together with adjacent lands covered by young forest, furnish a field for the study of many forest problems. Field trips are made and demonstration thinnings and plantings made at various places throughout the State.

The instruction in this department consists of lectures, recitations, laboratory, and field work; the latter consumes a considerable portion of the scheduled time during the junior and senior years.
College of Agriculture

There are good openings for students to obtain work in the Maine woods during the summer vacations, and many take advantage of the opportunity to get practical experience, and at the same time aid in defraying their university expenses.

Besides the prescribed work in other departments courses 4 to 22 inclusive, are required of all students majoring in forestry, and courses 3 and 13 are recommended as electives for these students. Course 2 is open to all students, but is not required of students majoring in forestry.

At graduation the student receives the degree of Bachelor of Science in Forestry. A special bulletin, giving detailed description of all the courses as well as of the equipment, is issued by the department and will be sent free to any address upon request.

Curriculum in Forestry

Freshman Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biology 1, 2 †4</td>
<td>4</td>
</tr>
<tr>
<td>Chemistry 1 or 3</td>
<td>2</td>
</tr>
<tr>
<td>Chemistry 5, †4</td>
<td>2</td>
</tr>
<tr>
<td>Drawing 1, *6</td>
<td>2</td>
</tr>
<tr>
<td>English 7</td>
<td>2</td>
</tr>
<tr>
<td>Mathematics 1</td>
<td>3</td>
</tr>
<tr>
<td>Mathematics 3</td>
<td>2</td>
</tr>
<tr>
<td>Military 1, *3</td>
<td>1</td>
</tr>
<tr>
<td>Physical Training</td>
<td>1</td>
</tr>
<tr>
<td>Total Credits</td>
<td>18½</td>
</tr>
</tbody>
</table>

Sophomore Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agronomy 1, 2 *3</td>
<td>3</td>
</tr>
<tr>
<td>Biology 67, 2 †4</td>
<td>4</td>
</tr>
<tr>
<td>Civil Engineering 1</td>
<td>1½</td>
</tr>
<tr>
<td>Civil Engineering 5</td>
<td>1</td>
</tr>
<tr>
<td>English 3</td>
<td>1</td>
</tr>
<tr>
<td>English 9</td>
<td>2</td>
</tr>
<tr>
<td>History 5</td>
<td>3</td>
</tr>
<tr>
<td>Military 1, *3</td>
<td>1</td>
</tr>
<tr>
<td>Modern Language</td>
<td>3</td>
</tr>
<tr>
<td>Total Credits</td>
<td>19½</td>
</tr>
</tbody>
</table>
The College Curricula

JUNIOR YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biology 61, 2, 4</td>
<td>4</td>
</tr>
<tr>
<td>Civil Engineering 21</td>
<td>1</td>
</tr>
<tr>
<td>Civil Engineering 23</td>
<td>1</td>
</tr>
<tr>
<td>Civil Engineering 27</td>
<td>1</td>
</tr>
<tr>
<td>Geology 5</td>
<td>3</td>
</tr>
<tr>
<td>Forestry 11</td>
<td>2</td>
</tr>
<tr>
<td>Forestry 13, *6</td>
<td>2</td>
</tr>
<tr>
<td>Horticulture 5, 2, *2</td>
<td>3</td>
</tr>
<tr>
<td>Modern Language</td>
<td>3</td>
</tr>
<tr>
<td>Biology 62 or 66</td>
<td>4 or 3</td>
</tr>
<tr>
<td>Civil Engineering 22</td>
<td>1</td>
</tr>
<tr>
<td>Civil Engineering 24</td>
<td>2</td>
</tr>
<tr>
<td>Forestry 6</td>
<td>2</td>
</tr>
<tr>
<td>Forestry 8, *6</td>
<td>2</td>
</tr>
<tr>
<td>Forestry 10, *3</td>
<td>1</td>
</tr>
<tr>
<td>Modern Language</td>
<td>2</td>
</tr>
<tr>
<td>Physics 6</td>
<td>2</td>
</tr>
<tr>
<td>Electives</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>20</td>
</tr>
</tbody>
</table>

SENIOR YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biology 66 or 62</td>
<td>3 or 4</td>
</tr>
<tr>
<td>Forestry 12</td>
<td>2</td>
</tr>
<tr>
<td>Forestry 14, *6</td>
<td>2</td>
</tr>
<tr>
<td>Forestry 16</td>
<td>2</td>
</tr>
<tr>
<td>Forestry 18</td>
<td>2</td>
</tr>
<tr>
<td>Forestry 20</td>
<td>2</td>
</tr>
<tr>
<td>Forestry 22</td>
<td>2</td>
</tr>
<tr>
<td>Forestry 26 (Thesis)</td>
<td>3</td>
</tr>
<tr>
<td>Forestry 21</td>
<td>3</td>
</tr>
<tr>
<td>Forestry 25 (Thesis)</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>18 or 17</td>
</tr>
</tbody>
</table>

Four Years Curriculum in Home Economics

This curriculum, leading to a Bachelor of Science degree, prepares women to teach home economics in elementary, high and normal schools, and in colleges. It gives instruction in cookery, dietetics, marketing, serving, household economics, laundering, sewing, and handwork. A foundation for the practical work is laid in pursuing a thorough course in biology, chemistry, and physics. Practice teaching and normal methods are based upon a study of psychology and the history of education.

Those desiring admission to this curriculum must meet the regular college requirements.

Laboratory fees, to cover the cost of materials used, are as follows:
- Cookery courses 1, 2, 5, 6, 7, 8, each $6 a semester.
- Cookery courses 3, 4, each $2.50 a semester.
- Handwork courses $1 a semester.

83
College of Agriculture

Economics $0.50 a semester. Laundering $1 a semester. Practical housework $3.50 a semester. Camp cookery $2.00 a semester.

Students expecting to major in Home Economics should write to the head of the department in regard to equipment.

Freshman Year

<table>
<thead>
<tr>
<th>Subject</th>
<th>Fall Semester</th>
<th>Hours</th>
<th>Spring Semester</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biology 1, 2 †4</td>
<td></td>
<td>4</td>
<td>Biology 2, 2 †4</td>
<td></td>
</tr>
<tr>
<td>Chemistry 1 or 3</td>
<td></td>
<td>2</td>
<td>Chemistry 2 or 4</td>
<td></td>
</tr>
<tr>
<td>Chemistry 5, †4</td>
<td></td>
<td>2</td>
<td>Chemistry 6, †4</td>
<td></td>
</tr>
<tr>
<td>English 7</td>
<td></td>
<td>2</td>
<td>English 8</td>
<td></td>
</tr>
<tr>
<td>Home Economics 1, 2 †4</td>
<td></td>
<td>4</td>
<td>Home Economics 2, 2 †4</td>
<td>4</td>
</tr>
<tr>
<td>Modern Language</td>
<td></td>
<td>3</td>
<td>Modern Language</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>17</td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

Sophomore Year

<table>
<thead>
<tr>
<th>Subject</th>
<th>Fall Semester</th>
<th>Hours</th>
<th>Spring Semester</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacteriology 3</td>
<td></td>
<td>2</td>
<td>Chemistry 16, 3 †4</td>
<td></td>
</tr>
<tr>
<td>English 5</td>
<td></td>
<td>1</td>
<td>English 4</td>
<td></td>
</tr>
<tr>
<td>English 9</td>
<td></td>
<td>2</td>
<td>English 10</td>
<td></td>
</tr>
<tr>
<td>Home Economics 9, †4</td>
<td></td>
<td>2</td>
<td>Home Economics 10, †4</td>
<td>2</td>
</tr>
<tr>
<td>Home Economics 13, †4</td>
<td></td>
<td>2</td>
<td>Home Economics 14, †4</td>
<td>2</td>
</tr>
<tr>
<td>Home Economics 15, 1 †3</td>
<td></td>
<td>2½</td>
<td>Home Economics 16, 1 †3</td>
<td>2½</td>
</tr>
<tr>
<td>Mathematics 1</td>
<td></td>
<td>3</td>
<td>Modern Language</td>
<td></td>
</tr>
<tr>
<td>Mathematics 3</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modern Language</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>18½</td>
<td></td>
<td>18½</td>
</tr>
</tbody>
</table>

Junior Year

<table>
<thead>
<tr>
<th>Subject</th>
<th>Fall Semester</th>
<th>Hours</th>
<th>Spring Semester</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biological Chemistry 1</td>
<td></td>
<td>5</td>
<td>Biology 16</td>
<td></td>
</tr>
<tr>
<td>Home Economics 3, 2 †2</td>
<td></td>
<td>3</td>
<td>Biological Chemistry 2, †4</td>
<td>2</td>
</tr>
<tr>
<td>Home Economics 17, 1 †2</td>
<td></td>
<td>2</td>
<td>Home Economics 4, 2, †2</td>
<td>3</td>
</tr>
<tr>
<td>Home Economics 19, 1, †1</td>
<td></td>
<td>1½</td>
<td>Home Economics 18, 1, †2</td>
<td>2</td>
</tr>
<tr>
<td>Philosophy 51</td>
<td></td>
<td>3</td>
<td>Philosophy 52</td>
<td></td>
</tr>
<tr>
<td>Physics 5</td>
<td></td>
<td>5</td>
<td>Physics 4</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>19½</td>
<td></td>
<td>18</td>
</tr>
</tbody>
</table>

84
Two Years Course in Home Economics

This course aims to prepare women for teaching Home Economics in secondary schools. It is offered to those who find it impossible to remain at the University for a longer period. This course does not lead to a degree, but a certificate is granted when the prescribed course has been satisfactorily completed. Women who are graduates of a recognized high school or its equivalent, and who have some practical knowledge of housework, are admitted to this course without examination. It is desirable that a student should have taken, previous to her entering the University, courses in elementary chemistry, physics, and physiology. For information concerning fees, see the four years curriculum.

First Year

<table>
<thead>
<tr>
<th>Fall Semester</th>
<th>Spring Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject</td>
<td>Hours</td>
</tr>
<tr>
<td>Biology 1, 2</td>
<td>4</td>
</tr>
<tr>
<td>Chemistry 1 or 3</td>
<td>2</td>
</tr>
<tr>
<td>Chemistry 5, 6</td>
<td>2</td>
</tr>
<tr>
<td>English 7</td>
<td>2</td>
</tr>
<tr>
<td>Home Economics 1, 2</td>
<td>4</td>
</tr>
<tr>
<td>Home Economics 9, 6</td>
<td>2</td>
</tr>
<tr>
<td>Home Economics 15, 1</td>
<td>2½</td>
</tr>
</tbody>
</table>

18½

19½
College of Agriculture

SECOND YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Education 51</td>
<td>3</td>
</tr>
<tr>
<td>Home Economics 7, 1 †4</td>
<td>3</td>
</tr>
<tr>
<td>Home Economics 13, †4</td>
<td>2</td>
</tr>
<tr>
<td>Home Economics 17, 1 †2</td>
<td>2</td>
</tr>
<tr>
<td>Home Economics 19, 1 †1</td>
<td>1½</td>
</tr>
<tr>
<td>Home Economics 21</td>
<td>2</td>
</tr>
<tr>
<td>Home Economics 23</td>
<td>1</td>
</tr>
<tr>
<td>Household Chemistry 9, 3 †4</td>
<td>5</td>
</tr>
<tr>
<td>Mechanical Engineering 15</td>
<td>1</td>
</tr>
<tr>
<td>Biology 4</td>
<td>2</td>
</tr>
<tr>
<td>Education 52</td>
<td>3</td>
</tr>
<tr>
<td>Home Economics 6, †3</td>
<td>1½</td>
</tr>
<tr>
<td>Home Economics 8, 1 †4</td>
<td>3</td>
</tr>
<tr>
<td>Home Economics 14, †4</td>
<td>2</td>
</tr>
<tr>
<td>Home Economics 18, 1 †2</td>
<td>2</td>
</tr>
<tr>
<td>Home Economics 20, 1 †2</td>
<td>2</td>
</tr>
<tr>
<td>Home Economics 22</td>
<td>1</td>
</tr>
<tr>
<td>Home Economics 24</td>
<td>2</td>
</tr>
</tbody>
</table>

20½

18½

Special Courses in Agriculture and Home Economics

The Special Courses in Agriculture and Home Economics are designed for young men and women who cannot well spend four years in preparation, but who desire to secure special training in this line. No fixed schedule of studies is prescribed, but students may elect along the line of horticulture, dairying, poultry management, veterinary science, agricultural chemistry, bacteriology, farm management, general agriculture, or home economics.

Persons not candidates for a degree, who wish to take special studies, may be permitted to do so, if, upon examination, they give satisfactory evidence that they are prepared to take the desired studies. This privilege is intended for students of unusual maturity or previous advancement in particular subjects, and not for those who are incompetent to pursue a regular course. If they subsequently desire to become candidates for a degree, they will be required to meet all the entrance requirements.

The annual expenses for courses of one year or more are the same as those for students in the four years curricula. Tuition is free except in Forestry.

Two Years School Course in Agriculture

This is a course designed to train young men and women who wish to become practical farmers, farm superintendents, dairymen, poultry-men or gardeners, but who cannot devote time to high school or college training.
The College Curricula

The same equipment is used as in the four years curricula, but the work is of a more elementary nature. All the classes are separate and distinct from the four years classes, and in no case will college credit be allowed for work done in the School Course.

There are no entrance examinations required of those who desire to enter the School Course. Students over fifteen years of age who are prepared for advanced grammar or high school work are eligible for registration. No tuition is charged in this course, but the same registration and incidental fees of fifteen dollars a semester, or thirty dollars a year, are charged school course students in agriculture as are charged all others attending the University. Fees amounting to two dollars and fifty cents are charged in each of the carpentry and blacksmithing courses to cover cost of material used. Fees are also charged in several agricultural laboratories.

The practical side of the work in this course is strongly emphasized, and since students are expected to be able to do work and handle men when they have finished, those taking this course are required to spend the summer vacation between the first and second years in work either at the college or on some farm approved by the Faculty.

On completion of the course a certificate is awarded those who have satisfactorily done the work.

The following is a schedule of the work given:

<table>
<thead>
<tr>
<th>FIRST YEAR</th>
<th>SPRING SEMESTER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall Semester</td>
<td>Spring Semester</td>
</tr>
<tr>
<td>Animal Husbandry 3</td>
<td>Dairy Husbandry 3</td>
</tr>
<tr>
<td>Animal Husbandry Laboratory † 2</td>
<td>Dairy Husbandry Laboratory † 2</td>
</tr>
<tr>
<td>Business Arithmetic and Farm Accounts 2</td>
<td>English 3</td>
</tr>
<tr>
<td>Carpentry * 3</td>
<td>Farm Botany 2</td>
</tr>
<tr>
<td>English 3</td>
<td>Forge Work * 3</td>
</tr>
<tr>
<td>Farm Crops 3</td>
<td>Fruit Growing 3</td>
</tr>
</tbody>
</table>
| Farm Crops Laboratory * 3 | Orchard Practice and Labora-
| Fruit Handling 3 | tory Work * 3 |
| Fruit Picking, Packing, and Laboratory Work * 3 | Poultry Husbandry 2 |
| Poultry Husbandry 2 | Poultry Husbandry Laboratory † 2 |
| Poultry Husbandry Laboratory † 2 | Soils and Fertilizers 3 |
| Soils Laboratory * 3 | |
College of Agriculture

SECOND YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animal Husbandry</td>
<td>3</td>
</tr>
<tr>
<td>Animal Husbandry Laboratory †</td>
<td>2</td>
</tr>
<tr>
<td>English</td>
<td>2</td>
</tr>
<tr>
<td>Farm Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>Farm Crops</td>
<td>2</td>
</tr>
<tr>
<td>Farm Engineering and Mechanics</td>
<td>1</td>
</tr>
<tr>
<td>Farm Engineering and Mechanics Laboratory*</td>
<td>3</td>
</tr>
<tr>
<td>Poultry Husbandry</td>
<td>2</td>
</tr>
<tr>
<td>Vegetable Gardening</td>
<td>3</td>
</tr>
<tr>
<td>Vegetable Gardening Laboratory*</td>
<td>3</td>
</tr>
<tr>
<td>veterinary Science</td>
<td>3</td>
</tr>
<tr>
<td>Animal Husbandry</td>
<td>3</td>
</tr>
<tr>
<td>Animal Husbandry Laboratory †</td>
<td>2</td>
</tr>
<tr>
<td>English</td>
<td>2</td>
</tr>
<tr>
<td>Farm Management</td>
<td>3</td>
</tr>
<tr>
<td>Farm Management Laboratory*</td>
<td>3</td>
</tr>
<tr>
<td>Forestry</td>
<td>2</td>
</tr>
<tr>
<td>Insects</td>
<td>2</td>
</tr>
<tr>
<td>Poultry Husbandry</td>
<td>2</td>
</tr>
<tr>
<td>Small Fruit Culture and Plant Propagation</td>
<td>3</td>
</tr>
<tr>
<td>Small Fruit Culture and Plant Propagation Laboratory*</td>
<td>3</td>
</tr>
<tr>
<td>Veterinary Science</td>
<td>3</td>
</tr>
</tbody>
</table>

Short Courses in General Agriculture, Dairying, Horticulture, and Poultry Management

The short course in general agriculture deals especially with farm crops. Special attention is given to the potato, corn, oat, and hay crops,—the preparation of the seed bed, selection of seed, seeding, fertilization, culture, and harvesting. Such general subjects as drainage, maintenance of soil fertility, rotation of crops, control of weeds, etc., are considered. Potato, corn, and small grain judging is made a prominent feature.

The short course in dairying begins on the Tuesday following the Christmas recess and continues for four weeks. It is designed to meet the requirements of creamery assistants, practical farmers, herdsmen and others who desire to learn milk testing, butter making, the principles of animal nutrition, and practices of feeding, breeding, judging stock, and the diseases of farm animals.

The short course in horticulture is offered for those who wish to acquaint themselves with the most approved methods of orchard management. Special attention will be given to such subjects as the selection of orchard sites, selecting and obtaining nursery stock, pruning, cultivation, spraying, packing, and cooperation in the fruit business. Opportunity will be given for the laboratory study of spraying, packing, planting, pruning, and grafting. An effort is made to show where money is lost and made in the fruit business.
The College Curricula

The short course in poultry management is given each year to aid persons who wish to gain a practical knowledge of the handling of incubators and brooders, the feeding and rearing of young chicks, the general management of mature fowls, scoring, judging, killing, and marketing. Supplementing the work of the regular instructors, some of the best known poultrymen in the country are engaged to give lectures and demonstrations along special lines. For purposes of instruction the College of Agriculture keeps representatives of the leading breeds of fowls.

Very few text-books are used in any of the courses and the expenses for board and room, which are the only other expenses, are moderate. Circulars giving the dates and programs of these courses are published each year and will be sent upon application to the College of Agriculture.

Farmers' Week

There are a large number of people who cannot come to the college for a great length of time, but who desire a few days of practical instruction. To reach and accommodate these, "Farmers' Week" is held. Lectures on practical agricultural subjects are given morning, afternoon, and evening. Practical demonstrations occupy a part of each afternoon. Besides the practical subjects discussed, one or more sessions are given up to problems of rural betterment. A section is arranged where home economics for farmers' wives is taught. Dates and programs may be secured each year by addressing the College of Agriculture.

Department of Agricultural Extension

This department of the College of Agriculture offers correspondence courses, lecture courses, demonstration work, cooperative experiments, and extension schools in agriculture.

This work is intended to give direct help to those on the farm and in the home; to aid those who desire definite instruction in practical agriculture, animal and dairy husbandry, poultry husbandry, home economics, forestry, and horticulture. It supplements the teaching and experimenting of the College of Agriculture and the Experiment Station. It is professedly a popular work, because it endeavors to aid the farmer to solve the practical problems of the farm, to quicken agricultural work and to inspire greater interest in country life.
College of Agriculture

Correspondence Courses

These courses are given by means of text-books and free publications, either furnished by the college or produced from the U. S. Department of Agriculture, or from the various experiment stations. The text-books are furnished at publishers' prices. The courses are free and may be taken by individuals, granges, reading circles, or other organizations. A certificate will be given to students completing any of these courses with satisfactory standing.

The following courses are offered:

Course 1—Farm Crops and Crop Production
Course 2—Farm Management
Course 3—Feeding and Breeding of Farm Animals and Dairying
Course 4—Poultry Keeping
Course 5—Fruit Growing
Course 7—Elementary Agriculture
Course 8—Home Economics
Course 9—Vegetable Gardening
Course 10—The Business of Dairying

Lecture Courses

Lectures in these courses are given under the auspices of granges, clubs, societies, and other gatherings by the members of the agricultural faculty.

A complete list of the lectures will be forwarded on request.

Demonstration Work

For this work members of the agricultural faculty will make demonstrations, showing, as well as telling, how to solve many practical farm problems. These demonstrations are made on the farms and are offered under the same conditions as the lectures.

The following is a partial list of the demonstrations that may be secured: home mixing of fertilizers; milk testing (use of Babcock tester); stock judging; corn and small grain judging and breeding; potato judging, breeding, and spraying; orchard spraying, pruning, and grafting; apple packing; method of killing and dressing poultry; method of determining the age of horses; methods of giving medicine to domestic animals. All demonstrations are accompanied by lectures.
The College Curricula

Farm Demonstration Work

This form of extension service consists of practical demonstration of farming operations, of the values of various projects, and of proper equipment in the farming business.

The demonstration work is now established in nine counties with every prospect of spreading to the remaining counties in the State within a few years.

Boys' and Girls' Agricultural Clubs

The organization of junior agricultural clubs was begun in 1913, under the direction of the Extension Department with a State Leader in active charge of the field work. The club work is conducted very largely in cooperation with the schools, granges, and the Y. M. C. A. county work. It will be extended throughout the state as rapidly as possible. Local exhibits will be held the present year and the winners at these exhibits will compete later in a State contest to be held at the College of Agriculture.

Cooperative Experiments

Experiments will be undertaken in cooperation with farmers along such lines at the following: the determination of fertilizing problems; the eradication of noxious weeds; the determination of the best means for increasing the hay crop. To encourage systematic seed improvement the college will each year distribute a large amount of improved seeds of various kinds among such farmers of the State as will undertake to carry on careful experiments and to make reports of the results obtained at the close of each season.

Experiments with corn, oats, alfalfa, fertilizers, and pastures have been carried on in nearly every county in the State.

During Farmers' Week exhibits are made showing the results of this experimental work. School gardening is encouraged by the distribution of seeds.

Extension Schools in Agriculture

To extend the advantages of agricultural instruction to persons actively engaged in agriculture, the Extension department will conduct a limited number of Three Day Schools in various parts of the State. Members of the agricultural faculty will teach in these schools.
Besides the Demonstration, Correspondence, and Lecture courses, the College of Agriculture welcomes correspondence on practical farm topics. If information is desired along lines relating to crops, fertilizers, dairy work, feeding, or orcharding and gardening, the various instructors are ready to give such assistance as they are able.

A free monthly publication, "Timely Helps for Farmers," treating of subjects of interest to farmers, is published by the Extension department and may be secured upon application.

Circulars giving full information upon these subjects will be sent upon request.
Department of Instruction

DEPARTMENTS OF INSTRUCTION

Note—A star (*) before the time designated for a course usually indicates that three hours of actual work are required to obtain credit for one hour, while a dagger (†) indicates that two hours are required to obtain this credit. In certain cases two and one-half hours work give credit for one hour. This system pre-supposes that one hour of recitation work requires an average of two hours preparation. Courses having an odd number are given in the fall semester and those having an even number in the spring semester.

AGRONOMY

Professor Simmons; Assistant Professor Osler; Mr. E. Jones

Soils

For undergraduates only

1. Soils.—Lectures and recitations on the origin, types, physical properties, moisture content, and distribution of soils, and their relation to crop production. The fundamental principles underlying soil management for soil conservation and improvement will be studied. Class room, two hours a week; laboratory, *three hours a week.

3. Soil Fertility.—This course deals with stable manures, green manures, commercial fertilizers, and soil amendments; also a study of soil organisms as affecting the plant food in the soil. Two hours a week.

For graduates and undergraduates

52. Soil Surveying and Mapping.—A study is made of soil types, the principles of correlation and methods of soil surveying and mapping. Class room, two hours a week; laboratory, *three hours a week.

93
College of Agriculture

54. Soil Fertility.—Soil Improvement Investigation. A review of the experimental work in this country and abroad. The application of these results to soil improvement and crop production problems. Prerequisites Agronomy 1 and 3. Two hours a week.

Crops

For undergraduates only

11. Field Crops.—A laboratory course in seed and grain identification, improvement by grading, testing, selecting, and preparing seed for planting. A collection of weeds and their seeds will be required. Four hours a week.

12. Field Crops.—A general course including a study of the most important cereals, grass, forage, and root crops, their adaptation to systems of rotation, culture and uses, with special reference to New England conditions. Class room, two hours a week; laboratory, two hours a week.

13. Field Crops.—Judging and Commercial Grading.—Comparative judging of corn, small grains, and potatoes, according to standards. A study of market grade requirements. Class room, one hour a week; laboratory, two hours a week.

14. Field Crops.—Corn.—A course dealing with the production of corn and the care and marketing of the crop. Types and varieties of both field and sweet corn will be considered in this course. Class room, one hour a week; laboratory, two hours a week.

15. Field Crops.—Roots and Tubers.—A course dealing with the production, storage, and marketing of roots and tubers. Class room, one hour a week; laboratory, two hours a week.

16. Field Crops.—Grasses and Forage Crops.—Lectures and laboratory work dealing with the grasses and forage plants. A study of the hay crop and markets; soil ing systems, and their adaptation to local conditions. Class room one hour a week; laboratory, two hours a week.

18. Field Crops.—Crop Improvement.—A study of the principles and methods involved in field crop improvement. The work of experiment stations in this country and abroad is reviewed. Prerequisites, Agronomy 11 and 12. Two hours a week.
Animal Industry

For graduates and undergraduates

62. Systematic Field Crops.—A course designed for advanced or graduate students preparing for experimental work, teaching, or plant breeding. Students will be expected to grow and collect material under the supervision of the department during the summer months. Prerequisite, adequate training in botany and field crops. Time must be arranged with the instructor not later than the middle of the junior year. Two or more hours a week.

63. Systematic Field Crops.—A continuation of Agronomy 62. Two or more hours a week.

65. Seminar.—A study of recent literature, problems, and experiments pertaining to Agronomy and Farm Management. One hour a week.

66. Seminar.—A continuation of Agronomy 65. One hour a week.

67. Thesis.—Students majoring in Agronomy will be required to prepare a thesis under the direction of the head of the department. Choice may be had of subjects coming under the division of Farm Crops, Farm Management, or Soils. Choice of subject should be made and the work definitely planned before the close of the junior year. Three hours a week.

68. Thesis.—A continuation of Agronomy 67. Three hours a week.

ANIMAL INDUSTRY

Professor Corbett; Mr. Jamison; Mr. Boland; Mr. Sherwood; Mr. Boland

Animal and Dairy Husbandry

For undergraduates only

2. Types and Breeds of Farm Animals.—A study of the types and breeds of farm animals. A course covering the history, development, and characteristics of farm animals. Two hours a week.
3. **Care, Feed, and Management of Live Stock.**—A course dealing with the selection, breeding, growing, and maintenance of horses, cattle, sheep and swine. Prerequisites, Animal Industry 2 and 4. *Two hours a week.

4. **Live Stock Judging.**—This course is designed to acquaint the students with the types and breed characteristics of farm animals, by use of the score card, comparative judging, and the selection of breeding stock. To be taken in connection with Animal Industry 2. †*Two hours a week.

5. **Live Stock Judging.**—A continuation of Animal Industry 4. †*Two hours a week.

6. **Live Stock Feeding.**—A study of the general principles of nutrition as applied to live stock, composition of feed stuffs, comparison and use of feeding standards, calculating rations, methods of feeding for economic production. Prerequisites, Animal Industry 3, Biological Chemistry 7 and 8. *Two hours a week.

7. **General Dairying.**—Given by lectures, assigned readings, recitations, and laboratory practice. Milk; its secretion, composition, properties; pasteurization, separation; dairy practices in handling milk and cream, dairy equipment, use of common dairy machinery; preparation of starters; test of dairy products for fat (Babcock method), acidity, total solids, common adulterations, and preservatives. Class room, *two hours a week;* laboratory, †*four hours a week.

8. **Butter Making.**—Practice in making starters, ripening cream, churning, and preparing butter for market. Each student is required to make starter and ripen at least four lots of cream. Prerequisite, Animal Industry 7. Class room, *one hour a week;* laboratory, *three hours a week.

9. **Cheese Making.**—Lectures, recitations, and laboratory practice on the manufacture and curing of various types of cheese, including Cheddar and soft cheeses adapted to the New England trade. The laboratory work requires six consecutive hours. Prerequisite, Animal Industry 7. Class room, *two hours a week;* laboratory, *six hours a week.
Animal Industry

For graduates and undergraduates

51. Dairy Technology.—A study of dairy products; dairy by-products; factory machinery and operations; certified milk; markets and marketing; educational work with dairymen. Given by lectures, recitations, assigned readings and round table conferences. Prerequisite, Animal Industry 7. Three hours a week.

52. Advanced Live Stock Judging and Management.—A laboratory course in which the individual student gets experience in handling live stock and preparation of stock for the show ring and market. As far as possible, visits will be made to live stock farms. Two hours a week.

53. Advanced Live Stock Feeding and Management.—Nutrition and feeding experiments, as well as the methods and practices of the most successful feeders in the production of milk, meat, and the rearing of horses, are studied. Two hours a week.

54. Advanced Animal Breeding.—Principles and theories of breeding as applied to the live stock industry; study of pedigrees and records by the use of the different herd books; an economic study of the generative systems of domestic animals. Prerequisites, Animal Industry 3, and Veterinary Science 6. Two hours a week.

55. Thesis.—Students specializing in Animal Industry are required to prepare a thesis on some subject approved by the head of the department. Three hours a week.

56. Thesis.—A continuation of Animal Industry 55. Three hours a week.

Poultry Husbandry

For undergraduates only

1. Types, Breeds, and Management of Poultry.—This course takes up the origin, history, and development of the types, breeds, and varieties of fowl, ducks, geese, and turkeys. A study of feeds and feeding, egg production, incubation and brooding, housing, and the general management of poultry on the farm. The laboratory work will consist of judging, killing, and dressing poultry, judging handling, grading, and packing eggs for market; a study of the anatomy of the digestive and
reproductive system of the fowl. Class room, two hours a week; laboratory, two hours a week.

2. TYPES, BREEDS, AND MANAGEMENT OF POULTRY.—A continuation of Ph. 1. Class room, one hour a week; laboratory, two hours a week.

3. COMMERCIAL POULTRY KEEPING.—This course deals with poultry keeping as a business, as an investment, as an employment; a consideration of the large poultry farms and how they are operated; the planning and laying out of poultry houses, plants, and fixtures suitable for specializing on a large scale. Prerequisites, Courses 1 and 2. Class room, one hour a week; laboratory, two hours a week.

4. POULTRY MANAGEMENT.—CARE OF BREEDING STOCK.—This course takes up the mating, housing, feeding, and handling of breeding stock, and the growing of pullets and cockerels for breeding purposes. Students will be assigned small pens of breeding stock for which they will care. Prerequisites Courses 1 and 2. Class room, one hour a week; laboratory, two hours a week.

5. POULTRY LITERATURE.—This is an advanced course comprising the study of bulletins and reports of experiment stations of this and other countries. Attention will also be given to poultry papers and text books. Prerequisites Courses 1 and 2. Class room, two hours a week.

6. INCUBATION AND BROODING.—This course consists of a study of natural and artificial incubation and brooding. The laboratory work deals with work immediately connected with the hatching and rearing of chicks. Prerequisites, Courses 1 and 2. Class room, three hours a week; laboratory, two hours a week.

7. BREEDS AND BREEDING.—MARKET AND FANCY POULTRY.—This course deals with the types and breeds of market and fancy poultry, their history, development and breed characteristics. A study of the principles of breeding and the application of the same to both fancy and utility poultry. Prerequisites, Courses 1, 2, and 4. Class room, two hours a week; laboratory, two hours a week.

For graduates and undergraduates

51. THESIS.—Original work on some subject chosen by the student under the direction of the head of the department. Three hours a week.

52. THESIS.—A continuation of Course 51. Three hours a week.
Poultry Husbandry

Bacteriology and Veterinary Science

PROFESSOR RUSSELL; MR. SMITH

For undergraduates only

1. Bacteriology.—A laboratory course in general bacteriology. Open to all students. The work includes the preparation of the usual culture media and the study of the morphological and biological characteristics of typical bacteria. Some outside reading will be required. Required of students taking major work in Agriculture. †Six hours a week.

2. Bacteriology.—Similar to Bacteriology 1. Offered for students in the College of Technology and others who may elect it. †Six hours a week.

3. Bacteriology.—A lecture course open to all students. It should be elected by students taking Course 1 as well as by students not taking a laboratory course. Subjects considered will include the history of bacteriology; classification and biological characteristics of bacteria, bacteria in air, water, soil, and dairy products; the relation of bacteria to health and disease; immunity. Two hours a week.

12. Veterinary Science.—This course deals with the anatomy, physiology, and diseases of poultry. Two hours a week.

14. Veterinary Science.—A combined lecture and laboratory course dealing with the anatomy and physiology of our domestic animals, and their treatment to preserve and restore health. Three hours a week.

15. Veterinary Science.—A continuation of Veterinary Science 14. Two hours a week.

16. Veterinary Science.—A clinic open to all students studying veterinary science. One hour a week.

17.—Veterinary Science.—A continuation of Veterinary Science 16. One hour a week.

19. Veterinary Science.—Veterinary materia medica and pharmacy. Two hours a week.
College of Agriculture

For graduates and undergraduates

52. Bacteriology.—A laboratory course in which students will study bacteria of water, air, soil, and dairy products; or pathogenic bacteria. Prerequisites, Course 1 or 2. *Six hours a week.*

Primarily for graduates

101-102. Bacteriology.—This is a laboratory course for students who desire to pursue some particular line of bacteriological investigation. Open only to students who have done considerable work in bacteriology. The kind of work and the time will be arranged to suit individual students.

Biological and Agricultural Chemistry

Professor Merrill; Mr. Patterson

For undergraduates only

1. Biological Chemistry.—Lectures and recitations on the composition of the plant; the source, nature, and assimilation of plant food; the composition of the animal body and of food materials; the adaptation of food to the animal requirements; the chemical changes involved in the digestion and assimilation of foods; respiration; absorption and liberation of energy; general metabolism; the chemical processes and methods of investigation by which these subjects are studied. Prerequisite, Chemistry 6. *Five hours a week.*

2. Laboratory Biological Chemistry.—A study of the carbohydrates, fats, and protein bodies; the digestive enzymes; the blood, muscles, bones, and other tissues of the body; milk, bile, and other secretions. A continuation of the preceding course. *Four hours a week.*

3. Economic Geology.—A course in applied geology, including a general survey of our mineral resources, with special reference to the mineral fuels; the distribution and manner of occurrence of the more useful metals; the economically important non-metallic minerals; and a study of the rocks and their uses as building stone, as road material, and as sources of lime and cement. *Two hours a week.*

100
4. **Agricultural Analysis.**—A course in the qualitative and quantitative analysis of fodders, fertilizers, milk, butter, and other dairy products. The course is designed for students desiring to take up experience in agricultural science. It is open to students desiring a comprehensive understanding of the agricultural industry. Ten hours a week.

5. **Geology.**—A study of the earth's history and development, with especial attention to dynamical, structural, and physiographical geology. Three hours a week.

6. **Agricultural Chemistry.**—This course includes a study of the origin and composition of soils; the source and composition of fertilizing materials; the fixation of atmospheric nitrogen; the composition of insecticides and fungicides; the chemistry of milk and other dairy products. Prerequisite, Biological Chemistry 1. Two hours a week.

7. **Biological Chemistry.**—Lectures and recitations on the composition of the plant: the source, nature and assimilation of plant food; fermentation, its nature, effects, and control. Two hours a week.

8. **Biological Chemistry.**—A continuation of Course 7. The composition of the animal body and of food materials; the adaptation of food to animal requirements; the chemical changes involved in the digestion and assimilation of foods; respiration; absorption and liberation of energy. Class room, three hours a week; laboratory, four hours a week.

9. **Household Chemistry.**—A course including the more essential principles of organic and biological chemistry, with especial reference to their practical daily application. Required of two year students in Home Economics. Class room, three hours a week; laboratory, four hours a week.

Biology

The courses in this department are described under the College of Arts and Sciences.
For undergraduates only

2. Farm Accounting: (a) Farm Mathematics.—Instruction in this subject consists in the application of its principles to all kinds of farm problems where measurements of material, extension, capacity, etc., are required.

(b) Farm Records and Accounts.—A system of records of the various operations of the farm, such as records of field labor, crop yields, milk production in the dairy, etc.; a system of accounts showing the receipts and expenditures of the farm. *Four hours a week.

For graduates and undergraduates

71. Agricultural Engineering and Rural Architecture: (a) Agricultural Engineering.—Farm surveying and leveling; the plotting of farms and measurements of land; a study of drainage; estimating the investment and returns from a system of drainage; the making of roads; road material.

(b) Rural Architecture.—The planning, designing, location, and construction of farm buildings, water systems, sewerage, concrete construction. Class room, two hours a week; laboratory, *three hours a week.

72. Farm Mechanics and Machinery: (a) Farm Mechanics.—A study of the simpler laws of mechanics as applied to farm implements and farm machinery.

(b) Farm Machinery.—A study of machinery used on the farm, farm power, etc. Demonstrations and tests are made with various machines and implements. Class room, two hours a week; laboratory, *three hours a week.

73. History and Economics of Agriculture: (a) History of Agriculture.—A history of agriculture from early times to the present day; the beginning of British agriculture, and the development of modern
Forestry

agriculture; the agriculture of the United States, its influence on social conditions; the importance of our leading products, and their effect on the world's commercial life; the agriculture of different sections; the development of farm machinery; progress in agricultural education. Lectures supplemented by illustrative material and slides.

(b) Economics.—The factors of agricultural production, and their economic properties, organization of the farm; rent of farm land and the law of diminishing returns from the land; systems of distribution; a study of life in the rural communities; schools and other rural organizations. Class room, two hours a week; laboratory, two hours a week.

74. Farm Management.—A study of the various types of farming, with comparison of investment and returns from each. A study will be made of the conditions under which extensive, intensive, and mixed systems of farming prosper or fail; laying out of fields and rotations of crops; investigation of cost of different farming operations; management of men and teams; markets and marketing. Farm surveys, with a detailed study of the conditions on different farms, will be made. Farm plans will be outlined to suit various conditions. Class room, two hours a week; laboratory, three hours a week.

Forestry

Professor Briscoe; Mr. Eaton

1. Forest Economics.—The influence of forests on climate, on conservation and distribution of water, on soils, topography, and public health; relation of forestry to agriculture, mining, stock raising, manufacturing, railroads, and other industries; character and extent of our natural forest resources; importance of the conservation of these resources. The text-book is Fernow's Economics of Forestry. Two hours a week.

2. General Forestry.—The importance and scope of the subject; forests as soil formers, soil fixers, and soil improvers; relation of forests to the health of the community; relation to state and national government; influence of forests on floods and droughts; geographical distribution of forests. Two hours a week.
College of Agriculture

3. **Wood Preservation.**—The structural, physical, and chemical properties of wood, particularly with relation to durability; the seasoning of wood; relation of moisture content to decay; the theory of impregnating wood; commercial methods of preservation; fire-proofing. *One hour a week.*

4. **Wood Technology.**—The identification and classification of the economic woods of the United States, based on inspection and simple lens laboratory work; distinguishing by means of structure, color, gloss, grain, texture, weight, density, odor, resonance, and taste; abnormal structures and defects in the woods; occurrence of various species, and their uses in the arts and trades. Class room, *one hour a week; laboratory, *one hour a week.*

5. **History of Forestry.**—The development of forestry in European countries and the United States. Fernow's History of Forestry (revised edition, 1911) is used as a text. First half of semester. *Two hours a week.*

6. **Forest Mensuration.**—A continuation of Forestry II. *Two hours a week.*

7. **Forest Protection.**—Systems of fire protection practiced by the Federal government, state governments, and individuals or associations; protection against atmospheric agencies; against insect damages; against grazing and browsing animals; against parasitic plants and weeds. *One hour a week.*

8. **Forest Mensuration Field Work.**—A continuation of Course 13. *Six hours a week.*

9. **Forest Products.**—Dealing with forest products other than logs and lumber, such as pulp wood, veneer wood, shingles and lath, tight and slack cooperage, hoops and headings, excelsior, vehicle woods for spokes and hubs, box boards, turpentine, tannin, gums, syrups, dye woods, and charcoal; methods of utilization, markets and values. *Two hours a week.* Second half of semester.

10. **Forest Mapping.**—Making type and topographical maps; using data of valuation survey and also traverse board; practical work in computing aneroid readings for elevation; timber estimates for valuation.
Forestry

survey. Prerequisites, Forestry 6 and 11. *Six hours a week. Second half of semester.

11. Forest Mensuration.—Instruction in the theory of forest measurements. Lectures and recitations. Graves's Mensuration is the textbook. Calculations and computations from data obtained in field work; construction of tables of growth, volume, and yield. Two hours a week.

12. Forest Management.—Applied systems of silvicultural management are considered in relation to all the commercially important species and types of forest in the United States. Critical discussion of management practiced on forest tracts in various regions; comparison with European systems; the work now being done in this country; practical problems to work out in the field. Class room, two hours a week.

13. Forest Mensuration Field Work.—Use of various instruments used in forestry practice, determining the contents of standing and felled trees and the volume of stands; study of the use of American log scales and rules; consideration of the various methods and systems of measurement used in the United States; studies of the rate of growth of trees in diameter, height, and volume; growth and increment of stand. *Six hours a week.

14. Forest Management Field Work.—The practical application of all the forestry courses in the preparation of a working plan for an assigned tract. *Six hours a week.

15. Silviculture.—A study of the facts which concern forest growth and the relation of the tree to external influence; the forest as a whole; characteristics of the forest, and of the forest regions of the United States; systems of forest reproduction; methods of tending and cultivating the forest. Prerequisites, Biology 61, 62, 67, and 68. Two hours a week.

16. Silviculture.—A continuation of Forestry 15. To be taken in connection with Forestry 18 as field work. Two hours a week.

17. Silviculture Field Work.—Special studies and practical work in the forest. A part of the time is devoted to the making of a forest map of 1000 or more acres of land in the vicinity of the University. A report accompanies the map describing the condition of the tract and the types
of forest growth in detail. To be taken in connection with Forestry 15. *Six hours a week.

18. SILVICULTURE FIELD WORK.—Practice in thinning and planting, practical tests of the germinating quality of tree seeds, and a study of seedlings. The student is required to prepare a map and planting plan of an assigned tract. To be taken in connection with Course 16. *Six hours a week.

19. LUMBERING.—The industry considered from the economic standpoint; an account of the methods of lumbering in the different regions of the United States. Required of all major students. One hour a week.

20. VALUATION AND REGULATION.—Economic and business principles underlying the management of forest products. The application of mensuration to the management of forests; principles and preparation of working plans; the normal forest; methods of obtaining sustained yields and continuous revenue. Two hours a week.

21. LUMBERING FIELD WORK.—In this course the student is expected to spend two weeks in a lumber camp and to prepare a written report on the operation of lumbering in that locality. Required of all major students. Time to be arranged. Three hours a week.

22. FOREST POLICY.—National and State forest policy and administration; relation of corporations and private owners in regard to forest policies; applied forest management. Open to major students only. Two hours a week.

23. CURRENT FORESTRY LITERATURE.—This course consists of reviewing periodicals and current forestry literature and in making a card index for reference work for the same. Elective for seniors majoring in Forestry. Class room, one hour a week.

24. FOREST LAW.—Laws of the Federal Government and of the several states concerning forests and forestry. One hour a week.

25. THESIS.—The preparation of a thesis setting forth some original work or investigation on the part of the student along the lines of Forestry. Two hours a week.

26. THESIS.—A continuation of Forestry 25. Three hours a week.
Home Economics

Home Economics

Associate Professor Freeman; Miss Beach; Miss Randall; Miss Borden

For undergraduates only

1. Cookery.—Lectures, recitations and laboratory practice. This course provides instruction in the general principles controlling the preparation of food, with study of typical foods. It aims to develop fine technique in the use of materials and utensils. Class room, two hours a week; laboratory, four hours a week.

2. Cookery.—Continuation of Course 1. The serving of simple meals with the study of dining room equipment and rules of table service are included in this course, as well as instruction in marketing and general household accounts. It is the aim of this course to familiarize the student with the business side of housekeeping. Class room, two hours a week; laboratory, four hours a week.

3. Dietetics.—A general review of the principles of cookery with direct reference to diet. Special emphasis is placed upon diet for children both in health and disease. Prerequisites, Home Economics 1 and 2. Class room, two hours a week; laboratory, two hours a week.

4. Dietetics.—Continuation of Course 3. Consideration of food for the sick and convalescent, with a study of special diets. Class room, two hours a week; laboratory, two hours a week.

5. Advanced Cookery.—A return to general cookery is made through work in large quantities and the preparation and serving of meals. Canning and preserving are taken up and demonstrations given by the students. Prerequisite, Home Economics 4. Class room, one hour a week; laboratory, three hours a week.

6. Fancy Cookery and Field Work.—The preparation, garnishing, and decorating of the more elaborate dishes are taken up, as well as the preparation and serving of a formal dinner. Wholesale and retail markets, factories, mills, and dairies are visited as opportunity offers. Prerequisites, Home Economics 1 and 2. Three hours a week.
7. Advanced Cookery.—This course embraces the principles of Course 5, and is required of students in the Two Years Course. Prerequisites, Home Economics 1 and 2. Class room, one hour a week; laboratory, four hours a week.

8. Dietetics.—This course embraces the principles of Courses 3 and 4, and is required of students in the Two Years Course. Prerequisites, Home Economics 7. Class room, one hour a week; laboratory, four hours a week.

9. Plain Sewing.—The fundamental principles of hand and machine sewing are taught in connection with the making of undergarments, towels, napkins, etc. Four hours a week.

10. Advanced Sewing.—Pattern drafting and adjustment. Dressmaking. Continuation of Course 9. Four hours a week.

11. Fine Sewing.—Fine hand and machine work, hemstitching, and simple embroidery. Prerequisites, Home Economics 9 and 10. Four hours a week.

12. Advanced Handwork.—Continuation of Courses 13 and 14. Four hours a week.

13. Handwork.—Knot and string work; knitting and crocheting. Four hours a week.

14. Handwork.—Basketry and weaving. Four hours a week.

15. Applied Art.—A study of line, mass, and color, with practical applications. Class room, one hour a week; laboratory, three hours a week.

16. Applied Art.—Continuation of Course 15. Emphasis is placed upon design. Class room, one hour a week; laboratory, three hours a week.

17. Construction.—A study of the house, and plans for its construction. Laboratory work in designing and executing ground floor plans for a modest home and plans for kitchen laboratories. Special attention given to details. Class room, one hour a week; laboratory, two hours a week.

108
Home Economics

18. **House Furnishing and Decoration.**—Study of textiles, source, nature, preparation, use, etc., and a study of color schemes especially adapted to use in house decoration. The special problem of decoration for the house planned in Course 17 is taken up and the color schemes worked out in actual materials. Prerequisite, Home Economics 17. Class room, *one hour a week*; laboratory, *two hours a week.*

19. **Laundrying.**—Principles and processes studied and practiced. Selection and care of equipment for both home and school work. Removal of stains, bluing, softening of water, soap making. Class room, *one hour a week*; laboratory, *one hour a week.*

20. **Household Care and Operation.**—Lectures, recitations, and practice. The principles of housework are examined, methods are studied, and practical applications are made. Class room, *one hour a week*; laboratory, *two hours a week.*

21. **Practical Housework.**—A course affording opportunity for the student to show her power in managing a household and serving luncheons to twelve or more people in a specified time, with a limited amount of money. Time to be arranged. One semester. Senior year. *Two hours a week.*

22. **Home Nursing.**—Consideration of the sick room and its appointments, emergencies, contagious diseases, bandaging, general care of the patient. *One hour a week.*

23. **Methods.**—The particular methods applicable to teaching home economics are investigated. An effort is made to discover the means whereby a wholesome atmosphere may be secured in the class room, and how the independence and self-confidence of the pupils may be fostered. Courses of study are considered and outlined. *One hour a week.*

24. **Practice Teaching.**—Required of students in the senior year, and done under supervision. *Two hours a week.*

26. **Seminar.**—General discussion of articles relating to home economics appearing in the magazines. An effort is made to keep in touch with the literature of the subject, and be conversant with recent methods and developments. *One hour a week.*
College of Agriculture

28. Thesis.—A thesis on a subject relating to home economics, showing independent work is required of all students taking the four years curriculum. Senior year. *Three hours a week.*

30. Camp Cookery.—Designed especially for men in the Forestry department. Open to any students except freshmen. Class limited to 18. The general principles of cookery are taken up by means of laboratory practice, with especial emphasis upon preparation of foods suitable for camp life. †*Two hours a week.*

Horticulture

Professor Brown; Associate Professor Hitchings; Mr. Lurie

For undergraduates only

1. Commercial Pomology.—A course in methods of picking, grading, packing, storing, and marketing fruit. The laboratory work of this course will acquaint the student with the more important varieties of fruit in this State. Class room, *two hours a week*; laboratory, †*two hours a week.*

2. Practical Pomology.—A study of orchard sites and soils, methods of propagating, setting, cultivating, fertilizing, pruning, and spraying. Class room, *two hours a week*; laboratory, *three hours a week.*

3. Systematic Pomology.—A systematic study of the types and varieties of the leading groups of fruits, their evolution and adaptation to environment; also distribution of varieties in the State. Prerequisites Courses 1 and 2. Class room, *two hours a week*; laboratory, †*two hours a week.*

4. Vegetable Gardening.—A course in practical vegetable gardening—grading, marketing and storing of vegetables, including the systematic study of varieties and types for home and commercial use. Class room, *two hours a week*; laboratory, †*two hours a week.*

5. Landscape Gardening.—A study of the principles of landscape art and of the materials used in making landscape pictures. Special attention is given to the improvement of the home grounds. Class room, *two hours a week*; laboratory, †*two hours a week.*
Horticulture

6. **Small Fruit Culture.**—A study of the bush and vine fruits, including strawberries; adapted varieties, with culture, picking, grading, packing and marketing—home and commercial. Class room, *two hours a week*; laboratory, *two hours a week*.

7. **General Floriculture.**—A study of the culture, propagation, management, and care of flowers for home decoration and commercial purposes. Class room, *two hours a week*; laboratory, *two hours a week*.

8. **Greenhouse Construction.**—A study of the various types of greenhouses and the methods of construction. Estimates and plans are made for houses suitable for conservatories, private estates, and commercial floriculture. Cost and methods of installing heating systems, show rooms, and storage houses are also considered. Class room, *two hours a week*; laboratory, *two hours a week*.

10. **Plant Breeding.**—A course in plant breeding as applied to variation, selection, and hybridization, as adapted to garden and fruit crops. *Two hours a week*.

11. **Thesis.**—Students specializing in Horticulture are required to prepare a thesis on some subject pertaining to Horticulture. *Three hours a week*.

For graduates and undergraduates

51. **Seminar.**—Preparation and discussion of papers dealing with the recent problems and experiments in Horticulture. Required of students taking major work in Horticulture. Prerequisites Courses 1 and 2. *One hour a week*.

52. **Seminar.**—A continuation of Ht 51. Requirements and prerequisites the same. *One hour a week*.

MILITARY SCIENCE AND TACTICS

The courses in this department are described on page 226.

PHYSICAL CULTURE AND ATHLETICS

The courses in this department are described on page 227.
COLLEGE OF ARTS AND SCIENCES

FACULTY OF INSTRUCTION

JAMES STACY STEVENS, M.S., LL.D. Professor of Physics

MERRITT CALDWELL FERNALD, Ph.D., LL.D.

Emeritus Professor of Philosophy

LUCIUS HERBERT MERRILL, Sc.D.

Professor of Biological Chemistry

JAMES NORRIS HART, C.E., M.S., Sc.D.

Professor of Mathematics and Astronomy

JOHN HOMER HUDDILSTON, Ph.D.

Professor of Greek and Classical Archaeology

RALPH KNEELAND JONES, B.S.

Librarian

JACOB BERNARD SEGALL, Ph.D.

Professor of Romance Languages

GEORGE DAVIS CHASE, Ph.D.

Professor of Latin

CAROLINE COLVIN, Ph.D.

Professor of History

WALLACE CRAIG, Ph.D.

Professor of Philosophy

ROLAND PALMER GRAY, M.A.

Professor of English

RALPH HARPER MCKEE, Ph.D.

Professor of Chemistry

GARRETT WILLIAM THOMPSON, Ph.D.

Professor of German

GUY ANDREW THOMPSON, Ph.D.

Professor of English Literature

WINDSOR PRATT DAGGETT, Ph.B.

Professor of Public Speaking

MINTIN ASBURY CHRYSLER, Ph.D.

Professor of Biology

ARTHUR JULIUS JONES, Ph.D

Professor of Education

GEORGE WARE STEPHENS, Ph.D.

Professor of Economics and Sociology
Faculty

CHARLES WILSON EASLEY, Ph. D.
Associate Professor of Chemistry

ANDREW PAUL RAGGIO, Ph. D.
Associate Professor of Romance Languages

LEON ELMER WOODMAN, Ph. D. Associate Professor of Physics

HARLEY RICHARD WILLARD, Ph. D.
Associate Professor of Mathematics

ALICE MIDDLETON BORING, Ph. D.
Associate Professor of Zoology

JAMES McCLUER MATTHEWS, A. M.
Associate Professor of Economics and Sociology

JOHN CALVIN MELLETT, A. B. Associate Professor of English

DANIEL WILSON PEARCE, A. M.
Associate Professor of Education

TRUMAN LEIGH HAMLIN, M. A.
Assistant Professor of Mathematics

HARRY NEWTON CONSER, M. S., M. A.
Assistant Professor of Botany

LLOYD MEEKS BURGHART, M. A.
Assistant Professor of Chemistry

ROBERT RUTHERFORD DRUMMOND, Ph. D.
Assistant Professor of German

ALBERT GUY DURGIN, M. S. Assistant Professor of Chemistry

RAYMOND HARMON ASHLEY, Ph. D.
Assistant Professor of Mathematics

* LOWELL JACOB REED, M. S.
Instructor in Mathematics

WALTER EDMOND WILBUR, M. S.
Instructor in Mathematics

EARLE OVANDO WHITTIER, B. S.
Instructor in Chemistry

HENRY ROBBINS BARROWS, A. B.
Instructor in Biology

JOHN HARRY PARRY, A. B.
Instructor in English

LEROY FRANKLIN BLISS, A. B.
Instructor in German

HERBERT SOLEY BAIN, A. B.
Instructor in English

DAVID LEE CLARK, A. M.
Instructor in Physics

RALPH MAYNARD HOLMES, M. A.
Instructor in Mathematics

MARTIN ANDREW NORDGAAR, A. M.
Instructor in Mathematics

JOSEPH SPEAR, A. B.

* Absent on leave from Sept. 1, 1914 to Sept. 1, 1915

113
The College of Arts and Sciences offers a course of liberal training equivalent to that of the standard New England college. It designs particularly to meet the needs of three classes of students:

1. Men and women who desire to pursue a cultural college course.
2. Men and women who desire to enter professional schools which require a collegiate degree.
3. Men and women who wish to fit themselves for the profession of teachers in secondary schools, or for school superintendencies.

ADMISSION

The requirements for admission are given in full on pages 56-68. They are practically the same as for other New England colleges, and may be met by a four years preparatory course in a good high school or academy.

FRESHMAN STUDIES

The character of the work of the first year is conditional somewhat upon the subjects offered for admission.
General Information

It is recommended that all students in this College register for as much of the required work as practicable in their freshman year, and they are expected to complete the whole of this work by the end of their sophomore year.

MAJOR SUBJECT

Beginning with the sophomore year each student must select, in some one department, work to be pursued three or four years, on the average of five recitations a week. Any one of the following departments may be chosen for major work: Biology, (including Zoology, Botany, Physiology, and Entomology), Chemistry, Economics and Sociology, Education, English, German, Greek and Classical Archaeology, History, Latin, Mathematics, and Astronomy, Philosophy, Physics, Romance Languages (including French, Spanish, and Italian).

In many cases the selection of a major subject need not be made before the beginning of the sophomore year. The major subject must include work counting not less than six nor more than eight credits. In the case of departments in which less work is offered than amounts to six credits, this must be made up from such other related departments as the professor under whose direction the major subject is taken may prescribe. The remainder of the student's work may be selected from any department or departments of the University. This must be done with the approval of the head of the department in which the student has chosen his major subject and must bear some useful relation to his other work.

The head of the department in which the student has chosen his major subject becomes his major instructor, and during the remainder of the course this instructor acts as chief adviser in all matters relating to the curriculum, and is the representative of the student before the Faculty.

GRADUATION REQUIREMENTS

The College of Arts and Sciences has the following graduation requirements: (One year's work in college is regarded as the equivalent to two years' work in preparatory school.)

1. LANGUAGE GROUP.—This is composed of courses in language and literature, including all the courses offered in the departments of English,
German, and Romance Languages, and such courses offered by the departments of Greek and Latin as deal with the Greek and Latin languages and literatures, or presume some knowledge of these languages.

2. **Science and Mathematics Group.**—This is composed of the courses offered in mathematics and the biological and physical sciences, including all the courses offered by the departments of Mathematics, Biology, Chemistry, Biological Chemistry, and Physics.

3. **Social Science Group.**—This is composed of the courses offered in the departments of History, Economics and Sociology, Philosophy, Education, and Bibliography; and the courses in History, Archaeology, Fine Arts, and Biblical Literature offered in other departments and not included in the first group.

4. **Military Science and Tactics, two years, three hours a week.**

5. **Physical Training, one year, three hours a week.**

Every candidate for the Bachelor of Arts degree is required to complete the following amount of work in college: (a) eight hours prescribed in English; (b) ten or sixteen hours elected in Group 1, of which six or ten hours must be in foreign languages; (c) ten hours elected in Group 2; (d) ten hours elected in Group 3; (e) military science and tactics, two years, three hours a week; (f) physical training, one year, two hours a week.

A student who enters college with a minimum of four units credit in foreign languages is required to elect sixteen hours in Group 1, of which at least ten hours shall be in foreign languages. A student who enters with more than the minimum of four units credit is required to elect at least ten hours in Group 1, of which at least six hours shall be in foreign language.

BACHELOR OF ARTS CURRICULA

The work in the College of Arts and Sciences leads to the degree of Bachelor of Arts (B.A.). The curricula demand 25 credits and are regularly completed in four years; but a student of exceptional preparation and application may complete the requirements in three years. Students fitting themselves for professional or technical schools are often encouraged to do this, but prospective teachers are recommended to spend four years in college.
General Information

No outline of the curricula in the College of Arts and Sciences is given in the catalog, but students may have such an outline presented to them by applying to the professor in charge of the department in which they are interested. Groups of studies may be made up which would be desirable for students intending to prepare for teaching, or to enter upon the study of law, medicine, or theology.

In this college, 95 out of the 125 required hours, must be made with a grade of C or above.

BACHELOR OF PEDAGOGY CURRICULA

Graduates of the Maine normal schools who have completed a course in a Class A high school, and who have had one year of successful experience in teaching, are admitted to the University as candidates for the degree of Bachelor of Pedagogy. Such students are required to complete seventy-five semester hours, of which twelve shall be in the department of Education, and a sufficient number of the remaining hours shall be devoted to some one department to give them a satisfactory equipment for high school teaching.

CURRICULUM IN JOURNALISM

The University has recently established a curriculum in journalism, which extends over four years and includes the following subjects:

Freshman year, English, French, German, or Spanish; Science—Physics, or Chemistry, or Biology; Economics, American Government, Economics, Political Economy; English 18th and 19th Century Prose; Bibliography; Philosophy, Logic; Military and Physical Training. Sophomore year, Economics, Sociology, and Social Reforms, alternating with Municipal Government; History of English Literature; English History, alternating with History, Medieval History, Science; Victorian Literature; Military and Physical Training. Junior year, Economics, Advanced Political Economy; Democracy; History of the United States; History of American Literature; Shakespeare, or History of the English Drama; Journalism; Elective, Science, or Language, or Philosophy, or Art, 3 hours, Senior year, Economics, Public Finance, International Law, Business Law; Specialized Writing; Recent History; Literary Criticism; Journalism; Elective, Language, or Philosophy, or History of Education, or Art 5 hours.

Students who complete this curriculum will receive the Bachelor of Arts degree for major work in English.
A candidate for the degree of Master of Arts must have received the corresponding bachelor's degree from this institution or one granting a fully equivalent degree.

At least one year must elapse between the conferring of the bachelor's and the master's degrees.

No work done before the conferring of the bachelor's degree may be counted toward the master's degree.

The candidate shall devote at least one year to resident graduate study and shall complete work of the equivalent of six credits or fifteen hours per week throughout a college year.

The course of study shall be submitted to and approved by the committee on advanced degrees.

It shall consist of work in one major department or subject in which the candidate has already pursued undergraduate study for at least two years, and work in not more than two minor subjects bearing a distinct relation to the general plan or purpose of the major subject.

At least three-fifths of the work must be done in the major subject.

All of the work must be of advanced grade and must be tested by examinations which the candidate must pass with distinction.

The candidate shall prepare as a part of his course of study a satisfactory thesis on some topic connected with his major subject.

A course of weekly lectures is given in the College of Arts and Sciences each semester. Attendance is open to all, and credit is granted.

The marked increase in the number of pre-medical students in attendance at the University has led the departments concerned to establish definite programs of work for such students. For students who cannot spend more than a single year in pre-medical work, a one-year curriculum is provided which fully meets the requirements of a number of medical colleges, but prospective medical students are strongly recommended to
General Information

spend at least two years in such work, not only because a better general education is thus possible, but because class A schools on the list of the American Medical Association require two or more years antecedent work. By arrangement with certain medical schools a student completing three years at this institution may enter the medical school, and receive his bachelor's degree here at the completion of his first year at the medical school.

One-year Curriculum

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Biology</td>
<td>4</td>
</tr>
<tr>
<td>General Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>General Physics</td>
<td>5</td>
</tr>
<tr>
<td>English</td>
<td>2</td>
</tr>
<tr>
<td>German</td>
<td>3</td>
</tr>
<tr>
<td>Laboratory Physics</td>
<td>2</td>
</tr>
<tr>
<td>Physical Training</td>
<td></td>
</tr>
<tr>
<td>Elective</td>
<td>2</td>
</tr>
</tbody>
</table>

Total: 18

Two-year Curriculum

First Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Biology</td>
<td>4</td>
</tr>
<tr>
<td>General Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>English</td>
<td>2</td>
</tr>
<tr>
<td>German (or French)</td>
<td>5</td>
</tr>
<tr>
<td>Military</td>
<td>1</td>
</tr>
<tr>
<td>Physical Training</td>
<td>4</td>
</tr>
</tbody>
</table>

Total: 161/2

Second Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertebrate Anatomy</td>
<td>4</td>
</tr>
<tr>
<td>Volumetric Analysis</td>
<td>2</td>
</tr>
<tr>
<td>General Physics</td>
<td>5</td>
</tr>
<tr>
<td>French or Psychology and Scientific German</td>
<td>5</td>
</tr>
<tr>
<td>Military</td>
<td>1</td>
</tr>
<tr>
<td>Animal Embryology</td>
<td>4</td>
</tr>
<tr>
<td>Organic Chemistry</td>
<td>5</td>
</tr>
<tr>
<td>Laboratory Physics</td>
<td>2</td>
</tr>
<tr>
<td>French or Elective</td>
<td>5</td>
</tr>
<tr>
<td>Military</td>
<td>1</td>
</tr>
</tbody>
</table>

Total: 17
First Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Biology</td>
<td>4</td>
</tr>
<tr>
<td>General Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>English</td>
<td>2</td>
</tr>
<tr>
<td>German (or French)</td>
<td>5</td>
</tr>
<tr>
<td>Military</td>
<td>1</td>
</tr>
<tr>
<td>Physical Training</td>
<td>4/3</td>
</tr>
</tbody>
</table>

Total Credits: 16 1/2

Second Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertebrate Anatomy or Animal Histology</td>
<td>4</td>
</tr>
<tr>
<td>Qualitative Analysis</td>
<td>5</td>
</tr>
<tr>
<td>General Physics</td>
<td>5</td>
</tr>
<tr>
<td>English</td>
<td>1</td>
</tr>
<tr>
<td>Scientific German</td>
<td>2</td>
</tr>
<tr>
<td>Military</td>
<td>1</td>
</tr>
</tbody>
</table>

Total Credits: 14

Third Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animal Histology or Vertebrate Anatomy</td>
<td>4</td>
</tr>
<tr>
<td>Genetics</td>
<td>2</td>
</tr>
<tr>
<td>Volumetric Analysis</td>
<td>2</td>
</tr>
<tr>
<td>English</td>
<td>3</td>
</tr>
<tr>
<td>Psychology</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credits: 14

Departments of Instruction

Note: A star (*) before the time designated for a course usually indicates that three hours of actual work are required to obtain credit.
Biology

for one hour, while a dagger (†) indicates that two hours are required to obtain this credit. In certain cases, two and one-half hours’ work give credit for one hour.

Courses designated by an odd number are given in the fall semester; those designated by an even number in the spring semester.

ART

Professor Huddleston offers certain courses in art which are described in connection with the department of Greek

ASTRONOMY

Courses in astronomy are described under the department of Mathematics.

BIBLIOGRAPHY

Professor R. K. Jones

1. Bibliography.—Origin of the alphabet; development of writing; inscriptions; manuscripts; invention of printing; early printed books; modern bookmaking; bookbinding and the care of books; library processes and aids; public documents; periodicals; libraries, ancient and modern. A lecture course, with collateral reading and reference work. One hour a week.

Three lectures are given on The Library and Its Uses; Classification and the Catalog; and Reference Books and Their Use. Required of all freshmen.

BIOLOGY

Professor Chrysler; Associate Professor Boring; Assistant Professor Conser; Mr. Barrows; Mr. Ramsey; Mr. Pride

The course in general biology forms the basis for work in both zoology and botany. After the completion of this course, students may register for courses in either branch of the subject.

For undergraduates only

1, 2. General Biology.—This course is designed to be part of the education of any college student and is open to all candidates for the arts
degree as well as to more special students. It is required of all students in the College of Agriculture, including those taking the Forestry and Home Economics curricula as well as those intending to take up the study of medicine or to follow any line of applied biology. It deals with the fundamental principles of biology and thus forms the basis for further work in either zoology or botany. In the laboratory each student studies with the microscope, and dissects selected animals and plants from the simpler forms, such as the Protozoa and Algae, to the complex, such as the frog and lily. Class-room, \textit{two hours a week}; laboratory, \textit{four hours a week}.

3. **Principles of Breeding, or Genetics.**—A general review of the facts that form the basis of our knowledge of inheritance. General biology is required as a preparation for this course. \textit{Two hours a week}.

4. **Sanitary Science.**—Attention is given to the conditions that influence individual and public health. This includes the nature of diseases, their transmission and control, and laws of personal and community sanitation that are often violated and should be understood. Open to any woman student who has taken general biology. \textit{Two hours a week}.

8. **Entomology and Parasitology.**—This course is planned especially for students in the College of Agriculture, and deals chiefly with insect pests. The structure, life histories, and classification of the different orders are illustrated by common farm and forest insects. This work is used as a basis for the study of economic problems, such as the damage done by the special insect pests of farm, garden, orchard and forest, and of domestic animals; methods of control; the relation of insects to health. Some work on animal parasites other than insects is included. General biology is required as a preparation. Class-room, \textit{two hours a week}; laboratory, \textit{four hours a week}.

9. **Plant Taxonomy and Histology.** 10. **Plant Physiology and Pathology.**—A combined course for one year for students in Agriculture, consisting of: (1) practice in the identification of the higher plants, (2) microscopic work on the cell, tissues and organs of the higher plants, (3) a study of the functions of plants, including nutrition, growth, and response, (4) a study of the diseases of plants, especially those caused by fungi. Prerequisite, general biology. Class-room, \textit{two hours a week}; laboratory, \textit{six hours a week}.
Botany

14. Elementary Botany.—Studies in the structure and functions of the organs of plants; agents of pollination and the distribution of seeds and fruits; exercises in plant analysis and the identification of species in the field. Required of Two Years Pharmacy students. Class-room, one hour a week; laboratory, four hours a week.

15. Pharmaceutical Histology.—Exercises on the use of the microscope; the magnification of objects and microscopic measurements. A study of cells and tissues, and food products found in them; followed by exercises in the detection of the common adulterants of familiar drugs. Open to students who have taken elementary botany. Class-room, one hour a week; laboratory, four hours a week.

17. Wood Identification.—The identification of the various commercial woods by means of the unaided eye and the microscope. Open to students in Chemical Engineering, and to others by permission. Four hours a week (counts one credit hour.) Second half of fall semester.

For graduates and undergraduates

51. Vertebrate Anatomy.—Types of the Vertebrata are studied and their structure compared. Careful dissections are made of representatives of the higher classes of animals, beginning with a fish and ending with a mammal. It must be preceded by general biology. Class-room, two hours a week; laboratory, four hours a week.

52. Animal Embryology.—This course is intended to instruct students in the fundamental facts of the development of vertebrates. It includes lectures on the comparative embryology of vertebrates; and laboratory work on the fish, frog, and chick. Vertebrate anatomy is required as a preparation. Class-room, two hours a week; laboratory, four hours a week.

53. Animal Histology.—The study of the microscopic structure of the higher animals. It consists of the comparative study of cells, the structure of tissues and organs and the methods of preparing them for microscopic study, students thus becoming familiar with hardening, embedding, sectioning, staining, and mounting. Vertebrate anatomy is required as a preparation for this course. Class-room, two hours a week; laboratory, four hours a week. Given in 1915-16 and alternate years.
55. Animal Physiology.—Intended for those who already have an elementary knowledge of general biology and physiology. The course deals with the functions of the organs of the body and is accompanied by laboratory work to illustrate their activities. It should be preceded by vertebrate anatomy. Class-room, two hours a week; laboratory, four hours a week. Given in 1916-17 and alternate years.

61. Plant Histology.—The microscopic structure of the higher plants; the various tissues, the root, stem, leaf, and spore-bearing organs; the adaptations of plants to external conditions, considered from the standpoint of structure; killing, sectioning, staining and mounting of plant tissues. Prerequisite, vertebrate anatomy. Class-room, two hours a week; laboratory, four hours a week.

62. Plant Physiology.—The plant is considered from the standpoint of its activities; absorption and transport of raw material; manufacture, transport, and storage of food; growth, movement in response to stimuli. Prerequisite, general biology and plant histology. Class-room, two hours a week; laboratory, four hours a week.

64. Plant Ecology.—Presents briefly two aspects of the subject: (1) Physiographic ecology studied in the field as far as the season permits; (2) Structural ecology, viz.—the histological features characteristic of plants growing in extreme habitats, and of those having special modes of nutrition. The course must be preceded by plant histology. Class-room, one hour a week; laboratory, four hours a week. Given in 1915-16 and alternate years.

66. Plant Pathology.—The diseases of plants, especially those caused by fungi; destruction of timber by fungi; methods of combating plant diseases. This course must be preceded by general biology and may profitably be preceded by plant histology. Class-room, two hours a week; laboratory, two hours a week. Given in 1914-15 and alternate years.

67, 68. Forest Botany.—This course consists of a systematic study of trees and shrubs, particular attention being given to those of the eastern states, and the identification of them in summer and winter aspects. Special attention is given to the forest trees of commercial value and their geographical distribution. Field work in the identification of
Economics and Sociology

local species and preparation of a forest herbarium are required in the autumn and early winter months. The course includes dendrology and forest ecology. This course must be preceded by general biology. Class-room, two hours a week; laboratory, four hours a week.

71, 72. Seminar.—Preparation and discussion of papers dealing with recent advances in zoology and botany. Open to seniors and graduate students. One hour a week.

73, 74. Thesis.—Students in the College of Agriculture specializing in biology are required to prepare a thesis on some subject approved by the head of the department. Three hours a week.

75, 76. Advanced Zoology.—This course offers an opportunity for special zoological work along lines suited to the future plans of the student. It may consist of field work, laboratory work, or reading, or a combination of all three. In general each student is given a problem for investigation and encouraged to devise methods for its solution. The time varies and the work may be continued a number of semesters.

77, 78. Advanced Botany.—This course offers an opportunity for special work in botany along the lines best suited to the future plans of the student. It may consist of laboratory work, field work, or reading, or a combination of all three. Courses which have recently been given under the caption include: morphology of Pteridophytes; structure and technology of woods; structural and physiographic ecology; advanced plant physiology; special problems assigned to individuals. The time varies and the work may be continued a number of semesters.

CHEMISTRY

The courses in this department are described under the College of Technology

ECONOMICS AND SOCIOMETRY

Professor Stephens; Associate Professor Matthews

For undergraduates only

19. Political Economy.—An introductory course dealing with the general principles and problems of modern economics; production, distribution, and consumption; value, commerce, labor problems, and various other topics in this field of study. Text-book and general discussions. Three hours a week.
College of Arts and Sciences

1b. **Political Economy.**—In general, similar to 1a, but abbreviated and modified to meet the need of technical and agricultural students. *Two hours a week.*

2a. **Money and Banking.**—A course introductory to the study of money, banking, and finance. The history of money and the principal forms of currency used in the leading countries; the principles and workings of the various banking systems of America and foreign countries; the monetary history of the United States. Text-book and lectures. *Three hours a week.*

2b. **Money and Banking.**—Essentially similar to 2a, but planned especially for students in the Colleges of Technology and Agriculture. *Two hours a week.*

3. **Elements of Politics.**—An introductory course dealing with such subjects as the nature of the state, sovereignty, liberty of the individual, structure of government, political parties, and the province of government. *Three hours a week.*

6. **Business Law.**—This course aims to acquaint the student with those legal principles and practices which are essential to a business life and with which every citizen should be familiar; rights; contracts, agency, partnerships and corporations, bailments, guaranty, insurance, etc. Text-book, readings, and discussions. Students electing this course are generally advised to take it in the senior year. *Three hours a week.*

For graduates and undergraduates

52. **Public Finance.**—This course is devoted to an extended study of public financial problems. Taxation and various systems for the collection of public revenue in America and Europe will be studied in detail. Financial crises and depressions, their history and causes, will receive considerable attention. *Three hours a week.* Given in 1915-16 and alternate years.

55. **Sociology.**—This course is devoted to a study of the principles which underlie normal social relations and processes. The application of those principles to current social phenomena will receive considerable emphasis. *Three hours a week.*
56. **Social Pathology.**—A critical study of the dependent, defective, and delinquent classes; causes, magnitude, methods of prevention and amelioration. *Three hours a week.*

60. **Public Utilities.**—In this course will be considered the economic and legal principles and problems involved in public and private ownership and regulation of municipal utilities in the United States and Europe. *Two hours a week.* Given in 1915-16 and alternate years.

63. **Governments of Europe.**—A brief review of the ancient types of government, followed by a detailed comparative study of modern European national government. Political parties and current national problems will receive some attention. Lecture course with readings. *Three hours a week.*

64. **Socialism and Social Reform.**—A study of the development and present trend of the socialistic movement; the single tax, profit-sharing, and cooperation; limits of private and public activity. *Three hours a week.* Given in 1915-16 and alternate years.

67. **Municipal Government.**—A study of the system of government and special problems of the leading European cities as compared with the same in American cities. New movements for civic and social betterment to meet the necessities of American urban life. *Two hours a week.* Given in 1914-15 and alternate years.

71. **Labor Problems.**—A study of the evolution of organized labor, and the special problems of present-day industry, such as trade unions, woman and child labor, immigration, employers' associations, agencies of industrial peace, etc. *Two hours a week.* Given in 1915-16 and alternate years.

73. **Transportation.**—The historical development of transportation in the United States; railway organization and control; methods of financing; rate-making; federal and state legislation; public regulation and ownership of railroads in leading European countries; railway commissions. *Three hours a week.* Given in 1915-16 and alternate years.
75. BUSINESS ORGANIZATION.—In this course will be considered the origin and development of the corporation; the significance of large scale production; the economic and legal aspects of business combinations; corporation finance; governmental regulation. **Three hours a week.** Given in 1916-17 and alternate years.

76. BUSINESS MANAGEMENT.—A course dealing with the methods of business; system; efficiency, cost accounting; principles of buying, selling advertising, etc. **Three hours a week.** Given in 1915-16 and alternate years.

79. INTERNATIONAL LAW.—The principles, history, and prominent “cases” of international law take up most of the course. Considerable attention will be given to American diplomacy and the most important foreign treaties. **Three hours a week.** Given in 1916-17 and alternate years.

81. RURAL SOCIOLOGY.—A study of the social factors affecting country life; the economics of farming; rural coöperative organizations; the movements for the improvement of rural life. **Two hours a week.** Given in 1916-17 and alternate years.

85. ADVANCED COURSE ON THE FAMILY.—An historical consideration of the origin and growth of the family; the legal and economic relations of members of the family; its significance as an institution; pathological manifestations. **Two hours a week.** Given in 1915-16 and alternate years.

Primarily for graduates

106. ECONOMIC THEORY.—A critical study of modern theories of wealth and its distribution; the contributions to theory of the classical, historical, and Austrian Schools. Current writers will receive considerable attention. **Two hours a week.** Given in 1915-16 and alternate years.

110-111. SEMINAR.—In this course, provision is made for the guidance of the work of students properly qualified to engage in economic research. At the beginning of each semester, some specific topic will be selected, upon which an extended original investigation will be undertaken. **Two hours a week.**
Education

SUMMER TERM

13. Sociology.—A systematic study of normal society, its essential characteristics and processes, social institutions, the family, religious organisms, and such current social problems as divorce, poverty and its relief, criminality, and prison reform, etc. Lectures, readings, papers, and discussions.

23. Business Law.—The purpose of this course is to acquaint the student with those legal principles and practices which are essential to a business life and with which every active citizen should be familiar; rights, contracts, agency, partnerships and corporations, bailment, guaranty, insurance, etc. Text-book, readings, and discussions.

33. Business Organization.—In this course will be considered the origin and development of the corporation; the significance of large scale production; the economic and legal aspects of business combinations; corporation finance; governmental regulation.

Every reasonable effort will be made to meet the needs of all students desiring to take work in this department. Courses not regularly announced for the Summer Term, which may be desired by a sufficient number of qualified students, will be given, so far as practicable.

EDUCATION

Professor A. J. Jones; Associate Professor Pearce

For undergraduates only

2. Beginning Course in Education.—An introductory course in education. A general survey of the field of education, dealing with the aims of education, the applications of psychology to education, and some of the elementary principles of method. Designed for those who are beginning the study of education, or who cannot take the more specialized courses. Three hours a week.

For graduates and undergraduates

51, 52. History and Principles of Education.—This course is a combination of the course formerly given as History of Education with
that of Principles of Education. This course will consider the principles underlying modern educational theory and practice and the historical development of our present school system, and school curriculum. The work of the year will be divided roughly into (1) a rapid survey of the history of education from the Greeks to the present time. (2) A careful study of various phases of educational theory and practice; their historical development, the principles underlying them, and their application to present conditions. Some of the topics considered will be: the school as a social institution; public support and control of education; the curriculum of the school; the place of the child in education; the teacher; interest; correlation; formal discipline. (3) An intensive study by each student of some special topic more or less directly related to the major work. This will involve outside reading, investigation, and written reports. Although credit will be given for one semester's work, it is advisable that all students registering for these courses continue throughout the year. Three hours a week.

61. ORGANIZATION AND ADMINISTRATION.—Problems growing out of the establishment, support and control of schools; the part taken by different agencies in solving these problems,—the Nation, the State, and the local community; typical states studied; a comparative study of the organization and administration of education in Prussia, France, and England. Special study of the school system of Maine. Three hours a week.

62. ORGANIZATION AND ADMINISTRATION CONTINUED.—Problems within the state; town schools and city schools; duties of all officers; certification; teachers and supervision; financial support; defects and excellences of present organization; problems within the school; powers and duties of the teachers; programs and courses of study; government, and student activities; grading and backward pupils; class and individual instruction. Three hours a week.

55. PRINCIPLES OF EDUCATION.—The design of the courses is to set forth (1) the meaning and aims of education as related to the individual and to society; (2) the relative educational value of studies and their organization into the curriculum, as indicated by the recapitulation, culture epoch, formal discipline, and other theories; and (3) the methods of teaching as determined by the mental processes involved; particularly, instinct, habit, attention, interest, appreciation, induction, and deduction. Three hours a week.
Education

72. **Methods of Teaching.**—The general principles underlying method will be considered and the place and function of the different studies discussed. Those interested in the teaching of special subjects will be given an opportunity to specialize in the methods applying to these subjects. Observation of classes in surrounding high schools and the higher grammar grades will constitute a regular part of this course. *Three hours a week.*

73. **Secondary Education.**—The development of our present system of secondary schools; the function of the secondary school, its relationship to the elementary schools, to the college, and to the social state; the course of study; the equipment; secondary school activities; organization and management of the secondary school; the adolescent. *Three hours a week.*

75, 76. **Practice Course.**—Arrangement for practice work in the Orono high school is made for the present year. Careful supervision of the work will be made by the Professor in charge and by the Principal of the high school. Students who take this course will teach five periods a week for a half year. Four hours credit will be given. Prerequisite, one semester's work in education.

77. **Class Management.**—General conduct of classes; art of questioning; oral and written tests; systems of marking; observation of classes. Required of all taking practice work. *One hour a week.*

Primarily for graduates

101, 102. **Applications of Educational Theory.**—For advanced students only. Research and experiment in the application of educational theory to our public schools. Various problems will be investigated. *Two hours a week.*

Summer Term

628. **Educational Investigation.**—This course is especially designed for superintendents who wish some insight into methods of investigation. It should also prove helpful to principals of secondary schools who have some specific problems to work out, and to principals of grammar schools and primary schools in larger cities. The course will be devoted to
the intensive study of typical investigations and methods of measuring results in education. Some topics considered will be: studies of elimination and retardation; scales of handwriting, drawing, and composition; the Courtis tests; methods of marking and the reliability of marks; school expenditures; school records; the teaching staff.

55s. Principles of Education.—This course deals with the fundamental bases, aims, and values of education, the relative educational values of the different subjects, both from the standpoint of the individual and that of society, and the principles underlying the course of study; it will also consider the psychological principles underlying the teaching process as determining the principles of method. Open only to teachers of experience and to those who have had courses in psychology.

72s. Methods of Instruction.—This course is designed to aid teachers in the study of the principles of general methods and of the special methods used in the subjects taught. Each student will be expected to make a careful study of the methods used in at least two secondary school subjects. Considerable attention will be given to methods of teaching pupils how to study and to the use of library and reference books.

Graduate Courses.—One or more courses will be offered each summer for those who wish to undertake work toward an advanced degree. For the summer of 1915, Courses 55s and 72s are the specific ones offered, but it may be possible to arrange other courses for any who have had adequate preparation and who wish to pursue a special line of work.

In addition to the regular courses, opportunity will be given for the investigation of special problems in education. Teachers, whether working for credit or not, will be given the advice and help necessary for such investigation. If teachers who wish to do work of this kind will consult with the instructor some weeks in advance, arrangements may be made by which special material for the study may be collected.

Credit Towards Professional Certificates.—By arrangement with the State Department of Education, certain courses taken in the Summer Term may be counted toward fulfilling the requirements of the professional secondary certificate. A rotation of courses will be arranged.
English

from year to year so as to enable teachers to secure this certificate by attendance at several sessions of the Summer Term. Courses 55s and 72s are the courses for which such credit will be given.

81s and 82s. Vocational Education.—The aim of this course is to aid in securing a more rational adjustment between education and early vocational experiences. It includes a discussion of the history and status of vocational education in the United States and Europe; pertinent lessons to be learned from foreign systems; attitude of organized labor; attitude of employers of labor; relation to manual training; legislation; experiment of private philanthropic institutions, industrial corporations, and public schools; articulation with present school system; guidance; placement; employment supervision; vocational analysis; cumulative school records; vocational guidance surveys and vocational bureaus. *Three hours a week.

ENGLISH

Professor Gray; Professor G. A. Thompson; Professor Daggett; Associate Professor Mellett; Mr. Parry; Mr. Bliss; Mr. Clark; Mr. Keyes; Mr. Emsley; Miss Webb

Eight hours in English are required for the Bachelor of Arts, and ten hours for the Bachelor of Science degrees. These credits are obtained somewhat differently in the several colleges: (1) in the College of Arts and Sciences by taking, during the freshman year, Courses 1-2, 5-6; and during the sophomore year, Courses 9-10, or 11-12, or 27-28, or 35-36; (2) in the College of Agriculture by taking, in the freshman year, Courses 7-8; in the sophomore year, Courses 3-4; in the junior year; Courses 17 and 18; (3) in the College of Technology by taking Courses 7-8; and in the sophomore year, Courses 3-4; and in the senior year Course 15.

English 5-6 or 7-8 are prerequisite, in all colleges, for courses of the sophomore year. The required courses of the freshman and sophomore years may not be postponed until the junior or senior year, without permission of the head of the department.

Elective courses in this department should be taken, so far as practicable, in the following order:

First year: Courses 29, 30.
College of Arts and Sciences

Students are expected to consult the head of the department, if they find it necessary to make a change.

For undergraduates only

1, 2. Public Speaking.—The purpose of this course is to give the student a practical knowledge of the fundamental principles of effective public speaking. The work of the first semester consists of voice training by means of practice work in classes, pronunciation and enunciation, reading aloud for interpretation, and the acquirement of ease in pose and gesture. During the second semester the training thus acquired will be applied to the delivery of model public orations, and especially to speeches of the students' own composition. Special attention will be given to the correction of individual faults. Provided their other work is satisfactory, the eight students obtaining the highest grades in this course are chosen to compete in the sophomore prize declamations. Once a week throughout the year. Open only to freshmen in the College of Arts and Sciences.

3, 4. Public Speaking.—This course is entirely practical: the formal discussion of the theory of elocution is excluded. The work consists in the writing and delivery of speeches upon subjects in which the student is interested and informed. Speeches, argumentative or otherwise, will be written and delivered as if before a business corporation, a grange, an electrical engineering or other scientific society, a political organization, etc. Conferences will be held for criticism. Open only to sophomores in the Colleges of Agriculture and Technology. One hour a week.

5. English Composition and Rhetoric.—The object of this course is to give training in writing correct and clear English, with attention also to oral expression. The theoretical work consists of the study of the fundamental principles of good usage in English writing; and of the expository form of composition, with some attention to the narrative and descriptive forms. In illustration of the theory many selections from literature are studied. Weekly themes and monthly essays, with conferences. This course is prescribed for freshmen in the College of Arts and Sciences. Two hours a week.
6. **English Composition and Rhetoric.**—The object of this course is the same as in Course 3. The theoretical work consists of the more elementary principles of argumentation; practice in making outlines and briefs; weekly themes and monthly essays. This course is prescribed for freshmen in the College of Arts and Sciences. *Two hours a week.*

7. **English Composition.**—The theory and practice of composition adapted to the needs of technical students. The writing is mainly expository; weekly themes and monthly essays, with conferences. This course is prescribed for freshmen in the Colleges of Technology and Agriculture. *Three hours a week* in the College of Technology and *two hours a week* in the College of Agriculture.

8. **English Composition.**—The theory and practice of composition adapted to the needs of technical students. The writing is mainly argumentative, with attention to the less literary aspects of narrative and descriptive writing. Weekly themes and monthly briefs and essays, with conferences. This course is prescribed for freshmen in the Colleges of Technology and Agriculture. *Three hours a week* in the College of Technology and *two hours a week* in the College of Agriculture.

9, 10. **Expository Composition.**—A detailed and fairly complete study of the theory of exposition, with attention to prose style. Monthly essays and conferences. *Two hours a week.* Prerequisites, Courses 5, 6 or 7, 8.

11, 12. **Argumentative Composition.**—An advanced course in the theory and practice, oral and written, of argumentation. Monthly essays and conferences. *Two hours a week.* *One hour a week.* Prerequisites, Courses 5, 6, or 7, 8.

13. **Advanced Composition.**—Informal lectures on various literary forms and styles, with a large amount of writing. The object of the course is to cultivate clearness, facility, and individuality of style, and to train students to perceive and appreciate these qualities in the best books. Specialized writing, as dramatic criticism, for students in journalism.

Students looking forward to newspaper or magazine work, to a literary career, or to teaching, will find this course especially helpful.

Prerequisites: Courses 5, 6, 9, 10, or 11, 12, 29, 30. *Two hours a week.*
15. **Business English.**—Correspondence, mechanical details, reports, preparation of manuscript for theses, and for technical journals. Prescribed for seniors in the College of Technology. *Two hours a week.* Fall semester.

17. **Composition.**—This course gives practice in technical journalism and news writing, in making reports and summaries of investigation, and in the preparation of theses. Open only to juniors and seniors in the College of Agriculture. *Two hours a week.*

18. **Literary Types.**—Great books, typical of the several forms of literature, will be read. An endeavor will be made to cultivate an appreciation of the best, both in prose and poetry, and to acquire critical knowledge of what constitutes a great drama, a great epic, a great lyric, a great novel, etc. Open only to juniors and seniors in the College of Agriculture. *Two hours a week.*

19, 20. ** Debating.**—Application, in this course, is made of the principles of argumentation. Briefs are prepared and the leading questions of the day debated. *Two hours a week.* Prerequisites, Courses 1, 2 or 3, 4, 5, 6, and 11, 12.

21. **Public Speaking.**—Forms of address. A study of persuasion applied to letters, editorials, and speeches for various occasions. Preparation of public addresses, and practice in extempore speaking. *Two hours.* Prerequisites, 1, 2, or 3, 4.

22. **Oral English.**—A fundamental course in voice production, diction, and interpretation of literature. Practice in reading lyric, narrative, and dramatic forms, with constant application to the requirements of public speech. *Two hours a week.* Prerequisites, 1, 2, or 3, 4.

23-24. **Journalism.**—This course gives training and practice in the fundamentals of newspaper writing: such as, observation or the seeing stories that have unique interest, “turning in tips,” developing “news,” “feature,” and “human interest” stories, writing in journalistic style. A comparative study is made of the leading newspapers. *Three hours a week.*

25, 26. **Journalism.**—Practical newspaper work and technique. *Three hours a week.* Prerequisite, Course 32.
English

27, 28. PRACTICAL JOURNALISM.—This course consists in practical work in connection with student publications. Two hours a week.

29. HISTORY OF ENGLISH LITERATURE.—An outline course, extending to the close of the sixteenth century, including extensive reading in the English classics. Lectures, assigned reading, and reports. This course is introductory to all other courses in English literature, and should be taken in the sophomore year.

Those who can elect only one course in English will probably find this course best suited to their needs. Three hours a week.

30. HISTORY OF ENGLISH LITERATURE.—A continuation of Course 29, covering the periods from the seventeenth century to the present day. Three hours a week.

31. ENGLISH PROSE IN THE EIGHTEENTH CENTURY.—Among the writings studied will be selections from Addison, Swift, Johnson, Goldsmith, and Burke. Two hours a week.

32. ENGLISH PROSE IN THE NINETEENTH CENTURY.—Among the writings studied will be selections from Macaulay, Carlyle, Ruskin, Newman, Matthew Arnold, and Stevenson. Two hours a week.

33. SHAKESPEARE AND THE ENGLISH DRAMA.—A lecture course giving a brief historical survey of the origin and development of the English drama to the time of Shakespeare, with assigned reading in the old dramatists. Introductory lectures on the life and art of Shakespeare, with a study of an early and a late comedy, and an early and a late tragedy. Two hours a week. Given in 1915-16 and alternate years.

34. SHAKESPEARE.—A detailed study of three or four great tragedies of Shakespeare. Two hours a week. Given in 1915-16 and alternate years.

35. ELIZABETHAN POETRY.—A study of Elizabethan non-dramatic poetry, showing its rise and development, its dominant forms and characteristics, and its relations to the life and thought of the age. Two hours a week. Given in 1915-16 and alternate years.

36. ELIZABETHAN POETRY AND PROSE.—A continuation of Course 35. The study of Elizabethan poetry will be completed, and the large part of the semester given to the study of the prose of the period. Two hours a week. Given in 1915-16 and alternate years.
37, 38. **Victorian Poets.**—Tennyson Browning, Rossetti, and Arnold. A study of selected poems, with additional assigned reading in the poets. Special attention is given to the art of Tennyson and Browning. *Two hours a week.*

39. **History of English Literature.**—A lecture course giving a brief survey of the development of English literature, extending to the close of the sixteenth century. Assigned reading and reports. *Two hours a week.* Open to technical students only.

40. **History of English Literature.**—This course continues the work of 39, covering the periods from the sixteenth century to the present time. *Two hours a week.* Open to technical students only.

41. **English Romantic Poets.**—A general view of the English Romantic Movement, with some attention to the characteristics of the poetry that preceded this movement; a study of selected poems from the writings of Thompson, Collins, Gray, Cowper, and Burns. *Two hours a week.* Given in 1915-15 and alternate years.

42. **English Romantic Poets.**—A continuation of Course 41. Study of selected poems from the writings of Wordsworth, Coleridge, Scott, Byron, Shelley, and Keats. *Two hours a week.* Given in 1914-15 and alternate years.

43. **American Literature.**—A lecture course giving an historical outline, with assigned reading. *Two hours a week.* Prerequisites, Courses 29 and 30.

44. **American Literature.**—A continuation of Course 43. *Two hours a week.*

For graduates and undergraduates

51. **Old English (Anglo-Saxon).**—A first course, designed to introduce the student of English to the historical study of the language, and to the beginnings of English prose and poetry. Elements of Old English grammar; reading of easy prose and poetry. Constant reference is made to the relation of old English to modern English and modern German.
English

Lectures on the literature of the period 700-1000. This course is advised for those intending to teach English, and for all who wish a thorough knowledge of the language and literature. *Three hours a week.* Given in 1915-16 and alternate years.

52. *Beowulf.*—This, the oldest English epic, is read with attention to text, metre, literary, and archaeological interests. *Three hours a week.* Prerequisite, Course 51.

53. *Middle English Literature.*—Elements of the grammar of Middle English; reading of the texts in Emerson's *Middle English Reader.* Langland's *Piers Plowman* is read with attention to text, metre, and literary interests. *Three hours a week.* Prerequisite, Course 51. Given in 1914-15 and alternate years.

54. *Chaucer.*—All of the Canterbury Tales and some of the Minor Poems are read with attention to language, metre, historical and literary interests. *Three hours a week.* Given in 1914-15 and alternate years.

55. *The Novel.*—A study of the development and technique of the English novel. At least eight of the greatest English and American novels will be read. *Two hours a week.*

56. *The Novel.*—A continuation of Course 55. *Two hours a week.*

57. *Cynewulf.*—Reading of *The Christ* and *The Elene,* and possibly some of the poems attributed to Cynewulf, as the *Phoenix,* and the *Juliana,* with attention to text, metre, historical and literary interests. Prerequisites, Courses 51-52. *Three hours a week.*

59. *The Victorian Period (1830-1900).*—A study of the literary, social and scientific movements in England and America, the rise of periodical literature, tractarianism; pre-Raphaelitism, with special attention to Carlyle, Emerson, Newman, Matthew Arnold, Ruskin, Tennyson, Clough, Robert Browning, D. G. Rossetti, Dickens, Thackeray, George Eliot, Jane Austen, and the Brontes. *Two hours a week.*

61. *History of the English Drama.*—Special attention is given to the immediate predecessors and the contemporaries of Shakespeare *Two hours a week.* Given in 1914-15 and alternate years.
College of Arts and Sciences

63. **Teachers' Course in English.**—A. This course is conducted in cooperation with the department of Education. It is open only to major students in English, and of these only, as a rule, to seniors and graduate students. The work is mainly practical with some theory. See Education 75 and 76. B. The aims, methods and problems of teaching English composition and literature in high school and in college. Open to seniors who expect to teach English. **Two hours a week.**

66. **Poetics and Prosody.**—A study of the various poetic forms, as lyric, epic, drama, and the English metres. **Two hours a week.**

67-68. **The Eighteenth Century (1700-1770).**—A study of the rise of prose, the essay, the magazine, the novel, and the beginnings of romanticism, with especial attention to Addison, Steele, Swift, Defoe, Pope, Johnson, Goldsmith, Gray. Lectures, assigned reading, and reports. **Two hours a week.**

Primarily for graduates

101-102. **History and Theory of Literary Criticism.**—**Three hours a week.**

103-104. **Types of Literature.**—A comparative study of various literary forms. **Three hours a week.** Prerequisite, Courses 101 and 102.

105-106. **Milton and His Age.**—This course is devoted to problems of form, sources, and literary influences and relations. **Two hours a week.**

107-108. **Seminar.**—The subject varies from year to year, and is determined by the needs of students in attendance.

Summer Term

Professor Gray; Mr. Clark; Miss Worster

115. **Courses in Preparatory English.**—The work is designed for those who have entrance credits to make in this department.

a. **English Composition.**—The purpose of this course is to give a thorough drill in correct writing. Special attention will be given to spelling, grammar, punctuation, sentence and paragraph formation.

58. **English Composition and Rhetoric.**—The work in the course is similar to that of the full semester of the freshman year in the University. It consists of the study of text-books, discussions of principles and methods, and practice in writing. The written work, which is based largely upon the personal observations and experiences of the student, is discussed before the class in order to give practical illustration of principles and methods. Teachers will obtain from this course a familiarity with the methods of teaching English composition followed in the University, and special effort will be made to meet their needs. The text-books used will be Woolley's *Hand-book of Composition*, Baldwin's *Composition*, Cray's *College Theme Tablet*.

6s. **Expository and Argumentative Writing.**—This course is similar to that of the spring semester of the freshman year. Baldwin's *Composition*, Chapters VI to X inclusive, is the basis of the theoretical part of the course. Essays and conferences.

63s. **Teachers' Course.**—The aims, methods, and problems of teaching English composition and literature in the high school will be discussed and illustrated. Stress will be placed, this session, upon the preparation of the teacher, drill in the criticism of essays and the consideration of labor saving devices connected therewith, interest as a factor in the study of literature, development of ideas as a factor in composition, and the discussion of the important recently published articles on the teaching of English. The plan of the course is sufficiently flexible for the presentation of special topics or problems by the teachers in attendance, and so far as practicable, their problems will receive attention. This course may count two hours credit toward the master's degree.

31s. **Shakespeare and the English Drama.**—Lectures and discussions on Shakespeare's art. Four plays are studied in detail; and several more are required to be read. The origin and development of the English drama is outlined and illustrated by stereopticon. The *Oxford Shakespeare*, complete in one volume is recommended.

27s. **Introduction to English Literature.**—This is an outline course covering the periods from 800 to 1900. Lectures, required reading, reports, and discussions.
518. Old English (Anglo-Saxon).—A first course, designed to introduce the student of English to the historical study of the language, and to the beginnings of English prose and poetry. Elements of Old English grammar; reading of easy prose and poetry. Constant reference is made to the relation of Old English to Modern English and Modern German. Lectures on the literature of the period 700-1000. This course is essential for teachers of English, and for all who wish a thorough knowledge of the language and literature. This course may count three hours' credit toward the master's degree. Open to graduate students and advanced undergraduates.

528. Beowulf.—This, the oldest English epic, is read with attention to text, metre, literary and archaeological interests. Prerequisite, Course 7. This course may count three hours credit toward the master's degree.

Either Course 7 or Course 8 will be given, according to demand.

1038. Types of Literature.—This course is an introduction to the study of comparative literature. Great books, typical of the principal forms of literature will be read. The aim of the reading and discussions will be to cultivate an appreciation of the best and to lay the foundations for a critical knowledge of what constitutes a great epic, drama lyric, novel, etc. This course may count for three hours credit toward the master's degree. Open to graduate students, and undergraduates only by special permission. The course pre-supposes considerable knowledge of literature.

GEOLOGY

The courses in this subject are described with those in the department of Biological Chemistry

GERMAN

Professor G. W. Thompson; Assistant Professor Drummond; Mr. Bain; Mr. Floyd; Miss Kelly

For undergraduates only

1, 2. First Year German.—A course for beginners. German composition; numerous texts read; conversation. Five hours a week.
German

3. 4. **SECOND YEAR GERMAN.**—A course for students who have had Courses 1, 2, or equivalent. The grammar study, composition, and text reading are progressively advanced from Courses 1, 2. *Three hours a week.* Fall semester. *Two hours a week.*

5. 6. **THIRD YEAR GERMAN.**—A course for students who have had Courses 1, 2, 3, 4 or the equivalent. Tests include 18th century literature; advanced composition; lectures on the history of German literature. *Three hours a week.*

7. 8. **FOURTH YEAR GERMAN.**—An advanced course for students who have had Courses 1, 2, 3, 4, 5, and 6, or the equivalent. Texts include 19th century literature; advanced composition with original themes; lectures on the history of German literature continued. *Three hours a week.*

These courses are carefully graded in difficulty and are to be taken in the order named.

Courses 1 and 2 are open only to students who are registered in the College of Arts and Sciences.

For the convenience of other students who wish to begin the study of German the following courses are offered:

Courses 1 and 2. A separate division for those who desire to pursue beginners' German five hours a week, or Courses 9, 10, and 11, 12 in which the work of Courses 1 and 2 may be completed in two years.

9. 10. **ELEMENTARY GERMAN.**—Study of grammar, composition, and easy texts, which contain a practical vocabulary. *Three hours a week.* Fall semester. *Two hours a week.*

11. 12. **CONTINUATION OF COURSE 9, 10.**—More advanced study of grammar, composition and texts. Open to students who have completed Courses 9, 10, or equivalent. *Three hours a week.* Fall semester. *Two hours a week.*

Note—Course 11, 12 is not equivalent for Course 3, 4.

14. 14. **GERMAN CONVERSATION.**—*Two hours a week.*
College of Arts and Sciences

15, 16. Scientific German.—Open only to students whose previous study of German will enable them to read scientific German with profit. Two hours a week.

For graduates and undergraduates

51, 52. Advanced Conversation and Composition.—Two hours a week.

53, 54. History of German Literature.—Lectures with assigned readings. One hour a week.

55, 56. History of the German Novel.—Lectures given in 1914-15 and alternate years. Two hours a week.

57, 58. History of the German Drama.—Lectures given in 1913-14 and alternate years. Two hours a week.

59, 60.—History of German Education.—Lectures. One hour a week.

Primarily for graduates

101, 102. Old High German.—Wright’s Old High German Primer. Open to students whose major subject is German. Two hours a week.

103, 104. Gothic.—Conditions for electing this course are the same as for Course 101, 102. Wright’s Gothic Primer. Two hours a week.

105, 106. Middle High German.—The condition for electing this course are the same as for Course 101 and 103. Wright’s Middle High German Primer; translation of Middle High German texts. Two hours a week.

Note. Course 5, 6 may be taken by graduates who elected Course 3, 4 in their senior year.

Collateral reading is a part of all the German courses, in which the reading of simple texts is designed to increase the vocabulary and cultivate fluency of translation.

The abundance of texts now available offers so wide a choice and variation that it is deemed inexpedient to name a list of books which will be read.
Greek and Classical Archaeology

SUMMER TERM

ASSISTANT PROFESSOR DRUMMOND; MR. BAIN

18. ELEMENTARY COURSE.—For those who wish to acquire or review the essentials of German grammar and the foundation of a German vocabulary.

28. SECOND YEAR GERMAN.—This course is designed for students who have completed a year’s work in German, or for such teachers as may wish to review their work in this department.

38. CONVERSATIONAL GERMAN.—For those who have taken at least one year of German and wish to get practice in speaking and hearing German. German stories will be reproduced orally and in writing. There will also be German dictation and memorizing of German songs. Twice a week.

48. GERMAN LITERATURE.—A brief course of lectures covering a period of German literature. This course is designed for advanced students.

Other advanced courses in German may be substituted for Courses 2 and 4 if they seem better adapted to the needs of the students.

The following three courses are offered as graduate work leading to a degree and presuppose on the part of the student a reading and, as far as possible, speaking knowledge of the language.

58. A CRITICAL STUDY OF THE CLASSICAL PERIOD OF THE EIGHTEENTH CENTURY.—Lectures, references, and discussions. Two hours a week

68. NATURALISM IN GERMANY, ITS CAUSES, CHARACTER, AND INFLUENCE.—Lectures, references, and discussions. Three hours a week.

78. GOETHE AND FAUST.—An incisive study of the life of Goethe; the origin and interpretation of Faust as a work of literature. Two hours a week.

GREEK AND CLASSICAL ARCHAEOLOGY

PROFESSOR HUDGILSTON

The department of Greek and Classical Archaeology is arranged with the idea of presenting the several phases of Hellenic civilization. Such courses are offered as will prove serviceable not only to those pursuing
the classical languages, but to the student of average interests who, not having studied Greek in the fitting school, may desire to include in his college curriculum some work bearing on the permanent literary and art values contributed by the ancient Greeks to the civilization of both ancient and modern times.

1. **Xenophon.**—*Hellenica*, Books I-IV. Study of syntax, and daily exercises in writing Greek. *Four hours a week.*

2. **Homer.**—*Odyssey*, Books VI-XII. The reading of the remaining books, in English translation, is required. Assigned readings on the history of Greek poetry, "the Homeric question," and Homeric antiquities. *Four hours a week.*

3. **Attic Orators.**—Some of the shorter orations of Demosthenes; selections from the minor Attic orators; parallel reading on the history of Greek prose literature, and the public economy and social life of Athens. *Two hours a week.*

4. **Greek Tragedy.**—Euripides's *Medea* and Sophocles's *Antigone*. The reading of several other plays in English translation is required; also, parallel reading on the history of the Greek tragic drama. *Three hours a week.*

Courses 7-54 offer an introduction to the literature religion, customs, art, and history, and may be taken by students who wish to devote only a year or two to Greek subjects.

5. **Elementary Greek.**—The declensions, conjugations; Xenophon's *Anabasis*. Books I-II, and daily writing of Greek based on the text. *Five hours a week.*

6. **Xenophon and Homer.**—*Anabasis*, Books III-IV; sight reading in Attic prose; selections from Homer's *Iliad*. *Five hours a week.*

7. **Greek Private Life.**—Text-book, lectures, illustrated with lantern slides and photographs; assigned reading. *Two hours a week.*

8. **Greek Religion.**—A study of the chief divinities in ancient Greek religion, and their relation to art and literature; lectures and assigned reading; investigation of special topics by members of the class. *Two hours a week.*
51. **Greek Literature.**—The history of poetry; epic, lyric, and dramatic. Types and standards of verse composition established by the ancient Greeks, and some consideration of the Greek influence upon later poetry, particularly the epic. Lectures and readings from English translations. Each student will be expected to make a special study of some one author, and in the treatment of Aeschylus, Sophocles, and Euripides, at least one play of each will be read in class, members of the class taking the several parts. This course as well as the next on prose literature, is intended to be foundational for students majoring in classics or in modern languages. *Three hours a week.* Given in 1915-16 and alternate years.

52. **Greek Literature.**—The history of prose literature in ancient Greece. History, oratory, and philosophy will be traced in succession. Students will be expected to do parallel reading, especially in Demosthenes and Plato. This course may be taken only in connection with Greek 51 and like the latter is intended to place the student in touch with the forces of lasting value in Greek letters. *Three hours a week.* Given in 1915-16 and alternate years.

9. **Greek and Roman Civilization.**—This is a course intended primarily for freshmen, but is open also to upper-class men. Credit will not be given for less than a year's work.

10. The continuation of the preceding and open only to those who have taken that course. *Three hours per week.* Given in 1914-15 and in alternate years.

The course deals with the classical background of modern civilization and has nothing in common with the work in ancient history offered in the fitting schools. The purpose of the course is to gather up and present in simple and comprehensive manner the great forces that proceeded from ancient Greece and Rome and which were fashioned, together with Christianity, into the Europe of later centuries.

Such phases of the political history of these peoples will be presented as are essential for a proper understanding of the development of classical thought and the student will be directed especially to the unity of Greece and Rome as affecting and moulding the character of the later times. Much attention will be given to the power of the Roman tradition in Europe and the intellectual stimuli that issued from the literature, life and thought of the classical ages.

The permanent Greek character of the East, the effect of this upon the early centuries of Christianity, and the introduction into this situa-
College of Arts and Sciences

tion of Mohammadanism in the 7th century A. D. will be traced, and also the later period when southern Europe was largely under the influence of Saracen and Arabian learning and life.

The last of the year's work will include some account of the fields in which classical antiquity took possession of Europe in the 13th to the 16th centuries, particularly after the fall of Constantinople, and culminating in the renaissance of Italy, France, and England.

The first semester's work will trace the rise and development of Greece and Rome as nations, and what the world was on the so-called fall of Rome.

Instruction will be given by lectures; students will keep note-books and investigate assigned topics.

Three hours per week. Given in 1914-15 and in alternate years.

11. **History of the Old Testament.**—This course will cover the rise and development of the Bible as a piece of literature; the vicissitudes of the written and the printed texts; and the various English translations. As far as time permits the development of the Canon will be included in the work. Lectures and assigned topics. Open to all students. *One hour a week.* Given in 1915-16 and alternate years.

History of Fine Arts

There are courses extending through four semesters presenting an opportunity for the student to cover the entire field of ancient and medieval and modern art history in its various bearings on the history of Europe down to the close of the 18th century, and when taken in succession all but the first course may be counted towards an advanced degree.

Oriental, Greek, and Roman art will be given in a three hour course extending through the year and medieval and modern art will follow this for two semesters for the same number of periods.

While it is not absolutely essential that a student should have taken Courses 1 and 56 in order to be admitted to 57 and 58, it is highly desirable that a sequence should be observed and that the historical evolution of the great art epochs should be approached in such a manner as to contribute the largest educational values.

148
History of Art

1. Art.—The history of art in ancient Egypt and western Asia, with special reference to the buildings of the Egyptians as exhibiting the best index to the history of that remarkable race. This chapter will be a foreword to the beginning of art in southeastern Europe; the Cretan and Mycenaean periods preceding the early Greek period. The history of Greek architecture and sculpture will be given down to the beginning of Athenian supremacy. The extant monuments will be studied in photographs and with the aid of the stereopticon. Lectures, note-books, text-books, and discussions. Three hours a week. Given in 1914-15 and alternate years.

2. Art Ideals of the Great Nations.—A course for the general student, setting forth some of the fundamentals of art development in ancient Egypt, Greece, and Rome, and in modern Italy, France, Spain, Germany, and England. Not open to students who have taken Courses 1 to 58. One hour a week.

3. Art Collections of Europe.—A brief discussion of the most important museums and galleries; what they are noted for, and their importance for the history of painting and sculpture. Lectures open to all students. One hour a week.

56. Art.—Greek and Roman art in their broad relations to the life of classical times; the influence of art as a dominant force in Greece and the effects of Greek culture upon Rome; the passing of Greek art to Latin soil; the notable national monuments of Rome. The existing remains in the European museums as well as the monuments still in situ in Italy, Sicily, Greece, and Asia Minor will be gone over with the photographs.

Each student will be expected to acquire some ability in estimating the styles of the various epochs. Lectures. Three hours a week. Given in 1914-15 and alternate years.

57. Medieval Art.—The history of art as influenced and modified by Christianity; Romanesque and Gothic in the West and North; the early centuries of painting in Italy and the influence of the fine arts in the 14th and 15th centuries, particularly in Florence, Siena, Ravenna, Venice, and Rome; the spirit of the Renaissance in Italy, France and Germany under the domination of Italy. Lectures, study of photographs, and investigation of various topics. Three hours a week. Given in 1915-16 and alternate years.
58 Modern Art.—Art in the north of Europe and in Spain, particularly the schools of painting and palace architecture in France. The age of Louis XIV reflected at Versailles and in the Louvre; the new importance of artists as international factors at Madrid, Paris, and London; social evolution and contemporary history reflected in the successive schools of artists with the gradual ascendancy of France until the time of the French Revolution. Lectures; study of pictures; special subjects for individual investigation. Three hours a week. Given in 1915-16 and alternate years.

61. Architecture.—A chronological survey of the development of architecture down to 1600 A. D. Greek, Roman, and early Christian architecture, their modifications in the Renaissance, and the various cathedral styles, represent the field covered in the course. Lectures, outside reading, and detailed study of the photographs in the art collection. Open to all students. Two hours a week for the year.

62. Architecture.—A continuation of Course 61. Two hours a week.

HISTORY

Professor Colvin; Associate Professor Matthews

Greek History and Roman History are given in the departments of Greek and Latin

For undergraduates only

1. Medieval History.—A general course covering the period from 395 to 1500 A. D. The disintegration of the Roman Empire; ecclesiastical institutions; feudalism; struggle between the papacy and the empire; rise of modern nations. Required of major students in history. Not open to freshmen. Three hours a week.

2. Modern History.—Continuation of Course 1 to the present time. A rapid survey of the Reformation; the absolute monorchy in France, the French Revolution; the Napoleonic era; Europe in the nineteenth century. Not open to freshmen. Three hours a week.
History of Art

3. History of England.—From early times to the beginning of the Stuart period. Special attention is given to social and industrial conditions. Not open to freshmen. Three hours a week.

4. History of England.—Continuation of Course 3. From the beginning of the Stuart period to the present. Not open to freshmen. Three hours a week.

5. History of the United States.—A general course from 1848 to the present time. Open to technical students only. Two hours a week.

6. Recent History.—This course deals mainly with the 20th century. A special study is made of some of the most important events in the year in which the course is given. Not open to freshmen. Two hours a week.

7, 8. United States History and Government.—This course is open to freshmen only and credit will not be given except for the full year’s work. Three hours a week.

9. History of the United States.—The period from 1783 to 1848. This course will begin with a brief study of Colonial history from 1750. Not open to freshmen. Three hours a week.

10. History of the United States.—A continuation of Course 6, from 1848 to the present time. Not open to freshmen. Three hours a week.

For graduates and undergraduates

51. The Renaissance.—This course takes up the Renaissance as an intellectual and social movement in Italy and its expansion into France, England, and Germany. Students taking this course will be expected to take the course in Italian Art. Three hours a week.

52. The Reformation.—This course is primarily a study of the Protestant revolt, but an introductory study will be made of Walden, St. Francis of Asissi, religious conditions during the Renaissance, etc. Three hours a week.
College of Arts and Sciences

53. **Modern Continental Europe.**—The period from the Peace of Utrecht to 1789. *Three hours a week.*

54. **Modern Continental Europe.**—Period of the French Revolution and Napoleon I. *Three hours a week.*

55. **Modern Continental Europe.**—The period since 1815. *Three hours a week.*

56, 57. **Industrial and Social History of England.**—The medieval manor town, guild, and foreign trade; Black death and Peasants' Rebellion; breaking up of the medieval system; expansion of England; the industrial revolution; government control in the nineteenth century; and the growth of voluntary association. This course is continuous for the year and during the latter half is carried over into Colonial and United States social and industrial history.

58, 59. **Historical Construction and Criticism.**—*One hour a week.*

Summer Term

15. **United States History.**—This course will be open to regular undergraduate students, and will cover the period since the close of the Mexican War.

25. **Modern European History.**—This course will consist of a rapid review of the period 1815 to 1878, with a more detailed study from 1878 to the present time. When the class forms, if the study of another period is desired, a change may be made.

35. **Primarily for Graduates.**—A course will be offered for graduate students and others who are prepared to take it. The subject will be determined by the previous work of the students who desire to elect it. This course will be planned to fit into the scheme of graduate work to be offered in the Summer Term leading to the M. A. degree.
Latin

LATIN

Professor Chase

For undergraduates only

1. Livy.—Selections from Livy, History of Rome; composition, with review of Latin syntax. Four hours a week.

2. Cicero and Horace.—Cicero, De Senectute; Horace, Odes and Epodes; Latin composition. Four hours a week.

Courses 1 and 2 are required of candidates for the Bachelor of Arts degree who elect Latin.

3. Tacitus.—Reading and discussion of the Agricola and Germania. Three hours a week.

4. Terence and Plautus.—The Phormio of Terence; the Captivi and Trinummos of Plautus; study of early Latin and the development of Roman comedy. Three hours a week.

5. Teachers' Course.—Discussion of topics connected with the teaching of Latin in secondary schools. Study of selected passages of Caesar, Cicero, and Vergil. One hour a week.

For graduates and undergraduates

51. Latin Composition.—Practice in writing Latin; study of Latin syntax. One hour a week.

52. Latin Composition.—Practice in writing Latin; study of Latin rhetoric. One hour a week.

53. The Younger Pliny.—Reading of selected letters of Pliny; the Roman Empire. Three hours a week. Given in 1914-15 and alternate years.

54. Horace and Juvenal.—Reading of selections from the great satirists; study of Roman satire and social life. Three hours a week. Given in 1914-15 and alternate years.
55. Tacitus.—Reading of the Annales and study of the reign of Tiberius. *Three hours a week.* Given in 1915-16 and alternate years.

56. The Roman Elegiac Poets.—Selections from Catullus, Tibullus, Propertius, and Ovid; study of elegiac poetry. *Three hours a week.* Given in 1915-16 and alternate years.

Primarily for graduates

57. Roman Philosophy.—Reading from Cicero’s philosophical writings and from Lucretius; discussion of the leading schools of ancient philosophy. *Three hours a week.* Given in 1914-15 and alternate years.

59. Roman Rhetoric and Oratory.—Quintilian (selections from the Institutio Oratoria); Tacitus (Dialogus de Oratoribus); Cicero (selections from the Brutus, De Oratore, Orator); a study of sample orations of Cicero, and of some of the fragments of Roman oratory. Open to students who have taken Courses 1-4. *Three hours a week.* Given in 1915-16 and alternate years.

60. Roman Rhetoric and Oratory.—A continuation of Course 59. *Three hours a week.* Given in 1915-16 and alternate years.

61. Roman Private Life.—Text-book work, supplemented by collateral reading and lectures upon some of the more important and interesting customs and institutions of Roman every-day life. Open to students who have taken Courses 1-4. *One hour a week.* Given in 1915-16 and alternate years.

101. Roman Literature.—General introduction to the subject; illustrative class-room readings; a choice of one of six courses of collateral reading of Roman authors. Open to students who have taken Courses 1-4. *Three hours a week.* Given in 1916-17 and alternate years.

102. Roman Literature.—A continuation of Course 101. *Three hours a week.* Given in the spring semester of 1914-15 and alternate years.
103. The Latin Language.—A discussion of the fundamental principles of linguistic growth and change and of the relationship of Latin to other languages; Latin phonetics; the development of inflectional forms in Latin. Lectures and recitations. One hour a week. Given in 1914-15 and alternate years.

104. The Latin Language.—A continuation of 103. One hour a week. Given in 1915-16 and alternate years.

105. Roman Numismatics.—Practice in the use of coins as original sources for the study of history, mythology, archaeology, etc. One hour a week. Given in 1914-15 and alternate years.

107. Sanskrit.—An elementary course in the classical language of India, with especial reference to the light it throws upon the history and grammar of the languages of Europe. Two hours a week. Given when asked for by a sufficient number of students.

108. Sanskrit.—A continuation of Course 107, with more attention to the classical literature of India. Two hours a week.

Summer Term

28. College Course.—A course for students who desire college credits looking to the B. A. degree. It is the plan of the department to offer a double course that shall cover the work of an entire college semester and to vary the course from year to year, so that a student in a few summers may complete a fairly comprehensive course of college study in Latin. The choice of the subjects will rest partly with the class. We call the especial attention of secondary school teachers who have not had the advantage of complete college training in Latin to these courses, as we believe they afford an unusually opportunity to them to increase their equipment.

38. Graduate Study.—It is possible for a graduate student majoring in Latin to fulfill the requirements for the M. A. degree in four summers. The department offers a series of advanced courses, of the value of three
semester hours' credit each, extending over a period of four years. These will give twelve semester hours' credit and, together with a thesis on some suitable Latin subject, will meet all the major requirements for the Master's degree. The courses offered, subject to modifications upon due notice, are as follows: Critical Study of Latin Literature of the Ciceronian and Augustan Periods; Roman Philosophy; Roman Rhetoric and Oratory. In addition to the major work in Latin, a graduate student will be required to take work amounting approximately to twelve semester hours in minor subjects. This work can be carried along with the Latin work and completed at the same time. It may be most conveniently divided between two subjects which bear some relation to the major work. The subjects best adapted for minors are English, History, French, Education, and German.

MATHEMATICS AND ASTRONOMY

Professor Hart; Associate Professor Willard; Assistant Professor Hamlin; Mr. Wilbur; Mr. Nordgaard; Mr. Spear; Mr. Woods

Students electing Mathematics as a major subject should expect to take Courses 1, 2, 3, 6, 7, 8, 53, 54, 56, 9, 51, 52, 61, 62, and either Courses 10 and 57 or Mechanics 7 and 8. They are also advised to take several courses in Physics.

For undergraduates only

1. **Trigonometry.**—The trigonometric functions; radian measure; functions of two or more angles; logarithms; solution of right and oblique triangles; trigonometric equations; inverse functions. The textbook is Lyman and Goddard's Trigonometry. *Five hours a week.* First ten weeks.

2. **Solid Geometry.**—Solid and spherical geometry, including original demonstrations and the solution of numerical problems. The textbook is Hart and Feldman's Solid Geometry. *Three hours a week.* Open to all freshmen who did not offer it for admission.

3. **College Algebra.**—A brief review of radicals, the theory of exponents, quadratic equations, and the binomial theorem; determinants; theory of equations. *Five hours a week.* Last eight weeks.

156
Mathematics and Astronomy

5. **Advanced Algebra**.—Determinants and the solution of higher equations. Open to students who have taken Courses 1, 2, and 3. Three hours a week.

6. **Analytic Geometry**.—The point, line, circle, and conic sections: higher plane curves; elements of solid analytic geometry. The text-book is Tanner and Allen's Brief Course in Analytic Geometry. Five hours a week. Open to students who have had Courses 1 and 3 and the equivalent of Course 2.

7. **Calculus**.—Differentiation of the elementary forms of algebraic and transcendental functions; successive differentiation; differentials; maxima and minima. Open to students who have taken Courses 1, 2, 3, and 6. The text-book is William's Differential and Integral Calculus. Five hours a week.

8. **Calculus**.—A continuation of Course 7. Integration of the elementary forms; integration between limits; integration as a summation; various methods of integration. Applications of differential and integral calculus. Five hours a week.

9. **Spherical Trigonometry**.—The elements of this subject with problems and applications to spherical astronomy. Two hours a week.

10. **Descriptive Astronomy**.—The text-book is supplemented by informal lectures, illustrated by lantern slides, drawings of celestial objects, and work in the observatory. Open to students who have taken Courses 1, 2, 3, and, preferably, Physics 1 and Physics 4. Three hours a week.

11. **Trigonometry for Agricultural Students**.—A course essentially equivalent to Course 1. Three hours a week.

12. **Applications of Trigonometry**.—A course given for students in Agriculture and Forestry, and open to others who have taken Course 1 or 11. Further practice in the solution of problems with applications to plane surveying. Two hours a week.

13. **Differential and Integral Calculus**.—A course given for students in Chemistry and for those in the College of Arts and Sciences who desire only a brief course in this subject. Three hours a week.
For graduates and undergraduates

51. Advanced Analytic Geometry.—A course for students who have completed Courses 5, 6, 7, and 8. Three hours a week. Given in 1916-17 and alternate years.

53. Advanced Calculus.—This course is varied from time to time by using different texts. Open to students who have taken Courses 6, 7, and 8. Three hours a week. Given in 1915-16 and alternate years.

54. Advanced Integral Calculus.—A continuation of Course 53. Three hours a week. Given in 1914-15 and alternate years.

56. Differential Equations.—The text-book is Murray's Differential Equations. Open to students who have taken Courses 7 and 8. Two hours a week.

57. Practical Astronomy.—A course arranged to meet the needs of engineering students, and consisting mainly of problems in the conversion of time, the determination of terrestrial latitudes, and the establishment of meridian lines. The data for these problems are taken largely from the students' own observations, and the course is intended to emphasize the necessity of careful work in the field, as well as accurate and well arranged computations. The instruments employed are the sextant, artificial horizon, portable chronometer, theodolite, vertical circle, astronomical transit, and zenith telescope. Open to students who have taken Courses 1, 3, 9, 10. Two hours of recitations or lectures and two hours of observatory work a week.

59. Practical Astronomy.—The theory and use of the sextant, universal instrument, zenith telescope, transit, and equatorial. Open to students who have taken Courses 6, 7, 8, 10, and, preferably, 57. Three hours a week.

60. Practical Astronomy.—A continuation of Course 59. Three hours a week.
Mathematics and Astronomy

61. History of Mathematics.—Lectures and recitations. Two hours a week. Given in 1916-17 and alternate years.

101. Theory of Functions of a Complex Variable.—An elementary course in the treatment of analytic functions. The course includes a consideration of infinite series, both single and double, infinite products, conformal representation, and a brief application of the theory to Fourier's series, the gamma, beta, and Bessel functions, and spherical harmonics. Three hours a week.

102. Elliptic Functions.—The Weierstrass and Jacobi functions. A brief treatment of transformation theory, and numerous examples. Three hours a week.

103. Modern Analytic Geometry.—Homogeneous coordinates, ideal elements, principle of duality, and an analytic treatment of the straight line and the conics. Three hours a week.

104. Modern Analytic Geometry.—A continuation of Course 103. Three hours a week.

105. Thermodynamics.—The subject is considered more from a mathematical than from a physical standpoint. The subject is developed from fundamental principles, and is extended to systems of a more general character than those usually considered. Three hours a week.

106. Thermodynamics.—A continuation of Course 105. Three hours a week.

Summer Term

Professor Hart; Associate Professor Willard; Assistant Professor Hamlin

Courses A, B, 1, and 2 are planned to meet the needs of high school teachers who wish to review the subjects, or to study methods of teaching, as well as those of prospective candidates for admission to college who have not fully satisfied the entrance requirements in these subjects. All the teachers in this department of the Summer Term had experience in high school work before entering upon college teaching. Courses 3, 6,
College of Arts and Sciences

7, 8, 10 should appeal to teachers of high school mathematics who wish to extend their field of mathematical knowledge or to become candidates for a degree. The remaining courses may be counted toward the bachelor's or, under suitable restrictions, toward the master's degree.

A. **High School Algebra.**—A course intended for teachers in preparatory schools and covering the second year's work. Special attention will be given to the methods of presenting this subject and those topics will be emphasized that are most important in preparation for college work. Candidates for admission to the University who are deficient in a part of their preparation in algebra are advised to take this course.

B. **Plane Geometry.**—A review of the more important theorems, with practice in the demonstration of original propositions and in the solution of numerical exercises. For teachers in preparatory schools and for candidates for admission who are slightly deficient in geometry.

2S. **Solid Geometry.**—This course is offered especially for the benefit of students who intend to enter college, but who have not been able to complete the requirements in solid geometry. Hart and Feldman's Solid Geometry will probably be used as the text-book, but Philips and Fisher's, Wells's and other books will be used for reference.

15. **Plane Trigonometry.**—The elements of plane trigonometry, including the solution of right and oblique plane triangles, and of problems in surveying, together with the use of surveying instruments. No text-book will be required for this course, but those having logarithmic tables should bring them, and also any modern text-book on trigonometry, which may be useful for reference.

3S. **College Algebra.**—The theory of quadratic equations, the binomial theorem, and so much of the regular freshman course in algebra as time will permit. The text book is Rietz and Crathorne's Advanced Algebra.

6S. **Analytic Geometry.**—A brief course covering the elements of this subject. The text-book is Tanner and Allen's Analytic Geometry.

7S. **Differential and Integral Calculus.**—A course intended for teachers in preparatory schools who wish to gain a knowledge of the elements of this subject.
Philosophy

8s. **Integral Calculus.**—The equivalent of Course 8 of the catalog. Open only to those who have previously studied the subject.

10s. **Descriptive Astronomy.**—Lectures accompanied by work in the observatory. The only mathematics required is an elementary knowledge of geometry and plane trigonometry. The department is well equipped with instruments and apparatus for the teaching of both descriptive and practical astronomy.

51s. **Advanced Analytic Geometry,** equivalent to a part of Course 51 of the catalog.

53s. **Advanced Calculus,** equivalent to a part of Course 53 of the catalog.

101s. **Theory of Functions,** equivalent to a part of Course 101 of the catalog.

58s. **Observatory Work.**

By suitable selection of topics, a candidate should be able to complete the work for the master's degree in four or five summer terms, the exact time depending upon his mathematical ability and previous mathematical preparation.

The department is supplied with a small but carefully selected list of mathematical models, and, for work in astronomy, has an observatory equipped with an eight inch Clark equatorial, a three inch Bamberg astronomical transit, and other instruments.

MILITARY SCIENCE AND TACTICS

The courses in this department are described on page 226.

PHILOSOPHY

Professor Craig

1. **Evolution.**—Principles of heredity, selection, survival of the fittest, eugenics. Evolution of animal behavior, mental and social evolution. The course gives a concise treatment of these topics, as a foundation for studies in psychology, sociology, and allied fields. A text-book will be used. *Three hours a week.*
2. Anthropology.—A text-book course, dealing briefly with the races of men, giving most attention to the origins of the arts and sciences, of language, and of social life and customs. *Three hours a week.*

3. Logic.—The purpose of this course is to develop clear thinking and the precise expression of thought in words. This is done largely by exercise in the solution of logical problems. Both deductive and inductive reasoning. Text-book: Creighton's Logic. *Three hours a week.*

51. Psychology.—The subjects treated in this course are the anatomy and physiology of the nervous system and sense-organs, and the psychology of sensation, perception, instinct, and habit. The methods used are recitation, discussion, introspection (self-observation), observation of others, experiment, and demonstration. Students electing this course are advised to precede or accompany it with Philosophy 1 or Biology 1; or if this be impossible, to read some good, recent book on evolution, and a similar work on human physiology. Two text-books: James's Psychology (Briefefer Course); Pillsbury's Essentials of Psychology. *Three hours a week.*

52. Psychology.—A continuation of Course 51, dealing especially with the higher psychic functions, such as imagination, conception, emotion, and will. *Three hours a week.*

53. Applied Psychology.—Mental mechanisms, dreams, hypnotism, insanity. Psychology of business, of advertising. The power of art; the fine arts. Psychological aids to success in daily life. *Two hours a week.*

54. Social Psychology.—A study of the social aspects of the individual mind; of the instincts which underlie all social life; of social influence and social control; of fashion, convention, and custom; of the crowd, the mob, the public, and the deliberative assembly. *Two hours a week.*

56. Genetic Psychology.—Mental development of the individual: childhood adolescence; maturity. Text-book; Kirkpatrick's *The Individual in the Making.* Also lectures and outside readings. *Two hours a week.*
Physics

99. SEMINAR.—Reviews of current psychological literature. Social psychology is emphasized. Magazine articles or books are assigned to individual students, to be abstracted and reported upon. The student may select those topics in which he is especially interested. The work may be continued a number of semesters. One hour a week.

100. SEMINAR.—Continuation of Course 99. One hour a week.

101. RESEARCH.—The number of hours a week is not fixed, but must be arranged at the time of registration.

102. RESEARCH.—Continuation of Course 101.

PHYSICS

Professor Stevens; Associate Professor Woodman; Mr. Transue; Mr. Holmes; Mr. French

Note.—For students who are specializing in this department, the time indicated for the various laboratory courses may be extended. Two and one-half hours of laboratory work give a credit of one hour.

For undergraduates only

1. GENERAL PHYSICS.—Recitations and lectures on the dynamics of solids, liquids, and gases; sound and light; experiments before the class; problems. Open to students who have taken Mathematics 1. Five hours a week.

2. GENERAL PHYSICS.—A continuation of Course 1. Heat and electricity. Three hours a week.

3. QUALITATIVE LABORATORY WORK.—A course in which students who are preparing to become teachers of physics are given the opportunity of performing the various class-room experiments which accompany the lectures in Courses 1 and 2. Five hours a week.

4. LABORATORY PHYSICS.—The subjects usually included in an undergraduate course. Special attention is given to the reduction of observations and the tabulation of results. Open to students who have taken either Course 1 or Course 3. Five hours a week.
5. General Physics.—A course covering the ground of Courses 1 and 2, with more attention to the experimental and historical aspects, and less to the mathematical. The text-book is Black and Davis's Practical Physics. *Five hours a week.*

6. Meteorology.—A course covering the essential principles of the subject of meteorology, including a study of meteorological instruments and weather predictions. Milham's Meteorology is used as a text-book. *Three hours a week.*

7. Meteorology.—A continuation of Course 6, dealing with special topics, and a discussion of the results obtained at the meteorological observatory. *One hour a week recitation; two and one-half hours a week laboratory.*

For graduates and undergraduates

50. Optics.—Lectures and recitations in continuation of Course 1, based chiefly upon Edser's Light. Open to students who have taken Mathematics 8. *Three hours a week.* Given in 1915-16 and alternate years.

51. Mechanics and Heat.—Advanced laboratory work in continuation of Course 4. *Seven and one-half hours a week, or five hours a week.*

52. Optics.—Advanced laboratory work in continuation of Course 4. *Seven and one-half hours a week, or five hours a week.*

53. Electrical Measurements.—Advanced laboratory work in continuation of Course 4. *Seven and one-half hours a week.*

55. Theory of Electricity and Magnetism.—Lectures and recitations on the mathematical theory of potential, capacity, and inductance, with application to direct current phenomena. Electricity and Magnetism by Hough and Boehm is used as a text-book. *Two hours a week.*

57. Problems in Electricity.—This course can only be taken in connection with Physics 55 or Physics 50, as the problems will be selected from the work covered in those courses. *One or two hours a week.*
Physics

58. **Mathematical Physics.**—The application of mathematical methods to the treatment of problems in physics. The textbook is Mellor's Higher Mathematics. *Two hours a week.* Given in 1914-15 and alternate years.

59. **Theory of Alternating Currents.**—Continuation of Course 55 with applications to alternating current phenomena; the addition and subtraction of vector quantities; the analysis of wave forms by use of Fourier's series; the algebra of complex numbers. *Two hours a week.*

60. **Sound.**—Lectures and recitations in continuation of Course 1, based chiefly upon Poynting and Thomson's Sound. Open to students who have taken Mathematics 8. *Three hours a week.*

62. **Thermodynamics.**—An elementary course in thermodynamics. The textbook is Perkins's Introduction to General Thermodynamics. *Two hours a week.*

63. **Theory of Measurements.**—A course of lectures covering the more important topics treated in this subject. *Two hours a week.*

64. **Problems in Thermodynamics.**—This course may be taken in connection with 62, by those desiring further training in the solution of practical problems in thermodynamics. The textbook will be Spangler's Notes on Thermodynamics. *One or two hours a week.*

65. **Precision of Measurements.**—Lectures required of juniors in mechanical engineering. *One hour a week for five weeks.*

66. **Radio-Activity.**—A combined lecture and laboratory course. Elementary quantitative experiments in radio-activity are performed. *Two hours a week.*

Primarily for graduates

101. **Special Laboratory Course.**—A course open to students who have completed Courses 51, 52, and 53. A subject is assigned for original investigation, or the work of a published research is repeated. *Five hours a week.*
College of Arts and Sciences

102. Special Laboratory Course.—A continuation of Course 101. *Seven and one-half hours a week.

103. Radiation.—This course will include lectures and outside reading on the following topics: the electromagnetic theory of light; the development of Maxwell's equations; the application of Maxwell's equations to the reflection, refraction, and polarization of light; the radiation and absorption of a theoretical black body; the theories of emission and absorption; electric waves and light pressure. Two hours a week. Given in 1914-15 and alternate years.

Summer Term

Professor Stevens; Associate Professor Woodman

18. Elementary Laboratory Course.—This includes a list of experiments which would be accepted for admission to the University of Maine. The course is especially adapted for teachers who wish to become familiar with the methods of conducting an elementary laboratory course. The complete set of apparatus is assembled in the laboratory, and full directions are given for performing each experiment.

28. General Laboratory Course.—This corresponds to the course given in the University for all students in the College of Technology. It is based on Miller's Laboratory Manual, and includes experiments along the lines of mechanics, heat, light, sound, and electricity.

38. College Physics.—A course based upon those parts of Kimball's College Physics which treat of mechanics, light, and sound. This course may be taken for credit only by students who have covered the ground in Physics 1.

48. College Physics.—A course based upon those parts of Kimball's College Physics which treat of electricity and heat. This course may be taken for credit by university students who have covered the ground in Physics 2.

58. Advanced Laboratory Courses.—These courses are offered in optics, electrical measurements, and heat. They are of a more advanced nature than those in Course 2, which is a prerequisite for them.
Romance Languages

64. Advanced Laboratory Course for Graduate Work.—This course will be adapted to the requirements of the students, and will be offered to such students as have completed the courses above listed. The work will be in the nature of a repetition of a published experiment, or it may be an original investigation.

75. Advanced Physics.—A course for candidates for the master's degree will be offered in this department each summer. The course will vary for four successive terms so that the student may have an opportunity to cover a wide field. For 1915 the subject will be Theory of Measurements. The work will be based on Edser's Light, and will, when completed, count for two credits on the university books.

ROMANCE LANGUAGES

Professor Segall; Associate Professor Raggio; Mr. Kueny; Miss Beaupre

For undergraduates only

French

1. Elementary French.—Fraser and Squair, Abridged French Grammar; Matzke, Primer of French Pronunciation; Snow and Lebon, Easy French Reading. Five hours a week.

2. Elementary French.—A continuation of Course 1. Fraser and Squair, Abridged French Grammar; Matzke, Primer of French Pronunciation; Rambeau, French Reader; Newson's First French Book; Bruno, Le Tour de la France. Five hours a week.

3. Intermediate French.—Fraser and Squair, Abridged French Grammar; Lamartine, Histoire des Girondins (selections). About 500 pages of collateral reading will be assigned. Open to students who have taken Courses 1 and 2, or an equivalent. Three hours a week.

4. Intermediate French.—A continuation of Course 3. Fraser and Squair, Abridged French Grammar; Sand, La Mare au Diable. About 500 pages of collateral reading will be assigned. Three hours a week.
College of Arts and Sciences

5. **Advanced French.**—Anatole France, le Crime de Sylvestre Bonnard; Modern Short Stories. Collateral reading. Open to students who have taken Courses 3 and 4, or an equivalent. *Three hours a week.*

7. **Elementary French Conversation and Composition.**—Open to students who have taken Courses 1 and 2, or an equivalent. *Two hours a week.*

8. **Elementary French Conversation and Composition.**—A continuation of Course 7. *Two hours a week.*

9. **Advanced French Conversation and Composition.**—Open to students who have taken Courses 7 and 8, or an equivalent. *Two hours a week.*

10. **Advanced French Conversation and Composition.**—A continuation of Course 9. *Two hours a week.*

Spanish

23. **Intermediate Spanish.**—Hills and Ford, Spanish Grammar; Pérez Escrich, Fortuna; Alarcón, El Capitán Veneno; Moratín, El sí de las niñas. About 250 pages of collateral reading will be assigned. Open to students who have taken Courses 21 and 22, or an equivalent. *Three hours a week.*

Romance Languages

25. Elementary Spanish Conversation and Composition.—Open to students who have taken Courses 21 and 22, or an equivalent. Two hours a week.

26. Elementary Spanish Conversation and Composition.—A continuation of Course 25. Two hours a week.

Italian

41. Elementary Italian.—Grandgent's Italian Grammar; Pictorial Italian Course. Three hours a week.

42. Elementary Italian.—A continuation of Course 41. Grandgent's Italian Grammar; Bowen's First Italian Readings; I Promessi Sposi. Three hours a week.

For graduates and undergraduates

French

51. Introduction to the History of French Literature.—Lectures, recitations. Open to students who have taken Courses 5 and 6. Three hours a week.

52. Introduction to the History of French Literature.—A continuation of Course 51. Two hours a week.

53. Modern French Novel.—Lectures, recitations. Open to students who have taken Courses 5 and 6. Two hours a week. Given in 1915-16 and alternate years.

54. Modern French Novel.—A continuation of Course 53. Two hours a week. Given in 1915-16 and alternate years.

55. Modern French Drama.—Lectures, recitations. Open to students who have taken courses 5 and 6. Two hours a week. Given in 1916-17 and alternate years.

56. Modern French Drama.—A continuation of Course 55. Two hours a week. Given in 1914-15 and alternate years.
91. **Carducci.**—Text-books: Marinoni's Selections from Carducci; Mazzoni and Picciola's Antologia Carducciana. Collateral reading. Open to students who have taken Courses 41 and 42, or an equivalent. *Three hours a week.*

Primarily for graduates

French

101. **Molière.**—*Two hours a week.*

102. **Corneille and Racine.**—*Two hours a week.*

121. **Old French.**—This course is intended for students who wish to acquire a reading knowledge of Old French. The laws governing the development of Popular Latin to French will also be studied. This course will consist of recitations, lectures, and collateral reading. The books used will be Bourciez' *Phonétique française* (Paris, Klincksieck); Paris's *Extraits de la Chanson de Roland* (Hachette et Cie); Clédat's edition of the *Chanson de Roland* (Garnier frères). Students will be expected to read outside the class during the fall and spring semesters Paris's *La littérature française au moyen âge* (Hachette et Cie). Some acquaintance with Latin is presupposed. *Two hours a week.*

122. **Old French.**—A continuation of Course 121. Paris and Langlois' *Chrestomathie du moyen âge* (Hachette et Cie). *Two hours a
Romance Languages

Summer Term

Associate Professor Raggio; Mr. Raiche; Mrs. Raiche

A. Primarily for undergraduate students

Courses 22as, 22bs, 41s, 42as, and 42bs will be offered if a sufficient number of students call for them.

1s. Elementary Course.—This course is intended for beginners. The text-book used will be Fraser and Squair's Abridged French Grammar (D. C. Heath & Co.), pp. 1-73.

2as. Continuation of Course 1s.—The text-books used will be Fraser and Squair's Abridged French Grammar (D. C. Heath & Co.), pp. 73-128; Rambeau's French Reader (Henry Holt & Co.).

2bs. Continuation of Course 2as.—The text-books used will be Fraser and Squair's Abridged French Grammar (D. C. Heath & Co.); Rambeau's French Reader (Henry Holt & Co.); Bruno, Le Tour de la France.

3s. Intermediate Course.—This course is intended for those who have already the required number of points for entrance French, and who desire a course in French that may be counted towards a bachelor's degree. The text-books used will be Augier and Sandeau, le Gendre de M. Poirier (American Book Co.); France, le Livre de mon ami (Henry Holt & Co.); Gasc's Concise Dictionary of the French and English Languages (Henry Holt & Co.).

4s. Continuation of Course 3s.—The text-book used will be Lamartine's Histoire des Girondins (selections). Collateral reading will be assigned.

* The requirements for entrance French may be met by taking Courses 1s, 2as, and 2bs in consecutive years.

† Students who already have one of the two units required for entrance French may complete their requirements during one summer term by taking Courses 2as and 2bs.
11s. Practical French Phonetics.—This course is intended for teachers who wish to concentrate their efforts upon French pronunciation. The members of the class will be made familiar with the alphabet of L'Association Phonétique Internationale, and will be expected to read, memorize, and declaim passages printed in phonetic characters. Some acquaintance with French is presupposed.

7s. Elementary French Composition and Conversation.—Open to students who have taken Courses 1s, 2as, and 2bs, or an equivalent.

8s. Advanced French Composition and Conversation.—Open to those who have taken Course 7s or an equivalent.

Spanish

21s. Elementary Spanish.—This course is intended for beginners. The text-book used will be Hills and Ford's Spanish Grammar (D. C. Heath & Co.).

22as. Elementary Spanish.—A continuation of Course 21s. The text-books used will be Hills and Ford's Spanish Grammar; Ramsey's Elementary Spanish Reader (Henry Holt & Co.); Dent's First Spanish Book (London, J. M. Dent & Co.).

22bs. Elementary Spanish.—A continuation of Course 22as. The text-books used will be the same as those used in Course 22as.

Italian

41s. Elementary Italian.—This course is intended for beginners. The text-book used will be Grandgent's Italian Grammar (D. C. Heath & Co.).

42as. Elementary Italian.—A continuation of Course 41s. The text-books used will be Grandgent's Italian Grammar; Bowen's First Italian Readings (D. C. Heath & Co.); Pictorial Italian Course (London, Modern Language Press).

42bs. Elementary Italian.—A continuation of Course 42as. The text-books used will be the same as those used in Course 42as with the addition of Manzoni's I Promessi Sposi (D. C. Heath & Co.).
Romance Languages

B. Primarily for graduate students

French

101A. Molière.—The classic period. Given in 1913.

102A. Voltaire.—The revolutionary period. Given in 1914.

104A. Rabelais.—The period of the Renaissance and Reformation. Given in 1916.

112A. Old French.—In this course the aim is the acquisition of a reading knowledge of Old French. The laws governing the development of Popular Latin to French will also be studied. The books used will be Bourciez' Phonétique française (Paris, Klincksieck); Paris's Extraits de la Chanson de Roland (Hachette et Cie); Cledat's edition of the Chanson de Roland (Garnier frères); Paris and Langlois's Chrestomathie du moyen âge (Hachette et Cie). Students will be expected to read outside the class Paris's La Littérature française au moyen âge (Hachette et Cie). This course is to extend throughout three consecutive summer terms.

In 1915 the course will consist of lectures introductory to the study of Old French phonology, and the reading of the Chanson de Roland in the two editions above mentioned. Some acquaintance with Latin is presupposed.

Italian

91A. Dante. La Divina Commedia.—L'Inferno. Given in 1916.

For graduate courses in French the prerequisites consist of Courses 1, 2, 3, 4, 5, and 6, or an equivalent, and a general introductory course in the history of French literature. Students who have not had the latter course will be required to make up the deficiency by means of assigned outside reading.

Candidates for the master's degree in French will take all the French courses in group B, and, besides, Courses 11A, 7A, and 8A in group A. Candidates for the master's degree in Romance Languages will take all the courses in group B, and in addition 21A, 22A, and 23A, or 41A, 42A, and 42B.
COLLEGE OF LAW

FACULTY OF INSTRUCTION

WILLIAM EMANUEL WALZ, A. M., LL. B., Litt. D.
 Dean
EDGAR MYRICK SIMPSON, A. B.
GEORGE HENRY WORSTER, LL. M.
BARTLETT BROOKS, A. B., LL. B.
LUCILIUS ALONZO EMERY, A. M., LL. D., Ex-Chief Justice of the Supreme Judicial Court of Maine

Lecturer on Roman Law and Probate Law

LOUIS CARVER SOUTHWARD, M. S., LL. D., Member of the Massachusetts Bar and of the United States Supreme Court Bar

Lecturer on Medico-Legal Relations

EDWARD HARWARD BLAKE, LL. B., LL. D.

Lecturer on Admiralty Law

ISAAC WATSON DYER, A. B.
 Lecturer on Federal Jurisdiction and Procedure, and on Private Corporations

JOHN ROGERS MASON, A. M., LL. B. Lecturer on Bankruptcy Law

WILLIAM BRIDGHAM PIERCE, B. M. E.
 Resident Lecturer on Common Law Pleading and Maine Practice

HENRY BURT MONTAGUE, LL. M.
 Lecturer on Practice and History of Law

174
The College of Law was opened to students in 1898. It occupies the Isaac H. Merrill building, now Stewart Hall, purchased by the University in 1911, corner Union and State Streets, Bangor. In this city are held annually one term of the U. S. District Court, five terms of the Maine Supreme Judicial Court, one term of the Law Court, and daily sessions of the Municipal Court. The law library contains over 4,500 volumes, including the reports of the Federal Courts, and of the Supreme Courts of the United States, Maine, New Hampshire, Vermont, Massachusetts, Rhode Island, Connecticut, and Ohio; the Court of Appeals of New York; the New York Common Law and Chancery Reports; the American Decisions, American Reports, and American State Reports; the complete National Reporter System; the Lawyers' Reports Annotated; the English Reports, full verbatim reprint; the English Ruling cases; and the American Digest; all the important law Encyclopaedias; and a considerable number of text-books.

Admission

The College of Law admits college graduates and such graduates of secondary institutions as are able to present fourteen units obtained in an approved school. For further information as to admission see page 54.

Students from law offices, otherwise qualified, are admitted to advanced entrance requirements are admitted to classes in this institution corresponding to classes in the schools from which they come, upon the production of a certificate showing the satisfactory completion of the prior work in such schools.

Students from law offices, otherwise qualified, are admitted to advanced standing upon passing a satisfactory examination upon the earlier subjects of the curriculum.

Members of the bar of any state may be admitted to the senior class, without examination, as candidates for the degree of Bachelor of Laws, on presentation of their certificates of admission to the bar, at the beginning of the fall term, while graduate students may follow a curriculum leading to the degree of Master of Laws.

Special students, not candidates for a degree, will be admitted without examination, and may pursue any studies for which they are prepared.
College of Law

Methods of Instruction

The College is not committed exclusively to any one method of instruction, but the case system is consistently used in all the subjects of the law for which good case-books have been provided, and the great cases of the law, the landmarks of legal development, form the basis of the recitations. The College of Law recognizes the great value of lectures by able men, and the profit to be found in the use of standard text-books; but the greatest stress is placed upon the study of selected cases, and most of the work is carried on in this way. It is believed that through the case the student can best come at the controlling principles of the law, and that in no other way can he get so vital a comprehension of them. "Through the case to the principle" may, perhaps, adequately indicate the stand-point of the College in the matter of method.

Particular stress is placed upon the practice court, which is held once a week as a part of the work of the College, and in which every student is required to appear regularly. The questions of law are in all instances made to arise from the pleadings prepared by the students, and briefs summarizing the points involved and the authorities cited are submitted to the presiding judge.

The aim and spirit of the College are eminently practical, the purpose being to equip men for the everyday duties of the practicing attorney.

Curriculum

The curriculum covers three years, in accordance with the requirements for admission to the bar in the State of Maine. The college year consists of thirty-two weeks, and is divided into the fall, winter, and spring terms, of eleven, ten, and eleven weeks respectively.

Expenses

The annual tuition fee is $70, $23.33 at the beginning of each term, payable in advance. Of this sum $10 is a library charge. The graduation fee is $10. There are no other charges.

Board and furnished rooms, with light and heat, may be obtained in the most convenient locations, at prices ranging from $5 to $7 a week.

Degrees

At the completion of the three years curriculum, the degree of Bachelor of Laws is conferred. Upon the completion of one year's prescribed
Courses of Instruction

graduate work in residence, including the presentation of a satisfactory thesis and examination at the College, the degree of Master of Laws is granted.

Attorneys at law who have been actively engaged in practice at the bar for not less than five years, and attorneys who hold a college degree and have practiced for not less than two years, may, on presentation of a recommendation from one of the justices of the highest court of their state, be also admitted to the curriculum leading to the Master's degree.

COURSES OF INSTRUCTION

1. **Admiralty**.—A course of lectures. *One hour a week*. Spring term. *Mr. Blake*.

3. **Bankruptcy**.—Lectures. *Two hours a week*. Winter term. *Mr. Mason*.

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
<th>Hours per week</th>
<th>Term</th>
<th>Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Constitutional Law—Boyd's Cases</td>
<td>Three hours a week</td>
<td>Spring</td>
<td>Associate Professor Worster</td>
</tr>
<tr>
<td>11</td>
<td>Contracts—Keener's Cases on Contracts</td>
<td>Four hours a week</td>
<td>Fall</td>
<td>Assistant Professor Brooks</td>
</tr>
<tr>
<td>12</td>
<td>Contracts—A continuation of Course 11</td>
<td>Three hours a week</td>
<td>Winter</td>
<td>Assistant Professor Brooks</td>
</tr>
<tr>
<td>13</td>
<td>Contracts—A continuation of Course 12</td>
<td>Two hours a week</td>
<td>Spring</td>
<td>Assistant Professor Brooks</td>
</tr>
<tr>
<td>14</td>
<td>Criminal Law—Beale's Cases on Criminal Law</td>
<td>Two hours a week</td>
<td>Winter</td>
<td>Professor Simpson</td>
</tr>
<tr>
<td>15</td>
<td>Criminal Law—Beale's Cases on Criminal Law</td>
<td>Three hours a week</td>
<td>Spring</td>
<td>Professor Simpson</td>
</tr>
<tr>
<td>16</td>
<td>Cross-Examination—Lectures</td>
<td></td>
<td></td>
<td>Mr.</td>
</tr>
<tr>
<td>17</td>
<td>Damages—Beal's Cases on Damages</td>
<td>Three hours a week</td>
<td>Winter</td>
<td>Associate Professor Worster</td>
</tr>
<tr>
<td>18</td>
<td>Domestic Relations—Smith's Cases on Persons</td>
<td>Three hours a week</td>
<td>Fall</td>
<td>Professor Simpson</td>
</tr>
<tr>
<td>19</td>
<td>Equity Jurisprudence—Bispham on Equity Jurisprudence, and Shepard's Cases on Equity</td>
<td>Four hours a week</td>
<td>Fall</td>
<td>Professor Walz</td>
</tr>
<tr>
<td>20</td>
<td>Equity Jurisprudence—A continuation of Course 19</td>
<td>Three hours a week</td>
<td>Winter</td>
<td>Professor Walz</td>
</tr>
<tr>
<td>21</td>
<td>Equity Pleading—Shipman on Equity Pleading</td>
<td>Three hours a week</td>
<td>Spring</td>
<td>Assistant Professor Brooks</td>
</tr>
<tr>
<td>22</td>
<td>Evidence—Thayer's Cases</td>
<td>Four hours a week</td>
<td>Fall</td>
<td>Professor Simpson</td>
</tr>
</tbody>
</table>
Courses of Instruction

31. Insurance—Woodruff’s Cases. Three hours a week. Spring term. Associate Professor Worster.

32. International Law—Lectures. One hour a week. Fall term. Professor Walz.

34. Maine Practice—Lectures. One hour a week. Spring term. Mr. Pierce.

<table>
<thead>
<tr>
<th>Course</th>
<th>Subject</th>
<th>Text</th>
<th>Hours</th>
<th>Term</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>37</td>
<td>Negotiable Paper</td>
<td>Colson-Huffcut on Negotiable Paper</td>
<td>Two hours a week</td>
<td>Winter</td>
<td>Assistant Professor Brooks</td>
</tr>
<tr>
<td>38</td>
<td>Negotiable Paper</td>
<td>A continuation of Course 37</td>
<td>Three hours a week</td>
<td>Spring</td>
<td>Assistant Professor Brooks</td>
</tr>
<tr>
<td>39</td>
<td>Partnership</td>
<td>Ames's Cases</td>
<td>Two hours a week</td>
<td>Winter</td>
<td>Professor Walz</td>
</tr>
<tr>
<td>40</td>
<td>Partnership</td>
<td>Ames's Cases</td>
<td>Two hours a week</td>
<td>Spring</td>
<td>Professor Walz</td>
</tr>
<tr>
<td>41</td>
<td>Private Corporations</td>
<td>Wilgus's Cases</td>
<td>Four hours a week</td>
<td>Fall</td>
<td>Associate Professor Worster</td>
</tr>
<tr>
<td>42</td>
<td>Private Corporations</td>
<td>A continuation of Course 41</td>
<td>Three hours a week</td>
<td>Winter</td>
<td>Associate Professor Worster</td>
</tr>
<tr>
<td>43</td>
<td>Private Corporations</td>
<td>Lectures</td>
<td>Mr. Dyer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>Probate Law and Practice</td>
<td>Lectures</td>
<td>About ten hours</td>
<td>Spring</td>
<td>Ex-Chief Justice Emery</td>
</tr>
<tr>
<td>45</td>
<td>Real Property</td>
<td>Tiffany on Real Property</td>
<td>Four hours a week</td>
<td>Fall</td>
<td>Professor Simpson</td>
</tr>
<tr>
<td>46</td>
<td>Real Property</td>
<td>A continuation of Course 45</td>
<td>Three hours a week</td>
<td>Winter</td>
<td>Professor Simpson</td>
</tr>
<tr>
<td>47</td>
<td>Real Property</td>
<td>Finch's Cases on the Law of Property in Land</td>
<td>Four hours a week</td>
<td>Spring</td>
<td>Professor Simpson</td>
</tr>
<tr>
<td>48</td>
<td>Roman Law</td>
<td>Lectures</td>
<td>About ten hours</td>
<td>Spring</td>
<td>Ex-Chief Justice Emery</td>
</tr>
<tr>
<td>49</td>
<td>Sales</td>
<td>Burdick's Cases</td>
<td>Two hours a week</td>
<td>Fall</td>
<td>Associate Professor Worster</td>
</tr>
<tr>
<td>50</td>
<td>Sales</td>
<td>A continuation of Course 49</td>
<td>Two hours a week</td>
<td>Winter</td>
<td>Associate Professor Worster</td>
</tr>
</tbody>
</table>
Courses of Instruction

51. Suretyship.—Armes's Cases. Two hours a week. Fall term. Associate Professor Worster.

52. Suretyship.—A continuation of Course 51. Two hours a week. Winter term. Associate Professor Worster.

53. Torts.—Armes and Smith's Cases. Four hours a week. Fall term. Professor Wall.

54. Torts.—A continuation of Course 53. Three hours a week. Winter term. Professor Wall.

55. Torts.—A continuation of Course 54. Two hours a week. Spring term. Professor Wall.

56. What to Do in Court.—Lectures. About ten hours. Fall or spring term. Ex-Chief Justice Emery.

57. Wills.—Chaplin's Cases. Three hours a week. Spring term. Associate Professor Worster.
THE COLLEGE OF TECHNOLOGY

FACULTY OF INSTRUCTION

HAROLD SHERBURNE BOARDMAN, C. E.
Professor of Civil Engineering
Dean

*ARTHUR CRAWFORD JEWETT, S. B.
Professor of Mechanical Engineering

CHARLES PARTRIDGE WESTON, C. E., M. A.
Professor of Mechanics and Drawing

CHARLES BARTO BROWN, C. E.
Professor of Railroad Engineering

RALPH HARPER McKEE, Ph. D.
Professor of Chemistry

WILLIAM EDWARD BARROWS, E. E.
Professor of Electrical Engineering

CHARLES WILSON EASLEY, Ph. D.
Associate Professor of Chemistry

PAUL LEONARD BEAN, C. E.
Associate Professor of Civil Engineering

ALBERT THEODORE CHILDS, E. E.
Associate Professor of Electrical Engineering

ARCHER LEWIS GROVER, B. S.
Associate Professor of Drawing

JULIUS ERNEST KAULFUSS, B. S.
Associate Professor of Civil Engineering

WILLIAM AMBROSE JARRETT, PHARM. D.
Associate Professor of Pharmacy

LLOYD MEEKS BURGHART, M. A. Assistant Professor of Chemistry

CARL HENRY LEKBERG, B. S.
Assistant Professor of Mechanical Engineering

*Absent on leave.
The College Curricula

LAWRENCE BOYLSTON CHAPMAN, B. Sc.
Assistant Professor of Mechanical Engineering

RAYMOND HARMON ASHLEY, Ph. D.
Assistant Professor of Chemistry

ALBERT GUY DURGIN, M. S.
Assistant Professor of Chemistry

ALPHEUS CROSBY LYON, B. S.
Assistant Professor of Civil Engineering

EVERETT WILLARD DAVEE
Instructor in Wood and Iron Work

CHARLES JENKINS CARTER
Instructor in Machine Tool Work

WALTER ELWOOD FARNHAM
Instructor in Drawing

ERNEST CONANT CHESWELL
Instructor in Electrical Engineering

EARLE OVANDO WHITTIER, M. S.
Instructor in Chemistry

JOSEPH NEWELL STEPHENSON, M. S.
Instructor in Chemistry

ELWOOD WHITNEY JENNISON, B. S.
Instructor in Mechanical Engineering

CHESTER EARLE ANDREWS, M. S.
Instructor in Chemistry

TIMOTHY JEREMIAH CONNORS, Jr., PHARM. D.
Instructor in Pharmacy

JAMES JOHN DONEGAN, Ph. B.
Instructor in Civil Engineering

WILLIAM GORDON JAMES, B. S.
Instructor in Electrical Engineering

HAROLD EDMANDS JENKS, B. S.
Instructor in Civil Engineering

ARTHUR WHITING LEIGHTON,
Instructor in Drawing

ARTHUR BENTON LEONARD, M. E.
Instructor in Mechanical Engineering

*Absent on leave from September 1, 1914, to September 1, 1915.

GENERAL INFORMATION

The College of Technology provides technical instruction in chemistry, in various branches of engineering, and in pharmacy. The number of hours required for graduation in this college is one hundred and fifty. In such technical curricula it is necessary to prescribe a large proportion of the work; but some elective studies may be chosen in the junior and senior years. Under each of the curricula described below is given a tabulated statement of the subjects pursued and the amount of work required. The College comprises:
Graduation Requirements

The College of Technology has the following requirements for graduation:

1. English, one year, five hours a week, or the equivalent.
2. Mathematics, two years, five hours a week, except in Chemistry and Chemical Engineering where one and two-fifths years are required, and Pharmacy where one year is required.
3. Science (biology, chemistry, or physics), one year, five hours a week, of which time an important part must be occupied with laboratory work.
4. Language (French and German), the equivalent of one college year of each, five hours a week taken in college or preparatory school. Candidates offering one full year of the second language for admission must take the equivalent of a five hour year in that language in college. A student in German or French must receive at least two credits in the subject to count it toward a degree.
5. Military Science and Tactics, two years, three hours a week.
6. Physical Training, one year, three hours a week.

Chemical Engineering Curriculum

In view of the rapid development of the application of chemistry in manufacturing, this curriculum is offered to furnish training in engineering together with specialization in chemistry. The first two years are almost identical with those under the Chemistry curriculum, but in the junior and senior years the student takes the fundamental courses in mechanical and electrical engineering, where, in the Chemistry curriculum, the student takes subjects having a biological aspect. The training
The College Curricula

is thus essentially chemical, and the graduates are primarily chemists having a good knowledge of mechanical and electrical engineering. Such students will be prepared to enter the profession of chemical engineering and to occupy positions in manufacturing establishments such as metallurgical works, bleacheries, dye houses, chemical plants, gas works, sugar refineries, pulp and paper mills, etc.

Pulp and Paper Chemistry

Students wishing to specialize in pulp and paper work will substitute in part for courses Chemistry 20, 61, 62, 75, 76, 104 and 105 given below courses in pulp and paper chemistry (Chemistry 80 to 89), given by this department, a course on wood identification (Biology 17) and courses in forestry (Forestry 2 and 9).

Students wishing to specialize in pulp and paper work should consult the separately published description of this work. This can be had on application to the Registrar or to the department of Chemistry.

FRESHMAN YEAR

<table>
<thead>
<tr>
<th>Fall Semester</th>
<th>Spring Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject</td>
<td>Hours</td>
</tr>
<tr>
<td>Chemistry 1 or 3</td>
<td>2</td>
</tr>
<tr>
<td>Chemistry 5, 14</td>
<td>2</td>
</tr>
<tr>
<td>Drawing 3, 66</td>
<td>2</td>
</tr>
<tr>
<td>English 5</td>
<td>3</td>
</tr>
<tr>
<td>German 1</td>
<td>3</td>
</tr>
<tr>
<td>French 3</td>
<td></td>
</tr>
<tr>
<td>Mathematics 1 & 3</td>
<td>5</td>
</tr>
<tr>
<td>Military 1, 63</td>
<td>1</td>
</tr>
<tr>
<td>Physical training 62</td>
<td>1</td>
</tr>
</tbody>
</table>

184 19
College of Technology

SOPHOMORE YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry 11, †10</td>
<td>5</td>
</tr>
<tr>
<td>English 3</td>
<td>1</td>
</tr>
<tr>
<td>Mathematics 13</td>
<td>3</td>
</tr>
<tr>
<td>Mechanical Engineering 3, *4</td>
<td>1 ½</td>
</tr>
<tr>
<td>Military 1, *3</td>
<td>1</td>
</tr>
<tr>
<td>Modern language</td>
<td>3</td>
</tr>
<tr>
<td>Physics 1</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>19 ½</td>
</tr>
</tbody>
</table>

JUNIOR YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry 53</td>
<td>3</td>
</tr>
<tr>
<td>Chemistry 63, †8</td>
<td>4</td>
</tr>
<tr>
<td>Chemistry 71</td>
<td>3</td>
</tr>
<tr>
<td>Chemistry 17, †4</td>
<td>2</td>
</tr>
<tr>
<td>Chemistry 75</td>
<td>2</td>
</tr>
<tr>
<td>Mechanical Engineering 77, †3</td>
<td>1 ½</td>
</tr>
<tr>
<td>Physics 53, *7 ½</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>18 ½</td>
</tr>
</tbody>
</table>

SENIOR YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry 77</td>
<td>2</td>
</tr>
<tr>
<td>Chemistry 101</td>
<td>3</td>
</tr>
<tr>
<td>Chemistry 57, †6</td>
<td>3</td>
</tr>
<tr>
<td>Chemistry 105</td>
<td>2</td>
</tr>
<tr>
<td>Geology 3</td>
<td></td>
</tr>
<tr>
<td>Electrical Engineering 31</td>
<td>2</td>
</tr>
<tr>
<td>English 15</td>
<td>2</td>
</tr>
<tr>
<td>English 29</td>
<td>2</td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>18</td>
</tr>
</tbody>
</table>

186
The College Curricula

At graduation the student receives the degree of Bachelor of Science. Upon the completion of one year's prescribed work in residence, including the presentation of a satisfactory thesis, he receives the degree of Master of Science. Three years after graduation, upon the presentation of a satisfactory thesis and proofs of professional work, he may receive the degree of Chemical Engineer.

Chemistry Curriculum

This curriculum is designed to give the student not only a thorough technical training, but also a breadth of education which will enable him readily to undertake the great variety of problems which naturally present themselves to a chemist. It differs from the Chemical Engineering curriculum in that in the last two years the student takes courses having a biological aspect (bacteriology, biological chemistry, and agricultural analysis) rather than those of an engineering type. The curriculum is a broad one and, when completed, it prepares the student to teach, or for the profession of chemist in experiment stations, food laboratories, chemical, fertilizer and tanning plants; metallurgical, rubber and electrical machinery manufactorys; and the general consulting and analytical work of a professional chemist.

Freshman Year

<table>
<thead>
<tr>
<th>Subject</th>
<th>Fall Semester</th>
<th>Hours</th>
<th>Spring Semester</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry 1 or 3</td>
<td>2</td>
<td>Chemistry 2 or 4</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Chemistry 5, 94</td>
<td>2</td>
<td>Chemistry 6, 94</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Drawing 1, 96</td>
<td>2</td>
<td>Drawing 2, 96</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>English 5</td>
<td>3</td>
<td>English 6</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>French 3</td>
<td>or</td>
<td>French 4</td>
<td>or</td>
<td></td>
</tr>
<tr>
<td>German 1</td>
<td></td>
<td>German 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mathematics 1 & 3</td>
<td>5</td>
<td>Mathematics 6</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Military 1, 93</td>
<td>1</td>
<td>Military 1, 93</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Physical Training 92</td>
<td>1</td>
<td>Physical Training 92</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

184 hours

19 hours

187
College of Technology

SOPHOMORE YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry 11, †10</td>
<td>5</td>
</tr>
<tr>
<td>Chemistry 17, †4</td>
<td>2</td>
</tr>
<tr>
<td>English 3</td>
<td>1</td>
</tr>
<tr>
<td>Mathematics 13</td>
<td>3</td>
</tr>
<tr>
<td>Modern Language</td>
<td>3</td>
</tr>
<tr>
<td>Military 1, *3</td>
<td>1</td>
</tr>
<tr>
<td>Physics 1</td>
<td>5</td>
</tr>
<tr>
<td>Chemistry 60, †10</td>
<td>5</td>
</tr>
<tr>
<td>Chemistry 52, 3 and †4</td>
<td>5</td>
</tr>
<tr>
<td>English 4</td>
<td>1</td>
</tr>
<tr>
<td>Modern Language</td>
<td>2</td>
</tr>
<tr>
<td>Military 1, *3</td>
<td>1</td>
</tr>
<tr>
<td>Physics 2</td>
<td>3</td>
</tr>
<tr>
<td>Physics 4, *5</td>
<td>2</td>
</tr>
</tbody>
</table>

Total: 20

JUNIOR YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biological Chemistry 1</td>
<td>5</td>
</tr>
<tr>
<td>Chemistry 53</td>
<td>3</td>
</tr>
<tr>
<td>Chemistry 71</td>
<td>3</td>
</tr>
<tr>
<td>Chemistry 75</td>
<td>2</td>
</tr>
<tr>
<td>Chemistry 63, †8</td>
<td>4</td>
</tr>
<tr>
<td>Modern Language</td>
<td>3</td>
</tr>
<tr>
<td>Agricultural Chemistry 4, †10</td>
<td>5</td>
</tr>
<tr>
<td>Bacteriology 1, †6</td>
<td>3</td>
</tr>
<tr>
<td>Chemistry 74, †6</td>
<td>3</td>
</tr>
<tr>
<td>Chemistry 72</td>
<td>2</td>
</tr>
<tr>
<td>Modern Language</td>
<td>2</td>
</tr>
<tr>
<td>Elective</td>
<td>4</td>
</tr>
</tbody>
</table>

Total: 20

SENIOR YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry 57, †6</td>
<td>3</td>
</tr>
<tr>
<td>Chemistry 101</td>
<td>3</td>
</tr>
<tr>
<td>Chemistry 77</td>
<td>2</td>
</tr>
<tr>
<td>Chemistry 61, †4</td>
<td>2</td>
</tr>
<tr>
<td>Chemistry 105 or Geology 3</td>
<td>2</td>
</tr>
<tr>
<td>English 15</td>
<td>2</td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
</tr>
<tr>
<td>Chemistry 78</td>
<td>2</td>
</tr>
<tr>
<td>Chemistry 98, †10</td>
<td>5</td>
</tr>
<tr>
<td>Chemistry 76</td>
<td>2</td>
</tr>
<tr>
<td>Chemistry 58, †2</td>
<td>1</td>
</tr>
<tr>
<td>Chemistry 104, †8</td>
<td>4</td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

Total: 17

At graduation the student receives the degree of Bachelor of Science. Upon the completion of one year's prescribed work in residence, including the presentation of a satisfactory thesis, he receives the degree of Bachelor of Science.
The College Curricula

Master of Science. Three years after graduation, upon the presentation of a satisfactory thesis, and proofs of professional work, he may receive the degree of Chemical Engineer.

Civil Engineering Curriculum

The object of the curriculum in Civil Engineering is to give the student as thorough a knowledge as possible of the principles underlying the profession. It is not possible in the time usually devoted to a college curriculum to take up more than the most important technical subjects, hence the time devoted to those subjects designed to cultivate and broaden the mind is necessarily small. The attempt is made, however, to give the student not only a technical education, but to form the basis for a liberal one as well.

The endeavor is made to impress upon the mind of the student that the granting of his bachelor's degree does not make him an engineer. It simply indicates that he has received the mental technical training which will fit him to follow the profession, and that he must begin at the bottom of the ladder of practice in order to obtain experience and judgment, without which he can never become successful.

The methods of instruction are recitations, lectures, original problems, work in the testing laboratories, field practice, and designing. Effort is made to acquaint the student with the best engineering practice and with the standard engineering literature. During each year it is the practice to have several lectures by engineers from other institutions and those engaged in practical work. These lectures tend to increase the interest of the student and to bring him into touch with men outside of his own institution.

The work of the first year is the same for all engineering students, especial attention being paid to mathematics and English. The technical work begins in the fall semester of the second year with field work and the study of surveying. This technical work is gradually increased, until the last year when it is nearly all professional. At the beginning of the fourth year an opportunity is offered to specialize slightly along one of three lines. The first, called Option 1, consists of work in hydraulic engineering and electrical transmission, the second, Option 2, consists of work in railroad engineering, while Option 3 includes work in both railroad and highway engineering.

The following outline constitutes the regular four years curriculum. Certain general subjects which are given as requirements may, on presentation of reasons satisfactory to the head of the department, be omitted and others substituted.
College of Technology

Requirements for Graduation

Freshman Year

<table>
<thead>
<tr>
<th>Subject</th>
<th>Fall Semester</th>
<th>Hours</th>
<th>Subject</th>
<th>Spring Semester</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry 1 or 3</td>
<td></td>
<td>2</td>
<td>Chemistry 2</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Chemistry 5, †4</td>
<td></td>
<td>2</td>
<td>Chemistry 6, †4</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Drawing 1, *6</td>
<td></td>
<td>2</td>
<td>Drawing 2, *6</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>English 5</td>
<td></td>
<td>3</td>
<td>English 6</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Mathematics 1 & 3</td>
<td></td>
<td>5</td>
<td>Mathematics 6</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Military 1, *3</td>
<td></td>
<td>1</td>
<td>Military 1, *3</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Modern Language</td>
<td></td>
<td>3</td>
<td>Modern Language</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Physical Training *2</td>
<td></td>
<td>½</td>
<td>Physical Training *2</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>18½</td>
<td></td>
<td></td>
<td>19</td>
</tr>
</tbody>
</table>

Sophomore Year

<table>
<thead>
<tr>
<th>Subject</th>
<th>Fall Semester</th>
<th>Hours</th>
<th>Subject</th>
<th>Spring Semester</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Civil Engineering 1, 5</td>
<td></td>
<td>2½</td>
<td>Civil Engineering 2, 4</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Drawing 3, *6</td>
<td></td>
<td>2</td>
<td>Civil Engineering 6, 8</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>English 3</td>
<td></td>
<td>1</td>
<td>Drawing 4, *6</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Mathematics 7</td>
<td></td>
<td>5</td>
<td>English 4</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Military 1, *3</td>
<td></td>
<td>1</td>
<td>Mathematics 8</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Modern Language</td>
<td></td>
<td>3</td>
<td>Military 1, *3</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Physics 1</td>
<td></td>
<td>5</td>
<td>Modern Language</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Physics 2</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19½</td>
<td>Physics 4, *5</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>21</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Junior Year

<table>
<thead>
<tr>
<th>Subject</th>
<th>Fall Semester</th>
<th>Hours</th>
<th>Subject</th>
<th>Spring Semester</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Civil Engineering 25</td>
<td></td>
<td>2</td>
<td>Civil Engineering 20</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Civil Engineering 21, 23, *6</td>
<td></td>
<td>2</td>
<td>Civil Engineering 22</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Civil Engineering 29</td>
<td></td>
<td>2</td>
<td>Civil Engineering 26</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Economics 1b</td>
<td></td>
<td>2</td>
<td>Civil Engineering 28</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Geology 6, ?</td>
<td></td>
<td>2</td>
<td>Economics 2b</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Mechanics 51</td>
<td></td>
<td>5</td>
<td>Mechanics 52</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Mathematics 57</td>
<td></td>
<td>3</td>
<td>Mechanical Engineering 74, †2</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Physics 51, *2½</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>19</td>
<td>*Civil Engineering 24</td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

*Taken after Commencement

190
The College Curricula

Senior Year

Fall Semester

<table>
<thead>
<tr>
<th>Subject</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Civil Engineering 37</td>
<td>6</td>
</tr>
<tr>
<td>Civil Engineering 67</td>
<td>4</td>
</tr>
<tr>
<td>Civil Engineering 90, 100</td>
<td>4</td>
</tr>
<tr>
<td>Civil Engineering 55 and 51</td>
<td>4</td>
</tr>
<tr>
<td>(Option 1)</td>
<td>4</td>
</tr>
<tr>
<td>Civil Engineering 59 and 53</td>
<td>4</td>
</tr>
<tr>
<td>(Option 2)</td>
<td>4</td>
</tr>
<tr>
<td>History 3</td>
<td>3</td>
</tr>
<tr>
<td>English 31</td>
<td>2</td>
</tr>
</tbody>
</table>

Spring Semester

<table>
<thead>
<tr>
<th>Subject</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Civil Engineering 58</td>
<td>3</td>
</tr>
<tr>
<td>Civil Engineering 60</td>
<td>2</td>
</tr>
<tr>
<td>Civil Engineering 62, 66</td>
<td>3</td>
</tr>
<tr>
<td>Civil Engineering 52 and Electrical Engineering 42 (Option 1)</td>
<td>5</td>
</tr>
<tr>
<td>Civil Engineering 64 and 66</td>
<td>5</td>
</tr>
<tr>
<td>(Options 2 and 3)</td>
<td></td>
</tr>
<tr>
<td>Civil Engineering 70</td>
<td>1</td>
</tr>
<tr>
<td>Economics 60</td>
<td>3</td>
</tr>
</tbody>
</table>

At graduation the student receives the degree of Bachelor of Science. Upon the completion of one year's prescribed work in residence, including the presentation of a satisfactory thesis, he receives the degree of Master of Science. Three years after graduation, upon the presentation of a satisfactory thesis and proofs of professional work, he may receive the degree of Civil Engineer.

Electrical Engineering Curriculum

This curriculum is intended to provide the student with a thorough understanding of the underlying principles of electrical engineering and to develop an ability to solve problems of an engineering nature from commercial as well as technical premises. To accomplish this, the student first studies the various electrical laws and methods of electrical measurements and correlates them with various laws previously assimilated in the study of physics and mathematics. These studies are followed by more advanced courses involving the fundamental electrical laws and theories and showing their application to the design, operation, and performance of electrical apparatus such as is used in the generation of electrical energy or in transforming electrical energy into mechanical energy for the various commercial requirements.
The methods of instruction consist of recitations, lectures, problems, laboratory tests, and drawing room work in design. It is the endeavor of the curriculum to acquaint the student with contemporary engineering practice and, by persistent association of abstract analysis with practical problems, to equip him with the fundamentals of a successful career. Stress is laid upon the systematic reading of technical periodicals and the acquisition of a reference library. Effort is made to have lectures by active engineers and alumni following their profession, thus bringing the student into more intimate contact with the engineering world.

In addition to the purely electrical subjects, the student takes the customary work in mathematics, physics, mechanics, shop, drawing, and allied engineering courses, together with the cultural subjects enumerated below.

The following courses are offered in the junior and senior years, three of which are required for a degree:

Ee. 54. Electrical railway engineering ... 2
Ee. 51. Illuminating engineering ... 2
Ee. 53. Telephone engineering ... 2
Ps 55. Theory of electricity and magnetism ... 2
Me. 94. Hydraulic Machinery ... 2

The equipment of the electrical laboratory has been developed to parallel practical conditions, and consists essentially of a motor-generator substation, composed of a 45 h. p. 2300 volt 3-phase synchronous motor direct connected to a 20 kw. compound inter-pole D. C. generator equipped with a Tirrill regulator and a 30 kw. three-phase 110 volt alternator. Completing this set is a belted exciter and a five panel slate switch board equipped with the necessary instruments and switching devices in accordance with modern practice. In addition to the above apparatus the equipment consists of a 20 kw. converter substation and belted alternating current motors driving direct and alternating current generators. In addition to voltmeters, ammeters, and wattmeters for both direct and alternating current, the equipment includes circuit breakers, various types of transformers, three 7 1-2 kilowatt special auto-transformers giving variable pressure for experimental work, and voltages for operating two and three-phase rotary converters, a self-starting rotary converter, a three-phase generator, a three-phase revolving field synchronous motor, a three-phase variable speed induction motor, a single-phase synchronous motor, a single-phase self-starting induction motor, direct current generators and motors, laboratory telephone equipment, and a Leeds and Northrup potentiometer.
The College Curricula

Requirements for Graduation

Freshman Year

<table>
<thead>
<tr>
<th>Subject</th>
<th>Fall Semester</th>
<th>Hours</th>
<th>Subject</th>
<th>Spring Semester</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry 1 or 3</td>
<td></td>
<td>2</td>
<td>Chemistry 2</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Chemistry 3, 1/4</td>
<td></td>
<td>2</td>
<td>Chemistry 6, 1/4</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Drawing 1, *6</td>
<td></td>
<td>2</td>
<td>Drawing 2, *6</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>English 5</td>
<td></td>
<td>3</td>
<td>English 6</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Mathematics 1 & 3</td>
<td></td>
<td>5</td>
<td>Mathematics 6</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Military 1, *3</td>
<td></td>
<td>1</td>
<td>Military 1, *3</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Modern Language</td>
<td></td>
<td>1</td>
<td>Modern Language</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Physical Training *2</td>
<td></td>
<td>1</td>
<td>Physical Training *2</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td></td>
<td>10</td>
</tr>
</tbody>
</table>

Sophomore Year

<table>
<thead>
<tr>
<th>Subject</th>
<th>Fall Semester</th>
<th>Hours</th>
<th>Subject</th>
<th>Spring Semester</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricity & Magnetism 1</td>
<td></td>
<td>2</td>
<td>Electricity & Magnetism 2</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>English 4</td>
<td></td>
<td>1</td>
<td>English 4</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Modern Language</td>
<td></td>
<td>3</td>
<td>Modern Language</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Mathematics 7</td>
<td></td>
<td>5</td>
<td>Mathematics 8</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Physics 1</td>
<td></td>
<td>5</td>
<td>Physics 2</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Drawing 3, *6</td>
<td></td>
<td>1</td>
<td>Physics Laboratory 4, *5</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Military 1, *3</td>
<td></td>
<td>1</td>
<td>Mechanical Eng. 56</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Drawing 4, *6</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Military 1, *3</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td></td>
<td>19</td>
</tr>
</tbody>
</table>

Junior Year

<table>
<thead>
<tr>
<th>Subject</th>
<th>Fall Semester</th>
<th>Hours</th>
<th>Subject</th>
<th>Spring Semester</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elements of Electrical Engineer</td>
<td></td>
<td>3</td>
<td>Elements of Electrical Engineer. Ec 6</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Illuminating Engineering 51</td>
<td></td>
<td>3</td>
<td>Electrical Laboratory. Ec 8, 1/4</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>or Electricity & Magnetism, Ps. 55</td>
<td></td>
<td></td>
<td>Machine Work, Me 10, 1/4</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Machine Work, Me. 9, 1/4</td>
<td></td>
<td>1</td>
<td>Machine Design, Me 66</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Plane Surveying, Ce. 3</td>
<td></td>
<td>2</td>
<td>Steam Engineering, Me 66</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Field Work, Ce 4, *6</td>
<td></td>
<td>1</td>
<td>Mechanics, Md 51</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Mechanics, Md 51</td>
<td></td>
<td>5</td>
<td>Money & Banking, Ec 2b</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Electrical Measurement, Ps. 53, *78</td>
<td></td>
<td></td>
<td>Total</td>
<td></td>
<td>194</td>
</tr>
<tr>
<td>Political Economy, Ec 1</td>
<td></td>
<td>2</td>
<td>Total</td>
<td></td>
<td>193</td>
</tr>
</tbody>
</table>

10
At graduation the student receives the degree of Bachelor of Science. Upon the completion of one year's prescribed graduate work in residence, including the presentation of a satisfactory thesis, he receives the degree of Master of Science. Three years after graduation, upon the presentation of a satisfactory thesis and proofs of professional work, he may receive the degree of Electrical Engineer.

MECHANICAL ENGINEERING CURRICULUM

The field of the mechanical engineer embraces all works involving the design, construction, or installation of machinery, either for manufacturing, transportation, or power generation; the design, manufacture, and installation of heating and ventilating or refrigerating equipment; the superintendence or management of factories, power plants, and motive power; the equipment of railways, and similar work.

The Mechanical Engineering curriculum is arranged to fit men as well as possible in four years' time to enter any of these lines of work.

It is not possible to develop the student into an expert engineer in any branch of the profession. It is also not possible, in general, to foresee what will be his ultimate occupation. Accordingly, those subjects which
The College Curricula

are fundamental to all engineering work and which may best be learned in college are most emphasized in the required courses, while those subjects which are best acquired in practical work are left for the engineer graduate to obtain in actual practice. An endeavor is made, however, to give the more advanced technical courses such a trend as to make the period of adjustment of the graduate to practical engineering conditions short and his acquirement of the knowledge necessary for advancement rapid.

The theoretical work is taught mainly by recitations, based upon carefully chosen texts which are supplemented or brought down to date, where necessary, by explanations or illustrative examples on the part of the instructor. Numerous problems are assigned for work outside the classroom to make sure the student can apply the principles learned.

Courses in the shops and laboratories illustrate the application of matter learned in the recitation work, and also teach methods of construction, operation, and testing of apparatus by direct contact with it. In the drawing rooms, application of theories to work in design is taught, together with methods and requirements for the production of neat and accurate engineering drawings.

Thorough instruction is given in the theory and operation of both direct and alternating current electrical machinery, with ample practice in the electrical laboratory. Sufficient time is devoted to recitation and field work in surveying to give familiarity with instruments and methods. Lectures by practical engineers and trips of inspection to engineering works help to bring before the student the conditions existing in practice.

Requirements for Graduation

FRESHMAN YEAR

<table>
<thead>
<tr>
<th>Fall Semester</th>
<th>Hours</th>
<th>Subject</th>
<th>Hours</th>
<th>Subject</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry 1 or 3</td>
<td>1</td>
<td>Chemistry 2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Chemistry 3, 4</td>
<td>1</td>
<td>Chemistry 6, 4</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Drawing 1, *6</td>
<td>3</td>
<td>Drawing 2, *6</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>English 3</td>
<td>3</td>
<td>English 6</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Mathematics 1 & 3</td>
<td>5</td>
<td>Mathematics 6</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Military 1, *3</td>
<td>1</td>
<td>Military 1, *3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Modern Language</td>
<td>3</td>
<td>Modern Language</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Physical Training *2</td>
<td>1</td>
<td>Physical Training *2</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

188
195
SOPHOMORE YEAR

<table>
<thead>
<tr>
<th>Subject</th>
<th>Hours</th>
<th>Subject</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drawing 3, *6</td>
<td>2</td>
<td>Drawing 4, *6</td>
<td>2</td>
</tr>
<tr>
<td>English 3</td>
<td>1</td>
<td>English 4</td>
<td>1</td>
</tr>
<tr>
<td>Mathematics 7</td>
<td>5</td>
<td>Mathematics 8</td>
<td>5</td>
</tr>
<tr>
<td>Mechanical Engineering 1, *6</td>
<td>2</td>
<td>Mechanical Engineering 6, *4</td>
<td>1½</td>
</tr>
<tr>
<td>Military 1, *3</td>
<td>1</td>
<td>Mechanical Engineering 56</td>
<td>3</td>
</tr>
<tr>
<td>Modern Language</td>
<td>3</td>
<td>Military 1, *3</td>
<td>1</td>
</tr>
<tr>
<td>Physics 1</td>
<td>5</td>
<td>Modern Language</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Physics 2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Physics 4, *5</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>19</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

JUNIOR YEAR

<table>
<thead>
<tr>
<th>Subject</th>
<th>Hours</th>
<th>Subject</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical Engineering 57</td>
<td>1</td>
<td>Mechanical Engineering 8, *6</td>
<td>2</td>
</tr>
<tr>
<td>Mechanical Engineering 7, *6</td>
<td>2</td>
<td>Mechanical Engineering 66</td>
<td>3</td>
</tr>
<tr>
<td>Mechanical Engineering 61</td>
<td>2</td>
<td>Mechanical Engineering 80</td>
<td>3</td>
</tr>
<tr>
<td>Mechanical Engineering 59, *4</td>
<td>1½</td>
<td>Mechanical Engineering 70, †2</td>
<td>1</td>
</tr>
<tr>
<td>Civil Engineering 3</td>
<td>2</td>
<td>Mechanical Engineering 64b.</td>
<td></td>
</tr>
<tr>
<td>Civil Engineering 5</td>
<td>½</td>
<td>Mechanical Engineering 64a.</td>
<td></td>
</tr>
<tr>
<td>Mechanics 1</td>
<td>5</td>
<td>Electrical Engineering 30</td>
<td>2</td>
</tr>
<tr>
<td>Physics 51, *5</td>
<td>2</td>
<td>Mechanical Engineering 64a</td>
<td>1</td>
</tr>
<tr>
<td>Economics 1a</td>
<td>2</td>
<td>Mechanics 52</td>
<td>5</td>
</tr>
<tr>
<td>Physics 65</td>
<td>½</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>18</td>
</tr>
</tbody>
</table>

SENIOR YEAR

<table>
<thead>
<tr>
<th>Subject</th>
<th>Hours</th>
<th>Subject</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical Engineering 83</td>
<td>3</td>
<td>Mechanical Engineering 68</td>
<td>1½</td>
</tr>
<tr>
<td>Mechanical Engineering 89, *6</td>
<td>2</td>
<td>Mechanical Engineering 72, †5</td>
<td>2½</td>
</tr>
<tr>
<td>Mechanical Engineering 71, †4</td>
<td>2</td>
<td>Mechanical Engineering 84</td>
<td>2</td>
</tr>
<tr>
<td>Civil Engineering 33</td>
<td>1</td>
<td>*Mechanical Engineering 94</td>
<td>1½</td>
</tr>
<tr>
<td>Civil Engineering 35</td>
<td>2</td>
<td>Mechanical Engineering 92</td>
<td>1</td>
</tr>
<tr>
<td>Electrical Engineering 31</td>
<td>2</td>
<td>*Economics 60</td>
<td>3</td>
</tr>
<tr>
<td>Electrical Engineering 33, †4</td>
<td>2</td>
<td>Electrical Engineering 32</td>
<td>2</td>
</tr>
<tr>
<td>Mechanical Engineering 99</td>
<td>2</td>
<td>Electrical Engineering 34, †2</td>
<td>1</td>
</tr>
<tr>
<td>English</td>
<td>2</td>
<td>Thesis</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>20</td>
</tr>
</tbody>
</table>

*Substitution may be offered for this course if approved by the major instructor.
The College Curricula

At graduation the student receives the degree of Bachelor of Science. Upon the completion of one year's prescribed work in residence, including the presentation of a satisfactory thesis, he receives the degree of Master of Science. Three years after graduation, upon the presentation of a satisfactory thesis and proofs of professional work, he may receive the degree of Mechanical Engineer.

Pharmacy Curricula

The department of Pharmacy offers two curricula, one of four years and one of two years.

The four years curriculum is offered in response to a demand for a combined collegiate and technical training for those who design to practice pharmacy. It aims therefore to combine general culture studies with a training in those sciences fundamental to technical pharmacy, to the end that the pharmacist may be equipped culturally and technically to fulfill the increased demands and responsibilities of his exacting calling. Hence, this curriculum includes the appropriate sciences and laboratory courses, it also includes cultural courses in modern languages, history, philosophy, and economics. While in the latter three subjects particular courses are not specified, a minimum number and proper sequence of such courses are required.

Those who intend to prepare for pharmaceutical work are urged to consider carefully the superior advantages of this curriculum. The increasing importance of the chemical, biological, and sanitary sciences, and of the pharmacist's relation to them, emphasized by the era of food and drug legislation now upon us, points out at once the path of new duty and of enlarged opportunity to those fitted to enter. To the unfit, the new duty remains, without the enlarged opportunity.

Instruction in pharmaceutical studies is given by lectures, recitations, and tests, supplemented by work in the laboratories of chemistry, biology, and pharmacy. Thirty credits are required for graduation.

The library contains valuable reference literature in chemistry, pharmacy, and allied sciences, and the leading scientific and technical journals.
College of Technology

SOPHOMORE YEAR

<table>
<thead>
<tr>
<th>Subject</th>
<th>Hours</th>
<th>Subject</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drawing 3, *6</td>
<td>2</td>
<td>Drawing 4, *6</td>
<td>2</td>
</tr>
<tr>
<td>English 3</td>
<td>1</td>
<td>English 4</td>
<td>1</td>
</tr>
<tr>
<td>Mathematics 7</td>
<td>5</td>
<td>Mathematics 8</td>
<td>5</td>
</tr>
<tr>
<td>Mechanical Engineering 1, *6</td>
<td>2</td>
<td>Mechanical Engineering 6, *4</td>
<td>1½</td>
</tr>
<tr>
<td>Military 1, *3</td>
<td>1</td>
<td>Mechanical Engineering 56</td>
<td>3</td>
</tr>
<tr>
<td>Modern Language</td>
<td>3</td>
<td>Military 1, *3</td>
<td>1</td>
</tr>
<tr>
<td>Physics 1</td>
<td>5</td>
<td>Modern Language</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Physics 2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Physics 4, *5</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>20½</td>
</tr>
</tbody>
</table>

JUNIOR YEAR

<table>
<thead>
<tr>
<th>Subject</th>
<th>Hours</th>
<th>Subject</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical Engineering 57</td>
<td>1</td>
<td>Mechanical Engineering 8, *6</td>
<td>2</td>
</tr>
<tr>
<td>Mechanical Engineering 7, *6</td>
<td>2</td>
<td>Mechanical Engineering 66</td>
<td>3</td>
</tr>
<tr>
<td>Mechanical Engineering 61</td>
<td>2</td>
<td>Mechanical Engineering 80</td>
<td>3</td>
</tr>
<tr>
<td>Mechanical Engineering 59, *4</td>
<td>1½</td>
<td>Mechanical Engineering 70, †2</td>
<td>1</td>
</tr>
<tr>
<td>Civil Engineering 3</td>
<td>2</td>
<td>Mechanical Engineering 64b</td>
<td></td>
</tr>
<tr>
<td>Civil Engineering 5</td>
<td>½</td>
<td>*3</td>
<td>1</td>
</tr>
<tr>
<td>Mechanics 1</td>
<td>5</td>
<td>Electrical Engineering 30</td>
<td>2</td>
</tr>
<tr>
<td>Physics 51, *5</td>
<td>2</td>
<td>Mechanical Engineering 64a</td>
<td>1</td>
</tr>
<tr>
<td>Economics 1a</td>
<td>2</td>
<td>Mechanics 52</td>
<td>5</td>
</tr>
<tr>
<td>Physics 65</td>
<td>½</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18½</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SENIOR YEAR

<table>
<thead>
<tr>
<th>Subject</th>
<th>Hours</th>
<th>Subject</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical Engineering 83</td>
<td>3</td>
<td>Mechanical Engineering 68</td>
<td>1½</td>
</tr>
<tr>
<td>Mechanical Engineering 89, *6</td>
<td>2</td>
<td>Mechanical Engineering 72, †5</td>
<td>2½</td>
</tr>
<tr>
<td>Mechanical Engineering 71, †4</td>
<td>2</td>
<td>Mechanical Engineering 84</td>
<td>2</td>
</tr>
<tr>
<td>Civil Engineering 33</td>
<td>1</td>
<td>*Mechanical Engineering 94</td>
<td>1½</td>
</tr>
<tr>
<td>Civil Engineering 35</td>
<td>2</td>
<td>Mechanical Engineering 92</td>
<td>1</td>
</tr>
<tr>
<td>Electrical Engineering 31</td>
<td>2</td>
<td>*Economics 60</td>
<td>3</td>
</tr>
<tr>
<td>Electrical Engineering 33, †4</td>
<td>2</td>
<td>Electrical Engineering 32</td>
<td>2</td>
</tr>
<tr>
<td>Mechanical Engineering 99</td>
<td>2</td>
<td>Electrical Engineering 34, †2</td>
<td>1</td>
</tr>
<tr>
<td>English</td>
<td>2</td>
<td>Thesis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16½</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Substitution may be offered for this course if approved by the major instructor.
The College Curricula

At graduation the student receives the degree of Bachelor of Science. Upon the completion of one year's prescribed work in residence, including the presentation of a satisfactory thesis, he receives the degree of Master of Science. Three years after graduation, upon the presentation of a satisfactory thesis and proofs of professional work, he may receive the degree of Mechanical Engineer.

Pharmacy Curricula

The department of Pharmacy offers two curricula, one of four years and one of two years.

The four years curriculum is offered in response to a demand for combined collegiate and technical training for those who design to practice pharmacy. It aims therefore to combine general culture studies with a training in those sciences fundamental to technical pharmacy, to the end that the pharmacist may be equipped culturally and technically to fulfill the increased demands and responsibilities of his exacting calling. Hence, this curriculum includes the appropriate sciences and laboratory courses, it also includes cultural courses in modern languages, history, philosophy, and economics. While in the latter three subjects particular courses are not specified, a minimum number and proper sequence of such courses are required.

Those who intend to prepare for pharmaceutical work are urged to consider carefully the superior advantages of this curriculum. The increasing importance of the chemical, biological, and sanitary sciences, and of the pharmacist's relation to them, emphasized by the era of food and drug legislation now upon us, points out at once the path of new duty and of enlarged opportunity to those fitted to enter. To the unfit, the new duty remains, without the enlarged opportunity.

Instruction in pharmaceutical studies is given by lectures, recitations, and tests, supplemented by work in the laboratories of chemistry, biology, and pharmacy. Thirty credits are required for graduation.

The library contains valuable reference literature in chemistry, pharmacy, and allied sciences, and the leading scientific and technical journals.
College of Technology

Requirements for Graduation, Four Years Curriculum

Freshman Year

<table>
<thead>
<tr>
<th>Subject</th>
<th>Fall Semester</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry 1 or 2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Chemistry 3, †4</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>English 5</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>French 3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>German 2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Mathematics 1 & 3</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Military 1, *3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Physical Training *2</td>
<td>3/2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subject</th>
<th>Spring Semester</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry 2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Chemistry 6, †4</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>English 6</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>French 4</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>German 1b</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Mathematics 6</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Military 1, *3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Physical Training *2</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Sophomore Year

<table>
<thead>
<tr>
<th>Subject</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biology 1</td>
<td>4</td>
</tr>
<tr>
<td>Chemistry 11, †10</td>
<td>5</td>
</tr>
<tr>
<td>English 3</td>
<td>1</td>
</tr>
<tr>
<td>Military 2, *3</td>
<td>1</td>
</tr>
<tr>
<td>Modern Language</td>
<td>3</td>
</tr>
<tr>
<td>Physics 1</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subject</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biology 2</td>
<td>4</td>
</tr>
<tr>
<td>Chemistry 52</td>
<td>5</td>
</tr>
<tr>
<td>English 4</td>
<td>1</td>
</tr>
<tr>
<td>Military 2, *3</td>
<td>1</td>
</tr>
<tr>
<td>Modern Language</td>
<td>2</td>
</tr>
<tr>
<td>Physics 2</td>
<td>3</td>
</tr>
<tr>
<td>Physics 4, *5</td>
<td>2</td>
</tr>
</tbody>
</table>

Junior Year

<table>
<thead>
<tr>
<th>Subject</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacteriology 2</td>
<td>1</td>
</tr>
<tr>
<td>Biological Chemistry 1</td>
<td>5</td>
</tr>
<tr>
<td>Biology 15</td>
<td>3</td>
</tr>
<tr>
<td>Chemistry 53</td>
<td>3</td>
</tr>
<tr>
<td>Pharmacy 13</td>
<td>3</td>
</tr>
<tr>
<td>Pharmacy 7</td>
<td>2</td>
</tr>
<tr>
<td>Pharmacy 9</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subject</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacteriology 1, †6</td>
<td>3</td>
</tr>
<tr>
<td>Chemistry 60, †10</td>
<td>5</td>
</tr>
<tr>
<td>Laboratory Biological Chemistry 2, †4</td>
<td>2</td>
</tr>
<tr>
<td>Pharmacy 2</td>
<td>4</td>
</tr>
<tr>
<td>Pharmacy 16, †8</td>
<td>4</td>
</tr>
<tr>
<td>Pharmacy 4</td>
<td>2</td>
</tr>
</tbody>
</table>

198
The College Curricula

SENIOR YEAR

<table>
<thead>
<tr>
<th>Subject</th>
<th>Hours</th>
<th>Subject</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pharmacy 11</td>
<td>2</td>
<td>Pharmacy 54</td>
<td>1</td>
</tr>
<tr>
<td>Pharmacy 17, 110</td>
<td>5</td>
<td>Pharmacy 14</td>
<td>5</td>
</tr>
<tr>
<td>Chemistry 61, 14</td>
<td>2</td>
<td>Pharmacy 18, 116</td>
<td>8</td>
</tr>
<tr>
<td>Pharmacy 3</td>
<td>3</td>
<td>Pharmacy 20</td>
<td>3</td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
<td>Pharmacy 58</td>
<td>2</td>
</tr>
<tr>
<td>Chemistry 65, 12</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemistry 41, 18</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>20</td>
</tr>
</tbody>
</table>

From courses in history, philosophy, and economics, a total of at least five hours must be chosen.

At graduation the student receives the degree of Bachelor of Science. Upon the completion of one additional year's prescribed work in residence, including the presentation of a satisfactory thesis, he receives the degree of Master of Science.

TWO YEARS CURRICULUM

This curriculum is designed for those who, for lack of time or for other reasons, are unable to take the curriculum of four years. The more general educational studies of the full curriculum are omitted, but as broad a range of subjects is offered as can be undertaken without sacrifice of thoroughness in the technical work. The curriculum corresponds, in general, to the usual full curriculum of pharmacy colleges. The work required of the student will occupy his whole time during the college year of nine months, and will usually exclude work in drug stores during term time. The brevity of this curriculum does not warrant extending to other than advanced students the privilege of electives.

FIRST YEAR

<table>
<thead>
<tr>
<th>Subject</th>
<th>Hours</th>
<th>Subject</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry 1 or 11</td>
<td>2</td>
<td>Botany 14</td>
<td>3</td>
</tr>
<tr>
<td>Chemistry 11, 116</td>
<td>8</td>
<td>Chemistry 2</td>
<td>3</td>
</tr>
<tr>
<td>Pharmacy 13</td>
<td>3</td>
<td>Chemistry 51</td>
<td>5</td>
</tr>
<tr>
<td>Pharmacy 7</td>
<td>2</td>
<td>Pharmacy 16, 118</td>
<td>4</td>
</tr>
<tr>
<td>Pharmacy 9</td>
<td>2</td>
<td>Pharmacy 4</td>
<td>4</td>
</tr>
<tr>
<td>Pharmacy 11</td>
<td>2</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>19</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>199</td>
</tr>
</tbody>
</table>
College of Technology

SECOND YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry 53</td>
<td>3</td>
</tr>
<tr>
<td>Pharmaceut. Histol. 15</td>
<td>3</td>
</tr>
<tr>
<td>Pharmacy 3</td>
<td>3</td>
</tr>
<tr>
<td>Pharmacy 17, †10</td>
<td>5</td>
</tr>
<tr>
<td>Chemistry 65, †2</td>
<td>1</td>
</tr>
<tr>
<td>Chemistry 41, †8</td>
<td>4</td>
</tr>
<tr>
<td>Pharmacy 54</td>
<td>1</td>
</tr>
<tr>
<td>Pharmacy 18, †16</td>
<td>8</td>
</tr>
<tr>
<td>Pharmacy 14</td>
<td>5</td>
</tr>
<tr>
<td>Pharmacy 58</td>
<td>2</td>
</tr>
<tr>
<td>Pharmacy 20</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credits: 19

Students who satisfactorily complete this curriculum receive the degree of Graduate in Pharmacy (Ph. G.)
DEPARTMENTS OF INSTRUCTION

Note.—The prefix (*) before the time designated for a course usually indicates that three hours of actual work are required to obtain credit for one hour, while a dagger (?) indicates that two hours are required to obtain this credit. In certain cases two and one-half hours’ work give credit for one hour. This system presupposes that one hour of recitation work requires an average of two hours of preparation. Courses designated by an odd number are given in the fall semester, those designated by an even number in the spring semester.

CHEMISTRY

Professor McKee; Associate Professor Easley; Assistant Professor Burghart; Assistant Professor Durbin; Assistant Professor Ashley; Mr. Whitter; Mr. Stephenson; Mr. Andrews

For undergraduates only

1. General Chemistry.—This course deals with the general principles of the science. Lectures and recitations. Open to students who have taken chemistry in preparatory school. Two hours a week. To be accompanied by Course 5. Courses 1, 2, 5, and 6, or 3, 4, 5, and 6 constitute the first year’s work in chemistry.

2. General Chemistry.—This course is a continuation of Course 1. It is mainly devoted to a study of the metallic elements, their classification, compounds, and chemical properties. Lectures and recitations. Three hours a week. To be accompanied by Course 6.

3. General Chemistry.—A course similar to 1 for those who have had no previous work in chemistry. Two hours a week. To be accompanied by Course 5.
College of Technology

4. General Chemistry.—A course similar to 2 but in continuation of 1 for those who did not take chemistry in the preparatory school. *Three hours a week.* To be accompanied by Course 6.

5. Laboratory Chemistry.—Laboratory work to accompany Course 1, or Course 3. *Four hours a week.*

6. Laboratory Chemistry.—A continuation of Course 5 to accompany Course 2, or Course 4. *Four hours a week.*

11. Qualitative Analysis.—This course includes the general reactions of the metals and acids with their qualitative separation. The subject is studied from the standpoint of the law of mass action and the ionic theory. *Ten to sixteen hours a week.*

15. Organic Chemistry.—An elementary one semester course in organic chemistry. Required of sophomores majoring in Agriculture. *Two hours class room and two hours laboratory work a week.*

16. Organic Chemistry.—An elementary course giving in one semester a rapid view of the subject. Students who have sufficient time available are advised to take Courses 52 and 53 instead of this course, or Course 15. No prerequisite other than general chemistry. *Three hours class room and four hours laboratory work a week.*

17. Gas and Fuel Analysis.—The work consists in the analysis of fuel and flue gases and the determinations of the proximate constituents and heating values of peat, fuel oils, and the common coals. *Four hours a week.*

20. Descriptive Mineralogy.—The text-book is Moses and Parsons's Elements of Mineralogy. *Four hours a week.*

41. Analysis of Pharmaceutical Products.—The work includes the simpler methods of quantitative analysis, especially those methods of interest to students in pharmacy. *Eight hours a week of 1915-16.*

For graduates and undergraduates

52. Organic Chemistry.—The work is principally with the compounds of the aliphatic series. Lectures, recitations, and laboratory
work. The text followed is Cohen's Theoretical Organic Chemistry. Jones's Laboratory Outline of Organic Chemistry is used for the experimental work. Open to those who have taken qualitative analysis (Course II.) Three hours class room and four hours laboratory work a week.

53. ORGANIC CHEMISTRY.—A continuation of Course 52. The work is chiefly in the aromatic series. Three hours a week.

54. ORGANIC ANALYSIS.—The methods for the quantitative determination in organic substances of carbon, hydrogen, nitrogen, sulphur, and the halogens. Open to those who have completed Courses 52 and 53. *Four hours a week.

55. CELLULOSE.—A laboratory course in which the student studies the chemical reactions and characteristics of the commoner forms of cellulose. *Four hours a week.

57. ORGANIC PREPARATIONS.—The work consists in the preparation and study of typical organic compounds. This course must be preceded by Courses 7 and 8. *Six hours a week.

58. DYEING.—The practical application of dyes to cotton, wool, and silk. *Fifteen hours a week for two weeks.

60. ELEMENTARY QUANTITATIVE ANALYSIS.—An introductory course illustrating the fundamental principles of gravimetric and volumetric methods. The text-book is Foulk's Quantitative Chemical Analysis. Open to students who have had Course II. *Ten hours a week.

61. VOLUMETRIC ANALYSIS.—The student is made familiar with the common methods of volumetric analysis in addition to the simpler volumetric methods used in Course 60. Course 60 is a prerequisite. *Four hours a week.

62. WATER ANALYSIS.—The analysis of water is studied both from the sanitary and from the industrial standpoint. Open to students who have taken Course 60. *Four hours a week.

63. QUANTITATIVE ANALYSIS.—Analysis of alloys, minerals, etc. Both gravimetric and volumetric methods are used. Open to students who have taken Course 60. *Eight hours a week.
College of Technology

64. Assaying.—The fire assay of typical ores for gold and silver. †Four hours a week.

66. Urinalysis and Toxicology.—The analysis of urine and the detection of the more common poisons. †Two hours a week.

67. Electroanalysis.—The electrolytic methods of quantitative analysis for copper, nickel, lead, and similar determinations. Open to students who have taken Course 60. †Four hours a week.

68. Chemical Calculations. The calculation of the results of chemical analyses by the use of graphic schemes, slide rules, factors and tables. Methods of changing routine analytic work so that the calculations may be simplified. The use of density tables as used commercially. Two hours a week. First nine weeks.

70. Fuel and Gas Calculations. The methods of calculating the heat value of a coal, the constant of a calorimeter, the heat losses of a furnace and similar problems. Two hours a week. Last nine weeks.

71. Physical Chemistry.—This course is devoted to the study of some of the more important principles and methods of physical chemistry in its several branches. Lectures and recitations. Open to students who have completed Chemistry 60, Mathematics 3, and Physics 1, 2, and 4. Three hours a week.

72. Physical Chemistry.—A continuation of Course 71. Two hours a week.

74. Physical-Chemical Methods.—The course will include: determination of molecular weights; the study of solutions through conductivity and other methods; rate of reaction and chemical equilibrium; potential and electromotive force; calorimetry; and the use of the more important instruments such as refractometer, polariscope, and spectroscope. †Six hours a week.

75. Metallurgy of Iron and Steel.—The occurrence, methods of extraction, properties, and alloys of iron. Open to students who have completed Courses 1, 2, 5, and 6 or 3, 4, 5, and 6. Two hours a week.
76. Metallurgy of the Metals other than Iron.—A course similar to 75. The metals other than iron and steel are studied. Open to students who have completed Course 11. Two hours a week.

77. Industrial Chemistry.—General processes of technical chemistry, and selected topics, including the principal manufactured products of special interest. Lectures and recitations. The text-book is Thorp’s Outlines of Industrial Chemistry. As a part of this course an inspection trip is made to manufacturing plants of a chemical nature in New England. The expense of this trip the last few years has varied from $15 to $25 a year. Open to students who have completed Courses 11, 52, 53, and 60. Two hours a week.

78. Industrial Chemistry.—A continuation of Course 77. Two hours a week.

80. Paper Mill Machinery.—The study of simple mechanism is followed by the study of machines common to the manufacture of paper of various kinds. Two hours a week.

81. Paper.—A lecture course on paper and the various processes of present day paper making. Open to those who have completed Courses 11 and 52. Two hours a week.

82. Paper Manufacture.—A laboratory course in which paper machinery will be studied and paper of various kinds will be made. This course should be preceded by course 81. †Four hours a week.

83. The Making of Paper Pulp.—A laboratory course in paper pulp mill chemistry. The work taken up is that ordinarily falling to the chemist of a pulp mill of either the soda, sulphite, or sulphate type. Open to students who have completed Course 60. †Four hours a week.

84. Paper Pulp.—A lecture course on the processes of manufacturing paper pulp. The uses of pulp other than in the manufacture of paper will also be discussed. Two hours a week.

85. Bleaching of Pulp.—A laboratory course dealing with the methods of bleaching various kinds of pulp. Open to those who have taken Courses 82 and 83. *Six hours a week. First nine weeks.
87. **Paper Coloring.**—A laboratory course on mordants, dye-stuffs, and their application, testing, retention, matching of shades, etc. Open to those who have completed Course 55. *Six hours a week. First nine weeks.*

88. **Paper Testing.** The testing of paper for bursting strength, tensile strength, stretch, crumpling, etc. Also the methods for estimating the kinds and percentages of the various fibres present in a sample of paper. *Three hours a week.*

89. **Paper Problems.**—A laboratory course for the study of selected processes of paper manufacture, as beating, sizing, loading, finishing, etc. Course 82 is a prerequisite. *Twelve hours a week. Last half of fall semester.*

93. **Chemical Literature.**—Reviews and discussions of leading articles appearing in the current English, German, and French chemical literature. Open to juniors majoring in the department who have completed the required work in modern languages. *One hour a week.*

94. **Chemical Literature.** A continuation of Course 93. *One hour a week.*

98. **Thesis Work.**—The thesis will embody the result of the study of a special problem in the laboratory. This problem will partake of the nature of original research and will ordinarily require not less than *Ten hours a week* for its completion.

Primarily for graduates

101. **Advanced Organic Chemistry.**—A series of lectures on special topics in organic chemistry. Open to students who have completed Courses 52 and 53. *Three hours a week.*

103. **Qualitative Analysis.**—This course is similar to Course 11, but deals with organic compounds. It must be preceded by Courses 52 and 53. Noyes and Mulliken's Class Reactions and Identification of Organic Substances is used as a guide. *Four hours a week.*

104. **Technical Analysis.**—An advanced course in the analysis of ores and industrial products. Open to students who have completed Courses 60 and 63. *Eight hours a week.*
Chemistry

105. Electrochemistry.—A lecture course on the general principles of the subject and its applications in industrial work. Open to students who have completed Courses 71 and 72. Two hours a week.

Laboratory fees covering general chemicals, gas, etc., are as follows: Courses 5, 6, 11, 60 and 98, $5; Courses 16, 52, 57, 63, 74, 89, and 104, $3; Courses 15, 17, 20, 54, 55, 58, 61, 62, 64, 66, 67, 82, 83, 85, 87, 88, and 103 $2.

Broken apparatus and special chemicals are paid for at the chemical supply room by use of a "breakage card" obtained from the Treasurer's office. The portion of this card which has not been used will be redeemed at the end of the semester.

For courses in biological and agricultural chemistry, see the description of courses given by the department of Biological and Agricultural Chemistry.

SUMMER TERM

Professor McKee; Associate Professor Easley; Assistant Professor Burghart

3s. General Chemistry.—A course of lectures and demonstrations on elementary chemistry. No previous knowledge of the subject is assumed. The course deals chiefly with the non-metals.

4s. General Chemistry.—A continuation of Course 3s dealing chiefly with the metals.

17s. Gas and Fuel Analysis.—This work consists in the analysis of fuel and flue gases and the determination of the proximate constituents and heating values of the more common fuels. Ten hours of laboratory work each week.

51s. Organic Chemistry.—This is a general introductory course in the subject open to those who have had the freshman course in general chemistry or its equivalent. It is generally, though not necessarily, accompanied by laboratory work in the subject.

73s. Physical Chemistry.—Lectures on selected chapters of the subject touching upon the following phases: molecular structure, the mass law, the theories of solution and their applications, especially along the line of electro-chemistry.
91s. **Inorganic Preparations.**—A laboratory course in the purification and preparation of typical inorganic compounds. *Ten hours of laboratory work each week.*

Laboratory Work in general chemistry, qualitative analysis, quantitative analysis, physical chemistry and organic chemistry will be arranged according to the needs of those attending the Summer Term.

Graduate Work.—Attention should be called to the courses that can be taken for graduate credit by those who already have a bachelor’s degree (Courses 51s, 73s, 91s, 92s, and several of the courses indicated under “Laboratory Work”). It is the custom of the department to vary from year to year the courses offered in such a way that a student attending several successive summers will be able to complete the work necessary for a Master’s degree. The fact that a considerable part of this work is of a laboratory character enables it to be varied in order and character to suit the needs of the individual student.

CIVIL ENGINEERING

Professor Boardman; Professor Brown; Associate Professor Bean;
Associate Professor Kaulfuss; Assistant Professor Lyon; Mr. Donegan; Mr. Jenks

For undergraduates only

1. **Plane Surveying.**—Recitations, lectures and field work. The recitations and lectures cover the general theory of plane surveying; description of surveying equipment, and the adjustment of the instruments; use of the chain, tape, compass, transit, and level, and other surveying operations. The field work consists of practice in the use of the chain, tape, compass, transit, level and other surveying equipment.
Civil Engineering

Required of all students in the departments of Civil Engineering and Forestry. *Six hours a week. (Subdivision of field and recitation work determined by the instructor. The work shall be the equivalent of thirty-six periods of recitations or lectures and thirty-six periods of field work.)

2. Plotting.—This course consists chiefly of map drawing from field notes, by the different methods in common use. Course 1 is prerequisite. *Six hours a week. First twelve weeks.

3. Plane Surveying.—A course similar to the recitations and lectures in Course 1, given to students in the departments of Mechanical and Electrical Engineering. Two hours a week.

4. Field Work in Surveying.—A continuation of the field work in Course 1. This course consists of original surveys, problem work, adjustment of instruments, note keeping, etc. Course 1 is prerequisite. *Six hours a week. Last six weeks.

5. Field Work in Surveying.—The use of the chain, compass, transit, and level. Required of all students in the departments of Mechanical Engineering and Electrical Engineering. *Six hours a week. First six weeks.

6. Railroad Curves.—A course of recitations and lectures investigating the geometry of railroad curves switches and turnouts. Course 1 or 3 is prerequisite. Three hours a week. First twelve weeks.

8. Railroad Field Work.—This course consists of practice in running in railroad curves and turnouts. A general application of the theories of Course 6. Courses 5 and 6 are prerequisite. +Six hours a week. Last six weeks.

20. Masonry Construction.—A course including the discussion of building stone and brick; cement and their tests; mortar; plain and reinforced concrete; piles; foundations; pneumatic caissons; open caissons; bridge piers, and abutments. Two hours a week.

21. Railroad Field Work.—The survey for a railroad about three miles in length. The preliminary and location surveys are made, including running in the curves, obtaining the topography, establishing the grade, and setting the slope stakes. Courses 4, 6, and 8, or Courses 4 and 27 are prerequisite. *Six hours a week. First nine weeks.
22. Advanced Surveying.—This course consists of lectures, readings and recitations on the theory of base line measurement, triangulation, precise leveling, topographical surveying, the use of the plane table, and the theory and application of least squares. It is a preparation for Course 24. Course 21 is prerequisite. Two hours a week.

23. Railroad Office Work.—The office work of mapping the notes taken in Course 21, including the calculation of the earth work. Courses 2 and 21 are prerequisite. *Six hours a week. Last nine weeks.

24. Summer Field Work.—This course consists of the practical application in the field and in the office of the principles given in Course 22. The work is given during the two weeks following Commencement. Course 22 is prerequisite.

25. Railroad Construction.—Recitations and lectures on the field and office practice of staking out and computing amount of excavation and fill; borrow-pits; haul; methods and materials of railroad construction; subgrade; roadbed; track and track work. Course 6 is prerequisite. Two hours a week.

26. Hydraulics.—Fundamental data; hydrostatics; theoretical hydraulics; instrument and observations; theoretical and actual flow through orifices, weirs, tubes, pipes, and conduits; dynamic pressure of water. Three hours a week.

27. Simple Curves and Earthwork.—A lecture course on the theory and practice of simple railroad curves, and on the field and office practice of staking out and computing earthwork. Given to students outside of the department of Civil Engineering who desire to take Courses 21 and 23. Courses 1 and 5 are prerequisites. One hour a week.

28. Structures.—The theory of the simple beam; loads and reactions; vertical shear; bending moment; influence lines. The object of this course is to give the student a drill in finding vertical shear and bending moment under different systems of loadings, and to familiarize him with the use of steel hand books, various tables, and the slide rule. Class room, Two hours a week. Drawing room, †Two hours a week.

29. Municipal Engineering.—The construction and improvement of city streets and pavements under different conditions of climate and
Civil Engineering

Traffic; general principles of sewer design; a study of city sanitation, water supply, and sewage disposal. Course 1 or 3 is prerequisite. Two hours a week.

31. Roads and Trails.—Consists of lectures on the practice of building and maintaining trails and ordinary types of roads, and includes the design of simple beams and girders.

33. Foundations.—Building stones; manufacture of cement; tests of cement; mortar; concrete, both plain and reinforced; piles; foundations; caissons. This is a course of lectures given to students in the departments of Mechanical and Electrical Engineering. One hour a week.

35. Hydraulics.—A short course which includes the main principles given in Course 26. Given to students in the departments of Mechanical and Electrical Engineering. Two hours a week.

Thesis Work.—The study of and report upon some original investigation, or design. Time to be arranged. See regulations regarding degrees.

For graduates and undergraduates

51. Hydraulic Field Work.—The measurement of the flow of rivers is illustrated by the use of the current meter. Trips are made to the United States Geological Survey gaging station located on the Penobscot River between Howland and West Enfield, where discharge measurements are made. The data thus obtained is used, together with that obtained from the Survey, to plot the rating curve, etc. The measurements taken are reported to the Survey. The expenses of this course are paid by the students. Required of students taking Option 1. Course 26 is prerequisite. †Four hours a week.

52. Hydraulic Engineering.—A continuation of Course 55. Course 51 is prerequisite. Three hours a week.

53. Hydraulic Field Work.—A short course similar to Course 51. Required of students taking Options 2 and 3. Course 26 is prerequisite. †Two hours a week.

55. Hydraulic Engineering.—Rainfall, evaporation, and stream flow; the development and utilization of water power; the develop-
ment of the modern turbine. Lectures and recitations. Required of students electing Option 1. Course 26 is prerequisite. Two hours a week.

57. STRUCTURES.—A continuation of Course 28. The theory of stresses in framed structures, including the plate girder, bridge trusses, and roof trusses; reinforced concrete; the principles of designing. The object of this course is to train the student in the application of the principles of mechanics to the design of structures. Three hours a week.

58. STRUCTURES.—A continuation of Course 57. This course includes a study of the higher types of structures, and the preparation of the shop drawings. Course 28 is prerequisite. Three hours a week.

59. DESIGNING.—This course takes up the design for some of the common types of steel structures, and the preparation of the shop drawings. Course 28 is prerequisite. Nine hours a week.

60. GRAPHIC STATICS.—Class and drawing room work in the graphical determination of shear and bending moment, and the analysis of bridge and roof trusses by graphical methods. Course 57 is prerequisite. Two hours a week.

62. DESIGNING.—A continuation of Course 59. Course 57 is prerequisite. Six hours a week.

63. RAILROAD ENGINEERING.—A course discussing the economics of railroad location and operation. The railroad corporation, its rights and limitations; traffic; operating expenses; the locomotive and its work; distance; curves; grades. Required of students electing Option 2. Course 25 is prerequisite. Three hours a week.

64. RAILROAD ENGINEERING.—A course in railroad design. A map reconnaissance for a railroad about twelve to fifteen miles in length is made, applying the theories of Course 63. The final line is located, profile made, grades established, and drainage areas and culverts calculated. The rails, switch points, frogs, and ties for a turnout are designed. A railroad yard layout is computed and plotted. Required of students electing Option 2 or 3. Courses 23 and 63 are prerequisites. Six hours a week.
66. **Railroad Engineering.**—A course of lectures and recitations studying various railroad structures; trestles; culverts; grade crossings and elimination; yards and terminals; signals and interlocking; maintenance and betterment work. Required of students electing Option 2 or 3. Course 63 is prerequisite. *Two hours a week.*

67. **Cement Laboratory.**—This course consists of making the regulation commercial tests upon different samples of cement. A laboratory fee sufficient to cover the cost of materials used is charged. This course is required of students in Mechanical Engineering and in Civil Engineering. Course 20 is prerequisite for students in Civil Engineering. *The time varies.*

69. **Highway Engineering.**—The location, drainage, construction, and maintenance of country roads under various conditions of soil, climate, traffic, etc.; highway economics, legislation and administration. Required of students electing Option 3. Course 29 is prerequisite. *Three hours a week.*

70. **Road Materials Laboratory.**—Physical and chemical tests of sand, gravel, stone, brick, wood block, bituminous compounds, and other road materials. Courses Civil Engineering 29 and Chemistry 1 or 2 or 4, 5, and 6 are prerequisites. *Three hours per week.*

ELECTRICAL ENGINEERING

Professor Barrows; Associate Professor Childs; Mr. Cheswell, Mr. James

For undergraduates only

1. **Electricity and Magnetism.**—This is an elementary course intended to give the student an insight into the fundamental laws and a survey of the elementary principles upon which electrical engineering is based. A text-book and problem course. Required of sophomores in Electrical Engineering. *Two hours a week.*

2. **Electricity and Magnetism.**—A continuation of Course 1 showing the application of the fundamental electrical laws and principles to the design, construction, and operation of electrical apparatus. Recitations and problems. Required of sophomores in Electrical Engineering. *Two hours a week.*

213
College of Technology

5. **Elements of Electrical Engineering.**—This Course takes up the practical application of laws studied in courses 1 and 2, and in physics and the fundamental principles of electrical engineering. The work is of the nature of a text-book course, consisting of recitations and problems. Required of juniors in Electrical Engineering. *Three hours a week.*

6. **Elements of Electrical Engineering.**—A continuation of Course 5, showing the application of the fundamental principles to the construction, operation, and testing of direct current generators and motors and to general engineering problems. Required of juniors in Electrical Engineering. *Three hours a week.*

9. **Elements of Alternating Currents.** A study of the effect of alternating currents upon various electrical circuits; voltage, current, and wattage relations in inductive and capacity circuits; application of the fundamental elements of alternating currents to the design, construction and operation of apparatus and machinery; calculations and problems. Required of seniors in Electrical Engineering. *Three hours a week.*

11. **Electrical Design.**—A course on the design, construction, and cost of direct current generators and motors, and the general features of the design of alternating current machinery; the study of the insulation problem to meet the requirements of high electric pressures is also taken up, together with the discussion of modern electrical development. Required of seniors in Electrical Engineering. *Two hours a week.*

12. **Technical Reviews.**—Special subjects are assigned to each student, which he investigates with the aid of library books and current literature, and presents the results to the class; also the discussion of the design and construction of electrical instruments and special forms of apparatus of interest in scientific development, and of possible practical application. Required of seniors in Electrical Engineering. *One hour a week.*

13. **Design of Electrical Machinery.**—This course is given in the drawing room, and is the practical application of the work in Course 11. Calculations are made for electro-magnetic devices and for direct current generators, involving a knowledge of the fundamental electrical
principles of design, the principles of mechanical design, cost of materials and cost of labor, and the use of the student's judgment to fit particular circumstances and financial conditions. Required of seniors in Electrical Engineering. †Four hours a week.

15. Laboratory Work.—A continuation of Course 8, taking up the testing of direct current apparatus and machinery, and alternating current measurements; investigation of power plant equipment and electric lighting. Required of seniors in Electrical Engineering. The charge for this course is $3.00. †Four hours a week.

16. Laboratory Work.—A course showing the practical application of the work done in Courses 9 and 52, and continuing the laboratory work of Course 15, including the operating, testing, and experimental work with alternating current instruments, generators, motors, transformers, rotary converters, and polyphase power measurements. Required of seniors in Electrical Engineering. The charge for this course is $3.00. †Four hours a week.

18, 19. Electrical Engineering Practice.—A course given for the expansion of laboratory work into the construction of laboratory apparatus and development of original ideas of the student; also for testing, repairing, or adjusting commercial electric plants. This course is designed and will be expanded to give the student an opportunity to apply his technical training and ability to actual engineering problems and difficulties. Required of seniors in Electrical Engineering. Fifty hours during the senior year.

21. Thesis Work.—The designing of electrical apparatus, or original research work in which the student is particularly interested; and a clear, complete report of what has been accomplished. The organization of the work and the carrying out of the same is left almost entirely to the student, and is a measure of his energy and ability as an engineer. Required of seniors in Electrical Engineering. Fall semester and through the senior year, as required.

30. Direct Current Machinery.—A course dealing with the fundamental electrical principles and their application to the production, distribution, and utilization of power from the standpoint of a mechanical engineer. Required of seniors in Mechanical and Chemical Engineering. Two hours a week.
31. Alternating Currents.—A required course for seniors in Mechanical and Chemical Engineering which continues the work taken up in Course 30. The fundamental elements of alternating current measurements and calculations are studied; also the operation of alternating current generators, motors, and polyphase apparatus is treated from the operating engineer’s point of view. Two hours a week. Fall semester.

32. Electrical Applications.—The object of this course is to supplement the study of the fundamental electrical principles given in 30 and 31 with the study of the practical applications of electrical machinery to the problems met by the mechanical engineer, such as machine tool drive, crane and hoist work, industrial applications, etc. Required of seniors in Mechanical Engineering. Two hours a week.

33. Laboratory Work.—For Mechanical and Chemical Engineers. Electrical measurements and the operating and testing of direct current generators and motors, showing the practical application of the work taken up in Courses 30 and 31. The work is arranged for the particular needs of the mechanical engineer. This course is open to Civil Engineering students who have previously elected one of the preliminary electrical courses. Required of seniors in Mechanical and Chemical Engineering. The charge for this course is $3.00. +Four hours a week.

34. Laboratory Work.—A continuation of 33 involving the operation and testing of alternating current apparatus. Required of seniors in Mechanical Engineering. The charge for this course is $1.50. +Four hours a week. First nine weeks.

42. Electrical Generation and Transmission of Power.—A required course for seniors in Option 1 in Civil Engineering, taking up the elements of electrical measurements, the generation, transmission, and utilization of power, covering the electrical future of water power development. Two hours a week.

For graduates and undergraduates

51. Illuminating Engineering.—A course devoted to the study of the different types of lamps, light, photometry, illumination calculations, and the problems of interior and exterior illumination. Optional to juniors in Electrical Engineering. Two hours a week.
52. Advanced Alternating Currents.—A continuation of Course 9, taking up a study of polyphase apparatus in the generation, transmission, distribution, and utilization of power; engineering applications and practical problems involving the theory and training of the course and the technical ability of the students. Required of seniors in Electrical Engineering. Two hours a week.

53. Telephone Engineering.—A course dealing with the principles of telephone apparatus and circuits. The different telephone systems, together with party lines, trunk lines, and central station problems are given due consideration. Optional to seniors in Electrical Engineering. Two hours a week.

54. Electrical Railway Engineering.—A study of the preliminary steps taken in electric railway engineering; the selection of the proper motor equipment for a given class of service; car, bond, and transmission testing. Optional to seniors in Electrical Engineering. Two hours a week.

56. Electrical Power Plants.—This course covers the electrical equipment of the power plant. Particular attention is given to the methods of control, circuit interrupting devices, lightning arresters, and methods of arranging station and substation switch boards. Required of seniors in Electrical Engineering. Two hours a week.

58. Electrical Transmission.—A course dealing with high voltage long distance transmission problems, and transmission line phenomena. A study is made of the latest practice and methods of securing most reliable service. Special attention is given to the economic features. Required of seniors in Electrical Engineering. Two hours a week.

MATHEMATICS

The courses in this department are described under the College of Arts and Sciences
College of Technology

MECHANICAL ENGINEERING

*Professor Jewett; Assistant Professor Lekberg; Assistant Professor Chapman; Mr. Davee; Mr. Carter; Mr. Jennison

For undergraduates only

1. Woodworking.—A number of graded exercises in woodworking designed to give the student familiarity with the tools used in modern woodworking practice, and also to teach him to work from dimensioned drawings. These exercises lead to pattern-making. The pattern work consists of making complete patterns and core boxes from drawings. Required of students in Mechanical Engineering. Charge for materials, $4.00. *Six hours a week.

3. Woodworking.—A shorter course than 1, arranged for students in Electrical Engineering. Required. Charges for materials, $4.00. *Four hours a week.

6. Forge Work.—Forging; welding; tool dressing. A set of lathe tools and cold chisels for use in machine work is made by each student. Required of students in Mechanical and Electrical Engineering. Charge for material, $5.00. *Four hours a week.

7, 8. Machine Work.—Exercises in chipping and filing; lathe work; exercises on planer, shaper, and milling machines; making cut gears, machinists taps, etc. Course 2 is a prerequisite. Required of students in Mechanical Engineering. Charge for materials, $5.00. *Six hours a week.

9, 10. Machine Work.—A shorter course than 7 and 8, required of students in Electrical Engineering. Course 2 is a prerequisite. Charge for material $5.00. *Four hours a week.

11, 12. Foundry Work.—Foundry instruction is given in molding, mixing of materials, operation of cupolas, etc. The work is assigned in connection with Course 5, ten per cent. of the hours registered for under Course 5 being applied to foundry work.

13. Power Generation and Application.—A course arranged for forestry students to cover fuels, steam boilers, steam and gas engines, locomotives, log haulers, elementary mechanics, principles of beams and columns. Two hours per week. Elective.

* Absent on leave.
College of Technology

15. Heating and Ventilation.—Course arranged for students in Home Economics. *Two hours a week, first nine weeks.*

39. Kinematical Drawing.—This course supplements Course 4 which is a prerequisite. The drawings are of cams and gear teeth and graphical studies of kinematic problems. Required of students in Mechanical Engineering. *Four hours a week.*

For graduates and undergraduates

56. Kinematics.—A study of motion in machine construction and or the elements of machines; links, gears, cams, etc. Required of students in Mechanical and Electrical Engineering. *Three hours a week.*

57. Mechanism of Machines.—Lectures supplementing Course 4. Required of students in Mechanical Engineering. Course 56 is a prerequisite. *Three hours a week; six weeks.*

64a. Graphics.—A course given in connection with Course 64b. *Two hours a week, first half.*

64b. A drawing room course supplementing the classroom work in graphics. The problems assigned include the graphical determination of center of gravity, bending moment of beams, shear diagrams, stresses in bridge members and roof trusses. Required of juniors in mechanical engineering.

67. Machine Design.—A continuation of Course 8, including the execution of the design of some typical machines. Required of students in Mechanical Engineering. Course 66 is a prerequisite. *Six hours a week.*

219
Mechanical Engineering

68. Valve Gears.—The principal steam engine valve motions are studied in order to enable the student to gain a knowledge of the method of designing valve mechanism; the Zeuner, Bilgram, and other valve-diagrams are made use of in this connection; practical problems are solved in the drawing room. Required of students in Mechanical Engineering. One and one-half hours a week.

70. Mechanical Laboratory.—The calibration of instruments used in engineering testing, followed by the more elementary experimental work. Required of juniors in Mechanical Engineering. The charge for the course is $2.00. †Two hours a week.

71. Mechanical Laboratory.—Tests of materials, hydraulic testing, injectors, use of calorimeters, valve settings, etc. Required of seniors in Mechanical Engineering. The charge for the course is $3.00. Four hours a week.

72. Mechanical Laboratory.—Tests of steam engines and boilers, gasoline engines, etc. Required of seniors in Mechanical Engineering. The charge for the course is $3.00. †Four hours a week.

74. Strength of Materials by Test.—A course in the mechanical laboratory for students in Civil Engineering. The charge for the course is $2.00. †Two hours a week.

77. Mechanical Laboratory.—A course of experiments in the laboratory especially arranged to meet the needs of the students in Electrical Engineering. The charge for the course is $2.00. †Three hours a week.

80. Heat Engineering.—This course deals with the fundamental theories of gases and steam, illustrated by problems of practical form. The laws of thermodynamics; laws of gases; characteristic equations for gases; kinds of expansion and compression; Carnot’s cycle; heat quantities in steam; use of the steam tables; steam equations; quality of steam; calorimeters; entropy. Mathematics 8 and Physics 1 and 2 are prerequisites. Required of students in Mechanical and Electrical Engineering. Three hours a week.

83. Heat Engineering.—Types and details of steam boilers, engines, and auxiliary machinery. A consideration of fuels and the chemistry
of combustion; efficiency factors of the steam boiler plant; heat losses in steam engines; compound steam engines; refrigeration; gas engine cycles and gas producer principles. For students in Electrical Engineering turbines are included. Required of students in Mechanical and Electrical Engineering. Course 80 is a prerequisite. *Three hours a week.*

84. **Steam Engineering.**—A continuation of Courses 80 and 83, dealing with steam engines, steam turbines, air compressors, refrigerating machines, and gas engines; considerations affecting the design and efficiency of operation of heat motors, the lay-out of power plants, and power plant economics. Required of students in Mechanical Engineering. *Two hours a week.*

88. **Steam Engine Design.**—A study of problems affecting the design of the steam engine with regard to their bearing on general machine design; a steam engine is partially designed in the drawing room. Required of students in Mechanical Engineering. *Six hours a week.* Courses 66 and 83 are prerequisites.

89. **Steam Boiler Design.**—A study of the important points affecting the design of fire-tube and water-tube boilers, including the complete design of a boiler in the drawing-room, with boiler specifications and chimney design. Required of students in Mechanical Engineering. *Six hours a week.* Course 66 is a prerequisite.

92. **Heating and Ventilation.**—Required of students in Mechanical Engineering. Course 80 is a prerequisite. *Three hours a week, six weeks.*

94. **Hydraulic Machinery.**—A study of hydraulic turbines, water wheels, and other features of hydraulic power plant development. *Three hours a week, first half.*

96. **Seminary.**—General discussion of leading articles appearing in current engineering literature. Elective. *One hour a week.*

99. **Factory Organization and Management.**—A course of lectures and assigned reading upon various styles of organization for industrial enterprises; the planning and equipping of factory plants; systems of management, etc., factory design and construction. Required of students in Mechanical Engineering. *Two hours a week.*

Thesis.—The results of some original investigation or design presented in proper form. The subject should be selected early in the fall semester of the senior year. See regulations regarding degrees.
College of Technology

MECHANICS AND DRAWING

Professor Weston; Associate Professor Grover; Mr. Farnham; Mr. Leighton

For undergraduates only

1. Drawing.—Instruction and practice in technical freehand drawing and lettering, in the care of drawing instruments, and their use in elementary problems involving right lines, circles, conic sections, and orthographic projections. *Six hours a week.

2. Drawing.—A continued study of the methods of orthographic projection, isometric projection, and oblique projection, accompanied by instruction and practice in the making of working drawings and tracings. *Six hours a week.

3. Drawing.—The elementary principles and problems of descriptive geometry, including intersections and developments. *Six hours a week.

4. Drawing.—A continued study of the making of working drawings of simple machines, together with instruction and practice in making titles for the same. *Six hours a week.

9. Drawing.—A course designed especially for students in agriculture and for non-engineers. It combines the fundamental principles of Course 1 and Course 2. *Three hours a week.

11. Mechanics.—An elementary course in the fundamental principles of statics, kinematics and kinetics, with applications to practical problems, as friction, transmitting power of belts, stresses and strains of bodies subject to tension, compression and shearing, as beams and columns. For students in Chemical Engineering. Three hours a week.

For graduates and undergraduates

51. Mechanics.—The fundamental principles of statics, kinematics, and kinetics, with applications to practical problems; exercises in find-
Physical Training

The study of stresses and strains in bodies subject to tension, compression, and shearing: the common theory of beams, including shearing force, bending moment and elastic curves; torsional stresses and theories of stress in long columns. *Five hours a week.*

52. **Mechanics.—** A continuation of Course 51. *Five hours a week.*

Primarily for graduates

101. **Advanced Mechanics.—** General principles of kinematics, statics, and kinetics; the mathematical theory of elasticity; the theory of the potential function with applications to problems in gravitation, hydro-mechanics, etc. *Two hours a week.*

MILITARY SCIENCE AND TACTICS

The courses in this department are described on page 226

PHARMACY

Associate Professor Jarret; Doctor Connors

2. **Organic Pharmacognosy.—** This course teaches the art of identifying, selecting, and valuing drugs. Its practice involves both macroscopic and microscopic work. The instruction concerning each drug includes its identification, variety, quality, packing, storing, and freshness, and the study of the impurities to which it is specially liable. The text-book is the U. S. Pharmacopoeia. *Four hours a week.*

3. **Materia Medica.—** This course treats of the physical, chemical, physiological, and therapeutical properties of medicine: their doses: poisons and antidotes. *Three hours a week.*

7. **Pharmaceutical Chemistry.**—Chemical formulae; principles; chemical reactions; chemical equations, with special reference to pharmaceutical processes. *Two hours a week.*

9. **Pharmaceutical Arithmetic.**—The aim of this course is to teach the student to use easily and accurately the various current weights and measures. Special effort is made to master the metric system in all of its practical details. It also includes the arithmetic pertaining to the science and art of pharmacy. *Two hours a week.*

11. **Pharmaceutical Latin.**—This course deals with the Latin pertaining to pharmacy. Such essentials of inflection and syntax are taught as will serve the practical purpose of enabling the student to read prescriptions with ease and intelligence. *Two hours a week.*

13. **Theoretical Pharmacy.**—The exposition of the principles upon which pharmaceutical operations are based. This includes the study of pharmacopoeias, dispensaries, etc.; weights and measures; specific gravity; pharmaceutical uses of heat; extemporaneous pharmacy; the principles of dispensing, etc. The text-book is Army's Principles of Pharmacy. *Three hours a week.*

14. **Pharmacopoeia.**—A complete review of the pharmacopoeia, with special reference to the chemical and pharmaceutical principles involved in the tests and preparations. The text-books are the U. S. Pharmacopoeia and the U. S. Dispensatory. *Five hours a week.*

16. **Laboratory Pharmacy (Manufacturing).**—The operations of manufacturing pharmacy, including the preparation of excicated salts, granulated salts, effervescent salts, waters, infusions, decoctions, mucilages, syrups, elixirs, tinctures, fluid extracts, spirits, oleoresins, troches, resins, iron salts, mercury salts, etc.; and such additional U. S. P. and N. F. preparations as the time will permit, selecting the additional preparations from those which require skill and careful manipulation. *Eight hours a week.* The text-books are the U. S. Pharmacopoeia and the National Formulary.

17. **Laboratory Pharmacy (Manufacturing).**—A continuation of Course 16. *Ten hours a week.*
Physical Training

18. Laboratory Pharmacy (Dispensing).—This course teaches the compounding of medicine. The time is so arranged as to give a liberal number of hours for the actual work in the compounding of prescriptions. Incompatibilities, how to overcome them, etc. The work includes the preparation of solutions, mixtures, emulsions, pills, capsules, powders, cachets, tablets, tablet triturates, troches, ointments, plasters, suppositories, etc. *Sixteen hours a week.*

20. Prescriptions.—This course includes the abbreviations and symbols used; reading, labeling, checking and filing. Critical examination of prescriptions from actual files, with reference to principles, and to physiological, pharmaceutical, and chemical incompatibilities; doses; methods and order of compounding, etc. *Three hours a week.*

54. Pharmacy Readings.—Current pharmacy literature: research and reference readings; abstracting; reports and also theme writing on various subjects pertaining to pharmacy. *One hour a week.*

58. Commercial Pharmacy.—Trade or commerce in pharmaceutical products. It includes bookkeeping, business correspondence, commercial and business law, and business practice. *Two hours a week.*

PHYSICAL CULTURE AND ATHLETICS

The courses in this department are described on page 227

PHYSICS

The courses in this department are described under the College of Arts and Sciences
Required Courses

REQUIRED COURSES

Work in the departments of Military Science and Tactics and Physical Training is required of all men students, with certain exceptions noted elsewhere.

MILITARY SCIENCE AND TACTICS

Lieutenant Clark

1. Military, First Year Course
 (a) Practical
 1—U. S. Infantry Drill Regulations, to include the School of the Battalion, Advance and Rear Guards, Outposts, Marches, and Ceremonies
 2—Field Service Regulations
 3—Indoor Rifle Practice
 (b) Theoretical
 1—U. S. Infantry Drill Regulations, to include the School of the Company
 2—Field Service Regulations
 3—Small Arms Firing Regulations
 4—Lectures on Military Organization Methods, History, and Policy
 Required of all students with the exceptions noted elsewhere. Three hours, or the equivalent, a week for the freshman year, counting one-fifth credit.

2. Military, Second Year Course
 (a) Practical
 The same as Course I (a)
 (b) Theoretical
 1—U. S. Infantry Drill Regulations, School of the Battalion, Advance and Rear Guards, Outposts, Marches, and Ceremonies
 2—Records and Official Papers
 3—Small Arms Firing Regulations

226
Required Courses

4—Field Service Regulations
5—Lectures

Required of all students with the exceptions noted elsewhere. Three hours, or the equivalent, a week for the sophomore year, counting one-fifth credit

3. Military, Third Year Course
 (a) Practical
 Duties consistent with rank in carrying out (a) in Courses 1 and 2
 (b) Theoretical
 Minor Tactics, Field Orders, the Service of Supply

Open to all who have completed Course 3. Three hours or the equivalent, a week, counting one-fifth credit

PHYSICAL CULTURE AND ATHLETICS

Professor Wingard; Mr. Monohon; Miss Stebbings

1. Physical Training.—Class formation and figure marching; setting-up drills; free-arm and calisthenics movement: elementary dumbbell, wand, and apparatus exercises. One hour lecture and *two hours practice a week.

2. Physical Training.—Intermediate and advanced class exercises and combination apparatus work. One hour lecture and *two hours practice a week.

5. Practical Hygiene.—Two hours a week.

6. Practical Hygiene.—A continuation of Course 5. Two hours a week.

Beginning with the fall semester of 1914-15 courses in this department have been arranged for women students. They occupy three hours a week throughout the year, giving a credit of two semester hours. More definite announcement concerning these courses will be made later.
MAINE AGRICULTURAL EXPERIMENT STATION

STATION STAFF

CHARLES DAYTON WOODS, Sc. D. Director
JAMES MONROE BARTLETT, M. S. Chemist
WARNER JACKSON MORSE, Ph. D. Plant Pathologist
RAYMOND PEARL, Ph. D. Biologist
FRANK MACY SURFACE, Ph. D. Biologist
EDITH MARION PATCH, Ph. D. Entomologist
HERMAN HERBERT HANSON, M. S. Associate Chemist
MAYNIE ROSE CURTIS, Ph. D. Assistant Biologist
ROYDEN LINDSAY HAMMOND Seed Analyst and Photographer
EDWARD EUGENE SAWYER, B. S. Assistant Chemist
ELMER ROBERT TOBIE, B. S. Assistant Chemist
MICHAEL SHAPOVALOV, M. S. Assistant Pathologist
JOHN RICE MINER, B. A. Computer
JACOB ZINN, Agr. D. Assistant Biologist
JOHN WHITTEMORE GOWEN, B. S. Assistant Biologist
HOYT DENNIS LUCAS, B. S. Assistant Chemist

GOVERNMENT OF THE STATION

By authority of the Trustees the affairs of the Station are considered by the Station Council, (see page 8), composed of the President of the University, three members of the Board of Trustees, the Director of the Station, the heads of the various departments of the Station, the Dean of the College of Agriculture, the Commissioner of Agriculture, and one member each from the State Pomological Society, the State Grange, the State Dairymen's Association, the Maine Live Stock Breed-

228
Experiment Station

ers Association, and the Maine Seed Improvement Association. The rec-
ommendations of the Council are referred to the Trustees for final ac-
tion. The Director is the executive officer of the Station and the other
members of the staff carry out the lines of research that naturally come
under their departments.

INCOME

The income of the Station for 1913-14 was about $68,750; $15,000 of
which came from the Hatch fund; $15,000 from the Adams fund;
$21,000 from State appropriations and fees from feeding stuff inspec-
tion, fertilizer inspection, food and drug inspection, fungicide and insec-
ticide inspection, and seed inspection; $4,500 from State appropriation
for printing; $5,000 from the State appropriation for animal husbandry
investigations; $1,250 from the Bangor and Aroostook Railroad for
investigations on Aroostook Farm; and about $7,000 from the sale of
produce and miscellaneous sources.

OBJECT

The purpose of the experiment stations is defined in the Act of Con-
gress establishing them as follows:

"It shall be the object and duty of said experiment stations to con-
duct original researches or verify experiments on the physiology of
plants and animals; the diseases to which they are severally subject,
with the remedies for the same; the chemical composition of useful
plants at their different stages of growth; the comparative advantages
of rotative cropping as pursued under a varying series of crops; the
capacity of new plants or trees for acclimation; the analysis of soils
and water; the chemical composition of manures, natural and artificial,
with experiments designed to test their comparative effects on crops of
different kinds; the adaptation and value of grasses and forage plants;
the composition and digestibility of the different kinds of food for
domestic animals; the scientific and economic questions involved in the
production of butter and cheese; and such other researches or experi-
ments bearing directly on the agricultural industry of the United States
as may in each case be deemed advisable, having due regard to the
varying conditions and needs of the respective states or territories."

The work that the Station can undertake from the Adams Act fund
is more restricted as the fund can "be applied only to paying the neces-
Experiment Station

ecessary expenses of conducting original researches or experiments bearing directly on the agricultural industry of the United States, having due regard to the varying conditions and needs of the respective states and territories."

Any resident of Maine concerned in agriculture has the right to apply to the Station for any assistance that comes within its province.

EQUIPMENT

Most of the Station offices and laboratories are in Holmes Hall, described on page 29. The Station is well equipped in laboratories and apparatus, particularly in the lines of biological, chemical, entomological, horticultural, pomological, plant pathological, and poultry investigations. It has extensive collections illustrating the botany and entomology of the State. It has a library of over 3,500 volumes, chiefly agricultural and biological journals and publications of the various experiment stations.

HIGHMOOR FARM

The State Legislature of 1909 purchased a farm upon which the Maine Agricultural Experiment Station "shall conduct scientific investigations in orcharding, corn, and other farm crops." The farm is situated in the counties of Kennebec and Androscoggin, largely in the town of Monmouth. It is on the Farmington branch of the Maine Central Railroad, two miles from Leeds Junction. A flag station, "Highmoor," is on the farm.

The farm contains 225 acres, about 200 of which are in orchards, fields, and pastures. There are in the neighborhood of 3,000 apple trees upon the place which have been set from 20 to 30 years. Fields that are not in orchards are well adapted to experiments with corn, potatoes, and similar general farm crops. The house has two stories with a large wing, and contains about 15 rooms. It is well arranged for the Station offices and for the home of the farm superintendent. The barns are large, affording storage for hay and grain. The basement affords limited storage for apples, potatoes, and roots.

AROOSTOOK FARM

The Legislature of 1913 appropriated $10,000 for the purchase of a farm in Aroostook County for scientific investigations in agriculture to be under "the general supervision, management and control" of the
Experiment Station

Maine Agricultural Experiment Station. About 50 citizens of Presque Isle raised an additional $13,000 and a farm to be known as Aroostook Farm was purchased. The farm is two miles south of Presque Isle on the main road to Houlton. The Bangor and Aroostook Railroad crosses the farm. The farm is served by a flag station of the same name as the farm.

The farm contains about 275 acres, about half of which is cleared. The eight room house provides an office and home for the farm superintendent. The large barn affords storage for hay and grain and has a large potato storage house in the basement. The Legislature did not provide for the maintenance of the work at this farm. A gift of $2,500 from the Bangor and Aroostook Railroad made it possible to begin operations in a limited way in 1914.

INVESTIGATIONS

The Station continues to restrict its work to a few important lines, believing that it is better for the agriculture of the State to study thoroughly a few problems than to spread over the whole field of agricultural science. It has continued to improve its facilities and segregate its work in such a way as to make it an effective agency for research in agriculture. Prominent among the lines of investigation are studies upon the food of man and animals, the diseases of plants and animals, breeding of plants and animals, investigations in animal husbandry, orchard and field experiments, poultry investigations, and entomological research.

INSPECTIONS

The Commissioner of Agriculture is the executive of the laws regulating the sale of agricultural seeds, commercial feeding stuffs, commercial fertilizers, dairy products, drugs, foods, fungicides and insecticides. The law requires the Commissioner to collect samples and have them analyzed at the Station. The law also requires the Director of the Station to make the analyses and publish the results.

PUBLICATIONS

The Station issues three series of publications: Bulletins, Official Inspections, and Miscellaneous Publications.
Experiment Station

The results of the work of investigation are published in part in scientific journals at home and abroad, in U. S. Department of Agriculture publications, and in Bulletins of the Station. All of the more important and immediately practical studies are published in the Station Bulletins. The Bulletins for a year form a volume of 300 to 400 pages and together make up the annual report. Bulletins are sent to the press of the State, to exchanges, libraries, and scientific workers. Bulletins which contain matter of immediate value to practical agriculture are sent free to residents of Maine whose names are on the permanent mailing list.

The results of the work of inspection are printed in pamphlet form and are termed Official Inspections. About twelve such pamphlets, aggregating 150 to 200 pages, are printed annually, and are bound as an appendix with the annual report. Official Inspections are sent to dealers within the State; those that have to do with fertilizers, feeding stuffs, and seeds are sent to farmers, and those reporting food and drugs are sent to a list of several thousand women within the State.

The Miscellaneous Publications consist of newspaper bulletins, circulators, and similar fleeting publications. From twenty to thirty are published each year and are sent to different addresses according to the nature of the subject matter.

On request, the name of any resident of Maine will be placed on the permanent mailing list to receive either or both the Bulletins and Official Inspections as they are published.
The Summer Term of the University of Maine is not a summer school, but so far as practicable the work is coordinate with that of the remainder of the year. The majority of the courses offered are of college grade, and, when completed, entitle the student to full credit on the university books. There are no examinations for admission, and students are permitted to enter any class in which they can satisfactorily carry on the work. Before counting this work toward a collegiate degree, the entrance conditions must be met.

Three classes of students may be benefited by the work of this term:

1. Teachers in the high schools and grammar schools who wish to fit themselves for more advanced positions. A small expenditure of time and money in the summer vacation may be the means of securing a more desirable position. School superintendents are coming to discriminate in favor of those teachers who advance in their work.

2. Students who desire to anticipate work in their curricula, or who may have work in arrears. A student should be able to make one credit, the equivalent of a five hours' subject for eighteen weeks, during the Summer Term.

3. Courses in physics, chemistry, mathematics, Latin, and other subjects are offered covering the work of the high school. In this way a student who is slightly deficient at the end of the school year may prepare himself for college. These courses give no credit on the university books.

Courses of Study

During the summer of 1914 courses were offered in the following subjects: Chemistry, Home Economics, Education, English, French, German, History, Horticulture, Latin, Mathematics, and Physics. These courses are described in connection with the courses offered at the University during the remainder of the year.
Summer Term

DAILY ASSEMBLY

Each morning except Saturdays and Sundays the faculty and students meet in the Chapel at 10.15 for a brief assembly. A short religious service is held, including a song service, and an address is given on some topic of current interest.

LIBRARY

Throughout the Summer Term, the university library of 53,000 volumes, and the reading rooms containing about 300 periodicals and the Maine daily papers, are open from 9 A. M. to 12 M. and from 2 P. M. to 5 P. M., daily, except Saturday afternoon and Sunday. The library privileges ordinarily accorded university students, including the home use of books, are extended to students in the Summer Term.

LABORATORIES, MUSEUMS, AND OBSERVATORY

The laboratories of the departments of Physics and Chemistry are available for use of the students. There is ample provision for carrying on the various courses from the preparatory work to that of the graduate student. All necessary apparatus is supplied to the student without charge; a small charge is made to cover the cost of the articles used. The departments are well equipped with modern apparatus.

The Museum is illustrative of the rocks, flora, and fauna of Maine, and is open at stated periods for the use of the students.

The Observatory contains an eight-inch telescope, vertical circle, and other instruments of precision. The work of the observatory will be explained by Professor Hart in an evening lecture.

RECREATION

The athletic field of the University is accessible to those who wish to enjoy outdoor exercise, and two afternoons from four to six will be set aside each week for baseball games, and other athletic events. A tennis tournament also will be organized.

Under the management of a permanent committee appointed for that purpose, tramps, picnics, and longer trips to neighboring places of interest will be arranged, as well as more informal occasions on the campus where the students will have opportunity to meet each other and the members of the faculty.
Summer Term

For the further entertainment of the Summer Term students and their friends, the gymnasium will be open one evening of each week, where music will be furnished and opportunity afforded for informal social intercourse.

EXPENSES

Tuition
For residents of Maine, $12.00.
For residents of other states, $18.00.
An additional charge of $1 an hour is made for registration in excess of fifteen hours a week.

Tuition covers all charges for instruction up to fifteen hours a week, use of library and laboratories, except a small additional fee covering cost of materials used in the laboratories.

Rooms for Men
There are two dormitories for men, Oak Hall and Hannibal Hamlin Hall, connected by a covered passage-way. Rooms may be obtained for $2.00 a week for one person or $2.50 with two in a room. In Hannibal Hamlin Hall there are a few higher priced rooms.

Rooms for Women
The dormitory used for women students in the Summer Term on the campus is the Mt. Vernon House. The rates are $2.00 a week, one person in a room, or $2.50 with two persons in a room. This house of old colonial style, with its wide hall, open fire-place, and its broad piazza, looking out upon a beautiful view of the campus, is a desirable place for summer residence.

Meals
In the dining room of Hannibal Hamlin Hall meals will be served for $3.00 a week. Meals will be served in the Mt. Vernon House at $5.00 a week.

The University Inn, located in the village of Orono, is under university management and is open for summer students. Rooms in private families may be secured for those who prefer them.

Men who wish to bring their families should write early. Special effort will be made to secure suitable accommodations.
Prospective students are invited to consult the President, or any of the instructors, for further details regarding any of the courses, or upon any subject relating to the work. It is the wish of the authorities to offer such courses as will best appeal to the teachers of Maine, and others who desire to avail themselves of these privileges. If there should be a considerable demand for other studies than those named, arrangements will be made to provide for them as far as practicable. In case the registration for any course offered falls below a certain minimum, it may be withdrawn. The list of instructors and the courses outlined in this catalog were for the summer of 1914. Unimportant changes are likely to be made in 1915.
Alumni Associations

ALUMNI ASSOCIATIONS

These associations have been organized for the purpose of extending the influence of the University, and keeping alive its spirit in various sections of the country. They have rendered efficient service in promoting the interest of the University.

GENERAL ASSOCIATION

President, Albert H. Brown, 1880, Old Town
Vice President, J. Harvey McClure, 1905, Bangor
Recording Secretary, Fremont L. Russell, 1885, Orono
Corresponding Secretary, Ralph K. Jones, 1886, Orono
Treasurer, James A. Gannett, 1908, Orono
Necrologist, James N. Hart, 1885, Orono

ADVISORY COUNCIL

Members at Large

<table>
<thead>
<tr>
<th>Name</th>
<th>Term expires</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perley B. Palmer, 1896, Orono</td>
<td>1914</td>
</tr>
<tr>
<td>Allen Rogers, 1897, Pratt Institute, Brooklyn, N. Y</td>
<td>1914</td>
</tr>
<tr>
<td>Charles S. Bickford, 1882, Belfast</td>
<td>1915</td>
</tr>
<tr>
<td>Edward H. Kelley, 1890, 2 Fairmount Park, East, Bangor</td>
<td>1916</td>
</tr>
<tr>
<td>C. Parker Crowell, 1898, 44 Central St., Bangor</td>
<td>1916</td>
</tr>
<tr>
<td>Albert H. Brown, 1880, Old Town</td>
<td>1917</td>
</tr>
<tr>
<td>George H. Hamlin, 1878, Orono</td>
<td>1917</td>
</tr>
<tr>
<td>Louis C. Southard, 1875, 601 Tremont Building, Boston, Mass.</td>
<td>1918</td>
</tr>
<tr>
<td>Charles E. Oak, 1876, 39 Hammond St., Bangor</td>
<td>1918</td>
</tr>
</tbody>
</table>
Alumni Associations

Representing the College of Agriculture
Whitman H. Jordan, 1875, Geneva, N. Y. 1915

Representing the College of Law
Charles P. Connors, 1916, 49 Hammond St., Bangor 1916

Representing the College of Arts and Sciences
DeForest H. Perkins, 1900, City Hall, Portland 1917

Representing the College of Technology
George F. Black, 1886, 238 St. John St., Portland 1918

College of Law Alumni Association
President, Robert W. DeWolfe, 1907, Portland
Vice-President, Alfred A. Lang, 1904, Gloucester, Mass.
Recording Secretary, Mark A. Barwise, 1913, Bangor
Financial Secretary, James M. Gillen, 1913, Bangor
Treasurer, George H. Worster, 1905, Bangor

Alumni of the School and Teachers’ Courses in Agriculture
President, Ralph L. Smith, 1912, Kennebunkport
Vice-Presidents, Walter S. Jones, 1912, Somerville, Mass., F. H. Bickford, 1906, Orono, M. D. Jones, 1913, Orono
Secretary-Treasurer, Perley F. Smith, 1912, East Brownfield

West Maine Association
President, DeForest H. Perkins, City Hall, Portland
Secretary and Treasurer, Albert E. Anderson, 415 Congress St., Portland

Boston Association
Secretary and Treasurer, Elmer J. Wilson, 1907, 15 Clough St., Lynn, Mass.

New York Association
President, Ralph E. Lord, 1906, 1 Gramercy Park, New York City
Secretary, A. W. Stephens, 1899, 160 Rutledge Ave., East Orange, N. J.
Treasurer, Guy E. French, ex-1905, 100 William Street, New York City
Alumni Associations

Western Association
President, Chas. A. Morse, 1879, Chief Engineer Rock Island Railroad, LaSalle Street Station, Chicago, Ill.
Secretary and Treasurer, S. B. Lincoln, ex-1905, 619 First National Bank Building, Chicago, Ill.

Washington (D. C.) Association
President, L. A. Rogers, 1896, 3736 Oliver St., Chevy Chase
Secretary and Treasurer, H. W. Bearce, 1906, Bureau of Standards

Penobscot Valley Association
President, C. Parker Crowell, 1898, Central Street, Bangor
Secretary and Treasurer, J. H. McClure, 1905, 49 Hammond Street, Bangor

Pittsburgh Association
President, J. W. Brown, 1899, 1338 Walnut Street, Edgewood, Pa.
Secretary and Treasurer, C. D. Smith, 1905, 40th and Butler Sts., Pittsburgh, Pa.

Androscoggin Valley Association
President, Walter L. Emerson, 1909, Lewiston
Secretary, Charles B. Hosmer, 1911, Lewiston
Treasurer, Frank T. Powers, 1913, Lewiston
APPOTMENTS

Speakers at the Junior Exhibition

Emma Gerhardts, Westbrook; Elizabeth Fitzgerald Hanly, Thomaston; Laura Pearl Hodgins, Calais; Carl Magnus, Biddeford; Florence Gertrude Smart, Bangor; Ross Harold Varney, Haverhill, Mass.; Rachel Helene Winship, Auburn.

Speakers at the Sophomore Prize Declamation Contest

Stephen Caldwell Clement, Belfast; Muriel Eva Colbath, Hampden; Fred Holmes Curtis, Addison; Marie Fredrika Foster, Bar Harbor; George Harrison Garrison, Portland; Phillip Burr Grant, Bangor; Carl Stephen Merrill, Orono; Harry Elwood Rollins, Bangor.

Members of Phi Kappa Phi

Archie Asbury Adams, LaGrange; Louise Bartlett, Orono; Marion Stephanie Adams, Oldtown; Ernest LeRoy Goodspeed, Randolph; John Whittemore Gowen, Arlington, Mass.; Laura Pearl Hodgins, Calais; Fred Justin Lewis, Springfield, Mass.; Fernando Treat Norcross, Portland; Sidney Winfield Patterson, Winslow; Neil Carpenter Sherwood, Cherryfield; Philip Webb Thomas, Portland; James Roby Towle, Montpelier, Vermont; Carl Alfred Weick, Springfield; Max Lincoln Wilder, Augusta.

Members of Tau Beta Pi

1914

Archie Asbury Adams, LaGrange; Hermon Richard Clark, Townsend, Mass.; Alexander LeRoy Haggert, Franklin, Mass.; Fred Justin Lewis, Springfield, Mass.; Edward Michael Loftus, Bangor; Fernando
Appointments

1915

James Joseph Brennan, Bangor; James Stuart Crandall, Malden, Mass.; Alleyn Maurice Goodwin, Saco; Ray Harrison Lindgren, Belfast; Edwin Barrett Newcomb, Cumberland Mills; Walker Merriam Philbrook, Rockport; Raymond Trussell Pierce, Bangor; Harry Algernon Randall, South Portland; Harvey Prescott Sleeper, Bangor; Robert Freeman Thurrell, Portland.

Members of Alpha Zeta

1915

Joseph Henry Bodwell, Methuen, Mass.; Raymond Henry Fogler, West Rockport; Joseph Batchelder Parker, Bangor; Paul Alanson Warren, Dover; Oscar Milton Wilbur, Pembroke.

1916

Karl Moody Currier, Brewer; Guy Casley Palmer, Patten; Lawrence Eugene Philbrook, Shelburne, N. H.

General Honors

Archie Asbury Adams, LaGrange; Louise Bartlett, Orono; Marion Stephanie Buzzell, Oldtown; Fred Justin Lewis, Springfield, Mass.; Sidney Winfield Patterson, Winslow; Neil Carpenter Sherwood, Cherryfield; Max Lincoln Wilder, Augusta; Sherwood Howe Willard, Greenfield, Mass.; Carolyn Imogen Wormwood, Bangor.

Honors in the College of Law

Ernest LeRoy Goodspeed, Randolph; Gladys Madeline Niles, Bangor, James Roby Towle, Portland; Carl Alfred Weick, Springfield.

Seniors Who Have Satisfactorily Completed the Course in Military

Alden Burgess Hayes, Bangor; Oswald Burnett Higgins, Sewaren, N. J.; Fernando Treat Norcross, Portland; Woodbury Freeman Pride, Auburn.
Appointments

Organization of the University Battalion of Cadets

1st Lieutenant Frank S. Clark, Coast Artillery Corps. U. S. Army
Professor of Military Science and Tactics

Staff and Non-commissioned Staff

<table>
<thead>
<tr>
<th>Adjutant</th>
<th>Cadet 1st Lieut. R. H. G. Smith</th>
</tr>
</thead>
<tbody>
<tr>
<td>In charge of Band</td>
<td>Cadet 1st Lieut. Park Elliot</td>
</tr>
<tr>
<td>Battalion Sergeant major</td>
<td>S. P. Danforth</td>
</tr>
<tr>
<td>Battalion Quartermaster-Sergeant</td>
<td>H. L. Bayer</td>
</tr>
</tbody>
</table>

Co. A	Cadet Captain	E. F. Hanson
Cadet 1st. Lieut.	J. L. Gulliver	
Cadet 2nd. Lieut.	H. G. Lackee	

Co. B	Cadet Captain	E. B. Coffin
Cadet 1st. Lieut.	R. H. G. Smith	
Cadet 2nd. Lieut.	C. E. Dole	

Co. C	Cadet Captain	E. W. Goodwin
Cadet 1st. Lieut.	O. K. Edes	
Cadet 1st. Lieut.	A. L. Hamblen	

Co. D	Cadet Captain	H. W. Coffin
Cadet 1st. Lieut.	R. H. Boothby	
Cadet 2nd. Lieut.	E. S. Fraser	

Co. E	Cadet Captain	L. P. Stewart
Cadet 1st. Lieut.	A. A. Packard	
Cadet 2nd. Lieut.	C. M. DeWitt	

Co. F	Cadet Captain	C. S. Erswell
Cadet 1st. Lieut.	D. J. MacIntire	
Cadet 2nd. Lieut.	O. F. Tarr	
Prizes Awarded

PRIZES AWARDED

Kidder Scholarship, Rachel Helene Winship, Auburn.

Western Alumni Association Scholarship, William Gustavus Wahl- lenberg, Suffield, Conn.

New York Alumni Association Scholarship, Harry Elwood Rollins, Bangor.

Junior Exhibiton Prize, Elizabeth Fitzgerald Hanly, Thomaston.

Honorary Public Speaking Society Prize (for second place in the Junior Exhibition), Albert Barnett Ferguson, New York City.

Sophomore Declamation Prize, Earl Stephen Merrill, Orono.

Franklin Danforth Prize, Sidney Winfield Patterson, Winslow.

Pittsburgh Alumni Association Scholarship, Fred Elton Chapman, Lake Hermon.

Kennebec County Prize, Herman Richard Clark, Townsend, Mass.; Edward Leonard Getchell, Waterville; Paul Elmer Murray, Skowhegan.

King Prize, Robert Freeman Thurrell, Portland.

Walter Balentine Prize, Raymond Henry Fogler, West Rockport.

Wingard Cup, Otis Carroll Lawry, Fairfield.

Holt Prizes, Paul Elmer Murray, Skowhegan; Herbert Nason Skol field, Brunswick; Arthur Warren Abbott, Portland.

L. C. Bateman Prize, James Russell Hudson, Winthrop.

Lewiston Journal Prize, Roy William Peaslee, Randolph.

College of Technology Prize, Otis Carroll.

Father Harrington Prize, Elizabeth Fitzgerald Hanly, Thomaston.
Prizes Awarded

The American Law Book Company Prize, Frederick Wakefield Small.

The Class of 1908 Commencement Cup, which is awarded each year to the class having the largest percentage of its membership present at Commencement, was won in 1909 by the classes of 1872 and 1873; in 1910 by the class of 1875; in 1911 by the class of 1875; in 1912 by the class of 1872; in 1913 by the class of 1872; in 1914 by the classes of 1872 and 1882.

The cup presented by the Senior Skulls to that Fraternity which has during the year maintained the highest average in scholarship was awarded in 1910 to Beta Theta Pi, in 1911 to Alpha Tau Omega, in 1912 to Phi Gamma Delta, in 1913 to Phi Gamma Delta, and in 1914 to Sigma Chi.

A cup was offered in 1912 by the Commencement Committee to be competed for during a period of ten years by the fraternities. It is to be awarded each year to that fraternity which has present at Commencement the largest proportion of its alumni, including non-graduates as well as graduates; members of the faculty and members of classes still in college are omitted from the reckoning. At the end of ten years the cup is to become the property of that fraternity which has won it the most times during the period. Only men's general fraternities of more than five years existence are eligible, but locals are not barred. In 1912 Phi Gamma Delta won, with Beta Theta Pi second and Kappa Sigma third. In 1913 Beta Theta Pi won, with Phi Kappa Sigma second and Phi Gamma Delta third. In 1914 Phi Gamma Delta won, with Beta Theta Pi second and Delta Tau Delta, third.
COMMENCEMENT

The Commencement exercises of 1914 were as follows:

SATURDAY, JUNE 6
5.00 P. M. Annual Meeting of Phi Kappa Phi, Wingate Hall
6.00 P. M. Annual Banquet of Phi Kappa Phi, Hannibal Hamlin Hall
8.30 P. M. King Oratorical Prize Contest, the Chapel

SUNDAY, JUNE 7
10.30 A. M. Baccalaureate Address, by Guy Potter Benton, D. D., LL. D., President of the University of Vermont, the Chapel
4.30 P. M. Vesper Service, conducted by Rev. Henry L. Griffin, D. D., the Chapel

MONDAY, JUNE 8
9.30 A. M. Review of the Cadet Battalion, by His Excellency, Governor William T. Haines, and staff, followed by a competitive company drill, Alumni Field
2.00 P. M. Class Day Exercises, the Campus
2.30 P. M. Annual Meeting of the Alumni Advisory Council, the Library
4.00 to 6.00 P. M. At Home, at the fraternity houses on and adjacent to the campus, and at the Mount Vernon House
8.00 P. M. Class of 1909 Banquet, Conduskeag Canoe Club, Hampden
8.00 P. M. “The Learned Ladies” by the Maine Masque, the Gymnasium

TUESDAY, JUNE 9
9.00 A. M. Baseball Game (Five Innings), 1909-1914, Alumni Field
10.00 A. M. Concert by the Musical Organizations, the Chapel
1.30 P. M. Class of 1909 Frolic, Alumni Field
2.30 P. M. Baseball Game, Alumni-University, Alumni Field

245
Commencement

2.30 P. M. Annual Meeting of the College of Law Alumni Association, Stewart Hall
4.30 to 6.30 P. M. Alumni Luncheon, the Gymnasium
6.00 P. M. Alumnae Luncheon, Mount Vernon House
6.15 P. M. Class of 1909 Sing, the Library steps
7.30 to 9.30 P. M. President's Reception, the Library
9.00 P. M. Fraternity Reunions, the fraternity houses

Wednesday, June 10
9.30 A. M. Commencement Exercises, the Chapel; Address by Hon. Thomas R. Marshall, LL. D., Vice President of the United States
11.15 A. M. Planting the Ivy, by the Class of 1914, followed by other class exercises, the Campus
12.00 M. Commencement Dinner, The Gymnasium
3.00 P. M. Annual Meeting of the General Alumni Association, the Chapel
8.00 P. M. Commencement Ball, the Gymnasium
Degrees Conferred

DEGREES CONFERRED

COLLEGE OF AGRICULTURE

Bachelor of Science

Arthur Warren Abbott (Horticulture) .. Portland
Harold Purington Adams (Dairy Husbandry) Bowdoinham
Charles Raymond Atwood (Forestry) ... Rumford
Lewis John Brown (Agronomy) ... Gorham, N. H.
Chauncey Wallace Lord Chapman (Forestry) Old Town
Ralph Thompson Coffey (Horticulture) South Brewer
Richard Foster Crocker (Biology) ... Belfast
Howe Wiggin Hall (Horticulture) .. Rockland
James Russell Hudson (Animal Husbandry) Winthrop
Henry Augustus King (Horticulture) Peabody, Mass.
Charles Raymond McKenney (Horticulture) Orono
Leon Stanley McLauchlan (Agronomy) Fort Fairfield
Preston Hussey Martin (Horticulture) Fort Fairfield
William Collins Monahan (Agronomy) South Framingham, Mass.
Paul Wheeler Monohon (Agronomy) Biddeford
William Montgomery Morse (Animal Husbandry) Waterford
Sidney Winfield Patterson (Dairy Husbandry) Winslow
Roy William Peaslee (Agronomy) .. Randolph
Woodbury Freeman Pride (Horticulture) Auburn
Eugenia Rodick (Home Economics) Bar Harbor
Neil Carpenter Sherwood (Animal Husbandry) Cherryfield
Leon Campbell Smith (Forestry) .. Topsham
Roland Earle Stevens (Biology) .. Belfast
William Raymond Thompson (Biology) Bangor
Wayland Dean Towner (Forestry) Malden, Mass.
Degrees Conferred

COLLEGE OF ARTS AND SCIENCES

Bachelor of Arts

Louise Bartlett (Latin) ... Orono
Estelle Beaupre (Romance Languages) ... Bangor
Marion Stephanie Buzzell (Romance Languages) Old Town
Charles Arthur Chase (Biology) ... Sebec Station
Harold Vernon Cobb (Economics) ... Livermore Falls
Mary Longfellow Cousins (Latin) .. Brewer
Zu Chi Dage (Chemistry) .. Soo Chow, China
Albert Felton (Chemistry) .. Parsons, W. Va.
Albert Barnett Ferguson (Biology) ... New York, N. Y.
Norman Richards French (Physics) ... Fort Fairfield
Everett Burton Harvey (English) .. Bar Harbor
Theodore Winthrop Haskell (Economics) Westbrook
Oswald Burnett Higgins (Physics) ... Sewaren, N. J.
Aileene Browne Hobart (English) .. Milford
Laura Pearl Hodgins (Latin) .. Calais
Carrol Clair Jones (Economics) ... Solon
Marion Luella Jordan (Latin) .. Old Town
Albert Lincoln King (Economics) .. South Paris
Warren Stanhope Lucas (Mathematics) .. Auburn
Esca Allan Maines (Education) ... Norway
Frank Albert Morris ... Old Town
George Burgess Newman (Biology) .. Fryeburg
Anna Belle Perkins (Romance Languages) North Brooksville
Arthur Amos St. Onge (Romance Languages) Dover
Allan Frank Sawyer (Economics) .. Milbridge
George Edward Sinkinson (Economics) Somersworth, N. H.
Carolyn Imogen Wormwood (English) .. Bangor
George James York (History) .. Yarmouthville

COLLEGE OF LAW

Bachelor of Laws

Charles Drummond Bartlett .. Bangor
Carl Adams Blackington .. Rockland
Samuel Cohen .. Bangor
Frank Gerald Driscoll ... Concord, N. H.
Degrees Conferred

Maurice Sylvester Cerrish ... Melrose, Mass.
Ralph Rigby Glass (Graduate U. S. Military Academy, 1904) ... Bangor
Edward Isaac Gleszer ... Hartford, Conn.
Ernest Leroy Goodspeed (A. B., Bowdoin College, 1909) Randolph
Clyfton Hewes ... Saco
Frank Milton Libby ... Portland
James Barry Mountaine .. Bangor
Gladys Madeline Niles .. Bangor
James Gorman O'Connor ... Taunton, Mass.
Arthur Willis Patterson.. Castine
Harvey Roscoe Pease .. Cornish
Fred Wakefield Small .. Steep Falls
Frank Elwyn Southard (B. A., University of Maine, 1910) Auburn
James Roby Towle .. Montpelier, Vt.
Carl Alfred Weick ... Springfield
Ralph Kimball Wood .. Bangor

COLLEGE OF TECHNOLOGY

Bachelor of Science

Archie Asbury Adams (Mechanical Engineering) LaGrange
Clifton Lowery Allen (Civil Engineering) Mount Vernon
Robert Wilbur Andrews (Civil Engineering) West Pembroke
Philip Hanson Bean (Civil Engineering) Saco
Ira Miller Bradbury (Civil Engineering) Gorham
Paul De Costa Bray (Chemistry) Turner
Dwight Stillman Chalmers (Electrical Engineering) Albion
Hermon Richard Clark (Electrical Engineering) Townsend, Mass.
Fred Earle Dearborn (Chemistry) Penacook, N. H.
Harold Lee Dinsmore (Electrical Engineering) Hebron
Leon Albion Field (Mechanical Engineering) Biddeford
David Albert Foster (Civil Engineering) Ellsworth Falls
Ernest Eugene Fowler (Mechanical Engineering) Hartford, Conn.
Harold Colby Gerrish (Electrical Engineering) Bangor
Edward Leonard Getchell (Electrical Engineering) Waterville
Alexander Leroy Haggart (Civil Engineering) Franklin, Mass.
Alden Burgess Hayes (Mechanical Engineering) Bangor
Thomas Carol Higgins (Civil Engineering) Bar Harbor
Frederick Sawtelle Jones (Electrical Engineering) Augusta
John Norman Junkins (Mechanical Engineering) Milford, N. H.
Degrees Conferred

William Earle Kimball (Civil Engineering) South Paris
Fred Justin Lewis (Civil Engineering) Springfield, Mass.
Arthur Clarence Libby (Civil Engineering) Scarboro
Edward Michael Loftus (Chemical Engineering) Bangor
Nicholas Philip Makanna (Civil Engineering) Bangor
Mario Martinelli (Chemistry) Wareham, Mass.
Paul Elmer Murray (Electrical Engineering) Skowhegan
Fernando Treat Norcross (Civil Engineering) Portland
Mark Pendleton (Electrical Engineering) Islesboro
Wilfred Brown Pickard (Civil Engineering) Hopedale, Mass.
Lester Lary Richardson (Civil Engineering) Old Orchard
Gerald Arlester Rounds (Civil Engineering) Portland
Herbert Nason Skolfield (Civil Engineering) Brunswick
Philip Webb Thomas (Civil Engineering) Portland
Charles Herbert Tipping (Mechanical Engineering) Claremont, N. H.
Guy Raymond Wescott (Civil Engineering) Rumford
Max Lincoln Wilder (Civil Engineering) Augusta
Sherwood Howe Willard (Electrical Engineering) Greenfield, Mass.
Frederick Shaw Youngs (Civil Engineering) Bangor

PHARMACEUTICAL CHEMIST

Arthur George Baldwin .. Reading, Mass.
Francis Edward Fortier .. Orono
Thomas Augustine Lynch Bangor
Paul Ouilette .. Caribou
George Boss Paul ... Dover, N. H.

ADVANCED DEGREES

Martin Andrew Nordgaard (A. B., Saint Olaf College, 1904) (Mathematics) Orono
Irving Osgood Scott, (B. S., Dartmouth College, 1910) (Education) Hinckley

MASTER OF SCIENCE

Clarence Wallace Barber, (B. S., University of Maine, 1912) (Biology) Orono

MASTER OF LAWS

Mark Alton Barwise, (LL. B., University of Maine, 1913) Bangor
Arthur Jean Baptist Cartier, (LL. B., University of Maine, 1909) Biddeford
Degrees Conferred

Walter Herbert Foster, (LL. B., University of Maine, 1905)
Boston, Mass.
Ernest Linwood Seavey, (LL. B., University of Maine, 1908)
San Diego, Cal.

PROFESSIONAL DEGREES

CHEMICAL ENGINEER
Albert Davis Conley, (B. S., University of Maine, 1911) ... Passaic, N. J.

CIVIL ENGINEER
Raymond Earle Davis, (B. S., University of Maine, 1911) ... Urbana, Ill.
Clarence McLellan Weston, (B. S., University of Maine, 1908)
New York, N. Y.

CERTIFICATES

HOME ECONOMICS
Edith Flint ... Baldwin
Ethel Elizabeth Harrigan .. Bangor
Ruth Jackman .. Vanceboro
Mary Frey Leonard .. Lewiston

SCHOOL COURSE IN AGRICULTURE
Alden Western Bradford ... Sebec Station
John Carroll Hawkes ... South Windham
Joseph Henry Johnson .. Waltham, Mass.
Harold Joseph Shaw .. Sanford
Alfred Henry Sidelinger .. Nobleboro
Sylvanus Cobb Small ... Charleston
Jones Harold Talbot ... East Machias
Floyd Verrill ... Brunswick
Linton Bartlett Ward ... Shirley, Mass.
Carroll Eugene Wilcox .. Morgan, Vt.
Clyde Sumner Wilcox .. Morgan, Vt.
CATALOG OF STUDENTS

GRADUATE STUDENTS

Barrows, Henry Robbins, Ph. B., Clinton, N. Y. 106 H. H. Hall
M. S., Bl.
Hamilton College, 1906-1912

Beaupré, Estelle, B. A., Gm.
University of Maine, 1914

Buzzell, Marion Stephanie, B. A., Ed.
University of Maine, 1914

Clark, Frank Sheldon, B. S., Ee.
Norwich University, 1908

Day, George Willis, B. S., Ch.
Dartmouth College, 1905

Everett, Sarah Ruth, A. B., Ch.
Boston University, 1911

Floyd, Raymond, B. A., Gm.
University of Maine, 1913

French, Norman Richards, B. S., Ps. Fort Fairfield 113 Main Street

Cowen, John Whittemore, B. S., Bl.
Arlington, Mass. 301 H. H. Hall

Grant, Charles Harold, B. A., Ed. Bangor
University of Maine, 1911

252
Catalog of Students

Jamison, Orville Alvin, B. Sc., Bl. Orono Main Street
Ohio State University, 1912
Kelley, Margaret June, B. A., Gm. Bangor Bangor
University of Maine, 1912
Lanpher, Stacy Clifford, B. A., Rm. Foxcroft
University of Maine, 1908
Lucas, Hoyt Dennis, B. Sc., Ch. Springfield, Mass. University Inn
Massachusetts Agricultural College, 1914
Monohon, Paul Wheeler, B. S., Ag. Biddeford H. H. Hall
University of Maine, 1914
Nordgaard, Martin Andrew, A. B., Orono College Street
A. M., Ms.
St. Olaf College, 1904, University of Maine, 1914
O'Connor, James Gorman, LL. B., Bangor 306 Hammond Street
Law
University of Maine, 1914
Patterson, Sidney Winfield, B. S., Winslow 301 H. H. Hall
An.
University of Maine, 1914
Pease, Harvey Roscoe, I.L. B., Law Cornish The Hallock
University of Maine, 1914
Pride, Woodbury Freeman, B. S., Auburn 206 H. H. Hall
Bl.
University of Maine, 1914
Redman, Ralph Woodbury, B. S., Orono 6 Myrtle Street
Es.
University of Maine, 1912
Sawyer, Edward Eugene, B. S., Ch. Old Town Old Town
University of Maine, 1912
University of Maine, 1914
Spear, Joseph, B. A., Ms. Malden, Mass. University Inn
Harvard University, 1912
Stanly, Winthrop Hamor, B. A., Ch. Hull's Cove
University of Maine, 1910
Stephens, Aberta, Ph. B., Hy. Wapello, la. Pond Street
Iowa Wesleyan College, 1911
Tobey, Elmer Robert, B. S., Ch. Orono 28 Bennoch Street
University of Maine, 1911
Transue, Vincent Milo, B. S., M. S. Orono Pennsylvania State College, 1912, 1913
Ps.
Catalog of Students

Webb, Antoinette Treat, B. A., Eh. Orono
University of Maine, 1912
1 Mill Street

Whiteside, Thomas, A. B., S. T. Orono
B., Es.
Boston University, 1889, 1891
Oak Street

Wilbur, Walter Edward, B. S., M. S., Orono
Ms.
University of Maine, 1908, 1911
5 Pine Street

Woods, Roscoe, A. B. Vanarsdell, Ky. Orono
Georgetown College, 1914

Wormwood, Alice Eleanor, B. A. Bangor
Lt.
Wellesley College, 1913

SENIORS

Aageson, Wilbur Cole, Dh. Thomaston
Adams, James Abraham, Ms. Orono
Allen, Charles Stanley, Ce.
Augusta
Bailey, Harold Perry, Ch.
Dexter
Baker, David Seth, Ce.
Caratunk
Banks, Merton Ford, Ce.
Biddeford
Beale, Douglas Marsh, Ht.
Orono
Bernheisel, George Hench, An.
New Bloomfield, Pa.
Beverage, Harold Henry, Ee.
North Haven
Bickford, Miretta Lydia, Lt.
Oro
Blaisdell, Lawrence Allen, Ee.
Lynn, Mass.
Bodwell, Joseph Henry, An.
Methuen, Mass.
Bowler, William Edward, Ee.
Spencer, Mass.
Bragg, Alfred Orman, Ch. Eng.
Portland
Brennan, James Joseph, Ch. Eng.
Bangor 7 Birch Street, Bangor
Brennan, Rosemary Agnes, Gm.
Bangor
Brockway, Earle Maurice, Fy.
Dexter
Brown, Winthrop Blakely, Ch.
Portland
Brownning, Neva, Eh.
Orono
Buck, William Harold, Ce.
Ansonia, Conn.
Chapman, Fred Elton, Ee.
Lake Hermon
Clark, Robert Pinkham, Es.
Lincoln
Clifford, Ernest Alfred, Ce.
Brunswick
Coffin, Everett Bickford, Ce.
Brunswick
Colbath, Muriel, Eh.
Hampden

254
<table>
<thead>
<tr>
<th>Name</th>
<th>Residence</th>
<th>House</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coombs, Olive Erdine, Lt.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cooper, Harold, Me.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coyne, Albert Leo, Ce.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connors, Edward Warren, Ce.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crandall, James Stuart, Ce.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Creighton, Maynard Joshua, Ch.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crispin, Russell Milton, Ce.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Croteau, Leon John, Ce.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Davis, Lucretia Almira, Rm.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dolan, Walter James, Ch.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Donahue, Norman Sylvester, Ag.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dare, Edward Albert, Ch. Eng.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Douglas, Chauncey Hazen, Fy.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Douglass, Raymond Donald, Ms.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Doyle, Joseph Edward, Bl.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eason, Ralph Barrows, Ph.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elliott, Park, Ec.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emmons, Norman Eudell, Ec.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fish, Harold Mahlon, Ce.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fletcher, Maurice Arthur, Gm.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flower, Mildred Webster, Lt.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fogg, Harry Willard, Fy.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fogler, Raymond Henry, Bl.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fowler, Henry Winslow, Fy.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gerhardts, Emma, He.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glover, John White, Me.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goldsmith, Chester Hamlin, Ch.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goodwin, Earl Corson, Es.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goodwin, Allyn Maurice, Ee.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gordon, Forest Chandler, Ch. Eng.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Greys, Ethel Mae, Lt.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Culliver, James Lucius, Es.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hall, Preston Martin, Ch. Eng.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hamel, Leslie Atheson, Ag.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harly, Elizabeth, Eh.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haskell, Lawrence Herbert, Ce.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hatch, Frederic Boynton, Ce.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hayford, Herbert Wilder, Gm.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hill, William Barlow, Fy.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hires, Mary Elizabeth Burns, Lt.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
<th>House</th>
</tr>
</thead>
<tbody>
<tr>
<td>North Islesboro</td>
<td>Park Street</td>
<td>Θ X House</td>
</tr>
<tr>
<td>Auburn</td>
<td></td>
<td>Δ T Δ House</td>
</tr>
<tr>
<td>Worcester, Mass.</td>
<td>Old Town</td>
<td></td>
</tr>
<tr>
<td>Old Town</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malden, Mass.</td>
<td>Σ X House</td>
<td></td>
</tr>
<tr>
<td>Thomaston</td>
<td>Φ Γ Δ House</td>
<td></td>
</tr>
<tr>
<td>West Somerville, Mass.</td>
<td>Σ X House</td>
<td></td>
</tr>
<tr>
<td>Holbrook, Mass.</td>
<td>Δ X A House</td>
<td></td>
</tr>
<tr>
<td>Old Town</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Worcester, Mass.</td>
<td>Θ X House</td>
<td></td>
</tr>
<tr>
<td>Luthersburg, Pa.</td>
<td>K Σ House</td>
<td></td>
</tr>
<tr>
<td>Bangor</td>
<td>408 H. H. Hall</td>
<td></td>
</tr>
<tr>
<td>Peabody, Mass.</td>
<td>407 H. H. Hall</td>
<td></td>
</tr>
<tr>
<td>Gorham</td>
<td>δ T Δ House</td>
<td></td>
</tr>
<tr>
<td>Danvers, Mass.</td>
<td>Θ X House</td>
<td></td>
</tr>
<tr>
<td>South Paris</td>
<td>Φ K Σ House</td>
<td></td>
</tr>
<tr>
<td>Foxcroft</td>
<td>Σ A E House</td>
<td></td>
</tr>
<tr>
<td>Chester, Conn.</td>
<td>109 H. H. Hall</td>
<td></td>
</tr>
<tr>
<td>Farmington</td>
<td>Δ X A House</td>
<td></td>
</tr>
<tr>
<td>Wilton</td>
<td>Δ X A House</td>
<td></td>
</tr>
<tr>
<td>East Kingston, N. H.</td>
<td>Balentine Hall</td>
<td></td>
</tr>
<tr>
<td>Hulls Cove</td>
<td>Σ N House</td>
<td></td>
</tr>
<tr>
<td>West Rockport</td>
<td>Σ X House</td>
<td></td>
</tr>
<tr>
<td>Berlin, N. H.</td>
<td>Θ X House</td>
<td></td>
</tr>
<tr>
<td>Westbrook</td>
<td>Mt. Vernon House</td>
<td></td>
</tr>
<tr>
<td>Rockland</td>
<td>Σ X House</td>
<td></td>
</tr>
<tr>
<td>Beverly, Mass.</td>
<td>Σ X House</td>
<td></td>
</tr>
<tr>
<td>Oakland</td>
<td>Α T Ω House</td>
<td></td>
</tr>
<tr>
<td>Saco</td>
<td>K Σ House</td>
<td></td>
</tr>
<tr>
<td>Auburn</td>
<td>Φ Γ Δ House</td>
<td></td>
</tr>
<tr>
<td>South Penobscot</td>
<td>Mt. Vernon House</td>
<td></td>
</tr>
<tr>
<td>Auburn</td>
<td>Β Θ Π House</td>
<td></td>
</tr>
<tr>
<td>Taunton, Mass.</td>
<td>Φ Γ Δ House</td>
<td></td>
</tr>
<tr>
<td>Portland</td>
<td>202 Oak Hall</td>
<td></td>
</tr>
<tr>
<td>Thomaston</td>
<td>University Inn</td>
<td></td>
</tr>
<tr>
<td>Lynn, Mass.</td>
<td>406 H. H. Hall</td>
<td></td>
</tr>
<tr>
<td>Pemaquid Harbor</td>
<td>Σ X Δ House</td>
<td></td>
</tr>
<tr>
<td>Dover</td>
<td>Δ T Δ House</td>
<td></td>
</tr>
<tr>
<td>Gorham</td>
<td>K Σ House</td>
<td></td>
</tr>
<tr>
<td>Middletown, Conn.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Catalog of Students

Hodgkins, Harold Eugene, Ee.
Hodgkins, Herbert Charles, Ee.
Holyoke, Margaret Lillis, Bl.
Hutchinson, Albert Fletcher, Ch.
Ingalls, Everett Palmer, Ce.
Jones, Harold Libby, Ce.
Kimball, Roland Gerry, Pm.
Leavitt, Harold Walter, Ce.
Lindgren, Ray Harrison, Ce.
Luther, Harris Gates, Me.
Lyon, Clement Ames, Ag.
Mace, Asa Russell, Ce.
Magnus, Carl, Ch. Eng.
Martin, William Hope, Bl.
McKenney, Maurice Roy, Ee.
Mellen, William Henshaw, Me.
Merrill, Gladys Helen, Rm.
Mullaney, James Edward, Ce.
Norton, Chester Harold, Fy.
Oak, Malcolm Hayford, Ch.
Parker, Joseph Batchelder, Dh.
Parks, David Weaver, Ps.
Patten, Mountford Elmes, Fy.
Pettey, Willis Thurston, Ph.

Philbrook, John Harvey, Dh.
Philbrook, Philip Edwin, Me.
Philbrook, Walker Merriam, Ee.
Pierce, Raymond Trussell, Ee.
Pinkham, Lloyd Francis, Es.
Randall, Harry Algeron, Ee.
Randall, James Stuart, Ce.
Redman, William Wason, Ag.
Rogers, Walter Henry, Ch.
Sawyer, Leon George, Ee.
Schwey, Abraham Ira, Ht.
Shaw, Merle Branard, Ch. Eng.
Sleeper, Harvey Prescott, Ee.
Slocum, Paul Frederick, Ce.
Smart, Frances Gertrude, Rm.

Waterville
Waterville
Brewer
North Dexter
Bridgton
Corinna
Norse
Monmouth
Belfast
Hadlyme, Conn.
East Bridgewater, Mass.
Aurora
Biddeford
Carlisle, Pa.
Stillwater
Athol, Mass.
Oroko
Somerville, Mass.
Chelsea, Mass.
Caribou
Bangor 99 Kenduskeag Ave., Bangor
Fort Fairfield
Carmel
North Dartmouth, Mass.

Mt. Vernon House
Mt. Vernon House
Σ Χ House
B Θ Π House
Φ Η Κ House
Φ Κ Σ House
211 H. H. Hall
211 H. H. Hall
109 H. H. Hall
Σ N House
Φ Κ Σ House
Σ N House
Σ Χ House
Stillwater
Campus
Campus

A T Ω House
Δ T Δ House
Φ Η Κ House
A T Ω House
201 H. H. Hall
Σ Α E House
211 Oak Hall
Σ N House
Φ Γ Δ House
Σ Χ House
Φ Η Κ House
Φ Κ Σ House
204 H. H. Hall
401 H. H. Hall
Park Street
Φ Γ Δ House
256
Catalog of Students

Smith, Allen G., Me.
Stewart, Loren Prescott, Ce.
Thurrell, Robert Freemen, Es.
Titecomb, Harry Alton, Me.
Tolman, Lewis Brewster, Es.
Treat, Gladys, Gm.
Varney, Ross Harold, Es.
Walker, James Clifford, Ps.
Walters, Philip Harris, An.
Wark, William Lucas, Me.
Warren, Paul Alanson, Bl.
Weeks, Jedediah Earle, Ce.
Welch, Gerald Cushman, Ce.
White, Harold Chandler, Ch. Eng.
Whitney, Thomas Boardman, Ce.
Wilbur, Oscar Milton, Ht.
Williams, Harry Duncan, Ce.
Winship, Rachel, He.
Woodsum, Edmund Nugent, Me.
Woodward, George Thomas, Me.

Blue Hill
Thorndike
Portland
South Paris
Bangor
Winterport
Haverhill, Mass.
Portland
Readfield
Cumberland Mills
Dover
Wells
Oakland
Bangor
Caribou
Pembroke
Readfield
Auburn
Stillwater
Lisbon Falls

Park Street
Σ A E House
Φ Γ Δ House
Φ K Σ House
Φ Γ Δ House
Balentine Hall
Φ K Σ House
Θ X House
Campus
Σ N House
Δ T Δ House
207 H. H. Hall
A T Ω House
K Σ House
Campus
Σ A E House
Mt. Vernon House
Stillwater
Φ H K House

Aikins, Frederick Harlow, Dh.
Ames, Ivan Cecil, Ce.
Ashton, Harold Dudley, Ce.
Atwater, Donald Vince, Bl.
Barrett, Basil Edward, Es.
Barrows, Lewis Orin, Pm.
Barry, James Edward, Es.
Bell, Roger Warren, Ce.
Blackman, Charles Leon, An.
Blanchard, Ensor Harding, Ce.
Blanchard, Robert Germain, Ce.
Blood, Lewis Henry, Ch.
Bonney, Timothy Doten, Ms.
Boothby, Horace Everett, Ht.
Bradbury, Burke, Ee.
Brown, Brooks, Ag.
Brown, Walter True, Me.

So. Windham
North Haven
Springfield, Mass.
Fort Fairfield
Bluehill
Newport
Bangor
168 Grove St., Bangor
Arlington, Mass.
Peak Island
Buenos Aires, Argentina, S. A.

Forest Avenue
Cumberland Center
Foxcroft
Mexico
Reading, Mass.
Methuen, Mass.
Old Town
Dover
West Bath

B Θ II House
K Σ House
Σ X House
Σ X House
B Θ II House

A Δ X A House
Σ A E House
Θ X House
Δ T Δ House
Φ Γ Δ House
Δ T Δ House
Peters Street
<table>
<thead>
<tr>
<th>Catalog of Students</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buckley, Forest LeRoy, Ce.</td>
</tr>
<tr>
<td>Butters, Arthur Edwin, Es.</td>
</tr>
<tr>
<td>Causland, Kenneth Martin, Ee.</td>
</tr>
<tr>
<td>Chadbourne, Ava Harriet, Ed.</td>
</tr>
<tr>
<td>Clement, Stephen Caldwell, Eh.</td>
</tr>
<tr>
<td>Coffin, Harold Wilhelm, Ee.</td>
</tr>
<tr>
<td>Colbath, Orman Schuyler, Ag.</td>
</tr>
<tr>
<td>Colvin, Zella Elizabeth, Ms.</td>
</tr>
<tr>
<td>Condon, Guy Berwyn, Es.</td>
</tr>
<tr>
<td>Cookson, Ernest Loren, B. Pd.</td>
</tr>
<tr>
<td>Crimmin, Erolon Victor, Ee.</td>
</tr>
<tr>
<td>Currier, Doris, Gm.</td>
</tr>
<tr>
<td>Currier, Harold Newcomb, Ch.</td>
</tr>
<tr>
<td>Currier, Karl Moody, Ch. Eng.</td>
</tr>
<tr>
<td>Curtis, Fred Holmes, Gm.</td>
</tr>
<tr>
<td>Damren, Fred Llewellyn, Bl.</td>
</tr>
<tr>
<td>Danforth, Stephen Paul, Eh.</td>
</tr>
<tr>
<td>Davis, Arthur Linwood, Ee.</td>
</tr>
<tr>
<td>DeBeck, Mary Muriel, Lt.</td>
</tr>
<tr>
<td>DeWitt, Carroll Melbourne, Es.</td>
</tr>
<tr>
<td>Dodge, John Maynard, Me.</td>
</tr>
<tr>
<td>Dole, Charles Edmund, Es.</td>
</tr>
<tr>
<td>Dorsey, Llewellyn Morse, Dh.</td>
</tr>
<tr>
<td>Driscoll, Michael Columbus, Rm.</td>
</tr>
<tr>
<td>Eddy, Emery Davis, Bl.</td>
</tr>
<tr>
<td>Edes, Omar Kelsey, Es.</td>
</tr>
<tr>
<td>Edminster, Winfred Herbert, Bl.</td>
</tr>
<tr>
<td>Elliott, James Carroll, Dh.</td>
</tr>
<tr>
<td>Emerson, Walter Davis, Me.</td>
</tr>
<tr>
<td>Fairchild, Thomas Everett, Ph.</td>
</tr>
<tr>
<td>Falvey, John Michael, Ch.</td>
</tr>
<tr>
<td>Fannon, Ralph William, Ch. Eng.</td>
</tr>
<tr>
<td>Folsom, Charles Herbert, Ce.</td>
</tr>
<tr>
<td>Forsyth, Nathaniel Frederick, Es.</td>
</tr>
<tr>
<td>Foster, Marie Fredrika, Ms.</td>
</tr>
<tr>
<td>Fraser, Elwood Stuart, Dh.</td>
</tr>
<tr>
<td>Frawley, Isabel Frances, Rm.</td>
</tr>
<tr>
<td>Gowell, Roger Locke, Dh.</td>
</tr>
<tr>
<td>Grant, Benjamin Elwell, Es.</td>
</tr>
<tr>
<td>South Leeds</td>
</tr>
<tr>
<td>Old Town</td>
</tr>
<tr>
<td>Freeport</td>
</tr>
<tr>
<td>Mattawamkeag</td>
</tr>
<tr>
<td>Mt. Vernon House</td>
</tr>
<tr>
<td>Belfast</td>
</tr>
<tr>
<td>Portland</td>
</tr>
<tr>
<td>Hampden</td>
</tr>
<tr>
<td>Williamsburg, Ind.</td>
</tr>
<tr>
<td>South Penobscot</td>
</tr>
<tr>
<td>Albion</td>
</tr>
<tr>
<td>Winterport</td>
</tr>
<tr>
<td>Bangor</td>
</tr>
<tr>
<td>Brewer 9 Prospect Street, Brewer</td>
</tr>
<tr>
<td>Brewer</td>
</tr>
<tr>
<td>Addison</td>
</tr>
<tr>
<td>Auburn</td>
</tr>
<tr>
<td>Foxcroft</td>
</tr>
<tr>
<td>Auburn</td>
</tr>
<tr>
<td>Franklin</td>
</tr>
<tr>
<td>Brewer</td>
</tr>
<tr>
<td>Boothbay</td>
</tr>
<tr>
<td>Bangor</td>
</tr>
<tr>
<td>Augusta</td>
</tr>
<tr>
<td>North Abington, Mass.</td>
</tr>
<tr>
<td>Bangor</td>
</tr>
<tr>
<td>Dexter</td>
</tr>
<tr>
<td>Dixmont</td>
</tr>
<tr>
<td>North Rumford</td>
</tr>
<tr>
<td>Orono</td>
</tr>
<tr>
<td>Livermore Falls</td>
</tr>
<tr>
<td>South Berwick</td>
</tr>
<tr>
<td>Appleton, Wis.</td>
</tr>
<tr>
<td>Orono</td>
</tr>
<tr>
<td>412 H. H. Hall</td>
</tr>
<tr>
<td>403 H. H. Hall</td>
</tr>
<tr>
<td>308 H. H. Hall</td>
</tr>
<tr>
<td>Orono</td>
</tr>
<tr>
<td>412 H. H. Hall</td>
</tr>
<tr>
<td>403 H. H. Hall</td>
</tr>
<tr>
<td>308 H. H. Hall</td>
</tr>
<tr>
<td>Mt. Vernon House</td>
</tr>
<tr>
<td>107 Oak Hall</td>
</tr>
</tbody>
</table>
Catalog of Students

Grant, Philip Burr, Lt.
Gray, Frank William, Jr., An.
Greenleaf, Florence Evelyn, He.
Ham, Everett Goss, Ch. Eng.
Hamblen, Archelaus Lewis, Ht.
Hickson, Eugene Francis, Ch. Eng.
Hight, Vernon Ivan, Ce.
Hunt, Lawrence Milliken, Ch. Eng.
Jones, Marguerite, He.
Jordan, Maynard Fred, Ms.
Kiernan, John Henry, Ms.
Kirk, George Edwin, Es.
Kriger, Lewis Herman, An.
Kritter, Julius Henry, Ce.
Lackee, Hobart Goold, Me.
Lane, Charles Kent, Ch. Eng.
Lawry, Otis Carroll, Ch. Eng.
Leecock, John Thomas, Ch.
Lewis, Benjamin West, Ee.
Libby, Clarence Earl, Ch. Eng.
Loring, Fred Perley, Ag.
Lovely, Harry Richard, Fy.
McAvey, Liela Joyce, He.
Macdonald, Irving Clifford, Ch. Eng.
McLaughlin, George William, Ms.
McLaughlin, James Blaney, Ms.
Mansfield, Everett Keith, Ch. Eng.
Martin, Blynn, Es.
Mayers, Howard Winfield, Ce.
Merrill, Earl Stephen, Bl.
Moody, Charles Leo, Ht.
Moore, Ralph Lee, Ce.
Moore, Robert McGregor, Me.
Morris, Lester George, Dh.
Morrison, Mildred Cora, Rm.
Mulloney, Lawrence Edmund, Me.
Nickerson, Arno Wilbur, Ch. Eng.
Norris, Helen Mary, Gm.
Noyes, Garth Albert, Ee.
Nugent, William Robert, Ce.

Unity 38 Court St., Bangor
Jacksonville
Auburn
Foxcroft
Gorham
Bangor
Caribou
Old Town
Waldoboro
Islesford
Wareham, Mass.
Bar Harbor
Portland
Bradford, Mass.
Portland
Rockland, Mass.
Fairfield
North Andover, Mass.
Boothbay Harbor
Albion
West Pownal
Gardiner
Bangor
Portland
Harrington
Harrington
Fryeburg
New Gloucester
Dresden
Orono
North Monmouth
Hallowell
Biddeford
Bingham
Bar Harbor
Portland
Brewer
Wayne
Orono
Portland

Δ T Δ House
Mt. Vernon House
409 H. H. Hall
Δ T Δ House
74 Fern St., Bangor
Φ K Σ House
Φ Γ Δ House
Balentine Hall
103 H. H. Hall
Φ Η Κ House
Σ N House
412 H. H. Hall
Δ Τ Ω House
Δ T Δ House
Κ Σ House
B Θ Π House
Mt. Vernon House
Φ Η Κ House
25 Mill Street
210 H. H. Hall
Θ X House
Θ X House
Δ T Δ House
Campus
108 Oak Hall
Σ Α E House
Φ Κ Σ House
Δ Τ Ω House
Balentine Hall
A Τ Ω House
Θ X House
Mt. Vernon House
Orono
402 H. H. Hall

259
Catalog of Students

O’Neil, Harry Dennis, Ce.
O'Rourke, Francis, Ch. Eng.
Packard, Ansel Alba, Ee.
Packard, Marlborough, Ce.
Palmer, Guy Casley, An.
Park, Minnie May, He.
Peabody, Myron Columbus, Dh.
Perkins, Edward Adolphus, Ee.
Phibrook, Lawrence Eugene, An.
Pierson, Howard Lester, Ch. Eng.
Plummer, Marion Elizabeth, He.
Potter, Elmer Deming, Eh.
Prentice, William Henry, Jr., Me.
Purington, Clinton Everett, Es.
Rendall, Raymond Eaton, Fy.
Robinson, Madeline, Rm.
Roderick, Thaddless Louis, Ed.
Rollins, Harry Elwood, Ed.
Rudman, Samuel, Ce.
Ruffner, Charles William, Dh.
Russell, Sibyl Lois, He.
Sanborn, Oscar Harold, An.
Sawyer, Grace Ruth, Rm.
Shaw, Earle Eaton, Fy.
Sherman, Albion Franklin, Es.
Skillin, Clifford Augustus, Me.
Small, Norman Clifford, Ce.
Somes, Raymond Percival, Es.
Stone, Harry Edward, Ee.
Tarr, Omar Fred, Ch. Eng.
Thompson, Dorothy, Gm.
Thompson, Gladys, Gm.
Totman, James Emmons, Ag.
Webber, Walter Waitstill, Ch.
Whittemore, James Arthur, Fy.
Whittier, John Lowell, An.
Winship, Evelyn, Eh.

Bangor 468 Main Street, Bangor Σ A E House
Saco Σ A E House
Belfast Λ X A House
Sebec Lake 103 H. H. Hall
Patten K Σ House
Orono Orono
Exeter Σ X House
Old Orchard Σ X House
Shelburne, N. H. B θ H House
Lisbon Falls 309 H. H. Hall
Old Town Mt. Vernon House
Topsham 311 H. H. Hall
Round Pond 302 Oak Hall
Portland K Σ House
Melrose, Mass. Θ X House
Bangor 468 Main Street, Bangor Θ X House
Farmington Λ X A House
Bangor Φ K Σ House
Bangor 159 Hancock Street, Bangor K Σ House
Bangor 80 Main Street
Weld College Street
Old Town Old Town
Orono K Σ House
Bar Harbor K Σ House
Portland Θ X House
Farmington Φ K Σ House
Southwest Harbor 16 Main Street
Cornish Θ X House
Auburn Main Street
Orono Main Street
Auburn Main Street
Biddeford Φ K Σ House
Bangor B θ Π House
Lewiston B θ Π House
Providence, R. I. Φ H K House

260
<table>
<thead>
<tr>
<th>Name</th>
<th>Major</th>
<th>City/Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbott, Stephen</td>
<td>Engineering</td>
<td>Waterville</td>
</tr>
<tr>
<td>Amos, Luther</td>
<td>Electrical</td>
<td>Monmouth</td>
</tr>
<tr>
<td>Andrews, Harold</td>
<td>Electrical</td>
<td>Intervale, N. H.</td>
</tr>
<tr>
<td>Barnes, John</td>
<td>Electrical</td>
<td>Orono</td>
</tr>
<tr>
<td>Bartlett, Burton</td>
<td>Engineering</td>
<td>Wells</td>
</tr>
<tr>
<td>Bayley, Charles</td>
<td>Agriculture</td>
<td>Jonesport</td>
</tr>
<tr>
<td>Beal, George</td>
<td>Electrical</td>
<td>Auburn</td>
</tr>
<tr>
<td>Beckler, Warren</td>
<td>Engineering</td>
<td>Winthrop</td>
</tr>
<tr>
<td>Bernstein, Louis</td>
<td>Civil Engineering</td>
<td>Lawrence, Mass.</td>
</tr>
<tr>
<td>Berry, Leroy</td>
<td>Agriculture</td>
<td>South Bridgton</td>
</tr>
<tr>
<td>Blanchard, Arthur</td>
<td>Agriculture</td>
<td>Cumberland Center</td>
</tr>
<tr>
<td>Brasseur, Ralph</td>
<td>Electrical</td>
<td>Bradford, Mass.</td>
</tr>
<tr>
<td>Brawn, Earl</td>
<td>Electrical</td>
<td>South Portland</td>
</tr>
<tr>
<td>Brawn, Worthen</td>
<td>Electrical</td>
<td>Bath</td>
</tr>
<tr>
<td>Bridgham, Donald</td>
<td>Agricultural</td>
<td>Auburn</td>
</tr>
<tr>
<td>Bright, Elizabeth</td>
<td>Agricultural</td>
<td>Bangor</td>
</tr>
<tr>
<td>Bristol, Grace</td>
<td>History</td>
<td>West Hartford, Conn.</td>
</tr>
<tr>
<td>Brown, Clifford</td>
<td>Civil Engineering</td>
<td>Portland</td>
</tr>
<tr>
<td>Brown, Ruth</td>
<td>History</td>
<td>Brewer</td>
</tr>
<tr>
<td>Callahan, Raymond</td>
<td>Civil Engineering</td>
<td>Sabattus</td>
</tr>
<tr>
<td>Carlisle, Percy</td>
<td>Agriculture</td>
<td>Stillwater</td>
</tr>
<tr>
<td>Carter, Ray</td>
<td>Civil Engineering</td>
<td>West Hawley, Mass.</td>
</tr>
<tr>
<td>Chapin, Francis</td>
<td>Agriculture</td>
<td>Sabattus</td>
</tr>
<tr>
<td>Chapin, Leola</td>
<td>Electrical</td>
<td>Stillwater</td>
</tr>
<tr>
<td>Cheney, Samuel</td>
<td>Civil Engineering</td>
<td>West Hawley, Mass.</td>
</tr>
<tr>
<td>Clapp, Elwood</td>
<td>Electrical</td>
<td>Sabattus</td>
</tr>
<tr>
<td>Clark, Donald</td>
<td>Agriculture</td>
<td>Sabattus</td>
</tr>
<tr>
<td>Clark, Wallace</td>
<td>Civil Engineering</td>
<td>Sabattus</td>
</tr>
<tr>
<td>Cobb, Philip</td>
<td>Electrical</td>
<td>Sabattus</td>
</tr>
<tr>
<td>Cobb, Roland</td>
<td>Electrical</td>
<td>Sabattus</td>
</tr>
<tr>
<td>Cobb, Sumner</td>
<td>Electrical</td>
<td>Sabattus</td>
</tr>
<tr>
<td>Collins, Parkman</td>
<td>Agriculture</td>
<td>"</td>
</tr>
<tr>
<td>Coombs, Ralph</td>
<td>Electrical</td>
<td>Brewer</td>
</tr>
<tr>
<td>Copp, Lincoln</td>
<td>Electrical</td>
<td>Brewer</td>
</tr>
<tr>
<td>Cram, Abram</td>
<td>Civil Engineering</td>
<td>Brewer</td>
</tr>
<tr>
<td>Curtis, Samuel</td>
<td>Civil Engineering</td>
<td>Brewer</td>
</tr>
</tbody>
</table>
Catalog of Students

Creighton, George Plummer, Ch. Eng.
Crossland, Charles Edward, Ag.
Crowell, Fred Donald, Es.
Curran, Lawrence Edward, Ch. Eng.
Danforth, Earle Herrick, Ag.
Danforth, Helen Lois, He.
Davis, Kenneth Wayne, Es.
Dempsey, Edmund James, Ch.
Dole, George Elmer, Bl.
Dow, Mildred May, Eh.
Dunn, Arthur Wilfred, Ag.
Dutton, Philip Smith, Bl.
Eldridge, Charles Wilson, Es.
Ellis, Alfreda, He.
Emerson, Percy Daniel, Ce.
Emery, Earle, Leslie, Ag.
Emery, Marion, He.
Fides, Avery Meader, Ag.
Foster, Arthur Leo Livingston, Ch. Eng.
Fox, George Edward, Ch. Eng.
Fraser, Ralph Ervine, Me.
Freese, Langdon Jackson, Ee.
French, Frank Alexander, Es.
Gerry, Laurel Osgood, Gm.
Gilpatrick, Verner Elisha, Eh.
Godfrey, Noel Davis, Es.
Gonyer, Frances Louise, Rm.
Gould, Paul Lawrence, Arts
Gray, Albert Leroy, Ce.
Greeley, Helen Margareta, Ch.
Green, Daniel Emerson, Ag.
Greenwood, Russell Sanford, Ag.
Guiou, Elty Chester, Ce.
Hanly, Edward Kavanagh, Fy.
Hansen, George Edward, Fy.
Harding, Raymond Hawthorne, Ch. Eng.
Harmon, Frank Lorenzo, Ee.

Thomaston Φ Γ Δ House
Lawrence, Mass. Campus
Bangor Β Ω Π House
Great Works Φ Γ Δ House
Bangor Φ Η Κ House
Bangor Mt. Vernon House
Monson 112 H. H. Hall
Mattapan, Mass. ΢ Χ House
Haverhill, Mass. 403 H. H. Hall
So. Portland Mt. Vernon House
Yarmouthville Θ Χ House
Steuben Α Τ Ω House
Foxcroft Σ ΑΕ House
Belfast Balentine Hall
Biddeford Α Τ Ω House
Salisbury Cove Σ Ν House
Limerick Campus
Orr's Island Φ Η Κ House

Ellsworth Falls 302 Oak Hall
Glens Falls, N. Y. Α Τ Ω House
Presque Isle Φ Η Κ House
Bangor Κ ΢ House
Wappinger's Falls, N. Y. Θ Χ House
Brownville Α Τ Ω House
Oroko Bennoch Street
Lubec Park Street
Littleton, N. H. 24 Bennoch Street
Portland Bennoch Street
Westbrook Φ Γ Δ House
Bar Harbor Balentine Hall
Brewer 310 H. H. Hall
Presque Isle Φ Η Κ House
Oroko Main Street
Thomaston Park Street
Worcester, Mass. 103 Oak Hall

Kennebunk Σ ΑΕ House
Corinna Φ Η Κ House

262
Harrison, Mary Violetta, Gm.
Haskell Weston Bradford, Ag.
Hayden, Alfred Dorr, Ee.
Herrick, Carlton Sewall, Me.
Higgins, Royal Grant, Ce.
Hill, Mark Langdon, Ch. Eng.
Hiller, Howard Bryant, Ag.
Hilton, Cecil Max, Ce.
Hopkins, Bryant Leeland, Ce.
Howard, Flora Adelaide, He.

Hunt, Lilian Crosby, Eh.
Hurd, Everett St. Claire, Ee.
Hutchinson, Daniel Clair, Ag.
Ingraham, Edith Louise, Gm.
Jacobs, Maurice, Bl.
Jenkins, Howard Lawrence, Ag.
Johnson, Carl Strong, Ag.
Jones, Frederic Paul, Ee.
Jones, Walter Converse, Es.
Kilburn, George Washington, Ms.
King, Harold Louis, Ch.
LaCrosse, Waldo Joseph, Ag.
Lane, Hazel, He.
Lavorgna, Albert, Ce.
Libby, Philip Nason, Fy.
Libby, Seth Emerson, Ch.
Littlefield, Waldemar Bunker, Me.
Lougee, Frances Marie, Gm.
McCabe, Francis Thomas, Ee.
McCabe, George Curtin, Ee
McCobb, Herbert Hodges, Ag.
McCusker, Joseph Aloysius, Bl.
McKown, Richard Edward, Me.
Mank, Nelson Fountain, Me.
Marble, Gerald Coker, Me.
March, Ruth Evelyn, He.
Martini, Mary Lillian, He.
Mason, Walter Lee, Ed.
Mathews, Wilbur Leonard, Ee.
Maxfield, Horatio Winfred, Ce.

Freepor
Auburn
Key West, Fla.
South Brewer
Bar Harbor
Bath
Marion, Mass.
Greenville
North Haven
Bangor

82 Montgomery Street, Bangor
Old Town
Pittsfield
Dover
Bangor
78 Grant Street, Bangor
Methuen, Mass.
203 Oak Hall
Methuen, Mass.
Easthampton, Mass.
Biddeford
Portland
Fort Fairfield
Orono
South Brewer
Lewiston
Canton
Gray
Portland
Brewer
Winterport
Kennebunkport
Center Lincolnville
Braintree, Mass.
Southport
Portland
Skowhegan
Easton
Orono
Orono
Berwick
Portland

Main Street
B Θ Π House
A X A House
K Σ House
Σ N House
B Θ Π House
Σ A E House
Φ Κ Σ House
401 H. H. Hall

Bangor

Old Town
Φ Κ Σ House
Park Street

2 N House
301 H. H. Hall
Σ X House
Θ X House
South Brewer
Balentine Hall

409 Oak Hall

304 H. H. Hall
Φ Η Κ House
Φ Κ Σ House
Balentine Hall

102 H. H. Hall
Δ T Δ House

A T Ω House
Θ X House
Σ X House
Σ N House
K Σ House
Balentine Hall
Bennoch Street

Mill Street

A T Ω House
Φ Κ Σ House

263
Mercier, Dorothy, Lt.
Merrill, Katharine Buffum, Eh.
Moloney, Helen Carew, Eh.
Moulton, Parker Nash, Bl.
Mower, Clyde Fletcher, Me.
Mower, Leland Monroe, Ce.
Mullen, Charles Emerson, Ch. Eng.
Myrick, Leroy Henry, Ce.
Nash, William Edmund, Ce.
Needham, Stanley Francis, Es.
Nowell, Foster, Ce.
O'Donoghue, William Florence, Fy.
Packard, Horace Candage, Ch.
Page, Schuyler Colfax, Ee.
Park, Irwin James, Ce.
Parshley, David Hobbs, Ch.
Partridge, Clara Estelle, He.
Pemberton, Harold Sawyer, Ce.
Pendleton, Raymond Ambrose, Ms.
Penney, Charles Clifton, Ag.
Perry, Mildred Geneva, Eh.
Peterson, Henry Andrew, Bl.
Phelps, Elizabeth Cornelia, Gm.
Phelps, Ferdinand Zanoni, Ch.
Phillips, Stanley Gilkey, Ce.
Pierce, Ralph Bartlett, Ch.
Pitman, Linwood True, Me.
Post, Lawrence Leicester, Ce.
Preble, Leslie Edward, Ch. Eng.
Preti, Frank Peter, Es.
Reed, Harold Langdon, Ch.
Reed, Stanley Lewis, Me.
Remick, Edward Carleton, Ee.
Reynolds, William Eugene, Ag.
Ricker, Ruth Merrill, He.
Ridley, James Stevens, Ch. Eng.
Roberts, George Harley, Ch.
Robie, Mary Frederica, He.
Robinson, Albert Lealand, Ag.
Robinson, Carl Elmo, Ag.
Robinson, George Campbell, Me.

Princeton
Mercer, Dorothy, Lt.
Merrill, Katharine Buffum, Eh.
Moloney, Helen Carew, Eh.
Moulton, Parker Nash, Bl.
Mower, Clyde Fletcher, Me.
Mower, Leland Monroe, Ce.
Mullen, Charles Emerson, Ch. Eng.
Myrick, Leroy Henry, Ce.
Nash, William Edmund, Ce.
Needham, Stanley Francis, Es.
Nowell, Foster, Ce.
O'Donoghue, William Florence, Fy.
Packard, Horace Candage, Ch.
Page, Schuyler Colfax, Ee.
Park, Irwin James, Ce.
Parshley, David Hobbs, Ch.
Partridge, Clara Estelle, He.
Pemberton, Harold Sawyer, Ce.
Pendleton, Raymond Ambrose, Ms.
Penney, Charles Clifton, Ag.
Perry, Mildred Geneva, Eh.
Peterson, Henry Andrew, Bl.
Phelps, Elizabeth Cornelia, Gm.
Phelps, Ferdinand Zanoni, Ch.
Phillips, Stanley Gilkey, Ce.
Pierce, Ralph Bartlett, Ch.
Pitman, Linwood True, Me.
Post, Lawrence Leicester, Ce.
Preble, Leslie Edward, Ch. Eng.
Preti, Frank Peter, Es.
Reed, Harold Langdon, Ch.
Reed, Stanley Lewis, Me.
Remick, Edward Carleton, Ee.
Reynolds, William Eugene, Ag.
Ricker, Ruth Merrill, He.
Ridley, James Stevens, Ch. Eng.
Roberts, George Harley, Ch.
Robie, Mary Frederica, He.
Robinson, Albert Lealand, Ag.
Robinson, Carl Elmo, Ag.
Robinson, George Campbell, Me.

Oroko

Bath

Dexter

Auburn

Bangor

East Machias

Concord, N. H.

Old Town

Reading, Mass.

Lowell, Mass.

Hartland

Caribou

Orono

South Berwick

Pemaquid Beach

Groveland, Mass.

Brewer

Lewiston

Orono

Portland

Foxboro, Mass.

Foxboro, Mass.

Westbrook

Beverly, Mass.

Fairfield

Alfred

Saco

Portland

Lewiston

Methuen, Mass.

Springvale

Northeast Harbor

Lisbon

Brunswick

Brownville

Gorham

South Windham

Bangor

Westbrook

Balentine Hall

Main Street

North Main Street

Σ A E House

Park Street

202 Oak Hall

Φ Γ Δ House

Δ T Δ House

K Σ House

Old Town

Δ T Δ House

Park Street

Oroko

Φ H K House

Θ X House

Δ Τ Ω House

Balentine Hall

Δ X Δ House

Φ Κ Σ House

Θ X House

310 H. H. Hall

Σ Ν House

Φ H K House

Θ X House

312 Oak Hall

Κ Σ House

Δ T Δ House

Colburn House

Θ X House

Β Θ Π House

Mt. Vernon House

Θ X House

209 H. H. Hall

Δ T Δ House
Catalog of Students

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
<th>House</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rodden, William Henry</td>
<td>Reading, Mass.</td>
<td>Δ T Δ</td>
</tr>
<tr>
<td>Rodick, David Owen</td>
<td>Bar Harbor</td>
<td>Δ X Δ</td>
</tr>
<tr>
<td>Rowley, Levi Thaddeus</td>
<td>Hartford, Conn.</td>
<td>Σ X</td>
</tr>
<tr>
<td>Russell, Edward Sebastian</td>
<td>Vinalhaven</td>
<td>Σ X</td>
</tr>
<tr>
<td>Russell, Merle Alton</td>
<td>Norway</td>
<td>Σ N</td>
</tr>
<tr>
<td>Savage, Doris</td>
<td>Bangor</td>
<td>Σ K Σ</td>
</tr>
<tr>
<td>Sawyer, Ralph Erle</td>
<td>Jersey City, N. J.</td>
<td>Κ Σ</td>
</tr>
<tr>
<td>Schneider, Anthony Percy</td>
<td>Plattsburg, N. Y.</td>
<td>Σ N</td>
</tr>
<tr>
<td>Scribner, John Leslie</td>
<td>Bangor</td>
<td>Κ Σ</td>
</tr>
<tr>
<td>Shea, Thomas Francis</td>
<td>154 Parkview Avenue, Bangor</td>
<td>Κ Σ</td>
</tr>
<tr>
<td>Sherman, Fuller Gustavus</td>
<td>Randolph</td>
<td>Κ Σ</td>
</tr>
<tr>
<td>Silva, Richard Leslie</td>
<td>Provincetown, Mass.</td>
<td>Ο K Σ</td>
</tr>
<tr>
<td>Simpson, William Andrew</td>
<td>Marlboro, Mass.</td>
<td>Ο K</td>
</tr>
<tr>
<td>Smiley, James Harold</td>
<td>Bradford, Mass.</td>
<td>Ο K</td>
</tr>
<tr>
<td>Smith, Clarence Llewellyn</td>
<td>Vinalhaven</td>
<td>Ο K</td>
</tr>
<tr>
<td>Smith, Marshall Odell</td>
<td>Yarmouth</td>
<td>Ο K</td>
</tr>
<tr>
<td>Stackpole, Miner Reginald</td>
<td>Sanford</td>
<td>Ο K</td>
</tr>
<tr>
<td>Stephens, Frank Owen</td>
<td>Auburn</td>
<td>Ο K</td>
</tr>
<tr>
<td>Stephens, Charles Lindsley</td>
<td>Ashland</td>
<td>Ο K</td>
</tr>
<tr>
<td>Stevens, Ray Randolph</td>
<td>Portland</td>
<td>Ο K</td>
</tr>
<tr>
<td>Steward, Raymond Benson</td>
<td>Bingham</td>
<td>Ο K</td>
</tr>
<tr>
<td>Stoddard, Stanley Waldron</td>
<td>Sabattus</td>
<td>Ο K</td>
</tr>
<tr>
<td>Stoehr, Rudolph</td>
<td>Montague, Mass.</td>
<td>Ο K</td>
</tr>
<tr>
<td>Stoughton, Richard</td>
<td>Milo</td>
<td>Ο K</td>
</tr>
<tr>
<td>Sturtevant, Jessie May</td>
<td>Milbridge</td>
<td>Ο K</td>
</tr>
<tr>
<td>Swanton, Carl Bartlett</td>
<td>Williamstown, Mass.</td>
<td>Ο K</td>
</tr>
<tr>
<td>Sweet, George Francis</td>
<td>Portland</td>
<td>Ο K</td>
</tr>
<tr>
<td>Tabachnick, George Enoch</td>
<td>Waterville</td>
<td>Ο K</td>
</tr>
<tr>
<td>Thayer, Frank Laurence</td>
<td>Monson</td>
<td>Ο K</td>
</tr>
<tr>
<td>Thomas, Roy Frank</td>
<td>Bangor 68 Jefferson Street, Bangor</td>
<td>Σ X</td>
</tr>
<tr>
<td>Travers, Robert James</td>
<td>Bangor</td>
<td>Σ X</td>
</tr>
<tr>
<td>Vickery, Earle Wendell</td>
<td>East Northport</td>
<td>Σ X</td>
</tr>
<tr>
<td>Wadlin, George Knowlton</td>
<td>Suffield, Conn.</td>
<td>Σ X</td>
</tr>
<tr>
<td>Wahlenberg, William Gustavus</td>
<td>Auburn</td>
<td>Σ X</td>
</tr>
<tr>
<td>Wardwell, Simon Murray</td>
<td>Kennebunk</td>
<td>Σ X</td>
</tr>
<tr>
<td>Waterhouse, Russell Vale</td>
<td>Portland</td>
<td>Σ X</td>
</tr>
<tr>
<td>Watkins, Herbert Everett</td>
<td>Levant</td>
<td>Σ X</td>
</tr>
<tr>
<td>Waugh, Harvey Cyrus</td>
<td>Norway</td>
<td>Σ X</td>
</tr>
<tr>
<td>Welch, Donald Stuart</td>
<td>265</td>
<td>Σ X</td>
</tr>
</tbody>
</table>

265
Catalog of Students

Wentzel, Roy Alva, Ce.
Weymouth, Currier, Bl.
Wilson, Rolla Tenney, Ee.
Wood, Frances Andrews, Rm.
Wood, Lawrence Blanchard, Ag.
Wood, Margaret Allen, Cm.
Zabe, Ferris Joseph, Ee.

Livermore Falls
Kingfield
Bangor 27 Spruce Street, Bangor
Bar Harbor
Kingfield
Bar Harbor
Bangor 17 Newbury Street, Bangor

FRESHMEN

Abbot, Voyle Eben, Ch. Eng.
Adams, Carl Edwin, Ch.
Adams, George Joseph, Arts
Aikins, Walter Bowen, Ag.
Albee, Clarence Gray, Ce.
Allen, William Henry, Arts
Alley, Frank Oren, Jr., Ag.
Andrews, Harold Taylor, Ch. Eng.
Annis, Howard Leroy, Ph.
Atherton, Raymon Neale, Ag.
Ballantyne, Aubrey Elverton, Ch.
Barker, Malcolm Everett, Fy.
Barnard, Adriel Fales, Me.
Barrett, Willett Clark, Ce.
Bayard, Pauline, Arts
Bayer, Harry Lewis, Ce.
Beck, Joseph Thomas, Ch. Eng.
Bernier, Joseph Lovejoy, Ag.
Beverage, Stanley Fremont, Ch.
Billings, Jesse Winfield, Ag.
Bisbee, Frederick Carlton, Ee.
Blackman, Marie Prince, He.
Blackwood, Harold Frank, Ce.
Blaisdell, Harvard Wilbur, Arts
Blake, Philip Warren, Arts
Boomer, Vurle Lee, Ch. Eng.
Boothby, Wallace Johnson, Arts

Albion
Franklin, Mass.
Orono
South Windham
Machias
Brownville Junction
Bar Harbor
Portland
Lincoln Center
Augusta
Ware, Mass.
Gardiner
Bucksport
Newport, R. I.
Oroko
Bangor
Augusta
Springvale
North Haven
Boston, Mass.
Berlin, N. H.
Peak Island
West Pembroke
North Sullivan
Marlboro, Mass.
Lubec
Bangor

A T Ω House
106 Oak Hall
35 Mill Street
Campus
Φ H K House
B Θ Π House
Σ X House
B Θ Π House
A T Ω House
202 H. H. Hall
Park Street
309 H. H. Hall
Park Street
Φ Γ A House
Main Street
401 H. H. Hall
Δ T Ξ House
Orono
111 H. H. Hall
Mill Street
308 Oak Hall
Morristown
Main Street
403 Oak Hall
Park Street

63 Dillingham Street, Bangor

Richmond
Roxbury, Mass.
Limington
Willimantic, Conn.

105 Oak Hall
Mill Street
Mill Street
Penobscot Street

266
Catalog of Students

Brasier, Everett Hovey, Ch.
Brittain, Thomas Waldo, Ch.
Brooks, Winfield Alpheus, Ce.
Brown, Earl Robert, Arts

Brown, Ernest Sanford, Ch. Eng.
Brugge, Carl Frederick, Me.
Burke, John Andrew Aloysius, Me.
Cahill, Thomas Henry, Jr., Ag.
Caine, Mae Frances, Arts
Caldwell, Harold Benjamin, Ee.
Cameron, George Clifton, Me.
Campbell, Edwin Murray, Arts
Cannon, Gertrude Frances, Arts
Carde, Albert Martin, Arts
Carlson, Thurston Daniel, Ee.
Carlton, George Melvin, Ee.
Carr, Russell Alton, Ch. Eng.
Carter, George Milton, Ee.
Carter, John William, Ag.
Casey, John Thomas, Jr., Arts
Chadbourne, Preston Berlin, Ag.
Chamberlain, Newell Burnap, Arts
Chapman, Russell Comstock, Ce.
Cheney, George Henry, Ch.
Cobb, Herbert Gray, Ag.
Cohoon, Raymond, Me.
Cole, Raymond Fuller, Arts
Conley, William James, Ch. Eng.
Coolbroth, Ernest Leon, Ce.
Crawshaw, Thomas Hill, Fy.
Creamer, Walter Joseph, Jr., Ch.
Crockett, Mark Vernon, Arts
Crosby, Harold Dunmore, Ag.
Culhane, Gerald Joseph, Arts
Cushing, Benjamin Hilton, Fy.
Cutter, Hiram Edwin, Ag.
Dahlgren, Sigfried Alexander, Ag.
Davis, Edward Harrington, Ch.
Davis, Manley Webster, Ch.

Guilford 301 H. H. Hall
Island Falls 104 H. H. Hall
South Paris 209 H. H. Hall
Bangor 446 Hammond Street, Bangor

Kineo 303 H. H. Hall
Gorham K Σ House
Portland A Τ Ω House
Salem, Mass. Θ X House
Brewer Brewer
Madison 111 Oak Hall
Fryeburg 403 H. H. Hall
Portsmouth, N. H. Θ X House
Brewer Brewer
Bowedoinham 212 H. H. Hall
Hopedale, Mass. Σ A E House
Woolwich 302 H. H. Hall
Sangerville 303 H. H. Hall
Washburn 411 H. H. Hall
Mt. Desert Pleasant Street
Ware, Mass. Park Street
Harmony Grove Street
Cambridge, Mass. Σ N House
Hartford, Conn. Φ K Σ House
Randolph 409 H. H. Hall
Woodfords Φ K Σ House
Bucksport Σ A E House
Pembroke Δ T Δ House
Woodfords Main Street
Lewiston Φ T Δ House
Bangor 24 George Street, Bangor
Gorham, N. H. Θ X House
Wollaston, Mass. Mill Street
Boston, Mass. Main Street
Long Island Σ X House
East Jaffrey, N. H. Bennoch Street
Camden Peters Street
Saugus, Mass. 206 Oak Hall
Guilford Φ Γ Δ House
Catalog of Students

Davis, Melvin Linwood, Ee.
DeBeck, Edith Eirena, Arts
Deering, Ralph Ozro, Ag.
Dennett, Winburn Albert, Ee.
Derby, Pauline, Arts
Dodd, Clarence John, Ee.
Doc, Harold Oliver, Ch.

Dolloff, Philip Warren, Ag.
Donegan, William Thomas, Ag.
Dow, Kathryn May, He.
Drisko, Clarence Holmes, Me.
Dudley, Oliver Charles, Ag.
Dugan, Frances Joan, Arts
Dunham, Stephen Merle, Me.
Dunn, Perley Bernard, Ag.
Dunning, Robert Blaisdell, Ee.
Edgerly, Lloyd Irving, Ch. Eng.
Ellsworth, Harry Arthur, Ag.
Emerson, Raymond LaForest, Me.
Emmons, Everett Ellsworth, Ee.
Estes, Roland Francis, Arts
Evans, Weston Sumner, Ce.
Farmer, Eva Marguerite, He.
Farnsworth, Everett Dean, Eng.
Farwell, Harris Frederick, Ce.
Ferguson, Frank Currier, Arts
Fernald, Abraham Chadwick, Arts
Flewelling, Leslie Covert, Ce.
Folsom, Dorothy Louise, Arts
Foss, Charles Lea, Me.
Foster, Philip Eugene, Ee.
Foyer, James Clayton, Arts
Frawley, Marie Alice, Arts
French, Gardner Marble, Ce.
Friedman, Lee Manheim, Arts
Frost, Ermont Getchell, Me.
Gammell, Lewis Waldo, Ch. Eng.
Gardner, Leigh Philbrook, Ag.
Garrison, George Harrison, Ee.

Sabattus 311 H. H. Hall
Franklin Balentine Hall!
Bridgton Φ Κ Σ House
Hopedale, Mass. Σ A E House
Bangor 366 French Street, Bangor
Mexico College Street

100 Highland Street, Bangor
Standish 312 H. H. Hall
Cape Elizabeth Β Θ Π House
Searsport Mt. Vernon House
Columbia Falls Park Street
West Farmington Δ X A House
Bangor 54 Sidney Street, Bangor
Auburn 403 Oak Hall
Buckfield 403 H. H. Hall
Bangor Φ Γ Δ House
Swampscott, Mass. K Σ House
Farmington 110 Oak Hall
Island Falls 104 H. H. Hall
Portland 112 Oak Hall
Bangor Φ Γ Δ House
South Windham 304 H. H. Hall
Charleston Balentine Hall
Cherryfield Orono
Dorchester, Mass. Φ Γ Δ House
New York City K Σ House
Mt. Desert Δ T Δ House
Needham, Mass. 111 H. H. Hall!
Norridgewock Balentine Hall
Woodfords Θ X House
Bar Harbor Pine Street
Veazie R. F. D. No. 7, Bangor
Bangor Balentine Hall
Mansfield, Mass. 212 H. H. Hall
Houlton Grove Street
Springvale K Σ House
Atteboro, Mass. North Main Street
Dennysville 401 H. H. Hall!
Portland Φ Γ Δ House

268
Catalog of Students

Gellerson, Vera Elvira, He.
Gibbs, Frederick Donald, Eng.
Gibbs, Grace Mabel, He.
Giberson, Claude Trafton, Me.
Given, Clair William, Me.
Goldberg, Abraham Frederick, Ch.

Eng.
Goodwin, Eugene Wiley, Me.
Gorham, William Joseph, Arts
Gray, James Harford, Ag.
Greeley, Julian Francis, Ag.
Greene, Roland Lawrence, Ag.
Gribbin, Benjamin Herbert, Ce.
Gross, Maurice Clinton, Arts
Guinan, William Francis, Ce.
Hagerty, Jean Mason, Arts
Hague, Harold James, Ee.
Hahn, Edward Everett, Jr., Me.
Haines, Frederick Bates, Ce.
Hall, Sumner, Augustus, Ag.
Ham, Wallace Reed, Ee.
Hanson, Ernest Freeman, Arts
Harmon, Artemas Henry, Ch. Eng.
Harper, Herbert Leon, Arts
Harper, William Chesley, Ch.
Haskel, Ernest Edward, Arts
Hatch, Ellis Johnson, Me.
Hathaway, Lester Walton, Ce.
Hawkes, James Robert, Eng.
Hawthorne, Robert Henry, Ce.
Hayes, Fred Lendall, Ag.
Head, Francis, Ce.
Helbly, Edward Leo, Arts
Hewett, Chester Arthur, Fy.
Hill, Benjamin Franklin, Ee.
Holmes, Everard Reed, Ee.
Hooper, Henry Stinson, Ch. Eng.
Howard, Ruby May, He.
Hurd, Robert Gerry, Ch.

Houlton 301 H. H. Hall
So. Portland K Σ House
East Orland Σ Ν House
Groveton, N. H. Balentine Hall
Island Falls 310 H. H. Hall
Bangor 104 H. H. Hall

Eng.

Rockport 67 Pine Street, Bangor
Wilkes Barre, Pa. K Σ House
Lubec B Θ Π House
Portland B Θ Π House
South Brewer Δ T Δ House
Portland 212 H. H. Hall
Deer Isle Σ A E House
Northampton, Mass. 310 H. H. Hall
Malden, Wash. 203 H. H. Hall
Old Orchard Main Street
Boothbay Harbor Φ H K House
Portland B Θ Π House
Gloucester, Mass. Δ T Δ House
Bath 302 H. H. Hall
Portland Λ X Λ House
Gorham Φ Π Δ House
Portland Σ X House
Calais 53 Mill Street
Gardiner 407 H. H. Hall

North Sullivan 2 Bennoch Street
Dark Harbor Park Street
Bryant Pond 102 Main Street
South Portland Campus
Brownville Main Street
Foxcroft Park Street
Bangor 312 H. H. Hall
Bangor 174 York Street, Bangor
Lexington 106 Oak Hall
Somersworth, N. H. 91 Main Street
Sanford 38 Pine Street
Bucksport Pine Street
Holden College Street
Bangor Φ H K House

269
<table>
<thead>
<tr>
<th>Name</th>
<th>College</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Huskins, Blanche Eloise</td>
<td>He.</td>
<td></td>
</tr>
<tr>
<td>Hutchinson, George Stanley</td>
<td>Ee.</td>
<td></td>
</tr>
<tr>
<td>Hutchins, George Stanley</td>
<td>Ee.</td>
<td></td>
</tr>
<tr>
<td>Hutton, Robert Grandvill</td>
<td>Ag.</td>
<td></td>
</tr>
<tr>
<td>Hysom, Roscoe Hartwell</td>
<td>Ee.</td>
<td></td>
</tr>
<tr>
<td>Jackson, Kenneth Flanders</td>
<td>Ch. Eng.</td>
<td></td>
</tr>
<tr>
<td>James, Frank Stanley</td>
<td>Ch.</td>
<td></td>
</tr>
<tr>
<td>Johnson, Charles Elmer</td>
<td>Arts</td>
<td></td>
</tr>
<tr>
<td>Jones, Harold Norton</td>
<td>Ch.</td>
<td></td>
</tr>
<tr>
<td>Jordan, Arlo Clifton</td>
<td>Ch.</td>
<td></td>
</tr>
<tr>
<td>Jortberg, Charles Augustus</td>
<td>Ch. Eng.</td>
<td></td>
</tr>
<tr>
<td>Kaulfuss, Arthur Frederick</td>
<td>Arts</td>
<td></td>
</tr>
<tr>
<td>Keep, John Marcus</td>
<td>Arts</td>
<td></td>
</tr>
<tr>
<td>Kennett, Russell Blaisdell</td>
<td>Me.</td>
<td></td>
</tr>
<tr>
<td>Kenney, Fred Lee</td>
<td>Ag.</td>
<td></td>
</tr>
<tr>
<td>Kerr, Frank Stanley</td>
<td>Arts</td>
<td></td>
</tr>
<tr>
<td>Kimball, Guy Harold</td>
<td>Ch. Eng.</td>
<td></td>
</tr>
<tr>
<td>Larrabee, Callie Hamm</td>
<td>Arts</td>
<td></td>
</tr>
<tr>
<td>Lawrence, Doris Winnifred</td>
<td>Arts</td>
<td></td>
</tr>
<tr>
<td>Lawrence, Fila Lavina</td>
<td>He.</td>
<td></td>
</tr>
<tr>
<td>Legal, Chapin</td>
<td>Ag.</td>
<td></td>
</tr>
<tr>
<td>Leighton, Chester Frank</td>
<td>Ee.</td>
<td></td>
</tr>
<tr>
<td>Leighton, Ralph Melvin</td>
<td>Ch. Eng.</td>
<td></td>
</tr>
<tr>
<td>Lewis, Roscoe Samuel</td>
<td>Fy.</td>
<td></td>
</tr>
<tr>
<td>Libby, Alton Bert</td>
<td>Ee.</td>
<td></td>
</tr>
<tr>
<td>Libby, Bernard Augustus</td>
<td>Ee.</td>
<td></td>
</tr>
<tr>
<td>Libby, Donald Maxwell</td>
<td>Ee.</td>
<td></td>
</tr>
<tr>
<td>Libby, Ellen Dorothea</td>
<td>He.</td>
<td></td>
</tr>
<tr>
<td>Libby, Everett Eugene Fales</td>
<td>Ee.</td>
<td></td>
</tr>
<tr>
<td>Libby, Frank Dexter</td>
<td>Ch.</td>
<td></td>
</tr>
<tr>
<td>Libby, Lewie Everett</td>
<td>Ee.</td>
<td></td>
</tr>
<tr>
<td>Libby, Lucien Taylor</td>
<td>Ch.</td>
<td></td>
</tr>
<tr>
<td>Lincoln, Donald Morton</td>
<td>Ce.</td>
<td></td>
</tr>
<tr>
<td>Littlefield, Marguerite</td>
<td>He.</td>
<td></td>
</tr>
<tr>
<td>Littlefield, Robert Moses</td>
<td>Ce.</td>
<td></td>
</tr>
<tr>
<td>Lloyd, Katherine Marie</td>
<td>Arts</td>
<td></td>
</tr>
<tr>
<td>Locke, John Fernando</td>
<td>Ch. Eng.</td>
<td></td>
</tr>
</tbody>
</table>

Housing:

- Auburn: Balentine Hall
- Cape Neddick: Mill Street
- Fryeburg: Mt. Vernon House
- Bowdoinham: Ω X House
- Cambridge, Mass.: Pleasant Street
- Sangerville: 303 H. H. Hall
- Lynn, Mass.: 211 H. H. Hall
- Fitchburg, Mass.: Park Street
- Bangor: 250 State Street, Bangor
- Peabody, Mass.: Σ N House
- Portland: 312 Oak Hall
- Auburn: 402 H. H. Hall
- Orono: Main Street
- Conway, N. H.: Α X A House
- Madison, N. H.: 16 Bennoch Street
- Brooks: 109 H. H. Hall
- Boston, Mass.: Σ N House
- Waterboro: Sampson House
- Frankfort: 40 Main Street
- Bangor: 29 George Street, Bangor
- North Lubec: Sampson House
- Calais: Σ N House
- Strong: Orono
- Bar Harbor: College Street
- Auburn: 306 Oak Hall
- Oakland: Α T Ω House
- Limerick: Orono
- Albion: Park Street
- Rockport: Sampson House
- Gardiner: 202 H. H. Hall
- Westbrook: Δ T Δ House
- Scarboro: Σ X House
- Dennysville: 103 H. H. Hall
- Orono: 101 H. H. Hall
- Ogunquit: Park Street
- South Brewer: 409 Oak Hall
- Augusta: 205 Oak Hall

270
Catalog of Students

Longley, George Stephen, Jr., Ch. Eng.
Lord, Columbus Ellis, Ee.
Lown, Philip William, Ag.
Lyons, Martin Kenneth, Ag.
Mackay, Robert Alexander, Me.
McCarthy, Raymond John, Arts
McGrath, Joseph William, Ch.
McGrath, John Merton, Arts
McIlroy, Cecil Dow, Arts
MacIntire, Donald Josiah, Ag.
McLean, Edward Archibald, Ce.
McNamara, Raymond, Me.
McPhee, Hugh Curtis, Ag.
McRae, Lincoln Earl, Ce.
MacWilliams, Mona Beatrice
Magee, John Henry, Arts
Mangan, Thomas Gerald, Ce.
Marsh, Raeburne Lyndon, Ag.
Mason, Arthur Benjamin, Jr., Ee.
Matheson, Beatrice Louise, He.
Mathieson, Donald Herbert, Ce.
May, Edwin Hyland, Ee.
May, Marie Etta, Ag.
Mayo, Donald Atwood, Ee.
Meaney, Cornelius Daniel, Ce.
Merrill, Charles Neal, Ch.
Merrill, Marguerite Frances, He.
Merriman, Lawrence Tilton, Ag.
Merritt, Raymond Lowell, Fy.
Mersereau, Vera Lurline, He.

Mooney, Francis Edwin, Ag.
Moore, Madeline, Arts
Moore, Robert Colby, Pm.
Morrell, Lester Howe, Arts
Morris, Paul Austin, Arts
Morse, James Lester, Ag.
Moul, Arthur Franklin, Fy.

Lewiston 305 H. H. Hall 271
Guilford Park Street
Chelsea, Mass. 210 Oak Hill
Calais Mill Street
Dorchester, Mass. 112 H. H. Hall
Springfield, Mass. Bennoch Street
Northampton, Mass. 412 H. H. Hall
Ridlonville Δ T Δ House
Milo 210 H. H. Hall
Biddeford House
Augusta 205 Oak Hall
Oroko Mill Street
South Paris 209 H. H. Hall
Rockland Salem House
Bangor Sampson House
Bangor 25 Otis Street, Bangor
Pittsfield, Mass. 112 H. H. Hall
Corinna 101 H. H. Hall
Augusta 401 Oak Hall
Bangor Mt. Vernon House
Rangeley College Street
Hartford, Conn. Φ Κ Σ House
Island Falls Bennoch Street
Hampden Highlands Ε Σ House
Marlboro, Mass. 405 H. H. Hall
Bangor Φ Γ Δ House
Mechanic Falls Balentine Hall
Harpswell Center 402 Oak Hall
Brooks Φ Η K House
West Somerville, Mass. Colburn House

Lubec Park Street
Orono Pine Street
Bingham 405 H. H. Hall
Lewiston Φ K K House
Old Town Old Town
Bath 302 H. H. Hall
Hanover, Penna Φ Κ Σ House
Catalog of Students

Moulton, Simon Waldo, Arts
Mullen, Joseph Norman, Ee.
Murphy, Martin James, Jr., Arts
Nealey, Everett Thornton, Jr., Arts
Needelman, William Ralph, Ag.
Newell, George Clifford, Ce.
Newman, Isaiah Leavitt, Me.
Newton, Max, Ch. Eng.
Niles, Walter Leslie, Ce.
Norton, Donald William, Ch. Eng.
Norton, George Chapman, Ag.
O'Brien, Arthur Bartholomew, Pm.
O'Connell, John Michael, Jr., Arts
Orcutt, Halbert Haymond, Ce.
Osgood, Arthur Bradley, Ee.
Parker, Erle St. John, Pm.
Parker, Stanley, Ag.
Partridge, Herbert George, Arts
Pearson, Edgar Whitney, Me.
Penley, Ferdinand Josiah, Ag.
Perkins, Carl Wakefield, Ch. Eng.
Perkins, Carlton Lincoln, Fy.
Perkins, Myles Standish, Me.
Perry, Donald Burke, Ee.
Perry, Earl Francis, Bl.
Perry, John Howard, Ch.
Philbrook, Everett Carlton, Ee.
Phillips, Caldwell Sweet, Me.
Phillips, Ray Eugene, Arts
Pinkham, Jessie Marie, He.
Potter, Don Theron, Eng.
Pottle, Guy Edgar, Ee.
Priest, Haller Varney, Ag.
Pugsley, Rodney, Ce.
Ramsay, John Parker, Arts
Ramsdell, Hollis Leroy, Ag.
Ramsdell, Percy Eugene, Ag.
Reardon, Jeremiah Timothy, Ag.
Redin, Leeland John, Ch. Eng.
Reed, Carrol Coffin, Ag.
Reed, Gladys Cage, Arts
Sebago Lake
Bangor
Portland
Bangor 178 Harlow Street, Bangor
Bangor
Turner
East Wilton
Kents Hill
Hallowell
Kinkfield
Strong
Portland
Bangor 12 Birch Street, Bangor
Ashland
Bradford
Danforth
South Leeds
Scarsport
Bangor 182 Leighton Street, Bangor
Lewiston
Ogunquit
Newburyport, Mass. 102 Main Street
Worcester, Mass. 111 Oak Hall
Hallowell
Bangor
Lincoln
Gardiner
East Holden
Newport
Farmington
Brunswick
Gardiner
Derby
Cornish
Woodfords
West Lubec
Jefferson
Concord, N. H.
Woodfords
Hollis, N. H.
Bangor
312 H. H. Hall
A T O House
Estabrook Hall
304 H. H. Hall
409 H. H. Hall
204 H. H. Hall
Δ T Δ House
410 H. H. Hall
Gilbert Street
112 H. H. Hall
Δ H K House
Stillwater
102 H. H. Hall
109 H. H. Hall
306 H. H. Hall
104 Oak Hall
102 Main Street
111 Oak Hall
Δ T Δ House
309 H. H. Hall
Σ A E House
11 Pond Street
Balentine Hall
Θ X House
402 H. H. Hall
Σ N House
412 Oak Hall
Φ K Σ House
Park Street
Park Street
Κ Σ House
Σ N House
305 H. H. Hall
Balentine Hall
Catalog of Students

Rice, Charles Anthony, Arts
Rich, Robert, Ee.
Richardson, Burt, Jr., Arts
Richardson, George Lovell, Ag.
Ring, Edgar Raymond, Arts
Riva, Robert Arthur, Ee.
Roberts, George Edward Jr., Ag.
Robie, Frederick, Ht.
Rolfe, Weldon Henry, Eng.
Rose, Hester Miles, Arts
Rosenbloom, Hiram, Ee.
Ross, Fern Charlotte, He.
Rowe, Harland Stimson, Arts
Rudman, Maurice Aaron, Arts
Ruggles, Gould Bishop, Ee.
Russell, Alfred Mason, Co.
Russell, Doris Ethel, Arts
Ryan, Stephen Joseph, Me.
Sanderson, Philip Hadley, Arts
Sawyer, Charles Augustine, Me.
Sawyer, Ethel Beatrice, Arts
Shaw, Albert Leland, Ch. Eng.
Shaw, Reba Cleaves, He.
Sheridan, Charles John, Ee.
Sherman, Philip Hayden, Ch.
Simms, Henry Swain, Ch. Eng.
Sisson, Willard Case, Ag.
Skelton, William Larrabee, Arts
Small, Clive Ceylon, Ch. Eng.
Smith, Milan James, Arts
Snow, Vergne Rockwood, Ag.
Somers, Roy Merry, Ag.
Spaulding, Earl Williams, Ag.
Spaulding, Herbert Ansel, Ag.
Speirs, James Everett, Arts
Spellissy, Frank Thomas, Arts
Spratt, Aubury Johnson, Ee.
Springer, Clarence Barrows, Ee.
Stacy, Arthur Percy, Fy.

Uxbridge, Mass. K Σ House
Berlin, N. H. 308 Oak Hall
Los Angeles, Calif. B Θ Π House
Needham, Mass. Park Street
Oroko Summer Street
Weeks Mills 91 Main Street
Gorham Campus
Presque Isle K Σ House
Brooks Φ H K House
No. Conway, N. H. Mt. Vernon House
Dexter 210 H. H. Hall
Springvale Balentine Hall
Portland B Θ Π House

159 Hancock Street, Bangor 406 H. H. Hall
Reading, Mass. College Street
Rangeley 80 Main Street
Oroko Main Street
Ayer, Mass. Δ X Λ House
Portsmouth, N. H. Θ Χ House
Portland Balentine Hall
Lewiston 102 Oak Hall
Oroko Park Street
Skowhegan North Main Street
Portland 304 Oak Hall
Gorham Φ Γ Δ House
Hartford, Conn. 410 H. H. Hall
Lewiston Φ Κ Σ House
Farmington Old Town
Alton Λ Τ Ω House
Portland Δ Τ Δ House
Portland Φ Η Κ House
Solon 208 Oak Hall
Buckfield Δ Τ Δ House
Portland 106 Oak Hall
Bar Harbor Σ X House
Portland Σ N House
Foxcroft Park Street
Catalog of Students

Stahl, Jerome Guttman, Es.
Stanley, Watson Frank, Arts
Stanton, Augustus Emily Hazelton, Arts
Stanton, John Clifford, Ag.
Staples, Laurence Elwin, Ag.
Steele, Lester Brown, Ag.
Stinchfield, Helen Louise, Arts
Stott, Gerald Ross, Ch. Eng.
Strout, Freeman Leigh, Ce.
Stuart, Helen Loggie, Arts
Sturtevant, Walter Conrad, Ag.
Sullivan, George Wilmer, Ch. Eng.
Suttie, Thomas Harold, Es.
Swift, Harold Clayton, Ag.
Tapley, Loring Morton, Ch. Eng.
Tenney, John Augustus, Jr., Ee.
Thaanum, Joanna Mary, He.
Theriault, Dolore Frank, Ch. Eng.
Thomas, Fletcher Alton, Ag.
Thomas, Kenneth Joshua, Ee.
Thompson, Seward Roy, Arts
Toothaker, Bernard Leroy, Arts
Toothaker, Clifton J., Ee.
Townsend, Harvard Clark, Ag.
Turner, Dwight Wilson, Ag.
Turner, Ernest Julian, Ch. Eng.
Turner, O'Dillion Charles, Arts
Tyler, Elmer Robert, Ag.
Vaughan, Natalie Alice, Arts
Vaughan, Sewall Dunbar, Eng.
Verrill, Philip Thompson, Ch. Eng.
Vrooman, Lee, Ag.
Watson, Harry Dexter, Me.
Webster, Fred Lot, Ag.
Webster, Stephen Tracy, Ch. Eng.
Weeks, Donald Ross, Ch. Eng.
Wells, Richard Rundlett, Arts
Wentworth, Mary Crosby, He.
Wentworth, Ralph Carlton, Ag.
Wescott, Merle William, Ce.

Berlin, N. H.

Springvale

Great Neck, N. Y.

Colburn House

South Thomaston

Shapleigh

Harrington

Danforth

Sangerville

Bradford

Bangor

14 Davis Street, Bangor

Milo

Veazie

R. F. D. No. 7, Bangor

Waterville

Auburn

Houlton

Winthrop

Millinocket

Leeds Center

Calais

Standish

Strong

Newport

Buckfield

Brewer

74 State St., Brewer

Veazie

R. F. D. No. 7, Bangor

South Paris

209 H. H. Hall

Berlin, N. H.

Mt. Vernon House

Warren

202 H. H. Hall

Cumberland Mills

Σ X House

Greenville

304 Oak Hall

West Baldwin

412 Oak Hall

West Farmington

110 Oak Hall

Augusta

B Θ II House

Rockland

Park Street

So. Bristol

206 Oak Hall

Pittsfield

Mt. Vernon House

Denmark

110 H. H. Hall

Rumford

Σ A E House

274
Catalog of Students

Whitcomb, Morton Church, Ch. Eng.
White, Harry Lincoln, Arts
Williams, Randall Vaughan, Ag.
Wilson, Francis Edward, Me.
Winter, Clifford Maurice, Ee.
Woodhead, Clarence, Ag.
Worcester, Frank Clark, Arts
Wunderlick, Albert Whittier, Arts
York, Clayton Elmer, Ag.

Ellisworth
Belfast
Lisbon Falls
Alfred
Kingsfield
Springvale
Harrington
Arlington, Mass.
Claremont, N. H.

SPECIALS

Bartlett, Carroll Arthur, Ph.
Bell, George Tolar Whitman, Es.
Bisbee, Francis Wilbert, Ag.
Blanchard, Everard Eells, Arts
Boothby, Everett Osgood, Me.
Boothby, Ralph Hamilton, Ce.
Brackett, Albie Franklin, Ee.
Brooks, Samuel Stevens, Ed.
Carter, Lauriston Folger, Ag.
Colcord, John Harold, Ag.
Crosby, Carle Byron, Ee.
Dodge, Richard Boulsby, Ag.
Erswell, Charles Snerman, Ch.
Fletcher, Robert Kemble, Bl.
Graves, Frederick Taylor, Ht.
Hamlin, Truman Leigh, Ms.
Hassler, John William, Ag.
Hexter, Lewis Franklin, Eh.
Hitchings, Samuel Lord, Ht.
Hood, Walter Joseph, Arts

Norway
Newtonville, Mass.
East Sumner
Buenos Aires, Argentina, S. A.

Gorham
Portland
Berkwick
Orono
Braintree, Mass.
Province Lake, N. H.
Bangor
Machias
Brunswick
Waltham, Mass. North Main Street
Bridgeport, Conn.
Stillwater
Perth Amboy, N. J.
Bangor
Orono

273a Congress Street, Portland

Abington, Mass.
Bath
Berry Mills
Nicolin
Woodfords

 Campus
University Inn
302 H. H. Hall
Myrtle Street
Orono
Catalog of Students

- Morse, Earle Howard, Ch.
- Moulton, George Albert, Ce.
- Newdick, Erolin Lincoln, Ag.
- Rich, William Raymond, Ch.
- Richardson, Alton Wellard, Ph.
- Sargent, Mary Elizabeth, Eh.
- Savage, Frank, Jr., Ee.
- Smith, Royal Howard Gould, Ee.
- Southard, Lawrence, Ch.
- Startz, August William, Me.
- Williams, Gordon Rhys, Ph.

THE COLLEGE OF LAW

SENIORS

- Ashworth, George Robert Bowdoin College
- Frizzell, Jay Hobart
- Frost, Clark Bradley
- Hoar, Ellen Morancy Mary Member of the Vermont
- King, Robert Parsons, B. A. Bowdoin College, 1912;
- Mathews, Walter Ellwyn, B. A. Bates College, 1911
- Moody, Howard Clifton
- O'Leary, Cornelius Joseph Member of the Maine State Bar
- Tirrell, Frank Adams, Jr.
- Torrey, Merrill Edson
- Weaver, Ernest Linwood
- Welch, Herbert John
- Whitney, Clarence Alden
- Wing, Earl Lyton, B. A. Bowdoin College, 1910
- Woolson, Raymond Travena

JUNIORS

- Bieler, Alexander Bert
- Burkett, Franz Upham, B. A. Bowdoin College, 1911
- Caswell, George Riley

276
Catalog of Students

Crahmer, Harris Samson
Crommett, Earle Erweed
Derrah, Floyd Mason
Dubee, John Raymond

Gallagher, James Augustine
Garakian, John Abraham, B. A.

Robert College, 1909
Gray, Granville Chase
Harvey, Joseph Edmond
Moren, Miller Bernard
Purdue University

O'Leary, Charles John
Peterson, Harry Leland
Quine, James Patrick
Reed, Harold LeRoy
Rogers, William Nathaniel

Dartmouth College
Singleton, Sarah
Taylor, Charles Sumner
Towle, Horace Hamblen, Jr.
Weeks, Thomas Nathan

Bangor 60 Locust Street
Ridlonville 173 Ohio Street
Portland 84 Cedar Street
Haverhill, Mass. 161 Hammond Street

Bangor 34 Elm Street
Constantinople, Turkey 97 Third Street

Brewer 56 Wilson Street
Saco 10 Cedar Street
Lowville, N. Y. 62 Court Street

Bangor 53 East Summer Street
Danielson, Conn. 5 Ohio Street
Bangor 184 Forest Avenue
Northeast Harbor 10 Cedar Street
Sanbornville, N. H. 52 Bowdoin Street

Blair, Wellington Arthur
Bridgham, Wade Lawrence
Brown, Cecil Earle
University of Maine

Cohn, Abraham David George
Corridon, John Henry
Dufficy, Edward Charles
University of Maine

Eaton, George Franklin, A. B.
Bowdoin College, 1914

Ford, Perley Harvey
Bates College
Fortier, Albert James

Waterville Theta Chi House, Orono
Bridgton 148 Kenduskeag Avenue
Norway 241 Center Street

New York City 150 York Street
Portland 112 Sanford Street
Runford 173 Ohio Street

Bangor 103 Fourth Street
Mechanic Falls 17 Fourth Street

White River Junction, Vt. 47 Summer Street

277
Catalog of Students

Frothingham, Thomas Warren
University of Maine

Gilman, Madison Leavitt

Harmon, Erald
University of Maine

Haskell, Herbert Vaughn

Holli, Harold William
Hooker, Earl Dewey
Hurley, Harold William
University of Maine
Johnson, William Alonzo
University of Maine
Keating, Frederick Augustine

University of Maine
Kelleher, Michael Clarence, Jr.
Lanpher, Stacy Clifford, A. B.
University of Maine, 1908
Libby, Harry Cummings
Miles, Adelbert Laroy
Morse, Mayland Herbert
Mulvany, Harry Thomas
Rudman, Abraham Moses
Webster, William Clifford
University of Maine
White, Horace Hudson

Portland Sigma Chi House, Orono

Woodfords
Beta'Theta Pi House, Orono

Westbrook 8 Union Place
Lincoln 9 Boynton Street
Lisbon Falls 176 Court Street
Springfield, Mass. 173 Ohio Street
Warcham, Mass. 114 Sanford Street

Bangor 24 Kossuth Street

Upper Gloucester 112 Sanford Street

Westerly, R. I. 25 Fourth Street
Foxcroft 53 Fourth Street

Portland 84 Cedar Street
Ellsworth 161 Hammond Street
Anson 79 Summer Street
Bangor 199 Pine Street
Bangor 26 Market Street
Gorham 114 Sanford Street

Orono Orono

SPECIALS

Baldwin, Dudley
Bartlett, Charles Hammatt, A. B.
Harvard University, 1882
Brownsteine, Abraham Abe
Clarke, Joseph Lawrence
Conquest, Edward James
Crowley, Wallace Edgar
Flanagan, William Joseph
Anselm's College
Fullerton, Edward Grier
Lafayette College

Cherryfield 79 Summer Street
Bangor 59 Cedar Street

Boston, Mass. The Gerard
Waterville 10 Clark Street
Bangor 88 Sidney Street
Corinth, Vt. 53 Fourth Street
Ellsworth 313 State Street

New Haven, Conn. Y. M. C. A.
Catalog of Students

Gallagher, William Wallace
Gallasini, Thomas Dominic
Hanley, Michael John
Hurley, Martin Francis
Lally, William John
Lane, Orlando Hook
Levy, Arthur
Lewis, John
Bowdoin College
Little, Joseph Louis
Mahoney, Edmund Patrick
McParland, Bernard Joseph
Middlebury College
O’Connell, James Frederick
Shesong, Leo Gardner
Colby College, 1913
Siddall, Cecil James
Stevens, Norris Frederick
Colby College
Sullivan, John Anthony
Thompson, Nathan Webb
Watson, James Bennett
Williams, William Earl
Brown University

Limestone 10 Highland Avenue
Milford, Mass. 84 Cedar Street
Bangor 101 Fern Street
Bangor 50 Walter Street
Livermore Falls 80 Larkin Street
Topsfield 204 Harlow Street
New York City 150 York Street
Skowhegan 316 Hammond Street

Portland 112 Sanford Street
Portland 112 Sanford Street
Lawrence, Mass. 16 Sanford Street

Milford 85 Hammond Street
Oakland 166 Union Street
Sanford 17 Fourth Street
St. Lambert, Quebec, Canada

Nashua, N. H. 62 High Street
Portland Theta Chi House, Orono
Wheeling, W. Virginia

Bangor 25 Fourth Street

TWO YEARS PHARMACY

SECOND YEAR

Bullard, Morton Leonard
Burke, John Wynne
Corrigan, William Joseph
Cruz, de la, John Raymond
Daviau, Omar
Gillis, Allan Philputt
Johnson, Oscar
Lawton, Daniel Edwin
Malloch, Arthur
Rowe, Percy Daniel

Dexter 307 H. H. Hall
Randolph H. H. Hall
Millinocket Θ X House
Colombia, S. A. Mill Street
Waterville Α Χ Λ House
Lubec 311 Oak Hall
Monson Spearen’s Inn
Southwest Harbor Α Τ Ω House
Lubec 311 Oak Hall
Island Falls 104 H. H. Hall
Catalog of Students

FIRST YEAR

Blanchet, Earl Oliver
Burton, Louis Russell
Demers, Odius Joseph
Grant Horace Elwin
Hargreaves, Frank Irving
Kelly, John Francis
Leighton, Lester Howard
Macklin, William James
Nauss, Julius Edward
O'Leary, Edwin Dolan
Parker, Chester Robert
Staples, Carroll Russell
White, Lester Charles

Northampton, Mass, 212 H. H. Hall
Bar Harbor
Sanford
Waterville
Sanford
Orono
Bar Harbor
Millinocket
New York City
Bangor
Bluehill
Norridgewock
64 Lincoln Street, Bangor

West Enfield

111 H. H. Hall

HOME ECONOMICS

SECOND YEAR

Dugan, Frances Edith
Haley, Geneva Brackett
Higgins, Dorrice Mae
Jones, Frances Myrtle
Lewis, Alice Marguerite
Niles, Eunice Hale
Scrimgeour, Hazlewood

Bangor
Cornish
Brewer
Bangor
Gardiner
Hallowell
Lewiston
8 State Street Avenue
Mt. Vernon House
Mt. Vernon House
Mt. Vernon House
Mt. Vernon House

Balentine Hall

FIRST YEAR

Beckett, Mary Newton
Burleigh, Mollie Geneva
Burr, Marjorie Ethelyn
Chalmers, Ruth Bartlett
Clarke, Dorris Hunter
Clarke, Edith Gertrude
Clarke, Gladys Verna
Clark, Lucile Greeley
Cram, Beryl Eliza
Curtis, Beatrice Valentine
Evans, Anna
Flint, Fannie Persis
Folley, Veda Desire

Calais
Biddeford
Springfield
Bangor
New Sharon
Peak Island
New Sharon
Freedom
New Sharon
Monmouth
Bangor
West Baldwin
Sangerville

Colburn House
Mt. Vernon House
Mt. Vernon House
Sampson House
Balentine Hall
Balentine Hall
Balentine Hall
Balentine Hall
Balentine Hall
Howard St., Bangor
Balentine Hall
Orono
Catalog of Students

Harvey, Evelyn Mae
Kellogg, Thelma Louise
Jones, Iva Mildred
Lawlis, Hazel Mae
Leighton, Mildred Estelle
McGinnis, Helen
McGranigal, Marguerite Elletta
McLaughlin, Marion Catharine
Mooers, Susie Dyer
Perry, Emma Spring
Pike, Helen
Randall, Constance
Royal, Erma Lucile
Stetson, Maude Haskell
Taylor, Helen Perley
Thomas, Marion Louise
Wilkins, Dorris Elizabeth
Wilson, Phyllis Hazel

Patten
Vanceboro
Unity
Bartlett, N. H.
Oro
Waterville
Lubec
Hallowell
New Sharon
Machias
Monmouth
Augusta
Houlton
Augusta
Peabody, Mass.
Newburyport, Mass.
Kingfield
Houlton

Stillwater
Balentine Hall
Oro
Mount Vernon House
Oro
Balentine Hall
Colburn House
Balentine Hall
Colburn House
Balentine Hall
Balentine Hall
Balentine Hall
Colburn House
Sampson House
Balentine Hall
Mt. Vernon House

Pike, Helen
Randall, Constance
Royal, Erma Lucile
Stetson, Maude Haskell
Taylor, Helen Perley
Thomas, Marion Louise
Wilkins, Dorris Elizabeth
Wilson, Phyllis Hazel

SCHOOL COURSE IN AGRICULTURE

SECOND YEAR

Adams, Merle
Cawley, Henry Loel
Crowell, David
Dearborn, Philip Murray
Eaton, Richard Chandler
Fisk, Theodore Orson
Harris, Frank Waterman
Hawkes, Harry Sawyer
Norton, Rupert Stacy
Packard, Ralph
Walker, Frank Merrill
Willard, Mary Ellen

Atwood, Nelson Dingley
Bennett, Harry Stowe
Carlstrom, Edwin Carl
Fowler, John Earl
Hagstrom, Conrad Walfrid

Canton Point
Peabody, Mass.
Dorchester, Mass.
Cape Elizabeth
Exeter
Milo
Cumberland Center
Kezar Falls
Norrigweck
Saco
Llanerch, Penna.

201 H. H. Hall
209 Oak Hall
Park Street
Park Street
Park Street
Park Street
Park Street
A X A House
Park Street
Park Street
Park Street
Balentine Hall

FIRST YEAR

Atwood, Nelson Dingley
Bennett, Harry Stowe
Carlstrom, Edwin Carl
Fowler, John Earl
Hagstrom, Conrad Walfrid

St. Albans
Millbury, Mass.
Auburn, Mass.
Portland
Auburn, Mass.

Grove Street
Park Street
Park Street
Park Street
209 Oak Hall
Catalog of Students

Hobbs, Ellsworth Joseph
Johnson, Harold Winthrop
Kurkjian, Balshazzar
Lambert, Leon Elwin
Martin, Edwin Clarence
Moore, Joseph Henry, Jr.
Morse, Horace Gray
Parker, Howell Windsor
Shaw, Chauncey Germond,
Sherman, Reid Myles
Trueworthy, George Fay
Warren, Ralph Edward
Weeks, Fred Warren

Mattawamkeag 404 H. H. Hall
Waltham, Mass. Park Street
Lynn, Mass. Orono
Brewer Brewer
Liberty Park Street
Winthrop Campus
Bath
Douglass, Mass. Orono
West Roxbury, Mass. Mill Street
Island Falls College Street
Mattawamkeag 404 H. H. Hall!
Lisbon Falls Park Street
Cornville 112 Oak Hall

SUMMER TERM

Ashley, Raymond Harman, B. S.
1903, M. A. 1905, M. Sc. 1906, Ph.
D. 1906
Rutger's College, Yale University

Averill, Walter Boardman
Baker, Sarah Marinda
Barker, Corinne Maud
Barrows, Henry Robbins, Ph. B.,
1906, M. S., 1913
Hamilton College

Bayer, Harry Lewis
Bell, Randolph Everett
Bickford, Miretta Lydia
Bingham, Andrew, Jr.
Blaisdell, Lawrence Allen
Blanchard, Everard Eells
Blanchard, Ensor Harding
Boring, Lydia Truman, A. B., 1906
Bryn Mawr College

Brackett, Vernon Kilby
Brewster, Edward Hersey
Bright, Elizabeth Mason
Brown, Frederic Nelson
Brown, Lewis John
Cahill, Alice Lena
Chapman, Fred Elton

Old Town
Farmington
Bangor
Orono
Brooklyn, N. Y.
North Attleboro, Mass.
Orono
Littleton, N. H.
Lynn, Mass.
Buenos Aires
Buenos Aires
Philadelphia, Penna.
Buckfield
Patten
Bangor
Orono
South Windham
Bingham
Lake Hermon

282
Catalog of Students

Clarke, Hester, Anen
Clement, Stephen Caldwell
Coffey, Ralph Thompson
Colbath, Muriel Eva
Corson, Clarence True
Cram, Lewis Kittridge
Cruz, de la, John Raymond
Currier, Karl Moody
Damren, Fred Llewellyn
Day, George Willis, B. S. '95
 Dartmouth College
Dempsey, Charlotte Isabelle
Dorsey, Llewellyn Morse
Dunham, Carroll Kenneth
Edes, Omar Kelsey
Everett, Sarah Ruth, A. B., 1911,
 A. M., 1914
 Oskalouza & Boston University
Falvey, John Michael
Faulkner, William Thomas
Files, Frederick Whitney
Fletcher, Maurice Arthur, Ph. C.
 1913
 University of Maine
Fogg, Rebecca Abigail
Frothingham, Thomas Warren
Fung, Wai
Gilman, Madison Leavitt
Guild, Mrs. Esther
Gulliver, James Lucius
Gray, Ernest Linwood
Grant, Charles Harold, A. B., 1911
 University of Maine
 1914
 University of Maine
Goodwin, Eugene Wiley
Hanson, Ernest Freeman
Hartshorn, Zenas Downs
Hill, William Barlow
Franklin
Belfast
South Brewer
Hampden
New Sharon
New Sharon
Colombia, S. A
Brewer
Auburn
East Waterboro
Stillwater
Augusta
Portland
Dexter
Bucksport
Portland
Anson
Machias
Auburn
Mars Hill
Bangor
Rockport
Gorham
Searsport
Gorham
Catalog of Students

Howe, Mrs. Myra Vickery, B. A., Presque Isle 1899
 Mt. Holyoke College
Hunt, Lilian Crosby Old Town
Jewett, Rosalind May, B. S., 1910 Waterville
 Colby College
Jones, Grace Mutell (Mrs.) Orono
Jordan, Marion Blanche Waltham, Mass.
Kelley, Margaret June, B. A., 1912 Bangor
 University of Maine
Keyte William Albert Dexter
Kilburn, Frank Macready Ft. Fairfield
King, Earl Christopher Orono
Lanpher, Stacy Clifford, B. A., 1908 Foxcroft
 University of Maine
Lanpher, Mrs. Bessie Mary Foxcroft
Leavitt, Jennie Fern East Corinth
Libby, Eliza Sands West Buxton
Linscott, Edward Lyon Bar Harbor
Littlefield, Angie Mae Old Town
Lucas, Warren Stannope Auburn
McAvey, Liela Joyce Bangor
McCue, William Coleman Newport
MacIntire, Donald Josiah Biddeford
Maines, Esca Allen Norway
Maxfield, Frank Byron Bangor
Mann, Marjorie Alletta Bradley
Martin, Blynn New Gloucester
Martini, Mary Orono
Mason, Alice Eliza Mount Desert
Mason, Walter Lee Orono
Merrill, Charles Edward, A. B., 1910 Patten
 Bates College
Mitchell, Frances Ricker Cherryfield
Morrell, Lester Howe Lewiston
Morris, Frank Albert Old Town
Morrison, Mildred Cora Bar Harbor

284
Catalog of Students

Myrick, Leroy Henry
Maley, Everett Thornton, Jr.
Noddin, Effie, A. B. 1909
Woman's College
O'Neil, Harry Dennis
Parks, David Weaver
Pfaff, Ethel Eustis, A. B., 1904
Bryn Mawr College
Phillips, Charles
Poore, Alice Mildred
Purington, Clinton Everett
Redman, Mary Evangeline, A. B., 1912
Bates College
Redman, Ralph Woodbury, B. S., Orono 1912
University of Maine
Roberts, George Harley
Roberts, Jane Peirce
Robie, Frederick
Rogers, Walter Henry
Rowe, Mary Louise
Russell, Sibyl Lois
Savage, Frank John
Sawyer, Grace Ruth
Scott, Edith
Trenton Normal School
Scribner, John Leslie
Scribner, Stasia Josephine
Emerson College
Skillin, Clifford Augustus
Slocum, Paul Frederick
Smith, Royal Howard Gould
Southard, Lawrence
Sowle, Wesley Atwood
Stanley, Winthrop Hamor, B. A., 1910
University of Maine
Stanton, Augusta Emily Hazelton

East Machias
Bangor
Skowhegan
Bangor
Ft. Fairfield
Bangor
Franklin
Robbinston
Portland
Dexter
Brownville
Bangor
Gorham
Topsham
Bangor
Orono
Fairfield
Old Town
Englewood, N. J.
Plattsburgh, N. Y.
Bangor
South Portland
New York City
Gorham
Brooklyn, N. Y.
Ellsworth
Hull's Cove
Great Neck, N. Y.
Catalog of Students

Stephens, Aberta, Ph. B., 1911
 Iowa Wesleyan College

Titus, Nina Edith
 Castine Normal School

Towle, Lillis Katharine

Turner, O'Dillion Charles

Urann, Eugene Harrison

Van Dyke, Percy James

Violette, Augusta Genevieve

Walker, James Clifford

Webber, Ella Cynthia

Webber, Elmer Harrison

Wheeler, Delbert Amos, B. S., 1897
 New Hampshire State College

White, Harold Chandler

Whiteside, Thomas, A. B., 1889, S. T. B., 1891
 Boston University

Wilson, Rolla Tenney

Wing, Caroline Roberta, B. A., 1896
 Smith College

Worcester, Henry Franklin

Wormwood, Alice Eleanor, B. A., 1913
 Wellesley College

Young, Mary Kathleen

Wapello, Iowa

Dorchester, Mass.

Bangor

Veazie

East Sullivan

McIndoes, Vermont

Milford

Portland

Mount Vernon

Mount Vernon

Everett, Mass.

Bangor

Orono

Bangor

Bangor

Old Orchard

Bangor

Waldoboro
GENERAL SUMMARY

FACULTY

<table>
<thead>
<tr>
<th>Position</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>President</td>
<td>1</td>
</tr>
<tr>
<td>Professors</td>
<td>39</td>
</tr>
<tr>
<td>Associate Professors</td>
<td>18</td>
</tr>
<tr>
<td>Assistant Professors</td>
<td>13</td>
</tr>
<tr>
<td>Instructors</td>
<td>49</td>
</tr>
<tr>
<td>Lecturers</td>
<td>8</td>
</tr>
<tr>
<td>Assistants</td>
<td>9</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>13</td>
</tr>
<tr>
<td>Total</td>
<td>150</td>
</tr>
</tbody>
</table>

- **College of Agriculture** 36
- **College of Arts and Sciences** 47
- **Agricultural Experiment Station** 15
- **College of Law** 11
- **College of Technology** 32
- **Officers common to all Colleges** 9

STUDENTS

<table>
<thead>
<tr>
<th>Category</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graduate Students</td>
<td>33</td>
</tr>
<tr>
<td>Seniors</td>
<td>124</td>
</tr>
<tr>
<td>Juniors</td>
<td>134</td>
</tr>
<tr>
<td>Sophomores</td>
<td>201</td>
</tr>
<tr>
<td>Freshmen</td>
<td>352</td>
</tr>
<tr>
<td>Specials</td>
<td>36</td>
</tr>
<tr>
<td>College of Law, Seniors</td>
<td>15</td>
</tr>
<tr>
<td>Juniors</td>
<td>21</td>
</tr>
<tr>
<td>First Year</td>
<td>27</td>
</tr>
</tbody>
</table>
| Specials | 27 | 90

287
General Summary

<table>
<thead>
<tr>
<th>Program</th>
<th>First Year</th>
<th>Second Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two Years Course in Pharmacy, Second Year</td>
<td>10</td>
<td>13</td>
</tr>
<tr>
<td>Two Years Course in Home Economics</td>
<td>13</td>
<td>23</td>
</tr>
<tr>
<td>School Course in Agriculture</td>
<td>7</td>
<td>31</td>
</tr>
<tr>
<td>Summer Term</td>
<td>18</td>
<td>30</td>
</tr>
<tr>
<td>Duplicates</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1129</td>
<td></td>
</tr>
</tbody>
</table>

Classification by Residence

- **Maine, by counties:**
 - Androscoggin: 53
 - Aroostook: 36
 - Cumberland: 139
 - Franklin: 24
 - Hancock: 53
 - Kennebec: 66
 - Knox: 23
 - Lincoln: 19
 - Oxford: 35
 - Penobscot: 255
 - Piscataquis: 36
 - Sagadahoc: 13
 - Somerset: 30
 - Waldo: 25
 - Washington: 45
 - York: 64

- California: 1
- Connecticut: 15
- Florida: 1
- Indiana: 1
- Iowa: 1
- Kentucky: 1
- Massachusetts: 135
- New Hampshire: 31
- New Jersey: 3
- New York: 12

288
General Summary

<table>
<thead>
<tr>
<th>Country</th>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pennsylvania</td>
<td>7</td>
</tr>
<tr>
<td>Rhode Island</td>
<td>3</td>
</tr>
<tr>
<td>Vermont</td>
<td>4</td>
</tr>
<tr>
<td>Washington</td>
<td>1</td>
</tr>
<tr>
<td>West Virginia</td>
<td>1</td>
</tr>
<tr>
<td>Wisconsin</td>
<td>1 218</td>
</tr>
<tr>
<td>Argentina</td>
<td>2</td>
</tr>
<tr>
<td>Canada</td>
<td>1</td>
</tr>
<tr>
<td>Columbia</td>
<td>1</td>
</tr>
<tr>
<td>Turkey</td>
<td>5</td>
</tr>
</tbody>
</table>

CLASSIFICATION BY COLLEGES

<table>
<thead>
<tr>
<th>College</th>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>College of Agriculture</td>
<td>305</td>
</tr>
<tr>
<td>College of Arts and Sciences</td>
<td>309</td>
</tr>
<tr>
<td>College of Law</td>
<td>92</td>
</tr>
<tr>
<td>College of Technology</td>
<td>423</td>
</tr>
</tbody>
</table>

CLASSIFICATION OF CANDIDATES FOR DEGREES

<table>
<thead>
<tr>
<th>College</th>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>College of Agriculture</td>
<td>223</td>
</tr>
<tr>
<td>College of Arts and Sciences</td>
<td>235</td>
</tr>
<tr>
<td>College of Law</td>
<td>65</td>
</tr>
<tr>
<td>College of Technology</td>
<td>411</td>
</tr>
</tbody>
</table>

1129

289
General Summary

The following students registered in short courses given in the College of Agriculture

DAIRYING AND GENERAL AGRICULTURE

Abbott, W. Arnold
Andrews, Carl E.
Blake, Maurice
Bodkin, Walter H.
Capino, Simon
Chapman, H. E.
Cleaveland, Lewis
Cleaveland, R. J.
Downs, John B.
Durgin, Chas. M.
Fenderson, Carleton
Frost, Percy W.
Hubbard, Walter L.
Kettell, Albert B.
McAvey, Carl J.
Merrill, A. R.
Northrop, Frank B.
Pitcher, Amelius C.
Rich, Irving H.
Rogers, L. D.
Rubin, Samuel
Sayward, Ralph K.
Senna, Arthur P.
Sewall, James W.
Tucker, Edward M.
Curtis, Walter E.

Horticulture

Andrews, Carl E.
Bartlett, George
Chapman, H. E.
Clay, Mrs. Cecil
Curtis, Walter E.
Downs, John B.
Emerson, Frank
McIntosh, M. A.
Pitcher, A. C.

S. Waterford, Me.
Jefferson, Me.
West Falmouth, Me.
Woodfords, Me.
Greenville, Me.
East Corinth, Me.
Exeter, Me.
Exeter, Me.
Skowhegan, Me.
Woodfords, Me.
Saco, Me.
Bangor, Me.
Charleston, Me.
Brewer, Me.
Charleston, Me.
Bangor, Me.
Saco, Me.
Lincolnville, Me.
Charleston, Me.
Bath, Me.
Malden, Mass.
Auburn, Me.
St. Andrews, N. B.
Old Town, Me.
Newport, Me.
Curtis Corner, Me.

Jefferson, Me.
Sorrento, Me.
East Corinth, Me.
Deering, Me.
Curtis Corner, Me.
Skowhegan, Me.
Enfield, Me.
Great Works, Me.
Northport, Me.
General Summary

Sprague, Mrs. Fremont
Sprague, Fremont J.
Sullivan, D. C.
Foster, Ruel
Allen, Wm. J.

Ayer, Me.
Ayer, Me.
Hebron, Me.
Round Pond, Me.
Bar Harbor, Me.

POULTRY HUSBANDRY

Bachelder, Paul J.
Bartlett, Mrs. Ruth B.
Black, D.
Bodkin, W. H.
Dickey, Eva Augusta
Durgin, C. M.
Emerson, S. E.
Frost, Percy W.
Gray, Vernon
Hubbard, Walter L.
Ireland, Everett C.
Loud, Orman W.
Lowell, Abner W.
Meady, Mrs. F. H.
Northrup, Frank
Nutting, Everett W.
Parker, A. A.
Parker, Mrs. R. Y.
Piper, Harold L.
Rubin, Samuel
Sayward, Ralph K.
Senna, Arthur P.
Smith, Walter R.
Spencer, George
Stanley, John M.
Tolman, A. M.
Thurlow, Myra D.
Wagner, Chas.

Bangor, Me.
Sorrento, Me.
West Brooksville, Me.
Woodfords, Me.
Greene, Me.
Woodfords, Me.
Orono, Me.
Bangor, Me.
Brewer, Me.
Charleston, Me.
Bangor, Me.
Old Town, Me.
Portland, Me.
Gardiner, Me.
Saco, Me.
Augusta, Me.
York Corner, Me.
York, Me.
Troy, Me.
Malden, Mass.
Auburn, Me.
St. Andrews N. B.
Bangor, Me.
Hebron, Me.
Auburn, Me.
Carrol, Me.
Stillwater, Me.
Norridgewock, Me.

These students have formerly been included in the general summary of students registered at the University. If they had been so included this year the total enrollment would have been 1196

291
Index

<table>
<thead>
<tr>
<th>Absence from examinations</th>
<th>45</th>
<th>Bibliography</th>
<th>121</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administration, officers of</td>
<td>8</td>
<td>Biological Chemistry</td>
<td>100</td>
</tr>
<tr>
<td>Advanced standing</td>
<td>54</td>
<td>Biology courses</td>
<td>121</td>
</tr>
<tr>
<td>Admiralty</td>
<td>177</td>
<td>entrance</td>
<td>68</td>
</tr>
<tr>
<td>Admission</td>
<td>54</td>
<td>Botany</td>
<td>123</td>
</tr>
<tr>
<td>to College of Law</td>
<td>175</td>
<td>Buildings and equipment</td>
<td>27</td>
</tr>
<tr>
<td>Agricultural Chemistry</td>
<td>100</td>
<td>Business Law</td>
<td>126</td>
</tr>
<tr>
<td>Agricultural Engineering</td>
<td>102</td>
<td>Calendar</td>
<td>3</td>
</tr>
<tr>
<td>Agricultural Experiment Station</td>
<td>228</td>
<td>Central heating plant</td>
<td>34</td>
</tr>
<tr>
<td>Council</td>
<td>7</td>
<td>Cercle Francais</td>
<td>41</td>
</tr>
<tr>
<td>Agriculture, College of</td>
<td>71</td>
<td>Certificate, admission by</td>
<td>56</td>
</tr>
<tr>
<td>Agronomy courses</td>
<td>93</td>
<td>Certificates in Agriculture</td>
<td>86</td>
</tr>
<tr>
<td>curriculum</td>
<td>76</td>
<td>Chemical Engineering curriculum</td>
<td>184</td>
</tr>
<tr>
<td>Alpha Zeta</td>
<td>42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternating Currents</td>
<td>216</td>
<td>Chemistry courses</td>
<td>201</td>
</tr>
<tr>
<td>Alumni Advisory Council</td>
<td>237</td>
<td>curriculum</td>
<td>187</td>
</tr>
<tr>
<td>Alumni associations</td>
<td>237</td>
<td>entrance</td>
<td>68</td>
</tr>
<tr>
<td>Animal Industry courses</td>
<td>95</td>
<td>Christian Association</td>
<td>41</td>
</tr>
<tr>
<td>curriculum</td>
<td>76</td>
<td>Civil Engineering courses</td>
<td>208</td>
</tr>
<tr>
<td>Appointments</td>
<td>240</td>
<td>curriculum</td>
<td>189</td>
</tr>
<tr>
<td>Archaeology</td>
<td>143</td>
<td>Commencement exercises, 1914</td>
<td>245</td>
</tr>
<tr>
<td>Architecture</td>
<td>150</td>
<td>Committees of the Faculty</td>
<td>22</td>
</tr>
<tr>
<td>Art</td>
<td>149</td>
<td>Cookery</td>
<td>107</td>
</tr>
<tr>
<td>Art Museum</td>
<td>39</td>
<td>Correspondence courses</td>
<td>90</td>
</tr>
<tr>
<td>Arts and Sciences, College of</td>
<td>112</td>
<td>Criminal Law</td>
<td>178</td>
</tr>
<tr>
<td>Associations</td>
<td>40</td>
<td>Curricula</td>
<td>69</td>
</tr>
<tr>
<td>Astronomy</td>
<td>158</td>
<td>Agriculture</td>
<td>75</td>
</tr>
<tr>
<td>Athletic field</td>
<td>34</td>
<td>Agronomy</td>
<td>75</td>
</tr>
<tr>
<td>Bacteriology</td>
<td>99</td>
<td>Animal Industry</td>
<td>76</td>
</tr>
<tr>
<td>Battalion</td>
<td>241</td>
<td>Arts and Sciences</td>
<td>112</td>
</tr>
<tr>
<td>Subject</td>
<td>Page</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------------</td>
<td>------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemistry</td>
<td>187</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemical Engineering</td>
<td>184</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Civil Engineering</td>
<td>189</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrical Engineering</td>
<td>191</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forestry</td>
<td>82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Graduate</td>
<td>118</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Home Economics</td>
<td>85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horticulture</td>
<td>78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Law</td>
<td>177</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanical Engineering</td>
<td>194</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pharmacy</td>
<td>197</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dairy courses</td>
<td>77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Winter courses</td>
<td>88</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Debate</td>
<td>135</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Declamations</td>
<td>134</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sophomore prize</td>
<td>52, 134</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Degrees</td>
<td>46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>advanced</td>
<td>47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Degrees conferred, 1914</td>
<td>247</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deposits</td>
<td>51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dormitories</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drawing</td>
<td>222</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Economics</td>
<td>125</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Education courses</td>
<td>129</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrical Engineering courses.</td>
<td>213</td>
<td></td>
<td></td>
</tr>
<tr>
<td>curriculum</td>
<td>191</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Embryology</td>
<td>123</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Endowment of the University..</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>English courses</td>
<td>133</td>
<td></td>
<td></td>
</tr>
<tr>
<td>entrance</td>
<td>59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>English Literature</td>
<td>141</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entomology</td>
<td>122</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entrance</td>
<td>54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Essays</td>
<td>135</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Establishment of the University</td>
<td>23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evidence</td>
<td>178</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Examinations, arrearage</td>
<td>55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>entrance</td>
<td>56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expenses</td>
<td>49, 176</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experiment Station</td>
<td>228</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extension work in Agriculture.</td>
<td>89</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Faculty, University</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agriculture</td>
<td>71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arts and Sciences</td>
<td>112</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experiment Station</td>
<td>228</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Law</td>
<td>174</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Farm Management</td>
<td>102</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fees, laboratory</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forestry courses</td>
<td>103</td>
<td></td>
<td></td>
</tr>
<tr>
<td>curriculum</td>
<td>82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Praternity houses</td>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>French courses</td>
<td>167</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geological collection</td>
<td>38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geology</td>
<td>101</td>
<td></td>
<td></td>
</tr>
<tr>
<td>German courses</td>
<td>142</td>
<td></td>
<td></td>
</tr>
<tr>
<td>entrance</td>
<td>63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gothic</td>
<td>144</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Graduate curricula</td>
<td>118</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Graduation, requirements for..</td>
<td>73, 115, 184</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Greek courses</td>
<td>145</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Greek architecture</td>
<td>150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gymnasium</td>
<td>44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herbarium</td>
<td>38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Histology, Animal</td>
<td>124</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plant</td>
<td>124</td>
<td></td>
<td></td>
</tr>
<tr>
<td>History courses</td>
<td>150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>entrance</td>
<td>66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Home Economic courses.</td>
<td>107</td>
<td></td>
<td></td>
</tr>
<tr>
<td>curriculum</td>
<td>84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>short courses</td>
<td>85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Honorary societies</td>
<td>42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Honors</td>
<td>46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>conferred, 1914</td>
<td>241</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horticulture courses.</td>
<td>110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>curriculum</td>
<td>78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydraulics</td>
<td>210</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Index

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Income of the University</td>
<td>25</td>
</tr>
<tr>
<td>Industrial Chemistry</td>
<td>205</td>
</tr>
<tr>
<td>Infirmary</td>
<td>33</td>
</tr>
<tr>
<td>Insurance</td>
<td>179</td>
</tr>
<tr>
<td>Italian</td>
<td>169</td>
</tr>
<tr>
<td>Journalism</td>
<td>117</td>
</tr>
<tr>
<td>Junior Exhibition</td>
<td>52</td>
</tr>
<tr>
<td>Kidder scholarship</td>
<td>52</td>
</tr>
<tr>
<td>Kittredge loan fund</td>
<td>52</td>
</tr>
<tr>
<td>Laboratory charges</td>
<td>50</td>
</tr>
<tr>
<td>Landscape Gardening</td>
<td>110</td>
</tr>
<tr>
<td>Latin</td>
<td>153</td>
</tr>
<tr>
<td>Law, College of</td>
<td>174</td>
</tr>
<tr>
<td>Library</td>
<td>30, 35</td>
</tr>
<tr>
<td>Loans</td>
<td>52</td>
</tr>
<tr>
<td>Logic</td>
<td>162</td>
</tr>
<tr>
<td>Lumbering</td>
<td>106</td>
</tr>
<tr>
<td>Machine Design</td>
<td>219</td>
</tr>
<tr>
<td>Maine Masque</td>
<td>41</td>
</tr>
<tr>
<td>Major instructors</td>
<td>115</td>
</tr>
<tr>
<td>Materia Medica</td>
<td>223</td>
</tr>
<tr>
<td>Mathematics courses</td>
<td>156</td>
</tr>
<tr>
<td>entrance</td>
<td>66</td>
</tr>
<tr>
<td>Mechanical Engineering courses</td>
<td>218</td>
</tr>
<tr>
<td>curriculum</td>
<td>194</td>
</tr>
<tr>
<td>Mechanics</td>
<td>222</td>
</tr>
<tr>
<td>Mechanics and Drawing</td>
<td>222</td>
</tr>
<tr>
<td>Medicine, preparation for</td>
<td>118</td>
</tr>
<tr>
<td>Meteorology</td>
<td>164</td>
</tr>
<tr>
<td>Military Science</td>
<td>43</td>
</tr>
<tr>
<td>courses</td>
<td>226</td>
</tr>
<tr>
<td>Museum</td>
<td>38</td>
</tr>
<tr>
<td>Observatory</td>
<td>33</td>
</tr>
<tr>
<td>Optics</td>
<td>164</td>
</tr>
<tr>
<td>Organic Chemistry</td>
<td>202</td>
</tr>
<tr>
<td>Organization of the University</td>
<td>69</td>
</tr>
<tr>
<td>Organizations</td>
<td>40</td>
</tr>
<tr>
<td>Pharmacy</td>
<td>223</td>
</tr>
<tr>
<td>curricula</td>
<td>197</td>
</tr>
<tr>
<td>Phi Kappa Phi</td>
<td>42</td>
</tr>
<tr>
<td>members</td>
<td>240</td>
</tr>
<tr>
<td>Physical Chemistry</td>
<td>204</td>
</tr>
<tr>
<td>Physical Geography</td>
<td>68</td>
</tr>
<tr>
<td>Physical Training</td>
<td>44</td>
</tr>
<tr>
<td>courses in</td>
<td>227</td>
</tr>
<tr>
<td>Physics courses</td>
<td>163</td>
</tr>
<tr>
<td>entrance</td>
<td>68</td>
</tr>
<tr>
<td>Physiology</td>
<td>124</td>
</tr>
<tr>
<td>Political Economy</td>
<td>125</td>
</tr>
<tr>
<td>Poultry Husbandry courses</td>
<td>97</td>
</tr>
<tr>
<td>Power House</td>
<td>35</td>
</tr>
<tr>
<td>Precision of Measurements</td>
<td>165</td>
</tr>
<tr>
<td>Prescriptions</td>
<td>225</td>
</tr>
<tr>
<td>Prizes</td>
<td>52</td>
</tr>
<tr>
<td>awarded, 1914</td>
<td>243</td>
</tr>
<tr>
<td>Psychology</td>
<td>162</td>
</tr>
<tr>
<td>Public Speaking</td>
<td>131</td>
</tr>
<tr>
<td>Publications</td>
<td>42</td>
</tr>
<tr>
<td>Radio—Activity</td>
<td>165</td>
</tr>
<tr>
<td>Reading Room</td>
<td>35</td>
</tr>
<tr>
<td>Regulations of the University</td>
<td>45</td>
</tr>
<tr>
<td>Required courses</td>
<td>226</td>
</tr>
<tr>
<td>Requirements, for admission</td>
<td>51</td>
</tr>
<tr>
<td>Rhetoric</td>
<td>135</td>
</tr>
<tr>
<td>Romance Languages</td>
<td>167</td>
</tr>
<tr>
<td>Roman Numismatics</td>
<td>153</td>
</tr>
<tr>
<td>Roman Philosophy</td>
<td>154</td>
</tr>
<tr>
<td>Rooms</td>
<td>50</td>
</tr>
<tr>
<td>Rooms for women</td>
<td>50</td>
</tr>
<tr>
<td>Rule of conduct</td>
<td>45</td>
</tr>
<tr>
<td>Sanskrit</td>
<td>155</td>
</tr>
<tr>
<td>Scholarship honors</td>
<td>46</td>
</tr>
<tr>
<td>Scholarships</td>
<td>52</td>
</tr>
<tr>
<td>School Course in Agriculture</td>
<td>86</td>
</tr>
</tbody>
</table>

295