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4OAr/9Ar evidence for Middle Proterozoic (1300-1500 Ma) 
slow cooling of the southern Black Hills, South Dakota, 
midcontinent, North America: Implications for Early 
Proterozoic P-T evolution and posttectonic magmatism 

Daniel K. Holm and Peter S. Dahl 
Department of Geology, Kent State University, Kent, Ohio 

Daniel R. Lux 
Department of Geological Sciences, University of Maine, Orono 

Abstract. 4øAr?9Ar total gas and plateau dates from muscovite 
and biotite in the southern Black Hills, South Dakota, provide 
evidence for a period of Middle Proterozoic slow cooling. Early 
Proterozoic (1600-1650 Ma) mica dates were obtained from 
metasedimentary rocks located in a synforma! structure between 
the Harney Peak and Bear Mountain domes and also south of 
Bear Mountain. Metamorphic rocks from the dome areas and 
undeformed samples of the - 1710 Ma Harney Peak Granite 
(HPG) yield Middle Proterozoic mica dates (-1270-1500 Ma). 
Two samples collected between the synform and Bear Mountain 
dome yield intermediate total gas mica dates of-1550 Ma. We 
suggest two end-member interpretations to explain the map 
pattern of cooling ages: (1) subhorizontal slow cooling of an area 
which exhibits variation in mica Ax retention intervals or (2) mild 
folding of a Middle Proterozoic (-1500 Ma) ~300øC isotherm. 
According to the second interpretation, the preservation of older 
dates between the domes may reflect reactivation of a preexisting 
synformal structure (and downwarping of relatively cold rocks) 
during a period of approximately east-west contraction and slow 
uplift during the Middle Proterozoie. The mica data, together 
with hornblende data from the Black Hills published elsewhere, 
indicate that the ambient country-rock temperature at the 3-4 kbar 
depth of emplacement of the HPG was between 350øC and 
500øC, suggesting that the average upper crustal geothermal 
gradient was 25ø-40øC/km prior to intrusion. The 
thermochronologic data suggest HPG emplacement was followed 
by a-200 m.y. period of stability and tectonic quiescence with 
little uplift. We propose that crust thickened during the Early 
Proterozoic was uplifted and erosionally(?) thinned prior to 
~1710 Ma and that the HPG magma was emplaced into 
isostatically stable crust of relatively normal thickness. We 
speculate that uplift and crustal thinning prior to HPG intrusion 
was the result of differential thinning of the subcrustal lithosphere 
beneath the Black Hills. If so, this process would have also 
caused an increase in mantle heat flux across the Moho and 

triggered vapor-absent melting of biotite to produce the HPG 
magma. This scenario for posttectonic granite generation is 
supported, in part, by the fact that in the whole of the Black Hills, 
the HPG is spatially associated with the deepest exposed Early 
Proterozoic country rock. 
Copyright 1997 by the American Geophysical Union 

Paper number 97TC01629. 
0278-7407/97/97TC-01629512.00 

1. Introduction 

The dominant Precambrian tectonic elements making up the 
southern portion of Laurentia (between the Grenville and 
Cordilleran Orogens, Figure 1) were rapidly formed and/or 
assembled toward the end of the Early Proterozoic (1900-1600 
Ma). Preferentially intruded into the Early Proterozoic 
collisional/accretionary belts of this region are numerous 
anorogenic or posttectonic plutons whose origins remain 
controversial [Hoffman, 1989a; Winalley, 1993; Nyman et al., 
1994; Holm and Lux, 1996]. The purpose of this study has been 
to investigate the postcollisional intrusive and thermal history of 
Early Proterozoic metamorphic rocks in the Black Hills of 
southwestern South Dakota, United States of America. On the 
basis of regional geophysical features, the crystalline basement 
exposed in the Black Hills represents the southermost exposure 
of the Early Proterozoic Trans-Hudson orogen near its 
termination by the younger Central Plains orogen (locality BH, 
Figure 1). However, the Black Hills represent the only exposure 
of the geophysically defined Trans-Hudson orogenic belt for over 
1000 km along strike, and the lithologic units and timing of 
tectonic and intrusive events there appear fundamentally different 
from much of the Trans-Hudson orogen in Canada [i.e., Redden 
and DeWitt, 1996]. For instance, the -1710 Ma posttectonic 
Hamey Peak Granite in the Black Hills is 60-70 m.y. younger 
than posttectonic granites and pegmatites in the Saskatchewan 
(Canada) segment of the orogen [Bickford et al., 1990], leading 
some to suggest that the Harney Peak Granite may actually be 
related to Central Plains orogen suturing [Sims et al., 1991]. 

During the last decade, new and improved petrologic and 
thermochronologic techniques have greatly increased our 
understanding of the midcrustal processes which play an integral 
role in the growth and stabilization of Precambrian crust [i.e., 
Bowffng and Karlstrom, 1990; Hodges et al., 1994; Williams and 
Karlstrom, 1996]. Reconstruction of pressure-temperature-time 
paths of Proterozoie juvenile rocks in the southwestern United 
States has led to recognition of their long-term midcrustal 
residence throughout a significant portion of the Proterozoic. 
Evidence in that region for protracted (300-400 m.y.) midcrustal 
cooling has important implications for crustal evolution and 
eraton development during the Proterozoie [Bowring et al., 1996]. 
In constrast, very little is known about the timing or the 
mechanism by which midcrustal Early Proterozoic rocks of the 
Black Hills were exhumed and cooled. Previous investigations of 
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these rocks have focused principally on the tectonic setting in 
which they were initially formed at the surface and the 
subsequent conditions and overall tectonic framework in which 
they were buried and metamorphosed [e.g., Redden etal., 1990; 
Terry and Friberg, 1990; Helms and Labotka, 1991; Friberg et 
at., 1996]. In this study, we have used 4øAr/39Ar 
thermochronology to investigate the postcollisional cooling 
history of this important Early Proterozoic orogenic belt. 

Determining the initial cooling history of Proterozoic orogenic 
crust can sometimes be difficult because of thermal overprinting 
associated with younger events and/or relatively poor exposure. 
Such has certainly been the case in the northern Black Hills 
where abundant Tertiary igneous rocks have been responsible for 
at least partial resetting of Rb-Sr mineral ages [Zartman etal., 
1964]. In contrast, Tertiary igneous rocks are absent in the 
southern Black Hills, and Rb-Sr mineral ages are, for the most 
part, substantially older [Riley, 1970a; Walker etal., 1986]. In 
addition, rocks of the southern Black Hills are relatively well- 
exposed and consist of coarse-grained metasedimentary and 
igneous rocks that contain abundant muscovite and biotite. 
Finally, the Early Proterozoic metamorphism and deformation in 
the southern Black Hills culminated with the eraplacement of a 

large, well-dated granite/pegmatite intrusion, the 1710 Ma 
Harney Peak Granite (hereafter referred to as HPG). The 
widespread thermal effects imposed by the granite on the country 
rocks throughout the southern Black Hills are well documented 
from metamorphic studies [Helms and lz•tka, 1991; Terry and 
Friberg, 1990; Friberg etal., 1996]. Because the pre-1710 Ma 
metamorphic history of the region is difficult to assess because of 
thermal overprinting, only the post-1710 Ma, lower-temperature 
cooling history is addressed here. We present evidence for 
prol9nged midcrustal (3-4 kbar) residence and very slow cooling 
during the Middle Proterozoic. As for the Early Proterozoic 
accretiontry belts to the south, documentation of a protracted 
midcrustal cooling history has, we believe, important implications 
for both the Middle and Early Proterozoic tectonothermal 
evolution of this region and for genesis of the posttectonic Hamey 
Peak Granite. 

2. Geologic Setting 

The Black Hills crystalline core consists of multiply deformed 
and metamorphosed Early Proterozoic rocks exposed between the 
Archcan Superior Province to the east and the Arcbean Wyoming 
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Province to the west (Figure 1). Remnants of Archean rocks in 
the Black Hills (Figure 2) suggest this region is part of the 
Wyoming craton which has been reworked during Early 
Proterozoic tectonism [Gosselin et al., 1988]. The basement 
rocks are composed dominantly of a thick sequence of Early 
Proterozoic clastic metasedimentary rocks and minor mafic 
volcanic and plutonic rocks. The entire sequence, which contains 
tuffs and gabbros as young as 1883-1-5 Ma [Redden et aL, 1990], 
was tectonically buffed, deformed, and metamorphosed prior to 
being intruded by the posttectonic HPG at -1710 Ma [DeWitt et 
a/., 1986; Terry and Friberg, 1990]. Sills from the main granite 
body have yielded an Rb-Sr whole rock isochron of 1711-1-21 Ma 
[Riley, 1970a; Walker et al., 1986] and a U-Pb monazite date of 
1715:k3 Ma [Redden et aL, 1990]. Associated pegmatites which 
surround the main portion of the pluton yield U-Pb apatite dates 
of 1706+4.4 Ma to 1695-1-3 Ma [Krogstad and Walker, 1994]. 
The crystalline core is nonconformably overlain by Phanerozoic 
sedimentary rocks, indicating its exposure by Cambrian time, and 
was ultimately reexposed by Laramide doming. 

The main 1880-1710 Ma structural elements in the core of the 

Black Hills are northdirected, ENE striking fold nappes/thrusts 

(FI) that were refolded into NNW striking upright folds (F2) 
accompanied by the development of a locally penetrative axial 
planar foliation [Redden and Norton, 1975; DeWitt et al., 1986]. 
Structures developed during D1 and D2 deformations were 
modified during the subsequent mesozonal granite eraplacement 
at 1710 Ma [Redden et al., 1990]. Structural doming and 
localized folding (F3) of metamorphic country rocks 
accompanied granite emplacement, but the granite itself is largely 
undeformed [Redden et aL, 1990]. However, a late (post-HPG) 
northeast trending, widespread but nonpenetrative foliation (S4) 
of uncertain origin has been recognized by Redden et al. [ 1990]. 

Of the rocks exposed throughout the Black Hills, the southern 
region contains the deepest crustal levels. In this region, 
widespread metapelites, amphibolites, and quartz veins have 
yielded metamorphic pressures as high as 5-7 kbar [Terry and 
Friberg, 1990; Duke et al., 1990a; Terry et al., 1994]. In 
contrast, metamorphic pressures to the north are invariably 2-5 
kbar [see Duke et al., 1990b; Kath and Redden, 1990]. In the 
south, the 1880-1710 Ma, medium-pressure regional 
metamorphism was variably overprinted by a prograde low- 
pressure, high-temperature contact metamorphism associated with 
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emplacement of the HPG [Helms and Labotka, 1991]. At the 
Bear Mountain dome, for example, thermobarometry indicates 
peak metamorphic conditions for kyanite-bearing Early 
Proterozoic metasedimentary rocks of 6.5 kbar and temperatures 
of-600øC [Terry and Friberg, 1990; Terry etal., 1994], with 
garnet rims yielding final equilibration pressures of 4.4 kbar and 
temperatures of 530øC [Helms and Labotka, 1991]. Also, 
metapelites from the Harney Peak dome yield peak metamorphic 
conditions of 4.5-5.0 kbar and ~620øC and garnet rim 
equilibration conditions of 3.0-3.5 kbar and -550øC [Terry, !990; 
Helms and Labotka, 1991]. 

Isotopic data indicate that the interior granites of the HPG 
pluton were derived from vapor-absent melting of biotite in deep- 
seated Archean/Proterozoic metasedimentary rocks [Walker et al., 
1986; Nabelek et al., 1992a, b; Nabelek, 1994]. Abundant 
mineralogic and thermobarometric data from the country rock 
exposed around the pluton indicate final emplacement at 3-4 
kbars [Redden etal., 1985; Helms and Labotka, 1991]. Both 
geophysical data and geologic mapping indicate that the HPG 
consists of a series of sheet-like intrusions with a base at 

relatively shallow (less than a few kilometers) crustal depths 
[Redden eta/., 1982; Duke etaI., 1990a; Klasner and King, 
1990]. Although not exposed in the Bear Mountain dome area, 
geophysical data suggest HPG exists there not far below the 
surface [Duke et aI., 1990a; see also DeWitt eta/., 1989]. Field 
mapping suggests that the rocks between the Harney Peak and 
Bear Mountain domes were structurally inverted from a D2 
antiform into a synform when the HPG was emplaced [DeWitt et 
a/., 1989]. 

3. Previous Thermochronology 

Wetherill et aI. [1956] obtained K-At ages on Harney Peak 
pegmatite minerals from the Bob Ingersoll Mine located north of 
the Hamey Peak dome (Figure 1). Using the decay constants of 
Steiger and Jdger [1977], their data gave dates of 1510 Ma for 
muscovite, 1360 Ma for lepidolite, and 1080 Ma for microcline. 
Gotdich et al. [1966] reported two (recalculated) K-At dates for 
muscovite from the HPG of 1570 Ma and 1610 Ma. 

Riley [1970a, b] recognized discrepancies in Rb-Sr mineral 
dates from the HPG and its associated pegmatites. Pegmatite 
micas, microcline, and poilucite gave dates from 1575 Ma to 
1695 Ma when an initial 87Sr/86Sr Of 0.7!4 was assumed [Walker 
et al., 1986]. A similar Rb-Sr date of !680-2:25 Ma (2{I) on 
muscovite from boudin fracture fillings near the flank of Bear 
Mountain dome [Rattd, 1986] is commonly interpreted to 
represent the approximate time of dome formation [Redden etal., 
1990; Terry and Friberg, 1990]. However, Rattd and Zartman 
[1970] also reported a much younger muscovite Rb-Sr date of 
1560 Ma from a muscovite schist sample collected northeast of 
the Bear Mountain dome. 

More recently, Redden etal. [1990] obtained Rb-Sr whole rock 
isochron dates from a metatuff and a metagraywacke collected 
from the central and northern Black Hills. The metatuff gave a 
1534:!:50 Ma (20) date and the metagraywacke gave a 1572.-k89 
Ma (2•) date. Redden eta/. [ 1990] tentatively suggested that the 
pooled age of 1543:1:43 Ma (2•) for these two samples may 
represent the time of formation of the weak, northeast trending, 
S4 foliation found throughout much of the Black Hills. 

4. Methodology 

In order to determine the cooling age pattern across the 
southern Black Hills, samples of the HPG and the 
metasedimentary rocks were selected from widely spaced 
localities (Figure 2). Eighteen medium-grained pelitic schists and 
metagraywackes were sampled from the garnet, staurolite, and 
sillimanite zones surrounding the HPG [Dahl etal., I993]. 
Petrographic analysis reveals that the micas are typical!y 
unaltered, with only minor hematite or chlorite alteration of 
biotite. The majority of the rocks sampled contain one well- 
developed foliation. In the majority of samples, biotite is 
somewhat coatset grained than coexisting muscovite (i.e., 0.1-0.4 
x 0.0!-0.02 mm for muscovite versus 0.1-0.5 x 0.01-0.05 nun for 
biotite). In some of the samples (S-107, S-103, ST-107, and ST- 
112), late, coarser-grained (0.3-0.5 x 0.1-0.2 mm), randomly 
oriented micas overgrow the primary foliation. These late micas 
constitute <5% (by volume) of total muscovite or biotite in each 
sample. 

Mica separates were obtained using standard magnetic 
separation techniques combined with paper separation and 
handpicking. The coarsest possible grain size lacking composite 
grains (usually the 250-180 I. tm range) was chosen for dating. 
Purity of approximately 99% was obtained by these procedures, 
as verified by petrographie examination and confirmed by 
Inductively Coupled Plasma (ICP) analysis [Dahl eta/., 1993]. 

Sample preparation, irradiation, and analytical procedures for 
nøAr/•OAr incremental release dating follows the procedures 
described by Lux [1986]. Samples were encapsulated in tin foil 
and irradiated in the L67 facility of the Ford Reactor at the 
Phoenix Memorial Laboratory reactor of the University of 
Michigan. Variations in neutron flux during irradiation were 
monitored with the University of Maine flux monitor SBG-7 (age 
= 240.9 Ma relative to MMhb-1 (519.5 Ma) [Alexander et aI., 
1978]). The samples were heated in a molybdenum crucible 
using radio frequency induction within an ultrahigh vacuum 
system on a line to a Nuclide model 6-60-SGA mass 
spectrometer. Samples were analyzed by the incremental heating 
technique in which the sample is heated repeatedly at 
successively higher temperatures. Results are presented as 
release spectra in which the horizontal width of each box 
represents the size of an increment relative to the others, and the 
height represents the uncertainty associated with each apparent 
age. Plateau ages (designated as Tp) were calculated from 
consecutive gas increments that together constitute >50% of the 
total gas released. A 95% confidence limit using only the 
analytical uncertainty was the basis for determining whether 
consecutive increments overlapped in age. Age uncertainties 
were calculated by the method described by Dalrymple etal. 
[1981], are reported at the 2t3 level, and include the uncertainty in 
the flux measurement (J value). Analytical results for each 
sample are given in the Appendix •. 

5. Results 

Fourteen muscovite and !2 biotite separates were dated in this 
study, including 24 mica separates from the metasedimentary 

•Supporting data are available with entire article on microfiche. 
Order by mail from AGU, 2000 Florida Ave., NW, Washington, 
DC 20009 or by phone at 800-966-2481' $2.50. Document 
97TC01629M. Payment must accompany order. 
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rocks which surround the HPG and 2 muscovite separates from 
the granite itself. Spectra were obtained from 6 mica pairs of 
schist and metagraywacke. The release spectra of all 26 mica 
separates are shown in Figure 3. In Figure 3, and in the text 
following, the sample number for the metasedimentary units is 
preceded by letters which represent the metamorphic grade of the 
sample (GZ, garnet zone; ST, staurolite zone; S, sillimanite zone; 
and KY, kyanite zone). Plateau and near-plateau dates are 
interpreted to record cooling through closure interval 
temperatures required for 4øAr retention. It has long been 
recognized that cooling rate markedly affects the integrated 
closure temperature [Dodson, 1973]. Although the nominal 
closure temperature for Ar diffusion in muscovite is often cited as 
ca. 350øC [blcDougall and Harrison, 1988], studies in slowly 
cooled terranes have calculated integrated closure temperatures as 
low as -295øC and rim closure temperatures of -205øC [Hodges 
et aL, 1994]. In light of the evidence for slow cooling presented 
below, we assume integrated mica (muscovite and biotite) closure 
temperatures in the range of 250ø-300øC. 

Although less than half of the total samples dated yield strict 
plateaus (Figure 3), we note that most of the samples are well 
behaved in that they yield young age increments only for the first 
5-10% of the gas released and then level off to form near 
plateaus. Also, there is the same amount of age variability across 
the region regardless of whether all the data or only the plateau 
dates are considered. Because of these points, in the following 
discussion we interpret essentially all of the data (both total gas 
and plateau dates) as informative and representative of the 
regional cooling history. 

Dates range from as old as -1818 Ma to as young as -1270 Ma 
with considerable scatter in between. However, most dates fall 

into one of two age range categories (Figure 4). For instance, 12 
country rock mica separates yield relatively old dates (1600-1655 
Ma), whereas seven separates (granite and country rock) yield 
dates between 1440 Ma and 1510 Ma. For a given mineral, there 
is no relation between age and physical grain size. For example, 
biotites from samples ST~42 and ST-87 have essentially the same 
physical grain size but have a nearly 200 Ma age discordance. 
Also, biotite from sample ST-88 is coarser than biotite from 
87 (located only 2 km away) but yields a date which is about 50 
Ma younger. One biotite separate obtained from schist collected 
just northeast of the HPG (ST-18) yielded an apparent age of 
1818:k12 Ma. Abundant geothermometric data indicate that these 
rocks were heated to temperatures above 550øC when the-1710 
Ma HPG intruded [Helms and Labotka, 1991; Friberg et al., 
1996]. This fact, together with the fact that surrounding 
muscovite dates are all 1400~1500 Ma (samples HPG-1, HPG-5, 
GZ-11, and GZ-15), indicates that the 1818 Ma date is 
unreallstically old and probably affected by excess 4øAt. Finally, 
for a given mineral there is no relation between age and presence 
or absence of late porphyroblasts, in part because these 
porphyroblasts constitute only a small modal percentage of the 
muscovite or biotite populations dated. 

$.1. Early Proterozolc (1600-1655 Ma) dates 

Six muscovite and 6 biotite separates from the southern Black 
Hills yielded Early Proterozoic aøAr/39Ar dates between 1600 and 
1655 Ma (Figure 3). Most of these dates were obtained from 
samples located between the two domal regions and also south of 
the Bear Mountain dome (Figure 2)..Two samples (ST-107 and 

ST-112) yielded concordant mica pair dates suggesting cooling of 
these rocks through the average mica closure interval between 
1620 and 1640 Ma. Three other samples (S-107, ST-87, and ST- 
47) yielded biotite dates somewhat older than those of coexisting 
muscovite. We surmise that the reverse age discordance 
exhibited by these mica pairs probably reflects incorporation of 
relatively small amounts of unresolved excess 4øAt. Preferential 
intake of excess aøAr into biotite over coexisting muscovite is 
well known [Brewer, 1969] and appears to be related to the 
existence of weaker K-O bonds in biotite relative to muscovite 

[DAM, 19961. 

5.2. Middle Proterozolc dates 

Six muscovite and 5 biotite separates obtained from 10 
samples of the metasedimentary rocks collected in the domal 
regions yielded Middle Proterozoic 4øAr/39Ar dates between 1270 
and -1560 Ma (Figure 2). Two dates were also obtained from 
samples of the HPG collected near Harney Peak. Muscovite from 
a coarse-grained sample (HPG-1) yielded a plateau date of 
1403:i:8 Ma. Approximately 3 km to the east-southeast, 
muscovite books from a pegmatitic phase of the granite yielded a 
somewhat discordant age spectrum with a total-gas date of 
1456:i:.34 Ma. The difference in the grain sizes of these samples 
might be a factor that contributed to the difference in their dates 
and style of release patterns. 

6. Discussion 

We have obtained 26 dates for minerals from 20 different rock 

samples collected over much of the southern Black Hills. There 
is a general pattern of relatively old, Early Proterozoic (>1600 
Ma) dates existing between the two domal regions and south of 
Bear Mountain dome (Figure 2), although there is considerable 
scatter in the age data (Figure 4). We have acknowledged the 
likely presence of some excess 4øAr in the older population but do 
not consider it probable that the entire older population is the 
result of swamping by excess nøAr and therefore meaningless. 
The spectra are, for the most part, well behaved from both 
muscovite and biotite separates, and the dates obtained are 
geologically reasonable. We interpret the 1600-1655 Ma dates as 
representing the time of initial cooling of these rocks through 
average Ar mica retention conditions. These dates are over 50- 
100 m.y. younger than the -1710 Ma HPG and therefore are too 
young to reflect simple cooling following a heating event at 1710 
Ma [Carslaw and Jaeger, 1959]. If the country rock into which 
the granite intruded was cold (i.e., <300øC), then the thermal 
perturbation of the geotherm created by the intrusion would 
dissipate quickly and the reset mica ages should be close (within 
10-20 m.y.) to the age of the intrusion. 

Instead, ambient country rock temperatures at the time of 
granite intrusion must have been above conditions sufficient for 
diffusive loss of nøAr over geologic timescales (i.e., above-250 ø- 
350øC), and we associate the cooling of these rocks at 1655-1600 
Ma to postintrusion regional uplift. Because of the similar 
average retention temperatures for muscovite and biotite, we are 
unable to ascertain with certainty whether this period of uplift 
was rapid or slow. Similar plateau and total gas dates from 
coexisting muscovite and biotite (i.e., in samples ST-107 and ST- 
112) using the incremental heating method do not necessarily 
imply rapid cooling [see Hodges eta/., 1994]. In fact, the -50 
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Figure 4. Summary histogram of mean 4øAr/39Ar mica age data 
from the southern Black Hills. Early Proterozoic dates are on the 
left and Middle Proterozoic dates are on the fight. 

m.y. range in mica cooling ages suggests that it was probably not 
rapid; rapid cooling of a region should result in uniform ages 
from different localities [Hobn and Lux, 1996]. In addition, 
preliminary investigations suggest that within this older 
population mica age may vary with composition (e.g., with 
gg/(Fe+Mg) in biotite and K/(Na+K) in muscovite). If real, this 
would further indicate that cooling and uplift were slow during 
this time period as composition-controlled age variations would 
only be detected in slowly cooled terranes [Dahl, 1996]. 

As noted earlier, petrographic analysis of some of the 
metasedimentary rocks we dated (samples ST-107, ST-112, and 
S-107) reveals two generations of muscovite, one in the primary 
(S2) foliation and one occurring as coarser, late, randomly 
oriented porphyroblasts. The late muscovite widely recognized in 
the southern Black Hills is commonly interpreted to represent 
growth of that mineral during the low-P, high-T metamorphism 
associated with intrusion of the HPG. However, Berry et al. 
[1994] have proposed recently that at least some new growth of 
muscovite occurred during a younger, low-temperature thermal 
event below the biotite closure temperature. In this study, 
muscovite and biotite dates from rock samples containing late 
muscovite porphyroblasts are analytically identical, and there is 
no constraint to suggest that late muscovite grew below the biotite 
closure temperature. Our results therefore are consistent with the 
common interpretation of late muscovite growth being related to 
intrusion of the HPG. 

Mica 4øAr/39Ar dates from the domal regions, from both 
unreformed samples of the HPG and from the metasedimentary 
country rock, are consistently Middle Proterozoic. They are 
similar to muscovite 4øAr/39Ar dates obtained by Berry et al. 
[1994] from country rock collected northeast of the granite. 
Except for sample ST-47, our data give Middle Proterozoic dates 
for both biotite and muscovite. An important question is whether 
these younger dates are the result of a superposed thermal 
resetting event or whether they reflect the time of initial cooling 
of these rocks during uplift or slow isobaric relaxation of the 
geotherm. 

It is well known that voluminous Middle Proterozoic (1500- 
1300 Ma), midcrustal plutons were emplaced along a northeast 
trending transcontinental belt extending from southern California 
to Labrador [Anderson, 1983]. We suggest, however, that our 
Middle Proterozoic mica ages are probably not the result of a 
pluton-related thermal resetting event considering that the Black 
Hills are located over 200 km north of any identified Middle 

Proterozoic plutons (Figure 1). Admittedly, there are no 
basement exposures for a considerable distance south of the 
Black Hills, and it is possible that Middle Proterozoic plutons 
might extend close to the Black Hills given their apparent 
preference for intruding into Proterozoic crust (Figure 1). 
However, if our Middle Proterozoic dates from the domal regions 
(and similar dates from the northern Black Hills [Gardner et al., 
1996]) were interpreted to represent a widespread thermal 
resetting event, it would be difficult to explain why rocks located 
between the domal regions and also south of Bear Mountain 
dome were selectively not reset. In addition, Early Proterozoic 
crust invaded by Middle Proterozoic plutons in the southwestern 
United States yields hornblende 4øAr?gAr dates of 1430-1350 Ma 
indicating Middle Proterozoic regional metamorphism [i.e., 
Karlstrom et al., 1997]. The lack of any Middle Proterozoic 
hornblende dates from the Black Hills [Berry et al., 1994; Dahl et 
a/., 1996] might therefore be considered consistent with the lack 
of evidence for Middle Proterozoic plutonism in the area. 

We believe the younger Middle Proterozoic mica dates may be 
best interpreted as evidence of slow isobaric cooling related to 
relaxation of an elevated geotherm or as evidence of a period of 
slow Middle Proterozoic (1500-1300 Ma) uplift. The regional 
pattern of 1400 to 1600 Ma Rb-Sr and K-Ar biotite ages from 
rocks in the southern third of the Wyoming Province have long 
been interpreted to reflect Middle Proterozoic uplift [Peterman 
and Hildreth, 1978; Karlstrom and Houston, 1984]. 
Thermochronologic data from provinces farther southwest in 
Arizona indicate that terrane assembly at 1700 Ma was followed 
by a >200 m.y. stable period of little to no uplift [Karlstrom and 
Bowring, 1993]. This stable period was then followed by slow, 
regional uplift beginning at about 1450 Ma and continuing for at 
least several hundred million years [Bowring and Karlstrom, 
1990; Karlstrom and Bowring, 1993]. Indeed, the timing of 
intrusion and cooling proposed here for the HPG is remarkably 
comparable to the cooling history recently proposed for the 
-1700 Ma Crazy Basin pluton of central Arizona. Substantial 
Middle Proterozoic age gradients have been obtained from Crazy 
Basin pluton muscovite crystals using both laser spot-fusion 
mapping (--400 m.y. core-m-rim age variations [Hodges et at., 
1994]) and furnace step heating [Heizler and Raiser, 1996]. The 
100-200 m.y. age gradients commonly exhibited by our Middle 
Proterozoic mica spectra (Figure 3) and the -200 m.y. spread in 
Middle Proterozoic dates are together strong evidence for slow 
cooling. 

7. Interpretations of Map View Age Patterns 
7.1. Retention Variation 

We have noted above the possibility that the age scatter within 
the older population might reflect composition-controlled 
variations in Ar retention intervals, and we wonder if the overall 

map view age pattern seen in Figure 2 might also reflect variation 
in retention intervals on a larger scale. Actual closure 
temperature intervals of minerals are influenced by factors such 
as effective diffusion dimension (physical grain size?), mineral 
composition, and cooling rate. The apparent lack of correlation 
between age and physical grain size noted above leads us to 
speculate that subgrain domains (bounded by dislocations, 
cleavages, alteration phases, etc.) variably governed effective 
diffusion dimension (and thus relative cooling age) among our 
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Figure 5. Simple schematic cross-sectional (upper crust only) synopses depicting two end-member 
interpretations for the mica age pattern preserved in the southern Black Hills. Both models begin at -1700 Ma 
shortly after the intrusion of the Harney Peak Granite (HPG) which caused doming of the surrounding rock 
(creating a synform between the domes, S). In the retention variation model (left), long-term midcrustal 
residence and very slow cooling (associated with either downward motion of horizontal isotherms or very slow 
subhorizontal uplift of the region) occurs for several hundreds of million years after intrusion of the HPG. The 
different cooling ages result from differences in Ar retention intervals between the synform (S) region (shaded) 
and domal regions, not differences in structural depth. (a) At-1700 Ma, all micas are above their retention 
intervals in the midcrust. (b) By -1600 Ma, slow cooling is recorded in the more highly retentive mica minerals 
of the synform region. (c) At -1400 Ma, micas from the domal regions cool below their retention intervals. In 
the folding of isotherms model (right), the different low-temperature (350ø-300øC) histories for rocks within and 
without the synform (S) are interpreted to be the result of broad Middle Proterozoic folding after a period of 
protracted thermal equi!ibration in the middle crust following HPG intrusion. Currently exposed rocks within the 
synform are denoted with a solid circle. (d) Intrusion of the -1710 Ma Harney Peak Granite into deformed 
country rock with ambient temperatures somewhat above 350øC. (e) Minor uplift during the next 100 m.y. 
results in minor slow cooling of the rocks currently exposed in the synform. (f) Approximately east-west 
oriented compression beginning at -1500 Ma results in reactivation and accentuation of the synform and folding 
of the 1500 Ma -300øC isotherm. This folding results in uplift and cooling of the rocks outside of the synform 
and juxtaposition of relatively cold rocks within the synform. BMD is Bear Mountain dome. 

micas. A retention-composition relationship is suggested within 
our data set by the fact that relatively old biotites and muscovites 
from the synform (Figure 2) are also enriched in Mg/(Fe + Mg) 
and depleted in K/(Na + K), respectively, relative to micas in the 
domal regions [Dahl et al., 1993]. Such a correlation appears 
broadly consistent with crystal-chemical predictions [Dahl, 
1996]. 

Isolating the potential contributions of microstructure and 
composition on Ar retention in our micas is an exceedingly 
difficult task which can only be approached through outcrop-scale 
dating studies designed to eliminate the regional variable of 

uplift/cooling history. Full treatment of this matter is currently 
underway but beyond the scope of this paper. For now, we 
acknowledge that the synform region exhibits differences in 
lithology, mica composition, and possibly effective diffusion 
dimension in micas distinct from the surrounding domal regions. 
Given these differences, the age pattern might then be the result 
of slow subhorizontal uplift and cooling of minerals with 
different Ax retention intervals (i.e., higher retention intervals 
within the synform region and south of Bear Mountain dome). 
This explanation for the Early and Middle Proterozoic mica age 
pattern is depicted on the left side of Figure 5 (retention variatio, 
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model). Immediately after intrusion of the HPG, all rocks 
currently exposed in the southern Black Hills are at ambient 
temperatures slightly above -350øC (the nominal closure 
temperature of muscovite, Figure 5a). By z, 1600 Ma,.the crust 
has cooled uniformally (as shown by the deepening of horizontal 
isotherms). Synform rocks with their higher Ar retention interval 
(say ~350 øC) would have closed to diffusion of Ar by this time, 
whereas domal rocks with lower Ax retention intervals (say 
~300øC) remained open to Ar diffusion (Figure 5b). Slow 
cooling continues for about 200 m.y. until at -1400 Ma the 
current level of exposure of the domal regions cools below 
~300øC (Figure 5c). 

7.2. Folding of Isotherms 

if we assume that micas in the southern Black Hills all have 
essentially similar retention intervals, then the map view age 
pattern might be interpreted to be the result of broad Middle 
Proterozoic folding after a period of protracted thermal 
equilibration in the middle crust following HPG intrusion. In this 
scenario, we interpret the older mica dates preserved between the 
domal regions and south of Bear Mountain as representing 
shallower crustal regions which had already cooled prior to 
renewed Middle Proterozoic uplift (Figures 5d and 5e). The 
current preservation of older mica dates between the domes could 
reflect reactivation of a preexisting Early Proterozoic fault- 
bounded synformal structure (and down warping of relatively 
cold rocks) during a period of approximately east-west-oriented 
contraction and slow uplift during the Middle Proterozoic (Figure 
50. To the south of the domes where dates are older in the west 
and where the synform structure is absent, the same isotherm 
might be only broadly warped and dip gently to the west. The 
fact that the map pattern of young-to-old-to-young mica ages 
coincides with a preexisting mapped Early Proterozoic synform 
[DeWitt et al., 1989] could be taken as strong evidence that the 
structure was reactivated during the Middle Proterozoic. 

We emphasize that this interpretation for the age pattern does 
not rexlUke major crustal deformation or large amounts of 
differential displacement along the synform bounding faults 
during the Middle Proterozoic (Figure 5f). We also note that the 
synform bounding faults [DeWitt et al., 1989] between the domal 
regions crosscut only Early Proterozoic metamorphic rocks. 
Other than this simple crosscutting relation, there are no field 
constraints indicating that these faults could not have been 
reactivated at some later time. Indeed, without information such 

as the thermochronologic data presented here, it is nearly 
impossible to ascertain the timing of motion on these faults from 
field data alone. 

Historically, the Middle Proterozoic era in North America has 
been interpreted as a period of profuse anorogenic plutonism 
associated with extension [WindIcy, 1993]. We have raised the 
enticing interpretation that the cooling age pattern in the southern 
Black Hills might reflect Middle Proterozoic midcrustal 
shortening. Although it remains to be shown whether this 
interpretation (or the alternative retention variation model) is 
correct, it is at least consistent with several recent studies from 

the southwestern United States which provide evidence for a 
widespread midcrustal contractile deformational event during the 
Middle Proterozoic [Nyman et al., 1994; Duebendorfer and 
Christensen, 1995; Kirby eta/., 1995; Gonzales et al., 1996]. If 

ultimately verified, then the region affected by the compression 
may be substantially larger than originally proposed [see also 
Fueten and Redmond, 1997]. 

8. Implications for the Early Proterozoic 

8.1 Early Proterozolc Geothermal Gradient 

The mica '•øAr/39Ar dates obtained here indicate that the HPG 

did not cool through the muscovite Ar retention interval until 
200-300 m.y. after intrusion. Thus ambient country rock 
temperatures at the depth and time of intrusion of the HPG were 
warmer than ~300ø-350øC. Abundant geothermometrie data 
indicate that the country rock surrounding the granite was heated 
by the granite to temperatures above 550øC [Friberg et al., 1996]. 
However, countryrock hornblende '*øAr/39Ar ages are concordant 
(within error) with the pluton age [Berry eta/., 1994; Dahl and 
Holm, 1996; DaM et al., 1996]. This indicates that after the 
pluton-related heating event, the country rocks cooled quickly to 
temperatures below 500øC (the closure temperature widely 
assumed for hornblende), suggesting that the ambient temperature 
of 3-4 kbar country rocks prior to intrusion of the granite was 
below 500øC. Garnet rim temperatures of 530ø-550øC associated 
with HPG intrusion [Helms and Labotka, 1991; Friberg et al., 
1996] in the country rock surrounding the granite have been 
interpreted by some [e.g., Nabelek eta/., 1992a] as indicating the 
ambient temperature at the level of granite eraplacement (3-4 
kbar). However, we emphasize that these rim temperatures are 
associated with heating of the country rock by the pluton (which 
perturbed the ambient geothermal gradient) and therefore cannot 
be used as an estimate of the ambient geothermal gradient at (or 
just prior to) the time of HPG emplacement. 

Taken together, the hornblende and mica age data from the 
southern Black Hills indicate that the country rock temperature 
was between 350øC and 500øC at the 12-14 k.m depth of 
eraplacement of the HPG, suggesting an average, upper crustal, 
geothermal gradient of 25ø-40øC/km just prior to intrusion. This 
determination is somewhat lower than the 40ø-45øC/km 

geothermal gradient estimated by Nabe!ek eta/. [ 1992a] on the 
basis of oxygen isotope data. We conclude that the average 
geothermal gradient in the southern Black Hills was not 
abnormally high just prior to granite intrusion and that the lower 
crustal anatexis (which resulted in the HPG magma) was the 
result of a temporary tectonic perturbation of an average 
geotherm. 

8.2. Early Proterozole P-T Evolution 

As described above, peak country rock metamorphic pressures 
of 5-6.5 kbar in the southern Black Hills contrast with final 

equilibration pressures of 3-4 kbar [Terry and Friberg, 1990; 
Helms and Labotka, 1991; Terry et al., 1994]. The peak 
metamorphic pressures have been interpreted by some as 
representing the initial conditions of eraplacement of the adjacent 
HPG. For instance, Terry et al. [1994] envision HPG 
eraplacement (beginning at depths >22 kin) as concomitant with 
significant structural doming and regional uplift to final 
eraplacement depths of 12-14 k.m. We note that to our knowledge 
no timing constraints exist which require large amounts (>8-10 
km or more) of uplift and doming to have occurred together with 
intrusion. In addition, we disagree with this interpretation for two 
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reasons. First, in section 8.1 we noted that the 3-4 kbar country 
rocks now exposed at the surface were probably cooler than 
~500øC prior to granite intrusion; ambient temperatures this low 
would not have been likely at -22 kin. Second, the existence of 
prograde, low-P, metamorphic isograds (staurolite+biotite, 
andalusite+biotite, and sillimanite) surrounding the HPG [Helms 
and Labotka, 1991] also suggest that the country rock must have 
been relatively cold (-350ø-500øC) when the granite was 
emplaced. A simple uplift/cooling P-T path from peak (>22 km) 
to garnet-rim (12-14 km) pressures solely during granite intrusion 
would not allow for the development of such low-P, prograde 
metamorphic isograds. 

8.3. Proposed Proterozoic P-T Paths 

In Figure 6, we reconstruct two separate P-T paths for rocks of 
the southern Black Hills: one for low-P metamorphic rocks 
surrounding the HPG east of the synform and one for medium-P 
kyanite bearing rocks of the Bear Mountain dome west of the 
synform (Figure 2). Tectonic burial of Early Proterozoic rift 
sediments as young as -1880 Ma indicates crustal thickening and 
heating post-1880 Ma. Results of recent garnet and staurolite Pb- 
Pb step-leach dating of Bear Mountain dome rocks suggests the 
collision and attendant peak metamorphism occurred at about 
1760 Ma [Dahl and Frei, 1997]. At that time, palcopressures 
were at or above 6.5 kbar in the Bear Mountain dome and 4.$-5 

kbar in the Harney Peak dome (Figure 6). Abundant barometric 
data from garnet rims throughout the southern Black Hills 
indicate emplacement of the HPG at 3-4 kbar [Helms and 

Labotka, 1991]. While it is well documented that some doming 
and uplift. occurred with eraplacement of the HPG [Redden et al., 
1985], for the above reasons we consider it unlikely to have been 
of the order of 8-10 km or more. We propose instead that most of 
the uplift of the country rock from 20-25 km depths (or more) 
occurred prior to eraplacement of the HPG at 12-14 km depths. 
In this scenario (Figure 6), the HPG intruded relatively cold rocks 
in the southern Black Hills, imposed the prograde thermal 
isograds surrounding it (Figure 2), and cooled quickly to ambient 
country rock temperatures (Figure 6). The HPG stabilized and 
resided in the midcrust where it cooled slowly for several 
hundreds of million years. We note that the P-T paths proposed 
here are very similar in character to the looping P-T paths 
proposed for Proterozoic midcrustal rocks of the southwestern 
United States [Williams and Karlstrom, 1996]. 

8.4. Speculations on the Origin of the Harney Peak Magma 

The thermochronologic data presented here suggest that after 
Early Proterozoic collision and intrusion of the HPG the area of 
the southern Black Hills did not undergo rapid uplift. Instead, 
intrusion was followed by a prolonged period of tectonic 
quiescence and midcrustal residence from -1700 to 1500 Ma 
during which probably no or perhaps only minor slow uplift 
occurred. We propose therefore that the HPG magma was 
emplaeed into isostatically stable crust of relatively normal 
thickness. Since rifting occurred prior to collision in the Black 
Hills, the subsequent collision of thinned crust may have resulted 
in only moderately thick crust [cf. Bowring and Karlstrom, 1990]. 
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Figure 6. Proposed pressure-temperature-time paths for medium-pressure and low-pressure Early Proterozoic 
metasedimentary rocks in the southern Black Hills, South Dakota. Aluminosilicate triple point is after Holdaway 
[1971]. Abbreviations st, a, and s represent staurolite+biotite, andalusite+biotite, and sillimanite isograds, 
respectively. BMD is Bear Mountain dome; HPD is Harney Peak dome. Solid squares represent peak 
metamorphic conditions (after Terry et al. [1994] for BMD and Terry [1990] for HPD) and garnet-rim 
thermobarometric data (after Helms and Labotka, [1991]). Solid circles represent a -200 m.y. period of tectonic 
quiescence and stability after emplacement of the ,--1710 Ma Harney Peak Granite. Slow cooling through -300øC 
occurred at 1500-1300 Ma for both paths. See text for further explanation. 
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Table 1. Interpretation ofthe 1880-1400 Ma Geologic History of the Black Hills, South Dakota 

Event Absolute age, Reference 
Ma 

Rifting 
Thrusting and nappe 
folding (S 1 ) 

Isoclinal folding (S2) 
and metamorphism 

Subcrustal lithospheric 
thinning/crustal uplift 

Doming and intrusion 
of the Harney Peak 
Granite with formation 

of S 3 and late 
muscovite overgrowths 

Tectonic quiescence with 
minor uplift; weak $4 
foliation may have 
formed during this time 

Slow midcrustal cooling 
possibly associated with 
contraction 

-1880 

<1800 

1740-1760 

just prior to 
1710(?) 

~1710 

1710-1500 

~1400 

Redden eta/. [ 1990] 

Dahl [1993] 

Dahl eta/. [1996] 
Dah! and Frei [1997] 
This study 

Redden etal. [1990] 

This study 
Redden etal. [ 1990] 

This study 

Given this, the 8-10 km of uplift which we propose above to have 
preceded HPG intrusion may have been enough to return the 
moderately thick crust to a relatively normal thickness prior to 
emplacement of the HPG. 

The generation of the HPG magma is commonly attributed to 
partial melting of the lower crust in response to extreme crustal 
thickening and thermal relaxation [Helms and Labotka, !991; 
Nabelek et al., 1992a, hi. However, the lack of substantial rapid 
postintrusion uplift suggests isostatically stable crust of relatively 
normal thickness [of. Karlstrom and Bowring, 1993]. As an 
alternative possibility, Sims etal. [1991] have proposed that the 
HPG might be related to the suturing of the rocks of the Central 
Plains Orogen along the Cheyenne Belt. While this hypothesis 
eliminates the need for partial melting of an overthickened crust, 
it is inconsistent with both the timing and the well-documented 
southward dip of the Cheyenne suture [Duebendorfer and 
Houston, 1987]. 

As noted in the geologic setting above, in the whole of the 
Black Hills the HPG is spatially associated with the deepest 
exposed Early Proterozoic country rock. Mica cooling ages in the 
northern Black Hills [Gardner etal., 1996] are comparable to the 
southern Black Hills, and therefore the spatial association does 
not appear to be related to greater uplift of the southern region 
during or since the Middle Proterozoic. We have established in 
this paper that Early Proterozoic postcollisional uplift and cooling 
of the country rock occurred prior to midcrustal 3-4 kbar granite 
eraplacement, and therefore this spatial association is not related 
to in situ biotite dehydration melting of the deepest exposed 
portion of the orogen. Although the timing of Early Proterozoic 
unroofing from --6 kbar pressures to 3-4 kbar pressures is 
uncertain, we speculate that this uplift, and the generation and 
eraplacement of granite which followed it, are genetically linked, 

and both may have been initiated by a deeper-seated process 
perhaps associated with subcrustal lithospheric thinning (i.e., 
mantle delamination). One consequence of delamination is 
isostatic uplift and thinning of the overlying crust. A second 
consequence is an increase in mantle heat flux across the Moho 
(by shallowing of the asthenosphere-lithosphere boundary) and 
lower crustal melting [Kay and Kay, 1993]. Given an appropriate 
time lag between these two responses, delamination might 
provide an explanation for why cooling of upper crustal rocks is 
followed by fusion of the lower crust and melt eraplacement into 
stable midcrustal rock. Postcollisional mantle delamination has 

been proposed on the basis of geophysical evidence for portions 
of the Trans-Hudson orogen to the north (central Saskatchewan, 
Canada) where postcollisional magmas exist [Baird etak, 1995] 
and has been suggested as a possible cause for genesis of post- 
collisional granites in the Early Proterozoie Penokean orogen of 
the southern Lake Superior region (Figure 1) [Holm and Lux, 
1996]. Whatever the mechanism for posttectonic granite genesis, 
whether by delamination or thermal relaxation [Windley, 1993], 
as with younger collisional belts, we envision crustal thickening 
followed by crustal thinning with generation and eraplacement of 
late-collisional or anatectic granite to be intimately related [e.g., 
Burchfiel etal., 1992; MoInar and Lyon-Caen, 1988; Turner et 
a/.,• 1992]. 

9. Summary and Conclusions 

The mica 4øAr?øAr age data h'om the southern Black Hills 
depict a simple map view pattern in which relatively old dates 
(1600-1655 Ma) are preserved within the synform structure 
located between the Harney Peak and Bear Mountain domes and 
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also south of Bear PvI0mntain. In contrast, Middle Proterozoic 
mica dates (--1500-1 270 Ma) are obtained from the surrounding 
domal regions. The dat• are interpreted to indicate a period of 
low-•ernperature• co<•lia .g associated with either slow Middle 
Proterozoi½ isobaric c0•liag or uplift at -1300-1500 Ma. The 
map view age pattern rmay reflect essentially horizontal slow 
cooling of an area •r laicht extaibits variations in mica Ar retention 
intervals. The patterra rainy altematively be explained as reflecting 
a mildly folded lV'Iidc•l½ Proterozoic (-1500 Ma) ~300øC 
isotherm. If so, sh•rtel•ing may have been localized along a 
major preexisting noxth-•0uth oriented synformal structure and is 
consistent w'ith a rcggi0n•l Middle Proterozoic west-to-northwest 
contractile e•vent recently proposed for western North America 
[Nyrnan et al., 1994]_ 

In addition to pr0•iding ex, idence for slow Middle Proterozoic 
cooling, the xnica age data provide important implications for the 
Early Proterozoic te•ct0raothermal history of the southern Black 
Hills (Table 1). 'These iraclucte the following: (1) Intrusion of the 
HPG was followed by a prolonged period (-200 m.y.) of crustal 
stability and teet0nic qmies•ence, 2) The HPG magma intruded 
into crust of relatively la0rrmal thickness, 3) Prior to intrusion, 
crust overthieken½cl d•ring collision (after-1880 Ma) was 

thinned during a period of uplift, 4) Last, we speculate that Early 
Proterozoic uplift and crustal thinning and subsequent generation 
of the HPG magma may have been the result of localized thinning 
of the overthickened subcrustal lithosphere beneath the southern 
Black Hills. 

Finally, we note that at -1710 Ma, the crust in the southern 
Black Hills was probably not 60-70 km thick as might be inferred 
if the 12-14 km of crust that originally overlay the HPG were 
added to the current 45-55 km crustal thickness. Instead, crustal 
structure has probably been thickened since the Early Pmterozoic, 
either by magmatic underplating during the Middle Proterozoic 
together with thickening due to shortening and/or possibly even 
by much younger Laramide tectonism and magmatism. 
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